WorldWideScience

Sample records for system control experience

  1. Ideas on a generic control systems based on the experience on the 4 LEP experiments control system

    International Nuclear Information System (INIS)

    Barillere, R.; Le Goff, J.M.; Milcent, H.; Stampfli, R.

    1992-01-01

    Most of the large slow control systems in the LEP collider experiments are distributed heterogeneous and multi-standard. But in spite of the appearances, they have a lot in common. From our direct experience on the L-3 slow control system and from the informations we obtained on the 3 other LEP experiments control systems we have come to the conclusion that it should be possible to build a Generic Control Package from which any control system could be derived. This software package is entirely based on relational databases and is intended to provide all the necessary tools to build a modular, coherent, easy to update and to maintain control system. Among other things this package should include user friendly interfaces, expert systems, and powerful graphic monitoring and control tools. This paper will present our general ideas about the realization of such a package. (author)

  2. Concluding from operating experience to instrumentation and control systems

    International Nuclear Information System (INIS)

    Pleger, H.; Heinsohn, H.

    1997-01-01

    Where conclusions are drawn from operating experience to instrumentation and control systems, two general statements should be made. First: There have been braekdowns, there have also been deficiencies, but in principle operating experience with the instrumentation and control systems of German nuclear power plants has been good. With respect to the debates about the use of modern digital instrumentation and control systems it is safe to say, secondly, that the instrumentation and control systems currently in use are working reliably. Hence, there is no need at present to replace existing systems for reasons of technical safety. However, that time will come. It is a good thing, therefore, that the use of modern digital instrumentation and control systems is to begin in the field of limiting devices. The operating experience which will thus be accumulated will benefit digital instrumentation and control systems in their qualification process for more demanding applications. This makes proper logging of operating experience an important function, even if it cannot be transferred in every respect. All parties involved therefore should see to it that this operating experience is collected in accordance with criteria agreed upon so as to prevent unwanted surprises later on. (orig.) [de

  3. Experience of digital control systems in Scandinavian BWRs

    International Nuclear Information System (INIS)

    Rydahl, I.

    1989-01-01

    Since 1984 digital control systems have been in operation in various Scandinavian BWRs. Examples of such digital control systems are: dual microprocessor based system for complete control of radwaste plant, three channel recirculation control system, and three channel feedwater control system. This paper describes Swedish development from one channel through three channel analog control systems to digital systems. The author describes experience of digital control systems during design, testing, commissioning and operation. The main benefits of digital compared with analog technology are discussed. Especially the outstanding facility of using a built-in process simulator for commissioning and tuning. The use of digital technology in nuclear safety system and future plans are dealt with

  4. DABASCO Experiment Data Acquisition and Control System

    International Nuclear Information System (INIS)

    Alberdi Primicia, J.; Artigao Arteaga, A.; Barcala Rieveira, J. M.; Oller Gonzalez, J. C.

    2000-01-01

    DABASCO experiment wants to study the thermohydraulic phenomena produced into the containment area for a severe accident in a nuclear power facility. This document describes the characteristics of the data acquisition and control system used in the experiment. The main elements of the system were a data acquisition board, PCI-MIO-16E-4, and an application written with LaB View. (Author) 5 refs

  5. The detector control system of the ATLAS experiment

    International Nuclear Information System (INIS)

    Poy, A Barriuso; Burckhart, H J; Cook, J; Franz, S; Gutzwiller, O; Hallgren, B; Schlenker, S; Varela, F; Boterenbrood, H; Filimonov, V; Khomutnikov, V

    2008-01-01

    The ATLAS experiment is one of the experiments at the Large Hadron Collider, constructed to study elementary particle interactions in collisions of high-energy proton beams. The individual detector components as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision using operator commands, reads, processes and archives the operational parameters of the detector, allows for error recognition and handling, manages the communication with external control systems, and provides a synchronization mechanism with the physics data acquisition system. Given the enormous size and complexity of ATLAS, special emphasis was put on the use of standardized hardware and software components enabling efficient development and long-term maintainability of the DCS over the lifetime of the experiment. Currently, the DCS is being used successfully during the experiment commissioning phase

  6. The LHC experiment control system: on the path to full automation

    International Nuclear Information System (INIS)

    Gaspar, C.; Alessio, F.; Cardoso, L.; Frank, M.; Garnier, J.C.; Herwijnen, E.V.; Jacobsson, R.; Jost, B.; Neufeld, N.; Schwemmer, R.; Callot, O.; Franek, B.

    2012-01-01

    LHCb is a large experiment at the LHC accelerator. The experiment control system is in charge of the configuration, control and monitoring of the different sub-detectors and of all areas of the online system. The building blocks of the control system are based on the PVSS SCADA System complemented by a control Framework developed in common for the 4 LHC experiments. This framework includes an 'expert system' like tool called SMI++ which is used for the system automation. The experiment's operations are now almost completely automated, driven by a top-level object called Big-Brother, which pilots all the experiment's standard procedures and the most common error-recovery procedures. The architecture, tools and mechanisms used for the implementation as well as some operational examples will be described. (authors)

  7. Low-Cost Undergraduate Control Systems Experiments Using Microcontroller-Based Control of a DC Motor

    Science.gov (United States)

    Gunasekaran, M.; Potluri, R.

    2012-01-01

    This paper presents low-cost experiments for a control systems laboratory module that is worth one and a third credits. The experiments are organized around the microcontroller-based control of a permanent magnet dc motor. The experimental setups were built in-house. Except for the operating system, the software used is primarily freeware or free…

  8. Role Based Access Control system in the ATLAS experiment

    CERN Document Server

    Valsan, M L; The ATLAS collaboration; Lehmann Miotto, G; Scannicchio, D A; Schlenker, S; Filimonov, V; Khomoutnikov, V; Dumitru, I; Zaytsev, A S; Korol, A A; Bogdantchikov, A; Caramarcu, C; Ballestrero, S; Darlea, G L; Twomey, M; Bujor, F; Avolio, G

    2011-01-01

    The complexity of the ATLAS experiment motivated the deployment of an integrated Access Control System in order to guarantee safe and optimal access for a large number of users to the various software and hardware resources. Such an integrated system was foreseen since the design of the infrastructure and is now central to the operations model. In order to cope with the ever growing needs of restricting access to all resources used within the experiment, the Roles Based Access Control (RBAC) previously developed has been extended and improved. The paper starts with a short presentation of the RBAC design, implementation and the changes made to the system to allow the management and usage of roles to control access to the vast and diverse set of resources. The paper continues with a detailed description of the integration across all areas of the system: local Linux and Windows nodes in the ATLAS Control Network (ATCN), the Linux application gateways offering remote access inside ATCN, the Windows Terminal Serv...

  9. Role Based Access Control System in the ATLAS Experiment

    CERN Document Server

    Valsan, M L; The ATLAS collaboration; Lehmann Miotto, G; Scannicchio, D A; Schlenker, S; Filimonov, V; Khomoutnikov, V; Dumitru, I; Zaytsev, A S; Korol, A A; Bogdantchikov, A; Avolio, G; Caramarcu, C; Ballestrero, S; Darlea, G L; Twomey, M; Bujor, F

    2010-01-01

    The complexity of the ATLAS experiment motivated the deployment of an integrated Access Control System in order to guarantee safe and optimal access for a large number of users to the various software and hardware resources. Such an integrated system was foreseen since the design of the infrastructure and is now central to the operations model. In order to cope with the ever growing needs of restricting access to all resources used within the experiment, the Roles Based Access Control (RBAC) previously developed has been extended and improved. The paper starts with a short presentation of the RBAC design, implementation and the changes made to the system to allow the management and usage of roles to control access to the vast and diverse set of resources. The paper continues with a detailed description of the integration across all areas of the system: local Linux and Windows nodes in the ATLAS Control Network (ATCN), the Linux application gateways offering remote access inside ATCN, the Windows Terminal Serv...

  10. FFTF control system experience

    International Nuclear Information System (INIS)

    Warrick, R.P.

    1981-01-01

    The FFTF control systems provide control equipment for safe and efficient operation of the plant. For convenience, these systems will be divided into three parts for discussions: (1) Plant Protection System (PPS); (2) Plant Control System (PCS); and (3) General Observations. Performance of each of these systems is discussed

  11. A remote control system for the LELA experiment

    International Nuclear Information System (INIS)

    Castellano, M.; Cavallo, N.; Cevenini, F.; Patteri, P.

    1983-01-01

    A modular system for closed loop computer control of stepping motors has been realized and used for optical component movement of LELA experiment in radiation risk area. A CAMAC module, controlling up to 15 stepping motors, a NIM dual motor driver and a special purpose circuit for computer interfacing are described

  12. Neutral beam control systems for the Tandem Mirror Experiment

    International Nuclear Information System (INIS)

    Ross, R.I.

    1979-01-01

    The Tandem Mirror Experiment (TMX) is presently developing the technology and approaches which will be used in larger fusion systems. This paper describes some of the designs which were used in creating the control system for the TMX neutral beams. To create a system of controls that would work near these large, rapid switching current sources required a mixture of different technologies: fiberoptic data transmission, printed circuit and wirewrap techniques, etc

  13. Power system control experiments using 1 MJ SMES

    International Nuclear Information System (INIS)

    Sugimoto, Shigeyuki

    1993-01-01

    Chubu Electric Power Co. Inc., developed a 1 MJ Superconducting Magnetic Energy Storage (SMES) system composed of a pulsive superconducting magnet (1000 A, 2 H) and experimental researches connecting this system to a simulated power system composed of four generators, fluctuating load and some transmission lines were carried out in the laboratory of Chubu Electric Power Co. Inc., since 1989. The purpose of this experimental researches are to investigate the effects of SMES adapting in power system control use. This paper describes the results and confirmed effects of four kinds of experiments as the following, cut-off peak demand, load leveling effect for fluctuating load, improvement of dynamic stability and frequency control effect in isolated power system. (orig.)

  14. A control system for a free electron laser experiment

    International Nuclear Information System (INIS)

    Giove, D.

    1992-01-01

    The general layout of a control and data acquisition system for a Free Electron Laser experiment will be discussed. Some general considerations about the requirements and the architecture of the whole system will be developed. (author)

  15. Role Based Access Control system in the ATLAS experiment

    International Nuclear Information System (INIS)

    Valsan, M L; Dumitru, I; Darlea, G L; Bujor, F; Dobson, M; Miotto, G Lehmann; Schlenker, S; Avolio, G; Scannicchio, D A; Filimonov, V; Khomoutnikov, V; Zaytsev, A S; Korol, A A; Bogdantchikov, A; Caramarcu, C; Ballestrero, S; Twomey, M

    2011-01-01

    The complexity of the ATLAS experiment motivated the deployment of an integrated Access Control System in order to guarantee safe and optimal access for a large number of users to the various software and hardware resources. Such an integrated system was foreseen since the design of the infrastructure and is now central to the operations model. In order to cope with the ever growing needs of restricting access to all resources used within the experiment, the Roles Based Access Control (RBAC) previously developed has been extended and improved. The paper starts with a short presentation of the RBAC design, implementation and the changes made to the system to allow the management and usage of roles to control access to the vast and diverse set of resources. The RBAC implementation uses a directory service based on Lightweight Directory Access Protocol to store the users (∼3000), roles (∼320), groups (∼80) and access policies. The information is kept in sync with various other databases and directory services: human resources, central CERN IT, CERN Active Directory and the Access Control Database used by DCS. The paper concludes with a detailed description of the integration across all areas of the system.

  16. Gas box control system for Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Bell, H.H. Jr.; Hunt, A.L.; Clower, C.A. Jr.

    1983-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) uses several methods to feed gas (usually deuterium) at different energies into the plasma region of the machine. One is an arrangement of eight high-speed piezo-electric valves mounted on special manifolds (gas box) that feed cold gas directly to the plasma. This paper describes the electronic valve control and data acquisition portions of the gas box, which are controlled by a desk-top computer. Various flow profiles have been developed and stored in the control computer for ready access by the operator. The system uses two modes of operation, one that exercises and characterizes the valves and one that operates the valves with the rest of the experiment. Both the valve control signals and the pressure transducers data are recorded on the diagnostics computer so that they are available for experiment analysis

  17. The Intelligent Control System and Experiments for an Unmanned Wave Glider.

    Science.gov (United States)

    Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan

    2016-01-01

    The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the "Ocean Rambler" UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified.

  18. The Intelligent Control System and Experiments for an Unmanned Wave Glider

    Science.gov (United States)

    Liao, Yulei; Wang, Leifeng; Li, Yiming; Li, Ye; Jiang, Quanquan

    2016-01-01

    The control system designing of Unmanned Wave Glider (UWG) is challenging since the control system is weak maneuvering, large time-lag and large disturbance, which is difficult to establish accurate mathematical model. Meanwhile, to complete marine environment monitoring in long time scale and large spatial scale autonomously, UWG asks high requirements of intelligence and reliability. This paper focuses on the “Ocean Rambler” UWG. First, the intelligent control system architecture is designed based on the cerebrum basic function combination zone theory and hierarchic control method. The hardware and software designing of the embedded motion control system are mainly discussed. A motion control system based on rational behavior model of four layers is proposed. Then, combining with the line-of sight method(LOS), a self-adapting PID guidance law is proposed to compensate the steady state error in path following of UWG caused by marine environment disturbance especially current. Based on S-surface control method, an improved S-surface heading controller is proposed to solve the heading control problem of the weak maneuvering carrier under large disturbance. Finally, the simulation experiments were carried out and the UWG completed autonomous path following and marine environment monitoring in sea trials. The simulation experiments and sea trial results prove that the proposed intelligent control system, guidance law, controller have favorable control performance, and the feasibility and reliability of the designed intelligent control system of UWG are verified. PMID:28005956

  19. Controlled Experiment Replication in Evaluation of E-Learning System's Educational Influence

    Science.gov (United States)

    Grubisic, Ani; Stankov, Slavomir; Rosic, Marko; Zitko, Branko

    2009-01-01

    We believe that every effectiveness evaluation should be replicated at least in order to verify the original results and to indicate evaluated e-learning system's advantages or disadvantages. This paper presents the methodology for conducting controlled experiment replication, as well as, results of a controlled experiment and an internal…

  20. Doosan Experience on I and C Upgrade for Operating NPPs: Control Rod Control System and Automatic Seismic Trip System

    International Nuclear Information System (INIS)

    Nam, C.H.; Kim, K.H.; Lee, D.H.

    2012-01-01

    This paper describes DHIC's experience on upgrading 3 coil type control rod control system(CRCS), 4 coil type control element drive mechanism control system(CEDMCS) and automatic seismic trip system(ASTS). Common main feature of the above systems are full duplex system to prevent unwanted trip and mis-operation. 5 CRCS and CEDMCS have been supplied to Kori 1,2, Ulchin 1,2 and Younggwang 3 since 2010 and 7 CEDMCS are contracted to supply Korea Hydro and Nuclear Power Co.(KHNP) site. Also 16 ASTS are supplied and 12 ASTS will be supplied to operating and new NPPs within 3 years. (author)

  1. AUTOMATING THE CONFIGURATION OF THE CONTROLS SYSTEMS OF THE LHC EXPERIMENTS

    CERN Multimedia

    Calheiros, F; Varela, F

    2007-01-01

    The supervisory layer of the Large Hadron Collider (LHC) experiments is based on the Prozeßvisualisierungs- und Steuerungsystem (PVSS) [1] and the Joint COntrols Project (JCOP) Framework (FW) [2]. This controls framework includes a Finite State Machine (FSM) toolkit, which allows to operate the control systems according to a well-defined set of states and commands. During the FSM transitions of the detectors, it is required to re-configure parts of the control systems. All configuration parameters of the devices integrated into the control system are stored in the so-called configuration database. In this paper the JCOP FW FSM-Configuration database tool is presented. This tool ensures the availability of all required configuration data, for a given type of run of the experiment, in the PVSS sub-detector control applications. The chosen implementation strategy is discussed in the paper. The approach enables the standalone operation of different partitions of the detectors simultaneously while ensuring indepe...

  2. The Space Technology-7 Disturbance Reduction System Precision Control Flight Validation Experiment Control System Design

    Science.gov (United States)

    O'Donnell, James R.; Hsu, Oscar C.; Maghami, Peirman G.; Markley, F. Landis

    2006-01-01

    As originally proposed, the Space Technology-7 Disturbance Reduction System (DRS) project, managed out of the Jet Propulsion Laboratory, was designed to validate technologies required for future missions such as the Laser Interferometer Space Antenna (LISA). The two technologies to be demonstrated by DRS were Gravitational Reference Sensors (GRSs) and Colloidal MicroNewton Thrusters (CMNTs). Control algorithms being designed by the Dynamic Control System (DCS) team at the Goddard Space Flight Center would control the spacecraft so that it flew about a freely-floating GRS test mass, keeping it centered within its housing. For programmatic reasons, the GRSs were descoped from DRS. The primary goals of the new mission are to validate the performance of the CMNTs and to demonstrate precise spacecraft position control. DRS will fly as a part of the European Space Agency (ESA) LISA Pathfinder (LPF) spacecraft along with a similar ESA experiment, the LISA Technology Package (LTP). With no GRS, the DCS attitude and drag-free control systems make use of the sensor being developed by ESA as a part of the LTP. The control system is designed to maintain the spacecraft s position with respect to the test mass, to within 10 nm/the square root of Hz over the DRS science frequency band of 1 to 30 mHz.

  3. The VEPP-2000 Collider Control System: Operational Experience

    CERN Document Server

    Senchenko, A I; Lysenko, A P; Rogovsky, Yu A; Shatunov, P Yu

    2017-01-01

    The VEPP-2000 collider was commissioned and operated successfully in 2010-2013. During the operation the facility underwent continuous updates and experience in maintenance was acquired. Strong cooperation between the staff of the accelerator complex and the developers of the control system proved effective for implementing the necessary changes in a short time.

  4. Operational experience of SST1 NBI control system with prototype Ion source

    International Nuclear Information System (INIS)

    Patel, V B; Patel, P J; Singh, N P; Tripathi, V; Thakkar, D; Gupta, L N; Prahlad, V; Sharma, S K; Bandyopadyay, M; Chakraborty, A K; Baruah, U K; Mattoo, S K; Patel, G B; Onali, Raja

    2010-01-01

    This paper presents operational experience of integrated control of the arc-filament and High-voltage power supply of Steady State Tokamak (SST)-1 NBI system using Versa Module Europa (VME) system on prototype Ion source. The control algorithm is implemented on the VxWorks operating system using 'C' language. This paper also describes the operating sequence and controls on power supply system. Discharge and Filament power supplies are controlled in such a way so that necessary discharge current can be available in Ion Source. The discharge current is controlled by manipulating the filament current. Close loop control is implemented on each filament power supply with feedback from Discharge Current to control the overall discharge inside the ion source. Necessary actions for shut OFF and subsequent Turn ON are also taken during breakdowns between the Grids of the ion source. Total numbers of breakdowns are also monitored. Shot is terminated, if the breakdown count is higher than the set value. This control system can be programmed to restart High-voltage power supply within 5mS after breakdown occurs. This control system is capable to handle the all types of dynamics in the system. This paper also presents results of experiment.

  5. Conceptual design of a digital control system for nuclear criticality experiments

    International Nuclear Information System (INIS)

    Rojas, S.P.

    1994-04-01

    Nuclear criticality is a concern in many areas of nuclear engineering including waste management, nuclear weapons testing and design, basic nuclear research, and nuclear reactor design and analysis. As in many areas of science and engineering, experimental work conducted in this field has provided a wealth of data and insight essential to the formulation of theory and the advancement in knowledge of fissioning systems. In light of the many diverse applications of nuclear criticality, there is a continuing interest to learn and understand more about the fundamental physical processes through continued experimentation. This thesis addresses the problem of setting up and programming a microprocessor-based digital control system (PLC) for a proposed critical experiment using, among other devices, a stepper motor, a joystick control mechanism, and switches. This experiment represents a revised configuration to test cylindrical nuclear waste packages. A Monte Carlo numerical study for the proposed critical assembly has been performed in order to illustrate how results from numerical calculations are used in the process of assembling the control system and to corroborate previous experimental data. In summary, a control system utilizing some common devices necessary to perform a critical experiment (stepper motor, push-buttons, etc.) has been assembled. Control components were sized using the results of a probabilistic computer code (MCNP). Finally, a program was written that illustrates the coupling between the hardware and the devices being controlled in the new test fixture

  6. Experience with the Multi-Year Implementation of an Industrial Control System

    CERN Document Server

    Kuhn, H K; Juillerat, A C; Rabany, Michel; Wollès, J C

    2000-01-01

    In 1990, CERN passed a multi-year purchasing and installation contract for the LEP 200 Cryogenics control system with ABB, one of the world's leading suppliers of integrated Distributed Control Systems (DCS). A financial framework provided over a period of eight years the required supplies. These were called up with so called "Release Orders", taking into account the latest technical developments. The issues and experiences with such a new approach and the resulting control system are described.

  7. Manufacturing of central control system of 'JT-60' a plasma feasibility experiment device

    International Nuclear Information System (INIS)

    Kondo, Ikuo; Kimura, Toyoaki; Murai, Katsuji; Iba, Daizo; Takemaru, Koichi.

    1984-01-01

    For constructing a critical-plasma-experiment apparatus JT-60, it was necessary to develop a new control system which enables to operate safely and smoothly a large scale nuclear fusion apparatus and to carry out efficient experiment. For the purpose, the total system control facility composed of such controllers as CAMAC system, timing system and protective interlock panel with multi-computer system as the core was developed. This system generalizes, keeps watch on and controls the total facilities as the key point of the control system of JT-60, and allows flexible operation control corresponding to the diversified experimental projects. At the same time, it carries out the fast real-time control of high temperature, high density plasma. In this paper, the system constitution, function and the main contents of development of the total system control facility are reported. JT-60 is constructed to attain the critical plasma condition as the premise of nuclear fusion reactors and to scientifically verify controlled nuclear fusion. Plasma expe riment will be started in April, 1985. The real-time control of plasma for carrying out high beta operation is planned, intending to develop future economical practical reactors. (Kako, I.)

  8. Engineered barrier experiment. Power control and data acquisition systems

    International Nuclear Information System (INIS)

    Alberdi, J.; Barcala, J.M.; Gamero, E.; Martin, P.L.; Molinero, A.; Navarrete, J.J.; Yuste, C.

    1997-01-01

    The engineered barrier concept for the storage of radioactive wastes is being tested at almost full scale at CIEMAT facilities. A data acquisition and control is an element of this experiment. This system would be operating for next three years. (Author)

  9. Coherent operation of detector systems and their readout electronics in a complex experiment control environment

    Energy Technology Data Exchange (ETDEWEB)

    Koestner, Stefan [CERN (Switzerland)], E-mail: koestner@mpi-halle.mpg.de

    2009-09-11

    With the increasing size and degree of complexity of today's experiments in high energy physics the required amount of work and complexity to integrate a complete subdetector into an experiment control system is often underestimated. We report here on the layered software structure and protocols used by the LHCb experiment to control its detectors and readout boards. The experiment control system of LHCb is based on the commercial SCADA system PVSS II. Readout boards which are outside the radiation area are accessed via embedded credit card sized PCs which are connected to a large local area network. The SPECS protocol is used for control of the front end electronics. Finite state machines are introduced to facilitate the control of a large number of electronic devices and to model the whole experiment at the level of an expert system.

  10. Securing a control system: experiences from ISO 27001 implementation

    International Nuclear Information System (INIS)

    Vuppala, V.; Vincent, J.; Kusler, J.; Davidson, K.

    2012-01-01

    Recent incidents of breaches, in control systems in specific and information systems in general, have emphasized the importance of security and operational continuity in achieving the quality objectives of an organization, and the safety of its personnel and infrastructure. However, security and disaster recovery are either completely ignored or given a low priority during the design and development of an accelerator control system, the underlying technologies, and the overlaid applications. This leads to an operational facility that is easy to breach, and difficult to recover. Retrofitting security into a control system becomes much more difficult during operations. In this paper we describe our experiences with implementing ISO/IEC 27001 Standard for information security at the Electronics Department of the National Superconducting Cyclotron Laboratory (NSCL) located on the campus of Michigan State University. We describe our risk assessment methodology, the identified risks, the selected controls, their implementation, and our documentation structure. We also report the current status of the project. We conclude with the challenges faced and the lessons learnt. (authors)

  11. Comparison of Failure Analysis and Operating Experiences of Digital Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Chan; Shin, Tae Young [Korea Hydro and Nuclear Power Co., Daejeon (Korea, Republic of)

    2014-08-15

    This study focuses on digital control systems that have the same functions but different designs. Some differences and common points between these two digital control systems are analyzed in terms of vulnerabilities in plant operation. In addition, this study confirms why unexpected outcomes can occur through a comparison of the system failure experiences with the analytic results of FMEA and FTA. This evaluation demonstrates that the digital system may have vulnerable components whose single failures can cause plant transients even if the system has a redundant structure according to its system design.

  12. Data acquisition and experiment control system for high-data-rate experiments at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Alberi, J.L.; Stubblefield, F.W.

    1981-11-01

    A data acquisition and experiment control system for experiments at the Biology Small-Angle X-ray Scattering Station at the National Synchrotron Light Source has been developed based on a multiprocessor, functionally distributed architecture. The system controls an x-ray monochromator and spectrometer and acquires data from any one of three position-sensitive x-ray detectors. The average data rate from the position-sensitive detector is approx. 10 6 events/sec. Data is stored in a one megaword histogramming memory. The experiments at this Station require that x-ray diffraction patterns be correlated with timed stimuli at the sample. Therefore, depending on which detector is in use, up to 10 3 time-correlated diffraction patterns may be held in the system memory simultaneously. The operation of the system is functionally distributed over four processors communicating via a multiport memory

  13. Experience with the control system for the SPS

    International Nuclear Information System (INIS)

    Crowley-Milling, M.C.

    1978-01-01

    The design of the multicomputer control system for the 400 GeV Super Proton Synchrotron (SPS) at CERN was described in the report CERN 75-20, issued in 1975, before the commissioning of the accelerator. The present report, which should be read in conjunction with the earlier one, describes the modification made to the system in the light of experience, and how it has adapted to changing requirements. Reliability of the system and how it has adapted to changing requirements. Reliability of the system and of its components is discussed. Taking into account modern developments of microprocessors, etc., the changes that might be made if the system were to be redesigned are examined. Finally, the application of the design philosophy to other fields is discussed briefly. (Auth.)

  14. French experience in the programmed systems for nuclear reactor control and protection

    International Nuclear Information System (INIS)

    Jover, P.

    1986-03-01

    The analysis of incidents during the start-up of the first nuclear power plant 1300 MWe has made possible to obtain good performances evaluation of the two computerized control and protection systems: the protection system (SPIN) and the logic control system (CONTROBLOC). The results of this experiment have shown that the objectives have been attained [fr

  15. Experience on operational safety improvement of control and operation support systems

    International Nuclear Information System (INIS)

    Itoh, N.; Nakagawa, T.; Mano, K.

    1988-01-01

    Japanese nuclear industry started in 1956 and about 30 years have passed since that time. Through these years, we have made a lot of efforts and developments in the field of Control and Instrumentation (C and I) system. The above 30 years and following years can be divided into four major periods. The first one is the period of research, the second of domestic production, the third of improvement, and the fourth of advancement. Improvements of C and I system, which we have made in those periods have made a great contribution to enhancement of reliability, availability and operability of nuclear power plants. Fig. 1 shows TEPCO's nuclear power plant (BWR) construction experience and technical trend of C and I system in Japan. This paper is to introduce the efforts and operational experience on control and operation support systems

  16. Conceptual requirements for large fusion experiment control, data, robotics, and management systems

    International Nuclear Information System (INIS)

    Gaudreau, M.P.J.; Sullivan, J.D.

    1987-05-01

    The conceptual system requirements for the control, data, robotics, and project management (CDRM) system for the next generation of fusion experiments are developed by drawing on the success of the Tara control and data system. The requirements are described in terms of an integrated but separable matrix of well-defined interfaces among the various systems and subsystems. The study stresses modularity, performance, cost effectiveness, and exportability

  17. Remote device control and monitor system for the LHD deuterium experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Hideya, E-mail: nakanisi@nifs.ac.jp [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Dept. Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan); Ohsuna, Masaki; Ito, Tatsuki; Nonomura, Miki; Imazu, Setsuo; Emoto, Masahiko; Iwata, Chie; Yoshida, Masanobu; Yokota, Mitsuhiro; Maeno, Hiroya; Aoyagi, Miwa; Ogawa, Hideki; Nakamura, Osamu; Morita, Yoshitaka; Inoue, Tomoyuki; Watanabe, Kiyomasa [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Ida, Katsumi; Ishiguro, Seiji; Kaneko, Osamu [National Institute for Fusion Science (NIFS), Toki, Gifu 509-5292 (Japan); Dept. Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), Toki, Gifu 509-5292 (Japan)

    2016-11-15

    Highlights: • Device remote control will be significant for the LHD deuterium experiments. • A central management GUI to control the power distribution for devices. • For safety, power management is separated from operational commanding. • Wi-Fi was tested and found to be not reliable with fusion plasmas. - Abstract: Upon beginning the LHD deuterium experiment, the opportunity for maintenance work in the torus hall will be conspicuously reduced such that all instruments must be controlled remotely. The LHD data acquisition (DAQ) and archiving system have been using about 110 DAQ front-end, and the DAQ central control and monitor system has been implemented for their remote management. This system is based on the “multi-agent” model whose communication protocol has been unified. Since DAQ front-end electronics would suffer from the “single-event effect” (SEE) of D-D neutrons, software-based remote operation might become ineffective, and then securely intercepting or recycling the electrical power of the device would be indispensable for recovering from a non-responding fault condition. In this study, a centralized control and monitor system has been developed for a number of power distribution units (PDUs). This system adopts the plug-in structure in which the plug-in modules can absorb the differences among the commercial products of numerous vendors. The combination of the above-mentioned functionalities has led to realizing the flexible and highly reliable remote control infrastructure for the plasma diagnostics and the device management in LHD.

  18. The Run Control system of the NA62 experiment at CERN SPS

    CERN Document Server

    Lazzeroni, Cristina

    2016-01-01

    The NA62 experiment at CERN SPS started physics data taking this year with the aim to measure the ultra-rare decay K + → π +νν¯. The experiment consists of a large number of subsystems to reach the goal of 10 % accuracy and less than 10 % background. The Run Control has been designed to link their trigger and data acquisition system in a single central application easily controllable by non-expert shifters. It has been continuously evolving over time, integrating new equipments, following new requirements and feedback from shifters. The next steps of development is a more automatized system that integrates the knowledge acquired during the operation of the experiment.

  19. Mechanization of and experience with a triplex fly-by-wire backup control system

    Science.gov (United States)

    Lock, W. P.; Petersen, W. R.; Whitman, G. B.

    1976-01-01

    A redundant three axis analog control system was designed and developed to back up a digital fly by wire control system for an F-8C airplane. The mechanization and operational experience with the backup control system, the problems involved in synchronizing it with the primary system, and the reliability of the system are discussed. The backup control system was dissimilar to the primary system, and it provided satisfactory handling through the flight envelope evaluated. Limited flight tests of a variety of control tasks showed that control was also satisfactory when the backup control system was controlled by a minimum displacement (force) side stick. The operational reliability of the F-8 digital fly by wire control system was satisfactory, with no unintentional downmodes to the backup control system in flight. The ground and flight reliability of the system's components is discussed.

  20. Program controlled system for mathematical processing the αp-experiment data

    International Nuclear Information System (INIS)

    Glagolev, V.V.; Govorun, N.N.; Dirner, A.; Ivanov, V.G.; Kretov, A.P.; Mirolyubov, V.P.; Pervushov, V.V.; Shelontsev, I.I.

    1982-01-01

    ZEUS system which allows one mathematical processing of bubble chamber pictures for αp-experiment with computer control is descibed. The comparison and basic defect of traditional processing of film information is considered. The structure, operation and further development of this system are described. It consists of the monitoring programs, directory file, input request language, data bank and documentation. ZEUS system is developed for processing αp-experiment from JINR one-meter-hydrogen liquid chamber. It makes possible to eliminate big manual work at organization of mass data processing by a computer. The system is realized on the CDC-6500 computer

  1. Operating experience with the new TRIUMF RF control system

    International Nuclear Information System (INIS)

    Fong, K.; Laverty, M.; Fang, S.

    1995-06-01

    The 23 MHz rf control of the TRIUMF cyclotron has been replaced by a new VXI control system based on digital signal processing. It provides amplitude and phase regulation of the cyclotron dee voltage, as well as other functions such as power-up sequencing, spark and high VSWR protection. Modularity of the hardware is achieved by the VXI architecture, and in the software by Object Oriented Programming. It is expected that this will result in a considerably longer MTBF, and shorter fault diagnosis and repair times, than the equipment it replaces. The new system has now been in operation for over two months. The results of commissioning, testing, and early operating experience are presented. (author). 4 refs., 5 figs

  2. Big brother - a fully automated control system for the DELPHI experiment

    International Nuclear Information System (INIS)

    Franek, B.; Sekulin, R.; Doenszelmann, M.; Gasper, C.; Charpentier, Jonker, M.

    1994-01-01

    The integrated control system of the DELPHI experiment is described. It allows the data to be taken in an almost automatic fashion. This is achieved by computer monitoring of the states of the LEP machine, the DELPHI subdetectors (SC) and the Data Acquisition System (DAS). Depending on these states, computer initiated actions are then taken. It has been designed using open-quote State Manager close-quote concept already used for local and central controls of DAS and SC

  3. Operating experience of the automatic technological control system at the Kolsk NPP

    International Nuclear Information System (INIS)

    Volkov, A.P.; Ignatenko, E.I.; Kolomtsev, Yu.V.; Mel'nikov, E.F.; Trofimov, B.A.

    1981-01-01

    Briefly reviewed is operating experience of the automatic control systems of the kolsk NPP (KNPP) power units, where measuring technique of the neutron flux ''Iney'', ARM-4 power regulator, automatic turbine start-up system ATS are used. The main shortcomings of the technological process automatic control system (ACS) and ways of their removal are considered. It is noted that the KNPP ACS performs only limited start-up functions of the basic equipment and reactor power control as well as partially protection functions at instant loading drops and switch-off of the main circulating pump [ru

  4. Tango for experiment control

    International Nuclear Information System (INIS)

    Meyer, J.; Claustre, L.; Petitdemange, S.; Svensson, O.; Götz, A.; Coutinho, T.; Klora, J.; Picca, F.; Ounsy, M.; Buteau, A.

    2012-01-01

    The Tango control system framework allows you to control an accelerator complex as well as single equipment. The framework contains the communication bus with the standard communication modes (synchronous, asynchronous, event driven) as well as the basic hardware access modules, GUI tools and development kits, bindings to commercial products (LabView, Matlab, IgorPro) and services (administration, archiving, access control) to set up a control system. Tango was mainly developed by several synchrotron light sources that have to support not only the accelerator complex but also a lot of experimental end stations. For synchrotron experiments we have to control the whole process from basic hardware access over data taking to data analysis. This paper describes in the first part the special features of Tango allowing flexible experiment control. The dynamic configuration, the rapid hardware interface development and the sequencing and scanning framework are some examples. The second part gives an overview of some packages developed in the Tango community for experiment control: A HKL library for diffraction computation and diffractometer control, a library to control 2D detectors and a data analysis workbench with workflow engine for on-line and off-line data analysis. These packages are not part of Tango and can be used with other control systems. (author)

  5. Linear Motor Motion Control Experiment System Design Based on LabVIEW

    Directory of Open Access Journals (Sweden)

    Cuixian He

    2018-01-01

    Full Text Available In order to meet the needs of experimental training of electrical information industry, a linear motor motion experiment system based on LabVIEW was developed. This system is based on the STM32F103ZET6 system processor controller, a state signal when the motor moves through the grating encoder feedback controller to form a closed loop, through the RS232 serial port communication with the host computer, the host computer is designed in the LabVIEW interactive environment monitoring software. Combined with the modular design concept proposed overall program, given the detailed hardware circuit, targeted for the software function design, to achieve man-machine interface. The system control of high accuracy, good stability, meet the training requirements for laboratory equipment, but also as a reference embodiment of the linear motor monitoring system.

  6. Slow control systems of the Reactor Experiment for Neutrino Oscillation

    International Nuclear Information System (INIS)

    Choi, J.H.; Jang, H.I.; Choi, W.Q.; Choi, Y.; Jang, J.S.; Jeon, E.J.; Joo, K.K.; Kim, B.R.; Kim, H.S.; Kim, J.Y.; Kim, S.B.; Kim, S.Y.; Kim, W.; Kim, Y.D.; Ko, Y.J.; Lee, J.K.; Lim, I.T.; Pac, M.Y.; Park, I.G.; Park, J.S.

    2016-01-01

    The RENO experiment has been in operation since August 2011 to measure reactor antineutrino disappearance using identical near and far detectors. For accurate measurements of neutrino mixing parameters and efficient data taking, it is crucial to monitor and control the detector in real time. Environmental conditions also need to be monitored for stable operation of detectors as well as for safety reasons. In this paper, we report the design, hardware, operation, and performance of the slow control system.

  7. DABASCO Experiment Data Acquisition and Control System; Sistema de Toma de Datos y Control del Experimento DABASCO

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Artigao, A.; Barcala, J. M.; Oller, J. C. [Ciemat, Madrid (Spain)

    2000-07-01

    DABASCO experiment wants to study the thermohydraulic phenomena produced into the containment area for a severe accident in a nuclear power facility. This document describes the characteristics of the data acquisition and control system used in the experiment. The main elements of the system were a data acquisition board, PCI-MIO-16E-4, and an application written with LaB View. (Author) 5 refs.

  8. Applications of small computers for systems control on the Tandem Mirror Experiment-Upgrade

    International Nuclear Information System (INIS)

    Bork, R.G.; Kane, R.J.; Moore, T.L.

    1983-01-01

    Desktop computers operating into a CAMAC-based interface are used to control and monitor the operation of the various subsystems on the Tandem Mirror Experiment-Upgrade (TMX-U) at Lawrence Livermore National Laboratory (LLNL). These systems include: shot sequencer/master timing, neutral beam control (four consoles), magnet power system control, ion-cyclotron resonant heating (ICRH) control, thermocouple monitoring, getter system control, gas fueling system control, and electron-cyclotron resonant heating (ECRH) monitoring. Two additional computers are used to control the TMX-U neutral beam test stand and provide computer-aided repair/test and development of CAMAC modules. These machines are usually programmed in BASIC, but some codes have been interpreted into assembly language to increase speed. Details of the computer interfaces and system complexity are described as well as the evolution of the systems to their present states

  9. Operating experience with a new accelerator control system based upon microprocessors

    Energy Technology Data Exchange (ETDEWEB)

    Magyary, S.; Lancaster, H.; Selph, F.; Fahmie, M.; Timossi, C.; Glatz, J.; Ritchie, A.; Hinkson, J.; Benjegerdes, R.; Brodzik, D.

    1981-03-01

    This paper describes the design and operating experience with a high performance control system tailored to the requirements of the SuperHILAC accelerator. A large number (20) of the latest 16-bit microcomputer boards are used in a parallel-distributed manner to get a high system bandwidth. Because of the high bandwidth, software costs and complexity are significantly reduced. The system by its very nature and design is easily upgraded and repaired. Dynamically assigned and labeled knobs, together with touch-panels, allow a flexible and efficient operator interface. An X-Y vector graphics system provides for display and labeling of real-time signals as well as general plotting functions. This control system allows attachment of a powerful auxiliary computer for scientific processing with access to accelerator parameters.

  10. The magnet power control system for the tandem mirror experiment-upgrade

    International Nuclear Information System (INIS)

    Bell, H.H.

    1983-01-01

    This paper describes the desktop computer/CAMAC based system that controls the power source for the Tandem Mirror Experiment-Upgrade (TMX-U) magnet power system. Presently it contains 42 dc rectifier power supplies connected to 24 magnet coils arranged in 17 circuits. During each shot, the system delivers 22.6 MW dc to the magnets for about 3 s. The system is presently being changed to add six power supplies, two solenoidal throttle coils, and two reverse C-coils. When complete, the delivered power will increase to 36.9 MW. The closed-loop control system usually provides current (and thus, magnetic field) that is within 1% of the requested current. Achieving this accuracy required using grounding, shielding, and isolation methods to reduce noise and related problems

  11. The IFR Online Detector Control system at the BaBar Experiment

    International Nuclear Information System (INIS)

    Paolucci, Pierluigi

    1999-01-01

    The Instrumented Flux Return (IFR)[1] is one of the five subdetectors of the BaBar[2] experiment on the PEP II accelerator at SLAC. The IFR consists of 774 Resistive Plate Chamber (RPC) detectors, covering an area of about 2,000 m 2 and equipped with 3,000 Front-end Electronic Cards (FEC) reading about 50,000 channels (readout strips). The first aim of a B-factory experiment is to run continuously without any interruption and then the Detector Control system plays a very important role in order to reduce the dead-time due to the hardware problems. The I.N.F.N. group of Naples has designed and built the IFR Online Detector Control System (IODC)[3] in order to control and monitor the operation of this large number of detectors and of all the IFR subsystems: High Voltage, Low Voltage, Gas system, Trigger and DAQ crates. The IODC consists of 8 custom DAQ stations, placed around the detector and one central DAQ station based on VME technology and placed in electronic house. The IODC use VxWorks and EPICS to implement slow control data flow of about 2500 hardware channels and to develop part of the readout module consisting in about 3500 records. EPICS is interfaced with the BaBar Run Control through the Component Proxy and with the BaBar database (Objectivity) through the Archiver and KeyLookup processes

  12. Control and data acquisition system for versatile experiment spherical torus at SNU

    Energy Technology Data Exchange (ETDEWEB)

    An, YoungHwa [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Chung, Kyoung-Jae, E-mail: jkjlsh1@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Na, DongHyeon; Hwang, Y.S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2013-10-15

    A control and data acquisition system for VEST (Versatile Experiment Spherical Torus) at Seoul National University (SNU) has been developed to enable remote operation from a central control room. The control and data acquisition system consists of three subsystems; a main control and data acquisition system that triggers each device at the preprogrammed timing and collects various diagnostic signals during discharges, a monitoring system that watches and logs the device status continuously, and a data storage and distribution system that stores collected data and provides data access layer via Ethernet. The system is designed to be cost-effective, extensible and easy to develop by using well-established standard technologies and solutions. Combining broad accessibility with modern information technology, alarm signal can be sent immediately to the registered cell phones when the abnormal status of devices is found, and the web data distribution system enables data access from almost everywhere using smart phones or tablet computers. Since December 2011, VEST is operational and the control and data acquisition system has been successfully used for remote operation of VEST.

  13. Control and data acquisition system for versatile experiment spherical torus at SNU

    International Nuclear Information System (INIS)

    An, YoungHwa; Chung, Kyoung-Jae; Na, DongHyeon; Hwang, Y.S.

    2013-01-01

    A control and data acquisition system for VEST (Versatile Experiment Spherical Torus) at Seoul National University (SNU) has been developed to enable remote operation from a central control room. The control and data acquisition system consists of three subsystems; a main control and data acquisition system that triggers each device at the preprogrammed timing and collects various diagnostic signals during discharges, a monitoring system that watches and logs the device status continuously, and a data storage and distribution system that stores collected data and provides data access layer via Ethernet. The system is designed to be cost-effective, extensible and easy to develop by using well-established standard technologies and solutions. Combining broad accessibility with modern information technology, alarm signal can be sent immediately to the registered cell phones when the abnormal status of devices is found, and the web data distribution system enables data access from almost everywhere using smart phones or tablet computers. Since December 2011, VEST is operational and the control and data acquisition system has been successfully used for remote operation of VEST

  14. Operating experience with LAMPF main beam lines instrumentation and control system

    International Nuclear Information System (INIS)

    van Dyck, O.B.; Harvey, A.; Howard, H.H.; Roeder, D.L.

    1975-01-01

    Instrumentation and control (I and C) for the Los Alamos Clinton P. Anderson Meson Physics Facility (LAMPF) main beam line is based upon central computer control through remote stations which provide input and output to most devices. Operating experience shows that the ability of the computer to give high-quality graphical presentation of the measurements enhances operator performance and instrument usefulness. Experience also shows that operator efficiency degrades rapidly with increasing instrument response time, that is, with increasing delay between the time a control is changed and the result can be observed. For this reason, instrumentation upgrade includes speeding up data acquisition and display times to under 10 s. Similarly, television-viewed phosphors are being retained where possible since their instantaneous response is very useful. Other upgrading of the instrumentation system is planned to improve data accuracy, reliability, redundancy, and instrument radiation tolerance. Past experience is being applied in adding or relocating devices to simplify tuning procedures. (U.S.)

  15. The Levitation Control System for the Levitated Dipole Experiment

    Science.gov (United States)

    Garnier, D. T.; Hansen, A. K.; Mauel, M. E.; Pedersen, T. Sunn; Dagen, S.; Kesner, J.; Liptac, J.

    2001-10-01

    The confining field in the Levitated Dipole Experiment (LDX) is provided by a 1/2 ton levitated superconducting dipole magnet. This floating coil is charged with 1.5 MA current and will be levitated continuously for the eight hour experimental run day. Earnshaw's theorem states that there exists no statically stable configuration for levitation of magnets. In LDX, the floating coil is levitated by a smaller dipole levitation coil 1.5 meters above. This configuration is unstable vertically, but stable in tilt or horizontal motion. The position of the coil will be monitored with a set of eight laser position detectors giving redundant measurements of the five degrees of freedom of the floating coil. The levitation will then be stabilized by feedback control of the current in the levitation coil. The feedback system is a digital system running on a real time operating system platform. This system is programmed, monitored, and controlled by a second computer using Matlab Simulink. The system is currently being tested on a small model and a larger test is planned before LDX operation. Results from these tests and optimizations will be presented.

  16. Control System Development Plan for the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Neumeyer, C.; Mueller, D.; Gates, D.A.; Ferron, J.R.

    1999-01-01

    The National Spherical Torus Experiment (NSTX) has as one of its primary goals the demonstration of the attractiveness of the spherical torus concept as a fusion power plant. Central to this goal is the achievement of high plasma β ( = 2 micro 0 /B 2 a measure of the efficiency of a magnetic plasma confinement system). It has been demonstrated both theoretically and experimentally that the maximum achievable β is a strong function of both local and global plasma parameters. It is therefore important to optimize control of the plasma. To this end a phased development plan for digital plasma control on NSTX is presented. The relative level of sophistication of the control system software and hardware will be increased according to the demands of the experimental program in a three phase plan. During Day 0 (first plasma), a simple coil current control algorithm will initiate plasma operations. During the second phase (Day 1) of plasma operations the control system will continue to use the preprogrammed algorithm to initiate plasma breakdown but will then change over to a rudimentary plasma control scheme based on linear combinations of measured plasma fields and fluxes. The third phase of NSTX plasma control system development will utilize the rtEFIT code, first used on DIII-D, to determine, in real-time, the full plasma equilibrium by inverting the Grad-Shafranov equation. The details of the development plan, including a description of the proposed hardware will be presented

  17. Management Control Systems and Clinical Experience of Managers in Public Hospitals

    Science.gov (United States)

    Naranjo-Gil, David

    2018-01-01

    Healthcare authorities are encouraging managers in hospitals to acquire clinical experience and knowledge in order to better carry out and coordinate healthcare service delivery. The main objective of this paper is to analyse how the clinical experience of hospital managers is related to public health institutions’ performance. It is proposed that the effect of the clinical experience on operative and financial organizational performance is indirect through the mediating variables of perceived utility of management information and horizontal management control system. This paper analyses how these variables impact hospital performance through the data from a survey sent to 364 hospital managers in Brazil. The results show that managers’ clinical experience is related to higher perceived utility of historical, financial, short-term, and internal information, but not with horizontal control adoption in hospitals. Furthermore, our results show that, in hospitals, perceived utility of forecasted, non-financial, long-term, and external managerial information positively affects hospitals’ financial performance, while adoption of horizontal control management positively affects operational performance. Through showing evidence that clinical background could explain the differences not only in hospital service management but also in information capabilities and management control processes, this study offer meaningful implications for healthcare authorities and hospital managers involved in the development and implementation of strategies in the health sector. PMID:29673192

  18. The slow control system of the GERDA double beta decay experiment at Gran Sasso

    International Nuclear Information System (INIS)

    Brugnera, R; Garfagnini, A; Gigante, G; Hemmer, S; Zinato, D; Costa, F; Lippi, I; Michelotto, M; Ur, C

    2012-01-01

    GERDA is an experiment designed and built to study double beta decays of 76 Ge. It is currently in operation at the Gran Sasso underground laboratories (LNGS). A custom slow control system has been designed to monitor and control all the critical parameters for the proper functioning of the experiment. The main sub-components of the experiment (Cryostat, Clean Room, Water Tank, electronic crates and temperatures, High Voltage Systems, Radon Monitor and Source Insertion System) are constantly monitored by several distributed clients which write acquired data to a relational database (PostgreSQL). The latter allows to maintain a history of the whole experiment and, performing correlation between different and independent components, is useful to debug possible system malfunctions. The system is complemented by a Web server, a lightweight and efficient interface to the user on shifts and to the on-call experts, and by a dedicated Alarm dispatcher which distributes the errors generated by the components to the users allowing to react in short time. The whole project has been built around open source and custom software.

  19. Hierarchical Control of the ATLAS Experiment

    CERN Document Server

    Barriuso-Poy, Alex; Llobet-Valero, E

    2007-01-01

    Control systems at High Energy Physics (HEP) experiments are becoming increasingly complex mainly due to the size, complexity and data volume associated to the front-end instrumentation. In particular, this becomes visible for the ATLAS experiment at the LHC accelerator at CERN. ATLAS will be the largest particle detector ever built, result of an international collaboration of more than 150 institutes. The experiment is composed of 9 different specialized sub-detectors that perform different tasks and have different requirements for operation. The system in charge of the safe and coherent operation of the whole experiment is called Detector Control System (DCS). This thesis presents the integration of the ATLAS DCS into a global control tree following the natural segmentation of the experiment into sub-detectors and smaller sub-systems. The integration of the many different systems composing the DCS includes issues such as: back-end organization, process model identification, fault detection, synchronization ...

  20. Operational experience with the CEBAF control system

    International Nuclear Information System (INIS)

    Hovater, C.; Chowdhary, M.; Karn, J.; Tiefenback, M.; Zeijts, J. van; Watson, W.

    1996-01-01

    The CEBAF accelerator at Thomas Jefferson National Accelerator Facility (Jefferson Lab) successfully began its experimental nuclear physics program in November of 1995 and has since surpassed predicted machine availability. Part of this success can be attributed to using the EPICS (Experimental Physics and Industrial Control System) control system toolkit. The CEBAF control system is one of the largest accelerator control system now operating. It controls approximately 338 SRF cavities, 2,300 magnets, 500 beam position monitors and other accelerator devices, such as gun hardware and other beam monitoring devices. All told, the system must be able to access over 125,000 database records. The system has been well received by both operators and the hardware designers. The EPICS utilities have made the task of troubleshooting systems easier. The graphical and test-based creation tools have allowed operators to custom build control screens. In addition, the ability to integrate EPICS with other software packages, such as Tcl/Tk, has allowed physicists to quickly prototype high-level application programs, and to provide GUI front ends for command line driven tools. Specific examples of the control system applications are presented in the areas of energy and orbit control, cavity tuning and accelerator tune up diagnostics

  1. Apollo experience report: Guidance and control systems. Engineering simulation program

    Science.gov (United States)

    Gilbert, D. W.

    1973-01-01

    The Apollo Program experience from early 1962 to July 1969 with respect to the engineering-simulation support and the problems encountered is summarized in this report. Engineering simulation in support of the Apollo guidance and control system is discussed in terms of design analysis and verification, certification of hardware in closed-loop operation, verification of hardware/software compatibility, and verification of both software and procedures for each mission. The magnitude, time, and cost of the engineering simulations are described with respect to hardware availability, NASA and contractor facilities (for verification of the command module, the lunar module, and the primary guidance, navigation, and control system), and scheduling and planning considerations. Recommendations are made regarding implementation of similar, large-scale simulations for future programs.

  2. Digital control and data acquisition system for the QUIET experiment

    International Nuclear Information System (INIS)

    Bogdan, Mircea; Kapner, Dan; Samtleben, Dorothea; Vanderlinde, Keith

    2007-01-01

    We present the Digital Control and Data Acquisition System (DCDAQ) for Phase I of the Q/U Imaging Experiment (QUIET), arrays of 91 W-band and 19 Q-band receivers, placed on 1.4 m telescopes, in Chajnantor, Chile to measure the polarization of the cosmic microwave background. QUIET uses custom-built electronics boards that control and monitor its polarimeters. Each of these boards is digitally addressable, so that the DCDAQ can set and monitor any of the 1600 biases needed to operate the 91 receivers. The DCDAQ consists of a controller and up to 13 custom-made 32-channel ADC cards. Local FPGAs allow real-time data processing for each channel. This immediate data reduction is necessary, as it is planned to scale this technology beyond Phase I. The DCDAQ system is implemented with this future in mind and can easily be scaled to operate 1000 receivers

  3. Integrated Controlling System and Unified Database for High Throughput Protein Crystallography Experiments

    International Nuclear Information System (INIS)

    Gaponov, Yu.A.; Igarashi, N.; Hiraki, M.; Sasajima, K.; Matsugaki, N.; Suzuki, M.; Kosuge, T.; Wakatsuki, S.

    2004-01-01

    An integrated controlling system and a unified database for high throughput protein crystallography experiments have been developed. Main features of protein crystallography experiments (purification, crystallization, crystal harvesting, data collection, data processing) were integrated into the software under development. All information necessary to perform protein crystallography experiments is stored (except raw X-ray data that are stored in a central data server) in a MySQL relational database. The database contains four mutually linked hierarchical trees describing protein crystals, data collection of protein crystal and experimental data processing. A database editor was designed and developed. The editor supports basic database functions to view, create, modify and delete user records in the database. Two search engines were realized: direct search of necessary information in the database and object oriented search. The system is based on TCP/IP secure UNIX sockets with four predefined sending and receiving behaviors, which support communications between all connected servers and clients with remote control functions (creating and modifying data for experimental conditions, data acquisition, viewing experimental data, and performing data processing). Two secure login schemes were designed and developed: a direct method (using the developed Linux clients with secure connection) and an indirect method (using the secure SSL connection using secure X11 support from any operating system with X-terminal and SSH support). A part of the system has been implemented on a new MAD beam line, NW12, at the Photon Factory Advanced Ring for general user experiments

  4. Converting Existing Copper Wire Firing System to a Fiber Optically Controlled Firing System for Electromagnetic Pulsed Power Experiments

    Science.gov (United States)

    2017-12-19

    Pulsed Power Experiments by Robert Borys Jr Weapons and Materials Research Directorate, ARL Colby Adams Bowhead Total Enterprise Solutions...ARL-TN-0863 ● DEC 2017 US Army Research Laboratory Converting Existing Copper Wire Firing System to a Fiber-Optically Controlled...Firing System for Electromagnetic Pulsed Power Experiments by Robert Borys Jr and Colby Adams Approved for public release

  5. Management Control Systems and Clinical Experience of Managers in Public Hospitals

    Directory of Open Access Journals (Sweden)

    Rogério Joao Lunkes

    2018-04-01

    Full Text Available Healthcare authorities are encouraging managers in hospitals to acquire clinical experience and knowledge in order to better carry out and coordinate healthcare service delivery. The main objective of this paper is to analyse how the clinical experience of hospital managers is related to public health institutions’ performance. It is proposed that the effect of the clinical experience on operative and financial organizational performance is indirect through the mediating variables of perceived utility of management information and horizontal management control system. This paper analyses how these variables impact hospital performance through the data from a survey sent to 364 hospital managers in Brazil. The results show that managers’ clinical experience is related to higher perceived utility of historical, financial, short-term, and internal information, but not with horizontal control adoption in hospitals. Furthermore, our results show that, in hospitals, perceived utility of forecasted, non-financial, long-term, and external managerial information positively affects hospitals’ financial performance, while adoption of horizontal control management positively affects operational performance. Through showing evidence that clinical background could explain the differences not only in hospital service management but also in information capabilities and management control processes, this study offer meaningful implications for healthcare authorities and hospital managers involved in the development and implementation of strategies in the health sector.

  6. Real-time measurement and control at Jet. Experiment Control

    International Nuclear Information System (INIS)

    Felton, R.; Zabeo, L.; Sartori, F.; Piccolo, F.; Farthing, J.; Budd, T.; Dorling, S.; McCullen, P.; Harling, J.; Dalley, S.; Goodyear, A.; Stephen, A.; Card, P.; Bright, M.; Lucock, R.; Jones, E.; Griph, S.; Hogben, C.; Beldishevski, M.; Buckley, M.; Davis, J.; Young, I.; Hemming, O.; Wheatley, M.; Heesterman, P.; Lloyd, G.; Walters, M.; Bridge, R.; Leggate, H.; Howell, D.; Zastrow, K.D.; Giroud, C.; Coffey, I.; Hawkes, N.; Stamp, M.; Barnsley, R.; Edlington, T.; Guenther, K.; Gowers, C.; Popovichef, S.; Huber, A.; Ingesson, C.; Joffrin, E.; Mazon, D.; Moreau, D.; Murari, A.; Riva, M.; Barana, O.; Bolzonella, T.; Valisa, M.; Innocente, P.; Zerbini, M.; Bosak, K.; Blum, J.; Vitale, E.; Crisanti, F.; La Luna, E. de; Sanchez, J.

