WorldWideScience

Sample records for system atmospheric parameters

  1. A new procedure for estimating the cell temperature of a high concentrator photovoltaic grid connected system based on atmospheric parameters

    International Nuclear Information System (INIS)

    Fernández, Eduardo F.; Almonacid, Florencia

    2015-01-01

    Highlights: • Concentrating grid-connected systems are working at maximum power point. • The operating cell temperature is inherently lower than at open circuit. • Two novel methods for estimating the cell temperature are proposed. • Both predict the operating cell temperature from atmospheric parameters. • Experimental results show that both methods perform effectively. - Abstract: The working cell temperature of high concentrator photovoltaic systems is a crucial parameter when analysing their performance and reliability. At the same time, due to the special features of this technology, the direct measurement of the cell temperature is very complex and is usually obtained by using different indirect methods. High concentrator photovoltaic modules in a system are operating at maximum power since they are connected to an inverter. So that, their cell temperature is lower than the cell temperature of a module at open-circuit voltage since an important part of the light power density is converted into electricity. In this paper, a procedure for indirectly estimating the cell temperature of a high concentrator photovoltaic system from atmospheric parameters is addressed. Therefore, this new procedure has the advantage that is valid for estimating the cell temperature of a system at any location of interest if the atmospheric parameters are available. To achieve this goal, two different methods are proposed: one based on simple mathematical relationships and another based on artificial intelligent techniques. Results show that both methods predicts the cell temperature of a module connected to an inverter with a low margin of error with a normalised root mean square error lower or equal than 3.3%, an absolute root mean square error lower or equal than 2 °C, a mean absolute error lower or equal then 1.5 °C, and a mean bias error and a mean relative error almost equal to 0%

  2. Measurement and analysis of atmospheric optics parameters In northwest ward

    Science.gov (United States)

    Sun, Gang; Weng, Ning-quan; Liu, Qing; Zhang, Cai-yun; Cheng, Ming

    2014-02-01

    When light-wave propagates in the turbulent atmosphere, it will be affected by atmospheric turbulence and brought various effect , such as flicker, phase fluctuation. So the investigation of atmosphere optics parameters always must be important. Because of the differences in geographical conditions and climate, atmospheric optical parameters in different regions have different spatial and time distribution. In this paper, various atmosphere optics parameters are measured by atmosphere optics parameters measure system in the Delingha area of Qinghai province and Xinjiang Korla area, through statistical analysis of atmospheric optical parameters corresponding area, we know clearly different geographical climate character of the northwest area of atmospheric optical parameters of structure characteristics, the results provide a valuable reference for further practical engineering application of optical remote sensing location and atmospheric optical transmission and atmospheric properties.

  3. Optimization of Terrestrial Ecosystem Model Parameters Using Atmospheric CO2 Concentration Data With the Global Carbon Assimilation System (GCAS)

    Science.gov (United States)

    Chen, Zhuoqi; Chen, Jing M.; Zhang, Shupeng; Zheng, Xiaogu; Ju, Weiming; Mo, Gang; Lu, Xiaoliang

    2017-12-01

    The Global Carbon Assimilation System that assimilates ground-based atmospheric CO2 data is used to estimate several key parameters in a terrestrial ecosystem model for the purpose of improving carbon cycle simulation. The optimized parameters are the leaf maximum carboxylation rate at 25°C (Vmax25), the temperature sensitivity of ecosystem respiration (Q10), and the soil carbon pool size. The optimization is performed at the global scale at 1° resolution for the period from 2002 to 2008. The results indicate that vegetation from tropical zones has lower Vmax25 values than vegetation in temperate regions. Relatively high values of Q10 are derived over high/midlatitude regions. Both Vmax25 and Q10 exhibit pronounced seasonal variations at middle-high latitudes. The maxima in Vmax25 occur during growing seasons, while the minima appear during nongrowing seasons. Q10 values decrease with increasing temperature. The seasonal variabilities of Vmax25 and Q10 are larger at higher latitudes. Optimized Vmax25 and Q10 show little seasonal variabilities at tropical regions. The seasonal variabilities of Vmax25 are consistent with the variabilities of LAI for evergreen conifers and broadleaf evergreen forests. Variations in leaf nitrogen and leaf chlorophyll contents may partly explain the variations in Vmax25. The spatial distribution of the total soil carbon pool size after optimization is compared favorably with the gridded Global Soil Data Set for Earth System. The results also suggest that atmospheric CO2 data are a source of information that can be tapped to gain spatially and temporally meaningful information for key ecosystem parameters that are representative at the regional and global scales.

  4. Parameters of atmospheric radioactivity in Bulgaria

    International Nuclear Information System (INIS)

    Yaneva, B.; Todorov, P.; Georgieva, D.

    2006-01-01

    Bulgaria is a country which is located on the Balkan Peninsula, at the Eastern part of Europe. There are a lot of polluting sources, which can affect the environmental parameters and human health. One of these parameters is a radioactivity. It can be as a result from natural and anthropological sources. One of the most important sources of radiological influence to the environment and its components is from atmosphere. Anthropological sources of atmospheric pollution are Nuclear power plants, different kinds of industrial plants, and so on. The systematic control on these parameters is made by the Ministry of environment and water in Bulgaria. The atmospheric radioactivity research is based on collecting of many samples and its examine. The collecting of these aerosol samples on different kind of filters is automatic and it is put into practice by fixed stations located in some of the main towns in Bulgaria - Sofia, Varna, Burgas, Vratza and Montana. The required amount of air for each sample is 1000m 3 . These samples are analyzed by gamma-spectrometry analysis for determination of specifies activity of natural and anthropological radionuclides in them. Monitoring data for the atmospheric radioactivity can be characterized by concentrations of Cs-137, Be-7. The results show that concentrations of Cs-137 are 3 and the concentrations for Be-7 vary from 0.7 to 15.7 mBq/m 3 . Other important radionuclides are Sr-90, Uranium and Ra-226

  5. Disposable falling sensors to monitor atmospheric parameters

    Science.gov (United States)

    Bertoldo, S.; Lucianaz, C.; Allegretti, M.; Perona, G.

    2016-10-01

    Detailed studies and researches about clouds and precipitations characterization are considered to play a key role in weather and strong events prediction. Most monitoring instruments perform indirect monitoring operation, sensing the parameters from a remote position and not being directly inside the phenomenon. A feasibility analysis of a set of disposable sensors is presented. The very light sensors are planned to be dropped by a plane or a UAV (Unmanned Aerial Vehicle) in the atmosphere and are designed to dynamically behave as very light particles similar to raindrops in their fluctuations and falling through the atmosphere. In order to realize sensing probes with a similar fluid-dynamic behavior of drops, the weight, the size and the surface properties of the probes should be carefully designed. An estimated size of the order of many centimeters and a total weight of less than 15 g is needed. Consequently particular attention has to be paid in designing electronic boards and in the choice of integrated measurement sensors as well as the transmitter. Minimum power consumption should be also guaranteed, in order to assure the proper working during the fluctuating and falling time. Sensors installed on the sensing probe will measure different atmospheric parameters (e.g. humidity, temperature, pressure, acceleration) with a sampling interval of the order of some milliseconds. All data are then sent to a receiver located on the ground and can then be stored and post processed for further analysis.

  6. Simultaneous state-parameter estimation supports the evaluation of data assimilation performance and measurement design for soil-water-atmosphere-plant system

    Science.gov (United States)

    Hu, Shun; Shi, Liangsheng; Zha, Yuanyuan; Williams, Mathew; Lin, Lin

    2017-12-01

    Improvements to agricultural water and crop managements require detailed information on crop and soil states, and their evolution. Data assimilation provides an attractive way of obtaining these information by integrating measurements with model in a sequential manner. However, data assimilation for soil-water-atmosphere-plant (SWAP) system is still lack of comprehensive exploration due to a large number of variables and parameters in the system. In this study, simultaneous state-parameter estimation using ensemble Kalman filter (EnKF) was employed to evaluate the data assimilation performance and provide advice on measurement design for SWAP system. The results demonstrated that a proper selection of state vector is critical to effective data assimilation. Especially, updating the development stage was able to avoid the negative effect of ;phenological shift;, which was caused by the contrasted phenological stage in different ensemble members. Simultaneous state-parameter estimation (SSPE) assimilation strategy outperformed updating-state-only (USO) assimilation strategy because of its ability to alleviate the inconsistency between model variables and parameters. However, the performance of SSPE assimilation strategy could deteriorate with an increasing number of uncertain parameters as a result of soil stratification and limited knowledge on crop parameters. In addition to the most easily available surface soil moisture (SSM) and leaf area index (LAI) measurements, deep soil moisture, grain yield or other auxiliary data were required to provide sufficient constraints on parameter estimation and to assure the data assimilation performance. This study provides an insight into the response of soil moisture and grain yield to data assimilation in SWAP system and is helpful for soil moisture movement and crop growth modeling and measurement design in practice.

  7. A Microwave Radiometric Method to Obtain the Average Path Profile of Atmospheric Temperature and Humidity Structure Parameters and Its Application to Optical Propagation System Assessment

    Science.gov (United States)

    Manning, Robert M.; Vyhnalek, Brian E.

    2015-01-01

    The values of the key atmospheric propagation parameters Ct2, Cq2, and Ctq are highly dependent upon the vertical height within the atmosphere thus making it necessary to specify profiles of these values along the atmospheric propagation path. The remote sensing method suggested and described in this work makes use of a rapidly integrating microwave profiling radiometer to capture profiles of temperature and humidity through the atmosphere. The integration times of currently available profiling radiometers are such that they are approaching the temporal intervals over which one can possibly make meaningful assessments of these key atmospheric parameters. Since these parameters are fundamental to all propagation conditions, they can be used to obtain Cn2 profiles for any frequency, including those for an optical propagation path. In this case the important performance parameters of the prevailing isoplanatic angle and Greenwood frequency can be obtained. The integration times are such that Kolmogorov turbulence theory and the Taylor frozen-flow hypothesis must be transcended. Appropriate modifications to these classical approaches are derived from first principles and an expression for the structure functions are obtained. The theory is then applied to an experimental scenario and shows very good results.

  8. Retrieval of atmospheric parameters by radiometer at frequency of terahertz

    Science.gov (United States)

    Li, Jiang-man; Guo, Li-xin; Lin, Le-Ke; Li, Hai-ying; Zhao, Yi-yang; Shu, Ting-ting; Cheng, Xian-hai

    2013-08-01

    There has been intense interest in the use of millimeter wave and terahertz technology for the detection of weapons, explosives and other threats. System based on electromagnetic radiation between 30 GHz and 3 THz have advantages that radiation penetrates many common materials, wavelengths are short enough to give adequate spatial resolution and radiation at these frequencies is safe to use on people. It is also applied to the retrieval of tropospheric parameters with the ground-based radiometer system. Tropospheric temperature, humidity and cloud liquid water are key elements in meteorology. Since the 151 GHz channel strongly depends on cloud liquid water, the retrieval accuracy of atmospheric parameters is improved by the inclusion of a channel at 151 GHz. The new retrieval model which uses 123 GHz, 127 GHz and 168 GHz is proposed. Simulations of retrieval are presented based on the radiosonde dataset of Beijing China and the retrieving errors of different methods are compared.

  9. Atmospheric parameters of 82 red giants in the Kepler field

    NARCIS (Netherlands)

    Thygesen, A.O.; Frandsen, S.; Bruntt, H.; Kallinger, T.; Andersen, M.F.; Elsworth, Y.P.; Hekker, S.; Karoff, C.; Stello, D.; Brogaard, K.; J. Burke, C.; Caldwell, D.A.; Christiansen, J.L.

    2012-01-01

    Context. Accurate fundamental parameters of stars are essential for the asteroseismic analysis of data from the NASA Kepler mission. Aims. We aim at determining accurate atmospheric parameters and the abundance pattern for a sample of 82 red giants that are targets for the Kepler mission. Methods.

  10. Estimating atmospheric parameters and reducing noise for multispectral imaging

    Science.gov (United States)

    Conger, James Lynn

    2014-02-25

    A method and system for estimating atmospheric radiance and transmittance. An atmospheric estimation system is divided into a first phase and a second phase. The first phase inputs an observed multispectral image and an initial estimate of the atmospheric radiance and transmittance for each spectral band and calculates the atmospheric radiance and transmittance for each spectral band, which can be used to generate a "corrected" multispectral image that is an estimate of the surface multispectral image. The second phase inputs the observed multispectral image and the surface multispectral image that was generated by the first phase and removes noise from the surface multispectral image by smoothing out change in average deviations of temperatures.

  11. Molecular line parameters for the atmospheric trace molecule spectroscopy experiment

    Science.gov (United States)

    Brown, L. R.; Farmer, C. B.; Toth, R. A.; Rinsland, Curtis P.

    1987-01-01

    During its first mission in 1985 onboard Spacelab 3, the ATMOS (atmospheric trace molecule spectroscopy) instrument, a high speed Fourier transform spectrometer, produced a large number of high resolution infrared solar absorption spectra recorded in the occultation mode. The analysis and interpretation of these data in terms of composition, chemistry, and dynamics of the earth's upper atmosphere required good knowledge of the molecular line parameters for those species giving rise to the absorptions in the atmospheric spectra. This paper describes the spectroscopic line parameter database compiled for the ATMOS experiment and referenced in other papers describing ATMOS results. With over 400,000 entries, the linelist catalogs parameters of 46 minor and trace species in the 1-10,000/cm region.

  12. Observations of the atmospheric surface layer parameters over a ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    1999-08-11

    Aug 11, 1999 ... This paper discusses the observations of the Atmospheric Surface Layer (ASL) parameters dur- ing the solar eclipse of August 11th, 1999. Intensive surface layer experiments were conducted at. Ahmedabad (23◦21 N, 72◦36 E), the western part of India, which was close to the totality path. This rare event ...

  13. Retrieval and processing of atmospheric parameters from satellite data

    Digital Repository Service at National Institute of Oceanography (India)

    Sathe, P.V.; Muraleedharan, P.M.

    Remote sensing of each of passive microwave channels enables one to estimate the atmospheric parameters over oceans on a repetitive basis throughout the year. Such a data base forms a useful tool in the study of complex weather phenomena. With India...

  14. Applying Atmospheric Measurements to Constrain Parameters of Terrestrial Source Models

    Science.gov (United States)

    Hyer, E. J.; Kasischke, E. S.; Allen, D. J.

    2004-12-01

    Quantitative inversions of atmospheric measurements have been widely applied to constrain atmospheric budgets of a range of trace gases. Experiments of this type have revealed persistent discrepancies between 'bottom-up' and 'top-down' estimates of source magnitudes. The most common atmospheric inversion uses the absolute magnitude as the sole parameter for each source, and returns the optimal value of that parameter. In order for atmospheric measurements to be useful for improving 'bottom-up' models of terrestrial sources, information about other properties of the sources must be extracted. As the density and quality of atmospheric trace gas measurements improve, examination of higher-order properties of trace gas sources should become possible. Our model of boreal forest fire emissions is parameterized to permit flexible examination of the key uncertainties in this source. Using output from this model together with the UM CTM, we examined the sensitivity of CO concentration measurements made by the MOPITT instrument to various uncertainties in the boreal source: geographic distribution of burned area, fire type (crown fires vs. surface fires), and fuel consumption in above-ground and ground-layer fuels. Our results indicate that carefully designed inversion experiments have the potential to help constrain not only the absolute magnitudes of terrestrial sources, but also the key uncertainties associated with 'bottom-up' estimates of those sources.

  15. Research on airborne comprehensive survey system of atmosphere quality

    International Nuclear Information System (INIS)

    Yu Zhentao; Yu Yanbin

    1998-01-01

    The global atmosphere pollution is becoming more and more serious, affecting the human existence and development. Besides, the high spectrum resolution remote sensing technique, which has been applied to observe topographic features, identify military objectives and distinguish lithology and vegetation, has the relation to atmosphere quality and is influenced by atmosphere pollution (including radon pollution) and dust content in the atmosphere, it is imperative to monitor atmosphere quality. Based upon the selection of some main parameters evaluating atmospheric quality and necessary equipment, the author introduces the design of multiple airborne comprehensive survey system of atmosphere quality and how to deal with problems that crop up during the hardware designing and software programming

  16. Stellar atmospheric parameter estimation using Gaussian process regression

    Science.gov (United States)

    Bu, Yude; Pan, Jingchang

    2015-02-01

    As is well known, it is necessary to derive stellar parameters from massive amounts of spectral data automatically and efficiently. However, in traditional automatic methods such as artificial neural networks (ANNs) and kernel regression (KR), it is often difficult to optimize the algorithm structure and determine the optimal algorithm parameters. Gaussian process regression (GPR) is a recently developed method that has been proven to be capable of overcoming these difficulties. Here we apply GPR to derive stellar atmospheric parameters from spectra. Through evaluating the performance of GPR on Sloan Digital Sky Survey (SDSS) spectra, Medium resolution Isaac Newton Telescope Library of Empirical Spectra (MILES) spectra, ELODIE spectra and the spectra of member stars of galactic globular clusters, we conclude that GPR can derive stellar parameters accurately and precisely, especially when we use data preprocessed with principal component analysis (PCA). We then compare the performance of GPR with that of several widely used regression methods (ANNs, support-vector regression and KR) and find that with GPR it is easier to optimize structures and parameters and more efficient and accurate to extract atmospheric parameters.

  17. Modelling water fluxes in a pine wood soil-vegetation-atmosphere system. Comparison of a water budget and water flow model using different parameter data sources

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, S.; Jacques, D.; Mallants, D.

    2010-02-15

    For modelling complex hydrological problems, realistic models and accurate hydraulic properties are needed. A mechanistic model (HYDRUS-1D) and a compartment model are evaluated for simulating the water balance in a soil-vegetation-atmosphere system using time series of measured water content at several depths in two lysimeters in a podzol soil with Scots Pine vegetation. 10 calibration scenarios are used to investigate the impact of the model type and the number of horizons in the profile on the calibration accuracy. Main results are: (i) with a large number of soil layers, both models describe accurately the water contents at all depths, (II) the number of soil layers is the major factor that controls the quality of the calibration. The compartment model is as an abstracted model and the mechanistic model is our reference model. Drainage values are the considered output. Drainage values simulated by the abstracted model were close to those of the reference model when averaged over a sufficiently long period (about 9 months). This result suggests that drainage values obtained with an abstracted model are reliably when averaged over sufficiently long periods; the abstracted model needs less computational time without an important loss of accuracy.

  18. Earth's Atmospheric Electricity Parameter Response During Venus Transit

    Directory of Open Access Journals (Sweden)

    Syam Sundar De

    2015-01-01

    Full Text Available Venus transited across the Sun on 06 June 2012, introducing significant contribution to the tidal characteristics of the solar atmosphere. _ atmosphere was perturbed due to an anomalous Coronal Mass Ejection (CME and γ-radiationγ-radiation influenced by the solar tide due to Venus transit, thereby the Earth-ionosphere waveguide characteristics were changed. In this anomalous situation we measured some atmospheric electricity parameters such as Schumann resonance (SR amplitude, very low frequency (VLF sferics, subionospheric transmitted signals and the point discharge current (PDC along with the vertical electrical potential gradient (PG at the ground surface on the day of transit. The results showed some remarkable variations during the transit as well as pre- and post-transit periods. The observed anomalies in the recorded data were interpreted in terms of the anomalous solar tidal effects initiated due to Venus transit.

  19. Atmospheric parameters of 82 red giants in the Kepler field

    DEFF Research Database (Denmark)

    Overaa Thygesen, Anders; Frandsen, Søren; Bruntt, Hans

    2012-01-01

    Context. Accurate fundamental parameters of stars are essential for the asteroseismic analysis of data from the NASA Kepler mission. Aims. We aim at determining accurate atmospheric parameters and the abundance pattern for a sample of 82 red giants that are targets for the Kepler mission. Methods...... elements were measured using equivalent widths of the spectral lines. Results. We identify discrepancies in log g and [Fe/H], compared to the parameters based on photometric indices in the Kepler Input Catalogue (larger than 2.0 dex for log g and [Fe/H] for individual stars). The Teff found from...... parameters and element abundances of 82 red giants. The large discrepancies between the spectroscopic log g and [Fe/H] and values in the Kepler Input Catalogue emphasize the need for further detailed spectroscopic follow-up of the Kepler targets in order to produce reliable results from the asteroseismic...

  20. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Kaspi, Yohai [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel); Showman, Adam P., E-mail: yohai.kaspi@weizmann.ac.il [Department of Planetary Sciences and Lunar and Planetary Laboratory, The University of Arizona, 1629 University Blvd., Tucson, AZ 85721 (United States)

    2015-05-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate.

  1. ATMOSPHERIC DYNAMICS OF TERRESTRIAL EXOPLANETS OVER A WIDE RANGE OF ORBITAL AND ATMOSPHERIC PARAMETERS

    International Nuclear Information System (INIS)

    Kaspi, Yohai; Showman, Adam P.

    2015-01-01

    The recent discoveries of terrestrial exoplanets and super-Earths extending over a broad range of orbital and physical parameters suggest that these planets will span a wide range of climatic regimes. Characterization of the atmospheres of warm super-Earths has already begun and will be extended to smaller and more distant planets over the coming decade. The habitability of these worlds may be strongly affected by their three-dimensional atmospheric circulation regimes, since the global climate feedbacks that control the inner and outer edges of the habitable zone—including transitions to Snowball-like states and runaway-greenhouse feedbacks—depend on the equator-to-pole temperature differences, patterns of relative humidity, and other aspects of the dynamics. Here, using an idealized moist atmospheric general circulation model including a hydrological cycle, we study the dynamical principles governing the atmospheric dynamics on such planets. We show how the planetary rotation rate, stellar flux, atmospheric mass, surface gravity, optical thickness, and planetary radius affect the atmospheric circulation and temperature distribution on such planets. Our simulations demonstrate that equator-to-pole temperature differences, meridional heat transport rates, structure and strength of the winds, and the hydrological cycle vary strongly with these parameters, implying that the sensitivity of the planet to global climate feedbacks will depend significantly on the atmospheric circulation. We elucidate the possible climatic regimes and diagnose the mechanisms controlling the formation of atmospheric jet streams, Hadley and Ferrel cells, and latitudinal temperature differences. Finally, we discuss the implications for understanding how the atmospheric circulation influences the global climate

  2. Space Station atmospheric monitoring systems

    Science.gov (United States)

    Buoni, C.; Coutant, R.; Barnes, R.; Slivon, L.

    1988-01-01

    A technology assessment study on atmospheric monitoring systems was performed by Battelle Columbus Division for the National Aeronautics and Space Administration's John F. Kennedy Space Center under Contract No. NAS 10-11033. In this assessment, the objective was to identify, analyze, and recommend systems to sample and measure Space Station atmospheric contaminants and identify where additional research and technology advancements were required. To achieve this objective, it was necessary to define atmospheric monitoring requirements and to assess the state of the art and advanced technology and systems for technical and operational compatibility with monitoring goals. Three technical tasks were defined to support these needs: Definition of Monitoring Requirements, Assessment of Sampling and Analytical Technology, and Technology Screening and Recommendations. Based on the analysis, the principal candidates recommended for development at the Space Station's initial operational capability were: (1) long-path Fourier transform infrared for rapid detection of high-risk contamination incidences, and (2) gas chromatography/mass spectrometry utilizing mass selective detection (or ion-trap) technologies for detailed monitoring of extended crew exposure to low level (ppbv) contamination. The development of a gas chromatography/mass spectrometry/matrix isolation-Fourier transform infrared system was recommended as part of the long range program of upgrading Space Station trace-contaminant monitoring needs.

  3. Telemetry System of Biological Parameters

    Directory of Open Access Journals (Sweden)

    Jan Spisak

    2005-01-01

    Full Text Available The mobile telemetry system of biological parameters serves for reading and wireless data transfer of measured values of selected biological parameters to an outlying computer. It concerns basically long time monitoring of vital function of car pilot.The goal of this projects is to propose mobile telemetry system for reading, wireless transfer and processing of biological parameters of car pilot during physical and psychical stress. It has to be made with respect to minimal consumption, weight and maximal device mobility. This system has to eliminate signal noise, which is created by biological artifacts and disturbances during the data transfer.

  4. Remote sensing of aerosol and marine parameters in coastal environments: Exploring the advantage of using polarized radiative transfer simulations of the coupled atmosphere-water system to analyze ocean color measurements

    Science.gov (United States)

    Stamnes, K. H.

    2016-02-01

    Simultaneous retrieval of aerosol and surface properties by means of inverse techniques based on a coupled atmosphere-surface radiative transfer model (CRTM) and optimal estimation can yield a considerable improvement in retrieval accuracy based on radiances measured by MERIS, MODIS, and similar instruments compared with traditional methods. There are uniqueness problems associated with photometric remote sensing measurements (like MERIS/MODIS) that ignore polarization effects, and rely on measuring only the radiance. Use of polarization measurements is particularly important for absorbing aerosols over coastal waters as well as over bright targets such as snow-covered and bare sea ice, where it has proved difficult to retrieve aerosol single-scattering albedo from radiance-only spectrometers such as MERIS and MODIS. We use a vector radiative transfer model for the coupled atmosphere-surface system in conjunction with an optimal estimation/Levenberg-Marquardt method to quantify how polarization measurements can be used to overcome the uniqueness problems associated with radiance-only retrieval of aerosol parameters. However, this study also indicates that even for existing instruments like MERIS and MODIS and future instrument like OLCI, that measure radiance-only, use of a polarized CRTM as a forward model in the optimal estimation can lead to significant enhancement of retrieval capabilities, and facilitate simultaneous retrieval of absorbing aerosols and marine parameters in turbid coastal environments.

  5. Atmospheric stellar parameters from cross-correlation functions

    Science.gov (United States)

    Malavolta, L.; Lovis, C.; Pepe, F.; Sneden, C.; Udry, S.

    2017-08-01

    The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allows the measurement of temperature (Teff), metallicity ([Fe/H]) and gravity (log g) within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, our technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. We use literature stellar parameters of high signal-to-noise (SNR), high-resolution HARPS spectra of FGK main-sequence stars to calibrate Teff, [Fe/H] and log g as a function of CCF parameters. Our technique is validated using low-SNR spectra obtained with the same instrument. For FGK stars we achieve a precision of σ _{{T_eff}} = 50 K, σlog g = 0.09 dex and σ _{{{[Fe/H]}}} =0.035 dex at SNR = 50, while the precision for observation with SNR ≳ 100 and the overall accuracy are constrained by the literature values used to calibrate the CCFs. Our approach can easily be extended to other instruments with similar spectral range and resolution or to other spectral range and stars other than FGK dwarfs if a large sample of reference stars is available for the calibration. Additionally, we provide the mathematical formulation to convert synthetic equivalent widths to CCF parameters as an alternative to direct calibration. We have made our tool publicly available.

  6. Atmospheric aerosol system: An overview

    International Nuclear Information System (INIS)

    Prospero, J.M.; Charlson, R.J.; Mohnen, V.; Jaenicke, R.; Delany, A.C.; Moyers, J.; Zoller, W.; Rahn, K.

    1983-01-01

    Aerosols could play a critical role in many processes which impact on our lives either indirectly (e.g., climate) or directly (e.g., health). However, our ability to assess these possible impacts is constrained by our limited knowledge of the physical and chemical properties of aerosols, both anthropogenic and natural. This deficiency is attributable in part to the fact that aerosols are the end product of a vast array of chemical and physical processes. Consequently, the properties of the aerosol can exhibit a great deal of variability in both time and space. Furthermore, most aerosol studies have focused on measurements of a single aerosol characteristic such as composition or size distribution. Such information is generally not useful for the assessment of impacts because the degree of impact may depend on the integral properties of the aerosol, for example, the aerosol composition as a function of particle size. In this overview we discuss recent work on atmospheric aerosols that illustrates the complex nature of the aerosol chemical and physical system, and we suggest strategies for future research. A major conclusion is that man has had a great impact on the global budgets of certain species, especially sulfur and nitrogen, that play a dominant role in the atmospheric aerosol system. These changes could conceivably affect climate. Large-scale impacts are implied because it has recently been demonstrated that natural and pollutant aerosol episodes can be propagated over great distances. However, at present there is no evidence linking anthropogenic activities with a persistent increase in aerosol concentrations on a global scale. A major problem in assessing man's impact on the atmospheric aerosol system and on global budgets is the absence of aerosol measurements in remote marine and continental areas

  7. A possible estimation of atmospheric Cherenkov light parameters

    International Nuclear Information System (INIS)

    Aleksandrov, L.; Brankova, M.; Kirov, I.; Mavrodiev, S.Cht.; Mishev, A.; Stamenov, J.; Ushev, S.

    1998-01-01

    A method for analysis of extensive air showers initiated by primary gamma quanta of primary protons and nuclei in the atmosphere is presented. The method is based on measuring of Cherenkov light distribution in showers. A new approximation of the lateral and radial distributions is obtained on the basis of a nonlinear overdetermined inverse problem solution. The concrete mathematical model is created by analysis of recent measurements carried out by the Cherenkov wide angle timing telescope HOTOVO. The model is tested on simulated data obtained with the code CORSIKA. The method is applied to different sets of detectors of CELESTE array. A new detector array for optimal estimation of Cherenkov flux parameters is proposed

  8. Retrieving cloudy atmosphere parameters from RPG-HATPRO radiometer data

    Science.gov (United States)

    Kostsov, V. S.

    2015-03-01

    An algorithm for simultaneously determining both tropospheric temperature and humidity profiles and cloud liquid water content from ground-based measurements of microwave radiation is presented. A special feature of this algorithm is that it combines different types of measurements and different a priori information on the sought parameters. The features of its use in processing RPG-HATPRO radiometer data obtained in the course of atmospheric remote sensing experiments carried out by specialists from the Faculty of Physics of St. Petersburg State University are discussed. The results of a comparison of both temperature and humidity profiles obtained using a ground-based microwave remote sensing method with those obtained from radiosonde data are analyzed. It is shown that this combined algorithm is comparable (in accuracy) to the classical method of statistical regularization in determining temperature profiles; however, this algorithm demonstrates better accuracy (when compared to the method of statistical regularization) in determining humidity profiles.

  9. Atmospheric parameters of red giants in the Kepler field

    Science.gov (United States)

    Bruntt, H.; Frandsen, S.; Thygesen, A. O.

    2011-04-01

    Context. Accurate fundamental parameters of stars are mandatory for the asteroseismic investigation of the Kepler mission to succeed. Aims: We determine the atmospheric parameters for a sample of six well-studied bright K giants to confirm that our method produces reliable results. We then apply the same method to 14 K giants that are targets of the Kepler mission. Methods: We used high-resolution, high signal-to-noise ratio spectra acquired using the FIES spectrograph on the Nordic Optical Telescope. We applied the iterative spectral synthesis method VWA to derive the fundamental parameters from carefully selected high-quality iron lines and pressure-sensitive Calcium lines. Results: We find good agreement with parameters from the literature for the six bright giants. We compared the spectroscopic values with parameters based on photometric indices in the Kepler Input Catalogue (KIC). We identify serious problems with the KIC values for [Fe/H] and find a large RMS scatter of 0.5 dex. The log g values in KIC agree reasonably well with the spectroscopic values displaying a scatter of 0.25 dex after excluding two low-metallicity giants. The Teff values from VWA and KIC agree well with a scatter of about 85 K. We also find good agreement with log g and Teff derived from asteroseismic analyses for seven Kepler giant targets. Conclusions: We determine accurate fundamental parameters of 14 giants using spectroscopic data. The large discrepancies between photometric and spectroscopic values of [Fe/H] emphasize the need for further detailed spectroscopic follow-up of the Kepler targets. This will be mandatory to be able to produce reliable constraints for detailed asteroseismic analyses and interpretation of possible exo-planet candidates found around giant stars. Based on observations made with the Nordic Optical Telescope, operated on the island of La Palma jointly by Denmark, Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio del Roque de los Muchachos of

  10. STELLAR ATMOSPHERES, ATMOSPHERIC EXTENSION, AND FUNDAMENTAL PARAMETERS: WEIGHING STARS USING THE STELLAR MASS INDEX

    Energy Technology Data Exchange (ETDEWEB)

    Neilson, Hilding R.; Lester, John B. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4 (Canada); Baron, Fabien; Norris, Ryan; Kloppenborg, Brian, E-mail: neilson@astro.utoronto.ca [Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2016-10-20

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angular diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.

  11. Stellar Atmospheres, Atmospheric Extension, and Fundamental Parameters: Weighing Stars Using the Stellar Mass Index

    Science.gov (United States)

    Neilson, Hilding R.; Baron, Fabien; Norris, Ryan; Kloppenborg, Brian; Lester, John B.

    2016-10-01

    One of the great challenges of understanding stars is measuring their masses. The best methods for measuring stellar masses include binary interaction, asteroseismology, and stellar evolution models, but these methods are not ideal for red giant and supergiant stars. In this work, we propose a novel method for inferring stellar masses of evolved red giant and supergiant stars using interferometric and spectrophotometric observations combined with spherical model stellar atmospheres to measure what we call the stellar mass index, defined as the ratio between the stellar radius and mass. The method is based on the correlation between different measurements of angular diameter, used as a proxy for atmospheric extension, and fundamental stellar parameters. For a given star, spectrophotometry measures the Rosseland angular diameter while interferometric observations generally probe a larger limb-darkened angular diameter. The ratio of these two angular diameters is proportional to the relative extension of the stellar atmosphere, which is strongly correlated to the star’s effective temperature, radius, and mass. We show that these correlations are strong and can lead to precise measurements of stellar masses.

  12. Natural solar energy amplifiers in planet-atmosphere system

    International Nuclear Information System (INIS)

    Njau, E. C.

    2004-01-01

    Planets and their atmospheres (including the Earth and its atmosphere) continuously receive solar energy which comprises very small variable components and a relatively huge constant component. On the basis of certain conditions, specific physical mechanism can exist in each planet-atmosphere system under which the tiny variable solar energy components so received apparently undergo large amplifications. In the case of the Earth-Atmosphere system, these energy amplifications continuously exist and involve maximum amplification factors that range from ∼ 2312 to over 6915 for frequencies equal to or less than the 11-year sunspot cycle frequency. Consequently energy and hence temperature variations at the solar (or sunspot) cycle frequencies dominantly exist in the Earth-Atmosphere system. These energy and temperature variations are continuously mapped or translated into corresponding variations in the other weather parameters as verified by past records

  13. Atmospheric parameters, spectral indexes and their relation to CPV spectral performance

    Energy Technology Data Exchange (ETDEWEB)

    Núñez, Rubén, E-mail: ruben.nunez@ies-def.upm.es; Antón, Ignacio, E-mail: ruben.nunez@ies-def.upm.es; Askins, Steve, E-mail: ruben.nunez@ies-def.upm.es; Sala, Gabriel, E-mail: ruben.nunez@ies-def.upm.es [Instituto de Energía Solar - Universidad Politécnica de Madrid, Instituto de Energía Solar, ETSI Telecomunicación, Ciudad Universitaria 28040 Madrid (Spain)

    2014-09-26

    Air Mass and atmosphere components (basically aerosol (AOD) and precipitable water (PW)) define the absorption of the sunlight that arrive to Earth. Radiative models such as SMARTS or MODTRAN use these parameters to generate an equivalent spectrum. However, complex and expensive instruments (as AERONET network devices) are needed to obtain AOD and PW. On the other hand, the use of isotype cells is a convenient way to characterize spectrally a place for CPV considering that they provide the photocurrent of the different internal subcells individually. Crossing data from AERONET station and a Tri-band Spectroheliometer, a model that correlates Spectral Mismatch Ratios and atmospheric parameters is proposed. Considering the amount of stations of AERONET network, this model may be used to estimate the spectral influence on energy performance of CPV systems close to all the stations worldwide.

  14. Atmospheric turbidity parameters in the high polluted site of egypt

    International Nuclear Information System (INIS)

    Shaltout, M.A.M.; Rahoma, U.A.

    1996-01-01

    Monthly variations of Linke, angstrom and Schuepp turbidity coefficients and gamma exponent as well as the influence of climatic factor on them are analysed. For each of these turbidity coefficients; calculated from measurements of broad band filters at Helwan, egypt, desert climate, are reported. A linear regression model fitted to Angstrom's turbidity turbidity coefficient beta and Linke turbidity L for Helwan. The calculation showed that, it is higher values of atmospheric turbidity coefficients due to, both the effect of air pollutants in the Helwan atmosphere from the four cement companies and some of heavy industrial factories, and the effect of the former's desert climate. 6 figs., 2 tabs

  15. Solar signals detected within neutral atmospheric and ionospheric parameters

    Czech Academy of Sciences Publication Activity Database

    Koucká Knížová, Petra; Georgieva, K.; Mošna, Zbyšek; Kozubek, Michal; Kouba, Daniel; Kirov, B.; Potužníková, Kateřina; Boška, Josef

    2018-01-01

    Roč. 171, June (2018), s. 147-156 ISSN 1364-6826 R&D Projects: GA ČR(CZ) GA15-24688S Grant - others:AV ČR(CZ) BAS-17-06 Program:Bilaterální spolupráce Institutional support: RVO:68378289 Keywords : solar energy * upper atmosphere Subject RIV: DG - Athmosphere Sciences, Meteorology OBOR OECD: Meteorology and atmospheric sciences Impact factor: 1.326, year: 2016 http://www.sciencedirect.com/science/article/pii/S1364682617302365

  16. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    Science.gov (United States)

    Mikhailov, E.; Vlasenko, S.; Rose, D.; Pöschl, U.

    2013-01-01

    In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles with complex chemical composition. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007). We introduce an observable mass-based hygroscopicity parameter κm which can be deconvoluted into a dilute hygroscopicity parameter (κm0) and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems. For reference aerosol samples of sodium chloride and ammonium sulfate, the κm-interaction model (KIM) captures the experimentally observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM). Experimental results for pure organic particles (malonic acid, levoglucosan) and for mixed organic-inorganic particles (malonic acid - ammonium sulfate) are also well reproduced by KIM, taking into account apparent or equilibrium solubilities for stepwise or gradual deliquescence and efflorescence transitions. The mixed organic-inorganic particles as well as atmospheric aerosol samples exhibit three distinctly different regimes of hygroscopicity: (I) a quasi-eutonic deliquescence & efflorescence regime at low-humidity where substances are just partly dissolved and exist also in a non-dissolved phase, (II) a gradual deliquescence & efflorescence regime at intermediate humidity where different solutes undergo gradual dissolution or solidification in the aqueous phase; and (III) a dilute regime at high humidity where the solutes are fully dissolved approaching their dilute hygroscopicity. For atmospheric aerosol samples collected from boreal rural air and from pristine tropical rainforest air (secondary

  17. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake

    Directory of Open Access Journals (Sweden)

    E. Mikhailov

    2013-01-01

    Full Text Available In this study we derive and apply a mass-based hygroscopicity parameter interaction model for efficient description of concentration-dependent water uptake by atmospheric aerosol particles with complex chemical composition. The model approach builds on the single hygroscopicity parameter model of Petters and Kreidenweis (2007. We introduce an observable mass-based hygroscopicity parameter κm which can be deconvoluted into a dilute hygroscopicity parameterm0 and additional self- and cross-interaction parameters describing non-ideal solution behavior and concentration dependencies of single- and multi-component systems.

    For reference aerosol samples of sodium chloride and ammonium sulfate, the κm-interaction model (KIM captures the experimentally observed concentration and humidity dependence of the hygroscopicity parameter and is in good agreement with an accurate reference model based on the Pitzer ion-interaction approach (Aerosol Inorganic Model, AIM. Experimental results for pure organic particles (malonic acid, levoglucosan and for mixed organic-inorganic particles (malonic acid – ammonium sulfate are also well reproduced by KIM, taking into account apparent or equilibrium solubilities for stepwise or gradual deliquescence and efflorescence transitions.