    2004-01-01

    Over the past few ears, the preparation of ITER-relevant plasma scenarios has been the main focus experimental activity on tokamaks. The development of integrated, simultaneous, real-time controls of plasma shape, current, pressure, temperature, radiation, neutron profiles, and also impurities, ELMs (edge localized modes) and MHD are now seen to be essential for further development of quasi-steady state conditions with feedback, or the stabilisation of transient phenomena with event-driven actions. For this thrust, the EFDA JET Real Time Project has developed a set of real-time plasma measurements, experiment control, and communication facilities. The Plasma Diagnostics used for real-time experiments are Far Infra Red interferometry, polarimetry, visible, UV and X-ray spectroscopy, LIDAR, bolometry, neutron and magnetics. Further analysis systems produce integrated results such as temperature profiles on geometry derived from MHD equilibrium solutions. The Actuators include toroidal, poloidal and divertor coils, gas and pellet fuelling, neutral beam injection, radiofrequency (ICRH) waves and microwaves (LH). The Heating/Fuelling Operators can either define a power or gas request waveform or select the real-time instantaneous power/gas request from the Real Time Experiment Central Control (RTCC) system. The Real Time Experiment Control system provides both a high-level, control-programming environment and interlocks with the actuators. A MATLAB facility is being developed for the development of more complex controllers. The plasma measurement, controller and plant control systems communicate in ATM network. The EFDA Real Time project is essential groundwork for future reactors such as ITER. It involves many staff from several institutions. The facility is now frequently used in experiments. (authors)

  7. General distributed control system for fusion experiments

    International Nuclear Information System (INIS)

    Klingner, P.L.; Levings, S.J.; Wilkins, R.W.

    1986-01-01

    A general control system using distributed LSI-11 microprocessors is being developed. Common software residues in each LSI-11 and is tailored to an application by control specifications downloaded from a host computer. The microprocessors, their control interfaces, and the micro-to-host communications are CAMAC based. The host computer also supports an operator interface, coordination of multiple microprocessors, and utilities to create and maintain the control specifications. Typical applications include monitoring safety interlocks as well as controlling vacuum systems, high voltage charging systems, and diagnostics

  8. Detector control system for an LHC experiment

    CERN Document Server

    Mato, P

    1998-01-01

    The purpose of this document is to provide the user requirements for a detector control system kernel for the LHC experiments following the ESA standard PSS-05 [1]. The first issue will be used to provide the basis for an evaluation of possible development philosophies for a kernel DCS. As such it will cover all the major functionality but only to a level of detail sufficient for such an evaluation to be performed. Many of the requirements are therefore intentionally high level and generic, and are meant to outline the functionality that would be required of the kernel DCS, but not yet to the level of the detail required for implementation. The document is also written in a generic fashion in order not to rule out any implementation technology.1

  9. Integrating LWDAQ into the Detector Control Systems of the LHC Experiments at CERN

    CERN Multimedia

    Holme, Oliver; Golonka, Piotr

    2009-01-01

    The LWDAQ (Long-Wire Data Acquisition) software and hardware from Brandeis University, Mass., USA provides access to a powerful suite of measurement instruments. Two high precision monitors used to measure the relative alignment between a source and a sensor are included. The BCAM (Brandeis CCD Angle Monitor) cameras take images of point light sources and the Rasnik (Red Alignment System of NIKhef) cameras take images of the NIKHEF developed Rasnik mask. Both systems are used in the LHC experiments at CERN. Brandeis University provides a tool called Acquisifier to script the data acquisition process and to analyse the images to determine the alignment data. In order to incorporate the resulting data from the alignment system into the Detector Control System (DCS) of the LHC experiments a new software component of the Joint COntrols Project (JCOP) Framework was developed. It provides a TCP/IP interface between LWDAQ and the SCADA tool PVSS so that the results of the data acquisition process can easily be retur...

  10. Turbine Control System Replacement at NPP NEK; System Specifics, Project Experience and Lessons Learned

    International Nuclear Information System (INIS)

    Mandic, D.; Zilavy, M. J.

    2010-01-01

    constitutes only of soft panels or monitor graphics (all MCB - Main Control Board and its controls are available as graphic images on workstations), while the HMI for FG KFSS includes full scope replica of NEK MCR and MCB. The new PDEH system was installed on two KFSS platforms (BG and FG) in October-November, 2008; pre-outage or on-line field installation work was performed in the January-March 2009 time frame; while the old DEH Mod II was decommissioned and the new plant PDEH system was installed during the outage in April, 2009 and tested with the plant on line in May, 2009. PDEH system improvements and specifics compared to the old DEH system and compared to other similar references will be presented and the most interesting project experience and lessons learned will also be discussed in the paper.(author).

  11. Experiment monitoring system of a new electromagnet drive for nuclear reactor control rod

    International Nuclear Information System (INIS)

    Zhang Jige; Wang Xiaoguang; Wu Yuanqiang; Zhang Zhengming

    2003-01-01

    In order to deal with some unsolved problems in the engineering prototype design of a new electromagnet drive device for nuclear reactor control rod, the property experiment in view of principle prototype is carried out. Actual displacement of nuclear reactor control rod is measured by means of raster ruler and the test data is obtained by means of computer. The computer communicates with PLC using RS232 serial port. The experimental results show that the monitoring system have the properties of high reliability and high precision, and ensures the experiment to accomplish successfully

  12. Engineering-scale dust control experiments

    International Nuclear Information System (INIS)

    Winberg, M.R.; Pawelko, R.J.; Jacobs, N.C.; Thompson, D.N.

    1990-12-01

    This report presents the results of engineering scale dust-control experiments relating to contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of misting systems, soil fixatives, and dust suppression agents. The Dryfog Ultrasonic Misting Head, manufactured by Sonics, Incorporated, and ENTAC, an organic resin derived from tree sap manufactured by ENTAC Corporation, were tested. The results of the experiments include product performance and recommended application methods. 19 figs., 7 refs., 6 tabs

  13. Partitioning,Automation and Error Recovery in the Control and Monitoring System of an LHC Experiment

    Institute of Scientific and Technical Information of China (English)

    C.Gaspar

    2001-01-01

    The Joint Controls Project(JCOP)is a collaboration between CERN and the four LHC experiments to find and implement common solutions for their control and monitoring systems.As part of this project and Architecture Working Group was set up in order to study the requirements and devise an architectural model that would suit the four experiments.Many issues were studied by this working group:Alarm handling,Access Control,Hierarchical Control,etc.This paper will report on the specific issue of hierarchical control and in particular partitioning,automation and error recovery.

  14. ALICE Diffractive Detector Control System for RUN-II in the ALICE Experiment

    CERN Document Server

    INSPIRE-00522336; Martinez, M.I.; Monzon, I. Leon

    2016-01-01

    This paper describes general characteristics of the deployment and commissioned of the Detector Control System (DCS) AD0 for the second phase of the Large Hadron Collider (LHC). The AD0 detector is installed in the ALICE experiment to provide a better selection of diffractive events.

  15. Operating experiences with programmable logic controller (PLC) system of Indian Pressurised Heavy Water Reactors (PHWR)

    International Nuclear Information System (INIS)

    Ughade, A.V.; Singh, Ranjeet; Bhattacharya, P.K.; Kulkarni, R.K.; Chandra, Umesh

    2005-01-01

    PLC system was introduced for the first time in Kaiga-1,2 and RAPS-3,4 Nuclear Power Plants (NPPs) for Station Logic Control of Non Safety Related (NSR) and Safety related (SR) systems. However, the safety system logics are still relay based. The experience on the deployment of PLC system, which is computer-based, has brought out various implementation issues. This paper give details of such experiences, the solutions emerged and applied for plants under operation/construction. (author)

  16. Centralized Monitoring of the Microsoft Windows-based computers of the LHC Experiment Control Systems

    International Nuclear Information System (INIS)

    Varela Rodriguez, F

    2011-01-01

    The control system of each of the four major Experiments at the CERN Large Hadron Collider (LHC) is distributed over up to 160 computers running either Linux or Microsoft Windows. A quick response to abnormal situations of the computer infrastructure is crucial to maximize the physics usage. For this reason, a tool was developed to supervise, identify errors and troubleshoot such a large system. Although the monitoring of the performance of the Linux computers and their processes was available since the first versions of the tool, it is only recently that the software package has been extended to provide similar functionality for the nodes running Microsoft Windows as this platform is the most commonly used in the LHC detector control systems. In this paper, the architecture and the functionality of the Windows Management Instrumentation (WMI) client developed to provide centralized monitoring of the nodes running different flavour of the Microsoft platform, as well as the interface to the SCADA software of the control systems are presented. The tool is currently being commissioned by the Experiments and it has already proven to be very efficient optimize the running systems and to detect misbehaving processes or nodes.

  17. Centralized Monitoring of the Microsoft Windows-based computers of the LHC Experiment Control Systems

    Science.gov (United States)

    Varela Rodriguez, F.

    2011-12-01

    The control system of each of the four major Experiments at the CERN Large Hadron Collider (LHC) is distributed over up to 160 computers running either Linux or Microsoft Windows. A quick response to abnormal situations of the computer infrastructure is crucial to maximize the physics usage. For this reason, a tool was developed to supervise, identify errors and troubleshoot such a large system. Although the monitoring of the performance of the Linux computers and their processes was available since the first versions of the tool, it is only recently that the software package has been extended to provide similar functionality for the nodes running Microsoft Windows as this platform is the most commonly used in the LHC detector control systems. In this paper, the architecture and the functionality of the Windows Management Instrumentation (WMI) client developed to provide centralized monitoring of the nodes running different flavour of the Microsoft platform, as well as the interface to the SCADA software of the control systems are presented. The tool is currently being commissioned by the Experiments and it has already proven to be very efficient optimize the running systems and to detect misbehaving processes or nodes.

  18. Update on the DIII-D ECH system: experiments, gyrotrons, advanced diagnostics, and controls

    Directory of Open Access Journals (Sweden)

    Lohr John

    2017-01-01

    Full Text Available The ECH system on DIII-D is continuing to be upgraded, while simultaneously being operated nearly daily for plasma experiments. The latest major hardware addition is a new 117.5 GHz gyrotron, which generated 1.7 MW for short pulses during factory testing. A new gyrotron control system based on Field Programmable Gate Array (FPGA technology with very high speed system data acquisition has significantly increased the flexibility and reliability of individual gyrotron operation. We have improved the performance of the fast mirror scanning, both by increasing the scan speeds and by adding new algorithms for controlling the aiming using commands generated by the Plasma Control System (PCS. The system is used for transport studies, ELM control, current profile control, non-inductive current generation, suppression of MHD modes, startup assist, plasma density control, and other applications. A program of protective measures, which has been in place for more than two years, has eliminated damage to hardware and diagnostics caused by overdense operation. Other activities not directly related to fusion research have used the ECH system to test components, study methods for improving production of semiconductor junctions and materials, and test the feasibility of using ground based microwave systems to power satellites into orbit.

  19. Update on the DIII-D ECH system: experiments, gyrotrons, advanced diagnostics, and controls

    Science.gov (United States)

    Lohr, John; Brambila, Rigoberto; Cengher, Mirela; Gorelov, Yuri; Grosnickle, William; Moeller, Charles; Ponce, Dan; Torrezan, Antonio; Ives, Lawrence; Reed, Michael; Blank, Monica; Felch, Kevin; Parisuaña, Claudia; LeViness, Alexandra

    2017-08-01

    The ECH system on DIII-D is continuing to be upgraded, while simultaneously being operated nearly daily for plasma experiments. The latest major hardware addition is a new 117.5 GHz gyrotron, which generated 1.7 MW for short pulses during factory testing. A new gyrotron control system based on Field Programmable Gate Array (FPGA) technology with very high speed system data acquisition has significantly increased the flexibility and reliability of individual gyrotron operation. We have improved the performance of the fast mirror scanning, both by increasing the scan speeds and by adding new algorithms for controlling the aiming using commands generated by the Plasma Control System (PCS). The system is used for transport studies, ELM control, current profile control, non-inductive current generation, suppression of MHD modes, startup assist, plasma density control, and other applications. A program of protective measures, which has been in place for more than two years, has eliminated damage to hardware and diagnostics caused by overdense operation. Other activities not directly related to fusion research have used the ECH system to test components, study methods for improving production of semiconductor junctions and materials, and test the feasibility of using ground based microwave systems to power satellites into orbit.

  20. The COSY control system, a distributed realtime operating system: First practical experience at the COSY-injector

    International Nuclear Information System (INIS)

    Stephan, M.; Hacker, U.; Henn, K.; Richert, A.; Sobotta, K.; Weinert, A.

    1991-01-01

    The COSY control system is hierarchically organized with distributed intelligence and autonomous processing units for dedicated components. Data communication is performed via LAN and over a fieldbus. The hostsystems are UNIX-based, whereas the field-controllers are running a modular realtime operating-system RT/OS which has been developed at KFA. The computer-hardware consists of RISC mini computers, VME-computers in the field and G64 equipment-control-module in geographical expansion of the controller by a fieldbus based on the PDV-standard. The man-machine interface consists of X-window based work stations. On top of X-window a graphical user interface based on object oriented methods is used. A distributed realtime data base allows access to the accelerator state from every workstation. A special highlevel language debugger hosted on the UNIX based workstation and connected over LAN to the VME targets will be used. Together with the software development system for UNIX applications an uniform view of the system appears to the programmer. First practical experience at the COSY injector is presented

  1. Experience in the installation of a microprocessor system for controlling converter units of the Vyborg substation

    International Nuclear Information System (INIS)

    Gusakovskii, K. B.; Zmaznov, E. Yu.; Katantsev, S. V.; Mazurenko, A. K.; Mestergazi, V. A.; Prochan, G. G.; Funtikova, S. F.

    2006-01-01

    The experience in the installation of modern digital systems for controlling converter units at the Vyborg converter substation on the basis of advanced microprocessor devices is considered. It is shown that debugging of a control and protection system on mathematical and physical models does not guarantee optimum control of actual converter devices. Examples of advancing the control and protection system are described, the necessity for which has become obvious in tests of actual equipment. Comparison of oscillograms of processes before optimization of the control system and after its optimization and adjustment shows that the digital control system makes it possible to improve substantially the algorithms of control and protection in the short term and without changing the hardware component

  2. Experiences with Ada in an embedded system

    Science.gov (United States)

    Labaugh, Robert J.

    1988-01-01

    Recent experiences with using Ada in a real time environment are described. The application was the control system for an experimental robotic arm. The objectives of the effort were to experiment with developing embedded applications in Ada, evaluating the suitability of the language for the application, and determining the performance of the system. Additional objectives were to develop a control system based on the NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM) in Ada, and to experiment with the control laws and how to incorporate them into the NASREM architecture.

  3. Expert system to control a fusion energy experiment

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.R.; Canales, T.; Lager, D.

    1986-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques by encoding the behavior of several experts as a set of if-then rules in an expert system. One of the functions of the expert system is to control an adaptive controller that, in turn, controls the neutral beam source. The architecture of the system is presented followed by a description of its performance.

  4. Expert system to control a fusion energy experiment

    International Nuclear Information System (INIS)

    Johnson, R.R.; Canales, T.; Lager, D.

    1986-01-01

    This paper describes a system that automates neutral beam source conditioning. The system achieves this with artificial intelligence techniques by encoding the behavior of several experts as a set of if-then rules in an expert system. One of the functions of the expert system is to control an adaptive controller that, in turn, controls the neutral beam source. The architecture of the system is presented followed by a description of its performance

  5. Summary of control and data acquisition systems for NOVA experiments (invited)

    International Nuclear Information System (INIS)

    McCauley, E.W.; Campbell, E.M.; Auerbach, J.M.; Montgomery, D.S.; Martin, V.A.; Randolph, J.E.; Shaw, J.G.; Stewart, B.L.; Stone, G.F.

    1986-01-01

    The NOVA laser has completed its first year of operation. During this period, emphasis has been placed on activation of the facility and of the numerous target and beam diagnostics. Two separate target chambers are in use. NOVA operation is separated into two broad functions: laser operations and experiments. The operations group provides the laser system control, operation, and data acquisition and the experiments group provides experiment definition, diagnostic instrumentation, and overall data processing. On the operations side, VAX 11/780 computers are used to set up diagnostic operating parameters and collect data recorded by the CAMAC and CCD modules. These data are delivered in files by electronic link to the Laser Experiments and Analysis Facility (LEAF) VAX 11/785 of the experiments group for processing. Film data are digitized at LEAF and the film data files are also processed on the LEAF VAX. The LEAF provides collection, processing, analysis, and archiving of the experimental data. The many applications software packages written for LEAF provide the experimental physicists and NOVA operations staff with programs and data bases for interpretation of experimental results. This software makes fundamental use of the ORACLE relational data base management system to both access the required data and archive the obtained results. Post-shot data processing produces sets of scalar values, x, y profiles and x, y, z contour data. The scalar data are stored in the ORACLE DB; the more extensive results are stored in binary files on disk. All data forms are accessed by a comprehensive software system, the electronic SHOTBOOK, developed around the ORACLE DBMS

  6. AFECS. multi-agent framework for experiment control systems

    Energy Technology Data Exchange (ETDEWEB)

    Gyurjyan, V; Abbott, D; Heyes, G; Jastrzembski, E; Timmer, C; Wolin, E [Jefferson Lab, 12000 Jefferson Ave. MS-12B3, Newport News, VA 23606 (United States)], E-mail: gurjyan@jlab.org

    2008-07-01

    AFECS is a pure Java based software framework for designing and implementing distributed control systems. AFECS creates a control system environment as a collection of software agents behaving as finite state machines. These agents can represent real entities, such as hardware devices, software tasks, or control subsystems. A special control oriented ontology language (COOL), based on RDFS (Resource Definition Framework Schema) is provided for control system description as well as for agent communication. AFECS agents can be distributed over a variety of platforms. Agents communicate with their associated physical components using range of communication protocols, including tcl-DP, cMsg (publish-subscribe communication system developed at Jefferson Lab), SNMP (simple network management protocol), EPICS channel access protocol and JDBC.

  7. AFECS. Multi-Agent Framework for Experiment Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vardan Gyurjyan; David Abbott; William Heyes; Edward Jastrzembski; Carl Timmer; Elliott Wolin

    2008-01-23

    AFECS is a pure Java based software framework for designing and implementing distributed control systems. AFECS creates a control system environment as a collection of software agents behaving as finite state machines. These agents can represent real entities, such as hardware devices, software tasks, or control subsystems. A special control oriented ontology language (COOL), based on RDFS (Resource Definition Framework Schema) is provided for control system description as well as for agent communication. AFECS agents can be distributed over a variety of platforms. Agents communicate with their associated physical components using range of communication protocols, including tcl-DP, cMsg (publish-subscribe communication system developed at Jefferson Lab), SNMP (simple network management protocol), EPICS channel access protocol and JDBC.

  8. AFECS. multi-agent framework for experiment control systems

    International Nuclear Information System (INIS)

    Gyurjyan, V; Abbott, D; Heyes, G; Jastrzembski, E; Timmer, C; Wolin, E

    2008-01-01

    AFECS is a pure Java based software framework for designing and implementing distributed control systems. AFECS creates a control system environment as a collection of software agents behaving as finite state machines. These agents can represent real entities, such as hardware devices, software tasks, or control subsystems. A special control oriented ontology language (COOL), based on RDFS (Resource Definition Framework Schema) is provided for control system description as well as for agent communication. AFECS agents can be distributed over a variety of platforms. Agents communicate with their associated physical components using range of communication protocols, including tcl-DP, cMsg (publish-subscribe communication system developed at Jefferson Lab), SNMP (simple network management protocol), EPICS channel access protocol and JDBC

  9. Instrumentation and Control Systems for Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA)

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Byeong Yeon; Kim, Hyung Mo; Cho, Youn Gil; Kim, Jong Man; Ko, Yung Joo; Kang, Byeong Su; Jung, Min Hwan; Jeong, Ji Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    A forced-draft sodium-to-air heat exchanger (FHX) is a part of decay heat removal system (DHRS) in Prototype Gen-IV Sodium-cooled fast reactor (PGSFR), which is being developed at Korea Atomic Energy Research Institute (KAERI). Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA) is a test facility for verification and validation of the design code for a forced-draft sodium-to-air heat exchanger (FHX). In this paper, we have provided design and fabrication features for the instrumentation and control systems of SELFA. In general, the instrumentation systems and control systems are coupled for measurement and control of process variables. Instrumentation systems have been designed for investigating thermal-hydraulic characteristics of FHX and control systems have been designed to control the main components (e.g. electromagnetic pumps, heaters, valves etc.) required for test in SELFA. In this paper, we have provided configurations of instrumentation and control systems for Sodium thermal hydraulic Experiment Loop for Finned-tube sodium-to-Air heat exchanger (SELFA). The instrumentation and control systems of SELFA have been implemented based on the expected operation ranges and lesson learned from operational experience of 'Sodium integral effect test loop for safety simulation and assessment-1' (STELLA-1)

  10. Development of a software for a multi-processor system aimed at the on-line control of nuclear physics experiments; Developpement de logiciel pour un systeme multiprocesseur destine au controle en ligne d'experiences de physique nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Poggioli, Jean Renaud

    1984-03-02

    This research thesis reports the development of a software for an acquisition computer aimed at the on-line control of nuclear physics experiments. An original architecture, based on the assignment of a processor to each fundamental task, enables the implementation of a high performance system. In order to make the user free of programming constraints, the author developed a software for dynamic generation of acquisition and processing codes. These codes are created from a data base which is programmed by the user by using a language close to the physical reality. Procedures of interactive control of the experiment are thus simplified by displaying function menus on the operator terminal. The author evokes possible hardware improvements and possible extensions of the system [French] Cette these rend compte du developpement logiciel realise pour un calculateur d'acquisition destine au controle en ligne d'experiences de Physique Nucleaire. Une architecture originale, basee sur l'attribution d'un processeur a chacune des taches fondamentales permet de facon simple la mise en oeuvre d'un systeme a hautes performances. Le souci de liberer l'utilisateur des contraintes de programmation a conduit a l'elaboration d'un logiciel de generation dynamique des codes acquisition et traitement; ces derniers sont crees a partir d'une base de donnees que l'experimentateur programme a l'aide d'un langage approchant la realite physique. Les procedures de controle interactif de l'experience se trouvent simplifiees par l'affichage de menus de fonctions sur la console operateur. En conclusion sont evoquees les ameliorations materielles et les extensions possibles du systeme. (auteur)

  11. Distributed intelligence in a LAN architecture increases the flexibility in control systems for fusion experiments

    International Nuclear Information System (INIS)

    Tenten, W.; Fuss, L.; Hoge, W.

    1987-01-01

    The control system for the TEXTOR Neutral Beam Injectors is designed implementing approved concepts and techniques. A powerful super mini computer serves as a central node between the operators console and the experimental process. Devices form a console for suitable man machine interaction. The link to the process is mainly based on communication with a network of industry standard programmable controllers. A distinction is made between the functionally dedicated and in most cases locally distributed logic controllers, a central controller and the computerized console level. Introduction of such networks in control system for fusion experiments results in a number of advantages

  12. Computer control of the titanium getter system on the tandem mirror experiment-upgrade (TMX-U)

    International Nuclear Information System (INIS)

    McAlice, A.J.; Bork, R.G.; Clower, C.A.; Moore, T.L.; Lang, D.D.; Pico, R.E.

    1983-01-01

    Gettering has been a standard technique for achieving high-quality vacuum in fusion experiments for some time. On Lawrence Livermore National Laboratory's Tandem Mirror Experiment (TMX-U), an extensive gettering system is utilized with liquid-nitrogen-cooled panels to provide the fast pumping during each physics experiment. The getter wires are a 85% titanium and 15% tantalum alloy directly heated by an electrical current. TMX-U has 162 getter power-supply channels; each channel supplies approximately 106 A of regulated power to each getter for a 60-s cycle. In the vacuum vessel, the getter wires are organized into poles or arrays. On each pole there are six getter wires, each cables to the exterior of the vessel. This arrangement allows the power supplies to be switched from getter wire to getter wire as the individual wires deteriorate after 200 to 300 gettering cycles. To control the getter power suppiles, we will install a computer system to operate the system and document the performance of each getter circuit. This computer system will control the 162 power supplies via a Computer Automated Measurement and Control (CAMAC) architecture with a fiber-optic serial highway. Getter wire history will be stored on the built-in 10 megabyte disc drive with new entries backed up daily on a floppy disc. Overall, this system will allow positive tracking of getter wire condition, document the total gettering performance, and predict getter maintenance/changeover cycles. How we will employ the computer system to enhance the getter system is the subject of this paper

  13. The ATLAS Detector Control System

    International Nuclear Information System (INIS)

    Lantzsch, K; Braun, H; Hirschbuehl, D; Kersten, S; Arfaoui, S; Franz, S; Gutzwiller, O; Schlenker, S; Tsarouchas, C A; Mindur, B; Hartert, J; Zimmermann, S; Talyshev, A; Oliveira Damazio, D; Poblaguev, A; Martin, T; Thompson, P D; Caforio, D; Sbarra, C; Hoffmann, D

    2012-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  14. The ATLAS Detector Control System

    Science.gov (United States)

    Lantzsch, K.; Arfaoui, S.; Franz, S.; Gutzwiller, O.; Schlenker, S.; Tsarouchas, C. A.; Mindur, B.; Hartert, J.; Zimmermann, S.; Talyshev, A.; Oliveira Damazio, D.; Poblaguev, A.; Braun, H.; Hirschbuehl, D.; Kersten, S.; Martin, T.; Thompson, P. D.; Caforio, D.; Sbarra, C.; Hoffmann, D.; Nemecek, S.; Robichaud-Veronneau, A.; Wynne, B.; Banas, E.; Hajduk, Z.; Olszowska, J.; Stanecka, E.; Bindi, M.; Polini, A.; Deliyergiyev, M.; Mandic, I.; Ertel, E.; Marques Vinagre, F.; Ribeiro, G.; Santos, H. F.; Barillari, T.; Habring, J.; Huber, J.; Arabidze, G.; Boterenbrood, H.; Hart, R.; Iakovidis, G.; Karakostas, K.; Leontsinis, S.; Mountricha, E.; Ntekas, K.; Filimonov, V.; Khomutnikov, V.; Kovalenko, S.; Grassi, V.; Mitrevski, J.; Phillips, P.; Chekulaev, S.; D'Auria, S.; Nagai, K.; Tartarelli, G. F.; Aielli, G.; Marchese, F.; Lafarguette, P.; Brenner, R.

    2012-12-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC) at CERN, constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub detectors as well as the common experimental infrastructure are controlled and monitored by the Detector Control System (DCS) using a highly distributed system of 140 server machines running the industrial SCADA product PVSS. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, manage the communication with external systems such as the LHC controls, and provide a synchronization mechanism with the ATLAS data acquisition system. Different databases are used to store the online parameters of the experiment, replicate a subset used for physics reconstruction, and store the configuration parameters of the systems. This contribution describes the computing architecture and software tools to handle this complex and highly interconnected control system.

  15. First experiences with the ATLAS pixel detector control system at the combined test beam 2004

    International Nuclear Information System (INIS)

    Imhaeuser, Martin; Becks, Karl-Heinz; Henss, Tobias; Kersten, Susanne; Maettig, Peter; Schultes, Joachim

    2006-01-01

    Detector control systems (DCS) include the readout, control and supervision of hardware devices as well as the monitoring of external systems like cooling system and the processing of control data. The implementation of such a system in the final experiment also has to provide the communication with the trigger and data acquisition system (TDAQ). In addition, conditions data which describe the status of the pixel detector modules and their environment must be logged and stored in a common LHC wide database system. At the combined test beam all ATLAS subdetectors were operated together for the first time over a longer period. To ensure the functionality of the pixel detector, a control system was set up. We describe the architecture chosen for the pixel DCS, the interfaces to hardware devices, the interfaces to the users and the performance of our system. The embedding of the DCS in the common infrastructure of the combined test beam and also its communication with surrounding systems will be discussed in some detail

  16. An e-Learning System with MR for Experiments Involving Circuit Construction to Control a Robot

    Science.gov (United States)

    Takemura, Atsushi

    2016-01-01

    This paper proposes a novel e-Learning system for technological experiments involving electronic circuit-construction and controlling robot motion that are necessary in the field of technology. The proposed system performs automated recognition of circuit images transmitted from individual learners and automatically supplies the learner with…

  17. Development of operator requested control system applications: Experience with the SLC control system at SLAC

    International Nuclear Information System (INIS)

    Stanek, M.

    1995-01-01

    The SLC Control system at SLAC has evolved into a powerful tool for operation of the accelerator and for troubleshooting the unique problems encountered in extracting maximum performance from the SLC. The evolution has included the development of many custom applications and user interface features generated from accelerator operator and accelerator physicist requests. These applications are written and maintained primarily by the Controls Software Engineering group, and not by the users themselves. The process of developing and supporting user requested control systems applications at SLAC is described, including the effects of organizational structure, formal and informal procedures, and control system architecture

  18. Experience Replay for Optimal Control of Nonzero-Sum Game Systems With Unknown Dynamics.

    Science.gov (United States)

    Zhao, Dongbin; Zhang, Qichao; Wang, Ding; Zhu, Yuanheng

    2016-03-01

    In this paper, an approximate online equilibrium solution is developed for an N -player nonzero-sum (NZS) game systems with completely unknown dynamics. First, a model identifier based on a three-layer neural network (NN) is established to reconstruct the unknown NZS games systems. Moreover, the identifier weight vector is updated based on experience replay technique which can relax the traditional persistence of excitation condition to a simplified condition on recorded data. Then, the single-network adaptive dynamic programming (ADP) with experience replay algorithm is proposed for each player to solve the coupled nonlinear Hamilton- (HJ) equations, where only the critic NN weight vectors are required to tune for each player. The feedback Nash equilibrium is provided by the solution of the coupled HJ equations. Based on the experience replay technique, a novel critic NN weights tuning law is proposed to guarantee the stability of the closed-loop system and the convergence of the value functions. Furthermore, a Lyapunov-based stability analysis shows that the uniform ultimate boundedness of the closed-loop system is achieved. Finally, two simulation examples are given to verify the effectiveness of the proposed control scheme.

  19. A system level boundary scan controller board for VME applications [to CERN experiments

    CERN Document Server

    Cardoso, N; Da Silva, J C

    2000-01-01

    This work is the result of a collaboration between INESC and LIP in the CMS experiment being conducted at CERN. The collaboration addresses the application of boundary scan test at system level namely the development of a VME boundary scan controller (BSC) board prototype and the corresponding software. This prototype uses the MTM bus existing in the VME64* backplane to apply the 1149.1 test vectors to a system composed of nineteen boards, called here units under test (UUTs). A top-down approach is used to describe our work. The paper begins with some insights about the experiment being conducted at CERN, proceed with system level considerations concerning our work and with some details about the BSC board. The results obtained so far and the proposed work is reviewed in the end of this contribution. (11 refs).

  20. Problems and Concerns Regarding Access Control System Construction in Radiation Facilities Based on the NIFS Experience

    International Nuclear Information System (INIS)

    Kawano, T.; Inoue, N.; Sakuma, Y.; Motojima, O.

    2001-01-01

    Full text: In 1998, access control system for the large helical device (LHD) experimental hall was constructed and put into operation at the National Institute for Fusion Science (NIFS) in Toki, Japan. Since then, the system has been continuously improved. It now controls access into the LHD controlled area through four entrances. The system has five turnstile gates and enables control of access at the four entrances. The system is always checking whether the shielding doors are open or closed at eight positions. The details pertaining to the construction of the system were reported at IRPA-10 held in Hiroshima, Japan, in 2000. Based on our construction experience of the NIFS access control system, we will discuss problems related to software and operational design of the system. We will also discuss some concerns regarding the use of the system in radiation facilities. The problems we will present concern, among other thing, individual registration, time control, turnstile control, interlock signal control, data aggregation and transactions, automatic and manual control, and emergency procedures. For example, in relation to the time control and turnstile control functions, we will discuss the gate-opening time interval for an access event, the timing of access data recording, date changing, turn bar control, double access, and access error handling. (author)

  1. Ontology Language to Support Description of Experiment Control System Semantics, Collaborative Knowledge-Base Design and Ontology Reuse

    International Nuclear Information System (INIS)

    Gyurjyan, Vardan; Abbott, D.; Heyes, G.; Jastrzembski, E.; Moffit, B.; Timmer, C.; Wolin, E.

    2009-01-01

    In this paper we discuss the control domain specific ontology that is built on top of the domain-neutral Resource Definition Framework (RDF). Specifically, we will discuss the relevant set of ontology concepts along with the relationships among them in order to describe experiment control components and generic event-based state machines. Control Oriented Ontology Language (COOL) is a meta-data modeling language that provides generic means for representation of physics experiment control processes and components, and their relationships, rules and axioms. It provides a semantic reference frame that is useful for automating the communication of information for configuration, deployment and operation. COOL has been successfully used to develop a complete and dynamic knowledge-base for experiment control systems, developed using the AFECS framework.

  2. The control architecture of the D0 experiment

    International Nuclear Information System (INIS)

    J. Fredrick Bartlett et al.

    2002-01-01

    From a controls viewpoint, contemporary high energy physics collider detectors are comparable in complexity to small to medium size accelerators: however, their controls requirements often differ significantly. D0, one of two collider experiments at Fermilab, has recently started a second, extended running period that will continue for the next five years. EPICS [1], an integrated set of software building blocks for implementing a distributed control system, has been adapted to satisfy the slow controls needs of the D0 detector by (1) extending the support for new device types and an additional field bus, (2) by the addition of a global event reporting system that augments the existing EPICS alarm support, and (3) by the addition of a centralized database with supporting tools for defining the configuration of the control system. This paper discusses the control architecture of the current D0 experiment, how the EPICS system was extended to meet the control requirements of a large, high-energy physics detector, and how a formal control system contributes to the management of detector operations

  3. Design and development experience with a digital fly-by-wire control system in an F-8C airplane

    Science.gov (United States)

    Deets, D. A.

    1976-01-01

    To assess the feasibility of a digital fly by wire system, the mechanical flight control system of an F-8C airplane was replaced with a digital primary system and an analog backup system. The Apollo computer was used as the heart of the primary system. This paper discusses the experience gained during the design and development of the system and relates it to active control systems that are anticipated for future civil transport applications.

  4. Experience with the TRIUMF Main Tank Vacuum Control System

    International Nuclear Information System (INIS)

    Sarkar, S.; Yandon, J.C.; Sievers, W.; Bennett, P.; Gurd, D.P.; Harmer, P.; Nelson, J.

    1993-01-01

    The TRIUMF Main Tank Vacuum Control System was upgraded in 1984. The earlier system, which consisted of a collection of hardwired relay logic boxes housed in three standard instrumentation racks, was replaced with a compact and flexible microprocessor-based control system. The user interface, previously distributed over the three racks, was consolidated into a single hardwired control and mimic panel. Since 1984, the Main Tank Vacuum System has undergone a series of changes in configuration and vacuum pumping hardware with necessary changes being implemented in the control system logic. Corresponding changes to the user interface were sometimes difficult to implement and in time exhausted the spare input/output capacity which had been built into the panel. The availability of inexpensive personal computers with adequate graphics capability and the ease of modifying, or adding to a programmable user interface precipitated the retirement of the hardwired panel and its replacement by a PC-based graphics user interface. System configuration, safety considerations, the hardware and the software implementation using the open-quote C close-quote programming language are described. The evolution of the control system and its performance, both over the years and in adapting to the vacuum system changes, are discussed

  5. Rf control system for a rocket-borne accelerator

    International Nuclear Information System (INIS)

    Lynch, M.T.; Sorum, L.N.; Keffeler, D.R.

    1987-01-01

    The Beam Experiments Aboard Rockets (BEAR) accelerator experiment imposes several nonstandard requirements on the rf control system. The experiment is entirely hands-off and must operate under local computer control. The rf control system must be extremely reliable, which implies excellence in design and fabrication as well as redundancy whenever possible. This paper describes the design of the frequency-source, frequency-control, and amplitude-control systems for the BEAR experiment

  6. A distributed, graphical user interface based, computer control system for atomic physics experiments.

    Science.gov (United States)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  7. A distributed, graphical user interface based, computer control system for atomic physics experiments

    Science.gov (United States)

    Keshet, Aviv; Ketterle, Wolfgang

    2013-01-01

    Atomic physics experiments often require a complex sequence of precisely timed computer controlled events. This paper describes a distributed graphical user interface-based control system designed with such experiments in mind, which makes use of off-the-shelf output hardware from National Instruments. The software makes use of a client-server separation between a user interface for sequence design and a set of output hardware servers. Output hardware servers are designed to use standard National Instruments output cards, but the client-server nature should allow this to be extended to other output hardware. Output sequences running on multiple servers and output cards can be synchronized using a shared clock. By using a field programmable gate array-generated variable frequency clock, redundant buffers can be dramatically shortened, and a time resolution of 100 ns achieved over effectively arbitrary sequence lengths.

  8. Rapid Software Development for Experiment Control at OPAL

    International Nuclear Information System (INIS)

    Hathaway, P.V.; Lam, Tony; Franceschini, Ferdi; Hauser, Nick; Rayner, Hugh

    2005-01-01

    Full text: ANSTO is undertaking the parallel development of instrument control and graphical experiment interface software for seven neutron beam instruments at OPAL. Each instrument poses several challenges for a common system solution, including custom detector interfaces, a range of motion and beamline optics schema, and a spectrum of online data reduction requirements. To provide a superior system with the least development effort, the computing team have adopted proven, configurable, server-based control software (SICS)1., a highly Integrated Scientific Experimental Environment (GumTree)2. and industry-standard database management systems. The resulting graphical interfaces allow operation in a familiar experiment domain, with monitoring of data and parameters independent of control system specifics. GumTree presents the experimenter with a consistent interface for experiment management, instrument control and data reduction tasks. The facility instrument scientists can easily reconfigure instruments and add ancillaries. The user community can expect a reduced learning curve for performing each experiment. GumTree can be installed anywhere for pre-experiment familiarisation, postprocessing of acquired data sets, and integration with third party analysis tools. Instrument scientists are seeing faster software development iterations and have a solid basis to prepare for the next suite of instruments. 1. SICS from PSI (lns00.psi.ch). 2. GumTree (gumtree.sourceforge.net), new site: http://gumtree.sourceforge.net/wiki/index.php/Main_Page

  9. Synchronization in a PLC/VAX-based control and data-acquisition system of a nuclear-fusion experiment

    International Nuclear Information System (INIS)

    Schmidt, V.; Flor, G.; Hemming, O.N.; Luchetta, A.; Manduchi, G.; Vitturi, S.

    1990-01-01

    This paper describes the concept and implementation details of the synchronization mechanisms used in the control and data-acquisition system of the RFX (Reversed-Field Experiment) nuclear-fusion experimental device, at present under construction in Padova, Italy, within the framework of the co-ordinated nuclear-fusion research programme of the European Communities. The system employs industrial PLCs for the 'slow' control and monitoring functions, and a VAX-based CAMAC for the 'fast' functions of trigger-signal generation and data acquisition during the experiment pulses. All subsystems communicate via Ethernet, using compatible software protocols. The operational sequence of the complete system is governed by a single state machine implemented on a PLC-based supervisor system. Equivalent 'slave' state machines are implemented on all other subsystems (PLC- and VAX-based). These state machines are synchronized by means of the exchange of messages via Ethernet. This paper deals in detail with the following components which are involved in system synchronization: The Message Exchange System which implements the system-wide exchange of short messages; the Scheduler programs which implement the state machine on the various computing nodes, and which make use of the Message Exchange System. (orig.)

  10. Remote Experiments in Control Engineering Education Laboratory

    Directory of Open Access Journals (Sweden)

    Milica B Naumović

    2008-05-01

    Full Text Available This paper presents Automatic Control Engineering Laboratory (ACEL - WebLab, an under-developed, internet-based remote laboratory for control engineering education at the Faculty of Electronic Engineering in Niš. Up to now, the remote laboratory integrates two physical systems (velocity servo system and magnetic levitation system and enables some levels of measurement and control. To perform experiments in ACEL-WebLab, the "LabVIEW Run Time Engine"and a standard web browser are needed.

  11. A control and data acquisition system for photoelectron spectroscopy experiment station at Hefei National Synchrotron Radiation Laboratory

    International Nuclear Information System (INIS)

    Xu Weimin; Liu Yinim

    1992-01-01

    The paper describes system configuration and software design. The system has the following features; flexible user interface, succinct control levels, strict protection and high intelligence. It can run EDC, CFS, CIS experiment modes very conveniently with SR light source. Its construction and design idea of the system can be applied to other data acquisition systems. (author)

  12. The Detector Control System of the ATLAS experiment at CERN An application to the calibration of the modules of the Tile Hadron Calorimeter

    CERN Document Server

    Varelá-Rodriguez, F

    2002-01-01

    The principle subject of this thesis work is the design and development of the Detector Control System (DCS) of the ATLAS experiment at CERN. The DCS must ensure the coherent and safe operation of the detector and handle the communication with external systems, like the LHC accelerator and CERN services. A bidirectional data flow between the Data AcQuisition (DAQ) system and the DCS will enable coherent operation of the experiment. The LHC experiments represent new challenges for the design of the control system. The extremely high complexity of the project forces the design of different components of the detector and related systems to be performed well ahead to their use. The long lifetime of the LHC experiments imposes the use of evolving technologies and modular design. The overall dimensions of the detector and the high number of I/O channels call for a control system with processing power distributed all over the facilities of the experiment while keeping a low cost. The environmental conditions require...

  13. Experience with a high order programming language on the development of the Nova distributed control system

    International Nuclear Information System (INIS)

    Suski, G.J.; Holloway, F.W.; Duffy, J.M.

    1983-01-01

    This paper explores the impact of an HOL on the development of the distributed computer control system for Nova laser fusion facility. As the world's most powerful glass laser, Nova will generate 150 trillion watt pulses of infrared light focused onto fusion targets a few millimeters in diameter. It will perform experiments designed to explore the feasibility of fusion as an energy source of the future. Nova will utilize fifty microcomputers and four VAX-11/780's in a distributed process control computer system architecture

  14. Computer controls for the WITCH experiment

    CERN Document Server

    Tandecki, M; Van Gorp, S; Friedag, P; De Leebeeck, V; Beck, D; Brand, H; Weinheimer, C; Breitenfeldt, M; Traykov, E; Mader, J; Roccia, S; Severijns, N; Herlert, A; Wauters, F; Zakoucky, D; Kozlov, V; Soti, G

    2011-01-01

    The WITCH experiment is a medium-scale experimental set-up located at ISOLDE/CERN. It combines a double Penning trap system with,a retardation spectrometer for energy measurements of recoil ions from beta decay. For a correct operation of such a set-up a whole range of different devices is required. Along with the installation and optimization of the set-up a computer control system was developed to control these devices. The CS-Framework that is developed and maintained at GSI, was chosen as a basis for this control system as it is perfectly suited to handle the distributed nature of a control system.We report here on the required hardware for WITCH, along with the basis of this CS-Framework and the add-ons that were implemented for WITCH. (C) 2010 Elsevier B.V. All rights reserved.

  15. The remote supervisory and controlling experiment system of traditional Chinese medicine production based on Fieldbus

    Science.gov (United States)

    Zhan, Jinliang; Lu, Pei

    2006-11-01

    Since the quality of traditional Chinese medicine products are affected by raw material, machining and many other factors, it is difficult for traditional Chinese medicine production process especially the extracting process to ensure the steady and homogeneous quality. At the same time, there exist some quality control blind spots due to lacking on-line quality detection means. But if infrared spectrum analysis technology was used in traditional Chinese medicine production process on the basis of off-line analysis to real-time detect the quality of semi-manufactured goods and to be assisted by advanced automatic control technique, the steady and homogeneous quality can be obtained. It can be seen that the on-line detection of extracting process plays an important role in the development of Chinese patent medicines industry. In this paper, the design and implement of a traditional Chinese medicine extracting process monitoring experiment system which is based on PROFIBUS-DP field bus, OPC, and Internet technology is introduced. The system integrates intelligence node which gathering data, superior sub-system which achieving figure configuration and remote supervisory, during the process of traditional Chinese medicine production, monitors the temperature parameter, pressure parameter, quality parameter etc. And it can be controlled by the remote nodes in the VPN (Visual Private Network). Experiment and application do have proved that the system can reach the anticipation effect fully, and with the merits of operational stability, real-time, reliable, convenient and simple manipulation and so on.

  16. Maintaining and improving the control and safety systems for the Electromagnetic Calorimeter of the CMS experiment

    CERN Document Server

    Di Calafiori, Diogo Raphael; Dissertori, Günther; Holme, Oliver; Jovanovic, Dragoslav; Lustermann, Werner; Zelepoukine, Serguei

    2012-01-01

    This paper presents the current architecture of the control and safety systems designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). An evaluation of system performance during all CMS physics data taking periods is reported, with emphasis on how software and hardware solutions are used to overcome limitations, whilst maintaining and improving reliability and robustness. The outcomes of the CMS ECAL Detector Control System (DCS) Software Analysis Project were a fundamental step towards the integration of all control system applications and the consequent piece-by-piece software improvements allowed a smooth transition to the latest revision of the system. The ongoing task of keeping the system in-line with new hardware technologies and software platforms specified by the CMS DCS Group is discussed. The structure of the comprehensive support service with detailed incident logging is presented in addition to a complet...

  17. Undergraduate reactor control experiment

    International Nuclear Information System (INIS)

    Edwards, R.M.; Power, M.A.; Bryan, M.

    1992-01-01

    A sequence of reactor and related experiments has been a central element of a senior-level laboratory course at Pennsylvania State University (Penn State) for more than 20 yr. A new experiment has been developed where the students program and operate a computer controller that manipulates the speed of a secondary control rod to regulate TRIGA reactor power. Elementary feedback control theory is introduced to explain the experiment, which emphasizes the nonlinear aspect of reactor control where power level changes are equivalent to a change in control loop gain. Digital control of nuclear reactors has become more visible at Penn State with the replacement of the original analog-based TRIGA reactor control console with a modern computer-based digital control console. Several TRIGA reactor dynamics experiments, which comprise half of the three-credit laboratory course, lead to the control experiment finale: (a) digital simulation, (b) control rod calibration, (c) reactor pulsing, (d) reactivity oscillator, and (e) reactor noise

  18. The ATLAS detector control system

    International Nuclear Information System (INIS)

    Schlenker, S.; Arfaoui, S.; Franz, S.

    2012-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of more that 130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 10 6 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. First, this contribution describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years and the LHC high luminosity upgrades are outlined. (authors)

  19. The ATLAS Detector Control System

    CERN Document Server

    Schlenker, S; Kersten, S; Hirschbuehl, D; Braun, H; Poblaguev, A; Oliveira Damazio, D; Talyshev, A; Zimmermann, S; Franz, S; Gutzwiller, O; Hartert, J; Mindur, B; Tsarouchas, CA; Caforio, D; Sbarra, C; Olszowska, J; Hajduk, Z; Banas, E; Wynne, B; Robichaud-Veronneau, A; Nemecek, S; Thompson, PD; Mandic, I; Deliyergiyev, M; Polini, A; Kovalenko, S; Khomutnikov, V; Filimonov, V; Bindi, M; Stanecka, E; Martin, T; Lantzsch, K; Hoffmann, D; Huber, J; Mountricha, E; Santos, HF; Ribeiro, G; Barillari, T; Habring, J; Arabidze, G; Boterenbrood, H; Hart, R; Marques Vinagre, F; Lafarguette, P; Tartarelli, GF; Nagai, K; D'Auria, S; Chekulaev, S; Phillips, P; Ertel, E; Brenner, R; Leontsinis, S; Mitrevski, J; Grassi, V; Karakostas, K; Iakovidis, G.; Marchese, F; Aielli, G

    2011-01-01

    The ATLAS experiment is one of the multi-purpose experiments at the Large Hadron Collider (LHC), constructed to study elementary particle interactions in collisions of high-energy proton beams. Twelve different sub-detectors as well as the common experimental infrastructure are supervised by the Detector Control System (DCS). The DCS enables equipment supervision of all ATLAS sub-detectors by using a system of >130 server machines running the industrial SCADA product PVSS. This highly distributed system reads, processes and archives of the order of 106 operational parameters. Higher level control system layers allow for automatic control procedures, efficient error recognition and handling, and manage the communication with external systems such as the LHC. This contribution firstly describes the status of the ATLAS DCS and the experience gained during the LHC commissioning and the first physics data taking operation period. Secondly, the future evolution and maintenance constraints for the coming years an...

  20. The cryogenic control system of EAST

    International Nuclear Information System (INIS)

    Zhuang, M.; Hu, L.B.; Zhow, Z.W.; Xia, G.H.

    2012-01-01

    Highlights: ► A reliable and flexible duplex control system is required for cryogenic system. ► The cryogenic control system is based on Delta-V DCS. ► It has been proved to be an effective way to control cryogenic process. ► It will provide useful experience and inspiration for the development in the cryogenic control engineering. - Abstract: A large scale helium cryogenic system is one of the key components for the EAST tokamak device for the cooling of PF and TF coils, structures, thermal shields, buslines, current leads and cryopumps. Since the cooling scheme of the EAST cryogenic system is fairly complicated, a reliable and flexible control system is required for cryogenic system. The cryogenic control system is based on DeltaV DCS which is the process control software developed by Emerson Company. The EAST cryogenic system has been in operation for four years and has been proved to be safe, stable and energy saving by the past 7 experiments. This paper describes the redundant control network, hardware configuration, software structure, auxiliary system and the new development in the future.

  1. Modern control room design experience and speculation

    International Nuclear Information System (INIS)

    Smith, J.E.

    1993-01-01

    Can operators trained to use conventional control panels readily adapt to CRT based control rooms? Does automation make the design of good man-machine interfaces more or less difficult? In a conventional, hard-wired control room is the operator's peripheral vision always an asset and how can one do better in a CRT based control room? Are Expert System assisted man-machine interfaces a boon or a bust? This paper explores these questions in the light of actual experience with advanced power plant control environments. This paper discusses how automation has in fact simplified the problem of ensuring that the operator has at all times a clear understanding of the plant state. The author contends that conventional hard-wired control rooms are very poor at providing the operator with a good overview of the plant status particularly under startup, or upset conditions and that CRT-based control rooms offer an opportunity for improvement. Experience with some early attempts at this are discussed together with some interesting proposals from other authors. Finally the paper discusses the experience to date with expert system assisted man-machine interfaces. Although promising for the future progress has been slow. The amount of knowledge research required is often formidable and consequently costly. Often when an adequate knowledge base is finally acquired it turns out to be better to use it to increase the level of automation and thus simplify the operator's task. The risks are not any greater and automation offers more consistent operation. It is important also to carefully distinguish between expert system assisted display selection and expert system operator guidance. The first is intended to help the operator in his quest for information. The second attempts to guide the operator actions. The good and the bad points of each of these approaches is discussed

  2. Experience with a high order programming language on the development of the Nova distributed control system

    Energy Technology Data Exchange (ETDEWEB)

    Suski, G.J.; Holloway, F.W.; Duffy, J.M.

    1983-05-10

    This paper explores the impact of an HOL on the development of the distributed computer control system for Nova laser fusion facility. As the world's most powerful glass laser, Nova will generate 150 trillion watt pulses of infrared light focused onto fusion targets a few millimeters in diameter. It will perform experiments designed to explore the feasibility of fusion as an energy source of the future. Nova will utilize fifty microcomputers and four VAX-11/780's in a distributed process control computer system architecture.

  3. Application of Control System Studio for the NOνA Detector Control System

    International Nuclear Information System (INIS)

    Lukhanin, Gennadiy; Biery, Kurt; Foulkes, Stephen; Kowalkowski, Jim; Paterno, Marc; Rechenmacher, Ron; Frank, Martin; Hatzikoutelis, Athanasios

    2012-01-01

    In the NOνA experiment, the Detector Controls System (DCS) provides a method for controlling and monitoring important detector hardware and environmental parameters. It is essential for operating the detector and is required to have access to roughly 370,000 independent programmable channels via more than 11,600 physical devices. In this paper, we demonstrate an application of Control System Studio (CSS), developed by Oak Ridge National Laboratory, for the NOνA experiment. The application of CSS for the DCS of the NOνA experiment has been divided into three phases: (1) user requirements and concept prototype on a test-stand, (2) small scale deployment at the prototype Near Detector on the Surface, and (3) a larger scale deployment at the Far Detector. We also give an outline of the CSS integration with the NOνA online software and the alarm handling logic for the Front-End electronics.

  4. Detector Control System for an LHC experiment - User Requirements Document

    CERN Document Server

    CERN. Geneva

    1997-01-01

    The purpose of this document is to provide the user requirements for a detector control system kernel for the LHC experiments following the ESA standard PSS-05 [1]. The first issue will be used to provide the basis for an evaluation of possible development philosophies for a kernel DCS. As such it will cover all the major functionality but only to a level of detail sufficient for such an evaluation to be performed. Many of the requirements are therefore intentionally high level and generic, and are meant to outline the functionality that would be required of the kernel DCS, but not yet to the level of the detail required for implementation. The document is also written in a generic fashion in order not to rule out any implementation technology.

  5. The LHC experiments' joint controls project (JCOP)

    International Nuclear Information System (INIS)

    Wayne Salter

    2001-01-01

    The development and maintenance of the control systems of the four Large Hadron Collider (LHC) experiments will require a non-negligible amount of resources and effort. In order to minimise the overall effort required the Joint Controls Project (JCOP) was set-up as a collaboration between CERN and the four LHC experiments to find and implement common solutions for the control of the LHC experiments. It is one of the few examples of such a wide collaboration and therefore the existence of the JCOP project is extremely significant. The author will give a brief overview of the project, its structure and its history. It will go on to summarise the various sub-projects that have been initiated under the auspices of JCOP together will their current status. It will highlight that the JCOP general principle is to promote the use of industrial solutions wherever possible. However, this does not rule out the provision of custom solutions when non-standard devices or very large numbers of devices have to be controlled. The author will also discuss the architecture foreseen by JCOP and where in this architecture the various types of solutions are expected to be used. Finally, although the selection of common industrial and custom solutions is a necessary condition for JCOP to succeed, the use of these solutions in themselves would not necessarily lead to the production of homogeneous control systems. Therefore, the author will finish with a description of the JCOP Framework, which is being developed to promote the use of these common solutions, to reduce the development effort required by the various experiment development teams and to help to build and integrate control systems which can be more easily maintained

  6. The Detector Control of the PANDA Experiment

    International Nuclear Information System (INIS)

    Feldbauer, F

    2014-01-01

    The PANDA experiment will be built at the antiproton storage ring HESR, a part of the new accelerator facility FAIR in Darmstadt, Germany. PANDA aims amongst other topics for high precision measurements in hadron spectroscopy and search for exotic matter. To guarantee the high resolution of the different components a detector control system (DCS) monitoring temperatures, humidity, pressure, and controlling chillers and power supplies is needed. The DCS of PANDA is built using the open-source software package EPICS (Experimental Physics and Industrial Control System) with a PANDA specific version of Control-System Studio. In this document the general concepts of the PANDA DCS will be discussed

  7. Detector Control System for the AFP detector in ATLAS experiment at CERN

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00211068; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Oleiro Seabra, Luis Filipe; Sicho, Petr

    2017-01-01

    The ATLAS Forward Proton (AFP) detector consists of two forward detectors located at 205 m and 217 m on either side of the ATLAS experiment. The aim is to measure the momenta and angles of diffractively scattered protons. In 2016, two detector stations on one side of the ATLAS interaction point were installed and commissioned. The detector infrastructure and necessary services were installed and are supervised by the Detector Control System (DCS), which is responsible for the coherent and safe operation of the detector. A large variety of used equipment represents a considerable challenge for the AFP DCS design. Industrial Supervisory Control and Data Acquisition (SCADA) product Siemens WinCCOA, together with the CERN Joint Control Project (JCOP) framework and standard industrial and custom developed server applications and protocols are used for reading, processing, monitoring and archiving of the detector parameters. Graphical user interfaces allow for overall detector operation and visualization of the det...

  8. Experience feedback of computerized controlled nuclear power plants

    International Nuclear Information System (INIS)

    Poizat, F.

    2004-01-01

    The N4 step of French PWR-type nuclear power plants is characterized by an instrumentation and control system entirely computerized (operation procedures including normal and accidental operation). Four power plants of this type (Chooz and Civaux sites) of 1450 MWe each were connected to the power grid between August 1996 and December 1999. The achievement of this program make it possible and necessary to carry out an experience feedback about the development, successes and difficulties encountered in order to draw out some lessons for future realizations. This is the aim of this article: 1 - usefulness and difficulties of such an experience feedback: evolution of instrumentation and control systems, necessary cautions; 2 - a successful computerized control: checking of systems operation, advantages, expectations; 3 - efficiency of computerized systems: demonstration of operation safety, profitability; 4 - conclusions and interrogations: system approach instead of 'micro-software' approach, commercial or 'made to measure' products, contract agreement with a supplier, when and how upgrading. (J.S.)