    The mixed organic-inorganic particles as well as atmospheric aerosol samples exhibit three distinctly different regimes of hygroscopicity: (I a quasi-eutonic deliquescence & efflorescence regime at low-humidity where substances are just partly dissolved and exist also in a non-dissolved phase, (II a gradual deliquescence & efflorescence regime at intermediate humidity where different solutes undergo gradual dissolution or solidification in the aqueous phase; and (III a dilute regime at high humidity where the solutes are fully dissolved approaching their dilute hygroscopicity.

    For atmospheric aerosol samples

  18. Optimizing Photosynthetic and Respiratory Parameters Based on the Seasonal Variation Pattern in Regional Net Ecosystem Productivity Obtained from Atmospheric Inversion

    Science.gov (United States)

    Chen, Z.; Chen, J.; Zheng, X.; Jiang, F.; Zhang, S.; Ju, W.; Yuan, W.; Mo, G.

    2014-12-01

    In this study, we explore the feasibility of optimizing ecosystem photosynthetic and respiratory parameters from the seasonal variation pattern of the net carbon flux. An optimization scheme is proposed to estimate two key parameters (Vcmax and Q10) by exploiting the seasonal variation in the net ecosystem carbon flux retrieved by an atmospheric inversion system. This scheme is implemented to estimate Vcmax and Q10 of the Boreal Ecosystem Productivity Simulator (BEPS) to improve its NEP simulation in the Boreal North America (BNA) region. Simultaneously, in-situ NEE observations at six eddy covariance sites are used to evaluate the NEE simulations. The results show that the performance of the optimized BEPS is superior to that of the BEPS with the default parameter values. These results have the implication on using atmospheric CO2 data for optimizing ecosystem parameters through atmospheric inversion or data assimilation techniques.

  19. CCFpams: Atmospheric stellar parameters from cross-correlation functions

    Science.gov (United States)

    Malavolta, Luca; Lovis, Christophe; Pepe, Francesco; Sneden, Christopher; Udry, Stephane

    2017-07-01

    CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.

  20. Modeling of uncertainty in atmospheric transport system using hybrid method

    International Nuclear Information System (INIS)

    Pandey, M.; Ranade, Ashok; Brij Kumar; Datta, D.

    2012-01-01

    Atmospheric dispersion models are routinely used at nuclear and chemical plants to estimate exposure to the members of the public and occupational workers due to release of hazardous contaminants into the atmosphere. Atmospheric dispersion is a stochastic phenomenon and in general, the concentration of the contaminant estimated at a given time and at a predetermined location downwind of a source cannot be predicted precisely. Uncertainty in atmospheric dispersion model predictions is associated with: 'data' or 'parameter' uncertainty resulting from errors in the data used to execute and evaluate the model, uncertainties in empirical model parameters, and initial and boundary conditions; 'model' or 'structural' uncertainty arising from inaccurate treatment of dynamical and chemical processes, approximate numerical solutions, and internal model errors; and 'stochastic' uncertainty, which results from the turbulent nature of the atmosphere as well as from unpredictability of human activities related to emissions, The possibility theory based on fuzzy measure has been proposed in recent years as an alternative approach to address knowledge uncertainty of a model in situations where available information is too vague to represent the parameters statistically. The paper presents a novel approach (called Hybrid Method) to model knowledge uncertainty in a physical system by a combination of probabilistic and possibilistic representation of parametric uncertainties. As a case study, the proposed approach is applied for estimating the ground level concentration of hazardous contaminant in air due to atmospheric releases through the stack (chimney) of a nuclear plant. The application illustrates the potential of the proposed approach. (author)

  1. Atmospheric pressure loading parameters from very long baseline interferometry observations

    Science.gov (United States)

    Macmillan, D. S.; Gipson, John M.

    1994-01-01

    Atmospheric mass loading produces a primarily vertical displacement of the Earth's crust. This displacement is correlated with surface pressure and is large enough to be detected by very long baseline interferometry (VLBI) measurements. Using the measured surface pressure at VLBI stations, we have estimated the atmospheric loading term for each station location directly from VLBI data acquired from 1979 to 1992. Our estimates of the vertical sensitivity to change in pressure range from 0 to -0.6 mm/mbar depending on the station. These estimates agree with inverted barometer model calculations (Manabe et al., 1991; vanDam and Herring, 1994) of the vertical displacement sensitivity computed by convolving actual pressure distributions with loading Green's functions. The pressure sensitivity tends to be smaller for stations near the coast, which is consistent with the inverted barometer hypothesis. Applying this estimated pressure loading correction in standard VLBI geodetic analysis improves the repeatability of estimated lengths of 25 out of 37 baselines that were measured at least 50 times. In a root-sum-square (rss) sense, the improvement generally increases with baseline length at a rate of about 0.3 to 0.6 ppb depending on whether the baseline stations are close to the coast. For the 5998-km baseline from Westford, Massachusetts, to Wettzell, Germany, the rss improvement is about 3.6 mm out of 11.0 mm. The average rss reduction of the vertical scatter for inland stations ranges from 2.7 to 5.4 mm.

  2. Observations of the atmospheric surface layer parameters over a ...

    Indian Academy of Sciences (India)

    The spectra of the wind components and temperature indicated decrease in spectral power by one order in magnitude during the eclipse period. The rate of dissipation of turbulent kinetic energy is found to decrease by more than one order during the eclipse period. The stability parameter showed a change from unstable to ...

  3. Sorbent-Based Atmosphere Revitalization System

    Science.gov (United States)

    Knox, James C (Inventor); Miller, Lee A. (Inventor)

    2017-01-01

    The present invention is a sorbent-based atmosphere revitalization (SBAR) system using treatment beds each having a bed housing, primary and secondary moisture adsorbent layers, and a primary carbon dioxide adsorbent layer. Each bed includes a redirecting plenum between moisture adsorbent layers, inlet and outlet ports connected to inlet and outlet valves, respectively, and bypass ports connected to the redirecting plenums. The SBAR system also includes at least one bypass valve connected to the bypass ports. An inlet channel connects inlet valves to an atmosphere source. An outlet channel connects the bypass valve and outlet valves to the atmosphere source. A vacuum channel connects inlet valves, the bypass valve and outlet valves to a vacuum source. In use, one bed treats air from the atmosphere source while another bed undergoes regeneration. During regeneration, the inlet, bypass, and outlet valves sequentially open to the vacuum source, removing accumulated moisture and carbon dioxide.

  4. Complementary nature of surface and atmospheric parameters associated with Haiti earthquake of 12 January 2010

    Directory of Open Access Journals (Sweden)

    Ramesh P. Singh

    2010-06-01

    Full Text Available The present paper describes surface (surface air temperature and atmospheric parameters (relative humidity, surface latent heat flux over the epicenter (18°27´25´´ N 72°31´59´´ W of Haiti earthquake of 12 January 2010. Our analysis shows pronounced changes in surface and atmospheric parameters few days prior to the main earthquake event. Changes in relative humidity are found from the surface up to an altitude of 500 hPa clearly show atmospheric perturbations associated with the earthquake event. The purpose of this paper is to show complementary nature of the changes observed in surface, atmospheric and meteorological parameters. The total ozone concentration is found to be lowest on the day of earthquake and afterwards found to be increased within a week of earthquake. The present results show existence of coupling between lithosphere-atmosphere associated with the deadly Haiti earthquake.

  5. Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters

    NARCIS (Netherlands)

    Cenarro, A. J.; Peletier, R. F.; Sanchez-Blazquez, P.; Selam, S. O.; Toloba, E.; Cardiel, N.; Falcon-Barroso, J.; Gorgas, J.; Jimenez-Vicente, J.; Vazdekis, A.

    2007-01-01

    We present a homogeneous set of stellar atmospheric parameters (T-eff, log g, [Fe/H]) for MILES, a new spectral stellar library covering the range lambda lambda 3525-7500 angstrom at 2.3 angstrom (FWHM) spectral resolution. The library consists of 985 stars spanning a large range in atmospheric

  6. Tower controller surveillance system parameters.

    Science.gov (United States)

    1972-03-01

    A brief study of airport ground traffic control surveillance parameters has been conducted. The study addressed the following questions by means of a set of simple experiments: (1) Can vehicle ID be displayed in a suitable format; (2) What size displ...

  7. Phase acceleration: a new important parameter in GPS occultation monitoring of the atmospheric internal waves

    Science.gov (United States)

    Pavelyev, A. G.; Liou, Y. A.; Wickert, J.; Schmidt, T.; Pavelev, A. A.; Gubenko, V. N.

    2009-04-01

    After forty years of radio occultation (RO) experiments it is clear now that the phase acceleration of radio waves has the same importance as the Doppler frequency. This was shown by use of analysis of high-stability GPS RO signals. Phase acceleration technique allows one to convert the phase and Doppler frequency changes to the refraction attenuation variations. From the derived refraction attenuation one can estimate the integral absorption of radio waves by use of the amplitude data. This is important for measurement of water vapor and minor atmospheric gas constituents in future RO missions because of excluding the difficulty with removing the refraction attenuation effect from the amplitude data. Phase acceleration/intensity technique can be applied to separate the influence of layered structures from contributions of irregularities and turbulence in the atmosphere and ionosphere. Phase acceleration/intensity technique can be applied also for location and determination of the height and inclination of the layered structures in the atmosphere and ionosphere. In many cases the layered structures in the atmosphere indicate quasi-periodical altitude dependence that reveals their wave origin. The altitude profile of the vertical gradient of refractivity of the layered structures can be used to find the main characteristics of the internal wave activity with a global coverage. In general case, when the type of internal waves are not known, the height dependence of the vertical gradient of refractivity can be applied for monitoring the seasonal and geographical distributions of wave activity at different levels in the atmosphere. In the case of the internal gravity waves (GW) one can measure important GW parameters by use of the vertical profile of the refractivity: the intrinsic phase speed, the horizontal wind perturbations and, under some assumptions, the intrinsic frequency as functions of height in the atmosphere. Advantages of the phase acceleration

  8. A New Ensemble of Perturbed-Input-Parameter Simulations by the Community Atmosphere Model

    Energy Technology Data Exchange (ETDEWEB)

    Covey, C; Brandon, S; Bremer, P T; Domyancis, D; Garaizar, X; Johannesson, G; Klein, R; Klein, S A; Lucas, D D; Tannahill, J; Zhang, Y

    2011-10-27

    Uncertainty quantification (UQ) is a fundamental challenge in the numerical simulation of Earth's weather and climate, and other complex systems. It entails much more than attaching defensible error bars to predictions: in particular it includes assessing low-probability but high-consequence events. To achieve these goals with models containing a large number of uncertain input parameters, structural uncertainties, etc., raw computational power is needed. An automated, self-adapting search of the possible model configurations is also useful. Our UQ initiative at the Lawrence Livermore National Laboratory has produced the most extensive set to date of simulations from the US Community Atmosphere Model. We are examining output from about 3,000 twelve-year climate simulations generated with a specialized UQ software framework, and assessing the model's accuracy as a function of 21 to 28 uncertain input parameter values. Most of the input parameters we vary are related to the boundary layer, clouds, and other sub-grid scale processes. Our simulations prescribe surface boundary conditions (sea surface temperatures and sea ice amounts) to match recent observations. Fully searching this 21+ dimensional space is impossible, but sensitivity and ranking algorithms can identify input parameters having relatively little effect on a variety of output fields, either individually or in nonlinear combination. Bayesian statistical constraints, employing a variety of climate observations as metrics, also seem promising. Observational constraints will be important in the next step of our project, which will compute sea surface temperatures and sea ice interactively, and will study climate change due to increasing atmospheric carbon dioxide.

  9. Atmospheric impacts of evaporative cooling systems

    International Nuclear Information System (INIS)

    Carson, J.E.

    1976-10-01

    The report summarizes available information on the effects of various power plant cooling systems on the atmosphere. While evaporative cooling systems sharply reduce the biological impacts of thermal discharges in water bodies, they create (at least, for heat-release rates comparable to those of two-unit nuclear generating stations) atmospheric changes. For an isolated site such as required for a nuclear power plant, these changes are rather small and local, and usually environmentally acceptable. However, one cannot say with certainty that these effects will remain small as the number of reactors on a given site increases. There must exist a critical heat load for a specific site which, if exceeded, can create its own weather patterns, and thus create inadvertent weather changes such as rain and snow, severe thunderstorms, and tornadoes. Because proven mathematical models are not available, it is not now possible to forecast precisely the extent and frequency of the atmospheric effects of a particular heat-dissipation system at a particular site. Field research on many aspects of cooling system operation is needed in order to document and quantify the actual atmospheric changes caused by a given cooling system and to provide the data needed to develop and verify mathematical and physical models. The more important topics requiring field study are plume rise, fogging and icing (from certain systems), drift emission and deposition rates, chemical interactions, cloud and precipitation formation and critical heat-release rates

  10. Acquisition system of tandem injector parameters

    International Nuclear Information System (INIS)

    Decourt, M.

    1986-01-01

    The system centralizes all the parameters belonging to the accelerator injector. The acquisition center system reinforces an original device made of cameras and video receivers. Besides giving access to all the parameters of the ion source, the new system allows, in the ''OSCILLO'' mode, to visualize in real time any channel on the oscilloscope [fr

  11. Importance theory for lumped-parameter systems

    International Nuclear Information System (INIS)

    Cady, K.B.; Kenton, M.A.; Ward, J.C.; Piepho, M.G.

    1981-01-01

    A general sensitivity theory has been developed for nonlinear lumped parameter system simulations. The point of departure is general perturbation theory for nonlinear systems. Importance theory as developed here allows the calculation of the sensitivity of a response function to any physical or design parameter; importance of any equation or term or physical effect in the system model on the response function; variance of the response function caused by the variances and covariances of all physical parameters; and approximate effect on the response function of missing physical phenomena or incorrect parameters

  12. Observation of Atmospheric Parameters for Earthquake Forecast at Kanto, Japan: Characteristics of Variation and Signal Discrimination

    Science.gov (United States)

    Omura, J.; Han, P.; Yoshino, C.; Hattori, K.; Shimo, M.; Konishi, T.; Furuya, R.

    2017-12-01

    The Ionospheric anomaly is one of the most promising precursory phenomena for large earthquakes. Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) model has been proposed to explain these phenomena. To examine the possibility of the chemical channel of LAIC model through the monitoring of atmospheric electricity parameters, we have installed sensors for the atmospheric electric field (AEF), atmospheric ion concentration (AIC), radon concentration, radon exhalation quantity (REQ), and weather elements. To detect signals related to earthquakes, variations caused by non-tectonic activities should be removed. In this aim, we performed Singular Spectrum Analysis (SSA) for observed time series of radon and climatic parameters and investigated correlation among them. Then we tried to extract radon variation influenced by climatic effect to remove such variations from original time series. The details will be shown in our presentation.

  13. Design Parameters for Evaluating Light Settings and Light Atmosphere in Hospital Wards

    DEFF Research Database (Denmark)

    Stidsen, Lone; Kirkegaard, Poul Henning; Fisker, Anna Marie

    2010-01-01

    of staff and guests in the future hospital. This paper is based on Böhmes G. concept of atmosphere dealing with the effect of light in experiencing atmosphere, and the importance having a holistic approach when designing a pleasurable light atmosphere. It shows important design parameters for pleasurable......When constructing and designing Danish hospitals for the future, patients, staff and guests are in focus. It is found important to have a starting point in healing architecture and create an environment with knowledge of users sensory and functionally needs and looks at how hospital wards can...... light atmosphere in hospital wards and specific present a proposal for evaluating light atmosphere in the dynamic light settings for hospital wards....

  14. Large Scale Gaussian Processes for Atmospheric Parameter Retrieval and Cloud Screening

    Science.gov (United States)

    Camps-Valls, G.; Gomez-Chova, L.; Mateo, G.; Laparra, V.; Perez-Suay, A.; Munoz-Mari, J.

    2017-12-01

    Current Earth-observation (EO) applications for image classification have to deal with an unprecedented big amount of heterogeneous and complex data sources. Spatio-temporally explicit classification methods are a requirement in a variety of Earth system data processing applications. Upcoming missions such as the super-spectral Copernicus Sentinels EnMAP and FLEX will soon provide unprecedented data streams. Very high resolution (VHR) sensors like Worldview-3 also pose big challenges to data processing. The challenge is not only attached to optical sensors but also to infrared sounders and radar images which increased in spectral, spatial and temporal resolution. Besides, we should not forget the availability of the extremely large remote sensing data archives already collected by several past missions, such ENVISAT, Cosmo-SkyMED, Landsat, SPOT, or Seviri/MSG. These large-scale data problems require enhanced processing techniques that should be accurate, robust and fast. Standard parameter retrieval and classification algorithms cannot cope with this new scenario efficiently. In this work, we review the field of large scale kernel methods for both atmospheric parameter retrieval and cloud detection using infrared sounding IASI data and optical Seviri/MSG imagery. We propose novel Gaussian Processes (GPs) to train problems with millions of instances and high number of input features. Algorithms can cope with non-linearities efficiently, accommodate multi-output problems, and provide confidence intervals for the predictions. Several strategies to speed up algorithms are devised: random Fourier features and variational approaches for cloud classification using IASI data and Seviri/MSG, and engineered randomized kernel functions and emulation in temperature, moisture and ozone atmospheric profile retrieval from IASI as a proxy to the upcoming MTG-IRS sensor. Excellent compromise between accuracy and scalability are obtained in all applications.

  15. Identification of sensitive parameters in the modeling of SVOC reemission processes from soil to atmosphere.

    Science.gov (United States)

    Loizeau, Vincent; Ciffroy, Philippe; Roustan, Yelva; Musson-Genon, Luc

    2014-09-15

    Semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport because of transport-deposition-reemission successive processes. Several experimental data available in the literature suggest that soil is a non-negligible contributor of SVOCs to atmosphere. Then coupling soil and atmosphere in integrated coupled models and simulating reemission processes can be essential for estimating atmospheric concentration of several pollutants. However, the sources of uncertainty and variability are multiple (soil properties, meteorological conditions, chemical-specific parameters) and can significantly influence the determination of reemissions. In order to identify the key parameters in reemission modeling and their effect on global modeling uncertainty, we conducted a sensitivity analysis targeted on the 'reemission' output variable. Different parameters were tested, including soil properties, partition coefficients and meteorological conditions. We performed EFAST sensitivity analysis for four chemicals (benzo-a-pyrene, hexachlorobenzene, PCB-28 and lindane) and different spatial scenari (regional and continental scales). Partition coefficients between air, solid and water phases are influent, depending on the precision of data and global behavior of the chemical. Reemissions showed a lower variability to soil parameters (soil organic matter and water contents at field capacity and wilting point). A mapping of these parameters at a regional scale is sufficient to correctly estimate reemissions when compared to other sources of uncertainty. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Estimates of the atmospheric parameters of M-type stars: a machine-learning perspective

    Science.gov (United States)

    Sarro, L. M.; Ordieres-Meré, J.; Bello-García, A.; González-Marcos, A.; Solano, E.

    2018-05-01

    Estimating the atmospheric parameters of M-type stars has been a difficult task due to the lack of simple diagnostics in the stellar spectra. We aim at uncovering good sets of predictive features of stellar atmospheric parameters (Teff, log (g), [M/H]) in spectra of M-type stars. We define two types of potential features (equivalent widths and integrated flux ratios) able to explain the atmospheric physical parameters. We search the space of feature sets using a genetic algorithm that evaluates solutions by their prediction performance in the framework of the BT-Settl library of stellar spectra. Thereafter, we construct eight regression models using different machine-learning techniques and compare their performances with those obtained using the classical χ2 approach and independent component analysis (ICA) coefficients. Finally, we validate the various alternatives using two sets of real spectra from the NASA Infrared Telescope Facility (IRTF) and Dwarf Archives collections. We find that the cross-validation errors are poor measures of the performance of regression models in the context of physical parameter prediction in M-type stars. For R ˜ 2000 spectra with signal-to-noise ratios typical of the IRTF and Dwarf Archives, feature selection with genetic algorithms or alternative techniques produces only marginal advantages with respect to representation spaces that are unconstrained in wavelength (full spectrum or ICA). We make available the atmospheric parameters for the two collections of observed spectra as online material.

  17. Artificial Neural Network model for the determination of GSM Rxlevel from atmospheric parameters

    Directory of Open Access Journals (Sweden)

    Julia Ofure Eichie

    2017-04-01

    Full Text Available Accurate received signal level (Rxlevel values are useful for mobile telecommunication network planning. Rxlevel is affected by the dynamics of the atmosphere through which it propagates. Adequate knowledge of the prevailing atmospheric conditions in an environment is essential for proper network planning. However most of the existing GSM received signal determination model are function of distance between point of signal reception and transmitting site thus necessitating the development of a model that involve the use of atmospheric parameters in the determination of received GSM signal level. In this paper, a three stage approach was used in the development of the model using some atmospheric parameters such as atmospheric temperature, relative humidity and dew point. The selected and easily measurable atmospheric parameters were used as input parameters in developing two new models for computing the Rxlevel of GSM signal using a three-step approach. Data acquisition and pre-processing serves as the first stage and formulation of ANN design and the development of parametric model for the Rxlevel using ANN synaptic weights form the second stage of the proposed approach. The third stage involves the use of ANN weight and bias values, and network architecture in the development of the model equation. In evaluating the performance of the proposed models, network parameters were varied and the results obtained using mean squared error (MSE as performance measure showed the developed model with 33 neurons in the hidden layer and tansig activation, function in both the hidden and output layers as the optimal model with least MSE value of 0.056. Thus showing that the developed model has an acceptable accuracy value as demonstrated from comparison of results with actual measured values.

  18. Parameter estimation applied to physiological systems

    NARCIS (Netherlands)

    Rideout, V.C.; Beneken, J.E.W.

    Parameter estimation techniques are of ever-increasing interest in the fields of medicine and biology, as greater efforts are currently being made to describe physiological systems in explicit quantitative form. Although some of the techniques of parameter estimation as developed for use in other

  19. Accurate atmospheric parameters at moderate resolution using spectral indices: Preliminary application to the marvels survey

    International Nuclear Information System (INIS)

    Ghezzi, Luan; Da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; Ge, Jian; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Cargile, Phillip; Pepper, Joshua; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Wang, Ji

    2014-01-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T eff , metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ∼ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T eff , 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test

  20. Accurate Atmospheric Parameters at Moderate Resolution Using Spectral Indices: Preliminary Application to the MARVELS Survey

    Science.gov (United States)

    Ghezzi, Luan; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Cargile, Phillip; Ge, Jian; Pepper, Joshua; Wang, Ji; Paegert, Martin

    2014-12-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T eff, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ~ 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T eff, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test was

  1. Land-total and Ocean-total Precipitation and Evaporation from a Community Atmosphere Model version 5 Perturbed Parameter Ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Covey, Curt [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lucas, Donald D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Trenberth, Kevin E. [National Center for Atmospheric Research, Boulder, CO (United States)

    2016-03-02

    This document presents the large scale water budget statistics of a perturbed input-parameter ensemble of atmospheric model runs. The model is Version 5.1.02 of the Community Atmosphere Model (CAM). These runs are the “C-Ensemble” described by Qian et al., “Parametric Sensitivity Analysis of Precipitation at Global and Local Scales in the Community Atmosphere Model CAM5” (Journal of Advances in Modeling the Earth System, 2015). As noted by Qian et al., the simulations are “AMIP type” with temperature and sea ice boundary conditions chosen to match surface observations for the five year period 2000-2004. There are 1100 ensemble members in addition to one run with default inputparameter values.

  2. CAMEX-3 AIRBORNE VERTICAL ATMOSPHERE PROFILING SYSTEM (AVAPS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-3 DC-8 Airborne Vertical Atmosphere Profiling System (AVAPS) uses dropwinsonde and Global Positioning System (GPS) receivers to measure the atmospheric...

  3. CAMEX-3 AIRBORNE VERTICAL ATMOSPHERE PROFILING SYSTEM (AVAPS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-3 DC-8 Airborne Vertical Atmosphere Profiling System (AVAPS) uses dropwindsonde and Global Positioning System (GPS) receivers to measure the atmospheric...

  4. Atmospheric Models for Aerocapture Systems Studies

    Science.gov (United States)

    Justus, C. G.; Duvall, Aleta; Keller, Vernon W.

    2003-01-01

    Aerocapture uses atmospheric drag to decelerate into captured orbit from interplanetary transfer orbit. This includes capture into Earth orbit from, for example, Lunar-return or Mars-return orbit. Eight Solar System destinations have sufficient atmosphere for aerocapture to be applicable - three of the rocky planets (Venus, Earth, and Mars), four gas giants (Jupiter, Saturn, Uranus, and Neptune), and Saturn's moon Titan. These destinations fall into two groups: (1) The rocky planets, which have warm surface temperatures (approx. 200 to 750 K) and rapid decrease of density with altitude, and (2) the gas giants and Titan, which have cold temperatures (approx. 70 to 170 K) at the surface or 1-bar pressure level, and slow rate of decrease of density with altitude. The height variation of average density with altitude above 1-bar pressure level for the gas giant planets is shown. The periapsis density required for aerocapture of spacecraft having typical values of ballistic coefficient (a measure of mass per unit cross-sectional area) is also shown. The aerocapture altitudes at the gas giants would typically range from approx. 150 to 300 km. Density profiles are compared for the rocky planets with those for Titan and Neptune. Aerocapture at the rocky planets would occur at heights of approx. 50 to 100 km. For comparison, typical density and altitudes for aerobraking operations (circularizing a highly elliptical capture orbit, using multiple atmospheric passes) are also indicated.

  5. Coupled Human-Atmosphere-System Thinking

    Science.gov (United States)

    Schmale, Julia; Chabay, Ilan

    2014-05-01

    minimize atmospheric release, but rather only complies with either climate or air quality requirements. Nor do current narratives promote behavioral change for the overall reduction of emissions (e.g., you can drive your diesel SUV as long as it has a low fuel consumption). This divide and thinking has not only been manifested in policy and regulations and hence media coverage, but has also shaped the public's general perception of this issue. There is no public conceptual understanding regarding humanity's modification of the atmosphere through the continuously and simultaneously released substances by almost any kind of activity and resulting impacts. Here, we propose a conceptual framework that provides a new perspective on the coupled human-atmosphere-system. It makes tangible the inherent linkages between the socio-economic system, the atmospheric physico-chemical changes and impacts, and legal frameworks for sustainable transformations at all levels. To implement HAS-thinking in decision and policy making, both salient disciplinary and interdisciplinary research and comprehensive science-society interactions in the form of transdisciplinary research are necessary. Societal transformations for the sake of a healthy human-atmosphere relationship are highly context dependent and require discussions of normative and value-related issues, which can only be solved through co-designed solutions. We demonstrate the importance of HAS-thinking by examples of sustainable development in the Arctic and Himalayan countries.

  6. Analysis of a Kalman filter based method for on-line estimation of atmospheric dispersion parameters using radiation monitoring data

    DEFF Research Database (Denmark)

    Drews, Martin; Lauritzen, Bent; Madsen, Henrik

    2005-01-01

    A Kalman filter method is discussed for on-line estimation of radioactive release and atmospheric dispersion from a time series of off-site radiation monitoring data. The method is based on a state space approach, where a stochastic system equation describes the dynamics of the plume model...... parameters, and the observables are linked to the state variables through a static measurement equation. The method is analysed for three simple state space models using experimental data obtained at a nuclear research reactor. Compared to direct measurements of the atmospheric dispersion, the Kalman filter...... estimates are found to agree well with the measured parameters, provided that the radiation measurements are spread out in the cross-wind direction. For less optimal detector placement it proves difficult to distinguish variations in the source term and plume height; yet the Kalman filter yields consistent...

  7. System parameter identification information criteria and algorithms

    CERN Document Server

    Chen, Badong; Hu, Jinchun; Principe, Jose C

    2013-01-01

    Recently, criterion functions based on information theoretic measures (entropy, mutual information, information divergence) have attracted attention and become an emerging area of study in signal processing and system identification domain. This book presents a systematic framework for system identification and information processing, investigating system identification from an information theory point of view. The book is divided into six chapters, which cover the information needed to understand the theory and application of system parameter identification. The authors' research pr

  8. Modelling and parameter estimation of dynamic systems

    CERN Document Server

    Raol, JR; Singh, J

    2004-01-01

    Parameter estimation is the process of using observations from a system to develop mathematical models that adequately represent the system dynamics. The assumed model consists of a finite set of parameters, the values of which are calculated using estimation techniques. Most of the techniques that exist are based on least-square minimization of error between the model response and actual system response. However, with the proliferation of high speed digital computers, elegant and innovative techniques like filter error method, H-infinity and Artificial Neural Networks are finding more and mor

  9. Integrated multi-parameter flow measurement system

    NARCIS (Netherlands)

    Lötters, Joost Conrad; van der Wouden, E.J.; Groenesteijn, Jarno; Sparreboom, Wouter; Lammerink, Theodorus S.J.; Wiegerink, Remco J.

    2014-01-01

    We have designed and realized an integrated multi-parameter flow measurement system, consisting of an integrated Coriolis and thermal flow sensor, and a pressure sensor. The integrated system enables on-chip measurement, analysis and determination of flow and several physical properties of both

  10. Thermal Band Atmospheric Correction Using Atmospheric Profiles Derived from Global Positioning System Radio Occultation and the Atmospheric Infrared Sounder

    Science.gov (United States)

    Pagnutti, Mary; Holekamp, Kara; Stewart, Randy; Vaughan, Ronald D.

    2006-01-01

    This Rapid Prototyping Capability study explores the potential to use atmospheric profiles derived from GPS (Global Positioning System) radio occultation measurements and by AIRS (Atmospheric Infrared Sounder) onboard the Aqua satellite to improve surface temperature retrieval from remotely sensed thermal imagery. This study demonstrates an example of a cross-cutting decision support technology whereby NASA data or models are shown to improve a wide number of observation systems or models. The ability to use one data source to improve others will be critical to the GEOSS (Global Earth Observation System of Systems) where a large number of potentially useful systems will require auxiliary datasets as input for decision support. Atmospheric correction of thermal imagery decouples TOA radiance and separates surface emission from atmospheric emission and absorption. Surface temperature can then be estimated from the surface emission with knowledge of its emissivity. Traditionally, radiosonde sounders or atmospheric models based on radiosonde sounders, such as the NOAA (National Oceanic & Atmospheric Administration) ARL (Air Resources Laboratory) READY (Real-time Environmental Application and Display sYstem), provide the atmospheric profiles required to perform atmospheric correction. Unfortunately, these types of data are too spatially sparse and too infrequently taken. The advent of high accuracy, global coverage, atmospheric data using GPS radio occultation and AIRS may provide a new avenue for filling data input gaps. In this study, AIRS and GPS radio occultation derived atmospheric profiles from the German Aerospace Center CHAMP (CHAllenging Minisatellite Payload), the Argentinean Commission on Space Activities SAC-C (Satellite de Aplicaciones Cientificas-C), and the pair of NASA GRACE (Gravity Recovery and Climate Experiment) satellites are used as input data in atmospheric radiative transport modeling based on the MODTRAN (MODerate resolution atmospheric

  11. Parameters Describing Earth Observing Remote Sensing Systems

    Science.gov (United States)

    Zanoni, Vicki; Ryan, Robert E.; Pagnutti, Mary; Davis, Bruce; Markham, Brian; Storey, Jim

    2003-01-01

    The Earth science community needs to generate consistent and standard definitions for spatial, spectral, radiometric, and geometric properties describing passive electro-optical Earth observing sensors and their products. The parameters used to describe sensors and to describe their products are often confused. In some cases, parameters for a sensor and for its products are identical; in other cases, these parameters vary widely. Sensor parameters are bound by the fundamental performance of a system, while product parameters describe what is available to the end user. Products are often resampled, edge sharpened, pan-sharpened, or compressed, and can differ drastically from the intrinsic data acquired by the sensor. Because detailed sensor performance information may not be readily available to an international science community, standardization of product parameters is of primary performance. Spatial product parameters described include Modulation Transfer Function (MTF), point spread function, line spread function, edge response, stray light, edge sharpening, aliasing, ringing, and compression effects. Spectral product parameters discussed include full width half maximum, ripple, slope edge, and out-of-band rejection. Radiometric product properties discussed include relative and absolute radiometry, noise equivalent spectral radiance, noise equivalent temperature diffenence, and signal-to-noise ratio. Geometric product properties discussed include geopositional accuracy expressed as CE90, LE90, and root mean square error. Correlated properties discussed include such parameters as band-to-band registration, which is both a spectral and a spatial property. In addition, the proliferation of staring and pushbroom sensor architectures requires new parameters to describe artifacts that are different from traditional cross-track system artifacts. A better understanding of how various system parameters affect product performance is also needed to better ascertain the

  12. Steam atmosphere drying exhaust steam recompression system

    Science.gov (United States)

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  13. Sequential parameter estimation for stochastic systems

    Directory of Open Access Journals (Sweden)

    G. A. Kivman

    2003-01-01

    Full Text Available The quality of the prediction of dynamical system evolution is determined by the accuracy to which initial conditions and forcing are known. Availability of future observations permits reducing the effects of errors in assessment the external model parameters by means of a filtering algorithm. Usually, uncertainties in specifying internal model parameters describing the inner system dynamics are neglected. Since they are characterized by strongly non-Gaussian distributions (parameters are positive, as a rule, traditional Kalman filtering schemes are badly suited to reducing the contribution of this type of uncertainties to the forecast errors. An extension of the Sequential Importance Resampling filter (SIR is proposed to this aim. The filter is verified against the Ensemble Kalman filter (EnKF in application to the stochastic Lorenz system. It is shown that the SIR is capable of estimating the system parameters and to predict the evolution of the system with a remarkably better accuracy than the EnKF. This highlights a severe drawback of any Kalman filtering scheme: due to utilizing only first two statistical moments in the analysis step it is unable to deal with probability density functions badly approximated by the normal distribution.

  14. Cathode fall parameters of a self-sustained normal glow discharge in atmospheric-pressure helium

    International Nuclear Information System (INIS)

    Arkhipenko, V.I.; Zgirovskii, S.M.; Kirillov, A.A.; Simonchik, L.V.

    2002-01-01

    Results from comprehensive studies of a high-current self-sustained glow discharge in atmospheric-pressure helium are presented. The main parameters of the cathode fall, namely, the electric field profile, cathode fall thickness, current density, gas temperature, and heat flux to the cathode are determined. The results obtained are discussed using one-dimensional models of the cathode fall with allowance for volumetric heat release

  15. Parameters of an avalanche of runaway electrons in air under atmospheric pressure

    Science.gov (United States)

    Oreshkin, E. V.

    2018-01-01

    The features of runaway-electron avalanches developing in air under atmospheric pressures are investigated in the framework of a three-dimensional numerical simulation. The simulation results indicate that an avalanche of this type can be characterized, besides the time and length of its exponential growth, by the propagation velocity and by the average kinetic energy of the runaway electrons. It is shown that these parameters obey the similarity laws applied to gas discharges.

  16. Search for differences in oscillation parameters for atmospheric neutrinos and antineutrinos at Super-Kamiokande.

    Science.gov (United States)

    Abe, K; Hayato, Y; Iida, T; Ikeda, M; Iyogi, K; Kameda, J; Koshio, Y; Kozuma, Y; Miura, M; Moriyama, S; Nakahata, M; Nakayama, S; Obayashi, Y; Sekiya, H; Shiozawa, M; Suzuki, Y; Takeda, A; Takenaga, Y; Takeuchi, Y; Ueno, K; Ueshima, K; Watanabe, H; Yamada, S; Yokozawa, T; Ishihara, C; Kaji, H; Lee, K P; Kajita, T; Kaneyuki, K; McLachlan, T; Okumura, K; Shimizu, Y; Tanimoto, N; Martens, K; Vagins, M R; Labarga, L; Magro, L M; Dufour, F; Kearns, E; Litos, M; Raaf, J L; Stone, J L; Sulak, L R; Goldhaber, M; Bays, K; Kropp, W R; Mine, S; Regis, C; Smy, M B; Sobel, H W; Ganezer, K S; Hill, J; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Albert, J B; Scholberg, K; Walter, C W; Wendell, R; Wongjirad, T M; Tasaka, S; Learned, J G; Matsuno, S; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Nishikawa, K; Nishino, H; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Suzuki, A T; Minamino, A; Nakaya, T; Fukuda, Y; Itow, Y; Mitsuka, G; Tanaka, T; Jung, C K; Taylor, I; Yanagisawa, C; Ishino, H; Kibayashi, A; Mino, S; Mori, T; Sakuda, M; Toyota, H; Kuno, Y; Kim, S B; Yang, B S; Ishizuka, T; Okazawa, H; Choi, Y; Nishijima, K; Koshiba, M; Yokoyama, M; Totsuka, Y; Chen, S; Heng, Y; Yang, Z; Zhang, H; Kielczewska, D; Mijakowski, P; Connolly, K; Dziomba, M; Wilkes, R J

    2011-12-09

    We present a search for differences in the oscillations of antineutrinos and neutrinos in the Super-Kamiokande-I, -II, and -III atmospheric neutrino sample. Under a two-flavor disappearance model with separate mixing parameters between neutrinos and antineutrinos, we find no evidence for a difference in oscillation parameters. Best-fit antineutrino mixing is found to be at (Δm2,sin2 2θ)=(2.0×10(-3)  eV2, 1.0) and is consistent with the overall Super-K measurement.

  17. Atmospheric stellar parameters for large surveys using FASMA, a new spectral synthesis package

    Science.gov (United States)

    Tsantaki, M.; Andreasen, D. T.; Teixeira, G. D. C.; Sousa, S. G.; Santos, N. C.; Delgado-Mena, E.; Bruzual, G.

    2018-02-01

    In the era of vast spectroscopic surveys focusing on Galactic stellar populations, astronomers want to exploit the large quantity and good quality of data to derive their atmospheric parameters without losing precision from automatic procedures. In this work, we developed a new spectral package, FASMA, to estimate the stellar atmospheric parameters (namely effective temperature, surface gravity and metallicity) in a fast and robust way. This method is suitable for spectra of FGK-type stars in medium and high resolution. The spectroscopic analysis is based on the spectral synthesis technique using the radiative transfer code, MOOG. The line list is comprised of mainly iron lines in the optical spectrum. The atomic data are calibrated after the Sun and Arcturus. We use two comparison samples to test our method, (i) a sample of 451 FGK-type dwarfs from the high-resolution HARPS spectrograph; and (ii) the Gaia-ESO benchmark stars using both high and medium resolution spectra. We explore biases in our method from the analysis of synthetic spectra covering the parameter space of our interest. We show that our spectral package is able to provide reliable results for a wide range of stellar parameters, different rotational velocities, different instrumental resolutions and for different spectral regions of the VLT-GIRAFFE spectrographs, used amongst others for the Gaia-ESO survey. FASMA estimates stellar parameters in less than 15 m for high-resolution and 3 m for medium-resolution spectra. The complete package is publicly available to the community.

  18. NOAA/NCEP Global Forecast System (GFS) Atmospheric Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. National Oceanic and Atmospheric Administration (NOAA) National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) numerical weather...

  19. The Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)

    National Research Council Canada - National Science Library

    Hodur, Richard M; Hong, Xiaodong; Doyle, James D; Pullen, Julie; Cummings, James; Martin, Paul; Rennick, Mary Alice

    2002-01-01

    ... of the Couple Ocean/Atmosphere Mesoscale Prediction System (COAMPS). The goal of this modeling project is to gain predictive skill in simulating the ocean and atmosphere at high resolution on time-scales of hours to several days...

  20. Boundary feedback stabilization of distributed parameter systems

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1988-01-01

    The author introduces the method of pseudo-differential stabilization. He notes that the theory of pseudo-differential boundary operators is a fruitful approach to problems arising in control and stabilization theory of distributed-parameter systems. The basic pseudo-differential calculus can...

  1. Advances in Modelling, System Identification and Parameter ...

    Indian Academy of Sciences (India)

    models determined from flight test data by using parameter estimation methods find extensive use in design/modification of flight control systems, high fidelity flight simulators and evaluation of handling qualitites of aircraft and rotorcraft. R K Mehra et al present new algorithms and results for flutter tests and adaptive notching ...

  2. Automated process safety parameters monitoring system

    International Nuclear Information System (INIS)

    Iyudina, O.S.; Solov'eva, A.G.; Syrov, A.A.

    2015-01-01

    Basing on the expertise in upgrading and creation of control systems for NPP process equipment, “Diakont” has developed the automated process safety parameters monitoring system project. The monitoring system is a set of hardware, software and data analysis tools based on a dynamic logical-and-probabilistic model of process safety. The proposed monitoring system can be used for safety monitoring and analysis of the following processes: reactor core reloading; spent nuclear fuel transfer; startup, loading, on-load operation and shutdown of an NPP turbine [ru

  3. Slope parameters of ππ-system

    International Nuclear Information System (INIS)

    Isaev, P.S.; Osipov, A.A.

    1984-01-01

    The slope parameters of the ππ-system are calculated in the framework of the superconductor-tupe quark model. The analogous calculations are made for πK-system. The amplitudes are obtained by using the box quark diagrams and tree diagrams with the intermediate scalar epsilon(700), Ssup(x)(975), K tilde (1350) mesons and vector rho(770), K* (892) mesons

  4. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2014-01-01

    The second edition of Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System provides a timely update of our knowledge of planetary atmospheres and the bodies of the outer solar system and their analogs in other planetary systems. This volume begins with an expanded treatment of the physics, chemistry, and meteorology of the atmospheres of the Earth, Venus, and Mars, moving on to their magnetospheres and then to a full discussion of the gas and ice giants and their properties. From here, attention switches to the small bodies of the solar system, beginning with the natural satellites. Then comets, meteors, meteorites, and asteroids are discussed in order, and the volume concludes with the origin and evolution of our solar system. Finally, a fully revised section on extrasolar planetary systems puts the development of our system in a wider and increasingly well understood galactic context. All of the material is presented within a framework of historical importance. This book and its sist...

  5. On the hydrogen lines and atmospheric parameters of the α2CVn and HD 184905

    International Nuclear Information System (INIS)

    Kopylov, I.M.; Kumajgorodskaya, R.N.; Snezhko, L.I.; Sokolov, V.V.; Chunakova, N.M.

    1978-01-01

    Variations of principal atmospheric parameters (THETAsub(eff), lg gsub(eff,) lg nsub(e), lg H), where THETAsub(eff) - effective temperature functions, gsub(eff)-effective gravitational acceleration on a star surface, nsub(e)-electron density, H-homogeneous atmospheric height, over the surfaces of the α 2 CVn and HD 184905 magnetic peculiar stars are presented. Variations of lg gsub(eff) in the two stars show two maxima during the period with considerable amplitudes: approximately 0.8 and approximately 0.6 for α 2 CVn and HD 184905, respectively. Tsub(eff) varies over the surface of α 2 CVn with an amplitude of about 1100 deg, and with an amplitude of 650 deg - 700 deg over the surface of HD 184905 (the error of determination is 150 deg - 200 deg), where Tsub(eff) is effective temperature. In the case of α 2 CVn, the extreme values of THETAsub(eff) and the corresponding value of lg gsub(eff) evidence for the presence on its surface of the hot (and dense), and cold (and rarefied) regions of the atmosphere which coincide with the two spots of the ''iron peak'' elements. The heights of the homogeneous atmospheres, whose minimum values correspond to the maximum values of lg gsub(eff), are estimated. The optical depths of formation of different parts of the hydrogen line contours tausub(lambda) are determined. The values of tausub(lambda) vary with phase. The optical depths of formation of the central parts of lines vary more rapidly than those for the wings. The obtained variations of the parameters evidence for the inhomogeneity of the atmospheric composition in different regions of the surface of the stars under investigation

  6. PC based 8-parameter data acquisition system

    International Nuclear Information System (INIS)

    Gupta, J.D.; Naik, K.V.; Jain, S.K.; Pathak, R.V.; Suman, B.

    1989-01-01

    Multiparameter data acquisition (MPA) systems which analyse nuclear events with respect to more than one property of the event are essential tools for the study of some complex nuclear phenomena requiring analysis of time coincident spectra. For better throughput and accuracy each parameter is digitized by its own ADC. A stand alone low cost IBM PC based 8-parameter data acquisition system developed by the authors makes use of Address Recording technique for acquiring data from eight 12 bit ADC's in the PC Memory. Two memory buffers in the PC memory are used in ping-pong fashion so that data acquisition in one bank and dumping of data onto PC disk from the other bank can proceed simultaneously. Data is acquired in the PC memory through DMA mode for realising high throughput and hardware interrupt is used for switching banks for data acquisition. A comprehensive software package developed in Turbo-Pascal offers a set of menu-driven interactive commands to the user for setting-up system parameters and control of the system. The system is to be used with pelletron accelerator. (author). 5 figs

  7. Atmospheric environmental implications of propulsion systems

    Science.gov (United States)

    Mcdonald, Allan J.; Bennett, Robert R.

    1995-01-01

    Three independent studies have been conducted for assessing the impact of rocket launches on the earth's environment. These studies have addressed issues of acid rain in the troposphere, ozone depletion in the stratosphere, toxicity of chemical rocket exhaust products, and the potential impact on global warming from carbon dioxide emissions from rocket launches. Local, regional, and global impact assessments were examined and compared with both natural sources and anthropogenic sources of known atmospheric pollutants with the following conclusions: (1) Neither solid nor liquid rocket launches have a significant impact on the earth's global environment, and there is no real significant difference between the two. (2) Regional and local atmospheric impacts are more significant than global impacts, but quickly return to normal background conditions within a few hours after launch. And (3) vastly increased space launch activities equivalent to 50 U.S. Space Shuttles or 50 Russian Energia launches per year would not significantly impact these conclusions. However, these assessments, for the most part, are based upon homogeneous gas phase chemistry analysis; heterogeneous chemistry from exhaust particulates, such as aluminum oxide, ice contrails, soot, etc., and the influence of plume temperature and afterburning of fuel-rich exhaust products, need to be further addressed. It was the consensus of these studies that computer modeling of interactive plume chemistry with the atmosphere needs to be improved and computer models need to be verified with experimental data. Rocket exhaust plume chemistry can be modified with propellant reformulation and changes in operating conditions, but, based upon the current state of knowledge, it does not appear that significant environmental improvements from propellant formulation changes can be made or are warranted. Flight safety, reliability, and cost improvements are paramount for any new rocket system, and these important aspects

  8. Experiences With an Optimal Estimation Algorithm for Surface and Atmospheric Parameter Retrieval From Passive Microwave Data in the Arctic

    DEFF Research Database (Denmark)

    Scarlat, Raul Cristian; Heygster, Georg; Pedersen, Leif Toudal

    2017-01-01

    the brightness temperatures observed by a passive microwave radiometer. The retrieval method inverts the forward model and produces ensembles of the seven parameters, wind speed, integrated water vapor, liquid water path, sea and ice temperature, sea ice concentration and multiyear ice fraction. The method...... compared with the Arctic Systems Reanalysis model data as well as columnar water vapor retrieved from satellite microwave sounders and the Remote Sensing Systems AMSR-E ocean retrieval product in order to determine the feasibility of using the same setup over pure surface with 100% and 0% sea ice cover......, respectively. Sea ice concentration retrieval shows good skill for pure surface cases. Ice types retrieval is in good agreement with scatterometer backscatter data. Deficiencies have been identified in using the forward model over sea ice for retrieving atmospheric parameters, that are connected...

  9. A Uniform Set of DAV Atmospheric Parameters to Enable Differential Seismology

    Science.gov (United States)

    Fuchs, Joshua T.; Dunlap, Bart H.; Clemens, J. Christopher; Meza, Jesus; Dennihy, Erik

    2017-01-01

    We have observed over 130 hydrogen-atmosphere pulsating white dwarfs (DAVs) using the Goodman Spectrograph on the SOAR Telescope. This includes all known DAVs south of +10° declination as well as those observed by the K2 mission. Because it employs a single instrument, our sample allows us to carefully explore systematics in the determination of atmospheric parameters, Teff and log(g). While some systematics show changes of up to 300 K in Teff and 0.06 in log(g), the relative position of each star in the Teff-log(g) plane is more secure. These relative positions, combined with differences in pulsation spectra, will allow us to investigate relative differences in the structure and composition of over 130 DAVs through differential seismology.

  10. On the distortions in calculated GW parameters during slanted atmospheric soundings

    Science.gov (United States)

    de la Torre, Alejandro; Alexander, Peter; Schmidt, Torsten; Llamedo, Pablo; Hierro, Rodrigo

    2018-03-01

    The significant distortions introduced in the measured atmospheric gravity wavelengths by soundings other than those in vertical and horizontal directions, are discussed as a function of the elevation angle of the sounding path and the gravity wave aspect ratio. Under- or overestimation of real vertical wavelengths during the measurement process depends on the value of these two parameters. The consequences of these distortions on the calculation of the energy and the vertical flux of horizontal momentum are analyzed and discussed in the context of two experimental limb satellite setups: GPS-LEO radio occultations and TIMED/SABER ((Atmosphere using Broadband Emission Radiometry/Thermosphere-Ionosphere-Mesosphere-Energetics and Dynamics)) measurements. Possible discrepancies previously found between the momentum flux calculated from satellite temperature profiles, on site and from model simulations, may to a certain degree be attributed to these distortions. A recalculation of previous momentum flux climatologies based on these considerations seems to be a difficult goal.

  11. Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air

    Science.gov (United States)

    Tarasenko, V. F.

    2011-05-01

    Conditions under which the number of runaway electrons in atmospheric-pressure air reaches ˜5 × 1010 are determined. Recommendations for creating runaway electron accelerators are given. Methods for measuring the parameters of a supershort avalanche electron beam and X-ray pulses from gas-filled diodes, as well as the discharge current and gap voltage, are described. A technique for determining the instant of runaway electron generation with respect to the voltage pulse is proposed. It is shown that the reduction in the gap voltage and the decrease in the beam current coincide in time. The mechanism of intense electron beam generation in gas-filled diodes is analyzed. It is confirmed experimentally that, in optimal regimes, the number of electrons generated in atmospheric-pressure air with energies T > eU m , where U m is the maximum gap voltage, is relatively small.

  12. Using sensitivity derivatives for design and parameter estimation in an atmospheric plasma discharge simulation

    International Nuclear Information System (INIS)

    Lange, Kyle J.; Anderson, W. Kyle

    2010-01-01

    The problem of applying sensitivity analysis to a one-dimensional atmospheric radio frequency plasma discharge simulation is considered. A fluid simulation is used to model an atmospheric pressure radio frequency helium discharge with a small nitrogen impurity. Sensitivity derivatives are computed for the peak electron density with respect to physical inputs to the simulation. These derivatives are verified using several different methods to compute sensitivity derivatives. It is then demonstrated how sensitivity derivatives can be used within a design cycle to change these physical inputs so as to increase the peak electron density. It is also shown how sensitivity analysis can be used in conjunction with experimental data to obtain better estimates for rate and transport parameters. Finally, it is described how sensitivity analysis could be used to compute an upper bound on the uncertainty for results from a simulation.

  13. Identification of systems with distributed parameters

    International Nuclear Information System (INIS)

    Moret, J.M.

    1990-10-01

    The problem of finding a model for the dynamical response of a system with distributed parameters based on measured data is addressed. First a mathematical formalism is developed in order to obtain the specific properties of such a system. Then a linear iterative identification algorithm is proposed that includes these properties, and that produces better results than usual non linear minimisation techniques. This algorithm is further improved by an original data decimation that allow to artificially increase the sampling period without losing between sample information. These algorithms are tested with real laboratory data

  14. Robustness of dynamic systems with parameter uncertainties

    CERN Document Server

    Balemi, S; Truöl, W

    1992-01-01

    Robust Control is one of the fastest growing and promising areas of research today. In many practical systems there exist uncertainties which have to be considered in the analysis and design of control systems. In the last decade methods were developed for dealing with dynamic systems with unstructured uncertainties such as HOO_ and £I-optimal control. For systems with parameter uncertainties, the seminal paper of V. L. Kharitonov has triggered a large amount of very promising research. An international workshop dealing with all aspects of robust control was successfully organized by S. P. Bhattacharyya and L. H. Keel in San Antonio, Texas, USA in March 1991. We organized the second international workshop in this area in Ascona, Switzer­ land in April 1992. However, this second workshop was restricted to robust control of dynamic systems with parameter uncertainties with the objective to concentrate on some aspects of robust control. This book contains a collection of papers presented at the International W...

  15. Design and implementation of atmospheric multi-parameter sensor for UAVs

    Science.gov (United States)

    Yu, F.; Zhao, Y.; Chen, G.; Liu, Y.; Han, Y.

    2017-12-01

    With the rapid development of industry and the increase of cars in developing countries, air pollutants have caused a series of environmental issues such as haze and smog. However, air pollution is a process of surface-to-air mass exchange, and various kinds of atmospheric factors have close association with aerosol concentration, such as temperature, humidity, etc. Vertical distributions of aerosol in the region provide an important clue to reveal the exchange mechanism in the atmosphere between atmospheric boundary layer and troposphere. Among the various kinds of flying platforms, unmanned aerial vehicles (UAVs) shows more advantages in vertical measurement of aerosol owned to its flexibility and low cost. However, only few sensors could be mounted on the UAVs because of the limited size and power requirement. Here, a light-weight, low-power atmospheric multi-parameter sensor (AMPS) is proposed and could be mounted on several kinds of UAV platforms. The AMPS integrates multi-sensors, which are the laser aerosol particle sensor, the temperature probe, the humidity probe and the pressure probe, in order to simultaneously sample the vertical distribution characters of aerosol particle concentration, temperature, relative humidity and atmospheric pressure. The data from the sensors are synchronized by a proposed communication mechanism based on GPS. Several kinds of housing are designed to accommodate the different payload requirements of UAVs in size and weight. The experiments were carried out with AMPS mounted on three kinds of flying platforms. The results shows that the power consumption is less than 1.3 W, with relatively high accuracy in temperature (±0.1°C), relative humidity (±0.8%RH), PM2.5 (profiles of PM2.5 and PM10 concentrations were observed simultaneously by the AMPS three times every day in five days. The results revealed the significant correlation between the aerosol particle concentration and atmospheric parameters. With low cost and

  16. A Coupled Atmospheric and Wave Modeling System for Storm Simulations

    DEFF Research Database (Denmark)

    Du, Jianting; Larsén, Xiaoli Guo; Bolanos, R.

    2015-01-01

    This study aims at improving the simulation of wind and waves during storms in connection with wind turbine design and operations in coastal areas. For this particular purpose, we investigated the Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) Modeling System which couples the Weather...... to parametrize z0. The results are validated through QuikScat data and point measurements from an open ocean site Ekosk and a coastal, relatively shallow water site Horns Rev. It is found that the modeling system captures in general better strong wind and strong wave characteristics for open ocean condition than...... Research and Forecasting (WRF) Model with the thirdgeneration ocean wave modelSWAN. This study investigates mainly two issues: spatial resolution and the wind-wave interface parameter roughness length(z0). To study the impact of resolution, the nesting function for both WRF and SWAN is used, with spatial...

  17. Different atmospheric parameters influence on spectral UV radiation (measurements and modelling)

    Energy Technology Data Exchange (ETDEWEB)

    Chubarova, N.Y. [Moscow State Univ. (Russian Federation). Meteorological Observatory; Krotkov, N.A. [Maryland Univ., MD (United States). JCESS/Meteorology Dept.; Geogdzhaev, I.V.; Bushnev, S.V.; Kondranin, T.V. [SUMGF/MIPT, Dolgoprudny (Russian Federation); Khattatov, V.U. [Central Aerological Observatory, Dolgoprudny (Russian Federation)

    1995-12-31

    The ultraviolet (UV) radiation plays a vital role in the biophysical processes despite its small portion in the total solar flux. UV radiation is subject to large variations at the Earth surface depending greatly on solar elevation, ozone and cloud amount, aerosols and surface albedo. The analysis of atmospheric parameters influence is based on the spectral archive data of three spectral instruments: NSF spectroradiometer (Barrow network) (NSF Polar Programs UV Spectroradiometer Network 1991-1992,1992), spectrophotometer (SUVS-M) of Central Aerological Observatory CAO, spectroradiometer of Meteorological Observatory of the Moscow State University (MO MSU) and model simulations based on delta-Eddington approximation

  18. Land-Atmosphere Transfer Parameters in the Brazilian Pantanal during the Dry Season

    Directory of Open Access Journals (Sweden)

    Paolo Martano

    2015-06-01

    Full Text Available The Brazilian region of Pantanal is one of the largest wetlands in the world, characterized by a wet season, in which it is covered by a shallow water layer, and a dry season, in which the water layer disappears. The aim of this study is the estimation of the main parameters (drag coefficients and surface scale lengths involved in modelling the surface atmosphere transfer of momentum, heat and water vapor from the dataset of the second Interdisciplinary Pantanal Experiment (IPE2. The roughness parameters and the stability correction parameters have been estimated in the framework of the similarity theory for the vertical profiles of wind speed and temperature. Thus, a previously-developed methodology was adapted to the available dataset from the IPE2 five-level mast. The results are in reasonable agreement with the available literature. An attempt to obtain the scalar transfer parameters for water vapor has been performed by a Penman–Monteith approach using a two-component surface resistance in parallel between a vegetation and a bare soil part. The parameters of the model have been calibrated using a non-linear regression method. The scalar drag coefficient retrieved in this way is in agreement with that calculated by the flux-gradient approach for the sensible heat flux. Eventually, an evaluation of the vegetation contribution to the total vapor flux is given.

  19. A portable foot-parameter-extracting system

    Science.gov (United States)

    Zhang, MingKai; Liang, Jin; Li, Wenpan; Liu, Shifan

    2016-03-01

    In order to solve the problem of automatic foot measurement in garment customization, a new automatic footparameter- extracting system based on stereo vision, photogrammetry and heterodyne multiple frequency phase shift technology is proposed and implemented. The key technologies applied in the system are studied, including calibration of projector, alignment of point clouds, and foot measurement. Firstly, a new projector calibration algorithm based on plane model has been put forward to get the initial calibration parameters and a feature point detection scheme of calibration board image is developed. Then, an almost perfect match of two clouds is achieved by performing a first alignment using the Sampled Consensus - Initial Alignment algorithm (SAC-IA) and refining the alignment using the Iterative Closest Point algorithm (ICP). Finally, the approaches used for foot-parameterextracting and the system scheme are presented in detail. Experimental results show that the RMS error of the calibration result is 0.03 pixel and the foot parameter extracting experiment shows the feasibility of the extracting algorithm. Compared with the traditional measurement method, the system can be more portable, accurate and robust.

  20. A study of the main atmospheric electric parameters at a little polluted seashore site

    International Nuclear Information System (INIS)

    Paugam, Jean-Yves

    1978-01-01

    In order to study the electric elements of the air near the ground, we realized a set of apparatus for the measurement of several parameters: electric field, space charge, conductivities, air-earth current, as well as an automatic condensation nuclei counter. The characteristics of a very important photolytic process of nuclei production closely related to air exposure of living algae, at daytime low-tide periods were first determined. Then a systematic study of the electrical behaviour of the air at the seashore, was also carried out in relation with meteorological parameters. The results observed by sea winds, and especially the data on electric field and space charge showed out a very strong electrode effect above the sea surface, and were very different from those recorded at another site, 20 km inland. Finally, the atmospheric electric fog effect at the coastline and the possibility of using our results for forecasting the phenomenon were studied. (author) [fr

  1. Atmospheric and Fundamental Parameters of Stars in Hubble's Next Generation Spectral Library

    Science.gov (United States)

    Heap, Sally

    2010-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R approximately 1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. We are presently working to determine the atmospheric and fundamental parameters of the stars from the NGSL spectra themselves via full-spectrum fitting of model spectra to the observed (extinction-corrected) spectrum over the full wavelength range, 0.2-1.0 micron. We use two grids of model spectra for this purpose: the very low-resolution spectral grid from Castelli-Kurucz (2004), and the grid from MARCS (2008). Both the observed spectrum and the MARCS spectra are first degraded in resolution to match the very low resolution of the Castelli-Kurucz models, so that our fitting technique is the same for both model grids. We will present our preliminary results with a comparison with those from the Sloan/Segue Stellar Parameter Pipeline, ELODIE, and MILES, etc.

  2. Comparison of Atmospheric Parameters From Vlbi, GPS and Wvr In The Kanto District, Japan

    Science.gov (United States)

    Ichikawa, R.; 14 Co-Authors

    Radio signal delay associated with the neutral atmosphere is one of the major er- ror sources for space-based geodetic techniques such as the Global Positioning Sys- tem (GPS) and Very Long Baseline Interferometry (VLBI). The comparison of atmo- spheric parameters (equivalent zenith wet delay and linear horizontal delay gradients) derived from VLBI, GPS, and WVR has been carried out to reveal the limitation of the anisotropic mapping functions under the intense mesoscale phenomena. For the four stations of the Key Stone Project(KSP) geodetic VLBI network (Kashima, Ko- ganei, Miura and Tateyama) atmospheric parameters from all these techniques have been analyzed for the summer and autumn season experiments of the year 2000 and 2001. We are also evaluating those parameters by comparing with the ray-traced slant path delay through the two days data sets of the non-hydrostatic numerical weather prediction model with 5 km horizontal resolution. We find estimated weighted RMS differences below the 10-millimeter level and correlation coefficients more than 0.8 for the zenith wet delays derived from GPS and WVR. However, RMS differences between the zenith wet delays derived from VLBI and those from WVR are more than 50 millimeters. In addition, the agreement for the estimated horizontal delay gradients from these three techniques is less clear. The discrepancy between the VLBI results and other techniques is caused by the difficulty to estimate the vertical position, the clock offset and tropospheric parameters independently since the baseline lengths of the KSP VLBI network are relatively short (less than 150km).

  3. The Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data – HOAPS-3

    Directory of Open Access Journals (Sweden)

    A. Andersson

    2010-09-01

    Full Text Available The availability of microwave instruments on satellite platforms allows the retrieval of essential water cycle components at high quality for improved understanding and evaluation of water processes in climate modelling. HOAPS-3, the latest version of the satellite climatology "Hamburg Ocean Atmosphere Parameters and Fluxes from Satellite Data" provides fields of turbulent heat fluxes, evaporation, precipitation, freshwater flux and related atmospheric variables over the global ice-free ocean. This paper describes the content, methodology and retrievals of the HOAPS climatology. A sophisticated processing chain, including all available Special Sensor Microwave Imager (SSM/I instruments aboard the satellites of the Defense Meteorological Satellites Program (DMSP and careful inter-sensor calibration, ensures a homogeneous time-series with dense data sampling and hence detailed information of the underlying weather situations. The completely reprocessed data set with a continuous time series from 1987 to 2005 contains neural network based algorithms for precipitation and wind speed and Advanced Very High Resolution Radiometer (AVHRR based SST fields. Additionally, a new 85 GHz synthesis procedure for the defective SSM/I channels on DMSP F08 from 1988 on has been implemented. Freely available monthly and pentad means, twice daily composites and scan-based data make HOAPS-3 a versatile data set for studying ocean-atmosphere interaction on different temporal and spatial scales. HOAPS-3 data products are available via http://www.hoaps.org.

  4. Safety parameter display system for Kalinin NPP

    International Nuclear Information System (INIS)

    Andreev, V.I.; Videneev, E.N.; Tissot, J.C.; Joonekindt, D.; Davidenko, N.N.; Shaftan, G.I.; Dounaev, V.G.; Neboyan, V.T.

    1995-01-01

    The paper discusses the safety parameter display system (SPDS), which is being designed for Kalinin NPP. The assessment of the safety status of the plant is done by the continuous monitoring of six critical safety functions and the corresponding status trees. Besides, a number of additional functions are realized within the scope of KlnNPP, aimed at providing the operator and the safety engineer in the main control room with more detailed information in accidental situation as well as during the normal operation. In particular, these functions are: archiving, data logs and alarm handling, safety actions monitoring, mnemonic diagrams indicating the state of main technological equipment and basic plant parameters, reference data, etc. As compared with the traditional scope of functions of this kind of systems, the functionality of KlnNPP SPDS is significantly expanded due to the inclusion in it the operator support function ''computerized procedures''. The basic SPDS implementation platform is ADACS of SEMA GROUP design. The system architecture includes two workstations in the main control room: one is for reactor operator and the other one for safety engineer. Every station has two CRT screens which ensures computerized procedures implementation and provides for extra services for the operator. Also, the information from the SPDS is transmitted to the local crisis center and to the crisis center of the State utility organization concern ''Rosenergoatom''. (author). 3 refs, 6 figs, 1 tab

  5. Influence of modified atmosphere packaging on meat quality parameters of turkey breast muscles.

    Science.gov (United States)

    Blacha, Ines; Krischek, Carsten; Klein, Günter

    2014-01-01

    Poultry meat is often stored in modified atmosphere packaging (MAP) or vacuum packaging to improve consumer acceptance and shelf life. The aim of this study was to determine how different packaging conditions influence meat quality. Therefore, in three independent experiments, turkey breast muscle cutlets were packaged either in vacuum or in different modified atmosphere mixtures (80% O2, 20% CO2 [MAP 1]; 80% N2, 20% CO2 [MAP 2]; and 20% O2, 20% CO2, 60% N2 [MAP 3]) and stored for 12 days at 3°C. Color, pH, electrical conductivity, total viable counts, and Pseudomonas species were determined on days 1, 4, 8, and 12 of storage. On the same days, samples were collected for analysis of thiobarbituric acid-reactive substance and total volatile basic nitrogen concentrations. Sensory parameters and liquid loss were determined on days 4, 8, and 12. Vacuum-packaged meat had the highest liquid loss and lowest sensory results. MAP 1-packaged meat showed the highest sensory, redness, and thiobarbituric acid-reactive substance values. MAP 2-packaged meat had lower sensory values. MAP 3-packaged meat had lower redness and sensory values, especially at the end of storage. The study showed an impact of the packaging condition on different quality parameters, with a small advantage for storage of turkey cutlets in high-oxygen packages.

  6. Variable coefficient nonlinear systems derived from an atmospheric dynamical system

    International Nuclear Information System (INIS)

    Xiao-Yan, Tang; Yuan, Gao; Sen-Yue, Lou; Fei, Huang

    2009-01-01

    Variable coefficient nonlinear systems, the Korteweg de Vries (KdV), the modified KdV (mKdV) and the nonlinear Schrödinger (NLS) type equations, are derived from the nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane by means of the multi-scale expansion method in two different ways, with and without the so-called y-average trick. The non-auto-Bäcklund transformations are found to transform the derived variable coefficient equations to the corresponding standard KdV, mKdV and NLS equations. Thus, many possible exact solutions can be obtained by taking advantage of the known solutions of these standard equations. Further, many approximate solutions of the original model are ready to be yielded which might be applied to explain some real atmospheric phenomena, such as atmospheric blocking episodes. (general)

  7. Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters

    Science.gov (United States)

    Bogatov, Nikolay A.; Bakhanov, Victor V.; Ermoshkin, Aleksei V.; Kazakov, Vasily I.; Kemarskaya, Olga N.; Titov, Victor I.; Troitskaya, Yulia I.

    2014-10-01

    At present time radar methods of the seas and oceans diagnostics are actively developing. Using of the radar stations based on satellites and planes allows to receive information on a sea surface and a atmosphere near-surface layer with coverage of big water surface areas independently of day time. The developed methods of satellite radio images processing can be applied to marine radar stations. In Institute of Applied Physics RAS works on sea surface diagnostics systems development on the basis of standard marine radar are actively conducted. Despite smaller coverage of the territory in comparison with satellite data, marine radar have possibility to record spatially temporary radar images and to receive information on a surrounding situation quickly. This work deals with results of the researches which were conducted within the international expedition in the Atlantic Ocean in the autumn of 2012 on a route Rotterdam (Netherlands) - Ushuaya (Argentina) - Antarctica — Ushuaya. During this expedition a complex measurements of a sea surface, a atmosphere near-surface layer parameters and subsurface currents in the wide range of hydroweather conditions, including the storm were carried out. The system developed in IAP RAS on the basis of a marine radar ICOM MR-1200RII and the ADC (Analog Digital Converter) block for data recording on the personal computer was used. Display of a non-uniform near-surface current on sea surface radar images in storm conditions is shown. By means of the high-speed anemometer and meteorological station the measurements of the atmosphere parameters were carried out. Comparison of the anemometer data with calculated from radar images is carried out. Dependence of radar cross section from wind speed in the wide range of wind speeds, including storm conditions is investigated. Possibility of marine radar using for surface waves intensity and ice situation estimates also as icebergs detection is shown.

  8. Optimization of spectral filtering parameters of acousto-optic pure rotational Raman lidar for atmospheric temperature profiling

    Science.gov (United States)

    Zhu, Jianhua; Wan, Lei; Nie, Guosheng; Guo, Xiaowei

    2003-12-01

    In this paper, as far as we know, it is the first time that a novel acousto-optic pure rotational Raman lidar based on acousto-optic tunable filter (AOTF) is put forward for the application of atmospheric temperature measurements. AOTF is employed in the novel lidar system as narrow band-pass filter and high-speed single-channel wavelength scanner. This new acousto-optic filtering technique can solve the problems of conventional pure rotational Raman lidar, e.g., low temperature detection sensitivity, untunability of filtering parameters, and signal interference between different detection channels. This paper will focus on the PRRS physical model calculation and simulation optimization of system parameters such as the central wavelengths and the bandwidths of filtering operation, and the required sensitivity. The theoretical calculations and optimization of AOTF spectral filtering parameters are conducted to achieve high temperature dependence and sensitivity, high signal intensities, high temperature of filtered spectral passbands, and adequate blocking of elastic Mie and Rayleigh scattering signals. The simulation results can provide suitable proposal and theroetical evaluation before the integration of a practical Raman lidar system.

  9. Identification of sensitive parameters in the modeling of SVOCs reemission processes from soil to atmosphere

    Science.gov (United States)

    Loizeau, Vincent; Ciffroy, Philippe; Musson Genon, Luc; Roustan, Yelva

    2013-04-01

    Many studies have shown that semi-volatile organic compounds (SVOCs) are subject to Long-Range Atmospheric Transport (LRAT) and that such a transport may occur through a series of deposition-reemission events at the soil surface-air interface. This periodic movement of pollutants between soil and atmosphere is called the 'grasshopper effect'. Thus, it appears necessary to take into account the exchange between soil and atmosphere to properly simulate the fate of these pollutants at regional or global scale. The prediction of reemission from soils is however associated with large uncertainties, which can be schematically classified into three main sources : (i) natural variability, including nature of soil (organic matter content, porosity, water content) and meteorological conditions ; (ii) uncertainty about intrinsic properties of chemicals, like degradation rate or partitioning between environmental components, which govern the dynamics of chemicals in air and soils ; (iii) model structure, and particularly the discretization of soil compartment. Considering this background, a major challenge is to identify the most sensitive sources of uncertainty in modelling the reemission of chemicals from soils, in order to know where the priority has to be set for upgrading SVOC dispersion estimation. To answer this question, we studied a multi-layer soil model, including exchanges between soil and atmosphere. A sensitivity analysis was conducted by affecting probability density functions for each of model parameters. Four chemicals were selected (Benzo(a)Pyrene, PCB-28, Lindane and Hexachlorobenzene) because of their contrasted behaviors in soils, as expected by their partition and degradation properties. For this first exercise, simple emission scenarii were considered, i.e. a period of constant concentration in air (where realistic concentrations were estimated for each chemical from monitoring data provided by EMEP) followed by a zero-concentration in air. Although

  10. Solar system astrophysics planetary atmospheres and the outer solar system

    CERN Document Server

    Milone, Eugene F

    2008-01-01

    Solar System Astrophysics opens with coverage of the atmospheres, ionospheres and magnetospheres of the Earth, Venus and Mars and the magnetosphere of Mercury. The book then provides an introduction to meteorology and treating the physics and chemistry of these areas in considerable detail. What follows are the structure, composition, particle environments, satellites, and rings of Jupiter, Saturn, Uranus and Neptune, making abundant use of results from space probes. Solar System Astrophysics follows the history, orbits, structure, origin and demise of comets and the physics of meteors and provides a thorough treatment of meteorites, the asteroids and, in the outer solar system, the Kuiper Belt objects. The methods and results of extrasolar planet searches, the distinctions between stars, brown dwarfs, and planets, and the origins of planetary systems are examined. Historical introductions precede the development and discussion in most chapters. A series of challenges, useful as homework assignments or as foc...

  11. Atmospheric aerosol monitoring by an elastic Scheimpflug lidar system.

    Science.gov (United States)

    Mei, Liang; Brydegaard, Mikkel

    2015-11-30

    This work demonstrates a new approach - Scheimpflug lidar - for atmospheric aerosol monitoring. The atmospheric backscattering echo of a high-power continuous-wave laser diode is received by a Newtonian telescope and recorded by a tilted imaging sensor satisfying the Scheimpflug condition. The principles as well as the lidar equation are discussed in details. A Scheimpflug lidar system operating at around 808 nm is developed and employed for continuous atmospheric aerosol monitoring at daytime. Localized emission, atmospheric variation, as well as the changes of cloud height are observed from the recorded lidar signals. The extinction coefficient is retrieved according to the slope method for a homogeneous atmosphere. This work opens up new possibilities of using a compact and robust Scheimpflug lidar system for atmospheric aerosol remote sensing.

  12. Neural Partial Differentiation for Aircraft Parameter Estimation Under Turbulent Atmospheric Conditions

    Science.gov (United States)

    Kuttieri, R. A.; Sinha, M.

    2012-07-01

    An approach based on neural partial differentiation is suggested for aircraft parameter estimation using the flight data gathered under turbulent atmospheric conditions. The classical methods such as output error and equation error methods suffer from severe convergence issues; resulting in biased, inaccurate, and inconsistent estimates. Though filter error method yields better estimates while dealing with the flight data having process noise, it has few demerits like computational overheads and it allows estimation of a single set of process noise distribution matrix. The proposed neural method does not face any such problem of the classical methods. Moreover, the neural method does not require parameter initialization and a priori knowledge of the model structure. The neural network maps the aircraft state and control variables into the output variables corresponding to aerodynamic forces and moments. The parameter estimation, pertaining to lateral-directional motion, of the research aircraft de Havilland DHC-2 with simulated process noise, is presented. The results obtained using the neural partial differentiation are compared with the nominal values given in literature and with the classical methods. The neural method yields the aerodynamic derivatives very close to the nominal values and having quite low standard deviation. The neural methodology is also validated by comparing actual output variables with the neural predicted and neural reconstructed variables.

  13. Dynamic Parameter-Control Chaotic System.

    Science.gov (United States)

    Hua, Zhongyun; Zhou, Yicong

    2016-12-01

    This paper proposes a general framework of 1-D chaotic maps called the dynamic parameter-control chaotic system (DPCCS). It has a simple but effective structure that uses the outputs of a chaotic map (control map) to dynamically control the parameter of another chaotic map (seed map). Using any existing 1-D chaotic map as the control/seed map (or both), DPCCS is able to produce a huge number of new chaotic maps. Evaluations and comparisons show that chaotic maps generated by DPCCS are very sensitive to their initial states, and have wider chaotic ranges, better unpredictability and more complex chaotic behaviors than their seed maps. Using a chaotic map of DPCCS as an example, we provide a field-programmable gate array design of this chaotic map to show the simplicity of DPCCS in hardware implementation, and introduce a new pseudo-random number generator (PRNG) to investigate the applications of DPCCS. Analysis and testing results demonstrate the excellent randomness of the proposed PRNG.

  14. Atmospheric pollution history at Linfen (China) uncovered by magnetic and chemical parameters of sediments from a water reservoir.

    Science.gov (United States)

    Ma, Mingming; Hu, Shouyun; Cao, Liwan; Appel, Erwin; Wang, Longsheng

    2015-09-01

    We studied magnetic and chemical parameters of sediments from sediments of a water reservoir at Linfen (China) in order to quantitatively reconstruct the atmospheric pollution history in this region. The results show that the main magnetic phases are magnetite and maghemite originating from the surrounding catchment and from anthropogenic activities, and there is a significant positive relationship between magnetic concentration parameters and heavy metals concentrations, indicating that magnetic proxies can be used to monitor the anthropogenic pollution. In order to uncover the atmospheric pollution history, we combined the known events of environmental improvement with variations of magnetic susceptibility (χ) and heavy metals along the cores to obtain a detailed chronological framework. In addition, air comprehensive pollution index (ACPI) was reconstructed from regression equation among magnetic and chemical parameters as well as atmospheric monitoring data. Based on these results, the atmospheric pollution history was successfully reconstructed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    Science.gov (United States)

    Andrawis, Madeleine Y.

    1994-01-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  16. Parameters of the constricted plasma discharge produced by radio-frequency for atmospheric pressures

    International Nuclear Information System (INIS)

    Zambrano R, G.

    1987-01-01

    The main electrophysical characteristics of high-frequency discharge between two electrodes for pressures of the order of atmospheric pressure were investigated. The vibrational and kinetic temperatures of the discharge, and the possibilities for creating the conditions which using these type of discharge an instability between vibrational and kinetic temperatures can be obtained. For determining main characteristics of this type of discharge, argon gas, nitrogen gas and air, when oxygen and nitrogen are predominated, were used. The obtained electrical discharge parameters were: the high frequency voltage between electrocathodes, the current, the phase displacement between current and voltage, and the discharge power. The kinetic temperature distribution in the discharge region, and the vibrational temperature of the nitrogen molecules in discharge channel were also obtained. (M.C.K.) [pt

  17. Analytical Modelling of High Concentrator Photovoltaic Modules Based on Atmospheric Parameters

    Directory of Open Access Journals (Sweden)

    Eduardo F. Fernández

    2015-01-01

    Full Text Available The goal of this paper is to introduce a model to predict the maximum power of a high concentrator photovoltaic module. The model is based on simple mathematical expressions and atmospheric parameters. The maximum power of a HCPV module is estimated as a function of direct normal irradiance, cell temperature, and two spectral corrections based on air mass and aerosol optical depth. In order to check the quality of the model, a HCPV module was measured during one year at a wide range of operating conditions. The new proposed model shows an adequate match between actual and estimated data with a root mean square error (RMSE of 2.67%, a mean absolute error (MAE of 4.23 W, a mean bias error (MBE of around 0%, and a determination coefficient (R2 of 0.99.

  18. Analysis of reliability parameters for complicated information measurement systems

    OpenAIRE

    Sydor, Andriy

    2012-01-01

    A method of analysis of reliability parameters for complicated systems by means of generating functions is developed taking account of aging of the systems output elements. Main reliability parameters of complicated information measurement systems are examined in this paper.

  19. Interactive 3-D Immersive Visualization for Analysis of Large Multi-Parameter Atmospheric Data Sets

    Science.gov (United States)

    Frenzer, J. B.; Hoell, J. M.; Holdzkom, J. J.; Jacob, D.; Fuelberg, H.; Avery, M.; Carmichael, G.; Hopkins, D. L.

    2001-12-01

    emerging from the Asian Continent and their impact on the region. Since completing the field deployment phase of TRACE-P, the 3-D visualization capability has been used as a tool to combine and visually analyze TRACE-P data from multiple sources (e.g. model, airborne and ground based measurements, ozone sondes, and satellite observations). This capability to merge measurements into model data fields in a virtual 3-D world is perhaps the most exciting aspect of this new visualization capability. This allows for a more realistic contextual representation of the model/measurement results. The measured parameters along specific flights (of typical duration of 8 hrs) along with supporting ancillary measurements provide the "real" representation of the atmosphere at that specific point in time and space. The models provide the time evolution, and three-dimensional structure during the measurement period. When these are merged together the context of the observations is documented, and model predictions can be validated and/or improved. Specific TRACE-P case studies will be presented showing results from global and regional models coupled with airborne measurements for which the influence of transport on the spatial distribution of species measured on the aircraft was more clearly discerned within the 3-D environment than from conventional visualization techniques.