  9. The Development of a Framework for Target Diagnostic Centralized Control System (TDCCS) in ICF Experiments

    International Nuclear Information System (INIS)

    Zhang Chi; Wang Jian; Yu Xiaoqi; Yang Dong

    2008-01-01

    A framework for target diagnostic centralized control system (TDCCS) in inertial confinement fusion (ICF) experiment has been developed. The developed framework is based on the common object request broker architecture (CORBA) standard and part of the concept from the ICFRoot (a framework based on ROOT for ICF experiments) framework design. This framework is of a component architecture, including a message bus, command executer, status processor, parser and proxy. To test the function of the framework, a simplified prototype of the TDCCS has been developed as well.

  10. PSR control system

    International Nuclear Information System (INIS)

    Clout, P.N.; Conley, A.P.; Bair, S.S.; Fuka, M.A.; Sandford, E.L.; Lander, R.F.; Wells, F.D.

    1985-01-01

    The control system for the Proton Storage Ring at Los Alamos has been essentially completed. Modifications are being applied that are required in the light of machine physics and operating experience. The present design of the system is described and future planned modifications are indicated

  11. Developing Control and Monitoring Software for the Data Acquisition System of the COMPASS Experiment at CERN

    Directory of Open Access Journals (Sweden)

    Martin Bodlák

    2013-01-01

    Full Text Available This paper focuses on the analysis, design and development of software for the new data acquisition system of the COMPASS experiment at CERN. In this system, the data flow is controlled by custom hardware; the software will therefore be used only for run control and for monitoring. The requirements on the software have been analyzed, and the functionality of the system has been defined. The system consists of several distributed nodes; communication between the nodes is based on a custom protocol and a DIM library. A minimal version of the system has already been implemented. Preliminary results of performance and stability tests have shown that the system fulfills the defined requirements, and is stable. In the next phase of development, the system will be tested on the real hardware. It is expected that the system will be ready for deployment in 2014.

  12. Hardware controls for the STAR experiment at RHIC

    International Nuclear Information System (INIS)

    Reichhold, D.; Bieser, F.; Bordua, M.; Cherney, M.; Chrin, J.; Dunlop, J.C.; Ferguson, M.I.; Ghazikhanian, V.; Gross, J.; Harper, G.; Howe, M.; Jacobson, S.; Klein, S.R.; Kravtsov, P.; Lewis, S.; Lin, J.; Lionberger, C.; LoCurto, G.; McParland, C.; McShane, T.; Meier, J.; Sakrejda, I.; Sandler, Z.; Schambach, J.; Shi, Y.; Willson, R.; Yamamoto, E.; Zhang, W.

    2003-01-01

    The STAR detector sits in a high radiation area when operating normally; therefore it was necessary to develop a robust system to remotely control all hardware. The STAR hardware controls system monitors and controls approximately 14,000 parameters in the STAR detector. Voltages, currents, temperatures, and other parameters are monitored. Effort has been minimized by the adoption of experiment-wide standards and the use of pre-packaged software tools. The system is based on the Experimental Physics and Industrial Control System (EPICS) . VME processors communicate with subsystem-based sensors over a variety of field busses, with High-level Data Link Control (HDLC) being the most prevalent. Other features of the system include interfaces to accelerator and magnet control systems, a web-based archiver, and C++-based communication between STAR online, run control and hardware controls and their associated databases. The system has been designed for easy expansion as new detector elements are installed in STAR

  13. A low-cost, computer-controlled robotic flower system for behavioral experiments.

    Science.gov (United States)

    Kuusela, Erno; Lämsä, Juho

    2016-04-01

    Human observations during behavioral studies are expensive, time-consuming, and error prone. For this reason, automatization of experiments is highly desirable, as it reduces the risk of human errors and workload. The robotic system we developed is simple and cheap to build and handles feeding and data collection automatically. The system was built using mostly off-the-shelf components and has a novel feeding mechanism that uses servos to perform refill operations. We used the robotic system in two separate behavioral studies with bumblebees (Bombus terrestris): The system was used both for training of the bees and for the experimental data collection. The robotic system was reliable, with no flight in our studies failing due to a technical malfunction. The data recorded were easy to apply for further analysis. The software and the hardware design are open source. The development of cheap open-source prototyping platforms during the recent years has opened up many possibilities in designing of experiments. Automatization not only reduces workload, but also potentially allows experimental designs never done before, such as dynamic experiments, where the system responds to, for example, learning of the animal. We present a complete system with hardware and software, and it can be used as such in various experiments requiring feeders and collection of visitation data. Use of the system is not limited to any particular experimental setup or even species.

  14. IKONET: distributed accelerator and experiment control

    International Nuclear Information System (INIS)

    Koldewijn, P.

    1986-01-01

    IKONET is a network consisting of some 35 computers used to control the 500 MeV Medium Energy Amsterdam electron accelerator (MEA) and its various experiments. The control system is distributed over a whole variety of machines, which are combined in a transparent central-oriented network. The local hardware is switched and tuned via Camac by a series of mini-computers with a real-time multitask operating system. Larger systems provide central intelligence for the higher-level control layers. An image of the complete accelerator settings is maintained by central database administrators. Different operator facilities handle touchpanels, multi-purpose knobs and graphical displays. The network provides remote login facilities and file servers. On basis of the present layout, an overview is given of future developments for subsystems of the network. (Auth.)

  15. Operation Request Gatekeeper: A software system for remote access control of diagnostic instruments in fusion experiments

    International Nuclear Information System (INIS)

    Abla, G.; Schissel, D. P.; Fredian, T. W.; Stillerman, J. A.; Greenwald, M. J.; Stepanov, D. N.; Ciarlette, D. J.

    2010-01-01

    Tokamak diagnostic settings are repeatedly modified to meet the changing needs of each experiment. Enabling the remote diagnostic control has significant challenges due to security and efficiency requirements. The Operation Request Gatekeeper (ORG) is a software system that addresses the challenges of remotely but securely submitting modification requests. The ORG provides a framework for screening all the requests before they enter the secure machine zone and are executed by performing user authentication and authorization, grammar validation, and validity checks. A prototype ORG was developed for the ITER CODAC that satisfies their initial requirements for remote request submission and has been tested with remote control of the KSTAR Plasma Control System. This paper describes the software design principles and implementation of ORG as well as worldwide test results.

  16. TREAT Reactor Control and Protection System

    International Nuclear Information System (INIS)

    Lipinski, W.C.; Brookshier, W.K.; Burrows, D.R.; Lenkszus, F.R.; McDowell, W.P.

    1985-01-01

    The main control algorithm of the Transient Reactor Test Facility (TREAT) Automatic Reactor Control System (ARCS) resides in Read Only Memory (ROM) and only experiment specific parameters are input via keyboard entry. Prior to executing an experiment, the software and hardware of the control computer is tested by a closed loop real-time simulation. Two computers with parallel processing are used for the reactor simulation and another computer is used for simulation of the control rod system. A monitor computer, used as a redundant diverse reactor protection channel, uses more conservative setpoints and reduces challenges to the Reactor Trip System (RTS). The RTS consists of triplicated hardwired channels with one out of three logic. The RTS is automatically tested by a digital Dedicated Microprocessor Tester (DMT) prior to the execution of an experiment. 6 refs., 5 figs., 1 tab

  17. Operating experience of the TPA-1001 mini-computer in experimental control systems of main synchrophasotron parameters

    International Nuclear Information System (INIS)

    Kazanskij, G.S.; Khoshenko, A.A.

    1978-01-01

    The experience of application of a Mini-computer, TPA-1001 to control the basic parameters of a synchrophasotron is discussed. The available data have shown that the efficiency of a computer management and measurement system (CMMS) for an accelerator can be determined as a trade-off between the accelerator and the system reliability, and betWeen the system mobility and its softWare. At present, the system employs two VT-340 display units, an arithmetic unit and an accelerating frequency measurement loop. In addition, the system memory is expanded up to 12 K. A new interactive program has been developed which enables the user to interact with the system Via three units (a teletype and two display units). An accelerating frequency measuring and control flowchart has been implemented and covers the whole duty cycle, while its measuring accuracy is better than 4x10 -4

  18. ISABELLE half-cell control system

    International Nuclear Information System (INIS)

    Buxton, W.; Frankel, R.; Humphrey, J.W.

    1977-01-01

    The primary function of the ISABELLE half-cell control system is to monitor and control the magnet power supplies of the half-cell. In addition, the control system must be flexible enough that it can be expanded to become involved in additional areas such as vacuum and magnetic measurements. A control system based upon AGS control standards, but modified into a development tool for research and electrical engineering support was constructed. Special attention was given to the inherent differences between controlling an ISABELLE and a conventional fast cycling accelerator. The use of FORTRAN and BASIC networks, and microprocessors is reviewed insofar as they pertain to this system. Some general opinions on model control systems, based upon experience, are presented

  19. Climate chamber for environmentally controlled laboratory airflow experiments.

    Science.gov (United States)

    Even-Tzur, Nurit; Zaretsky, Uri; Grinberg, Orly; Davidovich, Tomer; Kloog, Yoel; Wolf, Michael; Elad, David

    2010-01-01

    Climate chambers have been widely used in in vitro and in vivo studies which require controlled environmental temperature and humidity conditions. This article describes a new desktop climate chamber that was developed for application of respiratory airflows on cultured nasal epithelial cells (NEC) under controlled temperature and humidity conditions. Flow experiments were performed by connecting the climate chamber to an airflow generator via a flow chamber with cultured NEC. Experiments at two controlled climate conditions, 25 degrees C and 40% relative humidity (RH) and 37 degrees C and 80%RH, were conducted to study mucin secretion from the cultures inresponse to the flow. The new climate chamber is a relatively simple and inexpensive apparatus which can easily be connected to any flow system for climate controlled flow experiments. This chamber can be easily adjusted to various in vitro experiments, as well as to clinical studies with animals or human subjects which require controlled climate conditions.

  20. Detector Control System for the AFP detector in ATLAS experiment at CERN

    Science.gov (United States)

    Banaś, E.; Caforio, D.; Czekierda, S.; Hajduk, Z.; Olszowska, J.; Seabra, L.; Šícho, P.

    2017-10-01

    The ATLAS Forward Proton (AFP) detector consists of two forward detectors located at 205 m and 217 m on either side of the ATLAS experiment. The aim is to measure the momenta and angles of diffractively scattered protons. In 2016, two detector stations on one side of the ATLAS interaction point were installed and commissioned. The detector infrastructure and necessary services were installed and are supervised by the Detector Control System (DCS), which is responsible for the coherent and safe operation of the detector. A large variety of used equipment represents a considerable challenge for the AFP DCS design. Industrial Supervisory Control and Data Acquisition (SCADA) product Siemens WinCCOA, together with the CERN Joint Control Project (JCOP) framework and standard industrial and custom developed server applications and protocols are used for reading, processing, monitoring and archiving of the detector parameters. Graphical user interfaces allow for overall detector operation and visualization of the detector status. Parameters, important for the detector safety, are used for alert generation and interlock mechanisms.

  1. Standardization of detector control systems

    International Nuclear Information System (INIS)

    Fukunaga, Chikara

    2000-01-01

    Current and future detectors for high-energy and/or nuclear physics experiments require highly intelligent detector control systems. In order to reduce resources, the construction of a standardized template for the control systems based on the commercially available superviser control and data acquisition (SCADA) system has been proposed. The possibility of constructing this template is discussed and several key issues for evaluation of SCADA as the basis for such a template are presented. (author)

  2. Experience with ActiveX control for simple channel access

    International Nuclear Information System (INIS)

    Timossi, C.; Nishimura, H.; McDonald, J.

    2003-01-01

    Accelerator control system applications at Berkeley Lab's Advanced Light Source (ALS) are typically deployed on operator consoles running Microsoft Windows 2000 and utilize EPICS[2]channel access for data access. In an effort to accommodate the wide variety of Windows based development tools and developers with little experience in network programming, ActiveX controls have been deployed on the operator stations. Use of ActiveX controls for use in the accelerator control environment has been presented previously[1]. Here we report on some of our experiences with the use and development of these controls

  3. Upgrading the BEPC control system

    International Nuclear Information System (INIS)

    Yang Liping; Wang Lizheng; Liu Shiyao

    1992-01-01

    The BEPC control system has been put into operation and operated normally since the end of 1987. Three years's experience shows this system can satisfy basically the operation requirements, also exhibits some disadvantages araised from the original centralized system architecture based on the VAX-VCC-CAMAC, such as slow response, bottle neck of VCC, less CPU power for control etc.. This paper describes the method and procedure for upgrading the BEPC control system which will be based on DEC net and DEC-WS, and thus intend to upgrade the control system architecture from the centralized to the distributed and improve the integral system performance. (author)

  4. Experience in designing the automatic nuclear power plant control system

    International Nuclear Information System (INIS)

    Sedov, V.K.; Busygin, B.F.; Eliseeva, O.V.; Mikhajlov, V.A.

    1981-01-01

    The integrated automatic control system (ACS) is designed at the Novovoronezh NPP (NVNPP). It comprises automatic technological control of all the five power un+ts and the plant in the whole (ACST) and automatic organizational-economic production control system (ACSP). The NVNPP ACS is designed as a two-level system. The two M-4030 and M-4030-1 computers are the technical base of the upper layer while a set of block NPP (computer-M-60 and M-700 for unit 5; M-60 and SM-2 for units 1-4) of the lower level. Block diagram of the NVNPP ACS, flowsheet of NVNPP ACS technical means and external communications of the control centre are described. The NVNPP ACS is supposed to be put into operation by stages. It is noted that design and introduction of the typical NPP ACS at the NVNPP permits to maximally reduce in the future the period of developing automatic control systems at nly introduced units and NPPs with the WWER reactors [ru

  5. Baseline Architecture of ITER Control System

    Science.gov (United States)

    Wallander, A.; Di Maio, F.; Journeaux, J.-Y.; Klotz, W.-D.; Makijarvi, P.; Yonekawa, I.

    2011-08-01

    The control system of ITER consists of thousands of computers processing hundreds of thousands of signals. The control system, being the primary tool for operating the machine, shall integrate, control and coordinate all these computers and signals and allow a limited number of staff to operate the machine from a central location with minimum human intervention. The primary functions of the ITER control system are plant control, supervision and coordination, both during experimental pulses and 24/7 continuous operation. The former can be split in three phases; preparation of the experiment by defining all parameters; executing the experiment including distributed feed-back control and finally collecting, archiving, analyzing and presenting all data produced by the experiment. We define the control system as a set of hardware and software components with well defined characteristics. The architecture addresses the organization of these components and their relationship to each other. We distinguish between physical and functional architecture, where the former defines the physical connections and the latter the data flow between components. In this paper, we identify the ITER control system based on the plant breakdown structure. Then, the control system is partitioned into a workable set of bounded subsystems. This partition considers at the same time the completeness and the integration of the subsystems. The components making up subsystems are identified and defined, a naming convention is introduced and the physical networks defined. Special attention is given to timing and real-time communication for distributed control. Finally we discuss baseline technologies for implementing the proposed architecture based on analysis, market surveys, prototyping and benchmarking carried out during the last year.

  6. The NSTX Central Instrumentation and Control System

    International Nuclear Information System (INIS)

    G. Oliaro; J. Dong; K. Tindall; P. Sichta

    1999-01-01

    Earlier this year the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory achieved ''first plasma''. The Central Instrumentation and Control System was used to support plasma operations. Major elements of the system include the Process Control System, Plasma Control System, Network System, Data Acquisition System, and Synchronization System. This paper will focus on the Process Control System. Topics include the architecture, hardware interface, operator interface, data management, and system performance

  7. Novel electro-hydraulic position control system for primary mirror supporting system

    Directory of Open Access Journals (Sweden)

    Xiongbin Peng

    2016-05-01

    Full Text Available In the field of modern large-scale telescope, primary mirror supporting system technology faces the difficulties of theoretically uniform output force request and bias compensation. Therefore, a novel position control system combining hydraulic system with servo motor system is introduced. The novel system ensures uniform output force on supporting points without complicating the mechanical structure. The structures of both primary mirror supporting system and novel position system are described. Then, the mathematical model of novel position control system is derived for controller selection. A proportional–derivative controller is adopted for simulations and experiments of step response and triangle path tracking. The results show that proportional–derivative controller guarantees the system with micrometer-level positioning ability. A modified proportional–derivative controller is utilized to promote system behavior with faster response overshoot. The novel position control system is then applied on primary mirror supporting system. Coupling effect is observed among actuator partitions, and relocation of virtual pivot supporting point is chosen as the decoupling measurement. The position keeping ability of the primary mirror supporting system is verified by rotating the mirror cell at a considerably high rate. The experiment results show that the decoupled system performs better with smaller bias and shorter recovery time.

  8. Development of a software for a multi-processor system aimed at the on-line control of nuclear physics experiments

    International Nuclear Information System (INIS)

    Poggioli, Jean Renaud

    1984-01-01

    This research thesis reports the development of a software for an acquisition computer aimed at the on-line control of nuclear physics experiments. An original architecture, based on the assignment of a processor to each fundamental task, enables the implementation of a high performance system. In order to make the user free of programming constraints, the author developed a software for dynamic generation of acquisition and processing codes. These codes are created from a data base which is programmed by the user by using a language close to the physical reality. Procedures of interactive control of the experiment are thus simplified by displaying function menus on the operator terminal. The author evokes possible hardware improvements and possible extensions of the system [fr

  9. Reactor limit control system

    International Nuclear Information System (INIS)

    Rubbel, F.E.

    1982-01-01

    The very extensive use of limitations in the operational field between protection system and closed-loop controls is an important feature of German understanding of operational safety. The design of limitations is based on very large activities in the computational field but mostly on the high level of the plant-wide own commissioning experience of a turnkey contractor. Limitations combine intelligence features of closed-loop controls with the high availability of protection systems. (orig.)

  10. Data processing system for neutron experiments

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, T; Yamamuro, N [Tokyo Inst. of Tech. (Japan). Research Lab. of Nuclear Reactor

    1979-03-01

    A data processing system for neutron experiments has been equipped at the Pelletron Laboratory of the Research Laboratory for Nuclear Reactors. The system comprises a Hewlett Packard 21 MX computer and a CAMAC standard. It can control two ADCs and some CAMAC modules. CAMAC control programs as well as data acquisition programs with high-level language can be readily developed. Terminals are well designed for man-machine interactions and program developments. To demonstrate the usefulness of the system, it was applied for the on-line data processing of neutron spectrum measurement.

  11. Means-End based Functional Modeling for Intelligent Control: Modeling and Experiments with an Industrial Heat Pump System

    DEFF Research Database (Denmark)

    Saleem, Arshad

    2007-01-01

    The purpose of this paper is to present a Multilevel Flow Model (MFM) of an industrial heat pump system and its use for diagnostic reasoning. MFM is functional modeling language supporting an explicit means-ends intelligent control strategy for large industrial process plants. The model is used...... in several diagnostic experiments analyzing different fault scenarios. The model and results of the experiments are explained and it is shown how MFM based intelligent modeling and automated reasoning can improve the fault diagnosis process significantly....

  12. Real time plasma control experiments using the JET auxiliary plasma heating systems as the actuator

    International Nuclear Information System (INIS)

    Zornig, N.H.

    1999-01-01

    The role of the Real Time Power Control system (RTPC) in the Joint European Torus (JET) is described in depth. The modes of operation are discussed in detail and a number of successful experiments are described. These experiments prove that RTPC can be used for a wide range of experiments, including: (1) Feedback control of plasma parameters in real time using Ion Cyclotron Resonance Heating (ICRH) or Neutral Beam Heating (NBH) as the actuator in various JET operating regimes. It is demonstrated that in a multi-parameter space it is not sufficient to control one global plasma parameter in order to avoid performance limiting events. (2) Restricting neutron production and subsequent machine activation resulting from high performance pulses. (3) The simulation of α-particle heating effects in a DT-plasma in a D-only plasma. The heating properties of α-particles are simulated using ICRH-power, which is adjusted in real time. The simulation of α-particle heating in JET allows the effects of a change in isotopic mass to be separated from α-particle heating. However, the change in isotopic mass of the plasma ions appears to affect not only the global energy confinement time (τ E ) but also other parameters such as the electron temperature at the plasma edge. This also affects τ E , making it difficult to make a conclusive statement about any isotopic effect. (4) For future JET experiments a scheme has been designed which simulates the behaviour of a fusion reactor experimentally. The design parameters of the International Thermonuclear Experimental Reactor (ITER) are used. In the proposed scheme the most relevant dimensionless plasma parameters are similar in JET and ITER. It is also shown how the amount of heating may be simulated in real time by RTPC using the electron temperature and density as input parameters. The results of two demonstration experiments are presented. (author)

  13. LHCb: Beam and Background Monitoring and the Upgrade of the Timing and Fast Control System of the LHCb experiment at CERN

    CERN Multimedia

    Alessio, F

    2009-01-01

    The LHCb experiment at CERN is preparing for first real data taking, foreseen by the end of the year 2009 with the start-up of the LHC. A large amount of work of commissioning, tests and improvements of the full detector has been done in order to optimize its performance. During my first year as a Doctoral Student at CERN, I have been working on the timing and readout control of the LHCb experiment in the frame of the LHCb Online group. The group is responsible for the full data acquisition of the LHCb experiment, from the Front-End Electronics (FEE) to the storage of the data for offline analysis, as well as the Timing and Fast Control (TFC) system. The latter controls and distributes centrally timing and trigger information, as well as synchronous and asynchronous commands to the readout system. It is also responsible for receiving and adjusting the bunch and orbit clocks of the LHC machine and distributing it to the electronics of the whole experiment. It is of vital importance to assure that the timing o...

  14. Man-machine interface in a submarine command and weapon control system: features and design experience

    Directory of Open Access Journals (Sweden)

    Johan H. Aas

    1989-01-01

    Full Text Available Important man-machine interface (MMI issues concerning a submarine command and weapon control system (CWCS such as crew organization, automation level and decision support are discussed in this paper. Generic submarine CWCS functions and operating conditions are outlined. Detailed, dynamic and real-time prototypes were used to support the MMI design. The prototypes are described and experience with detailed prototyping is discussed. Some of the main interaction principles are summarized and a restricted example of the resulting design is given. Our design experience and current work have been used to outline future perspectives of MMI design in naval CWCSs. The need for both formal and experimental approaches is emphasized.

  15. Multilink manipulator computer control: experience in development and commissioning

    International Nuclear Information System (INIS)

    Holt, J.E.

    1988-11-01

    This report describes development which has been carried out on the multilink manipulator computer control system. The system allows the manipulator to be driven using only two joysticks. The leading link is controlled and the other links follow its path into the reactor, thus avoiding any potential obstacles. The system has been fully commissioned and used with the Sizewell ''A'' reactor 2 Multilink T.V. manipulator. Experience of the use of the system is presented, together with recommendations for future improvements. (author)

  16. A PC-PCL-based control system for the high-voltage pulsed-power operation of the Intense Diagnostic Neutral Beam (IDNB) Experiment

    International Nuclear Information System (INIS)

    Gribble, R.

    1993-06-01

    A stand-alone, semiautomated control system for the high-voltage pulsed-power energy sources on the Intense Diagnostic Neutral Beam Experiment at Los Alamos National Laboratory using personal computer (PC) and programmable logic controller (PLC) technology has been developed and implemented. The control system, consisting of a PC with the graphic operator interface, the network connecting the PC to the PLC, the PLC, the PLC I/O modules, fiber-optic interfaces and software, is described

  17. Decoupling Control Design for the Module Suspension Control System in Maglev Train

    Directory of Open Access Journals (Sweden)

    Guang He

    2015-01-01

    Full Text Available An engineering oriented decoupling control method for the module suspension system is proposed to solve the coupling issues of the two levitation units of the module in magnetic levitation (maglev train. According to the format of the system transfer matrix, a modified adjoint transfer matrix based decoupler is designed. Then, a compensated controller is obtained in the light of a desired close loop system performance. Optimization between the performance index and robustness index is also carried out to determine the controller parameters. However, due to the high orders and complexity of the obtained resultant controller, model reduction method is adopted to get a simplified controller with PID structure. Considering the modeling errors of the module suspension system as the uncertainties, experiments have been performed to obtain the weighting function of the system uncertainties. By using this, the robust stability of the decoupled module suspension control system is checked. Finally, the effectiveness of the proposed decoupling design method is validated by simulations and physical experiments. The results illustrate that the presented decoupling design can result in a satisfactory decoupling and better dynamic performance, especially promoting the reliability of the suspension control system in practical engineering application.

  18. File management for experiment control parameters within a distributed function computer network

    International Nuclear Information System (INIS)

    Stubblefield, F.W.

    1976-10-01

    An attempt to design and implement a computer system for control of and data collection from a set of laboratory experiments reveals that many of the experiments in the set require an extensive collection of parameters for their control. The operation of the experiments can be greatly simplified if a means can be found for storing these parameters between experiments and automatically accessing them as they are required. A subsystem for managing files of such experiment control parameters is discussed. 3 figures

  19. Toyota drivers' experiences with Dynamic Radar Cruise Control, Pre-Collision System, and Lane-Keeping Assist.

    Science.gov (United States)

    Eichelberger, Angela H; McCartt, Anne T

    2016-02-01

    Advanced crash avoidance and driver assistance technologies potentially can prevent or mitigate many crashes. Previous surveys with drivers have found favorable opinions for many advanced technologies; however, these surveys are not necessarily representative of all drivers or all systems. As the technologies spread throughout the vehicle fleet, it is important to continue studying driver acceptance and use of them. This study focused on 2010-2013 Toyota Sienna and Prius models that were equipped with adaptive cruise control, forward collision avoidance, and lane departure warning and prevention (Prius models only). Telephone interviews were conducted in summer 2013 with 183 owners of vehicles with these technologies. About 9 in 10 respondents wanted adaptive cruise control and forward collision avoidance on their next vehicle, and 71% wanted lane departure warning/prevention again. Males and females reported some differences in their experiences with the systems; for example, males were more likely to have turned on lane departure warning/prevention than females, and when using this system, males reported more frequent warnings than did females. Relative to older drivers, drivers age 40 and younger were more likely to have seen or heard a forward collision warning. Consistent with the results in previous surveys of owners of luxury vehicles, the present survey found that driver acceptance of the technologies was high, although less so for lane departure warning/prevention. Experiences with the Toyota systems differed by driver age and gender to a greater degree than in previous surveys, suggesting that the responses of drivers may begin to differ as crash avoidance technology becomes available on a wider variety of vehicles. Crash avoidance technologies potentially can prevent or mitigate many crashes, but their success depends in part on driver acceptance. These systems will be effective only to the extent that drivers use them. Copyright © 2015 Elsevier Ltd and

  20. LabVIEW-based control and data acquisition system for cathodoluminescence experiments.

    Science.gov (United States)

    Bok, J; Schauer, P

    2011-11-01

    Computer automation of cathodoluminescence (CL) experiments using equipment developed in our laboratory is described. The equipment provides various experiments for CL efficiency, CL spectra, and CL time response studies. The automation was realized utilizing the graphical programming environment LabVIEW. The developed application software with procedures for equipment control and data acquisition during various CL experiments is presented. As the measured CL data are distorted by technical limitations of the equipment, such as equipment spectral sensitivity and time response, data correction algorithms were incorporated into the procedures. Some examples of measured data corrections are presented. © 2011 American Institute of Physics

  1. Research on laser cladding control system based on fuzzy PID

    Science.gov (United States)

    Zhang, Chuanwei; Yu, Zhengyang

    2017-12-01

    Laser cladding technology has a high demand for control system, and the domestic laser cladding control system mostly uses the traditional PID control algorithm. Therefore, the laser cladding control system has a lot of room for improvement. This feature is suitable for laser cladding technology, Based on fuzzy PID three closed-loop control system, and compared with the conventional PID; At the same time, the laser cladding experiment and friction and wear experiment were carried out under the premise of ensuring the reasonable control system. Experiments show that compared with the conventional PID algorithm in fuzzy the PID algorithm under the surface of the cladding layer is more smooth, the surface roughness increases, and the wear resistance of the cladding layer is also enhanced.

  2. Pressure control of hydraulic servo system using proportional control valve

    International Nuclear Information System (INIS)

    Yang, Kyong Uk; Oh, In Ho; Lee, Ill Yeong

    1999-01-01

    The purpose of this study is to develop a control scheme for the hydraulic servo system which can rapidly control the pressure in a hydraulic cylinder with very short stroke. Compared with the negligible stroke of the cylinder in the system, the flow gain of the proportional pressure control valve constituting the hydraulic servo system is relatively large and the time delay on the response of the valve is quite long. Therefore, the pressure control system, in this study tends to get unstable during operations. Considering the above mentioned characteristics of the system, a two-degree-of-freedom control scheme, composed of the I-PDD 2 ... feedback compensator and the feedforward controller, is proposed. The reference model scheme is used in deciding the parameters of the controllers. The validity of the proposed control scheme is confirmed through the experiments

  3. Improvement on reliability of control system in power plant

    International Nuclear Information System (INIS)

    Taguchi, S.; Mizumoto, T.; Hirose, Y.; Kashiwai, J.; Takami, I.; Shono, M.; Roji, Y.; Kizaki, S.

    1985-01-01

    Studies made of Japanese PWR operating experiences have revealed that failures in the control system are the primary causes of unscheduled shutdowns. An attempt has, therefore, been made to improve the reliability of the control system in order to raise the plant reliability. The following are the procedures applied to solve the issue; study of operating experiences, fault tree analysis and failure mode and effects analysis. Improvement measures are developed for the control system whose failure threatens to cause the plant trip during the plant life. These systems are the main feedwater control system, rod control system, pressurizer control system and main steam control system in the primary control system. As a result, the plant unavailability is expected to be reduced significantly by applying the improvements. The improvements are applied to the plants under construction and the operating plants in co-operation with utilities and vendors. (author)

  4. Conception and initial experiences with the information system for materials in need of control - ISUS; Konzeption und erste Erfahrungen mit dem Informations-System-Ueberwachungsbeduerftige Stoffe - ISUS

    Energy Technology Data Exchange (ETDEWEB)

    Narz, T.

    1997-12-31

    This article presents an information systems for the control of hazardous materials in enterprises. Experiences in the sectors occupational safety, hazardous materials, waste management are described. (SR)

  5. Design of a high-lift experiment in water including active flow control

    International Nuclear Information System (INIS)

    Beutel, T; Schwerter, M; Büttgenbach, S; Leester-Schädel, M; Sattler, S; El Sayed, Y; Radespiel, R; Zander, M; Sinapius, M; Wierach, P

    2014-01-01

    This paper describes the structural design of an active flow-control experiment. The aim of the experiment is to investigate the increase in efficiency of an internally blown Coanda flap using unsteady blowing. The system uses tailor-made microelectromechanical (MEMS) pressure sensors to determine the state of the oncoming flow and an actuated lip to regulate the mass flow and velocity of a stream near a wall over the internally blown flap. Sensors and actuators are integrated into a highly loaded system that is extremely compact. The sensors are connected to a bus system that feeds the data into a real-time control system. The piezoelectric actuators using the d 33 effect at a comparable low voltage of 120 V are integrated into a lip that controls the blowout slot height. The system is designed for closed-loop control that efficiently avoids flow separation on the Coanda flap. The setup is designed for water-tunnel experiments in order to reduce the free-stream velocity and the system’s control frequency by a factor of 10 compared with that in air. This paper outlines the function and verification of the system’s main components and their development. (technical note)

  6. TMX magnet control system

    International Nuclear Information System (INIS)

    Goerz, D.A.

    1978-01-01

    A control system utilizing a microcomputer has been developed that controls the power supplies driving the Tandem Mirror Experiment (TMX) magnet set and monitors magnet coil operation. The magnet set consists of 18 magnet coils that are driven by 26 dc power supplies. There are two possible modes of operation with this system: a pulse mode where the coils are pulsed on for several seconds with a dc power consumption of 16 MW; and a continuous mode where the coils can run steady state at 10 percent of maximum current ratings. The processor has been given an active control role and serves as an interface between the operator and electronic circuitry that controls the magnet power supplies. This microcomputer also collects and processes data from many analog singal monitors in the coil circuits and numerous status signals from the supplies. Placing the microcomputer in an active control role has yielded a compact, cost effective system that simplifies the magnet system operation and has proven to be very reliable. This paper will describe the TMX magnet control sytem and discuss its development

  7. Design and experiment of controlled bistable vortex induced vibration energy harvesting systems operating in chaotic regions

    Science.gov (United States)

    Huynh, B. H.; Tjahjowidodo, T.; Zhong, Z.-W.; Wang, Y.; Srikanth, N.

    2018-01-01

    Vortex induced vibration based energy harvesting systems have gained interests in these recent years due to its potential as a low water current energy source. However, the effectiveness of the system is limited only at a certain water current due to the resonance principle that governs the concept. In order to extend the working range, a bistable spring to support the structure is introduced on the system. The improvement on the performance is essentially dependent on the bistable gap as one of the main parameters of the nonlinear spring. A sufficiently large bistable gap will result in a significant performance improvement. Unfortunately, a large bistable gap might also increase a chance of chaotic responses, which in turn will result in diminutive harvested power. To mitigate the problem, an appropriate control structure is required to stabilize the chaotic vibrations of a VIV energy converter with the bistable supporting structure. Based on the nature of the double-well potential energy in a bistable spring, the ideal control structure will attempt to drive the responses to inter-well periodic vibrations in order to maximize the harvested power. In this paper, the OGY control algorithm is designed and implemented to the system. The control strategy is selected since it requires only a small perturbation in a structural parameter to execute the control effort, thus, minimum power is needed to drive the control input. Facilitated by a wake oscillator model, the bistable VIV system is modelled as a 4-dimensional autonomous continuous-time dynamical system. To implement the controller strategy, the system is discretized at a period estimated from the subspace hyperplane intersecting to the chaotic trajectory, whereas the fixed points that correspond to the desired periodic orbits are estimated by the recurrence method. Simultaneously, the Jacobian and sensitivity matrices are estimated by the least square regression method. Based on the defined fixed point and the

  8. Access safety systems - New concepts from the LHC experience

    International Nuclear Information System (INIS)

    Ladzinski, T.; Delamare, C.; Luca, S. di; Hakulinen, T.; Hammouti, L.; Havart, F.; Juget, J.F.; Ninin, P.; Nunes, R.; Riesco, T.; Sanchez-Corral Mena, E.; Valentini, F.

    2012-01-01

    The LHC Access Safety System has introduced a number of new concepts into the domain of personnel protection at CERN. These can be grouped into several categories: organisational, architectural and concerning the end-user experience. By anchoring the project on the solid foundations of the IEC 61508/61511 methodology, the CERN team and its contractors managed to design, develop, test and commission on time a SIL3 safety system. The system uses a successful combination of the latest Siemens redundant safety programmable logic controllers with a traditional relay logic hard wired loop. The external envelope barriers used in the LHC include personnel and material access devices, which are interlocked door-booths introducing increased automation of individual access control, thus removing the strain from the operators. These devices ensure the inviolability of the controlled zones by users not holding the required credentials. To this end they are equipped with personnel presence detectors and the access control includes a state of the art bio-metry check. Building on the LHC experience, new projects targeting the refurbishment of the existing access safety infrastructure in the injector chain have started. This paper summarises the new concepts introduced in the LHC access control and safety systems, discusses the return of experience and outlines the main guiding principles for the renewal stage of the personnel protection systems in the LHC injector chain in a homogeneous manner. (authors)

  9. Control system for JAERI Free Electron Laser

    International Nuclear Information System (INIS)

    Sugimoto, Masayoshi

    1992-01-01

    A control system comprising of the personal computers network and the CAMAC stations for the JAERI Free Electron Laser is designed and is in the development stage. It controls the equipment and analyzes the electron and optical beam experiments. The concept and the prototype of the control system are described. (author)

  10. The BNL Accelerator Test Facility control system

    International Nuclear Information System (INIS)

    Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

    1993-01-01

    Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package

  11. The software developing method for multichannel computer-aided system for physical experiments control, realized by resources of national instruments LabVIEW instrumental package

    International Nuclear Information System (INIS)

    Gorskaya, E.A.; Samojlov, V.N.

    1999-01-01

    This work is describing the method of developing the computer-aided control system in integrated environment of LabVIEW. Using the object-oriented design of complex systems, the hypothetical model for methods of developing the software for computer-aided system for physical experiments control was constructed. Within the framework of that model architecture solutions and implementations of suggested method were described. (author)

  12. Correlation control theory of chaotic laser systems

    International Nuclear Information System (INIS)

    Li Fuli.

    1986-04-01

    A novel control theory of chaotic systems is studied. The correlation functions are calculated and used as feedback signals of the chaotic lasers. Computer experiments have shown that in this way the chaotic systems can be controlled to have time-independent output when the external control parameters are in chaotic domain. (author)

  13. Auto-control experiments on DIDO using discontinuous feedback

    International Nuclear Information System (INIS)

    Lawrence, L.A.J.

    1959-12-01

    Experiments on auto-controlling the reactor DIDO are described and the equipment design discussed in some detail. The experiments are carried out to show the suitability of an on/off type of control for the maintenance of: (a) a constant flux level in the presence of noise. (b) constant period during power change. The controlling signals stem from measurement of neutron flux computed to give deviation from demanded power, and period respectively. These signals are fed to a D.C. amplifier with variable deadbang whose output is used to control relays, these in turn control the coarse control arms by means of three-phase motors. The system is designed on the basis of locus diagrams, a conventional non-linear technique being used to handle the relay performance. Calculation of the reactor transfer function at high and low power respectively shows that the stability margin is not appreciably affected by the inherent thermodynamic feedback in the reactor core. (author)

  14. Control systems under attack?

    CERN Document Server

    Lüders, Stefan

    2005-01-01

    The enormous growth of the Internet during the last decade offers new means to share and distribute both information and data. In Industry, this results in a rapprochement of the production facilities, i.e. their Process Control and Automation Systems, and the data warehouses. At CERN, the Internet opens the possibility to monitor and even control (parts of) the LHC and its four experiments remotely from anywhere in the world. However, the adoption of standard IT technologies to Distributed Process Control and Automation Systems exposes inherent vulnerabilities to the world. The Teststand On Control System Security at CERN (TOCSSiC) is dedicated to explore the vulnerabilities of arbitrary Commercial-Of-The-Shelf hardware devices connected to standard Ethernet. As such, TOCSSiC should discover their vulnerabilities, point out areas of lack of security, and address areas of improvement which can then be confidentially communicated to manufacturers. This paper points out risks of accessing the Control and Automa...

  15. Introduction of experience of television information-control systems in welding

    International Nuclear Information System (INIS)

    Lifshits, M.L.; Lobanova, N.G.

    1988-01-01

    Consideration is given to peculiarities of using television measuring system for operative control of electron-beam welding of articles with minimum joint gap. It is shown that improvement of control accuracy requires mounting and tuning of television sensors and providing for process procedure

  16. Research on automatic control system of greenhouse

    Science.gov (United States)

    Liu, Yi; Qi, Guoyang; Li, Zeyu; Wu, Qiannan; Meng, Yupeng

    2017-03-01

    This paper introduces a kind of automatic control system of single-chip microcomputer and a temperature and humidity sensor based on the greenhouse, describes the system's hardware structure, working principle and process, and a large number of experiments on the effect of the control system, the results show that the system can ideally control temperature and room temperature and humidity, can be used in indoor breeding and planting, and has the versatility and portability.

  17. Overview of the NSTX Control System

    International Nuclear Information System (INIS)

    Sichta, P.; Dong, J.; Oliaro, G.; Roney, P.

    2001-01-01

    The National Spherical Torus Experiment (NSTX) is an innovative magnetic fusion device that was constructed by the Princeton Plasma Physics Laboratory (PPPL) in collaboration with the Oak Ridge National Laboratory, Columbia University, and the University of Washington at Seattle. Since achieving first plasma in 1999, the device has been used for fusion research through an international collaboration of more than twenty institutions. The NSTX is operated through a collection of control systems that encompass a wide range of technology, from hardwired relay controls to real-time control systems with giga-FLOPS of capability. This paper presents a broad introduction to the control systems used on NSTX, with an emphasis on the computing controls, data acquisition, and synchronization systems

  18. Plans for the CIT [Compact Ignition Tokamak] instrumentation and control system

    International Nuclear Information System (INIS)

    Preckshot, G.G.

    1987-01-01

    Extensive experience with previous fusion experiments (TFTR, MFTF-B and others) is driving the design of the Instrumentation and Control System (I and C) for the Compact Ignition Tokamak (CIT) to be built at Princeton. The new design will reuse much equipment from TFTR and will be subdivided into six major parts: machine control, machine data acquisition, plasma diagnostic instrument control and instrument data acquisition, the database, shot sequencing and safety interlocks. In a major departure from previous fusion experiment control systems, the CIT machine control system will be a commercial process control system. Since the machine control system will be purchased as a completely functional product, we will be able to concentrate development manpower in plasma diagnostic instrument control, data acquisition, data processing and analysis, and database systems. We will discuss the issues driving the design, give a design overview and state the requirements upon any prospective commercial process control system

  19. French LMFBR's control rods experience and development

    International Nuclear Information System (INIS)

    Arnaud, G.; Guigon, A.; Verset, L.

    1983-06-01

    Since the last ten years, the French program has been, first of all, directed to the setting up, and then the development of, at once, the Phenix control rods, and next, the Super-Phenix ones. The vented pin design, with porous plug and sodium bonding, which allows the choices of large diameters, has been taken, since the Rapsodie experience was decisive. The absorber material is sintered, 10 B enriched, boron carbide. The can is made of 316 type stainless steel, stabilised, or not, with titanium. The experience gained in Phenix up to now is important, and deals with about six loads of control rods. Results confirm the validity of the design of the absorber pins. Some difficulties has been encountered for the guiding devices, due to the swelling of the steel. They have required design and material improvements. Such difficulties are discarded by a new design of the bearing, for the Super-Phenix control rods. The other parts of these rods, from the Primary Shut-Down System, are strictly derived from Phenix. The design of the rods from the Secondary Shut-Down System is rather different, but it's not the case for the design of the absorber pins: in many a way, they are derived from Phenix pins and from Rapsodie control rods. Both types of rods irradiation tests are in progress in Phenix [fr

  20. Experience in developing control integrated multilevel systems for gas transport; Developpement de systemes integres de gestion multi-niveaux pour le transport du gaz

    Energy Technology Data Exchange (ETDEWEB)

    Kostyukov, V.Y. [NIIIS, (Russian Federation); Bityukov, V.S. [Gasprom, (Russian Federation)

    2000-07-01

    This report describes the experience of the integrated control multilevel system (IACS) development and implementation for gas transport at the regional enterprises of JSC 'Gasprom', specificity of IACS creation by the Russian enterprises on the basis of the technical and licensed basic software SCADA Geamatics purchased from AEG company under the contract. (authors)

  1. Design of a Hardware-Implemented Phase Calculating System for Feedback Control in the LHCD Experiments on EAST

    International Nuclear Information System (INIS)

    Liu Qiang; Liang Hao; Zhou Yongzhao

    2009-01-01

    A fully hardware-implemented phase calculating system for the feedback control in the lower-hybrid current drive (LHCD) experiments is presented in this paper. By taking advantages of field programmable gate array (FPGA) chips with embedded digital signal processing (DSP) cores and the Matlab-aided design method, the phase calculating algorithm with a square root operation and parallel process are efficiently implemented in a single FPGA chip to complete the calculation of phase differences fast and accurately in the lower-hybrid wave (LHW) system on EAST. (fusion engineering)

  2. Supporting multiple control systems at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Nicklaus, Dennis J.; /Fermilab

    2009-10-01

    The Fermilab control system, ACNET, is used for controlling the Tevatron and all of its pre-accelerators. However, other smaller experiments at Fermilab have been using different controls systems, in particular DOOCS and EPICS. This paper reports some of the steps taken at Fermilab to integrate support for these outside systems. We will describe specific tools that we have built or adapted to facilitate interaction between the architectures. We also examine some of the difficulties that arise from managing this heterogeneous environment. Incompatibilities as well as common elements will be described.

  3. LHCb: The LHCb Silicon Tracker - Control system specific tools and challenges

    CERN Multimedia

    Saornil Gamarra, S

    2013-01-01

    The experiment control system of the LHCb experiment is continuously evolving and improving. The guidelines and structure initially defined are kept, and more common tools are made available to all sub-detectors. Although the main system control is mostly integrated and actions are executed in common for the whole LHCb experiment, there is some degree of freedom for each sub-system to implement the control system using these tools or by creating new ones. The implementation of the LHCb Silicon Tracker control system was extremely disorganized and with little documentation. This was due to either lack of time and manpower, and/or to limited experience and specifications. Despite this, the Silicon Tracker control system has behaved well during the first LHC run. It has continuously evolved since the start of operation and been adapted to the needs of operators with very different degrees of expertise. However, improvements and corrections have been made on a best effort basis due to time constraints placed by t...

  4. Out-reach in-space technology experiments program: Control of flexible robot manipulators in zero gravity, experiment definition phase

    Science.gov (United States)

    Phillips, Warren F.

    1989-01-01

    The results obtained show that it is possible to control light-weight robots with flexible links in a manner that produces good response time and does not induce unacceptable link vibrations. However, deflections induced by gravity cause large static position errors with such a control system. For this reason, it is not possible to use this control system for controlling motion in the direction of gravity. The control system does, on the other hand, have potential for use in space. However, in-space experiments will be needed to verify its applicability to robots moving in three dimensions.

  5. Experiments with a magnetically controlled pendulum

    International Nuclear Information System (INIS)

    Kraftmakher, Yaakov

    2007-01-01

    A magnetically controlled pendulum is used for observing free and forced oscillations, including nonlinear oscillations and chaotic motion. A data-acquisition system stores the data and displays time series of the oscillations and related phase plane plots, Poincare maps, Fourier spectra and histograms. The decay constant of the pendulum can be modified by positive or negative feedback. The apparatus, except for the data-acquisition system, is extremely simple and low cost, and can be assembled in a short time. The wide possibilities of varying the parameters of the pendulum make the experiments suitable for student projects

  6. Development of Control Applications for High-Throughput Protein Crystallography Experiments

    International Nuclear Information System (INIS)

    Gaponov, Yurii A.; Matsugaki, Naohiro; Honda, Nobuo; Sasajima, Kumiko; Igarashi, Noriyuki; Hiraki, Masahiko; Yamada, Yusuke; Wakatsuki, Soichi

    2007-01-01

    An integrated client-server control system (PCCS) with a unified relational database (PCDB) has been developed for high-throughput protein crystallography experiments on synchrotron beamlines. The major steps in protein crystallographic experiments (purification, crystallization, crystal harvesting, data collection, and data processing) are integrated into the software. All information necessary for performing protein crystallography experiments is stored in the PCDB database (except raw X-ray diffraction data, which is stored in the Network File Server). To allow all members of a protein crystallography group to participate in experiments, the system was developed as a multi-user system with secure network access based on TCP/IP secure UNIX sockets. Secure remote access to the system is possible from any operating system with X-terminal and SSH/X11 (Secure Shell with graphical user interface) support. Currently, the system covers the high-throughput X-ray data collection stages and is being commissioned at BL5A and NW12A (PF, PF-AR, KEK, Tsukuba, Japan)

  7. Automatic control system at the ''Loviisa'' NPP

    International Nuclear Information System (INIS)

    Kukhtevich, I.V.; Mal'tsev, B.K.; Sergievskaya, E.N.

    1980-01-01

    Automatic control system of the Loviisa-1 NPP (Finland) is described. According to operation conditions of Finland power system the Loviisa-1 NPP must operate in the mode of week and day control of loading schedule and participate in current control of power system frequency and capacity. With provision for these requirements NPP is equipped with the all-regime system for automatic control functioning during reactor start-up, shut-down, in normal and transient regimes and in emergency situations. The automatic control system includes: a data subsystem, an automatic control subsystem, a discrete control subsystem including remote, a subsystem for reactor control and protection and overall station system of protections: control and dosimetry inside the reactor. Structures of a data-computer complex, discrete control subsystems, reactor control and protection systems, neutron flux control system, inside-reactor control system, station protection system and system for control of fuel element tightness are presented in short. Two-year experience of the NPP operation confirmed advisability of the chosen volume of automatization. The Loviisa-1 NPP operates successfully in the mode of the week and day control of supervisor schedule and current control of frequency (short-term control)

  8. Using formal specification in the Guidance and Control Software (GCS) experiment. Formal design and verification technology for life critical systems

    Science.gov (United States)

    Weber, Doug; Jamsek, Damir

    1994-01-01

    The goal of this task was to investigate how formal methods could be incorporated into a software engineering process for flight-control systems under DO-178B and to demonstrate that process by developing a formal specification for NASA's Guidance and Controls Software (GCS) Experiment. GCS is software to control the descent of a spacecraft onto a planet's surface. The GCS example is simplified from a real example spacecraft, but exhibits the characteristics of realistic spacecraft control software. The formal specification is written in Larch.

  9. Real-time control environment for the RFX experiment

    International Nuclear Information System (INIS)

    Barana, O.; Cavinato, M.; Luchetta, A.; Manduchi, G.; Taliercio, C.

    2005-01-01

    A comprehensive set of control schemes can be presently implemented on RFX due to the enhanced load assembly and renewed power supply system. The schemes include: plasma equilibrium control and resistive wall mode stabilization, aiming at controlling actively the discharge when the passive action of the shell vanishes; the rotation of the localised helical deformation to minimize the enhanced plasma-wall interaction; the MHD mode control and the 'intelligent shell', aiming at achieving a better comprehension of the underlying physics. To the purpose, an integrated, distributed, digital system has been developed consisting of a set of computing nodes. Each node can act either as pre-processing or control station, the former acquiring raw data and computing intermediate control parameters, the latter executing control algorithms and driving the power amplifiers. An overview of the system architecture is presented in the paper with reference to the software real-time environment providing both basic functions, such as data read-out and real-time communication, and useful tools to program control algorithms, to perform simulations and to commission the system. To simulate the control schemes, the real-time environment is extended to include a so called 'simulation mode', in which the real-time nodes exchange their input/output signals with one station running a suitable model of the experiment, for instance the two dimensional FEM code MAXFEA in the case of the equilibrium control. In this way the control system can be tested offline and the time needed for the commissioning of algorithms reduced

  10. Optimized Experiment Design for Marine Systems Identification

    DEFF Research Database (Denmark)

    Blanke, M.; Knudsen, Morten

    1999-01-01

    Simulation of maneuvring and design of motion controls for marine systems require non-linear mathematical models, which often have more than one-hundred parameters. Model identification is hence an extremely difficult task. This paper discusses experiment design for marine systems identification...... and proposes a sensitivity approach to solve the practical experiment design problem. The applicability of the sensitivity approach is demonstrated on a large non-linear model of surge, sway, roll and yaw of a ship. The use of the method is illustrated for a container-ship where both model and full-scale tests...

  11. Microcontroller-based Feedback Control Laboratory Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2014-06-01

    Full Text Available this paper is a result of the implementation of the recommendations on enhancing hands-on experience of control engineering education using single chip, small scale computers such as microcontrollers. A set of microcontroller-based feedback control experiments was developed for the Electrical Engineering curriculum at the University of North Florida. These experiments provided hands-on techniques that students can utilize in the development of complete solutions for a number of servo control problems. Significant effort was devoted to software development of feedback controllers and the associated signal conditioning circuits interfacing between the microcontroller and the physical plant. These experiments have stimulated the interest of our students in control engineering.

  12. The Global Control of the Virgo experiment

    International Nuclear Information System (INIS)

    Arnaud, Nicolas; Arnault, Christian; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Cavalier, Fabien; Chiche, Ronic; Davier, Michel; Eder, Claude; Hello, Patrice; Heusse, Philippe; Kreckelbergh, Stephane; Mansoux, Bruno

    2005-01-01

    In order to detect gravitational waves, the kilometric interferometer Virgo needs an active control of the positions of the suspended optical components, keeping the detector at its working point. The constraints are about 10 -10 m RMS for the longitudinal control ('Locking') and 10 -9 rad RMS for the angular degrees of freedom ('Alignment'). A dedicated hardware and software named Global Control is in charge of the Locking and the Alignment loops for the Virgo experiment. This system has been designed to match the synchronization constraint and provide a flexible tool in order to easily integrate the various algorithms needed for the control of Virgo. This paper presents the technical requirements to be fulfilled by the Global Control. Then, the dedicated hardware is described and the overall architecture of the Global Control is shown

  13. Designing PID-Fuzzy Controller for Pendubot System

    Directory of Open Access Journals (Sweden)

    Ho Trong Nguyen

    2017-12-01

    Full Text Available In the paper, authors analize dynamic equation of a pendubot system. Familiar kinds of controller – PID, fuzzy controllers – are concerned. Then, a structure of PID-FUZZY is presented. The comparison of three kinds of controllers – PID, fuzzy and PID-FUZZY shows the better response of system under PID-FUZZY controller. Then, the experiments on the real model also prove the better stabilization of the hybrid controller which is combined between linear and intelligent controller.

  14. CICERO: Control Information system Concepts based\

    CERN Multimedia

    2002-01-01

    RD38 : Modern High Energy Physics experiments and accelerators require sophisticated control systems to ensure their safe operation and to optimise their performance. Due to their complexity and to the large number of sensors needed for these purposes, they turn out to be difficult and costly to maintain with the present technology. The situation will seriously worsen with the LHC era. Various R\\&D departments of industrial companies are directly concerned with similar difficulties in power plants and complex automated systems. We propose to combine our efforts to study the various aspects of this problem. We intend to outline the main building blocks of generic control information system. As a result of this study we aim to provide technical solutions which could later be the major components of a basic turnkey system for medium to large scale HEP experiments and accelerators.

  15. The ALICE Silicon Pixel Detector Control and Calibration Systems

    CERN Document Server

    Calì, Ivan Amos; Manzari, Vito; Stefanini, Giorgio

    2008-01-01

    The work presented in this thesis was carried out in the Silicon Pixel Detector (SPD) group of the ALICE experiment at the Large Hadron Collider (LHC). The SPD is the innermost part (two cylindrical layers of silicon pixel detec- tors) of the ALICE Inner Tracking System (ITS). During the last three years I have been strongly involved in the SPD hardware and software development, construction and commissioning. This thesis is focused on the design, development and commissioning of the SPD Control and Calibration Systems. I started this project from scratch. After a prototyping phase now a stable version of the control and calibration systems is operative. These systems allowed the detector sectors and half-barrels test, integration and commissioning as well as the SPD commissioning in the experiment. The integration of the systems with the ALICE Experiment Control System (ECS), DAQ and Trigger system has been accomplished and the SPD participated in the experimental December 2007 commissioning run. The complex...

  16. Sizewell B Power Station control dosimetry system

    International Nuclear Information System (INIS)

    Renn, G.

    1995-01-01

    Sizewell B Power Station is the first Pressurized Water Reactor (PWR) built in the UK for commercial electricity production. An effective control dosimetry system is a crucial tool, in allowing the station to assess its radiological performance against targets. This paper gives an overview of the control dosimetry system at Sizewell B and describes early operating experience with the system. (UK)

  17. Analysis and design of hybrid control systems

    Energy Technology Data Exchange (ETDEWEB)

    Malmborg, J.

    1998-05-01

    Different aspects of hybrid control systems are treated: analysis, simulation, design and implementation. A systematic methodology using extended Lyapunov theory for design of hybrid systems is developed. The methodology is based on conventional control designs in separate regions together with a switching strategy. Dynamics are not well defined if the control design methods lead to fast mode switching. The dynamics depend on the salient features of the implementation of the mode switches. A theorem for the stability of second order switching together with the resulting dynamics is derived. The dynamics on an intersection of two sliding sets are defined for two relays working on different time scales. The current simulation packages have problems modeling and simulating hybrid systems. It is shown how fast mode switches can be found before or during simulation. The necessary analysis work is a very small overhead for a modern simulation tool. To get some experience from practical problems with hybrid control the switching strategy is implemented in two different software environments. In one of them a time-optimal controller is added to an existing PID controller on a commercial control system. Successful experiments with this hybrid controller shows the practical use of the method 78 refs, 51 figs, 2 tabs

  18. Data acquisition system issues for large experiments

    International Nuclear Information System (INIS)

    Siskind, E.J.

    2007-01-01

    This talk consists of personal observations on two classes of data acquisition ('DAQ') systems for Silicon trackers in large experiments with which the author has been concerned over the last three or more years. The first half is a classic 'lessons learned' recital based on experience with the high-level debug and configuration of the DAQ system for the GLAST LAT detector. The second half is concerned with a discussion of the promises and pitfalls of using modern (and future) generations of 'system-on-a-chip' ('SOC') or 'platform' field-programmable gate arrays ('FPGAs') in future large DAQ systems. The DAQ system pipeline for the 864k channels of Si tracker in the GLAST LAT consists of five tiers of hardware buffers which ultimately feed into the main memory of the (two-active-node) level-3 trigger processor farm. The data formats and buffer volumes of these tiers are briefly described, as well as the flow control employed between successive tiers. Lessons learned regarding data formats, buffer volumes, and flow control/data discard policy are discussed. The continued development of platform FPGAs containing large amounts of configurable logic fabric, embedded PowerPC hard processor cores, digital signal processing components, large volumes of on-chip buffer memory, and multi-gigabit serial I/O capability permits DAQ system designers to vastly increase the amount of data preprocessing that can be performed in parallel within the DAQ pipeline for detector systems in large experiments. The capabilities of some currently available FPGA families are reviewed, along with the prospects for next-generation families of announced, but not yet available, platform FPGAs. Some experience with an actual implementation is presented, and reconciliation between advertised and achievable specifications is attempted. The prospects for applying these components to space-borne Si tracker detectors are briefly discussed

  19. Feasibility of EGS Well Control Systems

    Energy Technology Data Exchange (ETDEWEB)

    Norann, Randy A [Perma Works LLC; Darlow, Richard [GeoTek Energy LLC

    2015-02-03

    This report covers the 8th major objective listed in Grant DE-FG36-08GO18185. This objective takes the information and experience gained from the development of 300°C well monitoring system and applies them to concepts envisioned for future geothermal well control systems supporting EGS power production. This report covers a large number of instrumentation and control system engineering issues for EGS wells while also providing a window into existing technology to address those issues.