  20. Anisotropy of solar radiation leaving the Earth-atmosphere system

    International Nuclear Information System (INIS)

    Suttles, J.T.

    1981-05-01

    The anisotropic nature of solar radiation leaving the Earth atmosphere system is investigated. The problem of the transfer of solar radiation in the Earth atmosphere system is solved using an appropriate numerical solution technique and solutions are compared with measurements of upwelling radiance from available satellite data. The numerical solution technique used is based on an existing finite difference method which is extended to include azimuthal variations, spectral variations for the entire solar wavelength range, and specular as well as diffuse reflection at the surface. The Earth atmosphere system is approximated locally as a plane parallel layer with detailed vertical profiles of the physical and optical properties of the important atmospheric gases and aerosols. The cloudy atmosphere is approximated by a plane parallel, homogeneous layer

  1. The determination of parameters of the upper atmosphere by the radio-meteor measurements

    Science.gov (United States)

    Shamukov, Damir; Fahrutdinova, Antonina; Nugmanov, Ildus

    Study of the parameters of the upper atmosphere on the basis of amplitude-time characteristics of meteor ionization. Together with various methods meteor observations (optical, photographic, visual, spectral, television), the most effective modern method of studying meteors means is radar. The development of modern radar technology allows us to apply this tool to monitor meteors. This method allows to determine the parameters of temperature and atmospheric pressure. Actual issue is the development of methods of determining the coefficient of ambipolar diffusion, pressure, density and temperature of the atmosphere in the meteor zone. Graph of amplitude-time characteristic has the exponential form. This fact allows to determine the coefficient of ambipolar diffusion. New algorithm for estimation of the ambipolar diffusion coefficient based on a set of statistical methods and techniques of digital signal processing. There are decomposition of data on singular values and Prony's method. This method of modeling the sample data as a linear combination of exponential. Prony’s method approximates the amplitude-time characteristics of using a deterministic exponential model. Input data is amplitude-time characteristics of the meteor trail x[1]…x[N]. The method allows to estimate x[n] p-membered exponential model: begin{center} x[n]=Sigma2A_{k}exp[a _{k}(n-1)]Cos[2Pif_{k}(n-1)T+Fi_{k}] (1) end{center} 1<=n<=N, T - time range in seconds, A_{k} and a_{k} - amplitude and damping coefficient, f_{k} and Fi_{k} - frequency and initial phase. The equation describing the decay of radio signal: begin{center} A=A_{0}exp(-16Pi^{2}$D_{a}t/λ (2) ). (2) lambdaλ - radar wavelength. The output of the algorithm - the ambipolar diffusion coefficient values D_{a}. begin{center} T=0.5lnD-T_{0}+mg/2kT_{0} (3) Last equation allows to obtain temperature values using the coefficient of ambipolar diffusion depends on the height.

  2. Analysis of wave-like oscillations in parameters of sporadic E layer and neutral atmosphere

    Czech Academy of Sciences Publication Activity Database

    Mošna, Zbyšek; Koucká Knížová, Petra

    90-91, SI (2012), s. 172-178 ISSN 1364-6826. [IAGA/ICMA/CAWSES-II TG4 Workshop on Vertical Coupling in the Atmosphere-Ionosphere System /4./. Prague, 14.02.2011-18.02.2011] R&D Projects: GA AV ČR IAA300420704 Institutional support: RVO:68378289 Keywords : Sporadic E * Planetary waves * Tidal waves * Mid-latitude ionosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.417, year: 2012 http://www.sciencedirect.com/science/article/pii/S1364682612001186

  3. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS)

    Energy Technology Data Exchange (ETDEWEB)

    Bland, Geoffrey [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)

    2016-06-30

    The use of small unmanned aircraft systems (sUAS) with miniature sensor systems for atmospheric research is an important capability to develop. The Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) project, lead by Dr. Gijs de Boer of the Cooperative Institute for Research in Environmental Sciences (CIRES- a partnership of NOAA and CU-Boulder), is a significant milestone in realizing this new potential. This project has clearly demonstrated that the concept of sUAS utilization is valid, and miniature instrumentation can be used to further our understanding of the atmospheric boundary layer in the arctic.

  4. Atmospheric pollution history at Linfen (China) uncovered by magnetic and chemical parameters of sediments from a water reservoir

    International Nuclear Information System (INIS)

    Ma, Mingming; Hu, Shouyun; Cao, Liwan; Appel, Erwin; Wang, Longsheng

    2015-01-01

    We studied magnetic and chemical parameters of sediments from sediments of a water reservoir at Linfen (China) in order to quantitatively reconstruct the atmospheric pollution history in this region. The results show that the main magnetic phases are magnetite and maghemite originating from the surrounding catchment and from anthropogenic activities, and there is a significant positive relationship between magnetic concentration parameters and heavy metals concentrations, indicating that magnetic proxies can be used to monitor the anthropogenic pollution. In order to uncover the atmospheric pollution history, we combined the known events of environmental improvement with variations of magnetic susceptibility (χ) and heavy metals along the cores to obtain a detailed chronological framework. In addition, air comprehensive pollution index (ACPI) was reconstructed from regression equation among magnetic and chemical parameters as well as atmospheric monitoring data. Based on these results, the atmospheric pollution history was successfully reconstructed. - Highlights: • Magnetic proxies can be used to monitor the heavy mental pollution in sediments. • Accurate age model was obtained using known events of environmental improvement. • Regression equation was obtained among sediment records and monitoring data. • Atmospheric pollution history was quantitatively reconstructed. - Atmospheric pollution history was quantitatively reconstructed using magnetic and chemical records of reservoir sediments combined with atmospheric monitoring data

  5. Improved Meteorological Input for Atmospheric Release Decision support Systems and an Integrated LES Modeling System for Atmospheric Dispersion of Toxic Agents: Homeland Security Applications

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E; Simpson, M; Larsen, S; Gash, J; Aluzzi, F; Lundquist, J; Sugiyama, G

    2010-04-26

    When hazardous material is accidently or intentionally released into the atmosphere, emergency response organizations look to decision support systems (DSSs) to translate contaminant information provided by atmospheric models into effective decisions to protect the public and emergency responders and to mitigate subsequent consequences. The Department of Homeland Security (DHS)-led Interagency Modeling and Atmospheric Assessment Center (IMAAC) is one of the primary DSSs utilized by emergency management organizations. IMAAC is responsible for providing 'a single piont for the coordination and dissemination of Federal dispersion modeling and hazard prediction products that represent the Federal position' during actual or potential incidents under the National Response Plan. The Department of Energy's (DOE) National Atmospheric Release Advisory Center (NARAC), locatec at the Lawrence Livermore National Laboratory (LLNL), serves as the primary operations center of the IMAAC. A key component of atmospheric release decision support systems is meteorological information - models and data of winds, turbulence, and other atmospheric boundary-layer parameters. The accuracy of contaminant predictions is strongly dependent on the quality of this information. Therefore, the effectiveness of DSSs can be enhanced by improving the meteorological options available to drive atmospheric transport and fate models. The overall goal of this project was to develop and evaluate new meteorological modeling capabilities for DSSs based on the use of NASA Earth-science data sets in order to enhance the atmospheric-hazard information provided to emergency managers and responders. The final report describes the LLNL contributions to this multi-institutional effort. LLNL developed an approach to utilize NCAR meteorological predictions using NASA MODIS data for the New York City (NYC) region and demonstrated the potential impact of the use of different data sources and data

  6. Atmospheric pressure microwave plasma system with ring waveguide

    International Nuclear Information System (INIS)

    Liu Liang; Zhang Guixin; Zhu Zhijie; Luo Chengmu

    2007-01-01

    Some scientists used waveguide as the cavity to produce a plasma jet, while large volume microwave plasma was relatively hard to get in atmospheric pressure. However, a few research institutes have already developed devices to generate large volume of atmospheric pressure microwave plasma, such as CYRANNUS and SLAN series, which can be widely applied. In this paper, present a microwave plasma system with ring waveguide to excite large volume of atmospheric pressure microwave plasma, plot curves on theoretical disruption electric field of some working gases, emulate the cavity through software, measure the power density to validate and show the appearance of microwave plasma. At present, large volume of argon and helium plasma have already been generated steadily by atmospheric pressure microwave plasma system. This research can build a theoretical basis of microwave plasma excitation under atmospheric pressure and will be useful in study of the device. (authors)

  7. Atmospheric dust accumulation on native and non-native species: effects on gas exchange parameters.

    Science.gov (United States)

    González, Juan A; Prado, Fernando E; Piacentini, Ruben D

    2014-05-01

    Plants are continuously exposed to atmospheric particulate matter (dust), and their leaves are the main receptors of deposited dust. The objective of this study was to assess the effects of dust deposition on leaf gas exchange parameters of 17 native and non-native tree and shrub species growing in Gran San Miguel de Tucumán in northwestern Argentina. Maximum assimilation rate (), stomatal conductance (), transpiration rate (), internal CO concentration (), and instantaneous water-use efficiency (WUE) were measured in cleaned leaves (CL) and dusted leaves (DL) of different species on November 2010, July 2011, and September 2011. In almost all studied species, gas exchange parameters were significantly affected by dust deposition. Values for , , and of DL were significantly reduced in 11, 12, and 14 species compared with CL. Morphological leaf traits seem to be related to reduction. Indeed, L. and (Mart. ex DC.) Standl. species with pubescent leaves and thick ribs showed the highest reduction percentages. Contrarily, and WUE were increased in DL but were less responsive to dust deposition than other parameters. Increases of and WUE were significant in 5 and 11 species, respectively. Correlation analyses between /, /, and / pairs showed significant positive linear correlations in CL and DL of many studied species, including small and tall plants. These results suggest that leaf stomatal factors and shade-induced effect by accumulated dust are primarily responsible for the observed reductions in photosynthesis rate of DL. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Radiative transfer in atmosphere-sea ice-ocean system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Z.; Stamnes, K.; Weeks, W.F. [Univ. of Alaska, Fairbanks, AK (United States); Tsay, S.C. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    1996-04-01

    Radiative energy is critical in controlling the heat and mass balance of sea ice, which significantly affects the polar climate. In the polar oceans, light transmission through the atmosphere and sea ice is essential to the growth of plankton and algae and, consequently, to the microbial community both in the ice and in the ocean. Therefore, the study of radiative transfer in the polar atmosphere, sea ice, and ocean system is of particular importance. Lacking a properly coupled radiative transfer model for the atmosphere-sea ice-ocean system, a consistent study of the radiative transfer in the polar atmosphere, snow, sea ice, and ocean system has not been undertaken before. The radiative transfer processes in the atmosphere and in the ice and ocean have been treated separately. Because the radiation processes in the atmosphere, sea ice, and ocean depend on each other, this separate treatment is inconsistent. To study the radiative interaction between the atmosphere, clouds, snow, sea ice, and ocean, a radiative transfer model with consistent treatment of radiation in the coupled system is needed and is under development.

  9. Atmospheric Parameters and Metallicities for 2191 Stars in the Globular Cluster M4

    Science.gov (United States)

    Malavolta, Luca; Sneden, Christopher; Piotto, Giampaolo; Milone, Antonino P.; Bedin, Luigi R.; Nascimbeni, Valerio

    2014-02-01

    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the Very Large Telescope (VLT) FLAMES+GIRAFFE spectrograph at VLT. These medium-resolution spectra cover a small wavelength range, and often have very low signal-to-noise ratios. We approached this data set by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all of the data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 red giant branch (RGB) stars with V 14.7, we obtain lang[Fe/H]rang = -1.16 (σ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than 2000 stars, using a data set that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions.

  10. Atmospheric parameters and metallicities for 2191 stars in the globular cluster M4

    International Nuclear Information System (INIS)

    Malavolta, Luca; Piotto, Giampaolo; Nascimbeni, Valerio; Sneden, Christopher; Milone, Antonino P.; Bedin, Luigi R.

    2014-01-01

    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the Very Large Telescope (VLT) FLAMES+GIRAFFE spectrograph at VLT. These medium-resolution spectra cover a small wavelength range, and often have very low signal-to-noise ratios. We approached this data set by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all of the data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 red giant branch (RGB) stars with V ≤ 14.7, we obtain a nearly constant metallicity, ([Fe/H]) = –1.07 (σ = 0.02). No difference in the metallicity at the level of 0.01 dex is observed between the two RGB sequences identified by Monelli et al. For 1869 subgiant and main-sequence stars with V > 14.7, we obtain ([Fe/H]) = –1.16 (σ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than 2000 stars, using a data set that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions

  11. Atmospheric parameters and metallicities for 2191 stars in the globular cluster M4

    Energy Technology Data Exchange (ETDEWEB)

    Malavolta, Luca; Piotto, Giampaolo; Nascimbeni, Valerio [Dipartimento di Fisica e Astronomia, Vicolo dell' Osservatorio 3, I-35122 Padova (Italy); Sneden, Christopher [Department of Astronomy and McDonald Observatory, The University of Texas, Austin, TX 78712 (United States); Milone, Antonino P. [Research School of Astronomy and Astrophysics, The Australian National University, Cotter Road, Weston, ACT 2611 (Australia); Bedin, Luigi R., E-mail: luca.malavolta@unipd.it, E-mail: giampaolo.piotto@unipd.it, E-mail: valerio.nascimbeni@unipd.it, E-mail: luigi.bedin@oapd.inaf.it, E-mail: chris@verdi.as.utexas.edu, E-mail: milone@mso.anu.edu.au [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122 Padova (Italy)

    2014-02-01

    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the Very Large Telescope (VLT) FLAMES+GIRAFFE spectrograph at VLT. These medium-resolution spectra cover a small wavelength range, and often have very low signal-to-noise ratios. We approached this data set by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all of the data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 red giant branch (RGB) stars with V ≤ 14.7, we obtain a nearly constant metallicity, ([Fe/H]) = –1.07 (σ = 0.02). No difference in the metallicity at the level of 0.01 dex is observed between the two RGB sequences identified by Monelli et al. For 1869 subgiant and main-sequence stars with V > 14.7, we obtain ([Fe/H]) = –1.16 (σ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than 2000 stars, using a data set that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions.

  12. Method for Predicting and Optimizing System Parameters for Electrospinning System

    Science.gov (United States)

    Wincheski, Russell A. (Inventor)

    2011-01-01

    An electrospinning system using a spinneret and a counter electrode is first operated for a fixed amount of time at known system and operational parameters to generate a fiber mat having a measured fiber mat width associated therewith. Next, acceleration of the fiberizable material at the spinneret is modeled to determine values of mass, drag, and surface tension associated with the fiberizable material at the spinneret output. The model is then applied in an inversion process to generate predicted values of an electric charge at the spinneret output and an electric field between the spinneret and electrode required to fabricate a selected fiber mat design. The electric charge and electric field are indicative of design values for system and operational parameters needed to fabricate the selected fiber mat design.

  13. Monte Carlo and discrete-ordinate simulations of irradiances in the coupled atmosphere-ocean system.

    Science.gov (United States)

    Gjerstad, Karl Idar; Stamnes, Jakob J; Hamre, Børge; Lotsberg, Jon K; Yan, Banghua; Stamnes, Knut

    2003-05-20

    We compare Monte Carlo (MC) and discrete-ordinate radiative-transfer (DISORT) simulations of irradiances in a one-dimensional coupled atmosphere-ocean (CAO) system consisting of horizontal plane-parallel layers. The two models have precisely the same physical basis, including coupling between the atmosphere and the ocean, and we use precisely the same atmospheric and oceanic input parameters for both codes. For a plane atmosphere-ocean interface we find agreement between irradiances obtained with the two codes to within 1%, both in the atmosphere and the ocean. Our tests cover case 1 water, scattering by density fluctuations both in the atmosphere and in the ocean, and scattering by particulate matter represented by a one-parameter Henyey-Greenstein (HG) scattering phase function. The CAO-MC code has an advantage over the CAO-DISORT code in that it can handle surface waves on the atmosphere-ocean interface, but the CAO-DISORT code is computationally much faster. Therefore we use CAO-MC simulations to study the influence of ocean surface waves and propose a way to correct the results of the CAO-DISORT code so as to obtain fast and accurate underwater irradiances in the presence of surface waves.

  14. Effects of Technological Parameters and Fishing Ground on Quality Attributes of Thawed, Chilled Cod Fillets Stored in Modified Atmosphere Packaging

    DEFF Research Database (Denmark)

    Bøknæs, Niels; Østerberg, Carsten; Sørensen, Rie

    2001-01-01

    Effects were studied of various technological parameters and fishing ground on quality attributes of thawed, chilled cod fillets stored in modified atmosphere packaging Frozen fillets of Baltic Sea and Barents Sea cod, representing two commercial fishing grounds, were used as raw material....... The parameters investigated were: (1) packaging in modified atmosphere during frozen storage, (2)frozen storage period and temperature, (3),fishing ground and chill storage temperature, together with (4) the addition of trimethylamine oxide (TMAO) and sodium chloride (NaCl) to cod fillets before freezing...

  15. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    International Nuclear Information System (INIS)

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-01-01

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron--ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature

  16. The dynamical core of the Aeolus 1.0 statistical-dynamical atmosphere model: validation and parameter optimization

    Science.gov (United States)

    Totz, Sonja; Eliseev, Alexey V.; Petri, Stefan; Flechsig, Michael; Caesar, Levke; Petoukhov, Vladimir; Coumou, Dim

    2018-02-01

    We present and validate a set of equations for representing the atmosphere's large-scale general circulation in an Earth system model of intermediate complexity (EMIC). These dynamical equations have been implemented in Aeolus 1.0, which is a statistical-dynamical atmosphere model (SDAM) and includes radiative transfer and cloud modules (Coumou et al., 2011; Eliseev et al., 2013). The statistical dynamical approach is computationally efficient and thus enables us to perform climate simulations at multimillennia timescales, which is a prime aim of our model development. Further, this computational efficiency enables us to scan large and high-dimensional parameter space to tune the model parameters, e.g., for sensitivity studies.Here, we present novel equations for the large-scale zonal-mean wind as well as those for planetary waves. Together with synoptic parameterization (as presented by Coumou et al., 2011), these form the mathematical description of the dynamical core of Aeolus 1.0.We optimize the dynamical core parameter values by tuning all relevant dynamical fields to ERA-Interim reanalysis data (1983-2009) forcing the dynamical core with prescribed surface temperature, surface humidity and cumulus cloud fraction. We test the model's performance in reproducing the seasonal cycle and the influence of the El Niño-Southern Oscillation (ENSO). We use a simulated annealing optimization algorithm, which approximates the global minimum of a high-dimensional function.With non-tuned parameter values, the model performs reasonably in terms of its representation of zonal-mean circulation, planetary waves and storm tracks. The simulated annealing optimization improves in particular the model's representation of the Northern Hemisphere jet stream and storm tracks as well as the Hadley circulation.The regions of high azonal wind velocities (planetary waves) are accurately captured for all validation experiments. The zonal-mean zonal wind and the integrated lower

  17. Research on demodulation technology of atmospheric laser communication system base on CPolSK

    Science.gov (United States)

    xin, zhou; Liu, Yan; Liu, Zhi; Liu, Dan; Fang, Han-han; Zheng, Min

    2013-08-01

    In order to reduce the impacts of atmospheric turbulence and background light etc. factors to atmospheric laser communication system performance, the atmospheric laser communication system using circular polarization modulation technology is adopted and researched. This system uses polarization shift keying modulation (PloSK), which is a new standard digital modulation technique in optical communication field. In this modulation, two rotation states of the circle polarization light (left handed and right handed) representation logic signal ' 0 ' and ' 1 ', are used to information loaded and data transmission. In the receiver, the modulation optical signal is detected with dual differential probe method. Under the OptiSystem system simulation environment, several direct detection system model based on OOK intensity modulation, single rode circular polarization modulation and circular polarization modulation with balanced detection is constructed, and compares and analysis of the various communication system performance. The results show that: at the same parameter conditions, bit error rate of CPolSK system with balanced detection lower about two orders of magnitude than the OOK system and single rode CPolSK system, the eye diagram and the waveform chart are also significantly better than OOK system's. It can be seen, based on circular polarization shift keying (CPolSK) laser communication system with dual differential detection is superior on anti-interference of atmospheric interference, and reducing error rate, and will be easy to implement.

  18. Network of LAMP systems for atmospheric monitoring in India

    Science.gov (United States)

    Yellapragada, Bhavani Kumar; Jayaraman, Achuthan

    2012-07-01

    A systematic knowledge of the vertical distribution of aerosol particles in the atmosphere is required for understanding many atmospheric processes such as dynamics of boundary layer, pollution transport, modification of cloud microphysics etc. At present, the information on the particle distribution in the atmosphere is far from sufficient to estimate properly the load of aerosols in the atmosphere. Light detection and ranging (LIDAR) has been demonstrated to be a reliable remote sensing technique to obtain altitude profiles of atmospheric cloud and aerosol scattering. A LIDAR network is being implemented by National Atmospheric Research Laboratory (NARL), a Department of Space unit, in India for the measurement and monitoring of the atmospheric aerosols and clouds. Towards this, the technology of boundary layer lidar (BLL) (Bhavani Kumar, 2006) has been exploited. Several industrial grade BLL systems are being fabricated at a private industry in India through technological transfer from NARL. The industrial BLL lidar is named as LAMP, stands for LIDAR for Atmospheric Measurement and Probing. Five LAMP systems have already been fabricated and deployed at several locations of the country for continuous monitoring of aerosols and clouds under the Indian Lidar network (I-LINK) programme. The LAMP system employs a single barrel construction so that no realignment is required in future. Moreover, the network lidar system employs several features like rotation facility about the elevation (EL) axis, a provision of front window for environmental protection to the telescope optics and a silica gel pocket for desiccation (for transmit and receive assembly) and a provision of nitrogen purging to overcome the humidity effects. The LAMP system is an autonomous system equipped with a diode pumped Nd-YAG laser, a PMT for the detection of the backscattered photons, and a PC based photon counting electronics for recording the photon returns. In this paper, a report describing

  19. Long-term trends in the ionosphere and upper atmosphere parameters

    Directory of Open Access Journals (Sweden)

    A. V. Mikhailov

    2004-06-01

    Full Text Available The first part of the paper is directed to the investigation of the practical importance of possible longterm trends in the F2-layer for ionospheric prediction models. Using observations of about 50 different ionosonde stations with more than 30 years data series of foF2 and hmF2, trends have been derived with the solar sunspot number R12 as index of the solar activity. The final result of this trend analysis is that the differences between the trends derived from the data of the individual stations are relatively large, the calculated global mean values of the foF2 and hmF2 trends, however, are relatively small. Therefore, these small global trends can be neglected for practical purposes and must not be considered in ionospheric prediction models. This conclusion is in agreement with the results of other investigations analyzing data of globally distributed stations. As shown with the data of the ionosonde station Tromsø, however, at individual stations the ionospheric trends may be markedly stronger and lead to essential effects in ionospheric radio propagation. The second part of the paper deals with the reasons for possible trends in the Earth’s atmo- and ionosphere as investigated by different methods using characteristic parameters of the ionospheric D-, E-, and F-regions. Mainly in the F2-region different analyses have been carried out. The derived trends are mainly discussed in connection with an increasing greenhouse effect or by long-term changes in geomagnetic activity. In the F1-layer the derived mean global trend in foF1 is in good agreement with model predictions of an increasing greenhouse effect. In the E-region the derived trends in foE and h´E are compared with model results of an atmospheric greenhouse effect, or explained by geomagnetic effects or other anthropogenic disturbances. The trend results in the D-region derived from ionospheric reflection height and absorption measurements in the LF, MF and HF ranges can at

  20. Managing physicochemical parameters in compost systems to ...

    African Journals Online (AJOL)

    Physical, chemical and biological parameters were optimized during composting to enhance degradation of oil sludge. Mixtures of oil sludge, garden soil, poultry manure and the bulking agents were co-composted in static piles of about 1 m3 on wooden pallets overlaid with nylon fibre sheets. Temperature, moisture ...

  1. Managing physicochemical parameters in compost systems to ...

    African Journals Online (AJOL)

    user

    2014-02-12

    Feb 12, 2014 ... Physical, chemical and biological parameters were optimized during composting to enhance degradation of oil sludge. Mixtures of oil sludge, garden soil, poultry manure and the bulking agents were co-composted in static piles of about 1 m3 on wooden pallets overlaid with nylon fibre sheets. Temperature ...

  2. A Discussion of Oxygen Recovery Definitions and Key Performance Parameters for Closed-Loop Atmosphere Revitalization Life Support Technology Development

    Science.gov (United States)

    Abney, Morgan B.; Perry, Jay L.

    2016-01-01

    Over the last 55 years, NASA has evolved life support for crewed space exploration vehicles from simple resupply during Project Mercury to the complex and highly integrated system of systems aboard the International Space Station. As NASA targets exploration destinations farther from low Earth orbit and mission durations of 500 to 1000 days, life support systems must evolve to meet new requirements. In addition to having more robust, reliable, and maintainable hardware, limiting resupply becomes critical for managing mission logistics and cost. Supplying a crew with the basics of food, water, and oxygen become more challenging as the destination ventures further from Earth. Aboard ISS the Atmosphere Revitalization Subsystem (ARS) supplies the crew's oxygen demand by electrolyzing water. This approach makes water a primary logistics commodity that must be managed carefully. Chemical reduction of metabolic carbon dioxide (CO2) provides a method of recycling oxygen thereby reducing the net ARS water demand and therefore minimizing logistics needs. Multiple methods have been proposed to achieve this recovery and have been reported in the literature. However, depending on the architecture and the technology approach, "oxygen recovery" can be defined in various ways. This discontinuity makes it difficult to compare technologies directly. In an effort to clarify community discussions of Oxygen Recovery, we propose specific definitions and describe the methodology used to arrive at those definitions. Additionally, we discuss key performance parameters for Oxygen Recovery technology development including challenges with comparisons to state-of-the-art.

  3. A Comparative Study of Distribution System Parameter Estimation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yannan; Williams, Tess L.; Gourisetti, Sri Nikhil Gup

    2016-07-17

    In this paper, we compare two parameter estimation methods for distribution systems: residual sensitivity analysis and state-vector augmentation with a Kalman filter. These two methods were originally proposed for transmission systems, and are still the most commonly used methods for parameter estimation. Distribution systems have much lower measurement redundancy than transmission systems. Therefore, estimating parameters is much more difficult. To increase the robustness of parameter estimation, the two methods are applied with combined measurement snapshots (measurement sets taken at different points in time), so that the redundancy for computing the parameter values is increased. The advantages and disadvantages of both methods are discussed. The results of this paper show that state-vector augmentation is a better approach for parameter estimation in distribution systems. Simulation studies are done on a modified version of IEEE 13-Node Test Feeder with varying levels of measurement noise and non-zero error in the other system model parameters.

  4. The main results of the long-term measurements of the neutral atmosphere parameters by the artificial periodic irregularities techniques

    Science.gov (United States)

    Tolmacheva, Ariadna V.; Bakhmetieva, Nataliya V.; Grigoriev, Gennady I.; Kalinina, Elena E.

    2015-09-01

    The results of the atmospheric parameter determination by the method of artificial periodic irregularities (the API techniques) at the E-region heights obtained during many years of the observation are presented. The features of the obtaining data, their processing and the determination of the atmospheric parameters are given in details. A lot of information about dynamical phenomena in the lower thermosphere has been obtained. There are often height profiles of the atmospheric parameters with the wave-like variations and with the vertical scale of about 4-6 km. The temporal variations of the atmospheric parameters take place with the periods from 15 min to some hours. Such variations could be caused by the passage of the internal gravity waves (IGWs) and the tide waves. The temperature minima were observed as 100-140 K above 100 km in the equinoctial periods. The instability growth is also observed in the number of cases. The dependence of the neutral temperature and the density on solar and geomagnetic activity is not found.

  5. Characterization of sub-channel based Málaga atmospheric optical links with real β  parameter

    DEFF Research Database (Denmark)

    López-González, Francisco Javier; Jurado-Navas, Antonio; Garrido-Balsells, José María

    2017-01-01

    A generalization of the Málaga atmospheric optical communications links treated as a finite number of generalized-K distributed sub-channels is analyzed in terms of outage probability and outage rate when its β parameter belongs to the set of real numbers. To the best of the author's knowledge, ...

  6. Measurements of atmospheric electrical parameters and ELF electromagnetic emissions during a meteorological balloon flight.

    Science.gov (United States)

    Benda, Robert; Dujany, Matthieu; Berthomieu, Roland; Boissier, Mathilde; Bruneel, Pierre; Fischer, Lucie; Focillon, William; Gullo, Robin; Hubert, Valentin; Lafforgue, Gaétan; Loe-Mie, Marichka; Messager, Adrien; Roy, Felix; Auvray, Gérard; Bertrand, Fabrice; Coulomb, Romain; Deprez, Gregoire; Berthelier, Jean-Jacques

    2016-04-01

    Measurements of electric field and atmospheric conductivity were performed onboard a small payload flown under a meteorological balloon during a fair weather period. This experiment is part of a project to study thunderstorms and TLE organized in the frame of the engineering cursus at Ecole Polytechnique. The payload is equipped with 4 electrodes to measure the 3 components of the DC and AC electric fields up to 3.2 kHz. Dedicated sequences of operation, when one electrode is operated in the relaxation mode, have been used to determine the positive and negative electrical conductivities. Altitude profiles of the DC vertical electric field and conductivities in agreement with expected fair weather parameters were obtained from ~ 3.5 to ~ 13 km before the failure of a battery. At an altitude of ~ 9 km slight disturbances in the electric field suggest the traversal of thin clouds with disturbed electrical characteristics. Schumann resonances were observed up to the fifth harmonics at levels that are typical of a quiet period over Europe with most thunderstorms located over remote longitudinal sectors. EM waves due the power lines at 50Hz are detected during the whole measuring period and their altitude and horizontal variations will be presented as a function of the position of the balloon over the ground power network. A surprising and interesting observation was made of a Russian transmitter at 82 Hz located in Murmansk region and used for sub-marine communications. We shall present an initial analysis of the amplitude and polarization of the corresponding signal.

  7. Investigations of radioactive contamination of 'underlying surface - atmosphere' system

    International Nuclear Information System (INIS)

    Osintsev, A.Yu.; Panin, M.S.; Artem'ev, O.I.; Gaziev, Ya.I.

    2008-01-01

    In article the results of carried out field investigations of radionuclide compositions and dispersed characteristics of anthropogenic dust lifting products and organized on radioactive 'spot' on the Semipalatinsk Test Site fires are presented. Investigations were made for the purpose of parameters refinement and improvement of physico-mathematical models of air environmental pollution with aerosuspensions and aerosols from different sources them intensive entrance in the atmosphere

  8. Mars Entry Atmospheric Data System Modeling, Calibration, and Error Analysis

    Science.gov (United States)

    Karlgaard, Christopher D.; VanNorman, John; Siemers, Paul M.; Schoenenberger, Mark; Munk, Michelle M.

    2014-01-01

    The Mars Science Laboratory (MSL) Entry, Descent, and Landing Instrumentation (MEDLI)/Mars Entry Atmospheric Data System (MEADS) project installed seven pressure ports through the MSL Phenolic Impregnated Carbon Ablator (PICA) heatshield to measure heatshield surface pressures during entry. These measured surface pressures are used to generate estimates of atmospheric quantities based on modeled surface pressure distributions. In particular, the quantities to be estimated from the MEADS pressure measurements include the dynamic pressure, angle of attack, and angle of sideslip. This report describes the calibration of the pressure transducers utilized to reconstruct the atmospheric data and associated uncertainty models, pressure modeling and uncertainty analysis, and system performance results. The results indicate that the MEADS pressure measurement system hardware meets the project requirements.

  9. Ultra-metal-poor Stars: Spectroscopic Determination of Stellar Atmospheric Parameters Using Iron Non-LTE Line Abundances

    Science.gov (United States)

    Ezzeddine, Rana; Frebel, Anna; Plez, Bertrand

    2017-10-01

    We present new ultra-metal-poor stars parameters with [Fe/H] LTE in their atmospheric parameters and show that they can grow up to ˜1.00 dex in [Fe/H], ˜150 K in {T}{eff} and ˜0.5 dex in log g toward the lowest metallicities. Accurate NLTE atmospheric stellar parameters, in particular [Fe/H] being significantly higher, are the first step to eventually providing full NLTE abundance patterns that can be compared with Population III supernova nucleosynthesis yields to derive properties of the first stars. Overall, this maximizes the potential of these likely second-generation stars to investigate the early universe and how the chemical elements were formed.

  10. Instrumentation for the observation of atmospheric parameters, relevant for IACTs, for site-search and correction of the energy spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fruck, Christian; Hose, Juergen; Engelhardt, Toni; Mirzoyan, Razmik; Schweizer, Thomas; Teshima, Masahiro [Max Plank Institut fuer Physik, Muenchen (Germany)

    2010-07-01

    The atmospheric conditions have impact on the measured data by imaging atmospheric Cherenkov telescopes (IACT). Cherenkov light from air showers traverses 5-25 km distance in the atmosphere before reaching the telescopes. This light becomes attenuated because of absorption by oxigen and ozone as well as because of the Rayleigh and the Mie scatterings. The latter is the variable component in the atmosphere that depends on the momentary distribution of aerosols, their size and types and distribution heights. We have developed a micro-LIDAR system for parametrising these losses and plan to locate it next to the MAGIC telescopes for simultaneous operation. This shall allow us to improve the energy resolution of the telescopes for the data taken at non-ideal weather conditions. Also, we are working on developing diverse instrumentation for paramerising the atmosphere and for the searching proper sites for the CTA project. In our presentation we plan to report about the above-mentioned activities.

  11. Effect of parameter change upon the extra-tropical atmospheric variability

    NARCIS (Netherlands)

    Levine-Moolenaar, H.E.; Selten, F.M.; Grasman, J.

    2012-01-01

    Global climate models contain numerous parameters with uncertain values. In the context of climate simulation and prediction, it is relevant to obtain an estimate of the range of climate outcomes given the parameter uncertainty. Instead of randomly perturbing parameters, we determine parameter

  12. MIMO System Setup and Parameter Estimation

    NARCIS (Netherlands)

    Warnas, J; Shao, X.; Schiphorst, Roelof; Slump, Cornelis H.

    2008-01-01

    There is a rat race in wireless communication to achieve higher spectral efficiency. One technique to achieve this is the use of multiple antenna systems i.e. MIMO systems. In this paper we describe a wireless 4x4 Multiple Input Multiple Output (MIMO) testbed in the 2.2 GHz band including results

  13. Circuit realization, chaos synchronization and estimation of parameters of a hyperchaotic system with unknown parameters

    Directory of Open Access Journals (Sweden)

    A. Elsonbaty

    2014-10-01

    Full Text Available In this article, the adaptive chaos synchronization technique is implemented by an electronic circuit and applied to the hyperchaotic system proposed by Chen et al. We consider the more realistic and practical case where all the parameters of the master system are unknowns. We propose and implement an electronic circuit that performs the estimation of the unknown parameters and the updating of the parameters of the slave system automatically, and hence it achieves the synchronization. To the best of our knowledge, this is the first attempt to implement a circuit that estimates the values of the unknown parameters of chaotic system and achieves synchronization. The proposed circuit has a variety of suitable real applications related to chaos encryption and cryptography. The outputs of the implemented circuits and numerical simulation results are shown to view the performance of the synchronized system and the proposed circuit.

  14. System Predicts Critical Runway Performance Parameters

    Science.gov (United States)

    Millen, Ernest W.; Person, Lee H., Jr.

    1990-01-01

    Runway-navigation-monitor (RNM) and critical-distances-process electronic equipment designed to provide pilot with timely and reliable predictive navigation information relating to takeoff, landing and runway-turnoff operations. Enables pilot to make critical decisions about runway maneuvers with high confidence during emergencies. Utilizes ground-referenced position data only to drive purely navigational monitor system independent of statuses of systems in aircraft.

  15. TOVS Pathfinder Path-P Daily and Monthly Polar Gridded Atmospheric Parameters, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The TIROS-N Operational Vertical Sounder (TOVS) Polar Pathfinder (Path-P) data set consists of gridded daily and monthly Arctic and Antarctic atmospheric data...

  16. TOVS Pathfinder Path-P Daily and Monthly Polar Gridded Atmospheric Parameters

    Data.gov (United States)

    National Aeronautics and Space Administration — The TIROS-N Operational Vertical Sounder (TOVS) Polar Pathfinder (Path-P) data set consists of gridded daily and monthly Arctic and Antarctic atmospheric data...

  17. Long-term trends in the ionosphere and upper atmosphere parameters

    Czech Academy of Sciences Publication Activity Database

    Bremer, J.; Alfonsi, L.; Pal, B.; Laštovička, Jan; Mikhailov, A. V.; Rogers, N.

    47 /suppl./, 2/3 (2004), s. 1009-1029 ISSN 1593-5213. [Final Meeting COST271 Action. Effects of the upper atmosphere on terrestrial and Earth-space communications (EACOS). Abingdon, 26.08.2004-27.08.2004] R&D Projects: GA MŠk OC 271.10 Institutional research plan: CEZ:AV0Z3042911 Keywords : long-term trends * ionosphere * upper atmosphere Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.413, year: 2004

  18. Trends in laminae in ozone profiles in relation to trends in some other middle atmospheric parameters

    Czech Academy of Sciences Publication Activity Database

    Laštovička, Jan; Križan, Peter

    2006-01-01

    Roč. 31, 1-3 (2006), s. 46-53 ISSN 1474-7065 R&D Projects: GA AV ČR IAA3042101 Grant - others:European Commission(XE) EVK2-CT-2001-00133 (CANDIDOS) Institutional research plan: CEZ:AV0Z30420517 Keywords : Long-term trends * Middle atmosphere * Ozone * Atmospheric dynamics Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 0.846, year: 2006

  19. X-shooter spectroscopy of young stellar objects in Lupus. Atmospheric parameters, membership, and activity diagnostics

    Science.gov (United States)

    Frasca, A.; Biazzo, K.; Alcalá, J. M.; Manara, C. F.; Stelzer, B.; Covino, E.; Antoniucci, S.

    2017-06-01

    Aims: A homogeneous determination of basic stellar parameters of young stellar object (YSO) candidates is needed to confirm their pre-main sequence evolutionary stage and membership to star forming regions (SFRs), and to get reliable values of the quantities related to chromospheric activity and accretion. Methods: We used the code ROTFIT and synthetic BT-Settl spectra for the determination of the atmospheric parameters (Teff and log g), veiling (r), radial (RV), and projected rotational velocity (vsini) from X-shooter spectra of 102 YSO candidates (95 of infrared Class II and seven Class III) in the Lupus SFR. The spectral subtraction of inactive templates, rotationally broadened to match the vsini of the targets, enabled us to measure the line fluxes for several diagnostics of both chromospheric activity and accretion, such as Hα, Hβ, Ca II, and Na I lines. Results: We have shown that 13 candidates can be rejected as Lupus members based on their discrepant RV with respect to Lupus and/or the very low log g values. At least 11 of them are background giants, two of which turned out to be lithium-rich giants. Regarding the members, we found that all Class III sources have Hα fluxes that are compatible with a pure chromospheric activity, while objects with disks lie mostly above the boundary between chromospheres and accretion. Young stellar objects with transitional disks display both high and low Hα fluxes. We found that the line fluxes per unit surface are tightly correlated with the accretion luminosity (Lacc) derived from the Balmer continuum excess. This rules out that the relationships between Lacc and line luminosities found in previous works are simply due to calibration effects. We also found that the Ca II-IRT flux ratio, FCaII8542/FCaII8498, is always small, indicating an optically thick emission source. The latter can be identified with the accretion shock near the stellar photosphere. The Balmer decrement reaches instead, for several accretors, high

  20. Optimalization of selected RFID systems Parameters

    Directory of Open Access Journals (Sweden)

    Peter Vestenicky

    2004-01-01

    Full Text Available This paper describes procedure for maximization of RFID transponder read range. This is done by optimalization of magnetics field intensity at transponder place and by optimalization of antenna and transponder coils coupling factor. Results of this paper can be used for RFID with inductive loop, i.e. system working in near electromagnetic field.

  1. Einstein's Tea Leaves and Pressure Systems in the Atmosphere

    Science.gov (United States)

    Tandon, Amit; Marshall, John

    2010-01-01

    Tea leaves gather in the center of the cup when the tea is stirred. In 1926 Einstein explained the phenomenon in terms of a secondary, rim-to-center circulation caused by the fluid rubbing against the bottom of the cup. This explanation can be connected to air movement in atmospheric pressure systems to explore, for example, why low-pressure…

  2. Parameter dependence in the atmospheric decoherence of modal entangled photon pairs

    CSIR Research Space (South Africa)

    Ibrahim, AH

    2014-11-01

    Full Text Available the strength of the turbulence. We show that, beyond the weak scintillation regime, the entanglement evolution cannot be accurately modeled by a single phase screen that is specified by a single dimensionless parameter. Two dimensionless parameters...

  3. Development of a safety parameter supervision system for Angra-1

    International Nuclear Information System (INIS)

    Silva, R.A. da; Thome Filho, Z.D.; Schirru, R.; Martinez, A.S.; Oliveira, L.F.S. de

    1986-01-01

    The Safety Parameter Supervision System (SSPS) which is a computerized system for monitoring essential parameters in real time, determining the safety status and emergency procedures for returning normal reactor operation, in case of an anomaly occurrence, is presented. The SSPS consists of three sub-systems: Integrated parameter monitoring system which gives to operators an integrated vision of values of a parameter set, able to detect any deviation of normal reactor operation; safety critical function system which evaluates safety status in terms of a safety critical function set appointed in advance, and in case of violation of any critical function, it initiates the adequate emergency procedure to return normal operation; and safety parameter computer system which carries out the arquirement of analogic and digital control signals of nuclear power plant. (M.C.K.) [pt

  4. Control and Estimation of Distributed Parameter Systems

    CERN Document Server

    Kappel, F; Kunisch, K

    1998-01-01

    Consisting of 23 refereed contributions, this volume offers a broad and diverse view of current research in control and estimation of partial differential equations. Topics addressed include, but are not limited to - control and stability of hyperbolic systems related to elasticity, linear and nonlinear; - control and identification of nonlinear parabolic systems; - exact and approximate controllability, and observability; - Pontryagin's maximum principle and dynamic programming in PDE; and - numerics pertinent to optimal and suboptimal control problems. This volume is primarily geared toward control theorists seeking information on the latest developments in their area of expertise. It may also serve as a stimulating reader to any researcher who wants to gain an impression of activities at the forefront of a vigorously expanding area in applied mathematics.

  5. Finding the effective parameter perturbations in atmospheric models: the LORENZ63 model as case study

    NARCIS (Netherlands)

    Moolenaar, H.E.; Selten, F.M.

    2004-01-01

    Climate models contain numerous parameters for which the numeric values are uncertain. In the context of climate simulation and prediction, a relevant question is what range of climate outcomes is possible given the range of parameter uncertainties. Which parameter perturbation changes the climate

  6. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  7. LASA (Lidar Atmospheric Sounder and Altimeter) Earth Observing System. Volume 2D: Instrument Panel Report

    Science.gov (United States)

    1987-01-01

    The Earth Observing System (Eos) will provide an ideal forum in which the stronly synergistic characteristics of the lidar systems can be used in concert with the characteristics of a number of other sensors to better understand the Earth as a system. Progress in the development of more efficient and long-lasting laser systems will insure their availability in the Eos time frame. The necessary remote-sensing techniques are being developed to convert the Lidar Atmospheric Sounder and Altimeter (LASA) observations into the proper scientific parameters. Each of these activities reinforces the promise that LASA and GLRS will be a reality in the Eos era.

  8. Tethered lifting systems for measurements in the lower atmosphere

    Science.gov (United States)

    Jensen, Michael Lamar

    2000-10-01

    This work defines a Tethered Lifting System for measurements in the lower atmosphere, its design and development, and applications for its use. Using historical kite research and the unique capabilities of tethered lifting platforms as motivation, a complete system has been created offering the complementary benefits of parafoil kites and tethered balloons as lifting platforms. Support systems including tethers, winching systems and payload data collection and telemetry systems round out the Tethered Lifting System to provide a complete atmospheric measurement system. The kite platforms have been enhanced by the invention and development of a wind-powered Tether Rover for Atmospheric Research (WindTRAM), providing rapid profiling and precise positioning capabilities. Design of the WindTRAM and implementation of onboard feedback control are covered in detail, as they comprise the most novel contribution of this research. The breadth of possible applications for these technologies is touched upon by examination of some of the specific research applications undertaken by the researchers at the Cooperative Institute for Research in the Environmental Sciences during the last decade.

  9. Parameter estimation for chaotic systems using improved bird swarm algorithm

    Science.gov (United States)

    Xu, Chuangbiao; Yang, Renhuan

    2017-12-01

    Parameter estimation of chaotic systems is an important problem in nonlinear science and has aroused increasing interest of many research fields, which can be basically reduced to a multidimensional optimization problem. In this paper, an improved boundary bird swarm algorithm is used to estimate the parameters of chaotic systems. This algorithm can combine the good global convergence and robustness of the bird swarm algorithm and the exploitation capability of improved boundary learning strategy. Experiments are conducted on the Lorenz system and the coupling motor system. Numerical simulation results reveal the effectiveness and with desirable performance of IBBSA for parameter estimation of chaotic systems.

  10. The Third Tibetan Plateau Atmospheric Scientific Experiment for Understanding the Earth-Atmosphere Coupled System

    Science.gov (United States)

    Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L. P.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; Zhong, L. Z.; Ma, Y.; Tang, S. H.; Liu, Y.; Liu, H.; Li, Y. H.; Zhang, Q.; Hu, Z.; Sun, J. H.; Zhang, S.; Dong, L.; Zhang, H.; Zhao, Y.; Yan, X.; Xiao, A.; Wan, W.; Zhou, X.

    2016-12-01

    The Third Tibetan Plateau atmospheric scientific experiment (TIPEX-III) was initiated jointly by the China Meteorological Administration, the National Natural Scientific Foundation, and the Chinese Academy of Sciences. This paper presents the background, scientific objectives, and overall experimental design of TIPEX-III. It was designed to conduct an integrated observation of the earth-atmosphere coupled system over the Tibetan Plateau (TP) from land surface, planetary boundary layer (PBL), troposphere, and stratosphere for eight to ten years by coordinating ground- and air-based measurement facilities for understanding spatial heterogeneities of complex land-air interactions, cloud-precipitation physical processes, and interactions between troposphere and stratosphere. TIPEX-III originally began in 2014, and is ongoing. It established multiscale land-surface and PBL observation networks over the TP and a tropospheric meteorological radiosonde network over the western TP, and executed an integrated observation mission for cloud-precipitation physical features using ground-based radar systems and aircraft campaigns and an observation task for atmospheric ozone, aerosol, and water vapor. The archive, management, and share policy of the observation data are also introduced herein. Some TIPEX-III data have been preliminarily applied to analyze the features of surface sensible and latent heat fluxes, cloud-precipitation physical processes, and atmospheric water vapor and ozone over the TP, and to improve the local precipitation forecast. Furthermore, TIPEX-III intends to promote greater scientific and technological cooperation with international research communities and broader organizations. Scientists working internationally are invited to participate in the field campaigns and to use the TIPEX-III data for their own research.

  11. A specific and correlative study of natural atmospheric radioactivity, condensation nuclei and some electrical parameters in marine or urban sites

    International Nuclear Information System (INIS)

    Le Gac, Jacqueline.

    1980-02-01

    In order to determine the correlations between the following atmospheric parameters: radon and condensation nuclei concentrations, total conductivity and space charge, we analysed their behavior over a long period, in connection with meteorological data. We simulaneously studied the equilibrium state between 222 Rn and its short-lived daughters pointing out a radioactive desequilibrium as a function of the meteorological conditions. Simultaneously, we established average experimental curves of cumulated particle size distributions of natural radioactivity in the air, differentiating urban and marine influences. Finally, a comparison between the various parameters showed that the total conductivity greatly depends on condensation nuclei and radon concentrations in the air [fr

  12. Test evaluation of potential heat shield contamination of an Outer Planet Probe's atmospheric sampling system

    Science.gov (United States)

    Kessler, W. C.; Woeller, F. H.; Wilkins, M. E.

    1975-01-01

    An Outer Planets Probe which retains the charred heatshield during atmospheric descent must deploy a sampling tube through the heatshield to extract atmospheric samples for analysis. Once the sampling tube is deployed, the atmospheric samples ingested must be free of contaminant gases generated by the heatshield. Outgassing products such as methane and water vapor are present in planetary atmospheres and hence, ingestion of such species would result in gas analyzer measurement uncertainties. This paper evaluates the potential for, and design impact of, the extracted atmospheric samples being contaminated by heatshield outgassing products. Flight trajectory data for Jupiter, Saturn and Uranus entries are analyzed to define the conditions resulting in the greatest potential for outgassing products being ingested into the probe's sampling system. An experimental program is defined and described which simulates the key flow field features for a planetary flight in a ground-based test facility. The primary parameters varied in the test include: sampling tube length, injectant mass flow rate and angle of attack. Measured contaminant levels predict the critical sampling tube length for contamination avoidance. Thus, the study demonstrates the compatibility of a retained heatshield concept and high quality atmospheric trace species measurements.

  13. Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data

    Science.gov (United States)

    Gal-Chen, Tzvi; Xu, Mei; Eberhard, Wynn L.

    1992-11-01

    Techniques for extraction of boundary layer parameters from measurements of a short pulse (≈0.4 μs) CO2 Doppler lidar (λ = 10.6 μm) are described. The lidar is operated by the National Oceanic and Atmospheric Administration (NOAA) Wave Propagation Laboratory (WPL). The measurements are those collected during the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). The recorded radial velocity measurements have a range resolution of 150 m. With a pulse repetition rate of 20 Hz it is possible to perform scannings in two perpendicular vertical planes (x-z and y-z) in approximately 72 s. By continuously operating the lidar for about an hour, one can extract stable statistics of the radial velocities. Assuming that the turbulence is horizontally homogeneous, we have estimated the mean wind, its standard deviations, and the momentum fluxes. We have estimated the first, second, and, third moments of the vertical velocity from the vertically pointing beam. Spectral analysis of the radial velocities is also performed, from which (by examining the amplitude of the power spectrum at the inertial range) we have deduced the kinetic energy dissipation. Finally, using the statistical form of the Navier-Stokes equations, the surface heat flux is derived as the residual balance between the vertical gradient of the third moment of the vertical velocity and the kinetic energy dissipation. With the exception of the vertically pointing beam an individual radial velocity estimate is accurate only to ±0.7 m s-1. Combining many measurements would normally reduce the error, provided that it is unbiased and uncorrelated. The nature of some of the algorithms, however, is such that biased and correlated errors may be generated even though the "raw" measurements are not. We have developed data processing procedures that eliminate bias and minimize error correlation. Once bias and error correlations are accounted for, the large sample size is

  14. Incremental Closed-loop Identification of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2011-01-01

    , closed-loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can be extended......This paper deals with system identification for control of linear parameter varying systems. In practical applications, it is often important to be able to identify small plant changes in an incremental manner without shutting down the system and/or disconnecting the controller; unfortunately...... to accommodate linear parameter varying systems as well....

  15. Spatio-temporal modeling of nonlinear distributed parameter systems

    CERN Document Server

    Li, Han-Xiong

    2011-01-01

    The purpose of this volume is to provide a brief review of the previous work on model reduction and identifi cation of distributed parameter systems (DPS), and develop new spatio-temporal models and their relevant identifi cation approaches. In this book, a systematic overview and classifi cation on the modeling of DPS is presented fi rst, which includes model reduction, parameter estimation and system identifi cation. Next, a class of block-oriented nonlinear systems in traditional lumped parameter systems (LPS) is extended to DPS, which results in the spatio-temporal Wiener and Hammerstein s

  16. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  17. Initial multi-parameter detection of atmospheric metal layers by Beijing Na–K lidar

    International Nuclear Information System (INIS)

    Jiao, Jing; Yang, Guotao; Wang, Jihong; Cheng, Xuewu; Du, Lifang; Wang, Zelong; Gong, Wei

    2017-01-01

    Beijing Na–K lidar has been started running in 2010. This lidar has two laser beams: one dye laser emits a 589-nm laser beam for Na layer detection; the other dye laser emits a 770-nm laser beam for K layer detection. Under similar conditions, the echo signal of K layer is only about 2 orders of magnitude smaller than that of Na layer. This lidar has a sufficient Signal Noise Ratio (SNR). The structure and details of potassium layer can be effectively distinguished from a single original echo. Several examples of co-observation of density of Na and K layer showed some different results with previous studies. This lidar not only can supplement the lack of Na and K layer observation at this latitude region, but also provide evidence for the atmospheric sciences and space environment monitoring. - Highlights: • Full-band dual-beam lidar at 40°N. • Detecting sodium and potassium layer simultaneously. • Providing a supplement to the study of atmospheric metal layers and evidence for atmospheric sciences and space and atmospheric sciences and space environment monitoring.

  18. Accurate Ray-tracing of Realistic Neutron Star Atmospheres for Constraining Their Parameters

    Science.gov (United States)

    Vincent, Frederic H.; Bejger, Michał; Różańska, Agata; Straub, Odele; Paumard, Thibaut; Fortin, Morgane; Madej, Jerzy; Majczyna, Agnieszka; Gourgoulhon, Eric; Haensel, Paweł; Zdunik, Leszek; Beldycki, Bartosz

    2018-03-01

    Thermal-dominated X-ray spectra of neutron stars in quiescent, transient X-ray binaries and neutron stars that undergo thermonuclear bursts are sensitive to mass and radius. The mass–radius relation of neutron stars depends on the equation of state (EoS) that governs their interior. Constraining this relation accurately is therefore of fundamental importance to understand the nature of dense matter. In this context, we introduce a pipeline to calculate realistic model spectra of rotating neutron stars with hydrogen and helium atmospheres. An arbitrarily fast-rotating neutron star with a given EoS generates the spacetime in which the atmosphere emits radiation. We use the LORENE/NROTSTAR code to compute the spacetime numerically and the ATM24 code to solve the radiative transfer equations self-consistently. Emerging specific intensity spectra are then ray-traced through the neutron star’s spacetime from the atmosphere to a distant observer with the GYOTO code. Here, we present and test our fully relativistic numerical pipeline. To discuss and illustrate the importance of realistic atmosphere models, we compare our model spectra to simpler models like the commonly used isotropic color-corrected blackbody emission. We highlight the importance of considering realistic model-atmosphere spectra together with relativistic ray-tracing to obtain accurate predictions. We also insist upon the crucial impact of the star’s rotation on the observables. Finally, we close a controversy that has been ongoing in the literature in the recent years, regarding the validity of the ATM24 code.

  19. A new concept of safety parameter display system

    International Nuclear Information System (INIS)

    Martinez, A.S.; Oliveira, L.F.S. de; Schirru, R.; Thome Filho, Z.D.; Silva, R.A. da.

    1986-07-01

    A general description of Angra-1 Parameter Display System (SSPA), a real time and on-line computerized monitoring system for the parameters related to the power plant safety is presented. This system has the main purpose of diminish the load on the Angra-1 power plant operators at an emergency event by supplying them with the additional tools serving as the basis for a prompt identification of the accident. The SSPA is a kind of safety parameter display system whose concept was introduced after Three Mile Island accident in USA. The SSPA comprises two nuclear applications independently considered. They are included into the Parameters Monitoring Integrated System (SIMP) and the safety critical function system (SFCS). (Author) [pt

  20. An approach of parameter estimation for non-synchronous systems

    International Nuclear Information System (INIS)

    Xu Daolin; Lu Fangfang

    2005-01-01

    Synchronization-based parameter estimation is simple and effective but only available to synchronous systems. To come over this limitation, we propose a technique that the parameters of an unknown physical process (possibly a non-synchronous system) can be identified from a time series via a minimization procedure based on a synchronization control. The feasibility of this approach is illustrated in several chaotic systems

  1. A horizontal mobile measuring system for atmospheric quantities

    Directory of Open Access Journals (Sweden)

    J. Hübner

    2014-09-01

    Full Text Available A fully automatic horizontal mobile measuring system (HMMS for atmospheric quantities has been developed. The HMMS is based on the drive mechanism of a garden railway system and can be installed at any location and along any measuring track. In addition to meteorological quantities (temperature, humidity and short-/long-wave down/upwelling radiation, HMMS also measures trace gas concentrations (carbon dioxide and ozone. While sufficient spatial resolution is a problem even for measurements on distributed towers, this could be easily achieved with the HMMS, which has been specifically developed to obtain higher information density about horizontal gradients in a heterogeneous forest ecosystem. There, horizontal gradients of meteorological quantities and trace gases could be immense, particularly at the transition from a dense forest to an open clearing, with large impact on meteorological parameters and exchange processes. Consequently, HMMS was firstly applied during the EGER IOP3 project (ExchanGE processes in mountainous Regions – Intense Observation Period 3 in the Fichtelgebirge Mountains (SE Germany during summer 2011. At a constant 1 m above ground, the measuring track of the HMMS consisted of a straight line perpendicular to the forest edge, starting in the dense spruce forest and leading 75 m into an open clearing. Tags with bar codes, mounted every metre on the wooden substructure, allowed (a keeping the speed of the HMMS constant (approx. 0.5 m s−1 and (b operation of the HMMS in a continuous back and forth running mode. During EGER IOP3, HMMS was operational for almost 250 h. Results show that – due to considerably long response times (between 4 and 20 s of commercial temperature, humidity and the radiation sensors – true spatial variations of the meteorological quantities could not be adequately captured (mainly at the forest edge. Corresponding dynamical (spatial errors of the measurement values were corrected on the basis

  2. Accelerated maximum likelihood parameter estimation for stochastic biochemical systems

    Directory of Open Access Journals (Sweden)

    Daigle Bernie J

    2012-05-01

    Full Text Available Abstract Background A prerequisite for the mechanistic simulation of a biochemical system is detailed knowledge of its kinetic parameters. Despite recent experimental advances, the estimation of unknown parameter values from observed data is still a bottleneck for obtaining accurate simulation results. Many methods exist for parameter estimation in deterministic biochemical systems; methods for discrete stochastic systems are less well developed. Given the probabilistic nature of stochastic biochemical models, a natural approach is to choose parameter values that maximize the probability of the observed data with respect to the unknown parameters, a.k.a. the maximum likelihood parameter estimates (MLEs. MLE computation for all but the simplest models requires the simulation of many system trajectories that are consistent with experimental data. For models with unknown parameters, this presents a computational challenge, as the generation of consistent trajectories can be an extremely rare occurrence. Results We have developed Monte Carlo Expectation-Maximization with Modified Cross-Entropy Method (MCEM2: an accelerated method for calculating MLEs that combines advances in rare event simulation with a computationally efficient version of the Monte Carlo expectation-maximization (MCEM algorithm. Our method requires no prior knowledge regarding parameter values, and it automatically provides a multivariate parameter uncertainty estimate. We applied the method to five stochastic systems of increasing complexity, progressing from an analytically tractable pure-birth model to a computationally demanding model of yeast-polarization. Our results demonstrate that MCEM2 substantially accelerates MLE computation on all tested models when compared to a stand-alone version of MCEM. Additionally, we show how our method identifies parameter values for certain classes of models more accurately than two recently proposed computationally efficient methods

  3. HUMOS monitoring system of leaks into the containment atmosphere

    International Nuclear Information System (INIS)

    Matal, O.; Zaloudek, J.; Matal, O. Jr.; Klinga, J.; Brom, J.

    1997-01-01

    The detection and monitoring of coolant leaks into the containment atmosphere during reactor operation is a major safety measure. Using the HUMOS monitoring system, leaks can be detected in pressure tests of integrity and in any other mode of operation when the reactor ventilation system is operating and the primary circuit and its components are pressurized. Performance tests, the design, hardware and software of the HUMOS system are briefly described. A test was performed to demonstrate that a small amount of humidity released by leakage into the containment air can be detected. (M.D.)

  4. Multiobjective insensitive design of airplane control systems with uncertain parameters

    Science.gov (United States)

    Schy, A. A.; Giesy, D. P.

    1981-01-01

    A multiobjective computer-aided design algorithm has been developed which minimizes the sensitivity of the design objectives to uncertainties in system parameters. The more important uncertain parameters are described by a gaussian random vector with known covariance matrix, and a vector sensitivity objective function is defined as the probabilities that the design objectives will violate specified requirements constraints. Control system parameters are found which minimize the sensitivity vector in a Pareto-optimal sense, using constrained minimization algorithms. Example results are shown for lateral stability augmentation system (SAS) design for three Shuttle flight conditions.

  5. Atmosphere-ocean feedbacks in a coastal upwelling system

    Science.gov (United States)

    Alves, J. M. R.; Peliz, A.; Caldeira, R. M. A.; Miranda, P. M. A.

    2018-03-01

    The COAWST (Coupled Ocean-Atmosphere-Wave-Sediment Transport) modelling system is used in different configurations to simulate the Iberian upwelling during the 2012 summer, aiming to assess the atmosphere-ocean feedbacks in the upwelling dynamics. When model results are compared with satellite measurements and in-situ data, two-way coupling is found to have a moderate impact in data-model statistics. A significant reinforcement of atmosphere-ocean coupling coefficients is, however, observed in the two-way coupled run, and in the WRF and ROMS runs forced by previously simulated SST and wind fields, respectively. The increasing in the coupling coefficient is associated with slight, but potentially important changes in the low-level coastal jet in the atmospheric marine boundary layer. While these results do not imply the need for fully coupled simulations in many applications, they show that in seasonal numerical studies such simulations do not degrade the overall model performance, and contribute to produce better dynamical fields.

  6. Nonlinear dynamics of global atmospheric and Earth system processes

    Science.gov (United States)

    Saltzman, Barry

    1993-01-01

    During the past eight years, we have been engaged in a NASA-supported program of research aimed at establishing the connection between satellite signatures of the earth's environmental state and the nonlinear dynamics of the global weather and climate system. Thirty-five publications and four theses have resulted from this work, which included contributions in five main areas of study: (1) cloud and latent heat processes in finite-amplitude baroclinic waves; (2) application of satellite radiation data in global weather analysis; (3) studies of planetary waves and low-frequency weather variability; (4) GCM studies of the atmospheric response to variable boundary conditions measurable from satellites; and (5) dynamics of long-term earth system changes. Significant accomplishments from the three main lines of investigation pursued during the past year are presented and include the following: (1) planetary atmospheric waves and low frequency variability; (2) GCM studies of the atmospheric response to changed boundary conditions; and (3) dynamics of long-term changes in the global earth system.

  7. On the Interplay between Order Parameter Dynamics and System Parameter Dynamics in Human Perceptual-Cognitive-Behavioral Systems.

    Science.gov (United States)

    Frank, T D

    2015-04-01

    Previous research has demonstrated that perceiving, thinking, and acting are human activities that correspond to self-organized patterns. The emergence of such patterns can be completely described in terms of the dynamics of the pattern amplitudes, which are referred to as order parameters. The patterns emerge at bifurcations points when certain system parameters internal and external to a human agent exceed critical values. At issue is how one might study the order parameter dynamics for sequences of consecutive, emergent perceptual, cognitive, or behavioral activities. In particular, these activities may in turn impact the system parameters that have led to the emergence of the activities in the first place. This interplay between order parameter dynamics and system parameter dynamics is discussed in general and formulated in mathematical terms. Previous work that has made use of this two-tiered framework of order parameter and system parameter dynamics are briefly addressed. As an application, a model for perception under functional fixedness is presented. Finally, it is argued that the phenomena that emerge in this framework and can be observed when human agents perceive, think, and act are just as likely to occur in pattern formation systems of the inanimate world. Consequently, these phenomena do not necessarily have a neurophysiological basis but should instead be understood from the perspective of the theory of self-organization.

  8. Improving Wind Predictions in the Marine Atmospheric Boundary Layer through Parameter Estimation in a Single-Column Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jared A.; Hacker, Joshua P.; Delle Monache, Luca; Kosović, Branko; Clifton, Andrew; Vandenberghe, Francois; Rodrigo, Javier Sanz

    2016-12-14

    A current barrier to greater deployment of offshore wind turbines is the poor quality of numerical weather prediction model wind and turbulence forecasts over open ocean. The bulk of development for atmospheric boundary layer (ABL) parameterization schemes has focused on land, partly due to a scarcity of observations over ocean. The 100-m FINO1 tower in the North Sea is one of the few sources worldwide of atmospheric profile observations from the sea surface to turbine hub height. These observations are crucial to developing a better understanding and modeling of physical processes in the marine ABL. In this study, we use the WRF single column model (SCM), coupled with an ensemble Kalman filter from the Data Assimilation Research Testbed (DART), to create 100-member ensembles at the FINO1 location. The goal of this study is to determine the extent to which model parameter estimation can improve offshore wind forecasts.

  9. Reducing system of parameters and the Cohen–Macaulay property

    Indian Academy of Sciences (India)

    dimR M −r the localizationMP ofM atP is anr-dimensional Cohen–Macaulay module over RP . Furthermore ... (iii) There exists a system of parameters of M which is a regular sequence on M. (2) Assume that M is a .... (iii) There is a y ∈ m such that (y) is part of a reducing system of parameters of M and. yM = xM. (iv) There is ...

  10. Modeling of Atmospheric Turbulence as Disturbances for Control Design and Evaluation of High Speed Propulsion Systems

    Science.gov (United States)

    Kopasakis, George

    2010-01-01

    Atmospheric turbulence models are necessary for the design of both inlet/engine and flight controls, as well as for studying integrated couplings between the propulsion and the vehicle structural dynamics for supersonic vehicles. Models based on the Kolmogorov spectrum have been previously utilized to model atmospheric turbulence. In this paper, a more accurate model is developed in its representative fractional order form, typical of atmospheric disturbances. This is accomplished by first scaling the Kolmogorov spectral to convert them into finite energy von Karman forms. Then a generalized formulation is developed in frequency domain for these scale models that approximates the fractional order with the products of first order transfer functions. Given the parameters describing the conditions of atmospheric disturbances and utilizing the derived formulations, the objective is to directly compute the transfer functions that describe these disturbances for acoustic velocity, temperature, pressure and density. Utilizing these computed transfer functions and choosing the disturbance frequencies of interest, time domain simulations of these representative atmospheric turbulences can be developed. These disturbance representations are then used to first develop considerations for disturbance rejection specifications for the design of the propulsion control system, and then to evaluate the closed-loop performance.

  11. Artificial intelligence enhancements to safety parameter display systems

    International Nuclear Information System (INIS)

    Hajek, B.K.; Hashemi, S.; Sharma, D.; Chandrasekaran, B.; Miller, D.W.

    1986-01-01

    Two prototype knowledge based systems have been developed at The Ohio State University to be the basis of an operator aid that can be attached to an existing nuclear power plant Safety Parameter Display System. The first system uses improved sensor validation techniques to provide input to a fault diagnosis process. The second system would use the diagnostic system output to synthesize corrective procedures to aid the control room licensed operator in plant recovery

  12. The evaluation of set of criticality parameters using scale system

    International Nuclear Information System (INIS)

    Abe, Alfredo; Sanchez, Andrea; Yamaguchi, Mistuo

    2009-01-01

    In evaluating the criticality safety of the nuclear fuel facility, it is important to apply a consistent methodology, which consider every aspects concerning various types of criticality parameters. Usually, the critical parameters are compiled and arranged into handbooks, and these handbooks are based on experience with nuclear facilities, experimental data from criticality safety research facilities, and theoretical studies performed using numerical simulations. Most of criticality safety evaluation can be addressed using the criticality parameters data directly from handbook, but some critical parameters for a specific chemical mixtures and/or enrichment are not be available. Consequently, not available parameters has to be evaluated. This work present the methodology to evaluate a set of critical parameters using SCALE system for various types of mixtures present at nuclear fuel cycle facilities for two different level of enrichment, the results are verified in the independent calculation using MCNP Monte Carlo Code. (author)

  13. A simple algorithm to estimate the effective regional atmospheric parameters for thermal-inertia mapping

    Science.gov (United States)

    Watson, K.; Hummer-Miller, S.

    1981-01-01

    A method based solely on remote sensing data has been developed to estimate those meteorological effects which are required for thermal-inertia mapping. It assumes that the atmospheric fluxes are spatially invariant and that the solar, sky, and sensible heat fluxes can be approximated by a simple mathematical form. Coefficients are determined from least-squares method by fitting observational data to our thermal model. A comparison between field measurements and the model-derived flux shows the type of agreement which can be achieved. An analysis of the limitations of the method is also provided. ?? 1981.

  14. Numerical optimization methods for controlled systems with parameters

    Science.gov (United States)

    Tyatyushkin, A. I.

    2017-10-01

    First- and second-order numerical methods for optimizing controlled dynamical systems with parameters are discussed. In unconstrained-parameter problems, the control parameters are optimized by applying the conjugate gradient method. A more accurate numerical solution in these problems is produced by Newton's method based on a second-order functional increment formula. Next, a general optimal control problem with state constraints and parameters involved on the righthand sides of the controlled system and in the initial conditions is considered. This complicated problem is reduced to a mathematical programming one, followed by the search for optimal parameter values and control functions by applying a multimethod algorithm. The performance of the proposed technique is demonstrated by solving application problems.

  15. A distributed approach for parameters estimation in System Biology models

    International Nuclear Information System (INIS)

    Mosca, E.; Merelli, I.; Alfieri, R.; Milanesi, L.

    2009-01-01

    Due to the lack of experimental measurements, biological variability and experimental errors, the value of many parameters of the systems biology mathematical models is yet unknown or uncertain. A possible computational solution is the parameter estimation, that is the identification of the parameter values that determine the best model fitting respect to experimental data. We have developed an environment to distribute each run of the parameter estimation algorithm on a different computational resource. The key feature of the implementation is a relational database that allows the user to swap the candidate solutions among the working nodes during the computations. The comparison of the distributed implementation with the parallel one showed that the presented approach enables a faster and better parameter estimation of systems biology models.

  16. Research of a portable atmospheric laser communication system

    Science.gov (United States)

    Zeng, Wen-feng; Li, Dong; Li, Shen-peng; Tan, Wei; Yi, Zhigang

    2013-08-01

    A kind of portable atmosphere laser communication system based on fiber technology is designed by using Ethernet transceiver terminal and video-audio transceiver terminal with diode laser module and PIN diode, while a flexible connection is built between the terminal and the optical antenna connected by laser fiber. The application of EDFA technology, which realizes the amplification of the power of the 1550nm laser diode module, brings forth a more stable structure and easier deployment and testing in wild environment, and the communication distance can reach 2 kilometers with a transmission bandwidth of 100 MBit/s. Prototype experiments prove the good communication performance of this system.

  17. An internet-based telemonitoring system of multiphysiological parameters.

    Science.gov (United States)

    Shuicai, Wu; Haomin, Li; Fangfang, Du; Yanping, Bai; Song, Zhang

    2007-08-01

    The purpose of this research was to design and realize a real-time tele-monitoring system with multiphysiological parameters using the Internet. Both the Client/Server (C/S) mode and Peer-to-Peer (P2P) mode were used in the system's network communication. The C/S mode is used to upload, retrieve, and download physiological data. The P2P mode provides realtime tele-monitoring and video chatting between doctors and patients. Experiment results show that P2P technology could efficiently improve the transmission speed of the physiological parameters. This study demonstrates an effective method of remote monitoring of physiological parameters in real time.

  18. A Case for Including Atmospheric Thermodynamic Variables in Wind Turbine Fatigue Loading Parameter Identification

    International Nuclear Information System (INIS)

    Kelley, Neil D.

    1999-01-01

    This paper makes the case for establishing efficient predictor variables for atmospheric thermodynamics that can be used to statistically correlate the fatigue accumulation seen on wind turbines. Recently, two approaches to this issue have been reported. One uses multiple linear-regression analysis to establish the relative causality between a number of predictors related to the turbulent inflow and turbine loads. The other approach, using many of the same predictors, applies the technique of principal component analysis. An examination of the ensemble of predictor variables revealed that they were all kinematic in nature; i.e., they were only related to the description of the velocity field. Boundary-layer turbulence dynamics depends upon a description of the thermal field and its interaction with the velocity distribution. We used a series of measurements taken within a multi-row wind farm to demonstrate the need to include atmospheric thermodynamic variables as well as velocity-related ones in the search for efficient turbulence loading predictors in various turbine-operating environments. Our results show that a combination of vertical stability and hub-height mean shearing stress variables meet this need over a period of 10 minutes

  19. Atmospheric Dispersion Unknown Source Parameters Determination Using AERMOD and Bayesian Inference Along Markov Chain Monte Carlo

    International Nuclear Information System (INIS)

    Haghighattalab, A.; Zolfaghari, A. R.; Minouchehr, A. H.; Kiya, H. A.

    2012-01-01

    Occurrence of hazardous accident in nuclear power plants and industrial units usually lead to release of radioactive materials and pollutants in environment. These materials and pollutants can be transported to a far downstream by the wind flow. In this paper, we implemented an atmospheric dispersion code to solve the inverse problem. Having received and detected the pollutants in one region, we may estimate the rate and location of the unknown source. For the modeling, one needs a model with ability of atmospheric dispersion calculation. Furthermore, it is required to implement a mathematical approach to infer the source location and the related rates. In this paper the AERMOD software and Bayesian inference along the Markov Chain Monte Carlo have been applied. Implementing, Bayesian approach and Markov Chain Monte Carlo for the aforementioned subject is not a new approach, but the AERMOD model coupled with the said methods is a new and well known regulatory software, and enhances the reliability of outcomes. To evaluate the method, an example is considered by defining pollutants concentration in a specific region and then obtaining the source location and intensity by a direct calculation. The result of the calculation estimates the average source location at a distance of 7km with an accuracy of 5m which is good enough to support the ability of the proposed algorithm.

  20. Impacts of meteorological parameters and emissions on decadal, interannual, and seasonal variations of atmospheric black carbon in the Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Yu-Hao Mao

    2016-09-01

    Full Text Available We quantified the impacts of variations in meteorological parameters and emissions on decadal, interannual, and seasonal variations of atmospheric black carbon (BC in the Tibetan Plateau for 1980–2010 using a global 3-dimensional chemical transport model driven by the Modern Era Retrospective-analysis for Research and Applications (MERRA meteorological fields. From 1980 to 2010, simulated surface BC concentrations and all-sky direct radiative forcing at the top of the atmosphere due to atmospheric BC increased by 0.15 μg m−3 (63% and by 0.23 W m−2 (62%, respectively, averaged over the Tibetan Plateau (75–105°E, 25–40°N. Simulated annual mean surface BC concentrations were in the range of 0.24–0.40 μg m−3 averaged over the plateau for 1980–2010, with the decadal trends of 0.13 μg m−3 per decade in the 1980s and 0.08 in the 2000s. The interannual variations were −5.4% to 7.0% for deviation from the mean, 0.0062 μg m−3 for mean absolute deviation, and 2.5% for absolute percent departure from the mean. Model sensitivity simulations indicated that the decadal trends of surface BC concentrations were mainly driven by changes in emissions, while the interannual variations were dependent on variations of both meteorological parameters and emissions. Meteorological parameters played a crucial role in driving the interannual variations of BC especially in the monsoon season.

  1. Theoretical and experimental studies of polarization fluctuations over atmospheric turbulent channels for wireless optical communication systems.

    Science.gov (United States)

    Zhang, Jiankun; Ding, Shengli; Zhai, Huili; Dang, Anhong

    2014-12-29

    In wireless optical communications (WOC), polarization multiplexing systems and coherent polarization systems have excellent performance and wide applications, while its state of polarization affected by atmospheric turbulence is not clearly understood. This paper focuses on the polarization fluctuations caused by atmospheric turbulence in a WOC link. Firstly, the relationship between the polarization fluctuations and the index of refraction structure parameter is introduced and the distribution of received polarization angle is obtained through theoretical derivations. Then, turbulent conditions are adjusted and measured elaborately in a wide range of scintillation indexes (SI). As a result, the root-mean-square (RMS) variation and probability distribution function (PDF) of polarization angle conforms closely to that of theoretical model.

  2. Modeling and Parameter Estimation of a Small Wind Generation System

    Directory of Open Access Journals (Sweden)

    Carlos A. Ramírez Gómez

    2013-11-01

    Full Text Available The modeling and parameter estimation of a small wind generation system is presented in this paper. The system consists of a wind turbine, a permanent magnet synchronous generator, a three phase rectifier, and a direct current load. In order to estimate the parameters wind speed data are registered in a weather station located in the Fraternidad Campus at ITM. Wind speed data were applied to a reference model programed with PSIM software. From that simulation, variables were registered to estimate the parameters. The wind generation system model together with the estimated parameters is an excellent representation of the detailed model, but the estimated model offers a higher flexibility than the programed model in PSIM software.

  3. Studies of vorticity imbalance and stability, moisture budget, atmospheric energetics, and gradients of meteorological parameters during AVE 3

    Science.gov (United States)

    Scoggins, J. R. (Editor)

    1978-01-01

    Four diagnostic studies of AVE 3. are presented. AVE 3 represents a high wind speed wintertime situation, while most AVE's analyzed previously represented springtime conditions with rather low wind speeds. The general areas of analysis include the examination of budgets of vorticity, moisture, kinetic energy, and potential energy and a synoptic and statistical study of the horizontal gradients of meteorological parameters. Conclusions are integrated with and compared to those obtained in previously analyzed experiments (mostly springtime weather situations) so as to establish a more definitive understanding of the structure and dynamics of the atmosphere under a wide range of synoptic conditions.

  4. Community Design Parameters and the Performance of Residential Cogeneration Systems

    Directory of Open Access Journals (Sweden)

    Hazem Rashed-Ali

    2012-11-01

    Full Text Available The integration of cogeneration systems in residential and mixed-use communities has the potential of reducing their energy demand and harmful emissions and can thus play asignificant role in increasing their environmental sustainability. This study investigated the impact of selected planning and architectural design parameters on the environmental and economic performances of centralized cogeneration systems integrated into residential communities in U.S.cold climates. Parameters investigated include: 1 density, 2 use mix, 3 street configuration, 4 housing typology, 5 envelope and building systems’ efficiencies, and 6 passive solar energyutilization. The study integrated several simulation tools into a procedure to assess the impact of each design parameter on the cogeneration system performance. This assessment procedure included: developing a base-line model representing typical design characteristics of U.S. residential communities; assessing the cogeneration system’s performance within this model using three performance indicators: percentage of reduction in primary energy use, percentage of reduction in CO2 emissions; and internal rate of return; assessing the impact of each parameter on the system performance through developing 46 design variations of the base-line model representing potential changes in each parameter and calculating the three indicators for each variation; and finally, using a multi-attribute decision analysis methodology to evaluate the relative impact of each parameter on the cogeneration system performance. The study results show that planning parameters had a higher impact on the cogeneration system performance than architectural ones. Also, a significant correlation was found between design characteristics identified as favorable for the cogeneration system performance and those of sustainable residential communities. These include high densities, high use mix, interconnected street networks, and mixing of

  5. Dome diagnostics system of optical parameters and characteristics of LEDs

    Science.gov (United States)

    Peretyagin, Vladimir S.; Pavlenko, Nikita A.