  20. The Compact Muon Solenoid Detector Control System

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) ensures a safe, correct and efficient experiment operation, contributing to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC changes. CMS sub-detector’s bias voltages are set depending on the machine mode and particle beam conditions. A protection mechanism ensures that the sub-detectors are locked in a safe mode whenever a potentially dangerous situation exists. The system is supervised from the experiment control room by a single operator. A small set of screens summarizes the status of the detector from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency. The automation allows now for configuration commands that can be used to automatically pre-configure hardwar...

  1. Embedded Control System for Smart Walking Assistance Device.

    Science.gov (United States)

    Bosnak, Matevz; Skrjanc, Igor

    2017-03-01

    This paper presents the design and implementation of a unique control system for a smart hoist, a therapeutic device that is used in rehabilitation of walking. The control system features a unique human-machine interface that allows the human to intuitively control the system just by moving or rotating its body. The paper contains an overview of the complete system, including the design and implementation of custom sensors, dc servo motor controllers, communication interfaces and embedded-system based central control system. The prototype of the complete system was tested by conducting a 6-runs experiment on 11 subjects and results are showing that the proposed control system interface is indeed intuitive and simple to adopt by the user.

  2. Fiber-optic control of the ZT-P experiment

    International Nuclear Information System (INIS)

    Caudill, L.D.; Chandler, G.I.; Hall, C.R.; Trujillo, J.F.

    1986-01-01

    The computer control system for the ZT-P experiment has been implemented using a fiber-optic link in all 161 control signal paths. Four classes of control signals are used in this design. These are (a) digital-out, an on--off signal from computer to machine actuator, (b) digital-in, an on--off signal from machine sensor to computer, (c) analog-out, a 0--10-V analog signal from computer to machine actuator, (d) analog-in, a 0--1-mA analog signal from machine sensor to computer. The digital-in and the digital-out class of signals require no control power at the machine. The analog-out and the analog-in class of signals use available machine power for control. This unique power arrangement and the use of fiber-optic links totally isolate the electrically noisy machine areas from the sensitive electronics in the computer control. Advantages of this system including low cost, small size, personnel safety, and ease of maintenance and modification are discussed

  3. Fiber-optic control of the ZT-P experiment

    International Nuclear Information System (INIS)

    Caudill, L.D.; Chandler, G.I.; Hall, C.R.; Trujillo, J.F.

    1986-01-01

    The computer control system for the ZT-P experiment has been implemented using a fiber-optic link in all 161 control signal paths. Four classes of control signals are used in this design. These are: (a) digital-out, an on-off signal from computer to machine actuator, (b) digital-in, an on-off signal from machine sensor to computer, (c) analog-out, a 0 to 10 volt analog signal from computer to machine actuator, (d) analog-in, a 0 to +1 milliampere analog signal from machine sensor to computer. The digital-in and the digital-out class of signals require no control power at the machine. The analog-out and the analog-in class of signals use available machine power for control. This unique power arrangement and the use of fiber-optic links totally isolate the electrically noisy machine areas from the sensitive electronics in the computer control. Advantages of this system including low cost, small size, personnel safety, and ease of maintenance and modification are discussed

  4. Electron Cyclotron Resonance Heating (ECRH) Control System

    International Nuclear Information System (INIS)

    Heefner, J.W.; Williams, C.W.; Lauze, R.R.; Karsner, P.G.

    1985-01-01

    The ECRH Control System was installed on the Tandem Mirror Experiment-Upgrade (TMX-U) in 1980. The system provides approximately 1 MW of 28 GHz microwave power to the TMX-U plasma. The subsystems of ECRH that must be controlled include high-voltage charging supplies, series pass tubes, and magnet supplies. In addition to the devices that must be controlled, many interlocks must be continuously monitored. The previous control system used relay logic and analog controls to operate the system. This approach has many drawbacks such as lack of system flexibility and maintainability. In order to address these problems, it was decided to go with a CAMAC and Modicon based system that uses a Hewlett-Packard 9836C personal computer to replace the previous analog controls. 2 figs

  5. Development of the 'JFT-2' tokamak plasma position control system

    International Nuclear Information System (INIS)

    Fujisawa, Noboru; Matsuzaki, Yoshimi; Suzuki, Norio; Murai, Katsuji; Suzuki, Satoshi.

    1980-01-01

    Digital control technique was applied to control the plasma position in the JFT-2 tokamak experiment device. The detail of the JFT-2 is described elsewhere. The plasma position control system consists of a Hitachi control computer, HIDIC 80, and a Hitachi micro-computer, HIDIC 08E. The plasma position is detected by the position control computer, and compared with a preset value. Then, a reference signal is supplied to the micro-computer controlling power source, and the phase control of the thyristor controlling power source is performed. Since the behavior of plasma is very fast, the fast control is required. The control of the thyristor controlling power source is made by direct digital control (DDC). The main component of the hardware of the present system is the micro-computer HIDIC 08E. The software is the direct task system without the operating system (OS). The results of experiments showed that the feedback control of the system worked well. (Kato, T.)

  6. Management tools for distributed control system in KSTAR

    International Nuclear Information System (INIS)

    Sangil Lee; Jinseop Park; Jaesic Hong; Mikyung Park; Sangwon Yun

    2012-01-01

    The integrated control system of the Korea Superconducting Tokamak Advanced Research (KSTAR) has been developed with distributed control systems based on Experimental Physics and Industrial Control System (EPICS) middle-ware. It has the essential role of remote operation, supervising of tokamak device and conducting of plasma experiments without any interruption. Therefore, the availability of the control system directly impacts on the entire device performance. For the non-interrupted operation of the KSTAR control system, we have developed a tool named as Control System Monitoring (CSM) to monitor the resources of EPICS Input/Output Controller (IOC) servers (utilization of memory, cpu, disk, network, user-defined process and system-defined process), the soundness of storage systems (storage utilization, storage status), the status of network switches using Simple Network Management Protocol (SNMP), the network connection status of every local control sever using Internet Control Message Protocol (ICMP), and the operation environment of the main control room and the computer room (temperature, humidity, electricity) in real time. When abnormal conditions or faults are detected by the CSM, it alerts abnormal or fault alarms to operators. Especially, if critical fault related to the data storage occurs, the CSM sends the simple messages to operator's mobile phone. The operators then quickly restored the problems according to the emergency procedure. As a result of this process, KSTAR was able to perform continuous operation and experiment without interruption for 4 months

  7. Technology Transfer Programme In Reactor Digital Instrumentation And Control System (REDICS) Project: Knowledge, Experiences And Future Expectations

    International Nuclear Information System (INIS)

    Nurfarhana Ayuni Joha; Mohamad Puad Abu; Izhar Abu Hussin; Ridzuan Abdul Mutalib; Zareen Khan Abdul Jalil Khan; Mohd Khairulezwan Abdul Manan; Mohd Sabri Minhat; Mohd Idris Taib

    2013-01-01

    The PUSPATI TRIGA MARK II research reactor in Malaysia was commissioned in 1982. After 31 years of operation, Nuclear Malaysia is taking an approach for a better research and development in nuclear radiations as well as the technical services that provided. Reactor TRIGA PUSPATI (RTP) is currently upgrading its control console from analogue to digital system. The Reactor Digital Instrumentation and Control System (ReDICS) project is done on cooperation with Korea Atomic Energy Research Institute (KAERI), Korea including the technical part from the design stage until commissioning as well as the Technology Transfer Program (TTP). TTP in this ReDICS project is a part of Human Resource and System Development Program. It was carried out from the design stage until the commissioning of the system. It covers all subjects related to the design on the digital system and the requirements for the operation of RTP. The objective of this paper is to share the knowledge and experiences gained through this ReDICS project. This paper will also discuss the future expectations from this ReDICS project for Nuclear Malaysia and its personnel, as well as to the country. (author)

  8. Overview of MFTF supervisory control and diagnostics system software

    International Nuclear Information System (INIS)

    Ng, W.C.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) at the Lawrence Livermore Laboratory (LLL) is currently the largest mirror fusion research project in the world. Its Control and Diagnostics System is handled by a distributed computer network consisting of nine Interdata minicomputer systems and about 65 microprocessors. One of the design requirements is tolerance of single-point failure. If one of the computer systems becomes inoperative, the experiment can still be carried out, although the system responsiveness to operator command may be degraded. In a normal experiment cycle, the researcher can examine the result of the previous experiment, change any control parameter, fire a shot, collect four million bytes of diagnostics data, perform intershot analysis, and have the result presented - all within five minutes. The software approach adopted for the Supervisory Control and Diagnostics System features chief programmer teams and structured programming. Pascal is the standard programming language in this project

  9. Experience with the New Digital RF Control System at the CESR Storage Ring

    CERN Document Server

    Liepe, Matthias; Dobbins, John; Kaplan, Roger; Strohman, Charles R; Stuhl, Benjamin K

    2005-01-01

    A new digital control system has been developed, providing great flexibility, high computational power and low latency for a wide range of control and data acquisition applications. This system is now installed in the CESR storage ring and stabilizes the vector sum field of two of the superconducting CESR 500 MHz cavities and the output power from the driving klystron. The installed control system includes in-house developed digital and RF hardware, very fast feedback and feedforward control, a state machine for automatic start-up and trip recovery, cw and pulsed mode operation, fast quench detection, and cavity frequency control. Several months of continuous operation have proven high reliability of the system. The achieved field stability surpasses requirements.

  10. Experiment-Based Teaching in Advanced Control Engineering

    Science.gov (United States)

    Precup, R.-E.; Preitl, S.; Radac, M.-B.; Petriu, E. M.; Dragos, C.-A.; Tar, J. K.

    2011-01-01

    This paper discusses an experiment-based approach to teaching an advanced control engineering syllabus involving controlled plant analysis and modeling, control structures and algorithms, real-time laboratory experiments, and their assessment. These experiments are structured around the representative case of the longitudinal slip control of an…

  11. Status of the CMS Detector Control System

    CERN Document Server

    Bauer, Gerry; Bouffet, Olivier; Bowen, Matthew; Branson, James G; Bukowiec, Sebastian; Ciganek, Marek; Cittolin, Sergio; Jose Antonio Coarasa; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Flossdorf, Alexander; Gigi, Dominique; Glege, Frank; Gomez-Reino, Robert; Hartl, Christian; Hegeman, Jeroen; Holzner, André; Yi Ling Hwong; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, Remigius K; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Polese, Giovanni; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Shpakov, Dennis; Simon, Michal; Andrei Cristian Spataru; Sumorok, Konstanty

    2012-01-01

    The Compact Muon Solenoid (CMS) is a CERN multi-purpose experiment that exploits the physics of the Large Hadron Collider (LHC). The Detector Control System (DCS) ensures a safe, correct and efficient experiment operation, contributing to the recording of high quality physics data. The DCS is programmed to automatically react to the LHC operational mode. CMS sub-detectors' bias voltages are set depending on the machine mode and particle beam conditions. An operator provided with a small set of screens supervises the system status summarized from the approximately 6M monitored parameters. Using the experience of nearly two years of operation with beam the DCS automation software has been enhanced to increase the system efficiency by minimizing the time required by sub detectors to prepare for physics data taking. From the infrastructure point of view the DCS will be subject to extensive modifications in 2012. The current rack mounted control PCs will be exchanged by a redundant pair of DELL Blade systems. Thes...

  12. Operational advanced materials control and accountability system

    International Nuclear Information System (INIS)

    Malanify, J.J.; Bearse, R.C.; Christensen, E.L.

    1980-01-01

    An accountancy system based on the Dynamic Materials Accountability (DYMAC) System has been in operation at the Plutonium Processing Facility at the Los Alamos Scientific Laboratory (LASL) since January 1978. This system, now designated the Plutonium Facility/Los Alamos Safeguards System (PF/LASS), has enhanced nuclear material accountability and process control at the LASL facility. The nondestructive assay instruments and the central computer system are operating accurately and reliably. As anticipated, several uses of the system have developed in addition to safeguards, notably scrap control and quality control. The successes of this experiment strongly suggest that implementation of DYMAC-based systems should be attempted at other facilities. 20 refs

  13. TRAINING SYSTEM OF FUTURE SPECIALISTS: QUALITY CONTROL

    Directory of Open Access Journals (Sweden)

    Vladimir A. Romanov

    2015-01-01

    Full Text Available The aim of the investigation is development of innovative strategy of quality control training of engineers and skilled workers (hereinafter – future specialists in educational professional organizations on the principles of social partnership.Methods. Theoretic: theoretic and methodological analysis, polytheoretic synthesis, modeling. Empirical: research and generalization of the system, process and competence – based approaches experience, experiment, observation, surveys, expert evaluation, SWOT-analysis as a method of strategic planning which is to identify the internal and external factors (socio-cultural of the organization surrounding.Results. The strategy of the development of the process of quality control training in educational professional organizations and a predictive model of the system of quality control training for future engineers and workers have been created on the analysis and synthesis of a quantitative specification of the quality, the obtained experience and success in control training of future specialists in educational professional organizations in recent economic and educational conditions.Scientific novelty. There has been built a predicative model of quality control training of future specialists to meet modern standards and the principles of social partnership; the control algorithm of the learning process, developed in accordance with the standards (international of quality ISO in the implementation of the quality control systems of the process approach (matrix-based responsibility, competence and remit of those responsible for the education process in the educational organization, the «problem» terms and diagnostic tools for assessing the quality of professional training of future specialists. The perspective directions of innovation in the control of the quality of future professionals training have been determined; the parameters of a comprehensive analysis of the state of the system to ensure the

  14. Software management of the LHC Detector Control Systems

    CERN Document Server

    Varela, F

    2007-01-01

    The control systems of each of the four Large Hadron Collider (LHC) experiments will contain of the order of 150 computers running the back-end applications. These applications will have to be maintained and eventually upgraded during the lifetime of the experiments, ~20 years. This paper presents the centralized software management strategy adopted by the Joint COntrols Project (JCOP) [1], which is based on a central database that holds the overall system configuration. The approach facilitates the integration of different parts of a control system and provides versioning of its various software components. The information stored in the configuration database can eventually be used to restore a computer in the event of failure.

  15. Software management of the LHC detector control systems

    CERN Document Server

    Varela, F

    2007-01-01

    The control systems of each of the four Large Hadron Collider (LHC) experiments will contain of the order of 150 computers running the back-end applications. These applications will have to be maintained and eventually upgraded during the lifetime of the experiments, ~20 years. This paper presents the centralized software management strategy adopted by the Joint COntrols Project (JCOP) [1], which is based on a central database that holds the overall system configuration. The approach facilitates the integration of different parts of a control system and provides versioning of its various software components. The information stored in the configuration database can eventually be used to restore a computer in the event of failure.

  16. Pre-study of burn control in Tokamak reactor experiments

    International Nuclear Information System (INIS)

    Elevant, T.; Anderson, D.; Hamnen, H.; Lisak, M.

    1991-04-01

    Findings from a general study of issues associated with control of burning fusion plasmas are reported, and applications to ITER are given. A number of control variables are discussed. A zerodimensional system has been developed and stability against coupled temperature and density variations are studied. Also space dependent energy balance and transition to thermonuclear burn are analysed as well as maximum obtainable Q-values under subignited operation conditions. Control designs with different input-output strategies are analysed and numerically simulated, and a numerical experiment of system identification is made. Requirements on diagnostics are discussed and areas for further studies are identified. (au) (64 refs.)

  17. Statistical physics of human beings in games: Controlled experiments

    Science.gov (United States)

    Liang, Yuan; Huang, Ji-Ping

    2014-07-01

    It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems.

  18. The Global Control of the Virgo experiment

    Energy Technology Data Exchange (ETDEWEB)

    Arnaud, Nicolas [Laboratoire de l' Accelerateur Lineaire, CNRS-IN2P3 and Universite Paris Sud, Ba-hat timent 200, Campus d' Orsay, B.P. 34, 91898 Orsay Cedex (France); Arnault, Christian [Laboratoire de l' Accelerateur Lineaire, CNRS-IN2P3 and Universite Paris Sud, Ba-hat timent 200, Campus d' Orsay, B.P. 34, 91898 Orsay Cedex (France); Barsuglia, Matteo [Laboratoire de l' Accelerateur Lineaire, CNRS-IN2P3 and Universite Paris Sud, Ba-hat timent 200, Campus d' Orsay, B.P. 34, 91898 Orsay Cedex (France); Bizouard, Marie-Anne [Laboratoire de l' Accelerateur Lineaire, CNRS-IN2P3 and Universite Paris Sud, Ba-hat timent 200, Campus d' Orsay, B.P. 34, 91898 Orsay Cedex (France); Brisson, Violette [Laboratoire de l' Accelerateur Lineaire, CNRS-IN2P3 and Universite Paris Sud, Ba-hat timent 200, Campus d' Orsay, B.P. 34, 91898 Orsay Cedex (France); Cavalier, Fabien [Laboratoire de l' Accelerateur Lineaire, CNRS-IN2P3 and Universite Paris Sud, Ba-hat timent 200, Campus d' Orsay, B.P. 34, 91898 Orsay Cedex (France)]. E-mail: cavalier@lal.in2p3.fr; Chiche, Ronic [Laboratoire de l' Accelerateur Lineaire, CNRS-IN2P3 and Universite Paris Sud, Ba-hat timent 200, Campus d' Orsay, B.P. 34, 91898 Orsay Cedex (France); Davier, Michel [Laboratoire de l' Accelerateur Lineaire, CNRS-IN2P3 and Universite Paris Sud, Ba-hat timent 200, Campus d' Orsay, B.P. 34, 91898 Orsay Cedex (France); Eder, Claude [Laboratoire de l' Accelerateur Lineaire, CNRS-IN2P3 and Universite Paris Sud, Ba-hat timent 200, Campus d' Orsay, B.P. 34, 91898 Orsay Cedex (France); Hello, Patrice [Laboratoire de l' Accelerateur Lineaire, CNRS-IN2P3 and Universite Paris Sud, Ba-hat timent 200, Campus d' Orsay, B.P. 34, 91898 Orsay Cedex (France); Heusse, Philippe; Kreckelbergh, Stephane; Mansoux, Bruno [Laboratoire de l' Accelerateur Lineaire, CNRS-IN2P3 and Universite Paris Sud, Ba-hat timent 200, Campus d' Orsay, B.P. 34, 91898 Orsay Cedex (France)

    2005-09-11

    In order to detect gravitational waves, the kilometric interferometer Virgo needs an active control of the positions of the suspended optical components, keeping the detector at its working point. The constraints are about 10{sup -10}m RMS for the longitudinal control ('Locking') and 10{sup -9}rad RMS for the angular degrees of freedom ('Alignment'). A dedicated hardware and software named Global Control is in charge of the Locking and the Alignment loops for the Virgo experiment. This system has been designed to match the synchronization constraint and provide a flexible tool in order to easily integrate the various algorithms needed for the control of Virgo. This paper presents the technical requirements to be fulfilled by the Global Control. Then, the dedicated hardware is described and the overall architecture of the Global Control is shown.

  19. Active MHD control experiments in RFX-mod

    International Nuclear Information System (INIS)

    Ortolani, Sergio

    2006-01-01

    The RFX reversed field pinch experiment has been modified (RFX-mod) to address specific issues of active control of MHD instabilities. A thin shell (τ Bv ∼50 ms) has replaced the old thick one (τ Bv ∼500 ms) and 192 (4 poloidal x 48 toroidal) independently powered saddle coils surround the thin shell forming a cage completely covering the torus. This paper reports the results obtained during the first year of operation. The system has been used with various control scenarios including experiments on local radial field cancellation over the entire torus surface to mimic an ideal wall ('virtual shell') and on single and multiple mode feedback control. Successful virtual shell operation has been achieved leading to: a 3-fold increase in pulse length and well controlled 300 ms pulses(∼6 shell times) up to ∼1 MA plasma current; one order of magnitude reduction of the dominant radial field perturbations at the plasma edge and correspondingly 100% increase in global energy confinement time. Robust feedback stabilization of resistive wall modes has been demonstrated in conditions where rotation does not play a role and multiple unstable modes are present

  20. The status of the LAMPF control system upgrade

    International Nuclear Information System (INIS)

    Carr, G.P.; Schaller, S.C.; Bjorklund, E.A.; Burns, M.J.; Harrison, J.F.; Rose, P.A.; Schultz, D.E.

    1987-01-01

    The upgraded Los Alamos Meson Physics Facility (LAMPF) control system is now operational. The SEL-840 computer has been removed, and all application programs are now running on VAXes. We are continuing to upgrade the control system network. We are using MicroVMS systems for distributed local control and have introduced VAXELN systems for dedicated real-time situations. Communications with both systems is based on a standardized remote procedure call interface. We have also begun to integrate the Proton Storage Ring controls with the LAMPF control system, to experiment with VAX/GPX-based workstation operator interfaces, and to investigate possible applications of artificial intelligence technology. 13 refs

  1. Optimal control of quantum systems: Origins of inherent robustness to control field fluctuations

    International Nuclear Information System (INIS)

    Rabitz, Herschel

    2002-01-01

    The impact of control field fluctuations on the optimal manipulation of quantum dynamics phenomena is investigated. The quantum system is driven by an optimal control field, with the physical focus on the evolving expectation value of an observable operator. A relationship is shown to exist between the system dynamics and the control field fluctuations, wherein the process of seeking optimal performance assures an inherent degree of system robustness to such fluctuations. The presence of significant field fluctuations breaks down the evolution of the observable expectation value into a sequence of partially coherent robust steps. Robustness occurs because the optimization process reduces sensitivity to noise-driven quantum system fluctuations by taking advantage of the observable expectation value being bilinear in the evolution operator and its adjoint. The consequences of this inherent robustness are discussed in the light of recent experiments and numerical simulations on the optimal control of quantum phenomena. The analysis in this paper bodes well for the future success of closed-loop quantum optimal control experiments, even in the presence of reasonable levels of field fluctuations

  2. Control rod experiments in Racine

    International Nuclear Information System (INIS)

    Stanculescu, A.; Humbert, G.

    1981-09-01

    A survey of the control-rod experiments planned within the joint CEA/CNEN-DeBeNe critical experiment RACINE is given. The applicability to both heterogeneous and homogeneous large power LMFBR-cores is discussed. Finally, the most significant results of the provisional design calculations performed on behalf of the RACINE control-rod programme are presented

  3. INFN-CNAF Monitor and Control System

    International Nuclear Information System (INIS)

    Antonelli, Stefano; De Girolamo, Donato; Dell'Agnello, Luca; Gregori, Daniele; Guizzunti, Guido; Ricci, Pier Paolo; Rosso, Felice; Sapunenko, Vladimir; Veraldi, Riccardo; Veronesi, Paolo; Vistoli, Cristina; Finzi, Giulia Vita; Zani, Stefano

    2011-01-01

    CNAF is the national center of National Institute of Nuclear Physics (INFN) for R and D in the field of Information Technologies applied to High Energy Physics (HEP) experiments. It is involved in the management and development of the most important information and data handling services in behalf of the INFN. In 2005, the Italian Tier-1 for Large Hadron Collider (LHC) experiments has been inaugurated at INFN-CNAF. Due to the huge complexity of Tier-1 center, the use of control systems is fundamental for management and operation of the center. At INFN-CNAF, several solutions have been adopted, from commercial to open source products up to entirely home-made systems. Adopted open source solutions have been strongly adapted to specific needs; a wide set of customized sensors has been developed for various divisions like Network, Storage, Farming, Grid operation and National Services. Finally, a dashboard has been developed, to which described control systems send critical alarms (sent via sms to an operator as well). The dashboard can be exploited to get an historical view of the Tier-1 and national services' state and to allow a quick web control. In this article, the whole system, adopted customizations in monitoring and control as well as their integrations with the dashboard will be described.

  4. State system experience with safeguarding power reactors

    International Nuclear Information System (INIS)

    Roehnsch, W.

    1982-01-01

    This session describes the development and operation of the State System of Accountancy and Control in the German Democratic Republic, and summarizes operating experience with safeguards at power reactor facilities. Overall organization and responsibilities, containment and surveillance measures, materials accounting, and inspection procedures will be outlined. Cooperation between the IAEA, State system, facility, and supplier authorities will also be addressed

  5. Jefferson Lab Data Acquisition Run Control System

    International Nuclear Information System (INIS)

    Vardan Gyurjyan; Carl Timmer; David Abbott; William Heyes; Edward Jastrzembski; David Lawrence; Elliott Wolin

    2004-01-01

    A general overview of the Jefferson Lab data acquisition run control system is presented. This run control system is designed to operate the configuration, control, and monitoring of all Jefferson Lab experiments. It controls data-taking activities by coordinating the operation of DAQ sub-systems, online software components and third-party software such as external slow control systems. The main, unique feature which sets this system apart from conventional systems is its incorporation of intelligent agent concepts. Intelligent agents are autonomous programs which interact with each other through certain protocols on a peer-to-peer level. In this case, the protocols and standards used come from the domain-independent Foundation for Intelligent Physical Agents (FIPA), and the implementation used is the Java Agent Development Framework (JADE). A lightweight, XML/RDF-based language was developed to standardize the description of the run control system for configuration purposes

  6. Startup of the experimental physics industrial control system at NSTX

    International Nuclear Information System (INIS)

    Sichta, P.; Dong, J.

    1999-01-01

    The Experimental Physics Industrial Control System (EPICS) is a set of software which is being used as the basis of the National Spherical Torus Experiment's (NSTX) Process Control System, a major element of the NSTX's Central Instrumentation and Control System. EPICS is a result of a co-development effort started by several US Department of Energy National Laboratories. EPICS is actively supported through an international collaboration made up of government and industrial users. EPICS' good points include portability, scalability, and extensibility. A drawback for small experiments is that a wide range of software skills are necessary to get the software tools running for the process engineers. The authors' experience in designing, developing, operating, and maintaining NSTX's EPICS (system) will be reviewed

  7. Implementation of EPICS based Control System for Radioisotope Beam line

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ha; Ahn, Tae-Sung; Song, Young-Gi; Kwon, Hyeok-Jung; Cho, Yong-Sub [Korea Atomic Energy Research Institute, Gyeongju (Korea, Republic of)

    2015-10-15

    Korea Mult-purpose Accelerator Complex (KOMAC) has been operating 100 MeV proton linear accelerator . For operating 100 MeV linac, various control system has been implemented such as vacuum, power supply, RCCS and etc. KOMAC is operating two beam lines so that clients can use 100 MeV proton beam for their experiment. KOMAC sends beam to beam line and target room using two dipole magnets and several quadrupole magnets. As demand for experiments and Radius Isotope using beam is increased, another beam line is under construction and RI beam line control system is need. To synchronize with KOMAC control system, RI beam line control system is based on Experimental Physics and Industrial control System (EPICS) software. The beam is transported to RI beam line to control magnet power supply and vacuum. Implementation of RI beam line control system is presented and some preliminary results are reported. The base RI beam line control system is implemented. It can control beam direction and vacuum. Comparing archived data and current data, RI beam line and control system will be improved. In the future, scroll pump and gate control system will be implemented using programmable logic controller PLC. RI beam interlock sequence will be added to KOMAC interlock system to protect linac.

  8. Study of MOD control system in ECRH

    International Nuclear Information System (INIS)

    Su Yu; Liu Baohua; Ding Tonghai; Kuang Guangli

    2005-01-01

    High-voltage power supply (HVPS) is one of the important components in ECRH (Electron Cyclotron Resonance Heating). The MOD (modulator) control system is a key of the operation of HVPS and the whole system. The background and principium is introduced in this paper, especially the detail of the hardware and software of the control system is shown. The experiment, that shows stability, accuracy and reliability had reached the expected goal. (authors)

  9. The CMS tracker control system

    Science.gov (United States)

    Dierlamm, A.; Dirkes, G. H.; Fahrer, M.; Frey, M.; Hartmann, F.; Masetti, L.; Militaru, O.; Shah, S. Y.; Stringer, R.; Tsirou, A.

    2008-07-01

    The Tracker Control System (TCS) is a distributed control software to operate about 2000 power supplies for the silicon modules of the CMS Tracker and monitor its environmental sensors. TCS must thus be able to handle about 104 power supply parameters, about 103 environmental probes from the Programmable Logic Controllers of the Tracker Safety System (TSS), about 105 parameters read via DAQ from the DCUs in all front end hybrids and from CCUs in all control groups. TCS is built on top of an industrial SCADA program (PVSS) extended with a framework developed at CERN (JCOP) and used by all LHC experiments. The logical partitioning of the detector is reflected in the hierarchical structure of the TCS, where commands move down to the individual hardware devices, while states are reported up to the root which is interfaced to the broader CMS control system. The system computes and continuously monitors the mean and maximum values of critical parameters and updates the percentage of currently operating hardware. Automatic procedures switch off selected parts of the detector using detailed granularity and avoiding widespread TSS intervention.

  10. The data acquisition system for the TASSO experiment

    International Nuclear Information System (INIS)

    Quarrie, D.R.

    1981-06-01

    The TASSO experiment at PETRA uses a Norsk Data NORD-10S for monitoring and control of the experiment. Trigger rates of typically 1 to 10 Hz are accepted and data are sent via a high speed link to the Central DESY IBM Triplex for later off-line analysis. This data acquisition system is described. (author)

  11. Development of the Experiment Control System and Performance Study of the Muon Chambers for the LHCb Experiment

    CERN Document Server

    Antunes Nobrega, R; Penso, G; Pinci, D

    2010-01-01

    The work of this thesis practically opened three fronts of the LHCb muon system : the development of the control and monitoring system of the readout electronics; the study of noise and threshold of the detector; and the study of the performance of the muon chambers. The LHCb muon readout apparatus is made 1368 Multi-Wire Proportional Chambers (MWPC) and 24 Gas Electron Multiplier (GEM) chambers connected to approximately 7500 16-channel front-end boards, resulting in 120000 output channels. The large-scale of this system naturally led to a complex control and monitoring system made of about 600 microcontrollers which are directly connected to the front-end electronics and handled by six computers. The development of this control system was accomplished within this thesis; the microcontroller’s firmware and the high level software, operating on the six local computers, were implemented. Besides configuring and monitoring the on-chamber readout electronics, a set of calibration and debugging oriented procedu...

  12. Information management system breadboard data acquisition and control system.

    Science.gov (United States)

    Mallary, W. E.

    1972-01-01

    Description of a breadboard configuration of an advanced information management system based on requirements for high data rates and local and centralized computation for subsystems and experiments to be housed on a space station. The system is to contain a 10-megabit-per-second digital data bus, remote terminals with preprocessor capabilities, and a central multiprocessor. A concept definition is presented for the data acquisition and control system breadboard, and a detailed account is given of the operation of the bus control unit, the bus itself, and the remote acquisition and control unit. The data bus control unit is capable of operating under control of both its own test panel and the test processor. In either mode it is capable of both single- and multiple-message operation in that it can accept a block of data requests or update commands for transmission to the remote acquisition and control unit, which in turn is capable of three levels of data-handling complexity.

  13. The alcator C-MOD control system

    International Nuclear Information System (INIS)

    Bosco, J.; Fairfax, S.

    1992-01-01

    The Alcator C-MOD experiment includes over 30 engineering and diagnostic subsystems. The control system hardware and software is a mixture of custom and commercial products which includes sensors, signal conditioners, hard-wired controls, programmable logic controllers, displays, a hybrid analog/digital computer, networked personal computers, and networked VAX workstations. This paper describes the computer-based portions of the control system. The control system coordinates all C-MOD systems including power, vacuum, heating and cooling, access control, plasma shape and position control, and diagnostics. Programmable logic controllers (PLC's) are located near each subsystem. The control room is isolated by fiber optics. Functions that are essential to personnel or equipment safety (e.g. access control) are implemented in hardwired logic and monitored but not controlled by the PLC's. The initial configuration will include over 25 Allen-Bradley PLC-5 units. The PLCs in each subsystem are connected to personal computers (PC's) in the control room. The PC's provide graphical displays and operator interface. The Pc's are networked and share process data with each other and with a master control console and a large mimic panel

  14. Cryogenic system of steady state superconducting Tokamak SST-1: Operational experience and controls

    International Nuclear Information System (INIS)

    Sarkar, B.; Tank, Jignesh; Panchal, Pradip; Sahu, A.K.; Bhattacharya, Ritendra; Phadke, Gaurang; Gupta, N.C.; Gupta, Girish; Shah, Nitin; Shukla, Pawan; Singh, Manoj; Sonara, Dasarath; Sharma, Rajiv; Saradha, S.; Patel, J.C.; Saxena, Y.C.

    2006-01-01

    The cryogenic system of SST-1 consists of the helium cryogenic system and the nitrogen cryogenic system. The main components of the helium cryogenic system are (a) 1.3 kW helium refrigerator/liquefier (HRL) and (b) warm gas management system (WGM), where as, the nitrogen cryogenic system called as liquid nitrogen (LN 2 ) management system consists of storage tanks and a distribution system. The helium flow distribution and control to different sub-systems is achieved by the integrated flow distribution and control (IFDC) system. The HRL has been commissioned and operated for performing a single toroidal field coil test as well as for the first commissioning of SST-1 superconducting-magnets up to 68 K. Analysis of the results shows that the compressor and turbine parameters of the HRL, namely, the speed and pressure are very stable during operation of the HRL, confirming to the reliability in control of thermo-dynamic parameters of the system. The thermal shield of the SST-1 cryostat consists of ten different types of panels, which have been cooled down to the minimum temperature of 80 K and maintained during the first commissioning of SST-1. The operation and controls of the LN2 management system have been found to be as per the design consideration

  15. Statistical physics of human beings in games: Controlled experiments

    International Nuclear Information System (INIS)

    Liang Yuan; Huang Ji-Ping

    2014-01-01

    It is important to know whether the laws or phenomena in statistical physics for natural systems with non-adaptive agents still hold for social human systems with adaptive agents, because this implies whether it is possible to study or understand social human systems by using statistical physics originating from natural systems. For this purpose, we review the role of human adaptability in four kinds of specific human behaviors, namely, normal behavior, herd behavior, contrarian behavior, and hedge behavior. The approach is based on controlled experiments in the framework of market-directed resource-allocation games. The role of the controlled experiments could be at least two-fold: adopting the real human decision-making process so that the system under consideration could reflect the performance of genuine human beings; making it possible to obtain macroscopic physical properties of a human system by tuning a particular factor of the system, thus directly revealing cause and effect. As a result, both computer simulations and theoretical analyses help to show a few counterparts of some laws or phenomena in statistical physics for social human systems: two-phase phenomena or phase transitions, entropy-related phenomena, and a non-equilibrium steady state. This review highlights the role of human adaptability in these counterparts, and makes it possible to study or understand some particular social human systems by means of statistical physics coming from natural systems. (topical review - statistical physics and complex systems)

  16. First Experiences Using XACML for Access Control in Distributed Systems

    Science.gov (United States)

    Lorch, Marcus; Proctor, Seth; Lepro, Rebekah; Kafura, Dennis; Shah, Sumit

    2003-01-01

    Authorization systems today are increasingly complex. They span domains of administration, rely on many different authentication sources, and manage permissions that can be as complex as the system itself. Worse still, while there are many standards that define authentication mechanisms, the standards that address authorization are less well defined and tend to work only within homogeneous systems. This paper presents XACML, a standard access control language, as one component of a distributed and inter-operable authorization framework. Several emerging systems which incorporate XACML are discussed. These discussions illustrate how authorization can be deployed in distributed, decentralized systems. Finally, some new and future topics are presented to show where this work is heading and how it will help connect the general components of an authorization system.

  17. The LED monitoring system of the PHOENICS experiment

    International Nuclear Information System (INIS)

    Urban, D.

    1991-07-01

    The PHOENICS experiment at ELSA uses a LED monitoring system to control pulse height and time measurement with scintillation counters. A green LED is mounted at the light guide of each of the 304 involved photomultiplier tubes. The LEDs are driven by fast voltage pulses of 5 ns FWHM width and about 20 V amplitude. Simulation of single events is possible by computer controlled switching of individual LEDs. In order to correct for the temperature dependence of the LED intensity an automatic temperature recording system was coupled to the computer. This monitor system allows to control the pulse height and time measurement with an accuracy of about 2% and 100 ps respectively. (orig.) [de

  18. System Identification and Embedded Controller Design for Pneumatic Actuator with Stiffness Characteristic

    Directory of Open Access Journals (Sweden)

    Khairuddin Osman

    2014-01-01

    Full Text Available This paper presents model and controller design applications to pneumatic actuator embedded system. Two model strategies of position and force are proposed to realize compliance control for stiffness characteristic. Model of the pneumatic actuator system (transfer function is obtained from system identification (SI method. Next, combination of predictive functional control with observer (PFC-O design is selected as a new control strategy for pneumatic system. Performance assessment of the controller is performed in MATLAB and validated through real-time experiments using national instrument (NI devices and programmable system on chip (PSoC microcontroller. Result shows that the new controller is adapted to the system and able to successfully control both simulation and real-time experiments.

  19. A direct CO2 control system for ocean acidification experiments: testing effects on the coralline red algae Phymatolithon lusitanicum

    Directory of Open Access Journals (Sweden)

    Laura Sordo

    2016-09-01

    Full Text Available Most ocean acidification (OA experimental systems rely on pH as an indirect way to control CO2. However, accurate pH measurements are difficult to obtain and shifts in temperature and/or salinity alter the relationship between pH and pCO2. Here we describe a system in which the target pCO2 is controlled via direct analysis of pCO2 in seawater. This direct type of control accommodates potential temperature and salinity shifts, as the target variable is directly measured instead of being estimated. Water in a header tank is permanently re-circulated through an air-water equilibrator. The equilibrated air is then routed to an infrared gas analyzer (IRGA that measures pCO2 and conveys this value to a Proportional-Integral-Derivative (PID controller. The controller commands a solenoid valve that opens and closes the CO2 flush that is bubbled into the header tank. This low-cost control system allows the maintenance of stabilized levels of pCO2 for extended periods of time ensuring accurate experimental conditions. This system was used to study the long term effect of OA on the coralline red algae Phymatolithon lusitanicum. We found that after 11 months of high CO2 exposure, photosynthesis increased with CO2 as opposed to respiration, which was positively affected by temperature. Results showed that this system is adequate to run long-term OA experiments and can be easily adapted to test other relevant variables simultaneously with CO2, such as temperature, irradiance and nutrients.

  20. Software engineering practices for control system reliability

    International Nuclear Information System (INIS)

    S. K. Schaffner; K. S White

    1999-01-01

    This paper will discuss software engineering practices used to improve Control System reliability. The authors begin with a brief discussion of the Software Engineering Institute's Capability Maturity Model (CMM) which is a framework for evaluating and improving key practices used to enhance software development and maintenance capabilities. The software engineering processes developed and used by the Controls Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), using the Experimental Physics and Industrial Control System (EPICS) for accelerator control, are described. Examples are given of how their procedures have been used to minimized control system downtime and improve reliability. While their examples are primarily drawn from their experience with EPICS, these practices are equally applicable to any control system. Specific issues addressed include resource allocation, developing reliable software lifecycle processes and risk management

  1. A scalable, self-analyzing digital locking system for use on quantum optics experiments.

    Science.gov (United States)

    Sparkes, B M; Chrzanowski, H M; Parrain, D P; Buchler, B C; Lam, P K; Symul, T

    2011-07-01

    Digital control of optics experiments has many advantages over analog control systems, specifically in terms of the scalability, cost, flexibility, and the integration of system information into one location. We present a digital control system, freely available for download online, specifically designed for quantum optics experiments that allows for automatic and sequential re-locking of optical components. We show how the inbuilt locking analysis tools, including a white-noise network analyzer, can be used to help optimize individual locks, and verify the long term stability of the digital system. Finally, we present an example of the benefits of digital locking for quantum optics by applying the code to a specific experiment used to characterize optical Schrödinger cat states.

  2. Performance of active vibration control technology: the ACTEX flight experiments

    Science.gov (United States)

    Nye, T. W.; Manning, R. A.; Qassim, K.

    1999-12-01

    This paper discusses the development and results of two intelligent structures space-flight experiments, each of which could affect architecture designs of future spacecraft. The first, the advanced controls technology experiment I (ACTEX I), is a variable stiffness tripod structure riding as a secondary payload on a classified spacecraft. It has been operating well past its expected life since becoming operational in 1996. Over 60 on-orbit experiments have been run on the ACTEX I flight experiment. These experiments form the basis for in-space controller design problems and for concluding lifetime/reliability data on the active control components. Transfer functions taken during the life of ACTEX I have shown consistent predictability and stability in structural behavior, including consistency with those measurements taken on the ground prior to a three year storage period and the launch event. ACTEX I can change its modal characteristics by employing its dynamic change mechanism that varies preloads in portions of its structure. Active control experiments have demonstrated maximum vibration reductions of 29 dB and 16 dB in the first two variable modes of the system, while operating over a remarkable on-orbit temperature range of -80 °C to 129 °C. The second experiment, ACTEX II, was successfully designed, ground-tested, and integrated on an experimental Department of Defense satellite prior to its loss during a launch vehicle failure in 1995. ACTEX II also had variable modal behavior by virtue of a two-axis gimbal and added challenges of structural flexibility by being a large deployable appendage. Although the loss of ACTEX II did not provide space environment experience, ground testing resulted in space qualifying the hardware and demonstrated 21 dB, 14 dB, and 8 dB reductions in amplitude of the first three primary structural modes. ACTEX II could use either active and/or passive techniques to affect vibration suppression. Both experiments trailblazed

  3. HESYRL control system status

    International Nuclear Information System (INIS)

    Yao Chihyuan

    1992-01-01

    HESYRL synchrotron radiation storage ring was completed in 1989 and has been in commissioning since then. Now it has met its design specification and is ready for synchrotron light experiments. Control system of the project was completed in 1989 and some modifications were made during commissioning. This paper describes its present configuration, status and upgrading plan. (author)

  4. Controlling a Chaotic System through Control Parameter Self-Modulation

    International Nuclear Information System (INIS)

    Pastor, I.

    1994-01-01

    A method for obtaining active control of a chaotic system based on the modulation of a control parameter by adding to it a small perturbation proportional to one output signal is proposed. From a theoretical point of view, chaos can be stabilized in the framework of this method because small modifications of the vector field controlling the dynamics are allowed, and thus some of the previously existing unstable periodic trajectories can be made stable. The method is much inspired on recent treatments of some related problems, and it is compared with them. One of its most attractive features is that it should be very easy to implement it on real experiments. The method is tested on a system of ordinary differential equations modelling the coupling of two self-oscillating electronic circuits (van der Pol oscillators). Some brief comments are made on the possibility that it could be applied to complex spatio-temporal systems where multiple chaotic structures can coexist for some values of the control parameters

  5. Distributed digital control system : features and maintenance experience (Paper No. 3.6)

    International Nuclear Information System (INIS)

    Awalkar, A.U.

    1992-01-01

    Distributed process control system is a collection of processing elements which are interconnected both logically and physically with decentralised system. It does wide control of resources for cooperative execution of application programs. Distributed processing is useful in process for the reasons such as increased performance through resource sharing, increased reliability, modularity and expandability and reduced cabling cost. (author). 2 figs

  6. INMACS: Operating experience of a mature, computer-assisted control system for nuclear material inventory and criticality safety

    International Nuclear Information System (INIS)

    Ross, A.M.

    1983-01-01

    This paper describes the operating experience of INMACS, the Integrated Nuclear Material Accounting and Control System used in the Recycle Fuel Fabrication Laboratories at Chalk River. Since commissioning was completed in 1977, INMACS has checked and recorded approximately 3000 inventory-related transactions involved in fabricating thermal-recycle fuels of (U,Pu)0 2 and (Th,Pu)0 2 . No changes have been necessary to INMACS programs that are used by laboratory staff when moving or processing nuclear material. The various utility programs have allowed efficient management and surveillance of the INMACS data base. Hardware failures and the nuisance of system unavailability at the laboratory terminals have been minimized by regular preventative maintenance. The original efforts in the design and rigorous testing of programs have helped INMACS to be accepted enthusiastically by old and new staff of the laboratories. The work required for nuclear material inventory control is done efficiently and in an atmosphere of safety

  7. NBS/LANL racetrack microtron control system

    International Nuclear Information System (INIS)

    Ayres, R.L.; Martin, E.R.; Trout, R.E.; Wilson, B.L.; Yoder, N.R.

    1985-01-01

    The distributed intelligence control system for the NBS/LANL racetrack microtron (RTM) is now nearing completion, with all major subsystems implemented and tested, thus providing some operating experience with most of the control system innovations. These include a triple hierarchy of microprocessor-based control elements, consisting of a primary control station and multiple secondary and tertiary control stations; light-link coupling to a tertiary station which operates at a 100 kV potential; a common database shared by separate microprocessors for handling hardware control and operator interactions; and joy stick control of the entire system. A unique secondary station interpreter program was used to great advantage for testing and checkout of various control and monitoring subsystems. The hardware design of the control system is based on Multibus I crates containing commercial Multibus I boards and a few custom designed boards. The primary-secondary data link is a high speed, bidirectional, full-duplex, 8-bit, ''byte'' parallel link designed for this application. This link permits very fast updating of the monitored data (> 5 per second) and timely response to operator control inputs at the primary station

  8. System for high-voltage control detectors with large number photomultipliers

    International Nuclear Information System (INIS)

    Donskov, S.V.; Kachanov, V.A.; Mikhajlov, Yu.V.

    1985-01-01

    A simple and inexpensive on-line system for hihg-voltage control which is designed for detectors with a large number of photomultipliers is developed and manufactured. It has been developed for the GAMC type hodoscopic electromagnetic calorimeters, comprising up to 4 thousand photomultipliers. High voltage variation is performed by a high-speed potentiometer which is rotated by a microengine. Block-diagrams of computer control electronics are presented. The high-voltage control system has been used for five years in the IHEP and CERN accelerator experiments. The operation experience has shown that it is quite simple and convenient in operation. In case of about 6 thousand controlled channels in both experiments no potentiometer and microengines failures were observed

  9. Run control techniques for the Fermilab DART data acquisition system

    International Nuclear Information System (INIS)

    Oleynik, G.; Engelfried, J.; Mengel, L.; Moore, C.; Pordes, R.; Udumula, L.; Votava, M.; Drunen, E. van; Zioulas, G.

    1996-01-01

    DART is the high speed, Unix based data acquisition system being developed by the Fermilab Computing Division in collaboration with eight High Energy Physics Experiments. This paper describes DART run-control which implements flexible, distributed, extensible and portable paradigms for the control monitoring of a data acquisition systems. We discuss the unique and interesting aspects of the run-control - why we chose the concepts we did, the benefits we have seen from the choices we made, as well as our experiences in deploying and supporting it for experiments during their commissioning and sub-system testing phases. We emphasize the software and techniques we believe are extensible to future use, and potential future modifications and extensions for those we feel are not. (author)

  10. Run control techniques for the Fermilab DART data acquisition system

    International Nuclear Information System (INIS)

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1995-10-01

    DART is the high speed, Unix based data acquisition system being developed by the Fermilab Computing Division in collaboration with eight High Energy Physics Experiments. This paper describes DART run-control which implements flexible, distributed, extensible and portable paradigms for the control and monitoring of data acquisition systems. We discuss the unique and interesting aspects of the run-control - why we chose the concepts we did, the benefits we have seen from the choices we made, as well as our experiences in deploying and supporting it for experiments during their commissioning and sub-system testing phases. We emphasize the software and techniques we believe are extensible to future use, and potential future modifications and extensions for those we feel are not

  11. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor II of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  12. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While, the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor 2 of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  13. Control system for the NBS microtron accelerator

    International Nuclear Information System (INIS)

    Martin, E.R.; Trout, R.E.; Wilson, B.L.; Ayres, R.L.; Yoder, N.R.

    1985-01-01

    As various subsystems of the National Bureau of Standards/Los Alamos racetrack microtron accelerator are being brought on-line, we are gaining experience with some of the innovations implemented in the control system. Foremost among these are the joystick-based operator controls, the hierarchical distribution of control system intelligence, and the independent secondary stations, permitting sectional stand-alone operation. The result of the distributed database philosophy and parallel data links has been very fast data updates, permitting joystick interaction with system elements. The software development was greatly simplified by using the hardware arbitration of several parallel processors in the Multibus system to split the software tasks into independent modules

  14. Development of an access control system for the LHD experimental hall

    International Nuclear Information System (INIS)

    Kawano, T.; Inoue, N.; Sakuma, Y.; Uda, T.; Yamanishi, H.; Miyake, H.; Tanahashi, S.; Motozima, O.

    2000-01-01

    An access control system for the LHD (Large Helical Device) experimental hall had been constructed and its practical operation started in March 1998. Continuously, the system has been improved. The present system keeps watch on involved entrance and exit for the use of persons at four entrances by using five turnstile gates while watching on eight shielding doors at eight positions (four entrances, three carriage entrances and a hall overview) and a stairway connecting the LHD main hall with the LHD basement. Besides, for the security of safety operation of the LHD, fifteen kinds of interlock signals are exchanged between the access control system and the LHD control system. Seven of the interlock signals are properly sent as the occasional demands from the access control system to the LHD control system, in which three staple signals are B Personnel Access to Controlled Area, D Shielding Door Closed, and E No Entrance. It is important that any plasma experiments of the LHD are not permitted while the signal B being sent or D being not sent. The signal E is sent to inform the LHD control system that the turnstile gates are locked. All the plasma experiments should not be done unless the lock procedure of the turnstile is confirmed. When the turnstile gates are locked, any persons cannot enter into the LHD controlled area, but are permissible to exit only. Six of the interlock signals are used to send the information of the working at that time in the LHD controlled area to the access control system. When one signal of the operation mode is sent to the access control system from the LHD, the access control system sets the turnstile gate in situation corresponding to the operation mode, A Equipment Operation, B Vacuum Pumping, C Coil Cooling, D Coil Excitation, and E Plasma Experiment. If the access control system receives, for example, the signal B, this system sets the turnstile gate in the condition of control such that only persons assigned to the work of vacuum

  15. An analysis of the control hierarchy modelling of the CMS detector control system

    NARCIS (Netherlands)

    Hwong, Y.L.; Groote, J.F.; Willemse, T.A.C.

    2009-01-01

    The high level Detector Control System (DCS) of the CMS experiment is modelled using Finite State Machines (FSM), which cover the control application behaviours of all the sub-detectors and support services. The Joint Controls Project (JCOP) at CERN has chosen the SMI++ framework for this purpose.

  16. The CMS tracker control system

    International Nuclear Information System (INIS)

    Dierlamm, A; Dirkes, G H; Fahrer, M; Frey, M; Hartmann, F; Masetti, L; Militaru, O; Shah, S Y; Stringer, R; Tsirou, A

    2008-01-01

    The Tracker Control System (TCS) is a distributed control software to operate about 2000 power supplies for the silicon modules of the CMS Tracker and monitor its environmental sensors. TCS must thus be able to handle about 10 4 power supply parameters, about 10 3 environmental probes from the Programmable Logic Controllers of the Tracker Safety System (TSS), about 10 5 parameters read via DAQ from the DCUs in all front end hybrids and from CCUs in all control groups. TCS is built on top of an industrial SCADA program (PVSS) extended with a framework developed at CERN (JCOP) and used by all LHC experiments. The logical partitioning of the detector is reflected in the hierarchical structure of the TCS, where commands move down to the individual hardware devices, while states are reported up to the root which is interfaced to the broader CMS control system. The system computes and continuously monitors the mean and maximum values of critical parameters and updates the percentage of currently operating hardware. Automatic procedures switch off selected parts of the detector using detailed granularity and avoiding widespread TSS intervention

  17. Lecture 13: Control System Cyber Security

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Today, the industralized world lives in symbiosis with control systems: it depends on power distribution, oil production, public transport, automatic production lines. While the convenience is at hand, still too many control systems are designed without any security in mind, lack basic security protections, and are not even robust enough to withstand basic attacks. The Stuxnet worm attacking Siemens PLCs in 2010 was another close call. Attackers currently enjoy hacking control systems, and aim to switch lights off. This presentation shall recap the current situation and outline why the presenter is still waiting for a change in paradigm. Stefan Lüders, PhD, graduated from the Swiss Federal Institute of Technology in Zurich and joined CERN in 2002. Being initially developer of a common safety system used in all four experiments at the Large Hadron Collider, he gathered expertise in cyber-security issues of control systems. Consequently in 2004, he took over responsibilities in securing CERN's accelerator and...

  18. Real-time supervisor system based on trinary logic to control experiments with behaving animals and humans.

    Science.gov (United States)

    Kutz, D F; Marzocchi, N; Fattori, P; Cavalcanti, S; Galletti, C

    2005-06-01

    A new method is presented based on trinary logic able to check the state of different control variables and synchronously record the physiological and behavioral data of behaving animals and humans. The basic information structure of the method is a time interval of defined maximum duration, called time slice, during which the supervisor system periodically checks the status of a specific subset of input channels. An experimental condition is a sequence of time slices subsequently executed according to the final status of the previous time slice. The proposed method implements in its data structure the possibility to branch like an if-else cascade and the possibility to repeat parts of it recursively like the while-loop. Therefore its data structure contains the most basic control structures of programming languages. The method was implemented using a real-time version of LabVIEW programming environment to program and control our experimental setup. Using this supervision system, we synchronously record four analog data channels at 500 Hz (including eye movements) and the time stamps of up to six neurons at 100 kHz. The system reacts with a resolution within 1 ms to changes of state of digital input channels. The system is set to react to changes in eye position with a resolution within 4 ms. The time slices, experimental conditions, and data are handled by relational databases. This facilitates the construction of new experimental conditions and data analysis. The proposed implementation allows continuous recording without an inter-trial gap for data storage or task management. The implementation can be used to drive electrophysiological experiments of behaving animals and psychophysical studies with human subjects.

  19. The AFP Detector Control System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  20. The AFP detector control system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Sicho, Petr; Zabinski, Bartlomiej

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  1. Star camera aspect system suitable for use in balloon experiments

    International Nuclear Information System (INIS)

    Hunter, S.D.; Baker, R.G.

    1985-01-01

    A balloon-borne experiment containing a star camera aspect system was designed, built, and flown. This system was designed to provide offset corrections to the magnetometer and inclinometer readings used to control an azimuth and elevation pointed experiment. The camera is controlled by a microprocessor, including commendable exposure and noise rejection threshold, as well as formatting the data for telemetry to the ground. As a background program, the microprocessor runs the aspect program to analyze a fraction of the pictures taken so that aspect information and offset corrections are available to the experiment in near real time. The analysis consists of pattern recognition of the star field with a star catalog in ROM memory and a least squares calculation. The performance of this system in ground based tests is described. It is part of the NASA/GSFC High Energy Gamma-Ray Balloon Instrument (2)

  2. CLS A Fully Open-Source Control System

    CERN Document Server

    Matias, Elder; Johnson, Terry; Tanner, Robby; Wilson, Tony; Wright, Glen; Zhang, Hao

    2005-01-01

    The Canadian Light Source is one of the first major accelerator facility to adopt a fully open source control system. The control system is based on Experimental Physics and Industrial Control System (EPICS) in use at may other facilities. From the outset CLS utilised RTEMS and Linux as the underlying operating systems for real-time control computers, operator interface computers and servers. When communicating with PLC and other intelligent devices CLS has also adopted a policy of using open communications protocols where possible. Combined these strategies have lead to a system that can easily evolve over the life of the facility without being tied to specific hardware or software suppliers. The operational experience over the past few years has indicates the selected architecture is sufficiently robust and reliable.

  3. Assuring robustness to noise in optimal quantum control experiments

    International Nuclear Information System (INIS)

    Bartelt, A.F.; Roth, M.; Mehendale, M.; Rabitz, H.