    2017-09-01

    Scientific and technological progress of recent years in the production of the light emitting diodes (LEDs) has led to the expansion of areas of their application from the simplest systems to high precision lighting devices used in various fields of human activity. However, development and production (especially mass production) of LED lighting devices are impossible without a thorough analysis of its parameters and characteristics. There are many ways and devices for analysis the spatial, energy and colorimetric parameters of LEDs. The most methods are intended for definition only one parameter (for example, luminous flux) or one characteristic (for example, the angular distribution of energy or the spectral characteristics). Besides, devices used these methods are intended for measuring parameters in only one point or plane. This problem can be solved by using a dome diagnostics system of optical parameters and characteristics of LEDs, developed by specialists of the department OEDS chair of ITMO University in Russia. The paper presents the theoretical aspects of the analysis of LED's spatial (angular), energy and color parameters by using mentioned of diagnostics system. The article also presents the results of spatial), energy and color parameters measurements of some LEDs brands.

  6. Influence of processing parameters on atmospheric pressure plasma etching of polyamide 6 films

    Science.gov (United States)

    Gao, Zhiqiang; Peng, Shujing; Sun, Jie; Yao, Lan; Qiu, Yiping

    2009-06-01

    This study is designed to systematically investigate how various factors, such as treatment duration, output power, oxygen gas flux, jet to substrate distance, and moisture regain, influence atmospheric pressure plasma etching rate of polyamide 6 (PA 6) films. The etching rate increased as the output power, oxygen gas flux, and moisture regain increased. As the treatment time increased, the etching rate increased first and then decreased. When the substrate was too close or too far from the nozzle, the etching rate was almost not measurable. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) show an increased surface roughness after the plasma treatment. X-ray photoelectron spectroscopy (XPS) shows a decreased carbon content and an increased oxygen content after the plasma treatment. T-peel strength shows an improved bonding strength between the PA 6 films and an adhesive tape after the plasma treatment.

  7. Unit thermal performance of atmospheric spray cooling systems

    International Nuclear Information System (INIS)

    Porter, R.W.; Jain, M.; Chaturvedi, S.K.

    1980-01-01

    Thermal performance of an open atmospheric spray pond or canal depends on the direct-contact evaporative cooling of an individual spray unit (spray nozzle or module) and the interference caused by local heating and humidification. Droplet parameters may be combined into a dimensionless group, number of transfer units (NTU) or equivalent, whereas large-scale air-vapor dynamics determine interference through the local wet-bulb temperature. Quantity NTU were implied from field experiments for a floating module used in steam-condenser spray canals. Previous data were available for a fixed-pipe nozzle assembly used in spray ponds. Quantity NTU were also predicted using the Ranz-Marshall correlations with the Sauter-mean diameter used as the characteristic length. Good agreement with experiments was shown for diameters of 1--1.1 cm (module) and 1.9 mm

  8. Observations of the atmospheric surface layer parameters during the total solar eclipse of March 29th, in Greece

    Energy Technology Data Exchange (ETDEWEB)

    Founda, Dimitra; Lykoudis, Spyridon; Psiloglou, Basil E.; Petrakis, Michael; Zerefos, Christos [Inst. for Environmental Research and Sustainable Development, National Observatory of Athens (Greece)

    2009-10-15

    This study examines the effect of the total solar eclipse of March 29{sup th} 2006, on some parameters of the atmospheric surface layer. The eclipse effects on the mean, but also turbulent parameters of the wind were studied at Kastelorizo, a small island of southeastern Greece situated within the totality path of the eclipse. Although the eclipse effect on the mean flow was partly masked by the synoptic situation, the analysis of the intensive (high frequency) wind measurements showed a decrease of the turbulent processes with reduced values of the turbulent kinetic energy and shear stress for a short period around the maximum phase of the eclipse. The buoyancy flux decreased by one order of magnitude during the phenomenon. The power spectra of the three wind components were found to be lower by almost one order of magnitude near the total phase when compared to spectra after the end of the eclipse. (orig.)

  9. Conidia of Alternaria in the atmosphere of the city of Cordoba, Spain in relation to meteorological parameters

    Science.gov (United States)

    Angulo-Romero, J.; Mediavilla-Molina, Ana; Domínguez-Vilches, Eugenio

    In this study, we have analyzed the presence of conidia belonging to different species of the genus Alternaria in the atmosphere of the city of Cordoba, using a Hirst sampler. The results show that spores of this genus are present all year, with a clear seasonal pattern which shows two peaks, one in spring and the other in fall. A total of 26,822 conidia/m3 have been sampled, which implies a daily mean of 74.3 conidia/m3. Statistical analyses comparing the data with meteorological parameters show a positive correlation with maximum, minimum and mean temperatures, and a negative correlation with rain. Nevertheless, meteorological parameters seem to affect the number of conidia differently according to the season of the year. Regression analyses carried out in order to obtain a predictive pattern show that the best fit is between the 7-day running mean of the number of conidia and a week's accumulated mean temperature.

  10. Safety parameter display system (SPDS) for Russian-designed NPPs

    International Nuclear Information System (INIS)

    Anikanov, S.S.; Catullo, W.J.; Pelusi, J.L.

    1997-01-01

    As part of the programs aimed at improving the safety of Russian-designed reactors, the US DoE has sponsored a project of providing a safety parameter display system (SPDS) for nuclear power plants with such reactors. The present paper is focused mostly on the system architecture design features of SPDS systems for WWER-1000 and RBMK-1000 reactors. The function and the operating modes of the SPDS are outlined, and a description of the display system is given. The system architecture and system design of both an integrated and a stand-alone IandC system is explained. (A.K.)

  11. Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Dong Xiaoyu; Yuan Yulian; Tang Qian; Dou Shaohua; Di Lanbo; Zhang Xiuling

    2014-01-01

    In this study, Saccharomyces cerevisiae (S. cerevisiae) was exposed to dielectric barrier discharge plasma (DBD) to improve its ethanol production capacity during fermentation. Response surface methodology (RSM) was used to optimize the discharge-associated parameters of DBD for the purpose of maximizing the ethanol yield achieved by DBD-treated S. cerevisiae. According to single factor experiments, a mathematical model was established using Box-Behnken central composite experiment design, with plasma exposure time, power supply voltage, and exposed-sample volume as impact factors and ethanol yield as the response. This was followed by response surface analysis. Optimal experimental parameters for plasma discharge-induced enhancement in ethanol yield were plasma exposure time of 1 min, power voltage of 26 V, and an exposed sample volume of 9 mL. Under these conditions, the resulting yield of ethanol was 0.48 g/g, representing an increase of 33% over control. (plasma technology)

  12. Estimating model parameters in nonautonomous chaotic systems using synchronization

    International Nuclear Information System (INIS)

    Yang, Xiaoli; Xu, Wei; Sun, Zhongkui

    2007-01-01

    In this Letter, a technique is addressed for estimating unknown model parameters of multivariate, in particular, nonautonomous chaotic systems from time series of state variables. This technique uses an adaptive strategy for tracking unknown parameters in addition to a linear feedback coupling for synchronizing systems, and then some general conditions, by means of the periodic version of the LaSalle invariance principle for differential equations, are analytically derived to ensure precise evaluation of unknown parameters and identical synchronization between the concerned experimental system and its corresponding receiver one. Exemplifies are presented by employing a parametrically excited 4D new oscillator and an additionally excited Ueda oscillator. The results of computer simulations reveal that the technique not only can quickly track the desired parameter values but also can rapidly respond to changes in operating parameters. In addition, the technique can be favorably robust against the effect of noise when the experimental system is corrupted by bounded disturbance and the normalized absolute error of parameter estimation grows almost linearly with the cutoff value of noise strength in simulation

  13. A comprehensive comparison between APOGEE and LAMOST: Radial velocities and atmosphere stellar parameters

    Science.gov (United States)

    Anguiano, Borja; APOGEE team

    2018-01-01

    The Apache Point Observatory Galaxy Evolution Experiment (APOGEE) is a high-resolution (R ˜ 22,500), high-signal-to-noise ratio spectroscopy survey. The latest data release, APOGEE DR14, comprises spectra for 263,444 stars, together with main stellar parameters and individual abundances up to 20 species. The Large sky Area Multi-Object Spectroscopic Telescope (LAMOST) is a low- resolution (R ˜ 1800) optical spectroscopy survey. LAMOST DR3 totally published 3,177,995 stars in this catalog. APOGEE-N and LAMOST are both Northern hemisphere spectroscopy stellar surveys. Using a comparison of positions on the celestial sphere, we find a total of 42,420 stars in common between APOGEE DR14 and LAMOST DR3. The histogram of discrepancies between APOGEE and LAMOST radial velocities (RVs) shows a clear offset of 4.5 ± 5.8 km/s. We find no clear systematic trends between the RVs discrepancies and the stellar parameters, there is a weak trend where the amplitude is just 1 km/s appears as a function of . For the stellar parameters, we observe a small offset in the surface temperature of about 13 K, with a scatter of 155 K. We also observe a small offset in [Fe/H] of about 0.06 dex together with a scatter of 0.13 dex. We notice that the largest offset between both surveys occurs in the surface gravities, where a deviation of 0.14 dex is observed with a substantial scatter of 0.25 dex. The Kiel diagram from APOGEE DR14 and LAMOST DR3 stellar parameters, color-coded by [Fe/H] and overplotted with 5 Gyr isochrones at three different metallicities shows a generally good agreement between the theoretical stellar tracks and the data-sets from both surveys.

  14. Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    Science.gov (United States)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Brunner, J.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Lünemann, J.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.; IceCube Collaboration

    2015-04-01

    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser IceCube instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 and 100 GeV, where a strong disappearance signal is expected. The IceCube detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Δ m322=2.72-0.20+0.19×10-3 eV2 and sin2θ23=0.53-0.12+0.09 (normal mass ordering assumed). The results are compatible, and comparable in precision, to those of dedicated oscillation experiments.

  15. [A new parameter measurement system for electrosurgery output].

    Science.gov (United States)

    Zhou, Yu; Li, Dianli; Xu, Wendong; Song, Chengli

    2014-04-01

    Accurate measurements of voltage and current from electrosurgery are the basis of development of electrosurgery with feedback function. We, therefore, developed a parameter measurement system based on PC, with high voltage and current from electrosurgery being sensed with transformers, amplified, filtered, transformed into single-ended signals, and then into RMS signals. The root mean square (RMS) signals were transformed into digital signals through DAQ card and the data was processed in PC with Labview. The process included sampling, displaying and storage. The experiment results indicated that the measurement system could measure the output parameters from electrosurgery steadily and correctly so that the development of the system has been successful. It can be the basis of development of embedded parameters measurement system and can provide accurate feedback information for intellectual electrosurgery.

  16. Antisynchronization of a novel hyperchaotic system with parameter ...

    Indian Academy of Sciences (India)

    Basic dynamical properties of the hyperchaotic system are investigated. Moreover, antisynchronization of the new hyperchaotic system with parameter mismatch and external disturbances is also studied in this paper by using adaptive control. Numerical simulation results further demonstrate that the proposed methods are ...

  17. Experimental (vapour + liquid) equilibrium data of (methanol + water), (water + glycerol) and (methanol + glycerol) systems at atmospheric and sub-atmospheric pressures

    International Nuclear Information System (INIS)

    Soujanya, J.; Satyavathi, B.; Vittal Prasad, T.E.

    2010-01-01

    Experimental (vapour + liquid) equilibrium results for the binary systems, (methanol + water) at the local atmospheric pressure of 95.3 kPa and at sub-atmospheric pressures of (15.19, 29.38, 42.66, 56.03, and 67.38) kPa, (water + glycerol) system at pressures (14.19, 29.38, 41.54, 54.72, 63.84, and 95.3) kPa and the (methanol + glycerol) system at pressures (32.02 and 45.3) kPa were obtained over the entire composition range using a Sweitoslwasky-type ebulliometer. The relationship of the liquid composition (x 1 ) as a function of temperature (T) was found to be well represented by the Wilson model. Computed vapour phase mole fractions, activity coefficients and the measured values along with optimum Wilson parameters are presented.

  18. Oceanic contributions from tropical upwelling systems to atmospheric halogens

    Science.gov (United States)

    Ziska, Franziska; Hepach, Helmke; Stemmler, Irene; Quack, Birgit; Atlas, Elliot; Fuhlbrügge, Steffen; Bracher, Astrid; Tegtmeier, Susann; Krüger, Kirstin

    2014-05-01

    Short lived halogenated substances (halocarbons) from the oceans contribute to atmospheric halogens, where they are involved in ozone depletion and aerosol formation. Oceanic regions that are characterized by high biological activity are often associated with increased halocarbon abundance of e.g. bromoform (CHBr3) and dibromomethane (CH2Br2), representing the main contributors to atmospheric organic bromine. Apart from biological production, photochemical pathways play an important role in the formation of methyl iodide (CH3I), the most abundant organoiodine in the marine atmosphere. Recently, the contribution of biogenic diiodomethane (CH2I2) and chloroiodomethane (CH2ClI) to atmospheric organic iodine has been estimated to be similarly significant as CH3I. In the tropics, rapid uplift of surface air can transport these short-lived compounds into the upper troposphere and into the stratosphere. Oceanic upwelling systems off Mauritania, Peru and in the equatorial Atlantic might therefore potentially contribute large amounts of halocarbons to the stratosphere. Concentrations and emissions of iodo- and bromocarbons from several SOPRAN campaigns in different tropical upwelling systems, the Mauritanian and the equatorial upwelling in the Atlantic, as well as the Peruvian upwelling in the Pacific, will be presented. Processes contributing to halocarbon occurrence in the water column, as well as biological and physical factors influencing their emission into the atmosphere are investigated (Fuhlbrügge, et al. 2013; Hepach et al., 2013). We will present the relative contribution of the upwelling systems to global air-sea fluxes from different modelling studies. The data based bottom-up emissions from Ziska et al. (2013) will be compared to model simulated halocarbons. The model is a global three-dimensional ocean general circulation model with an ecosystem model and halocarbon module embedded (MPIOM/HAMOCC). It resolves CH3I and CHBr3 production, degradation, and

  19. Simulation of atmospheric turbulence for optical systems with extended sources.

    Science.gov (United States)

    Safari, Majid; Hranilovic, Steve

    2012-11-01

    In this paper, the method of random wave vectors for simulation of atmospheric turbulence is extended to 2D×2D space to provide spatial degrees of freedom at both input and output planes. The modified technique can thus simultaneously simulate the turbulence-induced log-amplitude and phase distortions for optical systems with extended sources either implemented as a single large aperture or multiple apertures. The reliability of our simulation technique is validated in different conditions and its application is briefly investigated in a multibeam free-space optical communication scenario.

  20. A lidar system for measuring atmospheric pressure and temperature profiles

    Science.gov (United States)

    Schwemmer, Geary K.; Dombrowski, Mark; Korb, C. Laurence; Milrod, Jeffry; Walden, Harvey

    1987-01-01

    The design and operation of a differential absorption lidar system capable of remotely measuring the vertical structure of tropospheric pressure and temperature are described. The measurements are based on the absorption by atmospheric oxygen of the spectrally narrowband output of two pulsed alexandrite lasers. Detailed laser output spectral characteristics, which are critical to successful lidar measurements, are presented. Spectral linewidths of 0.026 and 0.018 per cm for the lasers were measured with over 99.99 percent of the energy contained in three longitudinal modes.

  1. Effects of vacuum and modified atmosphere on textural parameters and structural proteins of cultured meagre (Argyrosomus regius) fillets.

    Science.gov (United States)

    Sáez, María I; Martínez, Tomás F; Cárdenas, Salvador; Suárez, María D

    2015-09-01

    The influence of two preservation strategies (vacuum package and modified atmosphere package) on the post-mortem changes of textural parameters, pH, water holding capacity, sarcoplasmic and myofibrillar proteins, and collagen content of meagre (Argyrosomus regius) fillets was studied. Fillets were stored in a cold room in aerobic (control, C), vacuum (V) and modified atmosphere (MA) package. Samples were withdrawn at six sampling points throughout 15-day storage, and post-mortem changes were assessed. The textural parameters were significantly enhanced in V and MA compared to C. Both V and MA treatments reduced the intensity of a group of myofibrillar protein fractions (140-195 kDa) and increased insoluble collagen compared to C. Consequently, the post-mortem flesh softening in C was attributed to increased proteolysis in both intracellular and extracellular structural proteins. The preservation of the textural and biochemical characteristics of meagre fillets subjected to V and MA treatments makes these two treatments highly recommendable for the commercialization of meagre fillets. © The Author(s) 2014.

  2. Development of regional meteorological and atmospheric diffusion simulation system

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Iwashige, Kengo; Kasano, Toshio

    2002-01-01

    Regional atmospheric diffusion online network (RADON) with atmospheric diffusion analysis code (ADAC) : a simulation program of diffusion of radioactive materials, volcanic ash, pollen, NOx and SOx was developed. This system can be executed in personal computer (PC) and note PC on Windows. Emission data consists of online, offline and default data. It uses the meteorology data sources such as meteorological forecasting mesh data, automated meteorological data acquisition system (AMeDAS) data, meteorological observation data in site and municipality observation data. The meteorological forecasting mesh data shows forecasting value of temperature, wind speed, wind direction and humidity in about two days. The nuclear environmental monitoring center retains the online data (meteorological data, emission source data, monitoring station data) in its PC server and can run forecasting or repeating calculation using these data and store and print out the calculation results. About 30 emission materials can be calculated simultaneously. This system can simulate a series of weather from the past and real time to the future. (S.Y.)

  3. Interferometric vs Spectral IASI Radiances: Effective Data-Reduction Approaches for the Satellite Sounding of Atmospheric Thermodynamical Parameters

    Directory of Open Access Journals (Sweden)

    Giuseppe Grieco

    2010-09-01

    Full Text Available Abstract: Two data-reduction approaches for the Infrared Atmospheric Sounder Interferometer satellite instrument are discussed and compared. The approaches are intended for the purpose of devising and implementing fast near real time retrievals of atmospheric thermodynamical parameters. One approach is based on the usual selection of sparse channels or portions of the spectrum. This approach may preserve the spectral resolution, but at the expense of the spectral coverage. The second approach considers a suitable truncation of the interferogram (the Fourier transform of the spectrum at points below the nominal maximum optical path difference. This second approach is consistent with the Shannon-Whittaker sampling theorem, preserves the full spectral coverage, but at the expense of the spectral resolution. While the first data-reduction acts within the spectraldomain, the second can be performed within the interferogram domain and without any specific need to go back to the spectral domain for the purpose of retrieval. To assess the impact of these two different data-reduction strategies on retrieval of atmospheric parameters, we have used a statistical retrieval algorithm for skin temperature, temperature, water vapour and ozone profiles. The use of this retrieval algorithm is mostly intended for illustrative purposes and the user could choose a different inverse strategy. In fact, the interferogram-based data-reduction strategy is generic and independent of any inverse algorithm. It will be also shown that this strategy yields subset of interferometric radiances, which are less sensitive to potential interfering effects such as those possibly introduced by the day-night cycle (e.g., the solar component, and spectroscopic effect induced by sun energy and unknown trace gases variability.

  4. ARM Processor Based Multisensor System Design for the Measurement of Environmental Parameters

    Directory of Open Access Journals (Sweden)

    Narasimha Murthy Yayavaram

    2012-01-01

    Full Text Available This paper presents the design and development of an embedded system for the measurement of environmental parameters such as temperature, relative humidity, atmospheric pressure and the gas pollutants like CO, CO2, NH3, SO2, and NO2 present in air. The system is developed around an advanced ARM processor (LPC2378 by interfacing the relevant sensors. The data sensed by the sensors is displayed on a 2 ´ 16 LCD and also sent to a PC by using a wireless module. A graphical user interface is developed using the Visual basic software for the analysis of data. The results are discussed in detail.

  5. Development of polyphenol-enriched vacuum and atmospheric fried matrices: Evaluation of quality parameters and in vitro bioavailability of polyphenols.

    Science.gov (United States)

    Dueik, V; Bouchon, P

    2016-10-01

    Polyphenols are very unstable and may be degraded when exposed to harsh conditions, such as those found in frying. The inclusion of vacuum seems to be a reasonable solution to avoid these adverse effects. Accordingly, the purpose of this study was to analyze the effect of olive-leaf polyphenol extract on quality parameters of vacuum and atmospheric fried gluten-starch matrices. Matrices were prepared using 12% (d.b.) gluten and 88% (d.b.) starch, using either native or a mixture of native (90%) and pre-gelatinized starch (10%). Polyphenols were added as a freeze-dried powder. Atmospheric and vacuum (91.4kPa, T water boiling point =46°C) frying were compared using an equivalent thermal driving force, which is defined as the difference between oil temperature and water boiling point at the working pressure. Bioavailability of polyphenols was evaluated using simulated digestion and caco-2 cells absorption. The addition of pre-gelatinized starch significantly decreased oil absorption in vacuum fried matrices, however, no significant differences were noted when added into atmospheric fried ones. Polyphenols retention was higher than 70% in vacuum fried matrices. Their bioavailability was ~15%, much higher than in atmospheric fried ones (~8%), and that the one reported in other studies. Interestingly, polyphenol addition reduced the oil content of vacuum fried snacks by 20%. This could be attributed to the hydrating effect of polyphenols, which may facilitate starch gelatinization, improving structure formation during vacuum frying, which will be the focus of future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Imaging through atmospheric turbulence for laser based C-RAM systems: an analytical approach

    Science.gov (United States)

    Buske, Ivo; Riede, Wolfgang; Zoz, Jürgen

    2013-10-01

    High Energy Laser weapons (HEL) have unique attributes which distinguish them from limitations of kinetic energy weapons. HEL weapons engagement process typical starts with identifying the target and selecting the aim point on the target through a high magnification telescope. One scenario for such a HEL system is the countermeasure against rockets, artillery or mortar (RAM) objects to protect ships, camps or other infrastructure from terrorist attacks. For target identification and especially to resolve the aim point it is significant to ensure high resolution imaging of RAM objects. During the whole ballistic flight phase the knowledge about the expectable imaging quality is important to estimate and evaluate the countermeasure system performance. Hereby image quality is mainly influenced by unavoidable atmospheric turbulence. Analytical calculations have been taken to analyze and evaluate image quality parameters during an approaching RAM object. In general, Kolmogorov turbulence theory was implemented to determine atmospheric coherence length and isoplanatic angle. The image acquisition is distinguishing between long and short exposure times to characterize tip/tilt image shift and the impact of high order turbulence fluctuations. Two different observer positions are considered to show the influence of the selected sensor site. Furthermore two different turbulence strengths are investigated to point out the effect of climate or weather condition. It is well known that atmospheric turbulence degenerates image sharpness and creates blurred images. Investigations are done to estimate the effectiveness of simple tip/tilt systems or low order adaptive optics for laser based C-RAM systems.

  7. Control systems of subdifferential type depending on a parameter

    International Nuclear Information System (INIS)

    Tolstonogov, A A

    2008-01-01

    In a separable Hilbert space, we consider a control system with a subdifferential operator and a non-linear perturbation of monotonic type. The control is subject to a restriction that is a multi-valued map depending on the phase variables with closed non-convex values in a reflexive separable Banach space. The subdifferential operator, the perturbation, the restriction on the control and the initial condition depend on a parameter. Along with this system we consider a control system with convexified restrictions on the control. By a solution of such a system we mean a pair 'trajectory-control'. We prove theorems on the existence of selectors that are continuous with respect to the parameter and whose values are solutions of the control system. We establish relations between the sets of selectors continuous with respect to the parameter whose values are solutions of the original system and solutions of the system with convexified restrictions on the control. We deduce from these relations various topological properties of the sets of solutions. We apply the results obtained to a control system described by a vector parabolic equation with a small diffusion coefficient in the elliptic term. We prove that solutions of the control system converge to solutions of the limit singular system as the diffusion coefficient tends to zero

  8. Sensitivity of precipitation to parameter values in the community atmosphere model version 5

    Energy Technology Data Exchange (ETDEWEB)

    Johannesson, Gardar; Lucas, Donald; Qian, Yun; Swiler, Laura Painton; Wildey, Timothy Michael

    2014-03-01

    One objective of the Climate Science for a Sustainable Energy Future (CSSEF) program is to develop the capability to thoroughly test and understand the uncertainties in the overall climate model and its components as they are being developed. The focus on uncertainties involves sensitivity analysis: the capability to determine which input parameters have a major influence on the output responses of interest. This report presents some initial sensitivity analysis results performed by Lawrence Livermore National Laboratory (LNNL), Sandia National Laboratories (SNL), and Pacific Northwest National Laboratory (PNNL). In the 2011-2012 timeframe, these laboratories worked in collaboration to perform sensitivity analyses of a set of CAM5, 2° runs, where the response metrics of interest were precipitation metrics. The three labs performed their sensitivity analysis (SA) studies separately and then compared results. Overall, the results were quite consistent with each other although the methods used were different. This exercise provided a robustness check of the global sensitivity analysis metrics and identified some strongly influential parameters.

  9. Nucleon Edm from Atomic Systems and Constraints on Supersymmetry Parameters

    OpenAIRE

    Oshima, Sachiko; Nihei, Takeshi; Fujita, Takehisa

    2005-01-01

    The nucleon EDM is shown to be directly related to the EDM of atomic systems. From the observed EDM values of the atomic Hg system, the neutron EDM can be extracted, which gives a very stringent constraint on the supersymmetry parameters. It is also shown that the measurement of Nitrogen and Thallium atomic systems should provide important information on the flavor dependence of the quark EDM. We perform numerical analyses on the EDM of neutron, proton and electron in the minimal supersymmetr...

  10. Estimation of Physical Parameters in Linear and Nonlinear Dynamic Systems

    DEFF Research Database (Denmark)

    Knudsen, Morten

    for certain input in the time or frequency domain, are emphasised. Consequently, some special techniques are required, in particular for input signal design and model validation. The model structure containing physical parameters is constructed from basic physical laws (mathematical modelling). It is possible......Estimation of physical parameters is an important subclass of system identification. The specific objective is to obtain accurate estimates of the model parameters, while the objective of other aspects of system identification might be to determine a model where other properties, such as responses...... and essential to utilise this physical insight in the input design and validation procedures. This project has two objectives: 1. To develop and apply theories and techniques that are compatible with physical insight and robust to violation of assumptions and approximations, for system identification in general...

  11. METAHEURISTIC OPTIMIZATION METHODS FOR PARAMETERS ESTIMATION OF DYNAMIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    V. Panteleev Andrei

    2017-01-01

    Full Text Available The article considers the usage of metaheuristic methods of constrained global optimization: “Big Bang - Big Crunch”, “Fireworks Algorithm”, “Grenade Explosion Method” in parameters of dynamic systems estimation, described with algebraic-differential equations. Parameters estimation is based upon the observation results from mathematical model behavior. Their values are derived after criterion minimization, which describes the total squared error of state vector coordinates from the deduced ones with precise values observation at different periods of time. Paral- lelepiped type restriction is imposed on the parameters values. Used for solving problems, metaheuristic methods of constrained global extremum don’t guarantee the result, but allow to get a solution of a rather good quality in accepta- ble amount of time. The algorithm of using metaheuristic methods is given. Alongside with the obvious methods for solving algebraic-differential equation systems, it is convenient to use implicit methods for solving ordinary differen- tial equation systems. Two ways of solving the problem of parameters evaluation are given, those parameters differ in their mathematical model. In the first example, a linear mathematical model describes the chemical action parameters change, and in the second one, a nonlinear mathematical model describes predator-prey dynamics, which characterize the changes in both kinds’ population. For each of the observed examples there are calculation results from all the three methods of optimization, there are also some recommendations for how to choose methods parameters. The obtained numerical results have demonstrated the efficiency of the proposed approach. The deduced parameters ap- proximate points slightly differ from the best known solutions, which were deduced differently. To refine the results one should apply hybrid schemes that combine classical methods of optimization of zero, first and second orders and

  12. Performance Analysis of Free-Space Optical Communication Systems With Multiuser Diversity Over Atmospheric Turbulence Channels

    KAUST Repository

    Yang, Liang

    2014-04-01

    Free-space optical (FSO) communication has become a cost-effective method to provide high data rates. However, the turbulence-induced fading limits its application to short-range applications. To address this, we propose a multiuser diversity (MD) FSO scheme in which the Nth best user is selected and the channel fluctuations can be effectively exploited to produce a selection diversity gain. More specifically, we first present the statistics analysis for the considered system over both weak and strong atmospheric turbulence channels. Based on these statistics, the outage probability, bit-error rate performance, average capacity, diversity order, and coverage are analyzed. Results show that the diversity order for the gamma-gamma fading is N min{α, β}/2, where N is the number of users, and α and β are the channel fading parameters related to the effective atmospheric conditions of the link.

  13. Method for reconstructing atmospheric optical parameters from the data of polarization lidar sensing.

    Science.gov (United States)

    Samoilova, Svetlana V; Balin, Yurii S; Krekova, Margarita M; Winker, David M

    2005-06-10

    Inversion of polarization lidar sensing data based on the form of the lidar sensing equation with allowance for contributions from multiple-scattering calls for a priori information on the scattering phase matrix. In the present study the parameters of the Stokes vectors for various propagation media, including those with the scattering phase matrices that vary along the measuring range, are investigated. It is demonstrated that, in spaceborne lidar sensing, a simple parameterization of the multiple-scattering contribution is applicable and the polarization signal's characteristics depend mainly on the lidar and depolarization ratios, whereas differences in the angular dependences of the matrix components are no longer determining factors. An algorithm for simultaneous reconstruction of the profiles of the backscattering coefficient and depolarization and lidar ratios in an inhomogeneous medium is suggested. Specific features of the methods are analyzed for the examples of interpretation of lidar signal profiles calculated by the Monte Carlo method and are measured experimentally.

  14. Optimization Design of Multi-Parameters in Rail Launcher System

    Directory of Open Access Journals (Sweden)

    Yujiao Zhang

    2014-05-01

    Full Text Available Today the energy storage systems are still encumbering, therefore it is useful to think about the optimization of a railgun system in order to achieve the best performance with the lowest energy input. In this paper, an optimal design method considering 5 parameters is proposed to improve the energy conversion efficiency of a simple railgun. In order to avoid costly trials, the field- circuit method is employed to analyze the operations of different structural railguns with different parameters respectively. And the orthogonal test approach is used to guide the simulation for choosing the better parameter combinations, as well reduce the calculation cost. The research shows that the proposed method gives a better result in the energy efficiency of the system. To improve the energy conversion efficiency of electromagnetic rail launchers, the selection of more parameters must be considered in the design stage, such as the width, height and length of rail, the distance between rail pair, and pulse forming inductance. However, the relationship between these parameters and energy conversion efficiency cannot be directly described by one mathematical expression. So optimization methods must be applied to conduct design. In this paper, a rail launcher with five parameters was optimized by using orthogonal test method. According to the arrangement of orthogonal table, the better parameters’ combination can be obtained through less calculation. Under the condition of different parameters’ value, field and circuit simulation analysis were made. The results show that the energy conversion efficiency of the system is increased by 71.9 % after parameters optimization.

  15. Atmospheric parameters and chemical properties of red giants in the CoRoT asteroseismology fields

    Science.gov (United States)

    Morel, T.; Miglio, A.; Lagarde, N.; Montalbán, J.; Rainer, M.; Poretti, E.; Eggenberger, P.; Hekker, S.; Kallinger, T.; Mosser, B.; Valentini, M.; Carrier, F.; Hareter, M.; Mantegazza, L.

    2014-04-01

    A precise characterisation of the red giants in the seismology fields of the CoRoT satellite is a prerequisite for further in-depth seismic modelling. High-resolution FEROS and HARPS spectra were obtained as part of the ground-based follow-up campaigns for 19 targets holding great asteroseismic potential. These data are used to accurately estimate their fundamental parameters and the abundances of 16 chemical species in a self-consistent manner. Some powerful probes of mixing are investigated (the Li and CNO abundances, as well as the carbon isotopic ratio in a few cases). The information provided by the spectroscopic and seismic data is combined to provide more accurate physical parameters and abundances. The stars in our sample follow the general abundance trends as a function of the metallicity observed in stars of the Galactic disk. After an allowance is made for the chemical evolution of the interstellar medium, the observational signature of internal mixing phenomena is revealed through the detection at the stellar surface of the products of the CN cycle. A contamination by NeNa-cycled material in the most massive stars is also discussed. With the asteroseismic constraints, these data will pave the way for a detailed theoretical investigation of the physical processes responsible for the transport of chemical elements in evolved, low- and intermediate-mass stars. Based on observations collected at La Silla Observatory, ESO (Chile) with the FEROS and HARPS spectrograph at the 2.2 and 3.6-m telescopes under programs LP178.D-0361, LP182.D-0356, and LP185.D-0056.Appendix A is available in electronic form at http://www.aanda.orgTables A.2 to A.6 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A119

  16. Effect of meteorological parameters on Poaceae pollen in the atmosphere of Tetouan (NW Morocco)

    Science.gov (United States)

    Aboulaich, Nadia; Achmakh, Lamiaa; Bouziane, Hassan; Trigo, M. Mar; Recio, Marta; Kadiri, Mohamed; Cabezudo, Baltasar; Riadi, Hassane; Kazzaz, Mohamed

    2013-03-01

    Poaceae pollen is one of the most prevalent aeroallergens causing allergenic reactions. The aim of this study was to characterise the grass pollen season in Tetouan during the years 2008-2010, to analyse the effect of some meteorological parameters on the incidence of the airborne Poaceae pollen, and to establish forecasting variables for daily pollen concentrations. Aerobiological sampling was undertaken over three seasons using the volumetric method. The pollen season started in April and showed the highest pollen index in May and June, when the maximum temperature ranged from 23 to 27 °C, respectively. The annual pollen score recorded varied from year to year between 2,588 and 5,404. The main pollen season lasted 114-173 days, with peak days occurring mainly in May; the highest concentration reached 308 pollen grains/m3. Air temperature was the most important meteorological parameter and correlated positively to daily pollen concentration increase. An increase in relative humidity and precipitation was usually related to a decrease in airborne pollen content. External validation of the models performed using data from 2011 showed that Poaceae pollen concentration can be highly predicted (64.2-78.6 %) from the maximum temperature, its mean concentration for the same day in other years, and its concentration recorded on the previous day. Sensitive patients suffering allergy to Poaceae pollen are at moderate to highest risk of manifesting allergic symptoms to grass pollen over 33-42 days. The results obtained provide new information on the quantitative contribution of the Poaceae pollen to the airborne pollen of Tetouan and on its temporal distribution. Airborne pollen can be surveyed and forecast in order to warn the atopic population.

  17. Parameter dependence of the decoherence of orbital angular momentum entanglement in atmospheric turbulence

    CSIR Research Space (South Africa)

    Hamadou Ibrahim, A

    2011-08-01

    Full Text Available he orbital angular momentum (OAM) state of light can potentially be used to implement higher dimensional entangled systems for quantum communication. Unfortunately, optical fibers in use today support only modes with zero OAM values. Free...

  18. Bayesian parameter inference from continuously monitored quantum systems

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Mølmer, Klaus

    2013-01-01

    We review the introduction of likelihood functions and Fisher information in classical estimation theory, and we show how they can be defined in a very similar manner within quantum measurement theory. We show that the stochastic master equations describing the dynamics of a quantum system subject...... to a definite set of measurements provides likelihood functions for unknown parameters in the system dynamics, and we show that the estimation error, given by the Fisher information, can be identified by stochastic master equation simulations. For large parameter spaces we describe and illustrate the efficient...

  19. Pre/post-strike atmospheric assessment system (PAAS)

    International Nuclear Information System (INIS)

    Peglow, S. G.; Molitoris, J. D.

    1997-01-01

    The Pre/Post-Strike Atmospheric Assessment System was proposed to show the importance of local meteorological conditions in the vicinity of a site suspected of storing or producing toxic agents and demonstrate a technology to measure these conditions, specifically wind fields. The ability to predict the collateral effects resulting from an attack on a facility containing hazardous materials is crucial to conducting effective military operations. Our study approach utilized a combination of field measurements with dispersion modeling to better understand which variables in terrain and weather were most important to collateral damage predictions. To develop the PAAS wind-sensing technology, we utilized a combination of emergent and available technology from micro-Doppler and highly coherent laser systems. The method used for wind sensing is to probe the atmosphere with a highly coherent laser beam. As the beam probes, light is back-scattered from particles entrained in the air to the lidar transceiver and detected by the instrument. Any motion of the aerosols with a component along the beam axis leads to a Doppler shift of the received light. Scanning in a conical fashion about the zenith results in a more accurate and two-dimensional measurement of the wind velocity. The major milestones in the benchtop system development were to verify the design by demonstrating the technique in the laboratory, then scale the design down to a size consistent with a demonstrator unit which could be built to take data in the field. The micro-Doppler heterodyne system we developed determines absolute motion by optically mixing a reference beam with the return signal and has shown motion sensitivity to better than 1 cm/s. This report describes the rationale, technical approach and laboratory testing undertaken to demonstrate the feasibility and utility of a system to provide local meteorological data and predict atmospheric particulate motion. The work described herein was funded by

  20. A Real-Time S-Parameter Imaging System

    Science.gov (United States)

    Naik, P. S.; Cheung, C. K.; Beling, C. D.; Fung, S.

    2005-05-01

    Obtaining a lateral S-parameter image scan from positrons implanted into semiconductor devices can be a helpful research tool both for localizing device structures and in diagnozing defect patterns that could help interpret function. S-parameter images can be obtained by electromagnetically rastering a variable energy positron beam of small spot size across the sample. Here we describe a general hardware and software architecture of relatively low cost that has recently been developed in our laboratory which allows the whole sub-surface S-parameter image of a sample or device to be obtained in real time. This system has the advantage over more conventional sequential scanning techniques of allowing the operator to terminate data collection once the quality of the image is deemed sufficient. As an example of the usefulness of this type of imaging architecture, S-parameter images of a representative sample are presented at two different positron implantation energies.

  1. A real time S-parameter imaging system

    International Nuclear Information System (INIS)

    Naik, P.S.; Cheung, C.K.; Beling, C.D.; Fung, S.

    2005-01-01

    Obtaining a lateral S-parameter image scan from positrons implanted into semiconductor devices can be a helpful research tool both for localizing device structures and in diagnosing defect patterns that could help interpret function. S-parameter images can be obtained by electromagnetically rastering a variable energy positron beam of small spot size across the sample. Here we describe a general hardware and software architecture of relatively low cost that has recently been developed in our laboratory which allows the whole sub-surface S-parameter image of a sample or device to be obtained in real time. This system has the advantage over more conventional sequential scanning techniques of allowing the operator to terminate data collection once the quality of the image is deemed sufficient. As an example of the usefulness of this type of imaging architecture, S-parameter images of a representative sample are presented at two different position implantation energies. (author)

  2. Determination of atmospheric parameters to estimate global radiation in areas of complex topography: Generation of global irradiation map

    Energy Technology Data Exchange (ETDEWEB)

    Batlles, F.J.; Bosch, J.L. [Dpto. Fisica Aplicada, Universidad de Almeria, 04120 Almeria (Spain); Tovar-Pescador, J. [Dpto. Fisica, Universidad de Jaen, 23071 Jaen (Spain); Martinez-Durban, M. [Dpto. Ingenieria Lenguajes y Computacion, Universidad de Almeria, 04120 Almeria (Spain); Ortega, R. [Dpto. Edafologia y Quimica Agricola, Universidad de Almeria, 04120 Almeria (Spain); Miralles, I. [Dpto. Edafologia y Quimica Agricola, Universidad de Granada, 28071 Granada (Spain)

    2008-02-15

    Incoming shortwave solar radiation is an important parameter in environmental applications. A detailed spatial and temporal analysis of global solar radiation on the earth surface is needed in many applications, ranging from solar energy uses to the study of agricultural, forest and biological processes. At local scales, the topography is the most important factor in the distribution of solar radiation on the surface. The variability of the elevation, the surface orientation and the obstructions due to elevations are a source of great local differences in insolation and, consequently, in other variables as ground temperature. For this reason, several models based on GIS techniques have been recently developed, integrating topography to obtain the solar radiation on the surface. In this work, global radiation is analyzed with the Solar Analyst, a model implemented on ArcView, that computes the topographic parameters: altitude, latitude, slope and orientation (azimuth) and shadow effects. Solar Analyst uses as input parameters the diffuse fraction and the transmittance. These parameters are not usually available in radiometric networks in mountainous areas. In this work, a method to obtain both parameters from global radiation is proposed. Global radiation data obtained in two networks of radiometric stations is used: one located in Sierra Magina Natural Park (Spain) with 11 stations and another one located on the surroundings of Sierra Nevada Natural Park (Spain) with 14 stations. Daily solar irradiation is calculated from a digital terrain model (DTM), the daily diffuse fraction, K, and daily atmospheric transmittivity, {tau}. Results provided by the model have been compared with measured values. An overestimation for high elevations is observed, whereas low altitudes present underestimation. The best performance was also reported during summer months, and the worst results were obtained during winter. Finally, a yearly global solar irradiation map has been

  3. Determination of atmospheric parameters to estimate global radiation in areas of complex topography: Generation of global irradiation map

    International Nuclear Information System (INIS)

    Batlles, F.J.; Bosch, J.L.; Tovar-Pescador, J.; Martinez-Durban, M.; Ortega, R.; Miralles, I.