    2005-01-01

    Closed-loop optimal quantum control experiments operate in the inherent presence of laser noise. In many applications, attaining high quality results [i.e., a high signal-to-noise (S/N) ratio for the optimized objective] is as important as producing a high control yield. Enhancement of the S/N ratio will typically be in competition with the mean signal, however, the latter competition can be balanced by biasing the optimization experiments towards higher mean yields while retaining a good S/N ratio. Other strategies can also direct the optimization to reduce the standard deviation of the statistical signal distribution. The ability to enhance the S/N ratio through an optimized choice of the control is demonstrated for two condensed phase model systems: second harmonic generation in a nonlinear optical crystal and stimulated emission pumping in a dye solution

  4. Design and Implementation of the ATLAS Detector Control System

    CERN Document Server

    Boterenbrood, H; Cook, J; Filimonov, V; Hallgren, B I; Heubers, W P J; Khomoutnikov, V; Ryabov, Yu; Varela, F

    2004-01-01

    The overall dimensions of the ATLAS experiment and its harsh environment, due to radiation and magnetic field, represent new challenges for the implementation of the Detector Control System. It supervises all hardware of the ATLAS detector, monitors the infrastructure of the experiment, and provides information exchange with the LHC accelerator. The system must allow for the operation of the different ATLAS sub-detectors in stand-alone mode, as required for calibration and debugging, as well as the coherent and integrated operation of all sub-detectors for physics data taking. For this reason, the Detector Control System is logically arranged to map the hierarchical organization of the ATLAS detector. Special requirements are placed onto the ATLAS Detector Control System because of the large number of distributed I/O channels and of the inaccessibility of the equipment during operation. Standardization is a crucial issue for the design and implementation of the control system because of the large variety of e...

  5. Evolution of the SOFIA tracking control system

    Science.gov (United States)

    Fiebig, Norbert; Jakob, Holger; Pfüller, Enrico; Röser, Hans-Peter; Wiedemann, Manuel; Wolf, Jürgen

    2014-07-01

    The airborne observatory SOFIA (Stratospheric Observatory for Infrared Astronomy) is undergoing a modernization of its tracking system. This included new, highly sensitive tracking cameras, control computers, filter wheels and other equipment, as well as a major redesign of the control software. The experiences along the migration path from an aged 19" VMbus based control system to the application of modern industrial PCs, from VxWorks real-time operating system to embedded Linux and a state of the art software architecture are presented. Further, the concept is presented to operate the new camera also as a scientific instrument, in parallel to tracking.

  6. Access control system operation

    International Nuclear Information System (INIS)

    Barnes, L.D.

    1981-06-01

    An automated method for the control and monitoring of personnel movement throughout the site was developed under contract to the Department of Energy by Allied-General Nuclear Services (AGNS) at the Barnwell Nuclear Fuel Plant (BNFP). These automated features provide strict enforcement of personnel access policy without routine patrol officer involvement. Identification methods include identification by employee ID number, identification by voice verification and identification by physical security officer verification. The ability to grant each level of access authority is distributed over the organization to prevent any single individual at any level in the organization from being capable of issuing an authorization for entry into sensitive areas. Each access event is recorded. As access events occur, the inventory of both the entered and the exited control area is updated so that a current inventory is always available for display. The system has been operated since 1979 in a development mode and many revisions have been implemented in hardware and software as areas were added to the system. Recent changes have involved the installation of backup systems and other features required to achieve a high reliability. The access control system and recent operating experience are described

  7. A structured architecture for advanced plasma control experiments

    International Nuclear Information System (INIS)

    Penaflor, B.G.; Ferron, J.R.; Walker, M.L.

    1996-10-01

    Recent new and improved plasma control regimes have evolved from enhancements to the systems responsible for managing the plasma configuration on the DIII-D tokamak. The collection of hardware and software components designed for this purpose is known at DIII-D as the Plasma Control System or PCS. Several new user requirements have contributed to the rapid growth of the PCS. Experiments involving digital control of the plasma vertical position have resulted in the addition of new high performance processors to operate in real-time. Recent studies in plasma disruptions involving the use of neural network based software have resulted in an increase in the number of input diagnostic signals sampled. Better methods for estimating the plasma shape and position have brought about numerous software changes and the addition of several new code modules. Furthermore, requests for performing multivariable control and feedback on the current profile are continuing to add to the demands being placed on the PCS. To support all of these demands has required a structured yet flexible hardware and software architecture for maintaining existing capabilities and easily adding new ones. This architecture along with a general overview of the DIII-D Plasma Control System is described. In addition, the latest improvements to the PCS are presented

  8. Data declaration, control and record of an experiment in nuclear physics. Data acquisition system development under X Window with the system OS-9

    International Nuclear Information System (INIS)

    Michel, L.

    1990-09-01

    To compensate for the increase in data produced by experiments in nuclear physics, the development of a data storage system much more compact than the magnetic tape is most important. The first goal of this work is to establish a data storage unit built on a 8 mm video cartridge (Exabyte) at a given experimental site, the 4pi gamma multidetector array Chateau de Cristal, set up at the CNRS unit in Strasbourg. We have built on a VME crate a data acquisition system working with the real time operating system OS-9 and integrating the Exabyte unit. The system control is realized with an original graphic interface that has been developed under X-Window. This interface allows the command and monitoring of data acquisition as well as the set up of acquisition parameters. The system worked up since january 1990 [fr

  9. Integrated Control System Engineering Support.

    Science.gov (United States)

    1984-12-01

    Advanced Medium Range Air to Air Missile ASTEC Advanced Speech Technology Experimental Configuration BA Body Axis BCIU Bus Control Interface Unit BMU Bus...support nreeded to tie an ASTEC speech recognition system into the DIGISYN fJcility and support an FIGR experiment designed to investigate the voice...information passed to the PDP computer consisted of integers which represented words or phrases recognized by the ASTEC recognition system. An interface

  10. Stability of digital feedback control systems

    Directory of Open Access Journals (Sweden)

    Larkin Eugene

    2018-01-01

    Lag time characteristics are used for investigation of stability of linear systems. Digital PID controller is divided onto linear part, which is realized with a soft and pure lag unit, which is realized with both hardware and software. With use notions amplitude and phase margins, condition for stability of system functioning are obtained. Theoretical results are confirm with computer experiment carried out on the third-order system.

  11. Experiences in control system design aided by interactive computer programs: temperature control of the laser isotope separation vessel

    International Nuclear Information System (INIS)

    Gavel, D.T.; Pittenger, L.C.; McDonald, J.S.; Cramer, P.G.; Herget, C.J.

    1985-01-01

    A robust control system has been designed to regulate temperature in a vacuum vessel. The thermodynamic process is modeled by a set of nonlinear, implicit differential equations. The control design and analysis task exercised many of the computer-aided control systems design software packages, including MATLAB, DELIGHT, and LSAP. The working environment is a VAX computer. Advantages and limitations of the software and environment, and the impact on final controller design is discussed

  12. Experiences in control system design aided by interactive computer programs: Temperature control of the laser isotope separation vessel

    Science.gov (United States)

    Gavel, D. T.; Pittenger, L. C.; McDonald, J. S.; Cramer, P. G.; Herget, C. J.

    A robust control system has been designed to regulate temperature in a vacuum vessel. The thermodynamic process is modeled by a set of nonlinear, implicit differential equations. The control design and analysis task exercised many of the computer-aided control systems design software packages, including MATLAB, DELIGHT, AND LSAP. The working environment is a VAX computer. Advantages and limitations of the software and environment, and the impact on final controller design is discussed.

  13. STUXNET and the Impact on Accelerator Control Systems

    CERN Document Server

    Lüders, S

    2011-01-01

    2010 has seen wide news coverage of a new kind of computer attack, named "Stuxnet", targeting control systems. Due to its level of sophistication, it is widely acknowledged that this attack marks the very first case of a cyber-war of one country against the industrial infrastructure of another, although there is still much speculation about the details. Worse yet, experts recognize that Stuxnet might just be the beginning and that similar attacks, eventually with much less sophistication, but with much more collateral damage, can be expected in the years to come. Stuxnet was targeting a special model of the Siemens 400 PLC series. Similar modules are also deployed for accelerator controls like the LHC cryogenics or vacuum systems as well as the detector control systems in LHC experiments. Therefore, the aim of this presentation is to give an insight into what this new attack does and why it is deemed to be special. In particular, the potential impact on accelerator and experiment control sys...

  14. Timing, Trigger and Control Systems for LHC Detectors

    CERN Multimedia

    2002-01-01

    \\\\ \\\\At the LHC, precise bunch-crossing clock and machine orbit signals must be broadcast over distances of several km from the Prevessin Control Room to the four experiment areas and other destinations. At the LHC experiments themselves, quite extensive distribution systems are also required for the transmission of timing, trigger and control (TTC) signals to large numbers of front-end electronics controllers from a single location in the vicinity of the central trigger processor. The systems must control the detector synchronization and deliver the necessary fast signals and messages that are phased with the LHC clock, orbit or bunch structure. These include the bunch-crossing clock, level-1 trigger decisions, bunch and event numbers, as well as test signals and broadcast commands. A common solution to this TTC system requirement is expected to result in important economies of scale and permit a rationalization of the development, operational and support efforts required. LHC Common Project RD12 is developi...

  15. Proposal for the award of a contract for the supply of a supervisory control and data acquisition system for the four LHC experiments

    CERN Document Server

    2000-01-01

    This document concerns the award of a contract for the supply of a Supervisory Control and Data Acquisition (SCADA) system for the control of the four LHC experiments. Following a market survey carried out among 63 firms in thirteen Member States and one firm in Israel, a call for tenders (IT-2814/IT) was sent on 29 May 2000 to two firms and two consortia, each consisting of two firms, in four Member States. By the closing date, CERN had received four tenders from three firms and one consortium in three Member States. The Finance Committee is invited to agree to the negotiation of a contract with ETM (AT), the lowest bidder complying with the specification, for the supply of a Supervisory Control and Data Acquisition (SCADA) system for the control of the four LHC experiments, including consultancy services and training, for a total amount of 407 500 euros (634 000 Swiss francs), not subject to revision, and 10 years? maintenance for a total amount of 308 500 euros (480 000 Swiss francs), subject to annual rev...

  16. Field bus technology in accelerator control systems

    International Nuclear Information System (INIS)

    Tang Shuming

    1999-01-01

    Since eighties to now, the computer technology, network communication and ULSI technology have been developing rapidly. The level of control for industries and scientific experiments has been upgraded accordingly, so as to meet the increasing requirements for automation. The control systems become more complicated; the devices in control systems become more and more intelligent. However the cost of DCS (Distributed Control System) is quite expensive and the period of system integration is very long. More than ten measurement results for two methods defined in the world, in order to get inter operability of intelligent devices and reduce the costs. The author presents the development trend of fieldbuses briefly and describes the main performances of CAN, LONWORKS, WOLDFIP and PROFIBUS which are mainly used in the world today. The author proposes that the field bus technology will be introduced into the accelerator control systems in the country

  17. A High-Availability, Distributed Hardware Control System Using Java

    Science.gov (United States)

    Niessner, Albert F.

    2011-01-01

    Two independent coronagraph experiments that require 24/7 availability with different optical layouts and different motion control requirements are commanded and controlled with the same Java software system executing on many geographically scattered computer systems interconnected via TCP/IP. High availability of a distributed system requires that the computers have a robust communication messaging system making the mix of TCP/IP (a robust transport), and XML (a robust message) a natural choice. XML also adds the configuration flexibility. Java then adds object-oriented paradigms, exception handling, heavily tested libraries, and many third party tools for implementation robustness. The result is a software system that provides users 24/7 access to two diverse experiments with XML files defining the differences

  18. Seed drill depth control system for precision seeding

    DEFF Research Database (Denmark)

    Kirkegaard Nielsen, Søren; Munkholm, Lars Juhl; Lamandé, Mathieu

    2018-01-01

    acting on the drill coulters, which generates unwanted vibrations and, consequently, a non-uniform seed placement. Therefore, a proof-of-concept dynamic coulter depth control system for a low-cost seed drill was developed and studied in a field experiment. The performance of the active control system...... depth control system this variability was reduced to±2 mm. The system with the active control system operated more accurately at an operational speed of 12 km h−1 than at 4 km h−1 without the activated control system.......An adequate and uniform seeding depth is crucial for the homogeneous development of a crop, as it affects time of emergence and germination rate. The considerable depth variations observed during seeding operations - even for modern seed drills - are mainly caused by variability in soil resistance...

  19. Adaptive PI Controller for a Nonlinear System

    Directory of Open Access Journals (Sweden)

    D. Rathikarani

    2009-10-01

    Full Text Available Most of the industrial processes are inherently nonlinear in their behaviour. Designs of controllers for these nonlinear processes are difficult, as they do not follow superposition theorem. Adaptive controller can change its behaviour in response to changes in the dynamics of the process and disturbances. Hence adaptive controller can be used to control nonlinear processes. Direct Model Reference Adaptive Control is a technique, in which a reference model involving the desired performances is specified. In the present work, a DMRAC is designed and implemented to achieve satisfactory control of a nonlinear system in all its local linear operating regions. The closed loop system is made BIBO stable by proper control techniques. The controller is designed through simulation in Matlab platform and is validated in real time by conducting experiments on the laboratory Air Flow Control System using the dSPACE interface.

  20. An electro-hydraulic servo control system research for CFETR blanket RH

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Changqi [Hefei University of Technology, Hefei 230009, Anhui (China); Tang, Hongjun, E-mail: taurustang@126.com [Hefei University of Technology, Hefei 230009, Anhui (China); Qi, Songsong [Hefei University of Technology, Hefei 230009, Anhui (China); Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao [Institute of Plasma Physics Chinese Academy of Sciences, Hefei 230031, Anhui (China)

    2014-11-15

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system.

  1. An electro-hydraulic servo control system research for CFETR blanket RH

    International Nuclear Information System (INIS)

    Chen, Changqi; Tang, Hongjun; Qi, Songsong; Cheng, Yong; Feng, Hansheng; Peng, Xuebing; Song, Yuntao

    2014-01-01

    Highlights: • We discussed the conceptual design of CFETR blanket RH maintenance system. • The mathematical model of electro-hydraulic servo system was calculated. • A fuzzy adaptive PD controller was designed based on control theory and experience. • The co-simulation models of the system were established with AMESim/Simulink. • The fuzzy adaptive PD algorithm was designed as the core strategy of the system. - Abstract: Based on the technical design requirements of China Fusion Engineering Test Reactor (CFETR) blanket remote handling (RH) maintenance, this paper focus on the control method of achieving high synchronization accuracy of electro-hydraulic servo system. Based on fuzzy control theory and practical experience, a fuzzy adaptive proportional-derivative (PD) controller was designed. Then a more precise co-simulation model was established with AMESim/Simulink. Through the analysis of simulation results, a fuzzy adaptive PD control algorithm was designed as the core strategy of electro-hydraulic servo control system

  2. The new accelerator control system of GANIL

    International Nuclear Information System (INIS)

    Luong, T.T.; David, L.; Duneau, P.; De Saint Jores, P.; Lecorche, E.; Lemaitre, E.; Lermine, P.; Loyant, J.M.; Maugeais, C.; Regnault, F.; Roze, J.F.; Souf, A.; Ulrich, M.

    1994-01-01

    The new computer control system has operated the heavy ion accelerator GANIL from the beginning of 1993 and has reached a state of routine operation. It supersedes the obsolete initial system to cope with the harsh experimental conditions required by the very high intensity beams expected in the near future. Hardware and software implementations, as well as the human interface, are presented. Emphasis is placed on the three-layer distributed architecture adopted. An Ethernet local area network (LAN) links the basic components: a VAX/VMS cluster, XWINDOWS-interfaced operator consoles, VAXELN-driven CAMAC crate controllers and programmable logic controllers for the front end controls. Also the data management, through the INGRES relational database management system (RDBMS), as well as the operating software written in ADA, are described. The early experience with the new control system is reported and future developments discussed. ((orig.))

  3. Aromatic hydrocarbons in a controlled ecological life support system during a 4-person-180-day integrated experiment.

    Science.gov (United States)

    Dai, Kun; Yu, Qingni; Zhang, Zhou; Wang, Yuan; Wang, Xinming

    2018-01-01

    Indoor air quality is vital to the health and comfort of people who live inside a controlled ecological life support system (CELSS) built for long-term space explorations. Here we measured aromatic hydrocarbons to assess their sources and health risks during a 4-person-180-day integrated experiment inside a CELSS with four cabins for growing crops, vegetables and fruits and other two cabins for working, accommodations and resources management. During the experiment, the average concentrations of benzene, ethylbenzene, m,p-xylenes and o-xylene were found to decrease exponentially from 7.91±3.72, 37.2±35.2, 100.8±111.7 and 46.8±44.1μg/m 3 to 0.39±0.34, 1.4±0.5, 2.8±0.7 and 2.1±0.9μg/m 3 , with half-lives of 25.3, 44.8, 44.7 and 69.3days, respectively. Toluene to benzene ratios indicated emission from construction materials or furniture to be a dominant source for toluene, and concentrations of toluene fluctuated during the experiment largely due to the changing sorption by growing plants. The cancer and no-cancer risks based on exposure pattern of the crews were insignificant in the end of the experiment. This study also suggested that using low-emitting materials/furniture, growing plants and purifying air actively would all help to lower hazardous air pollutants inside CELSS. Broadly, the results would benefit not only the development of safe and comfort life support systems for space exploration but also the understanding of interactions between human and the total environment in closed systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Controlling a Chaotic System through Control Parameter Self-Modulation

    International Nuclear Information System (INIS)

    Pastor, I.

    1994-01-01

    A method for obtaining active control of a chaotic system based on the modulation of a control parameter by adding to it a small perturbation proportional to one output signal is proposed. From a theoretical point of view, chaos can be stabilized in the framework of this method because small modifications of the vector field controlling the dynamics are allowed, and thus some of the previously oxi sting unstable periodic trajectories can be made stable. The method is much inspired on recent treatments of some related problems, and i t is compared with them. One of its most attractive features is that is should be very easy to implement it on real experiments. The method is tested on a system of ordinary differential equations model ling the coupling of two se If - oscillating electronic circuits (van der Pol oscillators). Some brief comments are made on the no possibility that it could be applied to complex spatio-temporal systems where multiple chaotic structures can coexist for some values of the control parameters. (Author) 28 refs

  5. Controlling a Chaotic System through Control Parameter Self-Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, I

    1994-07-01

    A method for obtaining active control of a chaotic system based on the modulation of a control parameter by adding to it a small perturbation proportional to one output signal is proposed. From a theoretical point of view, chaos can be stabilized in the framework of this method because small modifications of the vector field controlling the dynamics are allowed, and thus some of the previously oxi sting unstable periodic trajectories can be made stable. The method is much inspired on recent treatments of some related problems, and i t is compared with them. One of its most attractive features is that is should be very easy to implement it on real experiments. The method is tested on a system of ordinary differential equations model ling the coupling of two se If - oscillating electronic circuits (van der Pol oscillators). Some brief comments are made on the no possibility that it could be applied to complex spatio-temporal systems where multiple chaotic structures can coexist for some values of the control parameters. (Author) 28 refs.

  6. Computer-controlled data acquisition system for the ISX-B neutral injection system

    International Nuclear Information System (INIS)

    Edmonds, P.H.; Sherrill, B.; Pearce, J.W.

    1980-05-01

    A data acquisition system for the Impurity Study Experiment (ISX-B) neutral injection system at the Oak Ridge National Laboratory is presented. The system is based on CAMAC standards and is controlled by a MIK-11/2 microcomputer. The system operates at the ion source high voltage on the source table, transmitting the analyzed data to a terminal at ground potential. This reduces the complexity of the communications link and also allows much flexibility in the diagnostics and eventual control of the beam line

  7. Integrating supervision, control and data acquisition—The ITER Neutral Beam Test Facility experience

    Energy Technology Data Exchange (ETDEWEB)

    Luchetta, A., E-mail: adriano.luchetta@igi.cnr.it; Manduchi, G.; Taliercio, C.; Breda, M.; Capobianco, R.; Molon, F.; Moressa, M.; Simionato, P.; Zampiva, E.

    2016-11-15

    Highlights: • The paper describes the experience gained in the integration of different systems for the control and data acquisition system of the ITER Neutral Beam Test Facility. • It describes the way the different frameworks have been integrated. • It reports some lessons learnt during system integration. • It reports some authors’ considerations about the development the ITER CODAC. - Abstract: The ITER Neutral Beam (NBI) Test Facility, under construction in Padova, Italy consists in the ITER full scale ion source for the heating neutral beam injector, referred to as SPIDER, and the full size prototype injector, referred to as MITICA. The Control and Data Acquisition System (CODAS) for SPIDER has been developed and is going to be in operation in 2016. The system is composed of four main components: Supervision, Slow Control, Fast Control and Data Acquisition. These components interact with each other to carry out the system operation and, since they represent a common pattern in fusion experiments, software frameworks have been used for each (set of) component. In order to reuse as far as possible the architecture developed for SPIDER, it is important to clearly define the boundaries and the interfaces among the system components so that the implementation of any component can be replaced without affecting the overall architecture. This work reports the experience gained in the development of SPIDER components, highlighting the importance in the definition of generic interfaces among component, showing how the specific solutions have been adapted to such interfaces and suggesting possible approaches for the development of other ITER subsystems.

  8. Integrating supervision, control and data acquisition—The ITER Neutral Beam Test Facility experience

    International Nuclear Information System (INIS)

    Luchetta, A.; Manduchi, G.; Taliercio, C.; Breda, M.; Capobianco, R.; Molon, F.; Moressa, M.; Simionato, P.; Zampiva, E.

    2016-01-01

    Highlights: • The paper describes the experience gained in the integration of different systems for the control and data acquisition system of the ITER Neutral Beam Test Facility. • It describes the way the different frameworks have been integrated. • It reports some lessons learnt during system integration. • It reports some authors’ considerations about the development the ITER CODAC. - Abstract: The ITER Neutral Beam (NBI) Test Facility, under construction in Padova, Italy consists in the ITER full scale ion source for the heating neutral beam injector, referred to as SPIDER, and the full size prototype injector, referred to as MITICA. The Control and Data Acquisition System (CODAS) for SPIDER has been developed and is going to be in operation in 2016. The system is composed of four main components: Supervision, Slow Control, Fast Control and Data Acquisition. These components interact with each other to carry out the system operation and, since they represent a common pattern in fusion experiments, software frameworks have been used for each (set of) component. In order to reuse as far as possible the architecture developed for SPIDER, it is important to clearly define the boundaries and the interfaces among the system components so that the implementation of any component can be replaced without affecting the overall architecture. This work reports the experience gained in the development of SPIDER components, highlighting the importance in the definition of generic interfaces among component, showing how the specific solutions have been adapted to such interfaces and suggesting possible approaches for the development of other ITER subsystems.

  9. Purpose and benefit of control system training for operators

    International Nuclear Information System (INIS)

    Zimoch, E.; Luedeke, A.

    2012-01-01

    The complexity of accelerators is ever increasing and today it is typical that a large number of feedback loops are implemented, based on sophisticated models which describe the underlying physics. Despite this increased complexity the machine operators must still effectively monitor and supervise the desired behavior of the accelerator. This is not alone sufficient; additionally, the correct operation of the control system must also be verified. This is not always easy since the structure, design, and performance of the control system is usually not visualized and is often hidden to the operator. To better deal with this situation operators need some knowledge of the control system in order to react properly in the case of problems. In fact operators need mental models of the control system to recognize fault states and react appropriate to errors and misbehavior of both, the accelerator and the control system itself. Mental models gained only on infrequent experience can be imprecise or plain wrong in worst case. Control system training can provide a foundation to build better mental models and therefore help to enhance operator responses and machine availability. For a refinement of the mental model repeated experience is needed. This can be provided by training sessions at the real accelerator

  10. Conceptual design for the NSTX Central Instrumentation and Control System

    International Nuclear Information System (INIS)

    Bashore, D.; Oliaro, G.; Roney, P.; Sichta, P.; Tindall, K.

    1997-01-01

    The design and construction phase for the National Spherical Torus Experiment (NSTX) is under way at the Princeton Plasma Physics Laboratory (PPPL). Operation is scheduled to begin on April 30, 1999. This paper describes the conceptual design for the NSTX Central Instrumentation and Control (I and C) System. Major elements of the Central I and C System include the Process Control System, Plasma Control System, Network System, Data Acquisition System, and Synchronization System to support the NSTX experimental device

  11. Internet Congestion Control System

    Directory of Open Access Journals (Sweden)

    Pranoto Rusmin

    2010-10-01

    Full Text Available Internet congestion occurs when resource demands exceeds the network capacity. But, it is not the only reason. Congestion can happen on some users because some others user has higher sending rate. Then some users with lower sending rate will experience congestion. This partial congestion is caused by inexactly feedback. At this moment congestion are solved by the involvement of two controlling mechanisms. These mechanisms are flow/congestion control in the TCP source and Active Queue Management (AQM in the router. AQM will provide feedback to the source a kind of indication for the occurrence of the congestion in the router, whereas the source will adapt the sending rate appropriate with the feedback. These mechanisms are not enough to solve internet congestion problem completely. Therefore, this paper will explain internet congestion causes, weakness, and congestion control technique that researchers have been developed. To describe congestion system mechanisms and responses, the system will be simulated by Matlab.

  12. Intelligent Control System Taking Account of Cooperativeness Using Weighting Information on System Objective

    Directory of Open Access Journals (Sweden)

    Masaki Takahashi

    2004-08-01

    Full Text Available This study considers an intelligent control system to integrate flexibly its components by using weighted information where the system evaluation is reflected. Such system evaluates the information flowing through the components and converts them by weighting depending on the degree of importance. Integration of components based on the system evaluation enables a system consisting of them to realize various, flexible and adaptive control. In this study, the intelligent control method is applied to a swing up and stabilization control problem of a number of cart and pendulum systems on a restricted straight guide. To stabilize the pendulum in a restricted environment, each system should realize not only a swing-up and stabilization control of the pendulum, but also a position control of the cart to avoid collision or deadlock. The experiment using a real apparatus demonstrated that the controller learning light interaction acquires egoistic character, the controller learning heavy interaction behaves altruistically, and the controller equally considering self cart and another cart becomes cooperative. In other words, these autonomous decentralized controllers can acquire various characters and flexibility for cooperation.

  13. A multipoint feedback control system for scanned focussed ultrasound hyperthermia

    International Nuclear Information System (INIS)

    Johnson, C.; Kress, R.; Roemer, R.; Hynynen, K.

    1987-01-01

    A multipoint feedback control system has been developed and tested for use with a scanned focussed ultrasound hyperthermia system. Extensive in-vivo tests (using a perfused organ model) have been made to evaluate the basic performance characteristics of the feedback control scheme for control of temperature in perfused media. The results of these tests are presented and compared with the predictions of a simulation routine. The control scheme was also tested in vivo using dogs' thighs and kidneys. Thigh experiments show the control scheme responds well to the affects of vasodilation and is able to maintain the targeted temperatures. In kidney experiments, where the rate of perfusion was controllable, the power adjusting algorithm successfully maintained uniform temperature distributions across regions of varying rates of perfusion. As a conclusion, the results show that this multipoint feedback controller scheme induces uniform temperature distributions when used with scanned focussed ultrasound systems

  14. Design of embedded control system for high-power tetrode modulator

    International Nuclear Information System (INIS)

    Tu Rui; Yao Lieying; Xuan Weimin

    2010-01-01

    The design of embedded control system for the high-power tetrode modulator and its test results are given. This control system is a closed-loop feedback system based on the DSP and embedded into the high-voltage modulator. A new modified method of VF fiber transmission is used in the embedded control system. The new method improves the speed of the transmission of feedback system. The results of the experiment demonstrate that the embedded feedback control system greatly increases the response speed of the whole system and improves the performance of the high-power tetrode on the HL-2A tokamak. This embedded feedback control system greatly simplifies the complexity of the original centralized control system. The operation of the control system is reliable. (authors)

  15. The new accelerator control system of GANIL

    International Nuclear Information System (INIS)

    Luong, T.T.; David, L.; Duneau, P.; Saint Jores, P. De; Lecorche, E.; Lemaitre, E.; Lermine, P.; Loyant, J.M.; Maugeais, C.; Regnault, F.

    1993-01-01

    The new computer control system is conducting the heavy ion accelerator GANIL from the beginning of 1993 and has reached a state of routine operation. It was carried out to supersede the obsolete initial system and to cope with the harsh experimental conditions required by the very high intensity beams envisioned for the next future. Hardware and software implementations, as well as human interface, are presented. Emphasis is placed on the three-layer distributed architecture adopted. An ETHERNET local area network (LAN) links the basic components: a VAX/VMS cluster, XWINDOWS interfaced operator consoles, VAXELN driven CAMAC crate controllers and programmable logic controllers for front end controls. Also data management with the INGRES relational database management system (RDBMS), as well as operating software written in ADA language, are described. First experience with the new control system is reported. Finally, trend considerations are addressed. (author) 8 refs., 6 figs

  16. 3D visualization based customer experiences of nuclear plant control room

    International Nuclear Information System (INIS)

    Sun Tienlung; Chou Chinmei; Hung Tamin; Cheng Tsungchieh; Yang Chihwei; Yang Lichen

    2011-01-01

    This paper employs virtual reality (VR) technology to develop an interactive virtual nuclear plant control room in which the general public could easily walk into the 'red zone' and play with the control buttons. The VR-based approach allows deeper and richer customer experiences that the real nuclear plant control room could not offer. When people know more about the serious process control procedures enforced in the nuclear plant control room, they will appropriate more about the safety efforts imposed by the nuclear plant and become more comfortable about the nuclear plant. The virtual nuclear plant control room is built using a 3D game development tool called Unity3D. The 3D scene is connected to a nuclear plant simulation system through Windows API programs. To evaluate the usability of the virtual control room, an experiment will be conducted to see how much 'immersion' the users could feel when they played with the virtual control room. (author)

  17. Systems approach for design control at Monitored Retrievable Storage Project

    International Nuclear Information System (INIS)

    Kumar, P.N.; Williams, J.R.

    1994-01-01

    This paper describes the systems approach in establishing design control for the Monitored Retrievable Storage Project design development. Key elements in design control are enumerated and systems engineering aspects are detailed. Application of lessons learned from the Yucca Mountain Project experience is addressed. An integrated approach combining quality assurance and systems engineering requirements is suggested to practice effective design control

  18. Qudi: a modular python suite for experiment control and data processing

    DEFF Research Database (Denmark)

    Binder, Jan M.; Stark, Alexander; Tomek, Nikolas

    2017-01-01

    Qudi is a general, modular, multi-operating system suite written in Python 3 for controlling laboratory experiments. It provides a structured environment by separating functionality into hardware abstraction, experiment logic and user interface layers. The core feature set comprises a graphical...... user interface, live data visualization, distributed execution over networks, rapid prototyping via Jupyter notebooks, configuration management, and data recording. Currently, the included modules are focused on confocal microscopy, quantum optics and quantum information experiments, but an expansion...

  19. NSTX-U Control System Upgrades

    International Nuclear Information System (INIS)

    Erickson, K.G.; Gates, D.A.; Gerhardt, S.P.; Lawson, J.E.; Mozulay, R.; Sichta, P.; Tchilinguirian, G.J.

    2014-01-01

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forward port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control

  20. NSTX-U Control System Upgrades

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, K.G., E-mail: kerickso@pppl.gov; Gates, D.A.; Gerhardt, S.P.; Lawson, J.E.; Mozulay, R.; Sichta, P.; Tchilinguirian, G.J.

    2014-06-15

    The National Spherical Tokamak Experiment (NSTX) is undergoing a wealth of upgrades (NSTX-U). These upgrades, especially including an elongated pulse length, require broad changes to the control system that has served NSTX well. A new fiber serial Front Panel Data Port input and output (I/O) stream will supersede the aging copper parallel version. Driver support for the new I/O and cyber security concerns require updating the operating system from Redhat Enterprise Linux (RHEL) v4 to RedHawk (based on RHEL) v6. While the basic control system continues to use the General Atomics Plasma Control System (GA PCS), the effort to forward port the entire software package to run under 64-bit Linux instead of 32-bit Linux included PCS modifications subsequently shared with GA and other PCS users. Software updates focused on three key areas: (1) code modernization through coding standards (C99/C11), (2) code portability and maintainability through use of the GA PCS code generator, and (3) support of 64-bit platforms. Central to the control system upgrade is the use of a complete real time (RT) Linux platform provided by Concurrent Computer Corporation, consisting of a computer (iHawk), an operating system and drivers (RedHawk), and RT tools (NightStar). Strong vendor support coupled with an extensive RT toolset influenced this decision. The new real-time Linux platform, I/O, and software engineering will foster enhanced capability and performance for NSTX-U plasma control.

  1. Development and experience of quality control methods for digital breast tomosynthesis systems.

    Science.gov (United States)

    Strudley, Cecilia J; Young, Kenneth C; Looney, Padraig; Gilbert, Fiona J

    2015-01-01

    To develop tomosynthesis quality control (QC) test methods and use them alongside established two-dimensional (2D) QC tests to measure the performance of digital breast tomosynthesis (DBT) systems used in a comparative trial with 2D mammography. DBT QC protocols and associated analysis were developed, incorporating adaptions of some 2D tests as well as some novel tests. The tomosynthesis tests were: mean glandular dose to the standard breast model; contrast-to-noise ratio in reconstructed focal planes; geometric distortion; artefact spread; threshold contrast detail detection in reconstructed focal planes, alignment of the X-ray beam to the reconstructed image and missed tissue; reproducibility of the tomosynthesis exposure; and homogeneity of the reconstructed focal planes. Summaries of results from the tomosynthesis QC tests are presented together with some 2D results for comparison. The tomosynthesis QC tests and analysis methods developed were successfully applied. The lessons learnt, which are detailed in the Discussion section, may be helpful to others embarking on DBT QC programmes. DBT performance test equipment and analysis methods have been developed. The experience gained has contributed to the subsequent drafting of DBT QC protocols in the UK and Europe.

  2. Slow extraction control system of HIRFL-CSR

    International Nuclear Information System (INIS)

    Liu Wufeng; Qiao Weimin; Yuan Youjin; Mao Ruishi; Zhao Tiecheng

    2013-01-01

    For heavy-ion radiotherapy, HIRFL-CSR (Heavy Ion Research Facility in Lanzhou-Cooler Storage Ring) needs a long term uniform ion beam extraction from HIRFL-CSR main ring to high energy beam transport line to meet the requirement of heavy-ion radiotherapy's ion beam. Slow extraction control system uses the synchronous signal of HIRFL-CSR control system's timing system to realize process control. When the synchronous event data of HIRFL-CSR control system's timing system trigger controlling and changing data (frequency value, tune value, voltage value), the waveform generator will generate waveform by frequency value, tune value and voltage value, and will amplify the generated waveform by power amplifier to electrostatic deflector to achieve RF-KO slow extraction. The synchronous event receiver of slow extraction system is designed by using FPGA and optical fiber interface to keep high transmission speed and anti-jamming. HIRFL-CSR's running for heavy-ion radiotherapy and ten thousand seconds long period slow extraction experiments show that slow extraction control system is workable and can meet the requirement of heavy-ion radiotherapy's ion beam. (authors)

  3. Advanced Light Source control system

    International Nuclear Information System (INIS)

    Magyary, S.; Chin, M.; Cork, C.; Fahmie, M.; Lancaster, H.; Molinari, P.; Ritchie, A.; Robb, A.; Timossi, C.

    1989-03-01

    The Advanced Light Source (ALS) is a third generation 1--2 GeV synchrotron radiation source designed to provide ports for 60 beamlines. It uses a 50 MeV electron linac and 1.5 GeV, 1 Hz, booster synchrotron for injection into a 1--2 GeV storage ring. Interesting control problems are created because of the need for dynamic closed beam orbit control to eliminate interaction between the ring tuning requirements and to minimize orbit shifts due to ground vibrations. The extremely signal sensitive nature of the experiments requires special attention to the sources of electrical noise. These requirements have led to a control system design which emphasizes connectivity at the accelerator equipment end and a large I/O bandwidth for closed loop system response. Not overlooked are user friendliness, operator response time, modeling, and expert system provisions. Portable consoles are used for local operation of machine equipment. Our solution is a massively parallel system with >120 Mbits/sec I/O bandwidth and >1500 Mips computing power. At the equipment level connections are made using over 600 powerful Intelligent Local Controllers (ILC-s) mounted in 3U size Eurocard slots using fiber-optic cables between rack locations. In the control room, personal computers control and display all machine variables at a 10 Hz rate including the scope signals which are collected though the control system. Commercially available software and industry standards are used extensively. Particular attention is paid to reliability, maintainability and upgradeability. 10 refs., 11 figs

  4. Simulation of traffic control signal systems

    Science.gov (United States)

    Connolly, P. J.; Concannon, P. A.; Ricci, R. C.

    1974-01-01

    In recent years there has been considerable interest in the development and testing of control strategies for networks of urban traffic signal systems by simulation. Simulation is an inexpensive and timely method for evaluating the effect of these traffic control strategies since traffic phenomena are too complex to be defined by analytical models and since a controlled experiment may be hazardous, expensive, and slow in producing meaningful results. This paper describes the application of an urban traffic corridor program, to evaluate the effectiveness of different traffic control strategies for the Massachusetts Avenue TOPICS Project.

  5. Intelligent Mechatronic Systems Modeling, Control and Diagnosis

    CERN Document Server

    Merzouki, Rochdi; Pathak, Pushparaj Mani; Ould Bouamama, Belkacem

    2013-01-01

    Acting as a support resource for practitioners and professionals looking to advance their understanding of complex mechatronic systems, Intelligent Mechatronic Systems explains their design and recent developments from first principles to practical applications. Detailed descriptions of the mathematical models of complex mechatronic systems, developed from fundamental physical relationships, are built on to develop innovative solutions with particular emphasis on physical model-based control strategies. Following a concurrent engineering approach, supported by industrial case studies, and drawing on the practical experience of the authors, Intelligent Mechatronic Systems covers range of topic and includes:  • An explanation of a common graphical tool for integrated design and its uses from modeling and simulation to the control synthesis • Introductions to key concepts such as different means of achieving fault tolerance, robust overwhelming control and force and impedance control • Dedicated chapters ...

  6. Stuxnet and the impact on accelerator control systems

    International Nuclear Information System (INIS)

    Lueders, S.

    2012-01-01

    2010 has seen wide news coverage of a new kind of computer attack, named 'Stuxnet', targeting control systems. Due to its level of sophistication, it is widely acknowledged that this attack marks the very first case of a cyber-war of one country against the industrial infrastructure of another, although there is still much speculation about the details. Worse yet, experts recognize that Stuxnet might just be the beginning and that similar attacks, eventually with much less sophistication, but with much more collateral damage, can be expected in the years to come. Stuxnet was targeting a special model of the Siemens 400 PLC series. Similar modules are also deployed for accelerator controls like the LHC cryogenics or vacuum systems as well as the detector control systems in LHC experiments. Therefore, the aim of this presentation is to give an insight into what this new attack does and why it is deemed to be special. In particular, the potential impact on accelerator and experiment control systems will be discussed, and means will be presented on how to properly protect against similar attacks. Deploying a 'Defense-in-depth' approach appears to be mandatory. (author)

  7. Development of a control system for compression and expansion cycles of critical valve for high vacuum systems

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Jyoti, E-mail: jagarwal@ipr.res.in; Sharma, H.; Patel, Haresh; Gangradey, R.; Lambade, Vrushabh

    2016-11-15

    Highlights: • Control system with feedback loop of pressure gauge is developed for measuring the life cycle of vacuum isolation valve. • GUI based software developed for easy use and handling of control system. • Control system tested with an experiment showcasing the capability of the control system. • Control system can operate valve based on pressure inside the chamber, which helps to know the degradation of sealing capabilities of valve. • Control system can monitor the total closing and opening time of valve, cycles and pressure inside the vessel. - Abstract: A control system with feedback loop is designed, developed and tested to monitor the life cycles of the axial valve and bellows used in vacuum valves. The control system monitors number of compression cycles of any bellow or closing and opening cycle of a valve. It also interfaces vacuum gauges or pressure gauges to get pressure values inside the system. To find life cycle of valve, the developed control and monitoring system is integrated with an axial valve experimental test set up. In this system, feedback from the vacuum gauge attached to valve enclosure, is given and the life cycle test is automated. This paper describes the control and monitoring system in details and briefs the experiment carried out for valve life cycle. The same system can be used for life cycle estimate for bellows. A suitable GUI is also developed to control the function of the components and resister the number of cycles.

  8. A Decoupling Control Algorithm for Unwinding Tension System Based on Active Disturbance Rejection Control

    Directory of Open Access Journals (Sweden)

    Shanhui Liu

    2013-01-01

    Full Text Available This paper presents a new control methodology based on active disturbance rejection control (ADRC for designing the tension decoupling controller of the unwinding system in a gravure printing machine. The dynamic coupling can be actively estimated and compensated in real time, which makes feedback control an ideal approach to designing the decoupling controller of the unwinding system. This feature is unique to ADRC. In this study, a nonlinear mathematical model is established according to the working principle of the unwinding system. A decoupling model is also constructed to determine the order and decoupling plant of the unwinding system. Based on the order and decoupling plant, an ADRC decoupling control methodology is designed to enhance the tension stability in the unwinding system. The effectiveness and capability of the proposed methodology are verified through simulation and experiments. The results show that the proposed strategy not only realises a decoupling control for the unwinding system but also has an effective antidisturbance capability and is robust.

  9. The design status of CSNS experimental control system

    International Nuclear Information System (INIS)

    Jian Zhuang; Yuanping Chu; Dapeng Jin; Yuqian Liu; Yinhong Zhang; Zhuoyu Zhang; Kejun Zhu; Libin Ding; Lei Hu; Jiajie Li; Yali, Liu

    2012-01-01

    To meet the increasing demand from user community, China decided to build a world-class spallation neutron source, called CSNS (China Spallation Neutron Source). It can provide users a neutron scattering platform with high flux, wide wavelength range and high efficiency. CSNS construction is expected to start in 2011 and will last 6.5 years. The control system of CSNS is divided into accelerator control system and experimental control system. CSNS Experimental Control System is based on EPICS architecture, offering device operation and device debug interface, communication between devices, environment monitor, machine and personnel protection, interface to accelerator control system, overall system monitor and database service. The control system is divided into 4 parts, such as front control layer, local and global control layer based on EPICS, database and network service and the others. The front control layer is based on YOKOGAWA PLC and other controllers. EPICS includes local and global control layer provides all system control and information exchange. Embedded PLC YOKOGAWA RP61 and others is to be used as communication node between front layer and EPICS. Database service provides system configuration and historical data. From the experience of BESIII, MySQL is an option. The system will be developed in Dongguan, Guangdong province and Beijing. So VPN will be used to help development. Now, total 9 persons are working on this system. (authors)

  10. The control system of the RFX toroidal power supply

    International Nuclear Information System (INIS)

    Toigo, V.; Piovan, R.; Zanotto, L.; Perna, M.; Coffetti, A.; Freghieri, M.; Povolero, M.

    2005-01-01

    This paper describes the control system of the toroidal power supply of the RFX experiment and outlines its specific hardware and software structure, which allowed to cope with the numerous requirements of the application with a compact hardware arrangement. The active fault protection strategies, implemented in the control system, are also discussed; finally, a special part of the control, which greatly simplified the long and complex commissioning of the power section of the system, is described

  11. An Analysis of the Control Hierarchy Modeling of the CMS Detector Control System

    CERN Document Server

    Ling Hwong, Yi

    2010-01-01

    The supervisory level of the Detector Control System (DCS) of the CMS experiment is implemented using Finite State Machines (FSM), which model the behaviors and control the operations of all the sub-detectors and support services. The FSM tree of the whole CMS experiment consists of more than 30.000 nodes. An analysis of a system of such size is a complex task but is a crucial step towards the improvement of the overall performance of the FSM system. This paper presents the analysis of the CMS FSM system using the micro Common Representation Language 2 (mcrl2) methodology. Individual mCRL2 models are obtained for the FSM systems of the CMS sub-detectors using the ASF+SDF automated translation tool. Different mCRL2 operations are applied to the mCRL2 models. A mCRL2 simulation tool is used to closer examine the system. Visualization of a system based on the exploration of its state space is enabled with a mCRL2 tool. Requirements such as command and state propagation are expressed using modal mu-calculus and c...

  12. A versatile local control system for the LEIR/AD electron cooler

    CERN Document Server

    MacCaferri, R

    1999-01-01

    With the end of antiproton physics at LEAR in 1996, the electron cooling device was modified in order that it could be used for experiments with lead ions in 1997 in LEIR and then for installation in the AD machine the following year. As a consequence, as well as the mechanical modifications to the cooler, the control system also needed to be upgraded and it was decided to build a system that could run either from a PC or from a Workstation as used in the accelerator control rooms. This turned out to be the most efficient solution as no support was given for the maintenance of the old control system during the experiments with lead ions. The PC system was realised during the shutdown before the machine experiments started, leaving time during the rest of 1997 to build the VME interface for installation in the AD. In this paper the hardware and software implementations of this new control system are described and some ideas for the near future are also presented.

  13. The hardware of the ATLAS Pixel Detector Control System

    International Nuclear Information System (INIS)

    Henss, T; Andreani, A; Boek, J; Boyd, G; Citterio, M; Einsweiler, K; Kersten, S; Kind, P; Lantzsch, K; Latorre, S; Maettig, P; Meroni, C; Sabatini, F; Schultes, J

    2007-01-01

    The innermost part of the ATLAS (A Toroidal LHC ApparatuS) experiment, which is currently under construction at the LHC (Large Hadron Collider), will be a silicon pixel detector comprised of 1744 individual detector modules. To operate these modules, the readout electronics, and other detector components, a complex power supply and control system is necessary. The specific powering and control requirements, as well as the custom made components of our power supply and control systems, are described. These include remotely programmable regulator stations, the power supply system for the optical transceivers, several monitoring units, and the Interlock System. In total, this comprises the Pixel Detector Control System (DCS)

  14. New achievements in the EAST plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Q.P., E-mail: qpyuan@ipp.ac.c [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Penaflor, B.G.; Piglowski, D.A. [General Atomics, DIII-D National Fusion Facility, San Diego, CA (United States); Liu, L.Z. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Johnson, R.D.; Walker, M.L.; Humphreys, D.A. [General Atomics, DIII-D National Fusion Facility, San Diego, CA (United States)

    2010-07-15

    In order to realize the low latency and distortion-free signal transmission between the plasma control system (PCS) and servo systems, the digital output structure configured with reflective memory board (RFM) was adopted in EAST PCS. And the enhanced performances are reported. Another achievement made in the latest EAST PCS was the implementation of density control algorithm, which controlled the line average density in either voltage or width modulation mode. The new integrated algorithm improved the precision of density calculation and control performance greatly. The details and experiment results are presented in this paper.

  15. Improving Aerospace Engineering Students' Achievements by an Open Aero Control Experiment Apparatus

    Science.gov (United States)

    Zeng, QingHua; Zhang, WeiHua; Huang, ZheZhi; Dong, RongHua

    2014-01-01

    This paper describes the development of an aero control experiment apparatus (ACEA) for use in aerospace control practical courses. The ACEA incorporates a systematic multihierarchy learning and teaching method, and was designed to improve aerospace engineering students' understanding of unmanned aerial vehicle (UAV) control systems. It offers a…

  16. Photoelectric radar servo control system based on ARM+FPGA

    Science.gov (United States)

    Wu, Kaixuan; Zhang, Yue; Li, Yeqiu; Dai, Qin; Yao, Jun

    2016-01-01

    In order to get smaller, faster, and more responsive requirements of the photoelectric radar servo control system. We propose a set of core ARM + FPGA architecture servo controller. Parallel processing capability of FPGA to be used for the encoder feedback data, PWM carrier modulation, A, B code decoding processing and so on; Utilizing the advantage of imaging design in ARM Embedded systems achieves high-speed implementation of the PID algorithm. After the actual experiment, the closed-loop speed of response of the system cycles up to 2000 times/s, in the case of excellent precision turntable shaft, using a PID algorithm to achieve the servo position control with the accuracy of + -1 encoder input code. Firstly, This article carry on in-depth study of the embedded servo control system hardware to determine the ARM and FPGA chip as the main chip with systems based on a pre-measured target required to achieve performance requirements, this article based on ARM chip used Samsung S3C2440 chip of ARM7 architecture , the FPGA chip is chosen xilinx's XC3S400 . ARM and FPGA communicate by using SPI bus, the advantage of using SPI bus is saving a lot of pins for easy system upgrades required thereafter. The system gets the speed datas through the photoelectric-encoder that transports the datas to the FPGA, Then the system transmits the datas through the FPGA to ARM, transforms speed datas into the corresponding position and velocity data in a timely manner, prepares the corresponding PWM wave to control motor rotation by making comparison between the position data and the velocity data setted in advance . According to the system requirements to draw the schematics of the photoelectric radar servo control system and PCB board to produce specially. Secondly, using PID algorithm to control the servo system, the datas of speed obtained from photoelectric-encoder is calculated position data and speed data via high-speed digital PID algorithm and coordinate models. Finally, a

  17. Controlled damping of a physical pendulum: experiments near critical conditions

    International Nuclear Information System (INIS)

    Gonzalez, Manuel I; Bol, Alfredo

    2006-01-01

    This paper presents an experimental device for the study of damped oscillatory motion along with three associated experiments. Special emphasis is given on both didactic aspects and the interactivity of the experimental set-up, in order to assist students in understanding fundamental aspects of damped oscillatory motion and allow them to directly compare their experimental results with the well-known theory they can find in textbooks. With this in mind, a physical pendulum was selected with an eddy-current damping system that allows the damping conditions to be controlled with great precision. The three experiments examine accurate control of damping, frequency shift near critical damping and the transition from underdamped to overdamped conditions

  18. Versatile controllability of non-axisymmetric magnetic perturbations in KSTAR experiments

    Science.gov (United States)

    Han, Hyunsun; Jeon, Y. M.; in, Y.; Kim, J.; Yoon, S. W.; Hahn, S. H.; Ahn, H. S.; Woo, M. H.; Park, B. H.; Bak, J. G.; Kstar Team

    2015-11-01

    A newly upgraded IVCC (In-Vessel Control Coil) system equipped with four broadband power supplies, along with current connection patch panel, will be presented and discussed in terms of its capability on various KSTAR experiments. Until the last run-campaign, there were impressive experimental results on ELM(Edge Localized Mode) control experiments using the 3D magnetic field, but the non-axisymmetric field configuration could not be changed in a shot, let alone the limited number of accessible configurations. Introducing the new power supplies, such restrictions have been greatly reduced. Based on the preliminary commissioning results for 2015 KSTAR run-campaign, this new system has been confirmed to easily cope with various dynamic demands for toroidal and poloidal phases of 3D magnetic field in a shot. This enables us to diagnose the plasma response in more detail and to address the 3-D field impacts on the ELM behaviors better than ever.

  19. Fiber-optic control of the ZT-P experiment

    International Nuclear Information System (INIS)

    Caudill, L.D.; Chandler, G.I.; Hall, C.R.; Trujillo, J.F.

    1986-01-01

    The computer control system for the ZT-P experiment has been implemented using a fiber-optic link in all 161 control signal paths. Four classes of control signals are used in this design. These are: digital-out; an on-off signal from computer to machine actuator, digital-in, and on-off signal from machine sensor to computer, analog-out, a 0 - 10 volt analog signal from computer to machine actuator, analog-in, 0 to +1 milliampere analog signal from machine sensor to computer. The digital-in and the digital-out class of signals require no control power at the machine end. The analog-out and the analog-in class of signals use available machine power for control. This unique power arrangement and the use of fiber-optic links serve to totally isolate electrically noisy machine areas from the sensitive electronics in the computer control. Advantages, including low cost, small size, personnel safety, and ease of maintenance and modification are discussed

  20. Applications of intelligent-measurement systems in controlled-fusion research

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.; Lindquist, W.B.; Peterson, R.L.; Wyman, R.H.

    1981-01-01

    The paper describes the control and instrumentation for the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory, California, USA. This large-scale scientific experiment in controlled thermonuclear fusion, which is currently being expanded, originally had 3000 devices to control and 7000 sensors to monitor. A hierarchical computer control system, is used with nine minicomputers forming the supervisory system. There are approximately 55 local control and instrumentation microcomputers. In addition, each device has its own monitoring equipment, which in some cases consists of a small computer. After describing the overall system a more detailed account is given of the control and instrumentation for two large superconducting magnets

  1. Design specifications and test of the HMPID's control system in the ALICE experiment

    CERN Document Server

    Carrone, E

    2001-01-01

    The HMPID (High Momentum Particle Identification Detector) is one of the ALICE subdetectors planned to take data at LHC, starting in 2006. Since ALICE will be located underground, the HMPID will be remotely controlled by a Detector Control System (DCS). In this paper we will present the DCS design, accomplished via GRAFCET (GRAphe Fonctionnel de Commande Etape/Transition), the algorithm to translate into code readable by the PLC (the control device) and the first results of a prototype of the Low Voltage Control System. The results achieved so far prove that this way of proceeding is effective and time saving, since every step of the work is autonomous, making the debugging and updating phases simpler.

  2. An advanced plasma control system for Tore Supra

    International Nuclear Information System (INIS)

    Wijnands, T.; Martin, G.

    1996-01-01

    First results on plasma control with the new plasma control system of Tore Supra are presented. The system has been especially designed for long pulse operation: plasmas are controlled on reference signals, which can be varied in real time by using diagnostic measurements. On line determination of the global plasma equilibrium has enabled new operation scenarios in which both the power from the poloidal field generators and the total Lower Hybrid (LH) power are used to control the plasma. Experiments with feedback control of the safety factor on the plasma boundary, control of the LH driven current, control of the flux on the plasma boundary and control of the internal inductance are discussed. (author)

  3. An advanced plasma control system for Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Wijnands, T.; Martin, G.

    1996-01-01

    First results on plasma control with the new plasma control system of Tore Supra are presented. The system has been especially designed for long pulse operation: plasmas are controlled on reference signals, which can be varied in real time by using diagnostic measurements. On line determination of the global plasma equilibrium has enabled new operation scenarios in which both the power from the poloidal field generators and the total Lower Hybrid (LH) power are used to control the plasma. Experiments with feedback control of the safety factor on the plasma boundary, control of the LH driven current, control of the flux on the plasma boundary and control of the internal inductance are discussed. (author). 12 refs.

  4. Control System for the NSTX Lithium Pellet Injector

    International Nuclear Information System (INIS)

    Sichta, P.; Dong, J.; Gernhardt, R.; Gettelfinger, G.; Kugel, H.

    2003-01-01

    The Lithium Pellet Injector (LPI) is being developed for the National Spherical Torus Experiment (NSTX). The LPI will inject ''pellets'' of various composition into the plasma in order to study wall conditioning, edge impurity transport, liquid limiter simulations, and other areas of research. The control system for the NSTX LPI has incorporated widely used advanced technologies, such as LabVIEW and PCI bus I/O boards, to create a low-cost control system which is fully integrated into the NSTX computing environment. This paper will present the hardware and software design of the computer control system for the LPI

  5. PXIe based data acquisition and control system for ECRH systems on SST-1 and Aditya tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Jatinkumar J., E-mail: jatin@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar (India); Shukla, B.K.; Rajanbabu, N.; Patel, H.; Dhorajiya, P.; Purohit, D. [Institute for Plasma Research, Bhat, Gandhinagar (India); Mankadiya, K. [Optimized Solutions Pvt. Ltd (India)

    2016-11-15

    Highlights: • Data Aquisition and control system (DAQ). • PXIe hardware–(PXI–PCI bus extension for Instrumention Express). • RHVPS–Regulated High Voltage Power supply. • SST1–Steady state superconducting tokamak. - Abstract: In Steady State Superconducting (SST-1) tokamak, various RF heating sub-systems are used for plasma heating experiments. In SST-1, Two Electron Cyclotron Resonance Heating (ECRH) systems have been installed for pre-ionization, heating and current drive experiments. The 42 GHz gyrotron based ECRH system is installed and in operation with SST-1 plasma experiments. The 82.6 GHz gyrotron delivers 200 kW CW power (1000 s) while the 42 GHz gyrotron delivers 500 kW power for 500 ms duration. Each gyrotron system consists of various auxiliary power supplies, the crowbar unit and the water cooling system. The PXIe (PCI bus extension for Instrumentation Express)bus based DAC (Data Acquisition and Control) system has been designed, developed and under implementation for safe and reliable operation of the gyrotron. The Control and Monitoring Software applications have been developed using NI LabView 2014 software with real time support on windows platform.

  6. PXIe based data acquisition and control system for ECRH systems on SST-1 and Aditya tokamak

    International Nuclear Information System (INIS)

    Patel, Jatinkumar J.; Shukla, B.K.; Rajanbabu, N.; Patel, H.; Dhorajiya, P.; Purohit, D.; Mankadiya, K.

    2016-01-01

    Highlights: • Data Aquisition and control system (DAQ). • PXIe hardware–(PXI–PCI bus extension for Instrumention Express). • RHVPS–Regulated High Voltage Power supply. • SST1–Steady state superconducting tokamak. - Abstract: In Steady State Superconducting (SST-1) tokamak, various RF heating sub-systems are used for plasma heating experiments. In SST-1, Two Electron Cyclotron Resonance Heating (ECRH) systems have been installed for pre-ionization, heating and current drive experiments. The 42 GHz gyrotron based ECRH system is installed and in operation with SST-1 plasma experiments. The 82.6 GHz gyrotron delivers 200 kW CW power (1000 s) while the 42 GHz gyrotron delivers 500 kW power for 500 ms duration. Each gyrotron system consists of various auxiliary power supplies, the crowbar unit and the water cooling system. The PXIe (PCI bus extension for Instrumentation Express)bus based DAC (Data Acquisition and Control) system has been designed, developed and under implementation for safe and reliable operation of the gyrotron. The Control and Monitoring Software applications have been developed using NI LabView 2014 software with real time support on windows platform.