    2008-01-01

    Incoming shortwave solar radiation is an important parameter in environmental applications. A detailed spatial and temporal analysis of global solar radiation on the earth surface is needed in many applications, ranging from solar energy uses to the study of agricultural, forest and biological processes. At local scales, the topography is the most important factor in the distribution of solar radiation on the surface. The variability of the elevation, the surface orientation and the obstructions due to elevations are a source of great local differences in insolation and, consequently, in other variables as ground temperature. For this reason, several models based on GIS techniques have been recently developed, integrating topography to obtain the solar radiation on the surface. In this work, global radiation is analyzed with the Solar Analyst, a model implemented on ArcView, that computes the topographic parameters: altitude, latitude, slope and orientation (azimuth) and shadow effects. Solar Analyst uses as input parameters the diffuse fraction and the transmittance. These parameters are not usually available in radiometric networks in mountainous areas. In this work, a method to obtain both parameters from global radiation is proposed. Global radiation data obtained in two networks of radiometric stations is used: one located in Sierra Magina Natural Park (Spain) with 11 stations and another one located on the surroundings of Sierra Nevada Natural Park (Spain) with 14 stations. Daily solar irradiation is calculated from a digital terrain model (DTM), the daily diffuse fraction, K, and daily atmospheric transmittivity, τ. Results provided by the model have been compared with measured values. An overestimation for high elevations is observed, whereas low altitudes present underestimation. The best performance was also reported during summer months, and the worst results were obtained during winter. Finally, a yearly global solar irradiation map has been produced

  4. A prototype detection system for atmospheric monitoring of xenon radioisotopes

    Science.gov (United States)

    Czyz, Steven A.; Farsoni, Abi T.; Ranjbar, Lily

    2018-03-01

    The design of a radioxenon detection system utilizing a CdZeTe crystal and a plastic scintillator coupled to an array of SiPMs to conduct beta-gamma coincidence detection for atmospheric radioxenon monitoring, as well as the measurement of 135Xe and 133/133mXe, have been detailed previously. This paper presents recent measurements of 133/133mXe and 131mXe and the observation of conversion electrons in their coincidence spectra, as well as a 48-hour background measurement to calculate the Minimum Detectable Concentration (MDC) of radioxenon isotopes in the system. The identification of Regions of Interest (ROIs) in the coincidence spectra yielded from the radioxenon measurements, and the subsequent calculation of the MDCs of the system for 135Xe, 133/133mXe, and 131mXe, are also discussed. Calculated MDCs show that the detection system preforms respectably when compared to other state of the art radioxenon detection systems and achieved an MDC of less than 1 mBq/m3 for 131mXe, 133Xe, and 133mXe, in accordance with limits set by the Comprehensive Nuclear-Test-Ban Treaty (CTBTO). The system also provides the advantage of room temperature operation, compactness, low noise operation and having simple readout electronics.

  5. Multiscale decomposition for heterogeneous land-atmosphere systems

    Science.gov (United States)

    Liu, Shaofeng; Shao, Yaping; Hintz, Michael; Lennartz-Sassinek, Sabine

    2015-02-01

    The land-atmosphere system is characterized by pronounced land surface heterogeneity and vigorous atmospheric turbulence both covering a wide range of scales. The multiscale surface heterogeneities and multiscale turbulent eddies interact nonlinearly with each other. Understanding these multiscale processes quantitatively is essential to the subgrid parameterizations for weather and climate models. In this paper, we propose a method for surface heterogeneity quantification and turbulence structure identification. The first part of the method is an orthogonal transform in the probability density function (PDF) domain, in contrast to the orthogonal wavelet transforms which are performed in the physical space. As the basis of the whole method, the orthogonal PDF transform (OPT) is used to asymptotically reconstruct the original signals by representing the signal values with multilevel approximations. The "patch" idea is then applied to these reconstructed fields in order to recognize areas at the land surface or in turbulent flows that are of the same characteristics. A patch here is a connected area with the same approximation. For each recognized patch, a length scale is then defined to build the energy spectrum. The OPT and related energy spectrum analysis, as a whole referred to as the orthogonal PDF decomposition (OPD), is applied to two-dimensional heterogeneous land surfaces and atmospheric turbulence fields for test. The results show that compared to the wavelet transforms, the OPD can reconstruct the original signal more effectively, and accordingly, its energy spectrum represents the signal's multiscale variation more accurately. The method we propose in this paper is of general nature and therefore can be of interest for problems of multiscale process description in other geophysical disciplines.

  6. Remote sensing of refractivity from space for global observations of atmospheric parameters

    International Nuclear Information System (INIS)

    Gorbunov, M.E.; Sokolovskiy, S.V.

    1993-01-01

    This report presents the first results of computational simulations on the retrieval of meteorological parameters from space refractometric data on the basis of the ECHAM 3 model developed at the Max Planck Institute for Meteorology (Roeckner et al. 1992). For this purpose the grid fields of temperature, geopotential and humidity available from the model were interpolated and a continuous spatial field of refractivity (together with its first derivative) was generated. This field was used for calculating the trajectories of electromagnetic rays for the given orbits of transmitting and receiving satellites and for the determination of the quantities (incident angles or Doppler frequency shifts) being measured at receiving satellite during occultation. These quantities were then used for solving the inverse problem - retrieving the distribution of refractivity in the vicinity of the ray perigees. The retrieved refractivity was used to calculate pressure and temperature (using the hydrostatic equation and the equation of state). The results were compared with initial data, and the retrieval errors were evaluated. The study shows that the refractivity can be retrieved with very high accuracy in particular if a tomographic reconstruction is applied. Effects of humidity and temperature are not separable. Stratospheric temperatures globally and upper tropospheric temperatures at middle and high latitudes can be accurately retrieved, other areas require humidity data. Alternatively humidity data can be retrieved if the temperature fields are known. (orig.)

  7. The Fourier analysis applied to the relationship between (7)Be activity in the Serbian atmosphere and meteorological parameters.

    Science.gov (United States)

    Rajačić, M M; Todorović, D J; Krneta Nikolić, J D; Janković, M M; Djurdjević, V S

    2016-09-01

    Air sample monitoring in Serbia, Belgrade started in the 1960s, while (7)Be activity in air and total (dry and wet) deposition has been monitored for the last 22 years by the Environment and Radiation Protection Department of the Institute for Nuclear Sciences, Vinca. Using this data collection, the changes of the (7)Be activity in the air and the total (wet and dry) deposition samples, as well as their correlation with meteorological parameters (temperature, pressure, cloudiness, sunshine duration, precipitation and humidity) that affect (7)Be concentration in the atmosphere, were mathematically described using the Fourier analysis. Fourier analysis confirmed the expected; the frequency with the largest intensity in the harmonic spectra of the (7)Be activity corresponds to a period of 1 year, the same as the largest intensity frequency in Fourier series of meteorological parameters. To analyze the quality of the results produced by the Fourier analysis, we compared the measured values of the parameters with the values calculated according to the Fourier series. Absolute deviations between measured and predicted mean monthly values are in range from 0.02 mBq/m(3) to 0.7 mBq/m(3) for (7)Be activity in air, and 0.01 Bq/m(2) and 0.6 Bq/m(2) for (7)Be activity in deposition samples. Relatively good agreement of measured and predicted results offers the possibility of prediction of the (7)Be activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Atmospheric new particle formation at the research station Melpitz, Germany: connection with gaseous precursors and meteorological parameters

    Science.gov (United States)

    Größ, Johannes; Hamed, Amar; Sonntag, André; Spindler, Gerald; Elina Manninen, Hanna; Nieminen, Tuomo; Kulmala, Markku; Hõrrak, Urmas; Plass-Dülmer, Christian; Wiedensohler, Alfred; Birmili, Wolfram

    2018-02-01

    This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2-20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.

  9. Estimation of Parameters in Mean-Reverting Stochastic Systems

    Directory of Open Access Journals (Sweden)

    Tianhai Tian

    2014-01-01

    Full Text Available Stochastic differential equation (SDE is a very important mathematical tool to describe complex systems in which noise plays an important role. SDE models have been widely used to study the dynamic properties of various nonlinear systems in biology, engineering, finance, and economics, as well as physical sciences. Since a SDE can generate unlimited numbers of trajectories, it is difficult to estimate model parameters based on experimental observations which may represent only one trajectory of the stochastic model. Although substantial research efforts have been made to develop effective methods, it is still a challenge to infer unknown parameters in SDE models from observations that may have large variations. Using an interest rate model as a test problem, in this work we use the Bayesian inference and Markov Chain Monte Carlo method to estimate unknown parameters in SDE models.

  10. Global parameter estimation methods for stochastic biochemical systems

    Directory of Open Access Journals (Sweden)

    Poovathingal Suresh

    2010-08-01

    Full Text Available Abstract Background The importance of stochasticity in cellular processes having low number of molecules has resulted in the development of stochastic models such as chemical master equation. As in other modelling frameworks, the accompanying rate constants are important for the end-applications like analyzing system properties (e.g. robustness or predicting the effects of genetic perturbations. Prior knowledge of kinetic constants is usually limited and the model identification routine typically includes parameter estimation from experimental data. Although the subject of parameter estimation is well-established for deterministic models, it is not yet routine for the chemical master equation. In addition, recent advances in measurement technology have made the quantification of genetic substrates possible to single molecular levels. Thus, the purpose of this work is to develop practical and effective methods for estimating kinetic model parameters in the chemical master equation and other stochastic models from single cell and cell population experimental data. Results Three parameter estimation methods are proposed based on the maximum likelihood and density function distance, including probability and cumulative density functions. Since stochastic models such as chemical master equations are typically solved using a Monte Carlo approach in which only a finite number of Monte Carlo realizations are computationally practical, specific considerations are given to account for the effect of finite sampling in the histogram binning of the state density functions. Applications to three practical case studies showed that while maximum likelihood method can effectively handle low replicate measurements, the density function distance methods, particularly the cumulative density function distance estimation, are more robust in estimating the parameters with consistently higher accuracy, even for systems showing multimodality. Conclusions The parameter

  11. Performance analysis of an adaptive optics system for free-space optics communication through atmospheric turbulence.

    Science.gov (United States)

    Wang, Yukun; Xu, Huanyu; Li, Dayu; Wang, Rui; Jin, Chengbin; Yin, Xianghui; Gao, Shijie; Mu, Quanquan; Xuan, Li; Cao, Zhaoliang

    2018-01-18

    The performance of free-space optics communication (FSOC) is greatly degraded by atmospheric turbulence. Adaptive optics (AO) is an effective method for attenuating the influence. In this paper, the influence of the spatial and temporal characteristics of turbulence on the performance of AO in a FSOC system is investigated. Based on the Greenwood frequency (GF) and the ratio of receiver aperture diameter to atmospheric coherent length (D/r 0 ), the relationship between FSOC performance (CE) and AO parameters (corrected Zernike modes number and bandwidth) is derived for the first time. Then, simulations and experiments are conducted to analyze the influence of AO parameters on FSOC performance under different GF and D/r 0 . The simulation and experimental results show that, for common turbulence conditions, the number of corrected Zernike modes can be fixed at 35 and the bandwidth of the AO system should be larger than the GF. Measurements of the bit error rate (BER) for moderate turbulence conditions (D/r 0  = 10, f G  = 60 Hz) show that when the bandwidth is two times that of GF, the average BER is decreased by two orders of magnitude compared with f G /f 3dB  = 1. These results and conclusions can provide important guidance in the design of an AO system for FSOC.

  12. Sensitivity analysis in multi-parameter probabilistic systems

    International Nuclear Information System (INIS)

    Walker, J.R.

    1987-01-01

    Probabilistic methods involving the use of multi-parameter Monte Carlo analysis can be applied to a wide range of engineering systems. The output from the Monte Carlo analysis is a probabilistic estimate of the system consequence, which can vary spatially and temporally. Sensitivity analysis aims to examine how the output consequence is influenced by the input parameter values. Sensitivity analysis provides the necessary information so that the engineering properties of the system can be optimized. This report details a package of sensitivity analysis techniques that together form an integrated methodology for the sensitivity analysis of probabilistic systems. The techniques have known confidence limits and can be applied to a wide range of engineering problems. The sensitivity analysis methodology is illustrated by performing the sensitivity analysis of the MCROC rock microcracking model

  13. Nucleon EDM from atomic systems and constraints on supersymmetry parameters

    International Nuclear Information System (INIS)

    Oshima, Sachiko; Nihei, Takeshi; Fujita, Takehisa

    2005-01-01

    The nucleon EDM is shown to be directly related to the EDM of atomic systems. From the observed EDM values of the atomic Hg system, the neutron EDM can be extracted, which gives a very stringent constraint on the supersymmetry parameters. It is also shown that the measurement of Nitrogen and Thallium atomic systems should provide important information on the flavor dependence of the quark EDM. We perform numerical analyses on the EDM of neutron, proton and electron in the minimal supersymmetric standard model with CP-violating phases. We demonstrate that the new limit on the neutron EDM extracted from atomic systems excludes a wide parameter region of supersymmetry breaking masses above 1 TeV, while the old limit excludes only a small mass region below 1 TeV. (author)

  14. Antisynchronization of a novel hyperchaotic system with parameter ...

    Indian Academy of Sciences (India)

    1051–1053. Erratum to “Antisynchronization of a novel hyperchaotic system with parameter mismatch and external disturbances”. FEI YU1,2,∗, CHUNHUA WANG2, YAN HU2 and JINWEN YIN2. 1School of Computer and Communication Engineering, Changsha University of Science and Technology, Changsha 410004, ...

  15. Cubic spline approximation techniques for parameter estimation in distributed systems

    Science.gov (United States)

    Banks, H. T.; Crowley, J. M.; Kunisch, K.

    1983-01-01

    Approximation schemes employing cubic splines in the context of a linear semigroup framework are developed for both parabolic and hyperbolic second-order partial differential equation parameter estimation problems. Convergence results are established for problems with linear and nonlinear systems, and a summary of numerical experiments with the techniques proposed is given.

  16. Effects of system parameters and inorganic salts on the ...

    African Journals Online (AJOL)

    The photodecolourisation of textile dye Reactive Blue 19 (RB 19), an anionic anthraquinone dye of the reactive class, was investigated using UV radiation in the presence of H2O2 in a batch photo-reactor with low-pressure mercury lamps. The effects of the system parameters: initial pH, initial dye concentration, ...

  17. Designing the CRT-based safety parameter display system

    International Nuclear Information System (INIS)

    Frankel, C.L.; Schack, K.A.

    1983-01-01

    The conceptual development and design of Safety Parameter Display System (SPDS) CRT displays and graphics is discussed in this paper. Some of the topics addressed include fulfilling the requirements of NUREG 0696, operator input to the design process, and successful display configurations. A methodology is presented to guide the engineer/operator team through the development of displays

  18. Stability Analysis for Multi-Parameter Linear Periodic Systems

    DEFF Research Database (Denmark)

    Seyranian, A.P.; Solem, Frederik; Pedersen, Pauli

    1999-01-01

    This paper is devoted to stability analysis of general linear periodic systems depending on real parameters. The Floquet method and perturbation technique are the basis of the development. We start out with the first and higher-order derivatives of the Floquet matrix with respect to problem...

  19. Identification of Parameters in Active Magnetic Bearing Systems

    DEFF Research Database (Denmark)

    Lauridsen, Jonas Skjødt; Voigt, Andreas Jauernik; Mandrup-Poulsen, Christian

    2016-01-01

    A method for identifying uncertain parameters in Active Magnetic Bearing (AMB) based rotordynamic systems is introduced and adapted for experimental application. The Closed Loop Identification (CLI) method is utilised to estimate the current/force factors Ki and the displacement/force factors Ks...

  20. Advanced Exploration Systems Atmosphere Resource Recovery and Environmental Monitoring

    Science.gov (United States)

    Perry, J.; Abney, M.; Conrad, R.; Garber, A.; Howard, D.; Kayatin, M.; Knox, J.; Newton, R.; Parrish, K.; Roman, M.; hide

    2016-01-01

    In September 2011, the Atmosphere Resource Recovery and Environmental Monitoring (ARREM) project was commissioned by NASA's Advanced Exploration Systems program to advance Atmosphere Revitalization Subsystem (ARS) and Environmental Monitoring Subsystem (EMS) technologies for enabling future crewed space exploration missions beyond low Earth orbit. The ARREM project's period of performance covered U.S. Government fiscal years 2012-2014. The ARREM project critically assessed the International Space Station (ISS) ARS and EMS architectures and process technologies as the foundation for an architecture suitable for deep space exploration vehicles. The project's technical content included technical tasks focused on improving the reliability and life cycle cost of ARS and EMS technologies as well as reducing future flight project developmental risk and design, development, test, and evaluation costs. Targeted technology development and maturation tasks, including key technical trade assessments, were accomplished and integrated ARS architectures were demonstrated. The ARREM project developed, demonstrated, and tested leading process technology candidates and subsystem architectures that met or exceeded key figures of merit, addressed capability gaps, and significantly improved the efficiency, safety, and reliability over the state-of-the-art ISS figures of merit. Promising EMS instruments were developed and functionally demonstrated in a simulated cabin environment. The project's technical approach and results are described and recommendations for continued development are provided.

  1. Identification of System Parameters by the Random Decrement Technique

    DEFF Research Database (Denmark)

    Brincker, Rune; Kirkegaard, Poul Henning; Rytter, Anders

    1991-01-01

    The aim of this paper is to investigate and illustrate the possibilities of using correlation functions estimated by the Random Decrement Technique as a basis for parameter identification. A two-stage system identification system is used: first, the correlation functions are estimated by the Rand......-Walker equations and finally, least-square fitting of the theoretical correlation function. The results are compared to the results of fitting an Auto Regressive Moving Average (ARMA) model directly to the system output from a single-degree-of-freedom system loaded by white noise....

  2. Antisynchronization of a novel hyperchaotic system with parameter ...

    Indian Academy of Sciences (India)

    ) + F(x)α + d ,. (1). ˙y = g(y) + G(y)β + U + d ,. (2) where x = (x1, x2,..., xn)T and y = (y1, y2,..., yn)T are the state vectors, α = (α1,α2,...,αm)T and β = (β1,β2,...,βp)T are the uncertain parameter vectors of the drive system and the response system ...

  3. NUCAPS: NOAA Unique Combined Atmospheric Processing System Outgoing Longwave Radiation (OLR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of Outgoing Longwave Radiation (OLR) from the NOAA Unique Combined Atmospheric Processing System (NUCAPS). NUCAPS was developed by the...

  4. NUCAPS: NOAA Unique Combined Atmospheric Processing System Cloud-Cleared Radiances (CCR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Cloud-Cleared Radiances (CCRs) from the NOAA Unique Combined Atmospheric Processing System (NUCAPS). NUCAPS was developed by the NOAA/NESDIS...

  5. Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Navy Operational Global Atmospheric Prediction System (NOGAPS) provides numerical guidance and products in support of a wide range of Navy oceanographic and...

  6. System and Method for Providing Vertical Profile Measurements of Atmospheric Gases

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A system and method for using an air collection device to collect a continuous air sample as the device descends through the atmosphere are provided. The air...

  7. Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    NARCIS (Netherlands)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muniz, J.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antici'c, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Baecker, T.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Baeuml, J.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Clay, R. W.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordiera, A.; Coutu, S.; Covault, C. E.; Creusota, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; de la Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Rio, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Diaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Luis, P. Facal San; Tapia, I. Fajardo; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Filevich, A.; Filipcic, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Froehlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon, A.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Gomez Vitale, P. F.; Goncalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Guzman, A.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Horvath, P.; Hrabovsky, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D. -H.; Kotera, K.; Krohm, N.; Kroemer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez, H.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Mi'canovi'c, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafa, M.; Moura, C. A.; Muller, M. A.; Mueller, G.; Muenchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Oehlschlaeger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides

  8. Parameter and state estimation in nonlinear dynamical systems

    Science.gov (United States)

    Creveling, Daniel R.

    This thesis is concerned with the problem of state and parameter estimation in nonlinear systems. The need to evaluate unknown parameters in models of nonlinear physical, biophysical and engineering systems occurs throughout the development of phenomenological or reduced models of dynamics. When verifying and validating these models, it is important to incorporate information from observations in an efficient manner. Using the idea of synchronization of nonlinear dynamical systems, this thesis develops a framework for presenting data to a candidate model of a physical process in a way that makes efficient use of the measured data while allowing for estimation of the unknown parameters in the model. The approach presented here builds on existing work that uses synchronization as a tool for parameter estimation. Some critical issues of stability in that work are addressed and a practical framework is developed for overcoming these difficulties. The central issue is the choice of coupling strength between the model and data. If the coupling is too strong, the model will reproduce the measured data regardless of the adequacy of the model or correctness of the parameters. If the coupling is too weak, nonlinearities in the dynamics could lead to complex dynamics rendering any cost function comparing the model to the data inadequate for the determination of model parameters. Two methods are introduced which seek to balance the need for coupling with the desire to allow the model to evolve in its natural manner without coupling. One method, 'balanced' synchronization, adds to the synchronization cost function a requirement that the conditional Lyapunov exponents of the model system, conditioned on being driven by the data, remain negative but small in magnitude. Another method allows the coupling between the data and the model to vary in time according to a specific form of differential equation. The coupling dynamics is damped to allow for a tendency toward zero coupling

  9. A simultaneous multimodal imaging system for tissue functional parameters

    Science.gov (United States)

    Ren, Wenqi; Zhang, Zhiwu; Wu, Qiang; Zhang, Shiwu; Xu, Ronald

    2014-02-01

    Simultaneous and quantitative assessment of skin functional characteristics in different modalities will facilitate diagnosis and therapy in many clinical applications such as wound healing. However, many existing clinical practices and multimodal imaging systems are subjective, qualitative, sequential for multimodal data collection, and need co-registration between different modalities. To overcome these limitations, we developed a multimodal imaging system for quantitative, non-invasive, and simultaneous imaging of cutaneous tissue oxygenation and blood perfusion parameters. The imaging system integrated multispectral and laser speckle imaging technologies into one experimental setup. A Labview interface was developed for equipment control, synchronization, and image acquisition. Advanced algorithms based on a wide gap second derivative reflectometry and laser speckle contrast analysis (LASCA) were developed for accurate reconstruction of tissue oxygenation and blood perfusion respectively. Quantitative calibration experiments and a new style of skinsimulating phantom were designed to verify the accuracy and reliability of the imaging system. The experimental results were compared with a Moor tissue oxygenation and perfusion monitor. For In vivo testing, a post-occlusion reactive hyperemia (PORH) procedure in human subject and an ongoing wound healing monitoring experiment using dorsal skinfold chamber models were conducted to validate the usability of our system for dynamic detection of oxygenation and perfusion parameters. In this study, we have not only setup an advanced multimodal imaging system for cutaneous tissue oxygenation and perfusion parameters but also elucidated its potential for wound healing assessment in clinical practice.

  10. Effects of strong earthquakes in variations of electrical and meteorological parameters of the near-surface atmosphere in Kamchatka region

    Science.gov (United States)

    Smirnov, S. E.; Mikhailova, G. A.; Mikhailov, Yu. M.; Kapustina, O. V.

    2017-09-01

    The diurnal variations in electrical (quasistatic electric field and electrical conductivity) and meteorological (temperature, pressure, relative humidity of the atmosphere, and wind speed) parameters, measured simultaneously before strong earthquakes in Kamchatka region (November 15, 2006, M = 8.3; January 13, 2007, M = 8.1; January 30, 2016, M = 7.2), are studied for the first time in detail. It is found that a successively anomalous increase in temperature, despite the negative regular trend in these winter months, was observed in the period of six-seven days before the occurrences of earthquakes. An anomalous temperature increase led to the formation of "winter thunderstorm" conditions in the near-surface atmosphere of Kamchatka region, which was manifested in the appearance of an anomalous, type 2 electrical signal, the amplification of and intensive variations in electrical conductivity, heavy precipitation (snow showers), high relative humidity of air, storm winds, and pressure changes. With the weak flow of natural heat radiation in this season, the observed dynamics of electric and meteorological processes can likely be explained by the appearance of an additional heat source of seismic nature.

  11. Atmospheric lidar multi-user instrument system definition study

    Science.gov (United States)

    Greco, R. V. (Editor)

    1980-01-01

    A spaceborne lidar system for atmospheric studies was defined. The primary input was the Science Objectives Experiment Description and Evolutionary Flow Document. The first task of the study was to perform an experiment evolutionary analysis of the SEED. The second task was the system definition effort of the instrument system. The third task was the generation of a program plan for the hardware phase. The fourth task was the supporting studies which included a Shuttle deficiency analysis, a preliminary safety hazard analysis, the identification of long lead items, and development studies required. As a result of the study an evolutionary Lidar Multi-User Instrument System (MUIS) was defined. The MUIS occupies a full Spacelab pallet and has a weight of 1300 kg. The Lidar MUIS laser provides a 2 joule frequency doubled Nd:YAG laser that can also pump a tuneable dye laser wide frequency range and bandwidth. The MUIS includes a 1.25 meter diameter aperture Cassegrain receiver, with a moveable secondary mirror to provide precise alignment with the laser. The receiver can transmit the return signal to three single and multiple photomultiple tube detectors by use of a rotating fold mirror. It is concluded that the Lidar MUIS proceed to program implementation.

  12. Testing FSO WDM communication system in simulation software optiwave OptiSystem in different atmospheric environments

    Science.gov (United States)

    Vanderka, Ales; Hajek, Lukas; Bednarek, Lukas; Latal, Jan; Vitasek, Jan; Hejduk, Stanislav; Vasinek, Vladimir

    2016-09-01

    In this article the author's team deals with using Wavelength Division Multiplexing (WDM) for Free Space Optical (FSO) Communications. In FSO communication occurs due to the influence of atmospheric effect (attenuation, and fluctuation of the received power signal, influence turbulence) and the WDM channel suffers from interchannel crosstalk. There is considered only the one direction. The behavior FSO link was tested for one or eight channels. Here we will be dealing with modulation schemes OOK (On-Off keying), QAM (Quadrature Amplitude Modulation) and Subcarrier Intensity Modulation (SIM) based on a BPSK (Binary Phase Shift Keying). Simulation software OptiSystem 14 was used for tasting. For simulation some parameters were set according to real FSO link such as the datarate 1.25 Gbps, link range 1.4 km. Simulated FSO link used wavelength of 1550 nm with 0.8 nm spacing. There is obtained the influence of crosstalk and modulation format for the BER, depending on the amount of turbulence in the propagation medium.

  13. Robust filtering for uncertain systems a parameter-dependent approach

    CERN Document Server

    Gao, Huijun

    2014-01-01

    This monograph provides the reader with a systematic treatment of robust filter design, a key issue in systems, control and signal processing, because of the fact that the inevitable presence of uncertainty in system and signal models often degrades the filtering performance and may even cause instability. The methods described are therefore not subject to the rigorous assumptions of traditional Kalman filtering. The monograph is concerned with robust filtering for various dynamical systems with parametric uncertainties, and focuses on parameter-dependent approaches to filter design. Classical filtering schemes, like H2 filtering and H¥ filtering, are addressed, and emerging issues such as robust filtering with constraints on communication channels and signal frequency characteristics are discussed. The text features: ·        design approaches to robust filters arranged according to varying complexity level, and emphasizing robust filtering in the parameter-dependent framework for the first time; ·...

  14. Experimental evaluation of a modal parameter based system identification procedure

    Science.gov (United States)

    Yu, Minli; Feng, Ningsheng; Hahn, Eric J.

    2016-02-01

    Correct modelling of the foundation of a rotor bearing foundation system (RBFS) is an invaluable asset for the balancing and efficient running of turbomachinery. Numerical experiments have shown that a modal parameter based identification approach could be feasible for this purpose but there is a lack of experimental verification of the suitability of such a modal approach for even the simplest systems. In this paper the approach is tested on a simple experimental rig comprising a clamped horizontal bar with lumped masses. It is shown that apart from damping, the proposed approach can identify reasonably accurately the relevant modal parameters of the rig; and that the resulting equivalent system can predict reasonably well the frequency response of the rig. Hence, the proposed approach shows promise but further testing is required, since application to identifying the foundation of an RBFS involves the additional problem of accurately obtaining the force excitation from motion measurements.

  15. Towards automatic parameter tuning of stream processing systems

    KAUST Repository

    Bilal, Muhammad

    2017-09-27

    Optimizing the performance of big-data streaming applications has become a daunting and time-consuming task: parameters may be tuned from a space of hundreds or even thousands of possible configurations. In this paper, we present a framework for automating parameter tuning for stream-processing systems. Our framework supports standard black-box optimization algorithms as well as a novel gray-box optimization algorithm. We demonstrate the multiple benefits of automated parameter tuning in optimizing three benchmark applications in Apache Storm. Our results show that a hill-climbing algorithm that uses a new heuristic sampling approach based on Latin Hypercube provides the best results. Our gray-box algorithm provides comparable results while being two to five times faster.

  16. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    Science.gov (United States)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; hide

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  17. Changes in Atmospheric and Meteorological Parameters along Vertical Profile Associated with Biomass Burning in the Western Parts of India

    Science.gov (United States)

    Chauhan, Akshansha

    Biomass burning occurs after the crop is harvested in the months of April-May and October-November in the western parts of India. The satellite data shows higher aerosol loading especially during October-November when temperature is lower. The plume is seen over the whole Indo-Gangetic plains and also over Pakistan especially due to easterly winds, although the westerly wind components are common, the smoke plume is transported on the eastern parts of the Indo-Gangetic plains. Depending upon the meteorological conditions, sometime intense haze are seen over the Indo-Gangetic plains and the visibility becomes very low. Detailed analysis of multi sensor satellite data for the period 2008-2012 will be presented showing changes in the atmospheric and meteorological parameters at different pressure levels. The smoke plume originated from the source region affects small area, on the other hand when the distance from the source region increases, the changes are observed larger area at higher altitudes. The AERONET data at Lahore in Pakistan and Kanpur in the east of Indo-Gangetic plains show characteristics of aerosol optical properties and contrast changes in meteorological parameters. We will also present a simple relation between the intense fog, haze and smog during winter season (December and January) associated with the biomass burning in the month of October and November every year in the western parts of India.

  18. Atmosphere Behavior in Gas-Closed Mouse-Algal Systems: An Experimental and Modelling Study

    Science.gov (United States)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.

    1985-01-01

    A dual approach of mathematical modelling and laboratory experimentation aimed at examining the gas exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere was initiated. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is examined. A mathematical model simulating the atmospheric behavior in these systems was developed and an experimental gas closed system was constructed. These systems are described and preliminary results are presented.

  19. Atmospheric pressure loading effects on Global Positioning System coordinate determinations

    Science.gov (United States)

    Vandam, Tonie M.; Blewitt, Geoffrey; Heflin, Michael B.

    1994-01-01

    Earth deformation signals caused by atmospheric pressure loading are detected in vertical position estimates at Global Positioning System (GPS) stations. Surface displacements due to changes in atmospheric pressure account for up to 24% of the total variance in the GPS height estimates. The detected loading signals are larger at higher latitudes where pressure variations are greatest; the largest effect is observed at Fairbanks, Alaska (latitude 65 deg), with a signal root mean square (RMS) of 5 mm. Out of 19 continuously operating GPS sites (with a mean of 281 daily solutions per site), 18 show a positive correlation between the GPS vertical estimates and the modeled loading displacements. Accounting for loading reduces the variance of the vertical station positions on 12 of the 19 sites investigated. Removing the modeled pressure loading from GPS determinations of baseline length for baselines longer than 6000 km reduces the variance on 73 of the 117 baselines investigated. The slight increase in variance for some of the sites and baselines is consistent with expected statistical fluctuations. The results from most stations are consistent with approximately 65% of the modeled pressure load being found in the GPS vertical position measurements. Removing an annual signal from both the measured heights and the modeled load time series leaves this value unchanged. The source of the remaining discrepancy between the modeled and observed loading signal may be the result of (1) anisotropic effects in the Earth's loading response, (2) errors in GPS estimates of tropospheric delay, (3) errors in the surface pressure data, or (4) annual signals in the time series of loading and station heights. In addition, we find that using site dependent coefficients, determined by fitting local pressure to the modeled radial displacements, reduces the variance of the measured station heights as well as or better than using the global convolution sum.

  20. Bifurcation diagram of a cubic three-parameter autonomous system

    Directory of Open Access Journals (Sweden)

    Lenka Barakova

    2005-07-01

    Full Text Available In this paper, we study the cubic three-parameter autonomous planar system $$displaylines{ dot x_1 = k_1 + k_2x_1 - x_1^3 - x_2,cr dot x_2 = k_3 x_1 - x_2, }$$ where $k_2, k_3$ are greater than 0. Our goal is to obtain a bifurcation diagram; i.e., to divide the parameter space into regions within which the system has topologically equivalent phase portraits and to describe how these portraits are transformed at the bifurcation boundaries. Results may be applied to the macroeconomical model IS-LM with Kaldor's assumptions. In this model existence of a stable limit cycles has already been studied (Andronov-Hopf bifurcation. We present the whole bifurcation diagram and among others, we prove existence of more difficult bifurcations and existence of unstable cycles.

  1. Development of atmospheric dispersion module and its integration with diagnostic system for radioactivity release evaluations

    International Nuclear Information System (INIS)

    Santhosh, T.V.; Hari Prasad, M.; Gopika, V.; Singh, R.K.; Vaze, K.K.

    2014-01-01

    As a part of development of diagnostic system for accident management in nuclear power plants (NPPs), an atmospheric dispersion module for radioactivity release evaluations using Kalman filter technique has been developed for emergency preparedness. In addition to the accident management, during normal reactor operations, it is desirable to monitor for any aerial releases of radionuclides. These radionuclides incur doses to the surrounding areas when they get carried away by the wind and dispersed in the air due to the turbulence. Normally, the releases from the NPP are in a controlled manner and monitored continuously. However, in case of an accidental release, the quantities may be very uncertain and correct estimation of the release is very important for emergency preparedness and planning in post accident scenarios. In this connection, a Kalman filter technique has been used to estimate the radioactivity release using environmental radiation monitoring data obtained close to the release point. The Kalman filter is a recursive predictor-corrector type estimator. It is based on a state space model in which the state variables, in the current setting, are the parameters of the Gaussian plume model.The plume model parameters, which are collected in the state vector consist of the source term, wind velocity and plume height. The observables consist of simultaneous gamma dose measurements (dose rate) and meteorological data (wind speed) at different times. In this analysis time evolution of the state is represented by the system equation and the measurements are linked to the state variables through the measurement equation. This model has been validated using the data obtained from radiation data acquisition system of a typical Indian nuclear power plant under normal operating conditions. The graphical user interface for atmospheric dispersion calculations has been developed and integrated with the diagnostic system on the high speed computing setup. This module

  2. Improving the security of optoelectronic delayed feedback system by parameter modulation and system coupling

    Science.gov (United States)

    Liu, Lingfeng; Miao, Suoxia; Cheng, Mengfan; Gao, Xiaojing

    2016-02-01

    A coupled system with varying parameters is proposed to improve the security of optoelectronic delayed feedback system. This system is coupled by two parameter-varied optoelectronic delayed feedback systems with chaotic modulation. Dynamics performance results show that this system has a higher complexity compared to the original one. Furthermore, this system can conceal the time delay effectively against the autocorrelation function and delayed mutual information method and can increase the dimension space of secure parameters to resist brute-force attack by introducing the digital chaotic systems.

  3. All Sky Imaging System for Atmospheric Plasma Diagnostics

    National Research Council Canada - National Science Library

    Lee, Min-Chang

    2004-01-01

    .... ASIS is a powerful instruments for atmospheric plasma diagnostics. For example, in radio wave injection and chemical release experiments, rich information can be deduced from the measured airglow...

  4. Control System of Parameters of the Azimuthal Module

    Science.gov (United States)

    Plotnikova, I. V.; Galtseva, O. V.; Tchaikovskaya, O. N.; Tchekarova, S. A.

    2017-01-01

    Analytical and experimental studies of the azimuthal module of two-component vibrational micromechanical gyroscope were conducted. It is shown that the micromechanical gyroscope is a system with distributed parameters. The frequency analysis is performed using software T-Flex. The influence of mechanical disturbances on the movement of azimuthal module in the form of translational and angular oscillations is shown; the natural frequencies of the azimuth are defined.

  5. Justification of antenna parameters for automatic systems of radiomonitoring

    OpenAIRE

    Пархомей, Ігор Ростиславович; Цьопа, Наталія Володимирівна; Батрак, Євгеній Олександрович

    2016-01-01

    Improving the efficiency of radar objects with artificially low effective area reflect to a large extent compounded by uncertainty about the information of motion parameters of the object. In terms of information it is impossible to eliminate the uncertainty appropriate to apply artificial intelligence, which have the ability to generalize to accumulate and use knowledge to optimize management. For the synthesis of control systems with artificial intelligence using fuzzy mathematics, it is ba...

  6. Humos monitoring system of leaks in to the containment atmosphere

    International Nuclear Information System (INIS)

    Matal, O.; Zaloudek, J.; Matal, O. Jr.; Klinga, J.; Brom, J.

    1997-01-01

    HUmidity MOnitoring System (HUMOS) has been developed and designed to detect the presence of leak in selected primary circuit high energy pipelines and components that are evaluated from the point of view of Leak Before Break (LBB) requirements. It also requires to apply technical tools for detection and identification of coolant leaks from primary circuit and components of PWRs reactors. Safety significant of leaks depend on: leak source (location); leak rate, and leak duration. Therefore to detect and monitor coolant leaks in to the containment atmosphere during reactor operation is one of important safety measures. As potential leak sources flange connection in the upper head region of WWER reactors can be considered. HUMOS does not rely on the release of radioactivity to detect leaks but rather the relies on detection of moisture in the air resulting from a primary boundary leak. Because HUMOS relies on moisture and temperature detection, leaks can be detected without requiring the reactor to be critical. Therefore leaks can be detected during integrity pressure tests and any other mode of operation provided the reactor ventilation system is operating and primary circuit and components are pressurized. 3 figs

  7. Model study of the influence of solar wind parameters on electric currents and fields in middle atmosphere at high latitudes

    International Nuclear Information System (INIS)

    Tonev, P.; Velinov, P.