  7. Gas Control System for HEAO-B

    Science.gov (United States)

    Taylor, B.; Brissette, R.; Humphrey, A.; Morris, J.; Luger, J.; Swift, W.

    1978-01-01

    The HEAO-B Gas Control System consists of a high pressure gas storage supply together with distribution and regulation assemblies and their associated electronics for management of gas required for HEAO-B X-ray counter experiments. The Gas Control System replenishes a gas mixture (82 percent argon, 12.3 percent carbon dioxide, 5.7 percent xenon) in the counter volumes which is lost by: diffusion through controlled leakage plugs, diffusion through counter windows, and consumption resulting from periodic purges. The gas density in each counter volume is maintained constant to within 0.25 percent by comparison with a sealed reference volume. The system is fully redundant, capable of operating at atmospheric pressure as well as in a vacuum, contains interlocks which shut down gas flow in the event of either leakage or excessive pressure, and is able to shut down counter high voltage if counter pressure is abnormally low. The system is electronically controlled by ground command and self-sustaining in orbit for a period of at least one year.

  8. Time delay systems theory, numerics, applications, and experiments

    CERN Document Server

    Ersal, Tulga; Orosz, Gábor

    2017-01-01

    This volume collects contributions related to selected presentations from the 12th IFAC Workshop on Time Delay Systems, Ann Arbor, June 28-30, 2015. The included papers present novel techniques and new results of delayed dynamical systems. The topical spectrum covers control theory, numerical analysis, engineering and biological applications as well as experiments and case studies. The target audience primarily comprises research experts in the field of time delay systems, but the book may also be beneficial for graduate students alike. .

  9. Photo irradiation Systems for In-Vitro Cultured Cells Phototherapy and Photobiology Experiments

    International Nuclear Information System (INIS)

    Serrano Navarro, Joel; Morales Lopez, Orestes M.; Hernandez Quintanas, Luis F.; Lopez Silva, Y.; Fabila Bustos, Diego A.; De la Rosa Vazquez, Jose M.; Valor Reed, Alma; Stolik Isakina, Suren; Brodin, Patrik N.; Guha, Chandan; Tome, Wolfgang A.

    2016-01-01

    The increase in research and application of various phototherapy methods, especially photodynamic therapy (PDT) has created the need to study in depth the mechanisms of interaction of light with biological tissue using a photosensitizing drug in order to increase the therapeutic effectiveness. In this issue, two systems for controlled irradiation of in-vitro cell culture and temperature monitoring of the culture are presented. The first system was designed to irradiate 24 wells in a 96-well microplate. The second one was constructed for the irradiation and control of a 24-well microplate using larger volumes of cultured cells. Both systems can independently irradiate and control the temperature of each well. The systems include a module for contactless measurement of the temperature in each well. Light sources are located in an interchangeable module, so that it can be replaced to irradiate with different wavelengths. These prototypes count with various operation modes, controlled by a computer, which permits establishing specific settings in accordance with the desired experiment. The systems allow the automated experiment execution with precise control of dosimetry, irradiation and temperature, which reduces the sample-handling while, saves time. (Author)

  10. Simulation Research on an Electric Vehicle Chassis System Based on a Collaborative Control System

    Directory of Open Access Journals (Sweden)

    Nenglian Feng

    2013-01-01

    Full Text Available This paper presents a collaborative control system for an electric vehicle chassis based on a centralized and hierarchical control architecture. The centralized controller was designed for the suspension and steering system, which is used for improving ride comfort and handling stability; the hierarchical controller was designed for the braking system, which is used for distributing the proportion of hydraulic braking and regenerative braking to improve braking performance. These two sub-controllers function at the same level of the vehicle chassis control system. In order to reduce the potential conflict between the two sub-controllers and realize a coordination optimization of electric vehicle performance, a collaborative controller was built, which serves as the upper controller to carry out an overall coordination analysis according to vehicle signals and revises the decisions of sub-controllers. A simulation experiment was carried out with the MATLAB/Simulink software. The simulation results show that the proposed collaborative control system can achieve an optimized vehicle handling stability and braking safety.

  11. Development of a real-time monitoring system and integration of different computer system in LHD experiments using IP multicast

    International Nuclear Information System (INIS)

    Emoto, Masahiko; Nakamura, Yukio; Teramachi, Yasuaki; Okumura, Haruhiko; Yamaguchi, Satarou

    2002-01-01

    There are several different computer systems in LHD (Large Helical Device) experiment, and therefore the coalition of these computers is a key to perform the experiment. Real-time monitoring system is also important because the long discharge is needed in the LHD experiment. In order to achieve these two requirements, the technique of IP multicast is adopted. The authors have developed three new systems, the first one is the real-time monitoring system, the next one is the delivery system of the shot number and the last one is the real-time notification system of the plasma data registration. The first system can deliver the real-time monitoring data to the LHD experimental LAN through the firewall of the LHD control LAN in NIFS. The other two systems are used to realize high coalition of the different computers in the LHD plasma experiment. We can conclude that IP multicast is very useful both in the LHD experiment and a future large plasma experiment from various experiences. (author)

  12. Flight experience with lightweight, low-power miniaturized instrumentation systems

    Science.gov (United States)

    Hamory, Philip J.; Murray, James E.

    1992-01-01

    Engineers at the NASA Dryden Flight Research Facility (NASA-Dryden) have conducted two flight research programs with lightweight, low-power miniaturized instrumentation systems built around commercial data loggers. One program quantified the performance of a radio-controlled model airplane. The other program was a laminar boundary-layer transition experiment on a manned sailplane. The purpose of this paper is to report NASA-Dryden personnel's flight experience with the miniaturized instrumentation systems used on these two programs. The paper will describe the data loggers, the sensors, and the hardware and software developed to complete the systems. The paper also describes how the systems were used and covers the challenges encountered to make them work. Examples of raw data and derived results will be shown as well. Finally, future plans for these systems will be discussed.

  13. Distributed computer control system for reactor optimization

    International Nuclear Information System (INIS)

    Williams, A.H.

    1983-01-01

    At the Oldbury power station a prototype distributed computer control system has been installed. This system is designed to support research and development into improved reactor temperature control methods. This work will lead to the development and demonstration of new optimal control systems for improvement of plant efficiency and increase of generated output. The system can collect plant data from special test instrumentation connected to dedicated scanners and from the station's existing data processing system. The system can also, via distributed microprocessor-based interface units, make adjustments to the desired reactor channel gas exit temperatures. The existing control equipment will then adjust the height of control rods to maintain operation at these temperatures. The design of the distributed system is based on extensive experience with distributed systems for direct digital control, operator display and plant monitoring. The paper describes various aspects of this system, with particular emphasis on: (1) the hierarchal system structure; (2) the modular construction of the system to facilitate installation, commissioning and testing, and to reduce maintenance to module replacement; (3) the integration of the system into the station's existing data processing system; (4) distributed microprocessor-based interfaces to the reactor controls, with extensive security facilities implemented by hardware and software; (5) data transfer using point-to-point and bussed data links; (6) man-machine communication based on VDUs with computer input push-buttons and touch-sensitive screens; and (7) the use of a software system supporting a high-level engineer-orientated programming language, at all levels in the system, together with comprehensive data link management

  14. HETDEX tracker control system design and implementation

    Science.gov (United States)

    Beno, Joseph H.; Hayes, Richard; Leck, Ron; Penney, Charles; Soukup, Ian

    2012-09-01

    To enable the Hobby-Eberly Telescope Dark Energy Experiment, The University of Texas at Austin Center for Electromechanics and McDonald Observatory developed a precision tracker and control system - an 18,000 kg robot to position a 3,100 kg payload within 10 microns of a desired dynamic track. Performance requirements to meet science needs and safety requirements that emerged from detailed Failure Modes and Effects Analysis resulted in a system of 13 precision controlled actuators and 100 additional analog and digital devices (primarily sensors and safety limit switches). Due to this complexity, demanding accuracy requirements, and stringent safety requirements, two independent control systems were developed. First, a versatile and easily configurable centralized control system that links with modeling and simulation tools during the hardware and software design process was deemed essential for normal operation including motion control. A second, parallel, control system, the Hardware Fault Controller (HFC) provides independent monitoring and fault control through a dedicated microcontroller to force a safe, controlled shutdown of the entire system in the event a fault is detected. Motion controls were developed in a Matlab-Simulink simulation environment, and coupled with dSPACE controller hardware. The dSPACE real-time operating system collects sensor information; motor commands are transmitted over a PROFIBUS network to servo amplifiers and drive motor status is received over the same network. To interface the dSPACE controller directly to absolute Heidenhain sensors with EnDat 2.2 protocol, a custom communication board was developed. This paper covers details of operational control software, the HFC, algorithms, tuning, debugging, testing, and lessons learned.

  15. Experiments on vibration control of a piezoelectric laminated paraboloidal shell

    Science.gov (United States)

    Yue, Honghao; Lu, Yifan; Deng, Zongquan; Tzou, Hornsen

    2017-01-01

    A paraboloidal shell plays a key role in aerospace and optical structural systems applied to large optical reflector, communications antenna, rocket fairing, missile radome, etc. Due to the complexity of analytical procedures, an experimental study of active vibration control of a piezoelectric laminated paraboloidal shell by positive position feedback is carried out. Sixteen PVDF patches are laminated inside and outside of the shell, in which eight of them are used as sensors and eight as actuators to control the vibration of the first two natural modes. Lower natural frequencies and vibration modes of the paraboloidal shell are obtained via the frequency response function analysis by Modal VIEW software. A mathematical model of the control system is formulated by means of parameter identification. The first shell mode is controlled as well as coupled the first and second modes based on the positive position feedback (PPF) algorithm. To minimize the control energy consumption in orbit, an adaptive modal control method is developed in this study by using the PPF in laboratory experiments. The control system collects vibration signals from the piezoelectric sensors to identify location(s) of the largest vibration amplitudes and then select the best two from eight PVDF actuators to apply control forces so that the modal vibration suppression could be accomplished adaptively and effectively.

  16. Computer control and monitoring of neutral beam injectors on the 2XIIB CTR experiment at LLL

    International Nuclear Information System (INIS)

    Pollock, G.G.

    1975-01-01

    The original manual control system for the 12 neutral beam injectors on the 2XIIB Machine is being integrated with a computer control system. This, in turn, is a part of a multiple computer network comprised of the three computers which are involved in the operation and instrumentation of the 2XIIB experiment. The computer control system simplifies neutral beam operation and centralizes it to a single operating position. A special purpose console utilizes computer generated graphics and interactive function entry buttons to optimize the human/machine interface. Through the facilities of the computer network, a high level control function will be implemented for the use of the experimenter in a remotely located experiment diagnositcs area. In addition to controlling the injectors in normal operation, the computer system provides automatic conditioning of the injectors, bringing rebuilt units back to full energy output with minimum loss of useful life. The computer system also provides detail archive data recording

  17. Configuration control during plant outages. A review of operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Peinador Veira, Miguel; El Kanbi, Semir [European Commission Joint Research Centre, Petten (Netherlands). Inst. for Energy and Transport; Stephan, Jean-Luc [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France); Martens, Johannes [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany)

    2015-03-15

    After the occurrence of several significant events in nuclear power plants during shut-down modes of operation in the eighties, and from the results of probabilistic safety assessments completed in the nineties, it was clear that risk from low power and shutdown operational modes could not be neglected and had to be addressed by appropriate safety programs. A comprehensive review of operating experience from the last ten years has been conducted by the Joint Research Centre with the objective of deriving lessons learned and recommendations useful for nuclear regulatory bodies and utilities alike. This paper is focused on one particular challenge that any nuclear plant faces whenever it plans its next outage period: how to manage the configuration of all systems under a complex environment involving numerous concurrent activities, and how to make sure that systems are returned to their valid configuration before the plant resumes power operation. This study highlights the importance of conveying accurate but synthesized information on the status of the plant to the operators in the main control room. Many of the lessons learned are related to the alarm display in the control room and to the use of check lists to control the status of systems. Members of the industry and safety authorities may now use these recommendations and lessons learned to feed their own operating experience feedback programs, and check their applicability for specific sites.

  18. Plasma density remote control system of experimental advanced superconductive tokamak

    International Nuclear Information System (INIS)

    Zhang Mingxin; Luo Jiarong; Li Guiming; Wang Hua; Zhao Dazheng; Xu Congdong

    2007-01-01

    In Tokamak experiments, experimental data and information on the density control are stored in the local computer system. Therefore, the researchers have to be in the control room for getting the data. Plasma Density Remote Control System (DRCS), which is implemented by encapsulating the business logic on the client in the B/S module, conducts the complicated science computation and realizes the synchronization with the experimental process on the client. At the same time, Web Services and Data File Services are deployed for the data exchange. It is proved in the experiments that DRCS not only meets the requirements for the remote control, but also shows an enhanced capability on the data transmission. (authors)

  19. Overview and status of the system control of WENDELSTEIN 7-X

    International Nuclear Information System (INIS)

    Schacht, J.; Laqua, H.; Lewerentz, M.; Mueller, I.; Pingel, S.; Spring, A.; Woelk, A.

    2006-01-01

    The new quality of the superconducting fusion device W7-X is its capability for long-pulse operation. Discharge operations can be up to 30 minutes with full heating power. Considering the steady state operation capability the W7-X system control will be important for future long-term fusion experiments. A wide spectrum of requirements has to be considered during design and realization of the system control of W7-X. The experimental nature of the W7-X project requires high flexibility for machine operation and automatic program controlled operation. During the planned life cycle of about two decades the scientific programs will be permanently adapted to new aspects. New components will be included into the control system and established systems have to be adapted with respect to technological progress. The device W7-X is a very complex technical system. On the top of the hierarchically structured system control the central control system is located. Local components, e.g. power supplies, heating systems, and diagnostics, have their own control systems. For commissioning and tests local systems will be run autonomously. In preparation for experiment operation all essential components will be subordinated to the central control system. During experiments the central control system coordinates the activity of these components. A special segment control system is responsible for processing predefined programs. The configuration of a discharge phase can be set very flexible: Short pulses with arbitrary intervals, steady state long discharges and arbitrary sequences of short phases with different characteristics in one discharge will be supported by the segment control system. The interactive session leader program allows to choose and chain predefined segment programs, to start or stop a segment program chain as a discharge. The progress of the discharge is visualized by a sequence monitor. The independent safety system consists of local units responsible for the safety

  20. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    International Nuclear Information System (INIS)

    Pucyk, P.

    2005-09-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. Ths paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (orig.)

  1. DOOCS based control system for FPGA based cavity simulator and controller in VUV FEL

    International Nuclear Information System (INIS)

    Pucyk, P.D.

    2006-03-01

    The X-ray free-electron laser XFEL that is being planned at the DESY research center in cooperation with European partners will produce high-intensity ultra-short X-ray flashes with the properties of laser light. This new light source, which can only be described in terms of superlatives, will open up a whole range of new perspectives for the natural sciences. It could also offer very promising opportunities for industrial users. SIMCON (SIMulator and CONtroller) is the project of the fast, low latency digital controller dedicated for LLRF 1 system in VUV FEL experiment It is being developed by ELHEP 2 group in Institute of Electronic Systems at Warsaw University of Technology. The main purpose of the project is to create a controller for stabilizing the vector sum of fields in cavities of one cryo module in the experiment. The device can be also used as the simulator of the cavity and test bench for other devices. This paper describes the concept, implementation and tests of the DOOCS based control system for SIMCON. The designed system is based the concept of autonomic and extendable modules connected by well defined, unified interfaces. The communication module controls the access to the hardware. It is crucial, that all modules (this presented in thesis and developed in the future) use this interface. Direct access to the control tables let the engineers to perform algorithm development or diagnostic measurements of the LLRF system. Default control tables generator makes the whole SIMCON an autonomic device, which can start immediately the operation without any additional tools. (Orig.)

  2. Control Law Design for Twin Rotor MIMO System with Nonlinear Control Strategy

    Directory of Open Access Journals (Sweden)

    M. Ilyas

    2016-01-01

    Full Text Available Modeling of complex air vehicles is a challenging task due to high nonlinear behavior and significant coupling effect between rotors. Twin rotor multi-input multioutput system (TRMS is a laboratory setup designed for control experiments, which resembles a helicopter with unstable, nonlinear, and coupled dynamics. This paper focuses on the design and analysis of sliding mode control (SMC and backstepping controller for pitch and yaw angle control of main and tail rotor of the TRMS under parametric uncertainty. The proposed control strategy with SMC and backstepping achieves all mentioned limitations of TRMS. Result analysis of SMC and backstepping control schemes elucidates that backstepping provides efficient behavior with the parametric uncertainty for twin rotor system. Chattering and oscillating behaviors of SMC are removed with the backstepping control scheme considering the pitch and yaw angle for TRMS.

  3. Operator approach to linear control systems

    CERN Document Server

    Cheremensky, A

    1996-01-01

    Within the framework of the optimization problem for linear control systems with quadratic performance index (LQP), the operator approach allows the construction of a systems theory including a number of particular infinite-dimensional optimization problems with hardly visible concreteness. This approach yields interesting interpretations of these problems and more effective feedback design methods. This book is unique in its emphasis on developing methods for solving a sufficiently general LQP. Although this is complex material, the theory developed here is built on transparent and relatively simple principles, and readers with less experience in the field of operator theory will find enough material to give them a good overview of the current state of LQP theory and its applications. Audience: Graduate students and researchers in the fields of mathematical systems theory, operator theory, cybernetics, and control systems.

  4. Operational experience of human-friendly control and instrumentation systems for BWR nuclear power plants

    International Nuclear Information System (INIS)

    Makino, M.; Watanabe, T.; Suto, O.; Asahi, R.

    1987-01-01

    In recent BWR nuclear power plants in Japan, an advanced centralized monitoring and control system PODIA (Plant Operation by Displayed Information and Automation), which incorporates many operator aid functions, has been in operation since 1985. Main functions of the PODIA system as a computerized operator aid system are as follows. CRT displays for plant monitoring. Automatic controls and operation guides for plant operation. Stand-by status monitoring for engineered safety features during normal operation. Surveillance test procedure guides for engineered safety features. Integrated alarm display. The effectiveness of these functions have been proved through test and commercial operation. It has been obtained that operators have preferred PODIA much more than conventional monitoring and control systems

  5. Agents Modeling Experience Applied To Control Of Semi-Continuous Production Process

    Directory of Open Access Journals (Sweden)

    Gabriel Rojek

    2014-01-01

    Full Text Available The lack of proper analytical models of some production processes prevents us from obtaining proper values of process parameters by simply computing optimal values. Possible solutions of control problems in such areas of industrial processes can be found using certain methods from the domain of artificial intelligence: neural networks, fuzzy logic, expert systems, or evolutionary algorithms. Presented in this work, a solution to such a control problem is an alternative approach that combines control of the industrial process with learning based on production results. By formulating the main assumptions of the proposed methodology, decision processes of a human operator using his experience are taken into consideration. The researched model of using and gathering experience of human beings is designed with the contribution of agent technology. The presented solution of the control problem coincides with case-based reasoning (CBR methodology.

  6. EXPERIENCE OF IMPLEMENTATION OF THE LABOR PROTECTION CONTROL SYSTEM AT RUP «BMZ» IN ACCORDANCE WITH INTERNATIONAL STANDARDS OHSAS 180001 AND STATE STANDARD STB 18001

    Directory of Open Access Journals (Sweden)

    I. N. Zhuk

    2010-01-01

    Full Text Available Experience of introduction of the control system by labour protection at RUP «BMZ» in accordance with international standard OHSAS 18001 and State standard STB 18001 is described.

  7. Design of dual DC motor control system based on DSP

    Science.gov (United States)

    Shi, Peicheng; Wang, Suo; Xu, Zengwei; Xiao, Ping

    2017-08-01

    Multi-motor control systems are widely used in actual production and life, such as lifting stages, robots, printing systems. This paper through serial communication between PC and DSP, dual DC motor control system consisting of PC as the host computer, DSP as the lower computer with synchronous PWM speed regulation, commutation and selection functions is designed. It sends digital control instructions with host computer serial debugger to lower computer, to instruct the motor to complete corresponding actions. The hardware and software design of the control system are given, and feasibility and validity of the control system are verified by experiments. The expected design goal is achieved.

  8. Data collecting and treatment control system in the «Alpha-Electron» space experiment on board the International Space Station

    International Nuclear Information System (INIS)

    Galper, A M; Batischev, A G; Naumov, P P; Naumov, P Yu

    2017-01-01

    The fast multilayer scintillation detector of the new telescope-spectrometer for the ALFA-ELECTRON space experiment is in ground testing mode now. Modules of data control system for spectrometer are discussed. The structure of the main data format and functional blocks for data treatment are presented. The device will planned to install on the outer surface of the Russian Segment (RS) of the International Space Station (ISS) in 2018. (paper)

  9. Realtime control system for microprobe beamline at PLS

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, J.C.; Lee, J.W.; Kim, K.H.; Ko, I.S. [Pohang Accelerator Laboratory, POSTECH, Pohang (Korea)

    1998-11-01

    The microprobe beamline of the Pohang Light Source (PLS) consists of main and second slits, a microprobe system, two ion chambers, a video-microscope, and a Si(Li) detector. These machine components must be controlled remodely through the computer system to make user's experiments precise and speedy. A real-time computer control system was developed to control and monitor these components. A VMEbus computer with an OS-9 real-time operating system was used for the low-level data acquisition and control. VME I/O modules were used for the step motor control and the scalar control. The software has a modular structure for the maximum performance and the easy maintenance. We developed the database, the I/O driver, and the control software. We used PC/Windows 95 for the data logging and the operator interface. Visual C{sup ++} was used for the graphical user interface programming. RS232C was used for the communication between the VME and the PC. (author)

  10. Discrete-Time Nonlinear Control of VSC-HVDC System

    Directory of Open Access Journals (Sweden)

    TianTian Qian

    2015-01-01

    Full Text Available Because VSC-HVDC is a kind of strong nonlinear, coupling, and multi-input multioutput (MIMO system, its control problem is always attracting much attention from scholars. And a lot of papers have done research on its control strategy in the continuous-time domain. But the control system is implemented through the computer discrete sampling in practical engineering. It is necessary to study the mathematical model and control algorithm in the discrete-time domain. The discrete mathematical model based on output feedback linearization and discrete sliding mode control algorithm is proposed in this paper. And to ensure the effectiveness of the control system in the quasi sliding mode state, the fast output sampling method is used in the output feedback. The results from simulation experiment in MATLAB/SIMULINK prove that the proposed discrete control algorithm can make the VSC-HVDC system have good static, dynamic, and robust characteristics in discrete-time domain.

  11. Uses of ORACLE in the Nova Laser Control System

    International Nuclear Information System (INIS)

    McGuigan, D.L.

    1983-01-01

    The Nova Laser System is a large-scale fusion experiment being constructed at the Lawrence Livermore National Laboratory. Modern control system technology is required to efficiently manage the thousands of devices needed to operate the system. In order to reduce the requirements on the operations staff, much of the system is being automated. This requires a significant knowledge base including frequently used system configurations and device parameters. We will be using ORACLE to provide this information to the control system. To insure the control-system integrity, ORACLE will be used to maintain information about the control-system software. This information will be used to document the system as well as help track down problems. ORACLE will also be used to maintain data on the system performance. This data will be analyzed to optimize the laser performance and point out when maintenance is required

  12. Controller tuning of district heating networks using experiment design techniques

    International Nuclear Information System (INIS)

    Dobos, Laszlo; Abonyi, Janos

    2011-01-01

    There are various governmental policies aimed at reducing the dependence on fossil fuels for space heating and the reduction in its associated emission of greenhouse gases. DHNs (District heating networks) could provide an efficient method for house and space heating by utilizing residual industrial waste heat. In such systems, heat is produced and/or thermally upgraded in a central plant and then distributed to the end users through a pipeline network. The control strategies of these networks are rather difficult thanks to the non-linearity of the system and the strong interconnection between the controlled variables. That is why a NMPC (non-linear model predictive controller) could be applied to be able to fulfill the heat demand of the consumers. The main objective of this paper is to propose a tuning method for the applied NMPC to fulfill the control goal as soon as possible. The performance of the controller is characterized by an economic cost function based on pre-defined operation ranges. A methodology from the field of experiment design is applied to tune the model predictive controller to reach the best performance. The efficiency of the proposed methodology is proven throughout a case study of a simulated NMPC controlled DHN. -- Highlights: → To improve the energetic and economic efficiency of a DHN an appropriate control system is necessary. → The time consumption of transitions can be shortened with the proper control system. → A NLMPC is proposed as control system. → The NLMPC is tuned by utilization of simplex methodology, using an economic oriented cost function. → The proposed NLMPC needs a detailed model of the DHN based on the physical description.

  13. Quality control in PET/CT systems. Experiences and requirements

    International Nuclear Information System (INIS)

    Geworski, Lilli; Fitz, Eduard; Knoop, Bernd; Karwarth, Cornelia; Plotkin, Michail

    2010-01-01

    Today, in most cases PET examinations are performed using PET/CT hybrid systems. While acceptance testing and routine control of the basic modalities PET and CT, respectively, are described by appropriate regulations, corresponding instructions with regard to the interface connecting both are still missing. This interface includes the adjustment of gantries and patient bed to each other as well as the energy scaling of attenuation coefficients from CT energy to 511 keV. Measurements checking the mechanical adjustment (determination of off-set parameters) are performed following manufacturer's recommendation, with a typical frequency twice a year. On a Biograph 16 (Siemens, Inc.), these measurements were systematically extended to a weekly frequency over an observation period of 10 months, supplemented by measurements with additional load to the patient bed (up to 135 kg), and different vertical bed positions. The results show, that for the construction tested additional off-set measurements for routine control extending well beyond manufacturer's recommendation are not necessary. The energy scaling of attenuation coefficients is depending on methodological aspects and software implementation, and therefore is not part of routine control. On the contrary, the development of appropriate methods for acceptance testing to assess and to determine the mechanical adjustment in all its degrees of freedom as well as the accuracy of attenuation corrected emission data is urgently needed. (orig.)

  14. [Network Design of the Spaceport Command and Control System

    Science.gov (United States)

    Teijeiro, Antonio

    2017-01-01

    I helped the Launch Control System (LCS) hardware team sustain the network design of the Spaceport Command and Control System. I wrote the procedure that will be used to satisfy an official hardware test for the hardware carrying data from the Launch Vehicle. I installed hardware and updated design documents in support of the ongoing development of the Spaceport Command and Control System and applied firewall experience I gained during my spring 2017 semester to inspect and create firewall security policies as requested. Finally, I completed several online courses concerning networking fundamentals and Unix operating systems.

  15. The simulation study on the Nuclear Heating Reactor's power auto-control system

    International Nuclear Information System (INIS)

    Yang Zhijun; Liu Longzhi; Hu Guifen

    2000-01-01

    The power automatic control system on nuclear heating reactor (NHR) is a multi-input and multi-output non-linear system. The power automatic control system on NHR is studied by modern control theory. Through the simulation experiments, it is clear that adopting μ outer-loop and LQR inner-loop feedback, the best control results are obtained

  16. Qudi: A modular python suite for experiment control and data processing

    Directory of Open Access Journals (Sweden)

    Jan M. Binder

    2017-01-01

    Full Text Available Qudi is a general, modular, multi-operating system suite written in Python 3 for controlling laboratory experiments. It provides a structured environment by separating functionality into hardware abstraction, experiment logic and user interface layers. The core feature set comprises a graphical user interface, live data visualization, distributed execution over networks, rapid prototyping via Jupyter notebooks, configuration management, and data recording. Currently, the included modules are focused on confocal microscopy, quantum optics and quantum information experiments, but an expansion into other fields is possible and encouraged.

  17. Siemens: Smart Technologies for Large Control Systems

    CERN Multimedia

    CERN. Geneva; BAKANY, Elisabeth

    2015-01-01

    The CERN Large Hadron Collider (LHC) is known to be one of the most complex scientific machines ever built by mankind. Its correct functioning relies on the integration of a multitude of interdependent industrial control systems, which provide different and essential services to run and protect the accelerators and experiments. These systems have to deal with several millions of data points (e.g. sensors, actuators, configuration parameters, etc…) which need to be acquired, processed, archived and analysed. Since more than 20 years, CERN and Siemens have developed a strong collaboration to deal with the challenges for these large systems. The presentation will cover the current work on the SCADA (Supervisory Control and Data Acquisition) systems and Data Analytics Frameworks.

  18. Mountain Plains Learning Experience Guide: Automotive Repair. Course: Emission Systems.

    Science.gov (United States)

    Schramm, C.; Osland, Walt

    One of twelve individualized courses included in an automotive repair curriculum, this course covers the theory, testing, and servicing of automotive emission control systems. The course is comprised of one unit, Fundamentals of Emission Systems. The unit begins with a Unit Learning Experience Guide that gives directions for unit completion. The…

  19. The timing system of the RFX Nuclear Fusion Experiment

    International Nuclear Information System (INIS)

    Schmidt, V.; Flor, G.; Manduchi, G.; Piacentini, I.

    1992-01-01

    The REX Nuclear Fusion Experiment [1] in Padova, Italy, employs a distributed system to produce precision trigger signals for the fast control of the experiment and for the experiment-wide synchronization of data acquisition channels. The hardware of the system is based on a set of CAMAC modules. The modules have been integrated into a hardware/software system which provides the following features: 1) generation of pre-programmed timing events, 2) distribution of asynchronous (not pre-programmed) timing events, 3) gating of timing event generation by Machine Protection System, 4) automatic stop of timing sequence in case of highway damage, 5) dual-speed time base for transient recorders, 6) system-wide precision of ≤ 3 μs, time resolution ≥ 10 μs. The operation of the timing system is fully integrated into the RFX data acquisition system software. The Timing System Software consists of three layers: the lowest one corresponds directly to the CAMAC modules, the intermediate one provides pseudo-devices which essentially correspond to specific features for the modules (e.g. a dual frequency clock source for transient recorders), the highest level provides system set-up support. The system is fully operational and was first used during the commissioning of the RFX Power Supplies in spring '91. (author)

  20. Group performance and group learning at dynamic system control tasks

    International Nuclear Information System (INIS)

    Drewes, Sylvana

    2013-01-01

    Proper management of dynamic systems (e.g. cooling systems of nuclear power plants or production and warehousing) is important to ensure public safety and economic success. So far, research has provided broad evidence for systematic shortcomings in individuals' control performance of dynamic systems. This research aims to investigate whether groups manifest synergy (Larson, 2010) and outperform individuals and if so, what processes lead to these performance advantages. In three experiments - including simulations of a nuclear power plant and a business setting - I compare the control performance of three-person-groups to the average individual performance and to nominal groups (N = 105 groups per experiment). The nominal group condition captures the statistical advantage of aggregated group judgements not due to social interaction. First, results show a superior performance of groups compared to individuals. Second, a meta-analysis across all three experiments shows interaction-based process gains in dynamic control tasks: Interacting groups outperform the average individual performance as well as the nominal group performance. Third, group interaction leads to stable individual improvements of group members that exceed practice effects. In sum, these results provide the first unequivocal evidence for interaction-based performance gains of groups in dynamic control tasks and imply that employers should rely on groups to provide opportunities for individual learning and to foster dynamic system control at its best.

  1. Design of a control system for HIRFL-CSRe internal target facility in Lanzhou

    International Nuclear Information System (INIS)

    Wang Yanyu; Liu Wufeng; Shao Caojie; Lin Feiyu; Zhang Jianchuan; Xiao Wenjun

    2010-01-01

    It is described in this paper the design of the control system for HIRFL-CSRe internal target facility, in which there are many different kinds of units need to be monitored and controlled. The control system is composed of several subsystems which are designed to control the gas-jet temperature, chamber vacuum, valves and molecular pumps. A human-computer interaction interface is also realized to do the data acquisition, data processing and display. The whole system has been working stably and safely, it fully meets the requirements of physical experiments in the internal target facility. In January of 2010, the first physics experiment of the radioactive electron capture was finished successfully with the aids of this control system. (authors)

  2. System control module diagnostic Expert Assistant

    Science.gov (United States)

    Flores, Luis M.; Hansen, Roger F.

    1990-01-01

    The Orbiter EXperiments (OEX) Program was established by NASA's Office of Aeronautics and Space Technology (OAST) to accomplish the precise data collection necessary to support a complete and accurate assessment of Space Transportation System (STS) Orbiter performance during all phases of a mission. During a mission, data generated by the various experiments are conveyed to the OEX System Control Module (SCM) which arranges for and monitors storage of the data on the OEX tape recorder. The SCM Diagnostic Expert Assistant (DEA) is an expert system which provides on demand advice to technicians performing repairs of a malfunctioning SCM. The DEA is a self-contained, data-driven knowledge-based system written in the 'C' Language Production System (CLIPS) for a portable micro-computer of the IBM PC/XT class. The DEA reasons about SCM hardware faults at multiple levels; the most detailed layer of encoded knowledge of the SCM is a representation of individual components and layouts of the custom-designed component boards.

  3. New DIII-D tokamak plasma control system

    International Nuclear Information System (INIS)

    Campbell, G.L.; Ferron, J.R.; McKee, E.; Nerem, A.; Smith, T.; Greenfield, C.M.; Pinsker, R.I.; Lazarus, E.A.

    1992-09-01

    A state-of-the-art plasma control system has been constructed for use on the DIII-D tokamak to provide high speed real time data acquisition and feedback control of DIII-D plasma parameters. This new system has increased the precision to which discharge shape and position parameters can be maintained and has provided the means to rapidly change from one plasma configuration to another. The capability to control the plasma total energy and the ICRF antenna loading resistance has been demonstrated. The speed and accuracy of this digital system will allow control of the current drive and heating systems in order to regulate the current and pressure profiles and diverter power deposition in the DIII-D machine. Use of this system will allow the machine and power supplies to be better protected from undesirable operating regimes. The advanced control system is also suitable for control algorithm development for future machines in these areas and others such as disruption avoidance. The DIII-D tokamak facility is operated for the US Department of Energy by General Atomics Company (GA) in San Diego, California. The DIII-D experimental program will increase emphasis on rf heating and current drive in the near future and is installing a cryopumped divertor ring during the fall of 1992. To improve the flexibility of this machine for these experiments, the new shape control system was implemented. The new advanced plasma control system has enhanced the capabilities of the DIII-D machine and provides a data acquisition and control platform that promises to be useful far beyond its original charter

  4. Qinshan plant display system: experience to date

    International Nuclear Information System (INIS)

    Bin, L.; Jiangdong, Y.; Weili, C.; Haidong, W.; Wangtian, L.; Lockwood, R.; Doucet, R.; Trask, D.; Judd, R.

    2004-01-01

    The two CANDU 6 units operated by the Third Qinshan Nuclear Power Corporation (TQNPC) include, as part of a control centre upgrade, a new plant display system (PDS). The PDS provides plant operators with new display and monitoring functionality designed to compliment the DCC capability. It includes new overview and trend displays (e.g., critical safety parameter monitor and user-defined trends), and enhanced annunciation based on AECL's Computerized Alarm Message List System (CAMLS) including an alarm interrogation capability. This paper presents a review of operating experience gained since the PDS was commissioned more than three years ago. It includes feedback provided by control room operators and trainers, PDS maintainers, and AECL development and support staff. It also includes an overview of improvements implemented since the PDS and suggestions for the future enhancements. (author)

  5. National Spherical Torus Experiment Real Time Plasma Control Data Acquisition Hardware

    International Nuclear Information System (INIS)

    R.J. Marsala; J. Schneider

    2002-01-01

    The National Spherical Torus Experiment (NSTX) is currently providing researchers data on low aspect-ratio toroidal plasmas. NSTX's Plasma Control System adjusts the firing angles of thyristor rectifier power supplies, in real time, to control plasma position, shape and density. A Data Acquisition system comprised of off-the-shelf and custom hardware provides the magnetic diagnostics data required in calculating firing angles. This VERSAmodule Eurocard (VME) bus-based system utilizes Front Panel Data Port (FPDP) for high-speed data transfer. Data coming from physically different locations is referenced to several different ground potentials necessitating the need for a custom FPDP multiplexer. This paper discusses the data acquisition system configuration, the in-house designed 4-to-1 FPDP Input Multiplexing Module (FIMM), and future expansion plans

  6. Design and Architecture of SST-1 basic plasma control system

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Kirit, E-mail: kpatel@ipr.res.in; Raju, D.; Dhongde, J.; Mahajan, K.; Chudasama, H.; Gulati, H.; Chauhan, A.; Masand, H.; Bhandarkar, M.; Pradhan, S.

    2016-11-15

    Highlights: • Reflective Memory network. • FPAG based Timing system for trigger distribution. • IRIG-B network for GPS time synchronization. • PMC based Digital Signal Processors and VME. • Simultaneous sampling ADC. - Abstract: Primary objective of SST-1 Plasma control system is to achieve Plasma position, shape and current profile control. Architecture of control system for SST-1 is distributed in nature. Fastest control loop time requirement of 100 μs is achieved using VME based simultaneous sampling ADCs, PMC based quad core DSP, Reflective Memory [RFM] based real-time network, VME based real-time trigger distribution network and Ethernet network. All the control loops for shape control, position control and current profile control share common signals from Magnetic diagnostic so it is planned to accommodate all the algorithms on the same PMC based quad core DSP module TS C-43. RFM based real-time data network replicate data from one node to next node in a ring network topology at sustained throughput rate of 13.4 MBps. Real-time Timing System network provides guaranteed trigger distribution in 3.8 μs from one node to all node of the network. Monitoring and configuration of different systems participating in the operation of SST-1 is done by Ethernet network. Magnetic sensors data is acquired using Pentek 6802 simultaneously sampling ADC card at the rate of 10KSPS. All the real-time raw data along with the control data will be archived using RFM network and SCSI HDD for the experiment duration of 1000 s. RFM network is also planned for real-time plotting of key parameter of Plasma during long experiment. After experiment this data is transferred to central storage server for archival purpose. This paper discusses the architecture and hardware implementation of the control system by describing all the involved hardware and software along with future plans for up-gradations.

  7. Tasks and structure of the WENDELSTEIN 7-X control system

    International Nuclear Information System (INIS)

    Schacht, Joerg; Niedermeyer, Helmut; Laqua, Heike; Spring, Anett; Mueller, Ina; Pingel, Steffen; Woelk, Andreas

    2006-01-01

    The super conducting stellarator WENDELSTEIN 7-X will run pulses of up to 30 min duration with full heating power. Short pulses with arbitrary intervals, steady state long discharges and arbitrary sequences of short phases with different characteristics in one discharge will be supported by the control system. Each technical component and each diagnostic system including its data acquisition will have its own control system permitting autonomous operation for commissioning and testing. During the experimental sessions the activity of these devices will be coordinated by a central control system and the machine runs more or less automatically with predefined programs. A session leader program allows the leader of the experiment to choose and chain predefined segments, to start or stop a segment chain as a discharge. The progress of the discharge is shown by a sequence monitor attached to the central sequence controller and the session leader program. W7-X has to be prepared for the experiment and monitored by means of the PLC based operational management system. A safety system working independently of the operational management consists of local units responsible for the safety of each component and a central unit ensuring the safety of the whole W7-X system. This safety system provides interlocks and controls the human access to the device. A safety analysis is the basis for the development of the safety system

  8. Experiences in messaging middle-ware for high-level control applications

    International Nuclear Information System (INIS)

    Wanga, N.; Shasharina, S.; Matykiewicz, J.; Rooparani Pundaleeka

    2012-01-01

    Existing high-level applications in accelerator control and modeling systems leverage many different languages, tools and frameworks that do not inter-operate with one another. As a result, the accelerator control community is moving toward the proven Service-Oriented Architecture (SOA) approach to address the inter-operability challenges among heterogeneous high-level application modules. Such SOA approach enables developers to package various control subsystems and activities into 'services' with well-defined 'interfaces' and make leveraging heterogeneous high-level applications via flexible composition possible. Examples of such applications include presentation panel clients based on Control System Studio (CSS) and middle-layer applications such as model/data servers. This paper presents our experiences in developing a demonstrative high-level application environment using emerging messaging middle-ware standards. In particular, we utilize new features in EPICS v4 and other emerging standards such as Data Distribution Service (DDS) and Extensible Type Interface by the Object Management Group. We first briefly review examples we developed previously. We then present our current effort in integrating DDS into such a SOA environment for control systems. Specifically, we illustrate how we are integrating DDS into CSS and develop a Python DDS mapping. (authors)

  9. Development of a compact and user-friendly ion irradiation system controlled remotely through the internet

    International Nuclear Information System (INIS)

    Ishikawa, Ippei; Kada, Wataru; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki; Tanaka, Teruya; Yamamoto, Junji

    2007-01-01

    A compact and user-friendly ion irradiation system controlled remotely through the Internet was developed for the execution of collaboration experiments together with researchers at remote sites. Several hardware instruments and software programs were constructed and provided for the remote control of the system and for its connection to the Internet. Surface modification and analysis experiments with this system were remotely performed through the Internet. It was confirmed from the experiments that the present ion irradiation system was precisely controlled through the Internet and could be easily and safely used for the surface modification and analysis, that the normal communication speed of around 10 Mbps for the Internet was fast enough for the execution of such typical remote-controlled experiments, and also that an access to the system by a mobile phone was convenient and useful enough to check the condition of the system and experimental data. (author)

  10. Architectural concept for the ITER Plasma Control System

    Energy Technology Data Exchange (ETDEWEB)

    Treutterer, W., E-mail: Wolfgang.Treutterer@ipp.mpg.de [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Humphreys, D., E-mail: humphreys@fusion.gat.com [General Atomics, San Diego, CA (United States); Raupp, G., E-mail: Gerhard.Raupp@ipp.mpg.de [Max-Planck Institute for Plasma Physics, EURATOM Association, Garching (Germany); Schuster, E., E-mail: schuster@lehigh.edu [Lehigh University, Bethlehem, PA (United States); Snipes, J., E-mail: Joseph.Snipes@iter.org [ITER Organization, 13115 St. Paul-lez-Durance (France); De Tommasi, G., E-mail: detommas@unina.it [CREATE/Università di Napoli Federico II, Napoli (Italy); Walker, M., E-mail: walker@fusion.gat.com [General Atomics, San Diego, CA (United States); Winter, A., E-mail: Axel.Winter@iter.org [ITER Organization, 13115 St. Paul-lez-Durance (France)

    2014-05-15

    The plasma control system is a key instrument for successfully investigating the physics of burning plasma at ITER. It has the task to execute an experimental plan, known as pulse schedule, in the presence of complex relationships between plasma parameters like temperature, pressure, confinement and shape. The biggest challenge in the design of the control system is to find an adequate breakdown of this task in a hierarchy of feedback control functions. But it is also important to foresee structures that allow handling unplanned exceptional situations to protect the machine. Also the management of the limited number of actuator systems for multiple targets is an aspect with a strong impact on system architecture. Finally, the control system must be flexible and reconfigurable to cover the manifold facets of plasma behaviour and investigation goals. In order to prepare the development of a control system for ITER plasma operation, a conceptual design has been proposed by a group of worldwide experts and reviewed by an ITER panel in 2012. In this paper we describe the fundamental principles of the proposed control system architecture and how they were derived from a systematic collection and analysis of use cases and requirements. The experience and best practices from many fusion devices and research laboratories, augmented by the envisaged ITER specific tasks, build the foundation of this collection. In the next step control functions were distilled from this input. An analysis of the relationships between the functions allowed sequential and parallel structures, alternate branches and conflicting requirements to be identified. Finally, a concept of selectable control layers consisting of nested “compact controllers” was synthesised. Each control layer represents a cascaded scheme from high-level to elementary controllers and implements a control hierarchy. The compact controllers are used to resolve conflicts when several control functions would use the same

  11. Architectural concept for the ITER Plasma Control System

    International Nuclear Information System (INIS)

    Treutterer, W.; Humphreys, D.; Raupp, G.; Schuster, E.; Snipes, J.; De Tommasi, G.; Walker, M.; Winter, A.

    2014-01-01

    The plasma control system is a key instrument for successfully investigating the physics of burning plasma at ITER. It has the task to execute an experimental plan, known as pulse schedule, in the presence of complex relationships between plasma parameters like temperature, pressure, confinement and shape. The biggest challenge in the design of the control system is to find an adequate breakdown of this task in a hierarchy of feedback control functions. But it is also important to foresee structures that allow handling unplanned exceptional situations to protect the machine. Also the management of the limited number of actuator systems for multiple targets is an aspect with a strong impact on system architecture. Finally, the control system must be flexible and reconfigurable to cover the manifold facets of plasma behaviour and investigation goals. In order to prepare the development of a control system for ITER plasma operation, a conceptual design has been proposed by a group of worldwide experts and reviewed by an ITER panel in 2012. In this paper we describe the fundamental principles of the proposed control system architecture and how they were derived from a systematic collection and analysis of use cases and requirements. The experience and best practices from many fusion devices and research laboratories, augmented by the envisaged ITER specific tasks, build the foundation of this collection. In the next step control functions were distilled from this input. An analysis of the relationships between the functions allowed sequential and parallel structures, alternate branches and conflicting requirements to be identified. Finally, a concept of selectable control layers consisting of nested “compact controllers” was synthesised. Each control layer represents a cascaded scheme from high-level to elementary controllers and implements a control hierarchy. The compact controllers are used to resolve conflicts when several control functions would use the same

  12. An Experience of CACSD for Networked Control Systems: From Mechatronic Platform Identification to Control Implementation

    Science.gov (United States)

    Losada, Cristina; Espinosa, Felipe; Santos, Carlos; Gálvez, Manuel; Bueno, Emilio J.; Marrón, Marta; Rodríguez, Francisco J.

    2016-01-01

    Continual advances in information and communication technologies (ICT) are revolutionizing virtual education and bringing new tools on the market that provide virtual solutions to a range of problems. Nevertheless, nonvirtual experimentation using computer-aided control system design tools is still fundamental for future engineers. This paper…

  13. A distributed real-time system for event-driven control and dynamic data acquisition on a fusion plasma experiment

    International Nuclear Information System (INIS)

    Sousa, J.; Combo, A.; Batista, A.; Correia, M.; Trotman, D.; Waterhouse, J.; Varandas, C.A.F.

    2000-01-01

    A distributed real-time trigger and timing system, designed in a tree-type topology and implemented in VME and CAMAC versions, has been developed for a magnetic confinement fusion experiment. It provides sub-microsecond time latencies for the transport of small data objects allowing event-driven discharge control with failure counteraction, dynamic pre-trigger sampling and event recording as well as accurate simultaneous triggers and synchronism on all nodes with acceptable optimality and predictability of timeliness. This paper describes the technical characteristics of the hardware components (central unit composed by one or more reflector crates, event and synchronism reflector cards, event and pulse node module, fan-out and fan-in modules) as well as software for both tests and integration on a global data acquisition system. The results of laboratory operation for several configurations and the overall performance of the system are presented and analysed

  14. Experimental research control software system

    International Nuclear Information System (INIS)

    Cohn, I A; Kovalenko, A G; Vystavkin, A N

    2014-01-01

    A software system, intended for automation of a small scale research, has been developed. The software allows one to control equipment, acquire and process data by means of simple scripts. The main purpose of that development is to increase experiment automation easiness, thus significantly reducing experimental setup automation efforts. In particular, minimal programming skills are required and supervisors have no reviewing troubles. Interactions between scripts and equipment are managed automatically, thus allowing to run multiple scripts simultaneously. Unlike well-known data acquisition commercial software systems, the control is performed by an imperative scripting language. This approach eases complex control and data acquisition algorithms implementation. A modular interface library performs interaction with external interfaces. While most widely used interfaces are already implemented, a simple framework is developed for fast implementations of new software and hardware interfaces. While the software is in continuous development with new features being implemented, it is already used in our laboratory for automation of a helium-3 cryostat control and data acquisition. The software is open source and distributed under Gnu Public License.

  15. Experimental research control software system

    Science.gov (United States)

    Cohn, I. A.; Kovalenko, A. G.; Vystavkin, A. N.

    2014-05-01

    A software system, intended for automation of a small scale research, has been developed. The software allows one to control equipment, acquire and process data by means of simple scripts. The main purpose of that development is to increase experiment automation easiness, thus significantly reducing experimental setup automation efforts. In particular, minimal programming skills are required and supervisors have no reviewing troubles. Interactions between scripts and equipment are managed automatically, thus allowing to run multiple scripts simultaneously. Unlike well-known data acquisition commercial software systems, the control is performed by an imperative scripting language. This approach eases complex control and data acquisition algorithms implementation. A modular interface library performs interaction with external interfaces. While most widely used interfaces are already implemented, a simple framework is developed for fast implementations of new software and hardware interfaces. While the software is in continuous development with new features being implemented, it is already used in our laboratory for automation of a helium-3 cryostat control and data acquisition. The software is open source and distributed under Gnu Public License.

  16. Evolution of the racetrack microtron control system

    International Nuclear Information System (INIS)

    Martin, E.R.; Schneider, C.M.; Martinez, V.A.; Trout, R.E.; Gritzo, R.E.

    1982-01-01

    Ultimately, the true measure of a control system lies in how well initial decisions allow for exigencies, as the overall machine evolves and requirements solidify. Recognizing that advances in electronic technology virtually guarantee that any system will be technologically out of date by the time it is operational, the criteria really do not involve the state of the technological advancement, but instead legitimately ask whether the control-system design can adjust to the inevitable machine-design changes, whether the operators can use it to control the machine in a reasonable manner, whether it was built within budget constraints, or, in short, whether it works. On these bases, our initial decisions on the racetrack microtron (RTM) control system have been increasingly vindicated as the system has evolved, and we feel that our experiences have shed some light on just which criteria are of real importance, and which are merely a part of the lore of popular misinformation. Unless the basic requirements are met, technical elegance is no virtue, and when they are met, design simplicity is no vice

  17. A field experiment on power line stabilization by SMES system

    International Nuclear Information System (INIS)

    Irie, F.; Takeo, M.; Sato, S.; Katahira, O.; Fukui, F.; Takamatsu, M.

    1992-01-01

    In this paper field experiments on stabilization of a hydro power plant by a SMES system are reported, where a generator having a rating of 60 kW at 3.3kV is connected to a 6.6kV power distribution line. The SMES system is composed of two 30kVA GTO convertors and a superconducting magnet system with an energy of 30kJ at 100A. Experiments of stabilization for the generator fluctuation caused by a sudden insertion of inductors in the line are successfully performed for some control modes. The value of the SMES system to compensate for a short period voltage dip is also confirmed

  18. Operational experience with the CMS Data Acquisition System

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The data-acquisition (DAQ) system of the CMS experiment at the LHC performs the read-out and assembly of events accepted by the first level hardware trigger. Assembled events are made available to the high-level trigger (HLT), which selects interesting events for offline storage and analysis. The system is designed to handle a maximum input rate of 100 kHz and an aggregated throughput of 100 GB/s originating from approximately 500 sources and 10^8 electronic channels. An overview of the architecture and design of the hardware and software of the DAQ system is given. We report on the performance and operational experience of the DAQ and its Run Control System in the first two years of collider run of the LHC, both in proton-proton and Pb-Pb collisions. We present an analysis of the current performance, its limitations, and the most common failure modes and discuss the ongoing evolution of the HLT capability needed to match the luminosity ramp-up of the LHC.

  19. Control landscapes for observable preparation with open quantum systems

    International Nuclear Information System (INIS)

    Wu Rebing; Pechen, Alexander; Rabitz, Herschel; Hsieh, Michael; Tsou, Benjamin

    2008-01-01

    A quantum control landscape is defined as the observable as a function(al) of the system control variables. Such landscapes were introduced to provide a basis to understand the increasing number of successful experiments controlling quantum dynamics phenomena. This paper extends the concept to encompass the broader context of the environment having an influence. For the case that the open system dynamics are fully controllable, it is shown that the control landscape for open systems can be lifted to the analysis of an equivalent auxiliary landscape of a closed composite system that contains the environmental interactions. This inherent connection can be analyzed to provide relevant information about the topology of the original open system landscape. Application to the optimization of an observable expectation value reveals the same landscape simplicity observed in former studies on closed systems. In particular, no false suboptimal traps exist in the system control landscape when seeking to optimize an observable, even in the presence of complex environments. Moreover, a quantitative study of the control landscape of a system interacting with a thermal environment shows that the enhanced controllability attainable with open dynamics significantly broadens the range of the achievable observable values over the control landscape

  20. NASA Controller Acceptability Study 1(CAS-1) Experiment Description and Initial Observations

    Science.gov (United States)

    Chamberlain, James P.; Consiglio, Maria C.; Comstock, James R., Jr.; Ghatas, Rania W.; Munoz, Cesar

    2015-01-01

    This paper describes the Controller Acceptability Study 1 (CAS-1) experiment that was conducted by NASA Langley Research Center personnel from January through March 2014 and presents partial CAS-1 results. CAS-1 employed 14 air traffic controller volunteers as research subjects to assess the viability of simulated future unmanned aircraft systems (UAS) operating alongside manned aircraft in moderate-density, moderate-complexity Class E airspace. These simulated UAS were equipped with a prototype pilot-in-the-loop (PITL) Detect and Avoid (DAA) system, specifically the Self-Separation (SS) function of such a system based on Stratway+ software to replace the see-and-avoid capabilities of manned aircraft pilots. A quantitative CAS-1 objective was to determine horizontal miss distance (HMD) values for SS encounters that were most acceptable to air traffic controllers, specifically HMD values that were assessed as neither unsafely small nor disruptively large. HMD values between 0.5 and 3.0 nautical miles (nmi) were assessed for a wide array of encounter geometries between UAS and manned aircraft. The paper includes brief introductory material about DAA systems and their SS functions, followed by descriptions of the CAS-1 simulation environment, prototype PITL SS capability, and experiment design, and concludes with presentation and discussion of partial CAS-1 data and results.

  1. Bio-fouling and its control in the cooling water system of PFBR

    International Nuclear Information System (INIS)

    Satpathy, K.K.; Kannan, S.E.

    2004-06-01

    This report gives an overview of the bio-fouling problems that could be visualized in the different sections of the cooling system of PFBR, which is based on the experience observed at MAPS as well as from the experience of some of the work carried out at Kalpakkam. International as well as the MAPS practices of bio-fouling control are discussed. Based on these, an appropriate method for bio-fouling control is suggested. In addition, a few time bound, field, as well as laboratory experiments are proposed to be carried out, for deciding precise and accurate method of bio-fouling control for PFBR cooling water system. (author)

  2. Software complex AS (automation of spectrometry). User interface of experiment automation system implementation

    International Nuclear Information System (INIS)

    Astakhova, N.V.; Beskrovnyj, A.I.; Bogdzel', A.A.; Butorin, P.E.; Vasilovskij, S.G.; Gundorin, N.A.; Zlokazov, V.B.; Kutuzov, S.A.; Salamatin, I.M.; Shvetsov, V.N.

    2003-01-01

    An instrumental software complex for automation of spectrometry (AS) that enables prompt realization of experiment automation systems for spectrometers, which use data buferisation, has been developed. In the development new methods of programming and building of automation systems together with novel net technologies were employed. It is suggested that programs to schedule and conduct experiments should be based on the parametric model of the spectrometer, the approach that will make it possible to write programs suitable for any FLNP (Frank Laboratory of Neutron Physics) spectrometer and experimental technique applied and use different hardware interfaces for introducing the spectrometric data into the data acquisition system. The article describes the possibilities provided to the user in the field of scheduling and control of the experiment, data viewing, and control of the spectrometer parameters. The possibility of presenting the current spectrometer state, programs and the experimental data in the Internet in the form of dynamically formed protocols and graphs, as well as of the experiment control via the Internet is realized. To use the means of the Internet on the side of the client, applied programs are not needed. It suffices to know how to use the two programs to carry out experiments in the automated mode. The package is designed for experiments in condensed matter and nuclear physics and is ready for using. (author)

  3. An IBeacon-Based Location System for Smart Home Control.

    Science.gov (United States)

    Liu, Qinghe; Yang, Xinshuang; Deng, Lizhen

    2018-06-11

    Indoor location and intelligent control system can bring convenience to people’s daily life. In this paper, an indoor control system is designed to achieve equipment remote control by using low-energy Bluetooth (BLE) beacon and Internet of Things (IoT) technology. The proposed system consists of five parts: web server, home gateway, smart terminal, smartphone app and BLE beacons. In the web server, fingerprint matching based on RSSI stochastic characteristic and posture recognition model based on geomagnetic sensing are used to establish a more efficient equipment control system, combined with Pedestrian Dead Reckoning (PDR) technology to improve the accuracy of location. A personalized menu of remote “one-click” control is finally offered to users in a smartphone app. This smart home control system has been implemented by hardware, and precision and stability tests have been conducted, which proved the practicability and good user experience of this solution.

  4. Discussions on attitude determination and control system for micro/nano/pico-satellites considering survivability based on Hodoyoshi-3 and 4 experiences

    Science.gov (United States)

    Nakasuka, Shinichi; Miyata, Kikuko; Tsuruda, Yoshihiro; Aoyanagi, Yoshihide; Matsumoto, Takeshi

    2018-04-01

    The recent advancement of micro/nano/pico-satellites technologies encourages many universities to develop three axis stabilized satellites. As three axis stabilization is high level technology requiring the proper functioning of various sensors, actuators and control software, many early satellites failed in their initial operation phase because of shortage of solar power generation or inability to realize the initial step of missions because of unexpected attitude control system performance. These results come from failure to design the satellite attitude determination and control system (ADCS) appropriately and not considering "satellite survivability." ADCS should be designed such that even if some sensors or actuators cannot work as expected, the satellite can survive and carry out some of its missions, even if not full. This paper discusses how to realize ADCS while taking satellite survivability into account, based on our experiences of design and in-orbit operations of Hodoyoshi-3 and 4 satellites launched in 2014, which suffered from various component anomalies but could complete their missions.

  5. A control system of radiation protection at HESYRL

    International Nuclear Information System (INIS)

    Li Yuxiong; Li Juexin; Ning Xinquan

    1990-01-01

    A control system for radiation protection at Hefei National Synchrotron Radiation Laboratory (HESYRL) consists of three parts. They are a personal radiation safety interlock system, an automatic environmental radiation monitoring system and a data logging and management system for area radiation monitoring. Two-year operating experiments have shown that this system is reasonably designed, reliable, high-sensitive and automatic. The design principle, construction and operating status of each part of the system are introduced

  6. Development of adaptive control applied to chaotic systems

    Science.gov (United States)

    Rhode, Martin Andreas

    1997-12-01

    Continuous-time derivative control and adaptive map-based recursive feedback control techniques are used to control chaos in a variety of systems and in situations that are of practical interest. The theoretical part of the research includes the review of fundamental concept of control theory in the context of its applications to deterministic chaotic systems, the development of a new adaptive algorithm to identify the linear system properties necessary for control, and the extension of the recursive proportional feedback control technique, RPF, to high dimensional systems. Chaos control was applied to models of a thermal pulsed combustor, electro-chemical dissolution and the hyperchaotic Rossler system. Important implications for combustion engineering were suggested by successful control of the model of the thermal pulsed combustor. The system was automatically tracked while maintaining control into regions of parameter and state space where no stable attractors exist. In a simulation of the electrochemical dissolution system, application of derivative control to stabilize a steady state, and adaptive RPF to stabilize a period one orbit, was demonstrated. The high dimensional adaptive control algorithm was applied in a simulation using the Rossler hyperchaotic system, where a period-two orbit with two unstable directions was stabilized and tracked over a wide range of a system parameter. In the experimental part, the electrochemical system was studied in parameter space, by scanning the applied potential and the frequency of the rotating copper disk. The automated control algorithm is demonstrated to be effective when applied to stabilize a period-one orbit in the experiment. We show the necessity of small random perturbations applied to the system in order to both learn the dynamics and control the system at the same time. The simultaneous learning and control capability is shown to be an important part of the active feedback control.

  7. Malaysian Preparation for Nuclear Power Plant Instrumentation and Control System

    International Nuclear Information System (INIS)

    Mohd Idris Taib; Nurfarhana Ayuni Joha; Kamarudin Sulaiman; Izhar Abu Hussin

    2011-01-01

    Instrumentation and Control System is required in Nuclear Power Plant for their safe and effective operation. The system is combination and integrated from detectors, actuators, analog system as well as digital system. Current design of system definitely follows of electronic as well as computer technology, with strictly follow regulation and guideline from local regulator as well as International Atomic Energy Agency. Commercial Off-The-Shelf products are extensively used with specific nucleonic instrumentation. Malaysian experiences depend on Reactor TRIGA PUSPATI Instrumentation and Control, Power Plant Instrumentation and Control as well as Process Control System. However Malaysians have capabilities to upgrade themself from Electronics, Computers, Electrical and Mechanical based. Proposal is presented for Malaysian preparation. (author)

  8. Description of a research reactor control system using a programmable controller

    International Nuclear Information System (INIS)

    Battle, R.E.

    1986-01-01

    This paper describes the design features, testing methods, and operational experience of a programmable controller (PC) installed as a neutron flux controller in the Oak Ridge Research Reactor (ORR) at Oak Ridge National Laboratory (ORNL). The PC was designed to control neutron flux from 1 to 105% for three selectable ranges. The PC generates a flux setpoint under operator control, calculates the reactor heat power from flow and temperature signals, calculates a neutron flux calibration factor based on the heat power, and positions a control rod based on the flux-setpoint difference. The programmable controller was tested by controlling an analog computer model of the ORR. The equipment was installed in August 1985, and except for some startup problems, the system has performed well

  9. Fermilab 200 MeV linac control system hardware

    Energy Technology Data Exchange (ETDEWEB)

    Shea, M.F.

    1984-01-01

    This report is a description of the present Linac distributed control system that replaces the original Xerox computer and interface electronics with a network of 68000-based stations. In addition to replacing the obsolete Xerox equipment, goals set for the new system were to retain the fast response and interactive nature of the original system, to improve reliability, to ease maintenance, and to provide 15 Hz monitoring of all Linac parameters. Our previous experience with microcomputer installations showed that small, stand-alone control systems are rather straightforward to implement and have been proven to be reliable in operation, even in the severe environment of the 750-keV preaccelerator. The overall design of the Linac system incorporates the concept of many relatively small, stand-alone control systems networked together using an intercomputer communication network. Each station retains its local control system character but takes advantage of the network to allow an operator to interact with the entire Linac from any local console. At the same time, a link to the central computer system allows Host computers to also access parameters in the Linac.

  10. Fermilab 200 MeV linac control system hardware

    International Nuclear Information System (INIS)

    Shea, M.F.

    1984-01-01

    This report is a description of the present Linac distributed control system that replaces the original Xerox computer and interface electronics with a network of 68000-based stations. In addition to replacing the obsolete Xerox equipment, goals set for the new system were to retain the fast response and interactive nature of the original system, to improve reliability, to ease maintenance, and to provide 15 Hz monitoring of all Linac parameters. Our previous experience with microcomputer installations showed that small, stand-alone control systems are rather straightforward to implement and have been proven to be reliable in operation, even in the severe environment of the 750-keV preaccelerator. The overall design of the Linac system incorporates the concept of many relatively small, stand-alone control systems networked together using an intercomputer communication network. Each station retains its local control system character but takes advantage of the network to allow an operator to interact with the entire Linac from any local console. At the same time, a link to the central computer system allows Host computers to also access parameters in the Linac

  11. Modernization of control system using the digital control system

    International Nuclear Information System (INIS)

    Carrasco, J. A.; Fernandez, L.; Jimenez, A.

    2002-01-01

    Nowadays, all plant automation tendencies are based on the use of Digital Control System. In big industrial plants the control systems employed are Distributed Control Systems (DCS). The addition of these systems in nuclear power plants,implies an important adaptation process, because most of them were installed using analog control systems. This paper presents the objectives and the first results obtained, in a modernization project, focused in obtaining an engineering platform for making test and analysis of changes prior to their implementation in a nuclear plant. Modernization, Upgrade, DCS, Automation, Simulation, Training. (Author)

  12. Enabling autonomous control for space reactor power systems

    International Nuclear Information System (INIS)

    Wood, R. T.

    2006-01-01

    The application of nuclear reactors for space power and/or propulsion presents some unique challenges regarding the operations and control of the power system. Terrestrial nuclear reactors employ varying degrees of human control and decision-making for operations and benefit from periodic human interaction for maintenance. In contrast, the control system of a space reactor power system (SRPS) employed for deep space missions must be able to accommodate unattended operations due to communications delays and periods of planetary occlusion while adapting to evolving or degraded conditions with no opportunity for repair or refurbishment. Thus, a SRPS control system must provide for operational autonomy. Oak Ridge National Laboratory (ORNL) has conducted an investigation of the state of the technology for autonomous control to determine the experience base in the nuclear power application domain, both for space and terrestrial use. It was found that control systems with varying levels of autonomy have been employed in robotic, transportation, spacecraft, and manufacturing applications. However, autonomous control has not been implemented for an operating terrestrial nuclear power plant nor has there been any experience beyond automating simple control loops for space reactors. Current automated control technologies for nuclear power plants are reasonably mature, and basic control for a SRPS is clearly feasible under optimum circumstances. However, autonomous control is primarily intended to account for the non optimum circumstances when degradation, failure, and other off-normal events challenge the performance of the reactor and near-term human intervention is not possible. Thus, the development and demonstration of autonomous control capabilities for the specific domain of space nuclear power operations is needed. This paper will discuss the findings of the ORNL study and provide a description of the concept of autonomy, its key characteristics, and a prospective

  13. O and M Experience with computer based system at captive power plant, HWP Manuguru

    International Nuclear Information System (INIS)

    Basu, S.; Kulkarni, R.S.

    1992-01-01

    Distributed digital control system has been the latest trend in the field of instrumentation and control system. In this paper effort is made to bring out the operation and maintenance experience of ASEA make DDC system at captive power plant, Heavy Water Project(HWP), Manuguru. (author). 2 refs., 1 fig

  14. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  15. Hardware control system using modular software under RSX-11D

    International Nuclear Information System (INIS)

    Kittell, R.S.; Helland, J.A.

    1978-01-01

    A modular software system used to control extensive hardware is described. The development, operation, and experience with this software are discussed. Included are the methods employed to implement this system while taking advantage of the Real-Time features of RSX-11D. Comparisons are made between this system and an earlier nonmodular system. The controlled hardware includes magnet power supplies, stepping motors, DVM's, and multiplexors, and is interfaced through CAMAC. 4 figures

  16. Design type testing for digital instrumentation and control systems

    International Nuclear Information System (INIS)

    Bastl, W.; Mohns, G.

    1997-01-01

    The design type qualification of digital safety instrumentation and control is outlined. Experience shows that the concepts discussed, derived from codes, guidelines and standards, achieve useful results. It has likewise become clear that the systematics of design type qualification of the hardware components is also applicable to the software components. Design type qualification of the software, a premiere, could be performed unexpectedly smoothly. The hardware design type qualification proved that the hardware as a substrate of functionality and reliability is an issue that demands full attention, as compared to conventional systems. Another insight is that design qualification of digital instrumentation and control systems must include plant-independent systems tests. Digital instrumentation and control systems simply work very differently from conventional control systems, so that this testing modality is inevitable. (Orig./CB) [de

  17. The control system for the LEP beam dump

    International Nuclear Information System (INIS)

    Carlier, E.; Aimar, A.; Bretin, J.L.; Marchand, A.; Mertens, V.; Verhagen, H.

    1994-01-01

    A beam abort system has been developed and installed in LEP to allow the controlled disposal of the stored beam energy. In view of the importance of the system for the protection of the experiments and the machine, and the technical problems in a pulsed high-power environment, special care has been taken to arrive at a clean functional separation between the different elements of the control electronics, using optical transmission of information. All interlocks have been implemented in hardware. The slow controls and the monitoring tasks have been realized in the framework of a modular software tool kit. ((orig.))

  18. Practical experience in the application of quality control in water-reactor fuel fabrication

    International Nuclear Information System (INIS)

    Vollath, D.

    1984-07-01

    Highly industrialized countries have gained vast experience in manufacturing water reactor fuel. Manufacturing is followed by a stringent system of quality assurance and quality control. The Seminar on Practical Experience in the Application of Quality Control in Water-Reactor Fuel Fabrication provided a forum for an exchange of information on methods and systems of quality assurance and quality control for reactor fuel. In addition, many developing countries which have started or intend to set up a nuclear fuel industry are interested in the application of quality assurance and quality control. This meeting has been preceded by two different series of conferences: the IAEA meetings 1976 in Oslo, 1978 in Prague and 1979 in Buenos Aires, and the Karlsruhe meetings on Characterization and Quality Control of Nuclear Fuel held in 1978 and 1981. Quality control and quality assurance has many different facets. Unlike the purely technical aspects, covered by the Karlsruhe conference series, the IAEA meetings always relate to a wider field of topics. They include governmental regulations and codes for practical quality assurance. This volume contains the papers presented at the seminar and a record of the discussions. (orig.)

  19. Real-time tracking control of electro-hydraulic force servo systems using offline feedback control and adaptive control.

    Science.gov (United States)

    Shen, Gang; Zhu, Zhencai; Zhao, Jinsong; Zhu, Weidong; Tang, Yu; Li, Xiang

    2017-03-01

    This paper focuses on an application of an electro-hydraulic force tracking controller combined with an offline designed feedback controller (ODFC) and an online adaptive compensator in order to improve force tracking performance of an electro-hydraulic force servo system (EHFS). A proportional-integral controller has been employed and a parameter-based force closed-loop transfer function of the EHFS is identified by a continuous system identification algorithm. By taking the identified system model as a nominal plant model, an H ∞ offline design method is employed to establish an optimized feedback controller with consideration of the performance, control efforts, and robustness of the EHFS. In order to overcome the disadvantage of the offline designed controller and cope with the varying dynamics of the EHFS, an online adaptive compensator with a normalized least-mean-square algorithm is cascaded to the force closed-loop system of the EHFS compensated by the ODFC. Some comparative experiments are carried out on a real-time EHFS using an xPC rapid prototype technology, and the proposed controller yields a better force tracking performance improvement. Copyright © 2016. Published by Elsevier Ltd.

  20. Photovoltaic Cells Mppt Algorithm and Design of Controller Monitoring System

    Science.gov (United States)

    Meng, X. Z.; Feng, H. B.

    2017-10-01

    This paper combined the advantages of each maximum power point tracking (MPPT) algorithm, put forward a kind of algorithm with higher speed and higher precision, based on this algorithm designed a maximum power point tracking controller with ARM. The controller, communication technology and PC software formed a control system. Results of the simulation and experiment showed that the process of maximum power tracking was effective, and the system was stable.

  1. A Novel Pitch Control System of a Large Wind Turbine Using Two-Degree-of-Freedom Motion Control with Feedback Linearization Control

    Directory of Open Access Journals (Sweden)

    Ching-Sung Wang

    2016-09-01

    Full Text Available Pitch Control plays a significant role for a large wind turbine. This study investigates a novel robust hydraulic pitch control system of a large wind turbine. The novel hydraulic pitch control system is driven by a novel high efficiency and high response hydraulic servo system. The pitch controller, designed by two degree-of-freedom (2-DOF motion control with feedback linearization, is developed to enhance the controllability and stability of the pitch control system. Furthermore, the full-scale testbed of the hydraulic pitch control system of a large wind turbine is developed for practically experimental verification. Besides, the wind turbine simulation software FAST is used to analyze the motion of the blade which results are given to the testbed as the disturbance load command. The 2-DOF pitch controller contains a feedforward controller with feedback linearization theory to overcome the nonlinearities of the system and a feedback controller to improve the system robustness for achieving the disturbance rejection. Consequently, the novel hydraulic pitch control system shows excellent path tracking performance in the experiments. Moreover, the robustness test with a simulated disturbance load generated by FAST is performed to validate the reliability of the proposed pitch control system.

  2. Adaptive Augmenting Control Flight Characterization Experiment on an F/A-18

    Science.gov (United States)

    VanZwieten, Tannen S.; Orr, Jeb S.; Wall, John H.; Gilligan, Eric T.

    2014-01-01

    This paper summarizes the Adaptive Augmenting Control (AAC) flight characterization experiments performed using an F/A-18 (TN 853). AAC was designed and developed specifically for launch vehicles, and is currently part of the baseline autopilot design for NASA's Space Launch System (SLS). The scope covered here includes a brief overview of the algorithm (covered in more detail elsewhere), motivation and benefits of flight testing, top-level SLS flight test objectives, applicability of the F/A-18 as a platform for testing a launch vehicle control design, test cases designed to fully vet the AAC algorithm, flight test results, and conclusions regarding the functionality of AAC. The AAC algorithm developed at Marshall Space Flight Center is a forward loop gain multiplicative adaptive algorithm that modifies the total attitude control system gain in response to sensed model errors or undesirable parasitic mode resonances. The AAC algorithm provides the capability to improve or decrease performance by balancing attitude tracking with the mitigation of parasitic dynamics, such as control-structure interaction or servo-actuator limit cycles. In the case of the latter, if unmodeled or mismodeled parasitic dynamics are present that would otherwise result in a closed-loop instability or near instability, the adaptive controller decreases the total loop gain to reduce the interaction between these dynamics and the controller. This is in contrast to traditional adaptive control logic, which focuses on improving performance by increasing gain. The computationally simple AAC attitude control algorithm has stability properties that are reconcilable in the context of classical frequency-domain criteria (i.e., gain and phase margin). The algorithm assumes that the baseline attitude control design is well-tuned for a nominal trajectory and is designed to adapt only when necessary. Furthermore, the adaptation is attracted to the nominal design and adapts only on an as-needed basis

  3. A compound control strategy combining velocity compensation with ADRC of electro-hydraulic position servo control system.

    Science.gov (United States)

    Gao, Bingwei; Shao, Junpeng; Yang, Xiaodong

    2014-11-01

    In order to enhance the anti-jamming ability of electro-hydraulic position servo control system at the same time improve the control precision of the system, a compound control strategy that combines velocity compensation with Active Disturbance Rejection Controller (ADRC) is proposed, and the working principle of the compound control strategy is given. ADRC controller is designed, and the extended state observer is used for observing internal parameters uncertainties and external disturbances, so that the disturbances of the system are suppressed effectively. Velocity compensation controller is designed and the compensation model is derived to further improve the positioning accuracy of the system and to achieve the velocity compensation without disturbance. The compound control strategy is verified by the simulation and experiment respectively, and the simulation and experimental results show that the electro-hydraulic position servo control system with ADRC controller can effectively inhibit the external disturbances, the precise positioning control is realized after introducing the velocity compensation controller, and verify that the compound control strategy is effective. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Capital Controls, Two-tiered Exchange Rate Systems and the Exchange Rate Policy : The South African Experience

    NARCIS (Netherlands)

    Schaling, E.

    2005-01-01

    South Africa's 40 years of experience with capital controls on residents and non-residents (1961-2001) reads like a collection of examples of perverse unanticipated effects of legislation and regulation.We show that the presence of capital controls on residents and non-residents, enabled the South

  5. Experience representation in information systems

    OpenAIRE

    Kaczmarek, Jan

    2014-01-01

    This thesis looks into the ways subjective dimension of experience could be represented in artificial, non-biological systems, in particular information systems. The pivotal assumption is that experience as opposed to mainstream thinking in information science is not equal to knowledge, so that experience is a broader term which encapsulates both knowledge and subjective, affective component of experience, which so far has not been properly embraced by knowledge representation theories. This ...

  6. Experience representation in information systems

    OpenAIRE

    Kaczmarek, Jan

    2014-01-01

    This thesis looks into the ways subjective dimension of experience could be represented in artificial, non-biological systems, in particular information systems. The pivotal assumption is that experience as opposed to mainstream thinking in information science is not equal to knowledge, so that experience is a broader term which encapsulates both knowledge and subjective, affective component of experience, which so far has not been properly embraced by knowledge representation theories. Th...

  7. The renewed HT-7 plasma control system based on real-time Linux cluster

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Q.P., E-mail: qpyuan@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Xiao, B.J.; Zhang, R.R. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Walker, M.L.; Penaflor, B.G.; Piglowski, D.A.; Johnson, R.D. [General Atomics, DIII-D National Fusion Facility, San Diego, CA (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The hardware and software structure of the new HT-7 plasma control system (HT-7 PCS) is reported. Black-Right-Pointing-Pointer All original systems were integrated in the new HT-7 PCS. And the implementation details of the control algorithms are given in the paper. Black-Right-Pointing-Pointer Different from EAST PCS, the AC operation mode is realized in HT-7 PCS. Black-Right-Pointing-Pointer The experiment results are discussed. Good control performance has been obtained. - Abstract: In order to improve the synchronization, flexibility and expansibility of the plasma control on HT-7, a new plasma control system (HT-7 PCS) was constructed. The HT-7 PCS was based on a real-time Linux cluster with a well-defined, robust and flexible software infrastructure which was adapted from DIII-D PCS. In this paper, the hardware structure and system customization details for HT-7 PCS are reported. The plasma position and current control, plasma density control and off-normal event detection, which were realized in separated systems originally, have been integrated and implemented in such HT-7 PCS. All these control algorithms have been successfully validated in the last several HT-7 experiment campaigns. Good control performance has been achieved and the experiment results are discussed in the paper.

  8. Stratospheric controlled perturbation experiment (SCoPEx): overview, status, and results from related laboratory experiments

    Science.gov (United States)

    Keith, D.; Dykema, J. A.; Keutsch, F. N.

    2017-12-01

    Stratospheric Controlled Perturbation Experiment (SCoPEx), is a scientific experiment to advance understanding of stratospheric aerosols. It aims to make quantitative measurements of aerosol microphysics and atmospheric chemistry to improve large-scale models used to assess the risks and benefits of solar geoengineering. A perturbative experiment requires: (a) means to create a well-mixed, small perturbed volume, and (b) observation of time evolution of chemistry and aerosols in the volume. SCoPEx will used a propelled balloon gondola containing all instruments and drive system. The propeller wake forms a well-mixed volume (roughly 1 km long and 100 meters in diameter) that serves as an experimental `beaker' into which aerosols (e.g., budget, etc; (d) results from CFD simulation of propeller wake and simulation of chemistry and aerosol microphysics; and finally (e) proposed concept of operations and schedule. We will also provide an overview of the plans for governance including management of health safety and environmental risks, transparency, public engagement, and larger questions about governance of solar geoengineering experiments. Finally, we will briefly present results of laboratory experiments of the interaction of chemical such as ClONO2 and HCl on particle surfaces relevant for stratospheric solar geoengineering.

  9. Shippingport Station Decommissioning Project (SSDP): configuration control system and project activity controls

    International Nuclear Information System (INIS)

    Mullee, G.R.

    1986-01-01

    The SSDP has been using a Configuration Control system as a significant element in the management plan for the safe and effective performance of the project. The objective of the Configuration Control system is to control the physical plant configuration, system status, work schedules, status tracking, and day-to-day problem resolution. Prior to the Decommissioning Operations Contractor (DOC) assuming operational responsibility for the Shippingport Plant, an assessment was made of the status of the configuration of the systems and related documentation. Action was taken as required to match the operating procedures and system documentation with the actual physical condition of the plant. During the first stage of the project, planning was put in place for subsequent decommissioning activities. This planning included defining organizational responsibilities, completing the necessary project instructions and procedures, and doing the planning and scheduling for the subsequent decommissioning phase activities. Detailed instructions for the performance of the various decommissioning tasks were prepared. Prior to the start of any work on a given Activity Package, a Work Authorization is required. The Work Authorization form provides a complete checklist to ensure that all necessary prerequisites are completed. A computerized Communications Configuration Control Information system monitors status including information on system status, tag-outs, radiological work permits, etc. An ongoing effort is being directed toward maintaining operating instructions and system schematics, etc. current as the Plant configuration changes. The experience with the Configuration Control System to date has been favorable

  10. Design and flight experience with a digital fly-by-wire control system in an F-8 airplane

    Science.gov (United States)

    Deets, D. A.; Szalai, K. J.

    1974-01-01

    A digital fly-by-wire flight control system was designed, built, and for the first time flown in an airplane. The system, which uses components from the Apollo guidance system, is installed in an F-8 airplane as the primary control system. A lunar module guidance computer is the central element in the three-axis, single-channel, multimode, digital control system. A triplex electrical analog system which provides unaugmented control of the airplane is the only backup to the digital system. Flight results showed highly successful system operation, although the trim update rate was inadequate for precise trim changes, causing minor concern. The use of a digital system to implement conventional control laws proved to be practical for flight. Logic functions coded as an integral part of the control laws were found to be advantageous. Although software verification required extensive effort, confidence in the software was achieved.

  11. Automation and Control Learning Environment with Mixed Reality Remote Experiments Architecture

    Directory of Open Access Journals (Sweden)

    Frederico M. Schaf

    2007-05-01

    Full Text Available This work aims to the use of remotely web-based experiments to improve the learning process of automation and control systems theory courses. An architecture combining virtual learning environments, remote experiments, students guide and experiments analysis is proposed based on a wide state of art study. The validation of the architecture uses state of art technologies and new simple developed programs to implement the case studies presented. All implementations presented use an internet accessible virtual learning environment providing educational resources, guides and learning material to create a distance learning course associated with the remote mixed reality experiment. This work is part of the RExNet consortium, supported by the European Alfa project.

  12. Tracking System : Suaineadh satellite experiment

    OpenAIRE

    Brengesjö, Carl; Selin, Martine

    2011-01-01

    The purpose of this bachelor thesis is to present a tracking system for the Suaineadh satellite experiment. The experiment is a part of the REXUS (Rocket EXperiments for University Students) program and the objective is to deploy a foldable web in space. The assignment of this thesis is to develop a tracking system to find the parts from the Suaineadh experiment that will land on Earth. It is important to find the parts and recover all the data that the experiment performed during the travel ...

  13. Report on the experience with the Supervisory Control and Diagnostics System (SCDS) of MFTF-B

    International Nuclear Information System (INIS)

    Wyman, R.H.

    1983-01-01

    The Supervisory Control and Diagnostics System (SCDS) of MFTF is a multiprocessor computer system using graphics oriented displays with touch sensitive panels as the primary operator interface. Late in the calendar year 1981 the system was used to control an integrated test of the vacuum vessel, vacuum system, cryogenics system and the superconducting magnet of MFTF. Since the completion of those tests and starting in early calendar 1983 the system has been used for control of the neutral beam test facility at LLNL. This paper presents a short overview of SCDS for the purpose of orientation and then proceeds to describe the difficulties encountered in these preliminary encounters with reality. The band-aids used to hold things together as disaster threatened as well as the long-term solutions to the problems will be discussed. Finally, we will present some comments on system costs and management philosophy

  14. Discrete Event Supervisory Control Applied to Propulsion Systems

    Science.gov (United States)

    Litt, Jonathan S.; Shah, Neerav

    2005-01-01

    The theory of discrete event supervisory (DES) control was applied to the optimal control of a twin-engine aircraft propulsion system and demonstrated in a simulation. The supervisory control, which is implemented as a finite-state automaton, oversees the behavior of a system and manages it in such a way that it maximizes a performance criterion, similar to a traditional optimal control problem. DES controllers can be nested such that a high-level controller supervises multiple lower level controllers. This structure can be expanded to control huge, complex systems, providing optimal performance and increasing autonomy with each additional level. The DES control strategy for propulsion systems was validated using a distributed testbed consisting of multiple computers--each representing a module of the overall propulsion system--to simulate real-time hardware-in-the-loop testing. In the first experiment, DES control was applied to the operation of a nonlinear simulation of a turbofan engine (running in closed loop using its own feedback controller) to minimize engine structural damage caused by a combination of thermal and structural loads. This enables increased on-wing time for the engine through better management of the engine-component life usage. Thus, the engine-level DES acts as a life-extending controller through its interaction with and manipulation of the engine s operation.

  15. The control and data acquisition system of a laser in-vessel viewing system

    International Nuclear Information System (INIS)

    Pereira, Rita C.; Cruz, Nuno; Neri, C.; Riva, M.; Correia, C.; Varandas, C.A.F.

    2000-01-01

    This paper presents the dedicated control and data acquisition system (CADAS) of a new laser in-vessel viewing system that has been developed for inspection purposes in fusion experiments. CADAS is based on a MC68060 microprocessor and on-site developed VME instrumentation. Its main aims are to simultaneously control the laser alignment system as well as the laser beam deflection for in-vessel scanning, acquire a high-resolution image and support real-time data flow rates up to 2 Mbyte/s from the acquisition modules to the hard disk and network. The hardware (modules for control and alignment acquisition, scanning acquisition and monitoring) as well as the three levels of software are described

  16. The BaBar Data Reconstruction Control System

    International Nuclear Information System (INIS)

    Ceseracciu, A

    2005-01-01

    The BaBar experiment is characterized by extremely high luminosity and very large volume of data produced and stored, with increasing computing requirements each year. To fulfill these requirements a Control System has been designed and developed for the offline distributed data reconstruction system. The control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is distributed in a hierarchical way: the top-level system is organized in farms, farms in services, and services in subservices or code modules. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes the design and evolution of this control system, currently in use at SLAC and Padova on ∼450 CPUs organized in 9 farms

  17. Backfitting of the nuclear plant V1 power control system

    International Nuclear Information System (INIS)

    Karpeta, C.; Rubek, J.; Stirsky, P.

    1985-01-01

    The paper deals with some aspects of implementation of modifications into the Czechoslovak nuclear plant V1 control system as called for on the basis of experience gained during the first period of the plant operation. Brief description of the plant power control system and its main functions is given. Some deficiencies in the system performance during abnormal conditions are outlined and measures taken to overcome them are presented. (author)

  18. Building a test platform for agents in power system control: Experience from SYSLAB

    DEFF Research Database (Denmark)

    Gehrke, Oliver; Bindner, Henrik W.

    2007-01-01

    A tighter integration of information and communication technologies into power grids and a gradual decentralization of control are widely regarded as key responses to the transformation of power systems, even though many different approaches are investigated to achieve this. Lack of system...

  19. A Real-Time Embedded Control System for Electro-Fused Magnesia Furnace

    Directory of Open Access Journals (Sweden)

    Fang Zheng

    2013-01-01

    Full Text Available Since smelting process of electro-fused magnesia furnace is a complicated process which has characteristics like complex operation conditions, strong nonlinearities, and strong couplings, traditional linear controller cannot control it very well. Advanced intelligent control strategy is a good solution to this kind of industrial process. However, advanced intelligent control strategy always involves huge programming task and hard debugging and maintaining problems. In this paper, a real-time embedded control system is proposed for the process control of electro-fused magnesia furnace based on intelligent control strategy and model-based design technology. As for hardware, an embedded controller based on an industrial Single Board Computer (SBC is developed to meet industrial field environment demands. As for software, a Linux based on Real-Time Application Interface (RTAI is used as the real-time kernel of the controller to improve its real-time performance. The embedded software platform is also modified to support generating embedded code automatically from Simulink/Stateflow models. Based on the proposed embedded control system, the intelligent embedded control software of electro-fused magnesium furnace can be directly generated from Simulink/Stateflow models. To validate the effectiveness of the proposed embedded control system, hardware-in-the-loop (HIL and industrial field experiments are both implemented. Experiments results show that the embedded control system works very well in both laboratory and industry environments.

  20. Automating quantum experiment control

    Science.gov (United States)

    Stevens, Kelly E.; Amini, Jason M.; Doret, S. Charles; Mohler, Greg; Volin, Curtis; Harter, Alexa W.

    2017-03-01

    The field of quantum information processing is rapidly advancing. As the control of quantum systems approaches the level needed for useful computation, the physical hardware underlying the quantum systems is becoming increasingly complex. It is already becoming impractical to manually code control for the larger hardware implementations. In this chapter, we will employ an approach to the problem of system control that parallels compiler design for a classical computer. We will start with a candidate quantum computing technology, the surface electrode ion trap, and build a system instruction language which can be generated from a simple machine-independent programming language via compilation. We incorporate compile time generation of ion routing that separates the algorithm description from the physical geometry of the hardware. Extending this approach to automatic routing at run time allows for automated initialization of qubit number and placement and additionally allows for automated recovery after catastrophic events such as qubit loss. To show that these systems can handle real hardware, we present a simple demonstration system that routes two ions around a multi-zone ion trap and handles ion loss and ion placement. While we will mainly use examples from transport-based ion trap quantum computing, many of the issues and solutions are applicable to other architectures.

  1. MxCuBE: a synchrotron beamline control environment customized for macromolecular crystallography experiments

    International Nuclear Information System (INIS)

    Gabadinho, José; Beteva, Antonia; Guijarro, Matias; Rey-Bakaikoa, Vicente; Spruce, Darren

    2010-01-01

    MxCuBE is a beamline control environment optimized for the needs of macromolecular crystallography. This paper describes the design of the software and the features that MxCuBE currently provides. The design and features of a beamline control software system for macromolecular crystallography (MX) experiments developed at the European Synchrotron Radiation Facility (ESRF) are described. This system, MxCuBE, allows users to easily and simply interact with beamline hardware components and provides automated routines for common tasks in the operation of a synchrotron beamline dedicated to experiments in MX. Additional functionality is provided through intuitive interfaces that enable the assessment of the diffraction characteristics of samples, experiment planning, automatic data collection and the on-line collection and analysis of X-ray emission spectra. The software can be run in a tandem client-server mode that allows for remote control and relevant experimental parameters and results are automatically logged in a relational database, ISPyB. MxCuBE is modular, flexible and extensible and is currently deployed on eight macromolecular crystallography beamlines at the ESRF. Additionally, the software is installed at MAX-lab beamline I911-3 and at BESSY beamline BL14.1

  2. Corpuscular event-by-event simulation of quantum optics experiments: application to a quantum-controlled delayed-choice experiment

    International Nuclear Information System (INIS)

    De Raedt, Hans; Delina, M; Jin, Fengping; Michielsen, Kristel

    2012-01-01

    A corpuscular simulation model of optical phenomena that does not require knowledge of the solution of a wave equation of the whole system and reproduces the results of Maxwell's theory by generating detection events one by one is discussed. The event-based corpuscular model gives a unified description of multiple-beam fringes of a plane parallel plate and a single-photon Mach-Zehnder interferometer, Wheeler's delayed choice, photon tunneling, quantum eraser, two-beam interference, Einstein-Podolsky-Rosen-Bohm and Hanbury Brown-Twiss experiments. The approach is illustrated by applying it to a recent proposal for a quantum-controlled delayed choice experiment, demonstrating that also this thought experiment can be understood in terms of particle processes only.

  3. The National System for quality control and the European experience

    International Nuclear Information System (INIS)

    Dimov, A.; Vassileva, J.; Ingilizova, K.; Slavchev, A. and others

    2003-01-01

    Objective: The aim of the work is to present the structure and functions of the National System for quality control (NSQC) in the medical irradiation, created to guarantee the safety and the safe use of the radiological equipment. Material and method: The approaches are studies in the development of the NSQC, applied in Bulgaria and some European Union members - such as Germany and Great Britain - and the specifics of the way in which the Directive for medical irradiation EURATOM 97/43 is implemented in national legislations. Results: The advantages and disadvantages of Bulgarian NSQC are analysed and some ideas for tis improvement are suggested. Conclusions: The developed draft NSQC for medical irradiation is in compliance with the requirement of the European Directive. The real advantages and disadvantages of the NSQC will show after its implementation in the practical radiation protection and control in the country

  4. Control and data acquisition ATCA/AXIe board designed for high system availability and reliability of nuclear fusion experiments

    International Nuclear Information System (INIS)

    Batista, A.J.N.; Leong, C.; Bexiga, V.; Rodrigues, A.P.; Combo, A.; Carvalho, B.B.; Carvalho, P.F.; Fortunato, J.; Santos, B.; Carvalho, P.; Correia, M.; Teixeira, J.P.; Teixeira, I.C.; Sousa, J.; Gonçalves, B.; Varandas, C.A.F.

    2013-01-01

    This paper describes the implementation and test of a control and data acquisition board designed to be integrated on systems demanding high availability and reliability, foreseen for future experiments like ITER or other long operation fusion devices. The Advanced Telecommunications Computing Architecture (ATCA) standard (PICMG 3.0 and 3.4) was selected for board implementation, which has support for the desired system robustness and performance. Some board features such as rear Input/Output (IO) signals connectivity (passive, copper tracks only), cable-less hot-swap maintenance, Intelligent Platform Management Controller (IPMC) and redundancy on timing signals, communications links and power supplies are significant board improvements, relatively to previous control and data acquisition boards, allowing the development of more reliable system architectures. Moreover, the developed board is also compatible with the emerging ATCA eXtensions for Instrumentation (AXIe) specifications, which provides additional timing and synchronization signals on the backplane. ATCA full-mesh, multi-gigabit, full-duplex, point-to-point communication links between Field Programmable Gate Arrays (FPGA), of peer boards inside the shelf, allow the implementation of distributed algorithms and development of Multi-Input Multi-Output (MIMO) systems. Up to 48 analog input channels, simultaneously digitized (2 MSPS @ 18-bits), are filtered/decimated by the board FPGA and sent to the ATCA/AXIe host through Peripheral Component Interconnect express (PCIe) using Direct Memory Access (DMA). In real-time, the host can update up to 48 analog output channels (1 MSPS @ 18-bits), per board, through PCIe. Further board characteristics comprise analog IO channels with galvanic isolation and an optional signal chopper mode, for offset compensation over time on digital integration of magnetic signals. Board time synchronization is attained by means of the Inter-Range Instrumentation Group (IRIG) time-code

  5. The elettra beam line control system

    International Nuclear Information System (INIS)

    Mignacco, M.; Abrami, A.; Dequal, Z.

    1994-01-01

    Elettra is a third generation Synchrotron Light Source located in Trieste (Italy). It consists of a full energy linac injector and a storage ring with beam energies between 1.5 and 2 GeV. The facility is scheduled to be operational by end 1993. For the whole project 22 beam lines from insertion devices are foreseen, each of them is composed of a large number of measurement and controls instruments, most of them embedded in intelligent devices; in addition each beam line can be considered unique compared to the others, having been designed to provide a different kind of synchrotron radiation. This results in a large not homogenous environment where more than 200,000 physical points have to be controlled. A joint team composed of Softeco Sismat and Digital Equipment has developed a fully automated beam line control system able to give full remote controls, with different kind of access rights, to beam line users and beam line specialists as well as a full integration with experiment control systems. ((orig.))

  6. Hazard Control Extensions in a COTS Based Data Handling System

    Science.gov (United States)

    Vogel, Torsten; Rakers, Sven; Gronowski, Matthias; Schneegans, Joachim

    2011-08-01

    EML is an electromagnetic levitator for containerless processing of conductive samples on the International Space Station. This material sciences experiment is running in the European Drawer Rack (EDR) facility. The objective of this experiment is to gain insight into the parameters of liquid metal samples and their crystallisation processes without the influence of container walls. To this end the samples are electromagnetically positioned in a coil system and then heated up beyond their melting point in an ultraclean environment.The EML programme is currently under development by Astrium Space Transportation in Friedrichshafen and Bremen; jointly funded by ESA and DLR (on behalf of BMWi, contract 50WP0808). EML consists of four main modules listed in Table 1. The paper focuses mainly on the architecture and design of the ECM module and its contribution to a safe operation of the experiment. The ECM is a computer system that integrates the power supply to the EML experiment, control functions and video handling and compression features. Experiment control is performed by either telecommand or the execution of predefined experiment scripts.

  7. User Experience May be Producing Greater Heart Rate Variability than Motor Imagery Related Control Tasks during the User-System Adaptation in Brain-Computer Interfaces

    Science.gov (United States)

    Alonso-Valerdi, Luz M.; Gutiérrez-Begovich, David A.; Argüello-García, Janet; Sepulveda, Francisco; Ramírez-Mendoza, Ricardo A.

    2016-01-01

    Brain-computer interface (BCI) is technology that is developing fast, but it remains inaccurate, unreliable and slow due to the difficulty to obtain precise information from the brain. Consequently, the involvement of other biosignals to decode the user control tasks has risen in importance. A traditional way to operate a BCI system is via motor imagery (MI) tasks. As imaginary movements activate similar cortical structures and vegetative mechanisms as a voluntary movement does, heart rate variability (HRV) has been proposed as a parameter to improve the detection of MI related control tasks. However, HR is very susceptible to body needs and environmental demands, and as BCI systems require high levels of attention, perceptual processing and mental workload, it is important to assess the practical effectiveness of HRV. The present study aimed to determine if brain and heart electrical signals (HRV) are modulated by MI activity used to control a BCI system, or if HRV is modulated by the user perceptions and responses that result from the operation of a BCI system (i.e., user experience). For this purpose, a database of 11 participants who were exposed to eight different situations was used. The sensory-cognitive load (intake and rejection tasks) was controlled in those situations. Two electrophysiological signals were utilized: electroencephalography and electrocardiography. From those biosignals, event-related (de-)synchronization maps and event-related HR changes were respectively estimated. The maps and the HR changes were cross-correlated in order to verify if both biosignals were modulated due to MI activity. The results suggest that HR varies according to the experience undergone by the user in a BCI working environment, and not because of the MI activity used to operate the system. PMID:27458384

  8. Induction machine Direct Torque Control system based on fuzzy adaptive control

    Science.gov (United States)

    Li, Shi-ping; Yu, Yan; Jiao, Zhen-gang; Gu, Shu-sheng

    2009-07-01

    Direct Torque Control technology is a high-performance communication control method, it uses the space voltage vector method, and then to the inverter switch state control, to obtain high torque dynamic performance. But none of the switching states is able to generate the exact voltage vector to produce the desired changes in torque and flux in most of the switching instances. This causes a high ripple in torque. To solve this problem, a fuzzy implementation of Direct Torque Control of Induction machine is presented here. Error of stator flux, error of motor electromagnetic torque and position of angle of flux are taken as fuzzy variables. In order to further solve nonlinear problem of variation parameters in direct torque control system, the paper proposes a fuzzy parameter PID adaptive control method which is suitable for the direct torque control of an asynchronous motor. The generation of its fuzzy control is obtained by analyzing and optimizing PID control step response and combining expert's experience. For this reason, it carries out fuzzy work to PID regulator of motor speed to achieve to regulate PID parameters. Therefore the control system gets swifter response velocity, stronger robustness and higher precision of velocity control. The computer simulated results verify the validity of this novel method.

  9. Real-time Equilibrium Reconstruction and Isoflux Control of Plasma Shape and Position in the National Spherical Torus Experiment (NSTX)

    International Nuclear Information System (INIS)

    Mueller, D.; Gates, D.A.; Menard, J.E.; Ferron, J.R.; Sabbagh, S.A.

    2004-01-01

    The implementation of the rtEFIT-isoflux algorithm in the digital control system for NSTX has led to improved ability to control the plasma shape. In particular, it has been essential for good gap control for radio-frequency experiments, for control of drsep in H-mode studies, and for X-point height control and κ control in a variety of experiments

  10. An analysis of the control hierarchy modelling of the CMS detector control system

    Energy Technology Data Exchange (ETDEWEB)

    Hwong, Yi-Ling; et al.

    2011-01-01

    The supervisory level of the Detector Control System (DCS) of the CMS experiment is implemented using Finite State Machines (FSM), which model the behaviours and control the operations of all the sub-detectors and support services. The FSM tree of the whole CMS experiment consists of more than 30.000 nodes. An analysis of a system of such size is a complex task but is a crucial step towards the improvement of the overall performance of the FSM system. This paper presents the analysis of the CMS FSM system using the micro Common Representation Language 2 (mcrl2) methodology. Individual mCRL2 models are obtained for the FSM systems of the CMS sub-detectors using the ASF+SDF automated translation tool. Different mCRL2 operations are applied to the mCRL2 models. A mCRL2 simulation tool is used to closer examine the system. Visualization of a system based on the exploration of its state space is enabled with a mCRL2 tool. Requirements such as command and state propagation are expressed using modal mu-calculus and checked using a model checking algorithm. For checking local requirements such as endless loop freedom, the Bounded Model Checking technique is applied. This paper discusses these analysis techniques and presents the results of their application on the CMS FSM system.

  11. The project of autocontrol for CAEN high voltage systems in high energy physics experiments

    International Nuclear Information System (INIS)

    Qian Sen; Wang Zhimin; Chinese Academy of Sciences, Beijing; Cai Xiao; Wang Yifang; Zhang Jiawen; Yang Changgen

    2008-01-01

    Based on TCP/IP network communication techniques, CAMAC Bus Technology, PCI Bus Technology and RS232 Serial Communication Technique, we developed and established a serial of software in Linux or Win32 system to auto control these high voltage systems made by CAEN Company, which are always used in high energy physics experiments. The operator can use this software to control and monitor the system independently, or encapsulate it into the DAQ system to control the test system and acquire data synchronously and high-efficaciously. (authors)

  12. Rolls-Royce digital Rod Control System

    International Nuclear Information System (INIS)

    Pouillot, M.

    2010-01-01

    Full text of publication follows: Rolls-Royce has developed a new generation of Rod Control System, based on 40 years of experience. The fifth-generation Rod Control System (RCS) from Rolls-Royce offers a reliable, modular design with adaptability to your preferred platform, for modernization projects or new reactors. Flexible implementation provides the option for you to keep existing cabinets, which permits you to optimize installation approach. Main features for the power part: - Control Rod Drive Mechanism (CRDM) type: 3-coil. - Independent control of each sub-bank. - Each sub-bank is controlled by a cycler unit and 3 identical power racks, each including 4 identical power modules and a common power-supply module. - Coil-per-coil digital control: each power module embeds power-conversion, current-control, and current-monitoring functions for one coil. Control and monitoring are carried out by separate electronics in the module. Current is digitized and fully monitored by means of min-max templates. - A double-hold function is included: a power module assigned to a gripper will activate its coil if a fault risking to cause a reactor trip occurs. - Power modules are standardized, hot-pluggable and self-configured: a power module includes a set of parameters for each type of coil SG, MG, LC. The module recognizes the rack it is plugged in, and chooses automatically parameters to be used. Main benefits: - Reduced operational, maintenance, training, and inventory costs: standardization of power modules and integration of control and monitoring on the same PC-card lead to a drastic reduction of spare part types, and simplification of the system. - Easy maintenance: - Replacement of a power module solves nearly all failures due to current control or monitoring for a coil. It is done instantly thanks to hot-plug capability. - On the front plate of power-modules, LEDs provide useful information for diagnostic: current setpoint from cycler, output current bar

  13. Design of EAST LHCD high power supply feedback control system based on PLC

    International Nuclear Information System (INIS)

    Hu Huaichuan; Shan Jiafang

    2009-01-01

    Design of EAST LHCD -35kV/5.6MW high power supply feedback control system based on PLC is described. Industrial computer and PLC are used to control high power supply in the system. PID arithmetic is adopted to achieve the feedback control of voltage of high power supply. Operating system is base on real-time operating system of QNX. Good controlling properties and reliable protective properties of the feedback control system are proved by the experiment results. (authors)

  14. Stability of position control system in JIPP T-II

    International Nuclear Information System (INIS)

    Sakurai, Keiichi; Tanahashi, Shygo

    1980-01-01

    Computations and experiments on the stability of a feedback control system for maintaining a plasma column in equilibrium are described. The time response of the displacement of the plasma to the desired position is examined by solving the equation of motion of the plasma column. We show that the stability of the feedback control system is improved by using an additional term which represents the shift velocity of the plasma column. (author)

  15. The S-1 Spheromak Control System

    International Nuclear Information System (INIS)

    Mathe, P.; Mika, R.; Oliaro, G.

    1983-01-01

    The use of a CAMAC based DEC LSI-11/23 microcomputer to perform all control functions for the S-1 Spheromak is described. The system monitors and controls the three coil systems, Toroidal, Poloidal, and Equilibrium field coils and their associated power sources, the water cooling system, the personnel and machine safety system, the machine and diagnostic timing system and the control room display and operator interface. Future requirements include control of the vacuum system, the gas injection system and interface to the PPPL Data Acquisition System DEC10. The computer is connected to five remotely located CAMAC crates by a fiber-optic serial highway operating at five megahertz. These crates contain interface modules required to control the S-1 experiment. These modules include: D/A and A/D converters, fast transient digitizers, timing modules, temperature sensing modules, CRT alphanumeric display drivers, watchdog timers, and relay and TTL parallel I/O ports. The computer itself resides in crate number0 and consists of an LSI-11/23 with hardware floating post processor, memory management, 256K bytes of memory, four RS-232 serial ports and a 30 megabyte hard disk with a one megabyte floppy disk backup. The majority of software is written in FORTRAN with a few speed critical programs written in PDP-11 MACRO assembly language. The software simulates a sequential state machine which allows easily changeable logic since all logic is represented by standard Boolean Fortran statements. The RSX-11/m operating system allows multiple tasks to be active simultaneously. This provides computing time for operator interactions, editing of critical machine parameters, data analysis and transmission of data to other computers while still maintaining the scan activity which constantly monitors machine parameters

  16. Backfitting in Rossendorf research reactor control and instrumentation system

    International Nuclear Information System (INIS)

    Klebau, J.; Seidler, S.

    1985-01-01

    The paper generally describes a decentralized Hierarchical Information System (HIS) which has been developed for backfitting in Rossendorf Research Reactor (RFR) control and instrumentation system. The RFR was put into operation in 1957 and reconstructed from 2 MW up to a thermal power of 10 MW at the end of the sixties. Backfitting is planned by use of an advanced computerized control system for the next years. Main tasks of HIS are: Processmonitoring, online-disturbance analysis, technical diagnosis, direct digital control and use of a special industrial robot for discharging of irradiated materials out of the reactor. Experiences obtained by HIS during a testperiod will be presented. (author)

  17. Development of NSSS Control System Performance Verification Tool

    International Nuclear Information System (INIS)

    Sohn, Suk Whun; Song, Myung Jun

    2007-01-01

    Thanks to many control systems and control components, the nuclear power plant can be operated safely and efficiently under the transient condition as well as the steady state condition. If a fault or an error exists in control systems, the nuclear power plant should experience the unwanted and unexpected transient condition. Therefore, the performance of these control systems and control components should be completely verified through power ascension tests of startup period. However, there are many needs to replace control components or to modify control logic or to change its setpoint. It is important to verify the performance of changed control system without redoing power ascension tests in order to perform these changes. Up to now, a simulation method with computer codes which has been used for design of nuclear power plants was commonly used to verify its performance. But, if hardware characteristics of control system are changed or the software in control system has an unexpected fault or error, this simulation method is not effective to verify the performance of changed control system. Many tests related to V and V (Verification and Validation) are performed in the factory as well as in the plant to eliminate these errors which might be generated in hardware manufacturing or software coding. It reveals that these field tests and the simulation method are insufficient to guaranty the performance of changed control system. Two unexpected transients occurred in YGN 5 and 6 startup period are good examples to show this fact. One occurred at 50% reactor power and caused reactor trip. The other occurred during 70% loss of main feedwater pump test and caused the excess turbine runback

  18. Schedulability analysis for systems with data and control dependencies

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2000-01-01

    Is this paper we present an approach to schedulability analysis for hard real-time systems with control and data dependencies. We consider distributed architectures consisting of multiple programmable processors, and the scheduling policy is based on a static priority preemptive strategy! Our model...... of the system captures bath data and control dependencies, and the schedulability approach is able to reduce the pessimism of the analysis by using the knowledge about control ann data dependencies. Extensive experiments as well as a real life example demonstrate the efficiency of our approach....

  19. Velocity control of a secondary controlled closed-loop hydrostatic transmission system using an adaptive fuzzy sliding mode controller

    Energy Technology Data Exchange (ETDEWEB)

    Do, Hoang Thinh; Ahn, Kyoung Kwan [University of Ulsan, Ulsan (Korea, Republic of)

    2013-03-15

    A secondary-controlled hydrostatic transmission system (SC-HST), which considered being an energy-saving system, can recuperate most of the lost vehicle kinetic energy in decelerating and braking time and it shows advantage in fuel economy improvement of vehicle. Almost secondary control units (SCU) in SC-HST inherently contain nonlinear characteristics such as dead-zone input. Therefore, it is difficult to obtain precise position or velocity control by conventional linear controllers. This problem limits the application of SC-HST in industry and mobile vehicle. This paper gives a description of SC-HST and proposes an adaptive fuzzy sliding mode controller (AFSMC) for velocity control of SCU. Experiments were carried out in the condition of disturbance load by using both the proposed controller and PID controller for the comparison and evaluation of the effectiveness of the proposed controller. The experimental results showed that the proposed controller was excellent from the standpoints of performance and stability for the velocity control of SC-HST.

  20. Evolutionary design of a satellite thermal control system: Real experiments for a CubeSat mission

    International Nuclear Information System (INIS)

    Escobar, Emanuel; Diaz, Marcos; Zagal, Juan Cristóbal

    2016-01-01

    Highlights: • GAs applied to automate design of CubeSat passive thermal control system (coating). • Simulation adapted with real physical data (mockup experiment in vacuum chamber). • Obtained coating patterns consistently outperform engineered solutions (by 5 K). • Evolved coating patterns are far superior (by 8 K) than unpainted aluminum. - Abstract: This paper studies the use of artificial evolution to automate the design of a satellite passive thermal control system. This type of adaptation often requires the use of computer simulations to evaluate fitness of a large number of candidate solutions. Simulations are required to be expedient and accurate so that solutions can be successfully transferred to reality. We explore a design process that involves three steps. On a first step candidate solutions (implemented as surface paint tiling patterns) are tested using a FEM model and ranked according to their quality to meet mission temperature requirements. On a second step the best individual is implemented as a real physical satellite mockup and tested inside a vacuum chamber, having light sources imitating the effect of solar light. On a third step the simulation model is adapted with data obtained during the real evaluation. These updated models can be further employed for continuing genetic search. Current differences between our simulation and our real physical setup are in the order of 1.45 K mean squared error for faces pointing toward the light source and 2.4 K mean squared errors for shadowed faces. We found that evolved tiling patterns can be 5 K below engineered patterns and 8 K below using unpainted aluminum satellite surfaces.

  1. Overview of the Spallation Neutron Source Linac Low-Level RF Control System

    CERN Document Server

    Champion, Mark; Doolittle, Lawrence; Kasemir, Kay-Uwe; Ma, Hengjie; Piller, Maurice; Ratti, Alessandro

    2005-01-01

    The design and production of the Spallation Neutron Source Linac Low-Level RF control system is complete, and installation will be finished in Spring 2005. The warm linac beam commissioning run in Fall 2004 was the most extensive test to date of the LLRF control system, with fourteen (of an eventual 96) systems operating simultaneously. In this paper we present an overview of the LLRF control system, the experience in designing, building and installing the system, and operational results.

  2. Transactive Control of Commercial Building HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makhmalbaf, Atefe [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Huang, Sen [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendon, Vrushali V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Somasundaram, Sriram [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Guopeng [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ngo, Hung [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-12-30

    This document details the development and testing of market-based transactive controls for building heating, ventilating and air conditioning (HVAC) systems. These controls are intended to serve the purposes of reducing electricity use through conservation, reducing peak building electric demand, and providing demand flexibility to assist with power system operations. This report is the summary of the first year of work conducted under Phase 1 of the Clean Energy and Transactive Campus Project. The methods and techniques described here were first investigated in simulation, and then subsequently deployed to a physical testbed on the Pacific Northwest National Laboratory (PNNL) campus for validation. In this report, we describe the models and control algorithms we have developed, testing of the control algorithms in simulation, and deployment to a physical testbed. Results from physical experiments support previous simulation findings, and provide insights for further improvement.

  3. Energy controlling in large-scale refrigeration systems. Implementation and experiences during operation; Energiecontrolling in Grosskaelteanlagen. Einrichtung und Erfahrungen im laufenden Betrieb

    Energy Technology Data Exchange (ETDEWEB)

    Luecke, Jens [perpendo Energie- und Verfahrenstechnik GmbH, Aachen (Germany). Energiesystemtechnik; Schraps, Stella [perpendo Energie- und Verfahrenstechnik GmbH, Aachen (Germany); Beilharz, Dorle; Schnellenpfeil, Rainer [Energie Food Town GbR, Duisburg (Germany)

    2012-07-01

    In the last years, the energy efficient operation of large refrigeration plants becomes more and more important. However, due to a plurality of temperature levels, integrated heat recovery systems and an unsteady decrease by consumers, these systems are characterized by an enhanced complexity. In order to create the necessary transparency for the analysis and assessment of the energetic quality, the knowledge of the time course of energy flows is necessary in addition to the detection of the produced coldness. Here energy control systems offer the analogous option. In comparison to the range of functions of the already existing control technology systems, these energy control systems facilitate a long-term historicization of measurement data as well as an automated evaluation in the form of figures, graphs and reports for any period of time. In addition to the monitoring of the energetic quality of the plants plays, also the transparent and reliable accounting of the media supplied are important for internal or external customers within the introduction of such systems. Last year, it was reported on the conception of the system, the selection of instrumentation and software. As an example, the company Energie Foodtown GbR (Duisburg, Federal Republic of Germany) was used which operates an multi-stage ammonia industrial refrigeration plant with a total cooling power of 4.4 MW at the Duisburg site. The contribution under consideration reports on the commissioning phase and experiences from the continuous operation of this industrial plant. In particular the emerged technical and organizational challenges and their management are discussed. First results are presented.

  4. Applications of FASTBUS to beam diagnostics and experiment data systems

    International Nuclear Information System (INIS)

    Machen, D.R.

    1983-01-01

    A five-year effort by the North American NIM Committee, in collaboration with the ESONE Committee of European Laboratories, has resulted in a specification for the FASTBUS modular high-speed data-acquisition system. The system is designed around an emitter-coupled logic (ECL) 32-bit data bus for asynchronous data transmission at 100 ns per transaction. Initial applications of FASTBUS will be in experiment data systems at accelerator facilities worldwide--beam diagnostic data systems on the accelerator side and particle-beam experiment data systems in the experimental area. As the specification (and the resulting hardware and software) matures, real-time machine-control applications will become possible. This paper discusses the near-term use of FASTBUS in accelerator beam-diagnostics instrumentation systems, where an extra increment in system throughput and front-end processing speed can produce a greater understanding of the physical phenomena under study. The arguments and conclusions may be equally well applied to other similar data-handling problems requiring high bandwidth in the data system

  5. Integrated Design and Implementation of Embedded Control Systems with Scilab.

    Science.gov (United States)

    Ma, Longhua; Xia, Feng; Peng, Zhe

    2008-09-05

    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.

  6. Integrated Design and Implementation of Embedded Control Systems with Scilab

    Directory of Open Access Journals (Sweden)

    Zhe Peng

    2008-09-01

    Full Text Available Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.

  7. Low-level RF control system issues for an ADTT accelerator

    International Nuclear Information System (INIS)

    Ziomek, C.D.; Regan, A.H.; Lynch, M.T.; Bowling, P.S.

    1994-01-01

    The RF control system for a charged-particle accelerator must maintain the correct amplitude and phase of RF field inside the accelerator cavity in the presence of perturbations, noises, and time varying system components. For an accelerator with heavy beam-loading, fluctuations in the beam current cause large perturbations to the RF field amplitude and phase that must be corrected by the RF control system. The ADTT applications require a high-current, heavily beam-loaded, continuous-wave (CW) accelerator. Additional concerns created by the CW operation include system start-up, beam interruption, and fault recovery. Also, the RF control system for an ADTT facility must include sophisticated automation to reduce the operator interaction and support. This paper describes an RF control system design that addresses these various issues by evaluation a combination of feedback and feed forward control techniques. Experience from the high-current Ground Test Accelerator (GTA) is drawn upon for this RF control system design. Comprehensive computer modeling with the Matrix x software has been used to predict the performance of this RF control system

  8. Design of Model-based Controller with Disturbance Estimation in Steer-by-wire System

    Directory of Open Access Journals (Sweden)

    Jung Sanghun

    2018-01-01

    Full Text Available The steer-by-wire system is a next generation steering control technology that has been actively studied because it has many advantages such as fast response, space efficiency due to removal of redundant mechanical elements, and high connectivity with vehicle chassis control, such as active steering. Steer-by-wire system has disturbance composed of tire friction torque and self-aligning torque. These disturbances vary widely due to the weight or friction coefficient change. Therefore, disturbance compensation logic is strongly required to obtain desired performance. This paper proposes model-based controller with disturbance compensation to achieve the robust control performance. Targeted steer-by-wire system is identified through the experiment and system identification method. Moreover, model-based controller is designed using the identified plant model. Disturbance of targeted steer-by-wire is estimated using disturbance observer(DOB, and compensate the estimated disturbance into control input. Experiment of various scenarios are conducted to validate the robust performance of proposed model-based controller.

  9. MFTF supervisory control and diagnostics system hardware

    International Nuclear Information System (INIS)

    Butner, D.N.

    1979-01-01

    The Supervisory Control and Diagnostics System (SCDS) for the Mirror Fusion Test Facility (MFTF) is a multiprocessor minicomputer system designed so that for most single-point failures, the hardware may be quickly reconfigured to provide continued operation of the experiment. The system is made up of nine Perkin-Elmer computers - a mixture of 8/32's and 7/32's. Each computer has ports on a shared memory system consisting of two independent shared memory modules. Each processor can signal other processors through hardware external to the shared memory. The system communicates with the Local Control and Instrumentation System, which consists of approximately 65 microprocessors. Each of the six system processors has facilities for communicating with a group of microprocessors; the groups consist of from four to 24 microprocessors. There are hardware switches so that if an SCDS processor communicating with a group of microprocessors fails, another SCDS processor takes over the communication

  10. Biofunctional Understanding and Conceptual Control: Searching for Systematic Consensus in Systemic Cohesion.

    Science.gov (United States)

    Iran-Nejad, Asghar; Bordbar, Fareed

    2017-01-01

    For first generation scientists after the cognitive revolution, knowers were in active control over all (stages of) information processing. Then, following a decade of transition shaped by intense controversy, embodied cognition emerged and suggested sources of control other than those implied by metaphysical information processing. With a thematic focus on embodiment science and an eye toward systematic consensus in systemic cohesion, the present study explores the roles of biofunctional and conceptual control processes in the wholetheme spiral of biofunctional understanding (see Iran-Nejad and Irannejad, 2017b, Figure 1). According to this spiral, each of the two kinds of understanding has its own unique set of knower control processes. For conceptual understanding (CU), knowers have deliberate attention-allocation control over their first-person "knowthat" and "knowhow" content combined as mutually coherent corequisites. For biofunctional understanding (BU), knowers have attention-allocation control only over their knowthat content but knowhow control content is ordinarily conspicuously absent. To test the hypothesis of differences in the manner of control between CU and BU, participants in two experiments read identical-format statements for internal consistency, as response time was recorded. The results of Experiment 1 supported the hypothesis of differences in the manner of control between the two types of control processes; and Experiment 2 confirmed the results of Experiment 1. These findings are discussed in terms of the predicted differences between BU and CU control processes, their roles in regulating the physically unobservable flow of systemic cohesion in the wholetheme spiral, and a proposal for systematic consensus in systemic cohesion to serve as the second guiding principle in biofunctional embodiment science next to physical science's first guiding principle of systematic observation.

  11. Development of a distributed control system for TOTEM experiment using ASIO Boost C++ libraries

    Science.gov (United States)

    Cafagna, F.; Mercadante, A.; Minafra, N.; Quinto, M.; Radicioni, E.

    2014-06-01

    The main goals of the TOTEM Experiment at the LHC are the measurements of the elastic and total p-p cross sections and the studies of the diffractive dissociation processes. Those scientific objectives are achieved by using three tracking detectors symmetrically arranged around the interaction point called IP5. The control system is based on a C++ software that allows the user, by means of a graphical interface, direct access to hardware and handling of devices configuration. A first release of the software was designed as a monolithic block, with all functionalities being merged together. Such approach showed soon its limits, mainly poor reusability and maintainability of the source code, evident not only in phase of bug-fixing, but also when one wants to extend functionalities or apply some other modifications. This led to the decision of a radical redesign of the software, now based on the dialogue (message-passing) among separate building blocks. Thanks to the acquired extensibility, the software gained new features and now is a complete tool by which it is possible not only to configure different devices interfacing with a large subset of buses like I2C and VME, but also to do data acquisition both for calibration and physics runs. Furthermore, the software lets the user set up a series of operations to be executed sequentially to handle complex operations. To achieve maximum flexibility, the program units may be run either as a single process or as separate processes on different PCs which exchange messages over the network, thus allowing remote control of the system. Portability is ensured by the adoption of the ASIO (Asynchronous Input Output) library of Boost, a cross-platform suite of libraries which is candidate to become part of the C++ 11 standard. We present the state of the art of this project and outline the future perspectives. In particular, we describe the system architecture and the message-passing scheme. We also report on the results obtained

  12. A flexible software architecture for tokamak discharge control systems

    International Nuclear Information System (INIS)

    Ferron, J.R.; Penaflor, B.; Walker, M.L.; Moller, J.; Butner, D.

    1995-01-01

    The software structure of the plasma control system in use on the DIII-D tokamak experiment is described. This system implements control functions through software executing in real time on one or more digital computers. The software is organized into a hierarchy that allows new control functions needed to support the DIII-D experimental program to be added easily without affecting previously implemented functions. This also allows the software to be portable in order to create control systems for other applications. The tokamak operator uses an X-windows based interface to specify the time evolution of a tokamak discharge. The interface provides a high level view for the operator that reduces the need for detailed knowledge of the control system operation. There is provision for an asynchronous change to an alternate discharge time evolution in response to an event that is detected in real time. Quality control is enhanced through off-line testing that can make use of software-based tokamak simulators

  13. Concept design for the central control system of HL-2A

    International Nuclear Information System (INIS)

    Song Xianming; Li Qiang; Jiang Chao

    2001-01-01

    The design principle and basic structure of the central control system for HL-2A Tokamak are introduced. Having been limited by manpower and money, the central control system should not be too expensive and too advanced. On the other hand, because of the complexity of the machine and the difficulty the author will encounter when operating the machine, the central control system should be advanced enough. If use the same technology for HL-1M to control HL-2A, the author would fail to fulfill authors' experiment goal. The central control system consists of software and hardware. The software mainly includes: (a) system monitor and control software; (b) discharge monitor and control software; (c) network and communication software. Hardware includes: (a) PLC for machine control, personnel protection and machine protection; and (b) VME computer, for the feedback control of the discharge

  14. Design of double-fed control system for J-TEXT 100 MVA pulse generator unit

    International Nuclear Information System (INIS)

    Fang, Jianming; Yu, Kexun; Zhang, Ming; Zhuang, Ge; Xiao, Zhiguo; Jiang, Guozhong; Yang, Cheng; Xu, Jiayu

    2013-01-01

    Highlights: ► A double-fed control system is designed for J-TEXT 100 MVA pulse generator unit. ► The double-fed system can control the motor speed and reactive power individually. ► Experiment on a prototype motor shows a good control result. -- Abstract: The 100 MVA pulse generator unit is the main power supply of J-TEXT. This unit supplies energy for the toroidal coil, the ohmic heat coil and the divertor coil, with the maximum stored energy 185 MJ. For the difference of grid frequency between China and USA, the rotational speed and stored energy of this unit are less than the designed value. A double-fed control system for the unit is designed to raise them. This double-fed system has applied a control method using a rotational reference frame oriented by stator flux. With this control system, the speed and reactive power of motor could be controlled individually. Experiments on a prototype motor show a good control result

  15. Common Rail System for GDI Engines Modelling, Identification, and Control

    CERN Document Server

    Fiengo, Giovanni; Palladino, Angelo; Giglio, Veniero

    2013-01-01

    Progressive reductions in vehicle emission requirements have forced the automotive industry to invest in research and development of alternative control strategies. Continual control action exerted by a dedicated electronic control unit ensures that best performance in terms of pollutant emissions and power density is married with driveability and diagnostics. Gasoline direct injection (GDI) engine technology is a way to attain these goals. This brief describes the functioning of a GDI engine equipped with a common rail (CR) system, and the devices necessary to run test-bench experiments in detail. The text should prove instructive to researchers in engine control and students are recommended to this brief as their first approach to this technology. Later chapters of the brief relate an innovative strategy designed to assist with the engine management system; injection pressure regulation for fuel pressure stabilization in the CR fuel line is proposed and validated by experiment. The resulting control scheme ...

  16. HAMMLAB 1999 experimental control room: design - design rationale - experiences

    International Nuclear Information System (INIS)

    Foerdestroemmen, N. T.; Meyer, B. D.; Saarni, R.

    1999-01-01

    A presentation of HAMMLAB 1999 experimental control room, and the accumulated experiences gathered in the areas of design and design rationale as well as user experiences. It is concluded that HAMMLAB 1999 experimental control room is a realistic, compact and efficient control room well suited as an Advanced NPP Control Room (ml)

  17. Fuzzy self-learning control for magnetic servo system

    Science.gov (United States)

    Tarn, J. H.; Kuo, L. T.; Juang, K. Y.; Lin, C. E.

    1994-01-01

    It is known that an effective control system is the key condition for successful implementation of high-performance magnetic servo systems. Major issues to design such control systems are nonlinearity; unmodeled dynamics, such as secondary effects for copper resistance, stray fields, and saturation; and that disturbance rejection for the load effect reacts directly on the servo system without transmission elements. One typical approach to design control systems under these conditions is a special type of nonlinear feedback called gain scheduling. It accommodates linear regulators whose parameters are changed as a function of operating conditions in a preprogrammed way. In this paper, an on-line learning fuzzy control strategy is proposed. To inherit the wealth of linear control design, the relations between linear feedback and fuzzy logic controllers have been established. The exercise of engineering axioms of linear control design is thus transformed into tuning of appropriate fuzzy parameters. Furthermore, fuzzy logic control brings the domain of candidate control laws from linear into nonlinear, and brings new prospects into design of the local controllers. On the other hand, a self-learning scheme is utilized to automatically tune the fuzzy rule base. It is based on network learning infrastructure; statistical approximation to assign credit; animal learning method to update the reinforcement map with a fast learning rate; and temporal difference predictive scheme to optimize the control laws. Different from supervised and statistical unsupervised learning schemes, the proposed method learns on-line from past experience and information from the process and forms a rule base of an FLC system from randomly assigned initial control rules.

  18. Telescope Array Control System Based on Wireless Touch Screen Platform

    Science.gov (United States)

    Fu, Xia-nan; Huang, Lei; Wei, Jian-yan

    2017-10-01

    Ground-based Wide Angle Cameras (GMAC) are the ground-based observational facility for the SVOM (Space Variable Object Monitor) astronomical satellite of Sino-French cooperation, and Mini-GWAC is the pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system based on the wireless touch screen platform. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test etc. The system uses a touch-control PC which is based on the Windows CE system as the upper computer, while the wireless transceiver module and PLC (Programmable Logic Controller) are taken as the system kernel. It has the advantages of low cost, reliable data transmission, and simple operation. And the control system has been applied to the Mini-GWAC successfully.

  19. Machine Control System of Steady State Superconducting Tokamak-1

    Energy Technology Data Exchange (ETDEWEB)

    Masand, Harish, E-mail: harish@ipr.res.in; Kumar, Aveg; Bhandarkar, M.; Mahajan, K.; Gulati, H.; Dhongde, J.; Patel, K.; Chudasma, H.; Pradhan, S.

    2016-11-15

    Highlights: • Central Control System. • SST-1. • Machine Control System. - Abstract: Central Control System (CCS) of the Steady State Superconducting Tokamak-1 (SST-1) controls and monitors around 25 plant and experiment subsystems of SST-1 located remotely from the Central-Control room. Machine Control System (MCS) is a supervisory system that sits on the top of the CCS hierarchy and implements the CCS state diagram. MCS ensures the software interlock between the SST-1 subsystems with the CCS, any subsystem communication failure or its local error does not prohibit the execution of the MCS and in-turn the CCS operation. MCS also periodically monitors the subsystem’s status and their vital process parameters throughout the campaign. It also provides the platform for the Central Control operator to visualize and exchange remotely the operational and experimental configuration parameters with the sub-systems. MCS remains operational 24 × 7 from the commencement to the termination of the SST-1 campaign. The developed MCS has performed robustly and flawlessly during all the last campaigns of SST-1 carried out so far. This paper will describe various aspects of the development of MCS.

  20. Data acquisition and control system for the High-Level Waste Tank Farm at Hanford, Washington

    International Nuclear Information System (INIS)

    Hoida, H.W.; Hatcher, C.R.; Trujillo, L.T.; Holt, D.H.; Vargo, G.F.; Martin, J.; Stastny, G.; Echave, R.; Eldridge, K.

    1993-01-01

    The High-Level Nuclear Waste Storage Tank 241-SY-101 periodically releases flammable gasses. Mitigation experiments to release the gasses continuously to avoid a catastrophic build-up are planned for FY93 and beyond. Los Alamos has provided a data acquisition and control system (DACS) to monitor and control mitigation experiments on SY-101. The DACS consists of a data acquisition trailer to house the electronic components and computers in a friendly environment, a computer system running process control software for monitoring and controlling the tests, signal conditioners to convert the instrument signals to a usable form for the DACS, programmable logic controllers to process sensor signals and take action quickly, a fast data acquisition system for recording transient data, and a remote monitoring system to monitor the progress of the experiment. Equipment to monitor the release of the gasses was also provided. The first experiment involves a mixer pump to mix the waste and allow the gasses to be released at the surface of the liquid as the gas is being formed. The initial tests are scheduled for July 1993

  1. The Information Science Experiment System - The computer for science experiments in space

    Science.gov (United States)

    Foudriat, Edwin C.; Husson, Charles

    1989-01-01

    The concept of the Information Science Experiment System (ISES), potential experiments, and system requirements are reviewed. The ISES is conceived as a computer resource in space whose aim is to assist computer, earth, and space science experiments, to develop and demonstrate new information processing concepts, and to provide an experiment base for developing new information technology for use in space systems. The discussion covers system hardware and architecture, operating system software, the user interface, and the ground communication link.

  2. Study of intelligent system for control of the tokamak-ETE plasma positioning

    International Nuclear Information System (INIS)

    Barbosa, Luis Filipe de Faria Pereira Wiltgen

    2003-01-01

    The development of an intelligent neural control system of the neural type, capable to perform real time control of the plasma displacement in the experiment tokamak spheric - ETE (spherical tokamak experiment ) is presented. The ETE machine is in operation since Nov 2000, in the LAP - Plasma Associated Laboratory of the Brazilian Institute on Spatial Research (INPE) in Sao Jose dos Campos, S P, Brazil. The experiment is dedicated to study the magnetic confinement of a fusion plasma in a configuration favorable for the construction of future reactors. Nuclear fusion constitutes a renewable energy source with low environmental impact, which uses atomic energy in pacific applications for the sustainable development of humanity. One of the important questions for the attainment of fusion relates to the stability of the plasma and control of its position during the reactor operation. Therefore, the development of systems to control the plasma in tokamaks constitutes a necessary technological advance for the feasibility of nuclear fusion. In particular, the research carried out in this thesis concerns the proposal of a system to control the vertical displacement of the plasma in the ETE tokamak, aiming to obtain steady pulses in this machine. A Magnetic Levitation system (Mag Lev) was developed as part of this work, allowing to study the nonlinear behavior of a device that, from the aspect of position control, is similar (analogous) to the plasma in the ETE tokamak, This magnetic levitation system was designed, mathematically modeled and built in order to test both classical and intelligent type controllers. The results of this comparison are very promising for the use of intelligent controllers in the ETE tokamak as well as other control applications. (author)

  3. The Method of a Standalone Functional Verifying Operability of Sonar Control Systems

    Directory of Open Access Journals (Sweden)

    A. A. Sotnikov

    2014-01-01

    Full Text Available This article describes a method of standalone verifying sonar control system, which is based on functional checking of control system operability.The main features of realized method are a development of the valid mathematic model for simulation of sonar signals at the point of hydroacoustic antenna, a valid representation of the sonar control system modes as a discrete Markov model, providing functional object verification in real time mode.Some ways are proposed to control computational complexity in case of insufficient computing resources of the simulation equipment, namely the way of model functionality reduction and the way of adequacy reduction.Experiments were made using testing equipment, which was developed by department of Research Institute of Information Control System at Bauman Moscow State Technical University to verify technical validity of industrial sonar complexes.On-board software was artificially changed to create malfunctions in functionality of sonar control systems during the verifying process in order to estimate verifying system performances.The method efficiency was proved by the theory and experiment results in comparison with the basic methodology of verifying technical systems.This method could be also used in debugging of on-board software of sonar complexes and in development of new promising algorithms of sonar signal processing.

  4. Displacement and force coupling control design for automotive active front steering system

    Science.gov (United States)

    Zhao, Wanzhong; Zhang, Han; Li, Yijun

    2018-06-01

    A displacement and force coupling control design for active front steering (AFS) system of vehicle is proposed in this paper. In order to investigate the displacement and force characteristics of the AFS system of the vehicle, the models of AFS system, vehicle, tire as well as the driver model are introduced. Then, considering the nonlinear characteristics of the tire force and external disturbance, a robust yaw rate control method is designed by applying a steering motor to generate an active steering angle to adjust the yaw stability of the vehicle. Based on mixed H2/H∞ control, the system robustness and yaw rate tracking performance are enforced by H∞ norm constraint and the control effort is captured through H2 norm. In addition, based on the AFS system, a planetary gear set and an assist motor are both added to realize the road feeling control in this paper to dismiss the influence of extra steering angle through a compensating method. Evaluation of the overall system is accomplished by simulations and experiments under various driving condition. The simulation and experiment results show the proposed control system has excellent tracking performance and road feeling performance, which can improve the cornering stability and maneuverability of vehicle.

  5. FireSignal-Data acquisition and control system software

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal)], E-mail: andre.neto@cfn.ist.utl.pt; Fernandes, H.; Duarte, A.; Carvalho, B.B.; Sousa, J.; Valcarcel, D.F. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Hron, M. [Asociace EURATOM IPP.CR, Prague (Czech Republic); Varandas, C.A.F. [Associacao Euratom/IST, Centro de Fusao Nuclear, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal)

    2007-10-15

    Control of fusion experiments requires non-ambiguous, easy to use, user-interfaces to configure hardware devices. With that aim, a highly generic system for data control and acquisition has been developed. Among the main features it allows remote hardware configuration, shot launching, data sharing between connected users and experiment monitoring. The system is fully distributed: the hardware driver nodes, clients and servers are completely independent from each other and might run in different operating systems and programmed in different languages. All the communication is provided through the Common Object Request Broker Architecture (CORBA) protocol. FireSignal is designed to be as independent as possible from any kind of constraints as it is a plugin based system. Database, data viewers and the security system are some examples of what can easily be changed and adapted to the target machine's needs. In this system, every hardware is described in eXtensible Markup Language (XML) and with this information Graphical User Interfaces (GUI) are automatically built and user's parameter configuration validated. Any type of hardware device can be integrated in the system as long as it is described in XML and the respective driver developed. Any modern programming language can be used to develop these drivers. Currently Python and Java generic drivers are used. Data storage and indexing is time stamp event-based. Nodes are responsible for tagging the acquired samples with the absolute time stamps and to react to machine events. FireSignal is currently being used to control the ISTTOK/PT and CASTOR/CZ tokamaks.

  6. FireSignal-Data acquisition and control system software

    International Nuclear Information System (INIS)

    Neto, A.; Fernandes, H.; Duarte, A.; Carvalho, B.B.; Sousa, J.; Valcarcel, D.F.; Hron, M.; Varandas, C.A.F.

    2007-01-01

    Control of fusion experiments requires non-ambiguous, easy to use, user-interfaces to configure hardware devices. With that aim, a highly generic system for data control and acquisition has been developed. Among the main features it allows remote hardware configuration, shot launching, data sharing between connected users and experiment monitoring. The system is fully distributed: the hardware driver nodes, clients and servers are completely independent from each other and might run in different operating systems and programmed in different languages. All the communication is provided through the Common Object Request Broker Architecture (CORBA) protocol. FireSignal is designed to be as independent as possible from any kind of constraints as it is a plugin based system. Database, data viewers and the security system are some examples of what can easily be changed and adapted to the target machine's needs. In this system, every hardware is described in eXtensible Markup Language (XML) and with this information Graphical User Interfaces (GUI) are automatically built and user's parameter configuration validated. Any type of hardware device can be integrated in the system as long as it is described in XML and the respective driver developed. Any modern programming language can be used to develop these drivers. Currently Python and Java generic drivers are used. Data storage and indexing is time stamp event-based. Nodes are responsible for tagging the acquired samples with the absolute time stamps and to react to machine events. FireSignal is currently being used to control the ISTTOK/PT and CASTOR/CZ tokamaks

  7. Quantum control of optomechanical systems

    International Nuclear Information System (INIS)

    Hofer, S.

    2015-01-01

    This thesis explores the prospects of entanglement-enhanced quantum control of optomechanical systems. We first discuss several pulsed schemes in which the radiation-pressure interaction is used to generate EPR entanglement between the mechanical mode of a cavity-optomechanical system and a travelling-wave light pulse. The entanglement created in this way can be used as a resource for mechanical state preparation. On the basis of this protocol, we introduce an optomechanical teleportation scheme to transfer an arbitrary light state onto the mechanical system. Furthermore, we describe how one can create a mechanical non-classical state (i.e., a state with a negative Wigner function) by single-photon detection, and, in a similar protocol, how optomechanical systems can be used to demonstrate the violation of a Bell inequality. The second part of the thesis is dedicated to time-continuous quantum control protocols. Making use of optimal-control techniques, we analyse measurement-based feedback cooling of a mechanical oscillator and demonstrate that ground-state cooling is achievable in the sideband-resolved, blue-detuned regime. We then extend this homodyne-detection based setup and introduce the notion of a time-continuous Bell measurement---a generalisation of the standard continuous variable Bell measurement to a continuous measurement setting. Combining this concept with continuous feedback we analyse the generation of a squeezed mechanical steady state via time-continuous teleportation, and the creation of bipartite mechanical entanglement by entanglement swapping. Finally we discuss an experiment demonstrating the evaluation of the conditional optomechanical quantum state by Kalman filtering, constituting a important step towards time-continuous quantum control of optomechanical systems and the possible realisation of the protocols presented in this thesis. (author) [de

  8. Structure of the automatic system for plasma equilibrium position control

    International Nuclear Information System (INIS)

    Gubarev, V.F.; Krivonos, Yu.G.; Samojlenko, Yu.I.; Snegur, A.A.

    1978-01-01

    Considered are the principles of construction of the automatic system for plasma filament equilibrium position control inside the discharge chamber for the installation of a tokamak type. The combined current control system in control winding is suggested. The most powerful subsystem creates current in the control winding according to the program calculated beforehand. This system provides plasma rough equilibrium along the ''big radius''. The subsystem performing the current change in small limits according to the principle of feed-back coupling is provided simultaneously. The stabilization of plasma position is achieved in the discharge chamber. The advantage of construction of such system is in decreasing of the automatic requlator power without lowering the requirements to the accuracy of equilibrium preservation. The subsystem of automatic control of plasma position over the vertical is put into the system. Such an approach to the construction of the automatic control system proves to be correct; it is based on the experience of application of similar devices for some existing thermonuclear plants

  9. Detector control system of the ATLAS insertable B-Layer

    International Nuclear Information System (INIS)

    Kersten, S.; Kind, P.; Lantzsch, K.; Maettig, P.; Zeitnitz, C.; Gensolen, F.; Citterio, M.; Meroni, C.; Verlaat, B.; Kovalenko, S.

    2012-01-01

    To improve tracking robustness and precision of the ATLAS inner tracker, an additional, fourth pixel layer is foreseen, called Insertable B-Layer (IBL). It will be installed between the innermost present Pixel layer and a new, smaller beam pipe and is presently under construction. As, once installed into the experiment, no access is possible, a highly reliable control system is required. It has to supply the detector with all entities required for operation and protect it at all times. Design constraints are the high power density inside the detector volume, the sensitivity of the sensors against heat-ups, and the protection of the front end electronics against transients. We present the architecture of the control system with an emphasis on the CO 2 cooling system, the power supply system, and protection strategies. As we aim for a common operation of Pixel and IBL detector, the integration of the IBL control system into the Pixel control system will also be discussed. (authors)

  10. In Silico Pooling of ChIP-seq Control Experiments

    Science.gov (United States)

    Sun, Guannan; Srinivasan, Rajini; Lopez-Anido, Camila; Hung, Holly A.; Svaren, John; Keleş, Sündüz

    2014-01-01

    As next generation sequencing technologies are becoming more economical, large-scale ChIP-seq studies are enabling the investigation of the roles of transcription factor binding and epigenome on phenotypic variation. Studying such variation requires individual level ChIP-seq experiments. Standard designs for ChIP-seq experiments employ a paired control per ChIP-seq sample. Genomic coverage for control experiments is often sacrificed to increase the resources for ChIP samples. However, the quality of ChIP-enriched regions identifiable from a ChIP-seq experiment depends on the quality and the coverage of the control experiments. Insufficient coverage leads to loss of power in detecting enrichment. We investigate the effect of in silico pooling of control samples within multiple biological replicates, multiple treatment conditions, and multiple cell lines and tissues across multiple datasets with varying levels of genomic coverage. Our computational studies suggest guidelines for performing in silico pooling of control experiments. Using vast amounts of ENCODE data, we show that pairwise correlations between control samples originating from multiple biological replicates, treatments, and cell lines/tissues can be grouped into two classes representing whether or not in silico pooling leads to power gain in detecting enrichment between the ChIP and the control samples. Our findings have important implications for multiplexing samples. PMID:25380244

  11. Stability and Bifurcation in Magnetic Flux Feedback Maglev Control System

    Directory of Open Access Journals (Sweden)

    Wen-Qing Zhang

    2013-01-01

    Full Text Available Nonlinear properties of magnetic flux feedback control system have been investigated mainly in this paper. We analyzed the influence of magnetic flux feedback control system on control property by time delay and interfering signal of acceleration. First of all, we have established maglev nonlinear model based on magnetic flux feedback and then discussed hopf bifurcation’s condition caused by the acceleration’s time delay. The critical value of delayed time is obtained. It is proved that the period solution exists in maglev control system and the stable condition has been got. We obtained the characteristic values by employing center manifold reduction theory and normal form method, which represent separately the direction of hopf bifurcation, the stability of the period solution, and the period of the period motion. Subsequently, we discussed the influence maglev system on stability of by acceleration’s interfering signal and obtained the stable domain of interfering signal. Some experiments have been done on CMS04 maglev vehicle of National University of Defense Technology (NUDT in Tangshan city. The results of experiments demonstrate that viewpoints of this paper are correct and scientific. When time lag reaches the critical value, maglev system will produce a supercritical hopf bifurcation which may cause unstable period motion.

  12. Distributed computer control systems in future nuclear power plants

    International Nuclear Information System (INIS)

    Yan, G.; L'Archeveque, J.V.R.; Watkins, L.M.

    1978-09-01

    Good operating experience with computer control in CANDU reactors over the last decade justifies a broadening of the role of digital electronic and computer related technologies in future plants. Functions of electronic systems in the total plant context are reappraised to help evolve an appropriate match between technology and future applications. The systems research, development and demonstration program at CRNL is described, focusing on the projects pertinent to the real-time data acquisition and process control requirements. (author)

  13. CELSS experiment model and design concept of gas recycle system

    Science.gov (United States)

    Nitta, K.; Oguchi, M.; Kanda, S.

    1986-01-01

    In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.

  14. Closed-loop control of renal perfusion pressure in physiological experiments.

    Science.gov (United States)

    Campos-Delgado, D U; Bonilla, I; Rodríguez-Martínez, M; Sánchez-Briones, M E; Ruiz-Hernández, E

    2013-07-01

    This paper presents the design, experimental modeling, and control of a pump-driven renal perfusion pressure (RPP)-regulatory system to implement precise and relatively fast RPP regulation in rats. The mechatronic system is a simple, low-cost, and reliable device to automate the RPP regulation process based on flow-mediated occlusion. Hence, the regulated signal is the RPP measured in the left femoral artery of the rat, and the manipulated variable is the voltage applied to a dc motor that controls the occlusion of the aorta. The control system is implemented in a PC through the LabView software, and a data acquisition board NI USB-6210. A simple first-order linear system is proposed to approximate the dynamics in the experiment. The parameters of the model are chosen to minimize the error between the predicted and experimental output averaged from eight input/output datasets at different RPP operating conditions. A closed-loop servocontrol system based on a pole-placement PD controller plus dead-zone compensation was proposed for this purpose. First, the feedback structure was validated in simulation by considering parameter uncertainty, and constant and time-varying references. Several experimental tests were also conducted to validate in real time the closed-loop performance for stepwise and fast switching references, and the results show the effectiveness of the proposed automatic system to regulate the RPP in the rat, in a precise, accurate (mean error less than 2 mmHg) and relatively fast mode (10-15 s of response time).

  15. Evolution of the Argonne Tandem Linear Accelerator System (ATLAS) control system

    International Nuclear Information System (INIS)

    Power, M.; Munson, F.

    2012-01-01

    Given that the Argonne Tandem Linear Accelerator System (ATLAS) recently celebrated its 25. anniversary, this paper will explore the past, present, and future of the ATLAS Control System, and how it has evolved along with the accelerator and control system technology. ATLAS as we know it today, originated with a Tandem Van de Graff in the sixties. With the addition of the Booster section in the late seventies, came the first computerized control. ATLAS itself was placed into service on June 25, 1985, and was the world's first superconducting linear accelerator for ions. Since its dedication as a National User Facility, more than a thousand experiments by more than 2,000 users worldwide, have taken advantage of the unique capabilities it provides. Today, ATLAS continues to be a user facility for physicists who study the particles that form the heart of atoms. Its most recent addition, CARIBU (Californium Rare Isotope Breeder Upgrade), creates special beams that feed into ATLAS. ATLAS is similar to a living organism, changing and responding to new technological challenges and research needs. As it continues to evolve, so does the control system: from the original days using a DEC PDP-11/34 computer and two CAMAC crates, to a DEC Alpha computer running Vsystem software and more than twenty CAMAC crates, to distributed computers and VME systems. Future upgrades are also in the planning stages that will continue to evolve the control system. (authors)

  16. Circulation system for flowing uranium hexafluoride cavity reactor experiments

    International Nuclear Information System (INIS)

    Jaminet, J.F.; Kendall, J.S.

    1976-01-01

    Accomplishment of the UF 6 critical cavity experiments, currently in progress, and planned confined flowing UF 6 initial experiments requires development of reliable techniques for handling heated UF 6 throughout extended ranges of temperature, pressure, and flow rate. The development of three laboratory-scale flow systems for handling gaseous UF 6 at temperatures up to 500 K, pressures up to approximately 40 atm, and continuous flow rates up to approximately 50 g/s is presented. A UF 6 handling system fabricated for static critical tests currently being conducted at Los Alamos Scientific Laboratory (LASL) is described. The system was designed to supply UF 6 to a double-walled aluminum core canister assembly at temperatures between 300 K and 400 K and pressures up to 4 atm. A second UF 6 handling system designed to provide a circulating flow of up to 50 g/s of gaseous UF 6 in a closed-loop through a double-walled aluminum core canister with controlled temperature and pressure is described

  17. Analysis of core physics and thermal-hydraulics results of control rod withdrawal experiments in the LOFT facility

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Chen, T.H.; Harvego, E.A.; Ollikkala, H.

    1983-01-01

    Two anticipated transient experiments simulating an uncontrolled control rod withdrawal event in a pressurized water reactor (PWR) were conducted in the Loss-of-Fluid Test (LOFT) Facility at the Idaho National Engineering Laboratory. The scaled LOFT 50-MW(t) PWR includes most of the principal features of larger commercial PWRs. The experiments tested the ability of reactor analysis codes to accurately calculate core reactor physics and thermal-hydraulic phenomena in an integral reactor system. The initial conditions and scaled operating parameters for the experiments were representative of those expected in a commercial PWR. In both experiments, all four LOFT control rod assemblies were withdrawn at a reactor power of 37.5 MW and a system pressure of 14.8 MPa

  18. arXiv Architecture of the LHCb muon Frontend control system upgrade

    CERN Document Server

    Bocci, Valerio

    2016-10-06

    The LHCb experiment(Fig. 1), that is presently taking data at CERN (European Center for Nuclear Research) Large Hadron Collider (LHC), aims at the study of CP violation in the B meson sector. Its key elements is the Muon detector [1], which allows triggering, and muon identification from inclusive b decays. The electronic system (Fig. 2) of the whole detector is very complex and its Muon detector Experiment Control System (ECS) allows monitoring and control of a number of Front-End boards in excess of 7000. The present system in charge of controlling Muon detector Front-End (FE) Electronics consists of 10 Crates of equipment; each crate contains two kinds of modules: a Pulse Distribution Module (PDM) and up to 20 Service Boards (SB) connected via a custom Backplane for a total amount of about 800 microcontrollers[2]. LHCb upgrade is planned for 2018/19, which will allow the detector to exploit higher luminosity running. This upgrade will allow the experiment to accumulate more luminosity to allow measurements...

  19. Cost Optimal System Identification Experiment Design

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning

    A structural system identification experiment design method is formulated in the light of decision theory, structural reliability theory and optimization theory. The experiment design is based on a preposterior analysis, well-known from the classical decision theory. I.e. the decisions concerning...... reflecting the cost of the experiment and the value of obtained additional information. An example concerning design of an experiment for parametric identification of a single degree of freedom structural system shows the applicability of the experiment design method....... the experiment design are not based on obtained experimental data. Instead the decisions are based on the expected experimental data assumed to be obtained from the measurements, estimated based on prior information and engineering judgement. The design method provides a system identification experiment design...

  20. T-S Fuzzy Model Based Control Strategy for the Networked Suspension Control System of Maglev Train

    Directory of Open Access Journals (Sweden)

    Guang He

    2015-01-01

    Full Text Available The control problem for the networked suspension control system of maglev train with random induced time delay and packet dropouts is investigated. First, Takagi-Sugeno (T-S fuzzy models are utilized to represent the discrete-time nonlinear networked suspension control system, and the parameters uncertainties of the nonlinear model have also been taken into account. The controllers take the form of parallel distributed compensation. Then, a sufficient condition for the stability of the networked suspension control system is derived. Based on the criteria, the state feedback fuzzy controllers are obtained, and the controller gains can be computed by using MATLAB LMI Toolbox directly. Finally, both the numerical simulations and physical experiments on the full-scale single bogie of CMS-04 maglev train have been accomplished to demonstrate the effectiveness of this proposed method.

  1. Fermilab Muon Campus g-2 Cryogenic Distribution Remote Control System

    Energy Technology Data Exchange (ETDEWEB)

    Pei, L.; Theilacker, J.; Klebaner, A.; Soyars, W.; Bossert, R.

    2015-11-05

    The Muon Campus (MC) is able to measure Muon g-2 with high precision and comparing its value to the theoretical prediction. The MC has four 300 KW screw compressors and four liquid helium refrigerators. The centerpiece of the Muon g-2 experiment at Fermilab is a large, 50-foot-diameter superconducting muon storage ring. This one-of-a-kind ring, made of steel, aluminum and superconducting wire, was built for the previous g-2 experiment at Brookhaven. Due to each subsystem has to be far away from each other and be placed in the distant location, therefore, Siemens Process Control System PCS7-400, Automation Direct DL205 & DL05 PLC, Synoptic and Fermilab ACNET HMI are the ideal choices as the MC g-2 cryogenic distribution real-time and on-Line remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time and On-Line remote control systems.

  2. Testing and commissioning the multinode ECRH realtime control system on the FTU tokamak

    International Nuclear Information System (INIS)

    Galperti, C.; Boncagni, L.; Alessi, E.; Sozzi, C.; Nowak, S.; Granucci, G.; Minelli, D.; Marchetto, C.

    2014-01-01

    Highlights: • We conceived, developed and commissioned a distributed multinode control hardware with proven real-time performances. • The adopted hardware solution is modular and reconfigurable. • The adopted software solution is able to host many experimental scenarios and is totally remotely programmable, configurable and testable. • Effective results in on-line MHD instability detection are presented. - Abstract: In tokamak machines, the ECRH heating system is crucial for plasma heating and for stability control. To be reliable, an ECRH control system should be deeply integrated into the supervision and control systems of the machine, and must be interconnected to the diagnostic instruments and the power actuators of the plant. Moreover, several ECRH experiments are under investigation by the community. So, for the sake of efficiency, it should be possible to reprogram a control system on the fly and possibly from remote locations, even during experiment campaigns. This paper presents the new ECRH control system under development at the FTU tokamak. This system consists of multiple units that acquire and process data and are linked through Ethernet and dedicated fiber-optic data links, under a Linux/MARTe framework. This paper also presents open-loop operative results, both about performances of the control system and about signal processing of the diagnostics relevant to MHD control

  3. Testing and commissioning the multinode ECRH realtime control system on the FTU tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Galperti, C., E-mail: galperti@ifp.cnr.it [EURATOM – ENEA – CNR Fusion Association, CNR-IFP, via R. Cozzi 53, 20125 Milan (Italy); Boncagni, L., E-mail: luca.boncagni@enea.it [EURATOM – ENEA – CNR Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Alessi, E.; Sozzi, C.; Nowak, S.; Granucci, G.; Minelli, D.; Marchetto, C. [EURATOM – ENEA – CNR Fusion Association, CNR-IFP, via R. Cozzi 53, 20125 Milan (Italy)

    2014-03-15

    Highlights: • We conceived, developed and commissioned a distributed multinode control hardware with proven real-time performances. • The adopted hardware solution is modular and reconfigurable. • The adopted software solution is able to host many experimental scenarios and is totally remotely programmable, configurable and testable. • Effective results in on-line MHD instability detection are presented. - Abstract: In tokamak machines, the ECRH heating system is crucial for plasma heating and for stability control. To be reliable, an ECRH control system should be deeply integrated into the supervision and control systems of the machine, and must be interconnected to the diagnostic instruments and the power actuators of the plant. Moreover, several ECRH experiments are under investigation by the community. So, for the sake of efficiency, it should be possible to reprogram a control system on the fly and possibly from remote locations, even during experiment campaigns. This paper presents the new ECRH control system under development at the FTU tokamak. This system consists of multiple units that acquire and process data and are linked through Ethernet and dedicated fiber-optic data links, under a Linux/MARTe framework. This paper also presents open-loop operative results, both about performances of the control system and about signal processing of the diagnostics relevant to MHD control.

  4. The New BaBar Data Reconstruction Control System

    International Nuclear Information System (INIS)

    Ceseracciu, Antonio

    2003-01-01

    The BaBar experiment is characterized by extremely high luminosity, a complex detector, and a huge data volume, with increasing requirements each year. To fulfill these requirements a new control system has been designed and developed for the offline data reconstruction system. The new control system described in this paper provides the performance and flexibility needed to manage a large number of small computing farms, and takes full benefit of OO design. The infrastructure is well isolated from the processing layer, it is generic and flexible, based on a light framework providing message passing and cooperative multitasking. The system is actively distributed, enforces the separation between different processing tiers by using different naming domains, and glues them together by dedicated brokers. It provides a powerful Finite State Machine framework to describe custom processing models in a simple regular language. This paper describes this new control system, currently in use at SLAC and Padova on ∼450 CPUs organized in 12 farms

  5. Design of barrier bucket kicker control system

    Science.gov (United States)

    Ni, Fa-Fu; Wang, Yan-Yu; Yin, Jun; Zhou, De-Tai; Shen, Guo-Dong; Zheng, Yang-De.; Zhang, Jian-Chuan; Yin, Jia; Bai, Xiao; Ma, Xiao-Li

    2018-05-01

    The Heavy-Ion Research Facility in Lanzhou (HIRFL) contains two synchrotrons: the main cooler storage ring (CSRm) and the experimental cooler storage ring (CSRe). Beams are extracted from CSRm, and injected into CSRe. To apply the Barrier Bucket (BB) method on the CSRe beam accumulation, a new BB technology based kicker control system was designed and implemented. The controller of the system is implemented using an Advanced Reduced Instruction Set Computer (RISC) Machine (ARM) chip and a field-programmable gate array (FPGA) chip. Within the architecture, ARM is responsible for data presetting and floating number arithmetic processing. The FPGA computes the RF phase point of the two rings and offers more accurate control of the time delay. An online preliminary experiment on HIRFL was also designed to verify the functionalities of the control system. The result shows that the reference trigger point of two different sinusoidal RF signals for an arbitrary phase point was acquired with a matched phase error below 1° (approximately 2.1 ns), and the step delay time better than 2 ns were realized.

  6. A practical appreciation of the implementation of a fully computerized monitoring and control system in N4 NFP series: An advanced instrumentation and control system

    Energy Technology Data Exchange (ETDEWEB)

    DaCruz, P. [Atos Origin, 4, Triton Square, Regent' s Place, London NW1 3HG (United Kingdom)

    2006-07-01

    Sema Group (acquired in February 2004 by Atos Origin) was selected by EDF to design, develop and supply this system, based on their product Advanced Data Acquisition and Control System (ADACS). The purpose of this paper is to give a practical appreciation from both the demand and supply perspectives of the implementation of the fully computerized Monitoring and Control systems. This is a joint presentation by EDF and Atos Origin based on their experiences of the N4 programme.

  7. The graphics system and the data saving for the SAPHIR experiment

    International Nuclear Information System (INIS)

    Albold, D.

    1990-08-01

    Important extensions have been made to the data acquisition system SOS for the SAPHIR experiment at the Bonn ELSA facilities. As support for various online-programs, controlling components of the detector, a graphic system for presenting data was developed. This enables any program in the system to use all graphic devices. Main component is a program serving requests for presentation on a 19 inch color monitor. Window-technique allows a presentation of several graphics on one screen. Equipped with a trackball and using menus, this is an easy to use and powerful tool in controlling the experiment. Other important extensions concern data storage. A huge amount of event data can be stored on 8 mm cassettes by the program Eventsaver. This program can be controlled by a component of the SAPHIR-Online SOL running on a VAX-Computer and using windows and menus. The smaller amount of data, containing parameters and programs, which should be accessible within a small period of time, can be stored on a magnetic disk. A program supporting a file-structure for access to this disk is described. (orig./HSI) [de

  8. Power system stability enhancement using facts controllers: a review

    International Nuclear Information System (INIS)

    Abido, M. A

    2009-01-01

    In recent years, power demand has increased substantially while the expansion of power generation and transmission has been severely limited due to limited resources and environmental restrictions. As a consequence, some transmission lines are heavily loaded and the system stability becomes a power transfer-limiting factor. Flexible AC transmission systems (FACTS) controllers have been mainly used for solving various power system steady state control problems. However, recent studies reveal that FACTS controllers could be employed to enhance power system stability in addition to their main function of power flow control. The literature shows an increasing interest in this subject for the last two decades, where the enhancement of system stability using FACTS controllers has been extensively investigated. This paper presents a comprehensive review on the research and developments in the power system stability enhancement using FACTS damping controllers. Several technical issues related to FACTS installations have been highlighted and performance comparison of different FACTS controllers has been discussed. In addition, some of the utility experience, real-world installations, and semiconductor technology development have been reviewed and summarized. Applications of FACTS to other power system studies have also been discussed. About two hundred twenty seven research publications have been classified and appended for a quick reference. (author)

  9. The LHCb Silicon Tracker - Control system specific tools and challenges

    CERN Document Server

    Adeva, G; Esperante Pereira, D; Gallas, A; Pazos Alvarez, A; Perez Trigo, E; Rodriguez Perez, P; Saborido, J; Amhis, Y; Bay, A; Blanc, F; Bressieux, J; Conti, G; Dupertuis, F; Fave, V; Frei, R; Gauvin, N; Haefeli, G; Keune, A; Luisier, J; Marki, R; Muresan, R; Nakada, T; Needham, M; Knecht, M; Schneider, O; Tran, M; Anderson, J; Buechler, A; Bursche, A; Chiapolini, N; De Cian, M; Elsasser, C; Salzmann, C; Saornil Gamarra, S; Steiner, S; Steinkamp, O; Straumann, U; van Tilburg, J; Tobin, M; Vollhardt, A; Aquines Gutierrez, O; Bauer, C; Britsch, M; Maciuc, F; Schmelling, M; Voss, H; Iakovenko, V; Okhrimenko, O; Pugatch, V

    2014-01-01

    The Experiment Control System (ECS) of the LHCb Silicon Tracker sub-detectors is built on the integrated LHCb ECS framework. Although all LHCb sub-detectors use the same framework and follow the same guidelines, the Silicon Tracker control system uses some interesting additional features in terms of operation and monitoring. The main details are described in this document. Since its design, the Silicon Tracker control system has been continuously evolving in a quite disorganized way. Some major maintenance activities are required to be able to keep improving. A description of those activities can also be found here.

  10. Laser metrology and optic active control system for GAIA

    Science.gov (United States)

    D'Angelo, F.; Bonino, L.; Cesare, S.; Castorina, G.; Mottini, S.; Bertinetto, F.; Bisi, M.; Canuto, E.; Musso, F.

    2017-11-01

    The Laser Metrology and Optic Active Control (LM&OAC) program has been carried out under ESA contract with the purpose to design and validate a laser metrology system and an actuation mechanism to monitor and control at microarcsec level the stability of the Basic Angle (angle between the lines of sight of the two telescopes) of GAIA satellite. As part of the program, a breadboard (including some EQM elements) of the laser metrology and control system has been built and submitted to functional, performance and environmental tests. In the followings we describe the mission requirements, the system architecture, the breadboard design, and finally the performed validation tests. Conclusion and appraisals from this experience are also reported.

  11. Controlling and tracking hyperchaotic Roessler system via active backstepping design

    International Nuclear Information System (INIS)

    Zhang Hao; Ma Xikui; Li Ming; Zou Jianlong

    2005-01-01

    This paper presents a novel active backstepping control approach for controlling hyperchaotic Roessler system to a steady state as well as tracking of any desire trajectory to be achieved in a systematic way. The proposed method is a systematic design approach and consists in a recursive procedure that interlaces the choice of a Lyapunov function with the design of active control. Numerical results show that the controller is singularity free and the closed-loop system is stable globally. Especially, the main feature of this technique is that it gives the flexibility to construct a control law. Finally, numerical experiments verify the feasibility and effectiveness of the proposed control technique

  12. Model-independent nonlinear control algorithm with application to a liquid bridge experiment

    International Nuclear Information System (INIS)

    Petrov, V.; Haaning, A.; Muehlner, K.A.; Van Hook, S.J.; Swinney, H.L.

    1998-01-01

    We present a control method for high-dimensional nonlinear dynamical systems that can target remote unstable states without a priori knowledge of the underlying dynamical equations. The algorithm constructs a high-dimensional look-up table based on the system's responses to a sequence of random perturbations. The method is demonstrated by stabilizing unstable flow of a liquid bridge surface-tension-driven convection experiment that models the float zone refining process. Control of the dynamics is achieved by heating or cooling two thermoelectric Peltier devices placed in the vicinity of the liquid bridge surface. The algorithm routines along with several example programs written in the MATLAB language can be found at ftp://ftp.mathworks.com/pub/contrib/v5/control/nlcontrol. copyright 1998 The American Physical Society

  13. Integrated control systems

    International Nuclear Information System (INIS)

    Smith, D.J.

    1991-01-01

    This paper reports that instrument manufacturers must develop standard network interfaces to pull together interrelated systems such as automatic start-up, optimization programs, and online diagnostic systems. In the past individual control system manufacturers have developed their own data highways with proprietary hardware and software designs. In the future, electric utilities will require that future systems, irrespective of manufacturer, should be able to communicate with each other. Until now the manufactures of control systems have not agreed on the standard high-speed data highway system. Currently, the Electric Power Research Institute (EPRI), in conjunction with several electric utilities and equipment manufactures, is working on developing a standard protocol for communicating between various manufacturers' control systems. According to N. Michael of Sargent and Lundy, future control room designs will require that more of the control and display functions be accessible from the control room through CRTs. There will be less emphasis on traditional hard-wired control panels

  14. Systems Approach to Arms Control Verification

    Energy Technology Data Exchange (ETDEWEB)

    Allen, K; Neimeyer, I; Listner, C; Stein, G; Chen, C; Dreicer, M

    2015-05-15

    Using the decades of experience of developing concepts and technologies for verifying bilateral and multilateral arms control agreements, a broad conceptual systems approach is being developed that takes into account varying levels of information and risk. The IAEA has already demonstrated the applicability of a systems approach by implementing safeguards at the State level, with acquisition path analysis as the key element. In order to test whether such an approach could also be implemented for arms control verification, an exercise was conducted in November 2014 at the JRC ITU Ispra. Based on the scenario of a hypothetical treaty between two model nuclear weapons states aimed at capping their nuclear arsenals at existing levels, the goal of this exercise was to explore how to use acquisition path analysis in an arms control context. Our contribution will present the scenario, objectives and results of this exercise, and attempt to define future workshops aimed at further developing verification measures that will deter or detect treaty violations.

  15. Functional fractional calculus for system identification and controls

    CERN Document Server

    Das, Shantanu

    2008-01-01

    This work is inspired by thought to have an overall fuel-ef?cient nuclear plant control system. I picked up the topic in 2002 while deriving the reactor control laws, which aimed at fuel ef?ciency. Controlling the nuclear reactor close to its natural behavior by concept of exponent shape governor, ratio control and use of logarithmic logic, aims at the fuel ef?ciency. The power-maneuvering trajectory is obtained by shaped-normalized-period function, and this de?nes the road map on which the reactor should be governed. The experience of this concept governing the Atomic Power Plant of Tarapur Atomic Power Station gives lesser overall gains compared to the older plants, where conventional proportional integral and deri- tive type (PID) scheme is employed. Therefore, this motivation led to design the scheme for control system than the conventional schemes to aim at overall plant ef?ciency. Thus, I felt the need to look beyondPID and obtained the answer in fr- tional order control system, requiring fractional cal...

  16. Operator interface for the PEP-II low level RF control system

    International Nuclear Information System (INIS)

    Allison, S.; Claus, R.

    1997-05-01

    This paper focuses on the operational aspects of the low level RF control system being built for the PEP-II storage rings at SLAC. Subsystems requiring major operational considerations include displays for monitor and control from UNIX workstations, slow feedback loops and control sequences residing on microprocessors, and various client applications in the existing SLAC Linear Collider (SLC) control system. Since commissioning of PEP-II RF is currently in-progress, only those parts of the control system used during this phase are discussed in detail. Based on past experience with the SLC control system, it is expected that effort expended during commissioning on a solid user interface will result in smoother transition to full reliable 24-hour-a-day operation

  17. Reproducibility, controllability, and optimization of LENR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Nagel, David J. [The George Washington University, Washington DC 20052 (United States)

    2006-07-01

    Low-energy nuclear reaction (LENR) measurements are significantly, and increasingly reproducible. Practical control of the production of energy or materials by LENR has yet to be demonstrated. Minimization of costly inputs and maximization of desired outputs of LENR remain for future developments. The paper concludes by underlying that it is now clearly that demands for reproducible experiments in the early years of LENR experiments were premature. In fact, one can argue that irreproducibility should be expected for early experiments in a complex new field. As emphasized in the paper and as often happened in the history of science, experimental and theoretical progress can take even decades. It is likely to be many years before investments in LENR experiments will yield significant returns, even for successful research programs. However, it is clearly that a fundamental understanding of the anomalous effects observed in numerous experiments will significantly increase reproducibility, improve controllability, enable optimization of processes, and accelerate the economic viability of LENR.

  18. Reproducibility, controllability, and optimization of LENR experiments

    International Nuclear Information System (INIS)

    Nagel, David J.

    2006-01-01

    Low-energy nuclear reaction (LENR) measurements are significantly, and increasingly reproducible. Practical control of the production of energy or materials by LENR has yet to be demonstrated. Minimization of costly inputs and maximization of desired outputs of LENR remain for future developments. The paper concludes by underlying that it is now clearly that demands for reproducible experiments in the early years of LENR experiments were premature. In fact, one can argue that irreproducibility should be expected for early experiments in a complex new field. As emphasized in the paper and as often happened in the history of science, experimental and theoretical progress can take even decades. It is likely to be many years before investments in LENR experiments will yield significant returns, even for successful research programs. However, it is clearly that a fundamental understanding of the anomalous effects observed in numerous experiments will significantly increase reproducibility, improve controllability, enable optimization of processes, and accelerate the economic viability of LENR

  19. Combined Cycle Engine Large-Scale Inlet for Mode Transition Experiments: System Identification Rack Hardware Design

    Science.gov (United States)

    Thomas, Randy; Stueber, Thomas J.

    2013-01-01

    The System Identification (SysID) Rack is a real-time hardware-in-the-loop data acquisition (DAQ) and control instrument rack that was designed and built to support inlet testing in the NASA Glenn Research Center 10- by 10-Foot Supersonic Wind Tunnel. This instrument rack is used to support experiments on the Combined-Cycle Engine Large-Scale Inlet for Mode Transition Experiment (CCE? LIMX). The CCE?LIMX is a testbed for an integrated dual flow-path inlet configuration with the two flow paths in an over-and-under arrangement such that the high-speed flow path is located below the lowspeed flow path. The CCE?LIMX includes multiple actuators that are designed to redirect airflow from one flow path to the other; this action is referred to as "inlet mode transition." Multiple phases of experiments have been planned to support research that investigates inlet mode transition: inlet characterization (Phase-1) and system identification (Phase-2). The SysID Rack hardware design met the following requirements to support Phase-1 and Phase-2 experiments: safely and effectively move multiple actuators individually or synchronously; sample and save effector control and position sensor feedback signals; automate control of actuator positioning based on a mode transition schedule; sample and save pressure sensor signals; and perform DAQ and control processes operating at 2.5 KHz. This document describes the hardware components used to build the SysID Rack including their function, specifications, and system interface. Furthermore, provided in this document are a SysID Rack effectors signal list (signal flow); system identification experiment setup; illustrations indicating a typical SysID Rack experiment; and a SysID Rack performance overview for Phase-1 and Phase-2 experiments. The SysID Rack described in this document was a useful tool to meet the project objectives.

  20. Biofunctional Understanding and Conceptual Control: Searching for Systematic Consensus in Systemic Cohesion

    Directory of Open Access Journals (Sweden)

    Asghar Iran-Nejad

    2017-10-01

    Full Text Available For first generation scientists after the cognitive revolution, knowers were in active control over all (stages of information processing. Then, following a decade of transition shaped by intense controversy, embodied cognition emerged and suggested sources of control other than those implied by metaphysical information processing. With a thematic focus on embodiment science and an eye toward systematic consensus in systemic cohesion, the present study explores the roles of biofunctional and conceptual control processes in the wholetheme spiral of biofunctional understanding (see Iran-Nejad and Irannejad, 2017b, Figure 1. According to this spiral, each of the two kinds of understanding has its own unique set of knower control processes. For conceptual understanding (CU, knowers have deliberate attention-allocation control over their first-person “knowthat” and “knowhow” content combined as mutually coherent corequisites. For biofunctional understanding (BU, knowers have attention-allocation control only over their knowthat content but knowhow control content is ordinarily conspicuously absent. To test the hypothesis of differences in the manner of control between CU and BU, participants in two experiments read identical-format statements for internal consistency, as response time was recorded. The results of Experiment 1 supported the hypothesis of differences in the manner of control between the two types of control processes; and Experiment 2 confirmed the results of Experiment 1. These findings are discussed in terms of the predicted differences between BU and CU control processes, their roles in regulating the physically unobservable flow of systemic cohesion in the wholetheme spiral, and a proposal for systematic consensus in systemic cohesion to serve as the second guiding principle in biofunctional embodiment science next to physical science’s first guiding principle of systematic observation.