    2012-01-01

    The electric currents and fields in the strato/mesosphere and lower ionosphere are a result mainly of tropospheric electrical generators (thunderstorms and electrified clouds) which principally determine their global distributions and magnitudes. There are, however, additional sources, e.g. the solar wind (SW), whose contribution to these currents and fields is realized by SW-magnetosphere-ionosphere coupling. This last causes creation of large trans-polar electric potential difference VPC in each polar cap of ∼ 30–140 kV and of horizontal scale ∼ 3000 km which is realized through field-aligned currents (FAC) and is controlled by SW parameters. The potential difference VPC forces formation of closure currents in the dynamo-region. Our study by simulation shows that much smaller currents penetrate into the lower atmospheric regions and influence characteristics of the global atmospheric electrical circuit (GEC). Also, the downward mapping of the horizontal electric fields due to the potential difference VPC leads to creation of very small, but non-negligible vertical electric fields at sea level. They have been demonstrated experimentally as significant (up to few tens of per cent) SW-controlled modifications of the GEC electric characteristics at the ground, at polar latitudes. Our model, based on simulation of Maxwell’s equations in the region 0–160 km under steady-state conditions show that similar but relatively much larger SW-dominated modifications of GEC characteristics take place in the strato/mesosphere and lower ionosphere at polar and high latitudes

  8. A Pseudodifferential Approach to Distributed Parameter Systems and Stabilization

    DEFF Research Database (Denmark)

    Pedersen, Michael

    1993-01-01

    in the case of a distributed system with feedback acting on the boundary of a bounded domain in Rn and appearing in the Neumann boundary condition. We establish the pseudodifferental setting for the Neumann feedback control problem previously established for the corresponding Dirichlet problem by Pederson....... Differential Equations47 (1983); Appl. Math. Optim.10 (1983)). So far, this work seems to have simplified or unified many of the previous works cited above. We hope that in the future it will even provide stronger and newer results in the boundary control of distributed parameter systems....

  9. Digital simulation of continuous systems with and without parameter optimization

    International Nuclear Information System (INIS)

    Gitt, W.; Herrmann, H.J.

    1977-05-01

    In addition to the simulation of steady systems the simulation system DISIOP (DIgital SImulation with OPtimization) described here, which may still be improved, enables an optimization of, at present, 6 parameters according to a criterion randomly chosen by the user. The examples given show a vast field of possible applications, from simple simulation to optimization and boundary value problems with one boundary value. Some limits of application are: 1) due to the serial working of the digital computer, real-time problem solutions are impossible; 2) in high-frequency runs, the step width number may become critical (long computing time, numerical instabilities). (orig./WB) [de

  10. Quasisynchronization in Quorum Sensing Systems with Parameter Mismatches

    Directory of Open Access Journals (Sweden)

    Jianbao Zhang

    2014-01-01

    Full Text Available The paper investigates quasisynchronization in a communication system, which consists of cells communicating through quorum sensing. With the help of Lyapunov function method and Lur’e system approach, some sufficient conditions for quasisynchronization are presented, and a bound on the synchronization errors is derived. The obtained theoretical results show that the synchronization quality is influenced by two parameters detrimentally: the error bound depends almost linearly on the mismatches between cells and depends sensitively on the diffusion rates of the signals inward the cell membrane. Numerical experiments are carried out to verify the theoretical results.

  11. Bias Correction for Retrieval of Atmospheric Parameters from the Microwave Humidity and Temperature Sounder Onboard the Fengyun-3C Satellite

    Directory of Open Access Journals (Sweden)

    Qiurui He

    2016-12-01

    Full Text Available The microwave humidity and temperature sounder (MWHTS on the Fengyun (FY-3C satellite measures the outgoing radiance from the Earth’s surface and atmospheric constituents. MWHTS, which makes measurements in the isolated oxygen absorption line near 118 GHz and the vicinity of the strong water vapor absorption line around 183 GHz, can provide fine vertical distribution structures of both atmospheric humidity and temperature. However, in order to obtain the accurate soundings of humidity and temperature by physical retrieval methods, the bias between the observed and simulated radiance calculated by the radiative transfer model from the background or first guess profiles must be corrected. In this study, two bias correction methods are developed through the correlation analysis between MWHTS measurements and air mass identified by the first guess profiles of the physical inversion; one is the linear regression correction (LRC, and the other is the neural network correction (NNC, representing the linear and nonlinear relationships between MWHTS measurements and air mass, respectively. The correction methods have been applied to MWHTS observed brightness temperatures over the geographic area (180° W–180° E, 60° S–60° N. The corrected results are evaluated by the probability density function of the differences between corrected observations and simulated values and the root mean square errors (RMSE with respect to simulated observations. The numerical results show that the NNC method has better performance, especially in MWHTS Channels 1 and 7–9, whose peak weight function heights are close to the surface. In order to assess the effects of bias correction methods proposed in this study on the retrieval accuracy, a one-dimensional variational system was built and applied to the MWHTS brightness temperatures to estimate the atmospheric temperature and humidity profiles. The retrieval results also show that NNC has better performance. An

  12. Applications of computer algebra to distributed parameter systems

    Science.gov (United States)

    Storch, Joel A.

    1993-01-01

    In the analysis of vibrations of continuous elastic systems, one often encounters complicated transcendental equations with roots directly related to the system's natural frequencies. Typically, these equations contain system parameters whose values must be specified before a numerical solution can be obtained. The present paper presents a method whereby the fundamental frequency can be obtained in analytical form to any desired degree of accuracy. The method is based upon truncation of rapidly converging series involving inverse powers of the system natural frequencies. A straightforward method to developing these series and summing them in closed form is presented. It is demonstrated how Computer Algebra can be exploited to perform the intricate analytical procedures which otherwise would render the technique difficult to apply in practice. We illustrate the method by developing two analytical approximations to the fundamental frequency of a vibrating cantilever carrying a rigid tip body. The results are compared to the numerical solution of the exact (transcendental) frequency equation over a range of system parameters.

  13. Parameter estimation in space systems using recurrent neural networks

    Science.gov (United States)

    Parlos, Alexander G.; Atiya, Amir F.; Sunkel, John W.

    1991-01-01

    The identification of time-varying parameters encountered in space systems is addressed, using artificial neural systems. A hybrid feedforward/feedback neural network, namely a recurrent multilayer perception, is used as the model structure in the nonlinear system identification. The feedforward portion of the network architecture provides its well-known interpolation property, while through recurrency and cross-talk, the local information feedback enables representation of temporal variations in the system nonlinearities. The standard back-propagation-learning algorithm is modified and it is used for both the off-line and on-line supervised training of the proposed hybrid network. The performance of recurrent multilayer perceptron networks in identifying parameters of nonlinear dynamic systems is investigated by estimating the mass properties of a representative large spacecraft. The changes in the spacecraft inertia are predicted using a trained neural network, during two configurations corresponding to the early and late stages of the spacecraft on-orbit assembly sequence. The proposed on-line mass properties estimation capability offers encouraging results, though, further research is warranted for training and testing the predictive capabilities of these networks beyond nominal spacecraft operations.

  14. System analysis approach to verification of site characterization parameters

    International Nuclear Information System (INIS)

    Romine, D.T.

    1987-01-01

    Early in the transition of the Basalt Waste Isolation Project (BWIP) from a preliminary geologic investigation to a part of a major system acquisition program, the following project needs were recognized: (1) site-specific system functional requirements, i.e., the capabilities a deep geologic basalt system must provide to ensure long-term isolation of wastes, (2) complete list of design variables and site characteristics (information and data needs) that could affect system capabilities; and (3) relative importance, availability, and uncertainty of these information and data needs. The first project need was satisfied by a conventional functional analysis. The second was answered by a unique extension of that functional analysis. The results of these two efforts have been released in the BWIP System Functional Analysis (SFA) Document. The third need is presently under study. With the advent of a formalized issue resolution strategy (IRS) process as the basis for the BWIP site characterization program, a subset of the SFA information and data needs was used to verify (a) that no significant variable was omitted from consideration in the IRS process, (b) the necessity of IRS site characterization parameters, and (c) the sufficiency of each issue-related set of IRS parameters to address that issue. An example of a SFA branch is discussed

  15. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems

    Directory of Open Access Journals (Sweden)

    Banga Julio R

    2006-11-01

    Full Text Available Abstract Background We consider the problem of parameter estimation (model calibration in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector. In order to surmount these difficulties, global optimization (GO methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. Results We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown structure (i.e. black-box models. In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned successful methods. Conclusion Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously

  16. Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems.

    Science.gov (United States)

    Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R

    2006-11-02

    We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems.

  17. Characteristic Parameters of MTF of the Retina-Brain System.

    Science.gov (United States)

    Bixin, Zeng; Shisu, Chen

    2005-01-01

    [Objective] To search parameters characterizing the MTF curve of retina-brain system of the human eye for distinguishing eye disease use. [Method] Suppose the MTF can be expressed by (for symmetric MTF) or (for asymmetric MTF). Let y=ln(MTF), x=lnf, the above formula can be transformed into y=k1x+... (for symmetric MTF) or y=k1'x+...(for asymmetric MTF).Parameters kis(or ki's) are determined by curve fitting from experimental data and used as discriminating indices to indicate various eye diseases. The effectivity of the curve fitting is evaluated by F test.[Result] The fitting parameters and the peak frequencies, fc, of MTF for normal eyes and eyes with diseases are shown in table 1 with corresponding F value and F value under 0.01 confidence level. The experimental data are taken from Wang's paper for normal eyes, and Fang's paper for eyes with diseases.[Conclusion] It seems that the parameters kis (or ki's) can be used as the indices to distinguish eye diseases because they are remarkably different for normal and various eye diseases. In curve fitting, there are reasons to use cubic equations for symmetric MTF (as in the case of cataracts) and quadratic equation for asymmetric MTF (as in the case of amblyopia).

  18. Control of Linear Parameter Varying Systems with Applications

    CERN Document Server

    Mohammadpour, Javad

    2012-01-01

    Control of Linear Parameter Varying Systems with Applications compiles state-of-the-art contributions on novel analytical and computational methods to address system modeling and identification, complexity reduction, performance analysis and control design for time-varying and nonlinear systems in the LPV framework. The book has an interdisciplinary character by emphasizing techniques that can be commonly applied in various engineering fields. It also includes a rich collection of illustrative applications in diverse domains to substantiate the effectiveness of the design methodologies and provide pointers to open research directions. The book is divided into three parts. The first part collects chapters of a more tutorial character on the background of LPV systems modeling and control. The second part gathers chapters devoted to the theoretical advancement of LPV analysis and synthesis methods to cope with the design constraints such as uncertainties and time delay. The third part of the volume showcases con...

  19. Hybrid fault diagnosis of nonlinear systems using neural parameter estimators.

    Science.gov (United States)

    Sobhani-Tehrani, E; Talebi, H A; Khorasani, K

    2014-02-01

    This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems taking advantage of both the system's mathematical model and the adaptive nonlinear approximation capability of computational intelligence techniques. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPEs) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FPs) that are indicators of faults in the system. Two NPE structures, series-parallel and parallel, are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. In contrast, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the two NPEs that originally assumes full state measurements for systems that have only partial state measurements. The proposed FTO is a neural state estimator that can estimate unmeasured states even in the presence of faults. The estimated and the measured states then comprise the inputs to the two proposed FDII schemes. Simulation results for FDII of reaction wheels of a three-axis stabilized satellite in the presence of disturbances and noise demonstrate the effectiveness of the proposed FDII solutions under partial state measurements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. On the parameters of the system Cyg X-1

    International Nuclear Information System (INIS)

    Sokolov, V.V.

    1987-01-01

    Estimations are given of the mass of the supergiant HDE 226868 in the system Cyg X-1 which are made on the basis of interpretation of spectroscopic observations by means of the model-atmosphere method. The importance is pointed out of accounting for deviations from LTE in calculations of equivalent widths and profiles of hydrogen lines by which the acceleration of gravity force on the surface of the optical star of system is determined. Supergiant mass determined in that way turns out to be M*=(16±3)M sun . Provided the zone of formation of the emission He II λ4686 A must be localized near the supergiant surface, the least value of inclination of system orbit plane is estimated: i>or approx. 35 deg. The possibility is pointed out of variability of equivalent widths of He II emission λ4686 A, which is connected with eclipse of the ''spot'', i.e. of area of localization of this emission. It is noted that for large angles (i>or approx. 35 deg) of orbit inclinaion, the mass of the degenerate star in the system Cyg X-1 does not exceed 10 M sun

  1. Characterization of antioxidant system parameters in four freshwater fish species.

    Science.gov (United States)

    Atli, Gülüzar; Canli, Esin G; Eroglu, Ali; Canli, Mustafa

    2016-04-01

    The potential use of antioxidant system parameters has gained considerable interest due to their pivotal role of detoxification mechanisms in environmental studies and culture fish point of view. Fish with different ecological needs may have different antioxidant capacity and response to environmental contaminants. Thus, the optimal working conditions and specific enzyme activities (Vmax and Km) of antioxidant system parameters (Superoxide dismutase, SOD; Catalase, CAT; Glutathione peroxidase, GPX; Glutathione reductase, GR and Glutathione S-transferase, GST) and glutathione (GSH) were determined in four commonly cultured freshwater fish species (tilapia; Oreochromis niloticus, carp; Cyprinus carpio, trout; Onchorhynchus mykiss and catfish; Clarias garipienus). Data showed that optimal concentrations of different buffers, pH and specific chemicals for each enzyme and GSH were similar in most cases for all fish species, except a few differences. The highest Vmax and Km values were found in carp for GPX and GST, though these values were the highest in tilapia, catfish and trout for CAT, SOD and GR, respectively. As a conclusion, optimization assays of these parameters in different bioindicator organisms based on their physiological and ecological differences may be useful for the aquatic ecosystem biomonitoring studies and also present fundamental data for utilization in aquaculture. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Testing variational estimation of process parameters and initial conditions of an earth system model

    Directory of Open Access Journals (Sweden)

    Simon Blessing

    2014-03-01

    Full Text Available We present a variational assimilation system around a coarse resolution Earth System Model (ESM and apply it for estimating initial conditions and parameters of the model. The system is based on derivative information that is efficiently provided by the ESM's adjoint, which has been generated through automatic differentiation of the model's source code. In our variational approach, the length of the feasible assimilation window is limited by the size of the domain in control space over which the approximation by the derivative is valid. This validity domain is reduced by non-smooth process representations. We show that in this respect the ocean component is less critical than the atmospheric component. We demonstrate how the feasible assimilation window can be extended to several weeks by modifying the implementation of specific process representations and by switching off processes such as precipitation.

  3. LBA-ECO CD-36 South American Land Data Assimilation System Atmospheric Forcing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides South American Land Data Assimilation System (SALDAS) forcing data including atmospheric fields necessary for land surface modeling...

  4. High Pressure Atmospheric Sampling Inlet System for Venus or the Gas Giants, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized high pressure atmospheric sampling inlet system for sample acquisition in extreme planetary environments,...

  5. Optimization of Experimental Model Parameter Identification for Energy Storage Systems

    Directory of Open Access Journals (Sweden)

    Rosario Morello

    2013-09-01

    Full Text Available The smart grid approach is envisioned to take advantage of all available modern technologies in transforming the current power system to provide benefits to all stakeholders in the fields of efficient energy utilisation and of wide integration of renewable sources. Energy storage systems could help to solve some issues that stem from renewable energy usage in terms of stabilizing the intermittent energy production, power quality and power peak mitigation. With the integration of energy storage systems into the smart grids, their accurate modeling becomes a necessity, in order to gain robust real-time control on the network, in terms of stability and energy supply forecasting. In this framework, this paper proposes a procedure to identify the values of the battery model parameters in order to best fit experimental data and integrate it, along with models of energy sources and electrical loads, in a complete framework which represents a real time smart grid management system. The proposed method is based on a hybrid optimisation technique, which makes combined use of a stochastic and a deterministic algorithm, with low computational burden and can therefore be repeated over time in order to account for parameter variations due to the battery’s age and usage.

  6. Alternative definitions of kinetic parameters for accelerator driven systems

    International Nuclear Information System (INIS)

    Talamo, Alberto; Gohar, Yousry; Dulla, Sandra; Ravetto, Piero

    2012-01-01

    Highlights: ► New definition of kinetic parameters for accelerator driven systems. ► Difference between effective and average delayed neutron fraction. ► Difference between effective and average prompt neutron lifetime. ► Effect of the neutron source (Cf, D–D, D–T) on k src . ► Effect of the (n, xn) reactions and source energy-angle distribution on k src . - Abstract: This study introduces a new formulation of kinetic parameters for accelerator driven systems and it is structured into two parts. The first part is dedicated to the classic definition of the kinetic parameters and compares different calculation methodologies. The second part considers a new definition of the kinetic parameters for subcritical assemblies, with particular emphasis on the delayed neutron fraction and the prompt neutron lifetime. This new definition takes into account neutrons from the external neutron source and (n, xn) reactions, which increase the fraction of prompt neutrons. The developed theoretical framework has been applied by Monte Carlo and deterministic calculations to the YALINA Thermal subcritical assembly located in Belarus. This facility can be driven by californium, deuterium–deuterium (D–D), or deuterium–tritium (D–T) external neutron sources. For the D–T neutron source, (n, xn) reactions must be taken into account in order to produce accurate results because the average energy of D–T source neutrons is 14.1 MeV, a value which is much higher than the threshold energy of the (n, 2n) cross section of uranium isotopes.

  7. Periodic orbits of hybrid systems and parameter estimation via AD.

    Energy Technology Data Exchange (ETDEWEB)

    Guckenheimer, John. (Cornell University); Phipps, Eric Todd; Casey, Richard (INRIA Sophia-Antipolis)

    2004-07-01

    Rhythmic, periodic processes are ubiquitous in biological systems; for example, the heart beat, walking, circadian rhythms and the menstrual cycle. Modeling these processes with high fidelity as periodic orbits of dynamical systems is challenging because: (1) (most) nonlinear differential equations can only be solved numerically; (2) accurate computation requires solving boundary value problems; (3) many problems and solutions are only piecewise smooth; (4) many problems require solving differential-algebraic equations; (5) sensitivity information for parameter dependence of solutions requires solving variational equations; and (6) truncation errors in numerical integration degrade performance of optimization methods for parameter estimation. In addition, mathematical models of biological processes frequently contain many poorly-known parameters, and the problems associated with this impedes the construction of detailed, high-fidelity models. Modelers are often faced with the difficult problem of using simulations of a nonlinear model, with complex dynamics and many parameters, to match experimental data. Improved computational tools for exploring parameter space and fitting models to data are clearly needed. This paper describes techniques for computing periodic orbits in systems of hybrid differential-algebraic equations and parameter estimation methods for fitting these orbits to data. These techniques make extensive use of automatic differentiation to accurately and efficiently evaluate derivatives for time integration, parameter sensitivities, root finding and optimization. The boundary value problem representing a periodic orbit in a hybrid system of differential algebraic equations is discretized via multiple-shooting using a high-degree Taylor series integration method [GM00, Phi03]. Numerical solutions to the shooting equations are then estimated by a Newton process yielding an approximate periodic orbit. A metric is defined for computing the distance

  8. Climatic Evolution and Habitability of Terrestrial Planets: Perspectives from Coupled Atmosphere-Mantle Systems

    Science.gov (United States)

    Basu Sarkar, D.; Moore, W. B.

    2016-12-01

    A multitude of factors including the distance from the host star and the stage of planetary evolution affect planetary climate and habitability. The complex interactions between the atmosphere and dynamics of the deep interior of the planets along with stellar fluxes present a formidable challenge. This work employs simplified approaches to address these complex issues in a systematic way. To be specific, we are investigating the coupled evolution of atmosphere and mantle dynamics. The overarching goal here is to simulate the evolutionary history of the terrestrial planets, for example Venus, Earth and Mars. This research also aims at deciphering the history of Venus-like runaway greenhouse and thus explore the possibility of cataclysmic shifts in climate of Earth-like planets. We focus on volatile cycling within the solid planets to understand the role of carbon/water in climatic and tectonic outcomes of such planets. In doing so, we are considering the feedbacks in the coupled mantle-atmosphere system. The primary feedback between the atmosphere and mantle is the surface temperature established by the greenhouse effect, which regulates the temperature gradient that drives the mantle convection and controls the rate at which volatiles are exchanged through weathering. We start our models with different initial assumptions to determine the final climate outcomes within a reasonable parameter space. Currently, there are very few planetary examples, to sample the climate outcomes, however this will soon change as exoplanets are discovered and examined. Therefore, we will be able to work with a significant number of potential candidates to answer questions like this one: For every Earth is there one Venus? ten? a thousand?

  9. Systematic Investigation on the Influence of Spray Parameters on the Mechanical Properties of Atmospheric Plasma-Sprayed YSZ Coatings

    Science.gov (United States)

    Mutter, Markus; Mauer, Georg; Mücke, Robert; Guillon, Olivier; Vaßen, Robert

    2018-02-01

    In the atmospheric plasma spray (APS) process, micro-sized ceramic powder is injected into a thermal plasma where it is rapidly heated and propelled toward the substrate. The coating formation is characterized by the subsequent impingement of a large number of more or less molten particles forming the so-called splats and eventually the coating. In this study, a systematic investigation on the influence of selected spray parameters on the coating microstructure and the coating properties was conducted. The investigation thereby comprised the coating porosity, the elastic modulus, and the residual stress evolution within the coating. The melting status of the particles at the impingement on the substrate in combination with the substrate surface condition is crucial for the coating formation. Single splats were collected on mirror-polished substrates for selected spray conditions and evaluated by identifying different types of splats (ideal, distorted, weakly bonded, and partially molten) and their relative fractions. In a previous study, these splat types were evaluated in terms of their effect on the above-mentioned coating properties. The particle melting status, which serves as a measure for the particle spreading behavior, was determined by in-flight particle temperature measurements and correlated to the coating properties. It was found that the gun power and the spray distance have a strong effect on the investigated coating properties, whereas the feed rate and the cooling show minor influence.

  10. Influence of modified atmosphere and vacuum packaging with and without nanosilver-coated films on different quality parameters of pork.

    Science.gov (United States)

    Kernberger-Fischer, Isa; Kehrenberg, Corinna; Klein, Guenter; Schaudien, Dirk; Krischek, Carsten

    2017-09-01

    Pork is often marketed in packages with high oxygen atmosphere (MAP) or vacuum to improve shelf life and appearance. As silver ions have antibacterial effects, food contact films coated with silver might improve the shelf life of meat. In the present study, pork was wrapped in commercially available films, coated with nanosilver particles, and stored in the two packaging variants MAP and vacuum for 12 days. During storage, samples were analyzed on days 1 (before packaging), 4, 8 and 12 for microbiological contamination, meat quality (e.g., pH, color), and for the percentages of the myoglobin (Mb) redox forms. In addition, the effects of the film were examined after inoculation of the meat with high quantities of methicillin-resistant Staphylococcus aureus (MRSA) cells before vacuum storage for 8 days. MAP storage resulted in higher lightness (L*) values, lower liquid loss and higher Mb oxidation compared to vacuum. Microbiological spoilage was partly affected by the packaging variants with reducing effects of the MAP. The nanosilver-coating only affects the Mb redox form percentages of the pork cutlets and on day 4 the L* values, whereas microbiological parameters were not influenced. As the nanosilver coating had no influence on the total viable bacteria counts as well as Pseudomonas spp., Enterobacteriaceae and MRSA counts, an advantage of the nanosilver coating on the shelf life could be excluded.

  11. Soft sensing of system parameters in membrane distillation

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-03-23

    Various examples of methods and systems are provided for soft sensing of system parameters in membrane distillation (MD). In one example, a system includes a MD module comprising a feed side and a permeate side separated by a membrane boundary layer; and processing circuitry configured to estimate feed solution temperatures and permeate solution temperatures of the MD module using monitored outlet temperatures of the feed side and the permeate side. In another example, a method includes monitoring outlet temperatures of a feed side and a permeate side of a MD module to determine a current feed outlet temperature and a current permeate outlet temperature; and determining a plurality of estimated temperature states of a membrane boundary layer separating the feed side and the permeate side of the MD module using the current feed outlet temperature and the current permeate outlet temperature.

  12. A multi-parameter, acquisition system positron annihilation lifetime spectrometer

    International Nuclear Information System (INIS)

    Sharshar, T.

    2004-01-01

    A positron annihilation lifetime spectrometer employing a multi-parameter acquisition system has been prepared for various purposes such as the investigation and characterization of solid-state materials. The fast-fast coincidence technique was used in the present spectrometer with a pair of plastic scintillation detectors. The acquisition system is based on the Kmax software and on CAMAC modules. The data are acquired in event-by-event list mode. The time spectrum for the desired energy windows can be obtained by off-line data sorting and analysis. The spectrometer for event-by-event data acquisition is an important step to construct a positron age-momentum correlation (AMOC) spectrometer. The AMOC technique is especially suited for the observation of positron transitions between different states during their lifetime. The system performance was tested and the results were presented and discussed

  13. Ensemble atmospheric dispersion calculations for decision support systems

    International Nuclear Information System (INIS)

    Borysiewicz, M.; Potempski, S.; Galkowski, A.; Zelazny, R.

    2003-01-01

    This document describes two approaches to long-range atmospheric dispersion of pollutants based on the ensemble concept. In the first part of the report some experiences related to the exercises undertaken under the ENSEMBLE project of the European Union are presented. The second part is devoted to the implementation of mesoscale numerical prediction models RAMS and atmospheric dispersion model HYPACT on Beowulf cluster and theirs usage for ensemble forecasting and long range atmospheric ensemble dispersion calculations based on available meteorological data from NCEO, NOAA (USA). (author)

  14. Controlling a Chaotic System through Control Parameter Self-Modulation

    International Nuclear Information System (INIS)

    Pastor, I.

    1994-01-01

    A method for obtaining active control of a chaotic system based on the modulation of a control parameter by adding to it a small perturbation proportional to one output signal is proposed. From a theoretical point of view, chaos can be stabilized in the framework of this method because small modifications of the vector field controlling the dynamics are allowed, and thus some of the previously existing unstable periodic trajectories can be made stable. The method is much inspired on recent treatments of some related problems, and it is compared with them. One of its most attractive features is that it should be very easy to implement it on real experiments. The method is tested on a system of ordinary differential equations modelling the coupling of two self-oscillating electronic circuits (van der Pol oscillators). Some brief comments are made on the possibility that it could be applied to complex spatio-temporal systems where multiple chaotic structures can coexist for some values of the control parameters

  15. Controlling a Chaotic System through Control Parameter Self-Modulation

    International Nuclear Information System (INIS)

    Pastor, I.

    1994-01-01

    A method for obtaining active control of a chaotic system based on the modulation of a control parameter by adding to it a small perturbation proportional to one output signal is proposed. From a theoretical point of view, chaos can be stabilized in the framework of this method because small modifications of the vector field controlling the dynamics are allowed, and thus some of the previously oxi sting unstable periodic trajectories can be made stable. The method is much inspired on recent treatments of some related problems, and i t is compared with them. One of its most attractive features is that is should be very easy to implement it on real experiments. The method is tested on a system of ordinary differential equations model ling the coupling of two se If - oscillating electronic circuits (van der Pol oscillators). Some brief comments are made on the no possibility that it could be applied to complex spatio-temporal systems where multiple chaotic structures can coexist for some values of the control parameters. (Author) 28 refs

  16. Controlling a Chaotic System through Control Parameter Self-Modulation

    Energy Technology Data Exchange (ETDEWEB)

    Pastor, I.

    1994-07-01

    A method for obtaining active control of a chaotic system based on the modulation of a control parameter by adding to it a small perturbation proportional to one output signal is proposed. From a theoretical point of view, chaos can be stabilized in the framework of this method because small modifications of the vector field controlling the dynamics are allowed, and thus some of the previously oxi sting unstable periodic trajectories can be made stable. The method is much inspired on recent treatments of some related problems, and i t is compared with them. One of its most attractive features is that is should be very easy to implement it on real experiments. The method is tested on a system of ordinary differential equations model ling the coupling of two se If - oscillating electronic circuits (van der Pol oscillators). Some brief comments are made on the no possibility that it could be applied to complex spatio-temporal systems where multiple chaotic structures can coexist for some values of the control parameters. (Author) 28 refs.

  17. Reducing system of parameters and the Cohen–Macaulay property

    Indian Academy of Sciences (India)

    of parameters of M iff for all primes P ∈ Supp M ∩ VR(x1,...,xr ) with dimR R/P = dimR M −r the localizationMP ofM atP is anr-dimensional Cohen–Macaulay module over RP . Furthermore, we will show that M is a Cohen–Macaulay module iff yd is a non zero divisor on M/(y1,...,yd−1)M, where (y1,...,yd ) is a reducing system ...

  18. A parameters acquisition and device monitoring system for HIRFL

    International Nuclear Information System (INIS)

    Yao Nan; Huang Xinmin; Chen Yun; Zheng Jianhua; Huang Tuanhua; Tang Jingyu

    2002-01-01

    A practical application for patrolling the devices' status of HIRFL has been developed ad hoc in VC ++ environment. It periodically acquires the devices' parameters by running a server program on the corresponding consoles. A client program simultaneously reads these data via local network and displays the status of the current devices under control of the HIRFL distributed control system, and automatically gives alarm signals whenever exception occurs. It can respond the user's interruption requirement while running. Many practical functions, such as inclusion and exclusion of the listed devices, modification of their error range and automatic saving of the record of the exceptions and the relevant operations, are enabled

  19. A parameters acquisition and device monitoring system for HIRFL

    CERN Document Server

    Yao Nan; Chen Yun; Zheng Jian; Huang Tuan Hua; Tang Jin Gyu

    2002-01-01

    A practical application for patrolling the devices' status of HIRFL has been developed ad hoc in VC sup + sup + environment. It periodically acquires the devices' parameters by running a server program on the corresponding consoles. A client program simultaneously reads these data via local network and displays the status of the current devices under control of the HIRFL distributed control system, and automatically gives alarm signals whenever exception occurs. It can respond the user's interruption requirement while running. Many practical functions, such as inclusion and exclusion of the listed devices, modification of their error range and automatic saving of the record of the exceptions and the relevant operations, are enabled

  20. Regional Entrepreneurship System: Development Parameters and Potential of Reconfiguration

    Directory of Open Access Journals (Sweden)

    Natalya Zinovyevna Solodilova

    2017-12-01

    Full Text Available The article deals with the development of entrepreneurship in the Russian regions. Firstly, the state of both Russian entrepreneurship, in general, and small and medium-sized business in particular is not satisfactory. Secondly, the measures implemented by the state in the field of entrepreneurship development are not sufficiently effective. To the authors’ opinion, these two facts are due, among other things, to a lack of a holistic understanding of what constitutes an institution of entrepreneurship in a spatial context. The authors propose to consider the development of regional entrepreneurship using the system approach with the scope to the regional business system. Within the proposed authors’ approach, resources, economic agents and institutions are considered as the main elements of this system. The authors substantiate that there are institutional configurations, and not simple institutions, which determine the parameters of interaction between the elements of the regional enterprise system. These elements can contribute to the enterprise processes in the territory or block them. We assume that even a region with an essential resource of business potential is not able to realize it completely until it develops an effective institutional configuration of the regional business system. In order to investigate certain parameters of the institutional configuration of the regional business system, we propose a methodology for assessing the institutional loyalty of business entities and testing this technique on the example of eighty-four constituent entities of the Russian Federation. We have concluded that, in a large part of the Russian regions, a successful implementation of strategy for the development of small and medium-sized businesses will require the transformation of the regional enterprise system on the basis of reengineering. It involves a radical redesigning the entire system, ensuring the entrepreneurial processes in a

  1. Development of a multi-parameter system for Antarctic researching

    Science.gov (United States)

    Garcia, Alicia; Peci, Luis Miguel; Berrocoso, Manuel; Fernandez-Ros, Alberto; Marrero, Jose Manuel; Ortiz, Ramon

    2014-05-01

    This work describes the development of a multi-parameter system for antarctic researching. The system permits the remote access and the connection of several modules in a network. An embedded ARM processor has been used, allowing a great flexibility in hardware configuration.The advantage of the system presented in this work is that it allows the rapid development of a monitoring network that uses the latest technologies of embedded systems. These embedded systems offer the possibility of developing the software necessary for managing the sensors and instruments available. Data can be transmitted in near real time or on demand to a Data Reception Center (DRC). The local storage allows retrieving data when the transmission fails and uses only short transmission periods rather than continuous transmission. The price of both hardware and software is very low. The use of a complete Linux solution (Debian) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular System described has been deployed at Deception Island (Antarctica), within the Spanish Antarctic Program, and has proved successful for monitoring and researching the geodinamical activity, with proven reliability and efficient operation under extreme conditions. Deception Islan is an active volcano with some geothermal areas, this fact has allowed to develop a power system using Peltier cells. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  2. Optimal Sensor Networks Scheduling in Identification of Distributed Parameter Systems

    CERN Document Server

    Patan, Maciej

    2012-01-01

    Sensor networks have recently come into prominence because they hold the potential to revolutionize a wide spectrum of both civilian and military applications. An ingenious characteristic of sensor networks is the distributed nature of data acquisition. Therefore they seem to be ideally prepared for the task of monitoring processes with spatio-temporal dynamics which constitute one of most general and important classes of systems in modelling of the real-world phenomena. It is clear that careful deployment and activation of sensor nodes are critical for collecting the most valuable information from the observed environment. Optimal Sensor Network Scheduling in Identification of Distributed Parameter Systems discusses the characteristic features of the sensor scheduling problem, analyzes classical and recent approaches, and proposes a wide range of original solutions, especially dedicated for networks with mobile and scanning nodes. Both researchers and practitioners will find the case studies, the proposed al...

  3. A system for remote monitoring of the human body parameters

    Directory of Open Access Journals (Sweden)

    Oliviu Matei

    2015-12-01

    Full Text Available We present an invention (pending patent number A 201100939 related to a system that monitors human body parameters, such as heart rate and blood pressure, and when they are out of the regular range, it transmits a remote warning signal along with the GPS coordinates of the patient to the special intervention services, or to the tutors, so that they can take action in the shortest time. The most important aspect of the system is its mobility, the patient being able to live her normal life, not having to stay in a fix perimeter, as it is the case for most monitoring equipments. The scope of the invention is the health of people, both individually and at the institutions involved in health insurance, such as clinics, hospitals, emergency services, rescue, SMURD, social settlements, etc.

  4. Application of verification and validation on safety parameter display systems

    International Nuclear Information System (INIS)

    Thomas, N.C.

    1983-01-01

    Offers some explanation of how verification and validation (VandV) can support development and licensing of the Safety Parameter Display Systems (SPDS). Advocates that VandV can be more readily accepted within the nuclear industry if a better understanding exists of what the objectives of VandV are and should be. Includes a discussion regarding a reasonable balance of costs and benefits of VandV as applied to the SPDS and to other digital systems. Represents the author's perception of the regulator's perspective based on background information and experience, and discussions with regulators about their current concerns and objectives. Suggests that the introduction of the SPDS into the Control Room is a first step towards growing dependency on use of computers

  5. Robust parameter design for automatically controlled systems and nanostructure synthesis

    Science.gov (United States)

    Dasgupta, Tirthankar

    2007-12-01

    This research focuses on developing comprehensive frameworks for developing robust parameter design methodology for dynamic systems with automatic control and for synthesis of nanostructures. In many automatically controlled dynamic processes, the optimal feedback control law depends on the parameter design solution and vice versa and therefore an integrated approach is necessary. A parameter design methodology in the presence of feedback control is developed for processes of long duration under the assumption that experimental noise factors are uncorrelated over time. Systems that follow a pure-gain dynamic model are considered and the best proportional-integral and minimum mean squared error control strategies are developed by using robust parameter design. The proposed method is illustrated using a simulated example and a case study in a urea packing plant. This idea is also extended to cases with on-line noise factors. The possibility of integrating feedforward control with a minimum mean squared error feedback control scheme is explored. To meet the needs of large scale synthesis of nanostructures, it is critical to systematically find experimental conditions under which the desired nanostructures are synthesized reproducibly, at large quantity and with controlled morphology. The first part of the research in this area focuses on modeling and optimization of existing experimental data. Through a rigorous statistical analysis of experimental data, models linking the probabilities of obtaining specific morphologies to the process variables are developed. A new iterative algorithm for fitting a Multinomial GLM is proposed and used. The optimum process conditions, which maximize the above probabilities and make the synthesis process less sensitive to variations of process variables around set values, are derived from the fitted models using Monte-Carlo simulations. The second part of the research deals with development of an experimental design methodology, tailor

  6. Atmospheric temperature profiles derived through the inversion of a system of first order differential equations. [radiance data from satellite sounder

    Science.gov (United States)

    Gatlin, J. A.; Englar, T. S.

    1976-01-01

    Generation of vertical temperatures profiles from remotely sensed atmospheric radiance data is described as an analogous communications system. The radiative transport characteristics of the atmosphere encodes the continuous temperature profile into an 'n' element vector where 'n' is the number of channels in the satellite instrument. The temperature profile is a message transmitted from station A to station B and the link is the satellite instrument. At station B the decoder reproduces a continuous function which is the best estimate of the message encoded at station A. It is shown that the decoder must operate in a tuned mode where the parameters used in the encoder precisely determine the decoder parameters, and that the characteristics of the total message block must be given by a set of decoder constraints

  7. Characteristic parameters of electromagnetic signals from a human heart system

    International Nuclear Information System (INIS)

    Liu Xin-Yuan; Wang Yin; Zhang Su-Ming; Gao Hong-Lei; Pei Liu-Qing; Dai Yuan-Dong

    2011-01-01

    The electromagnetic field of a human heart system is a bioelectromagnetic field. Electrocardiography (ECG) and magnetocardiography (MCG) are both carriers of electromagnetic information about the cardiac system, and they are nonstationary signals. In this study, ECG and MCG data from healthy subjects are acquired; the MCG data are captured using a high-T c radio frequency superconducting quantum interference device (HTc rf SQUIDs) and the QRS complexes in these data are analysed by the evolutionary spectrum analysis method. The results show that the quality factor Q and the central frequency f z of the QRS complex evolutionary spectrum are the characteristic parameters (CHPs) of ECG and MCG in the time—frequency domain. The confidence intervals of the mean values of the CHPs are estimated by the Student t distribution method in mathematical statistics. We believe that there are threshold ranges of the mean values of Q and f z for healthy subjects. We have postulated the following criterion: if the mean values of CHPs are in the proper ranges, the cardiac system is in a normal condition and it possesses the capability of homeostasis. In contrast, if the mean values of the CHPs do not lie in the proper ranges, the homeostasis of the cardiac system is lacking and some cardiac disease may follow. The results and procedure of MCG CHPs in the study afford a technological route for the application of HTc rf SQUIDs in cardiology. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. WIPP shaft seal system parameters recommended to support compliance calculations

    International Nuclear Information System (INIS)

    Hurtado, L.D.; Knowles, M.K.; Kelley, V.A.; Jones, T.L.; Ogintz, J.B.; Pfeifle, T.W.

    1997-12-01

    The US Department of Energy plans to dispose of transuranic waste at the Waste Isolation Pilot Plant (WIPP), which is sited in southeastern New Mexico. The WIPP disposal facility is located approximately 2,150 feet (650 m) below surface in the bedded halite of the Salado Formation. Prior to initiation of disposal activities, the Department of Energy must demonstrate that the WIPP will comply with all regulatory requirements. Applicable regulations require that contaminant releases from the WIPP remain below specified levels for a period of 10,000 years. To demonstrate that the WIPP will comply with these regulations, the Department of Energy has requested that Sandia National Laboratories develop and implement a comprehensive performance assessment of the WIPP repository for the regulatory period. This document presents the conceptual model of the shaft sealing system to be implemented in performance assessment calculations conducted in support of the Compliance Certification Application for the WIPP. The model was developed for use in repository-scale calculations and includes the seal system geometry and materials to be used in grid development as well as all parameters needed to describe the seal materials. These calculations predict the hydrologic behavior of the system. Hence conceptual model development is limited to those processes that could impact the fluid flow through the seal system

  9. Integrated system for remotely monitoring critical physiological parameters

    Science.gov (United States)

    Alexakis, S.; Karalis, S.; Asvestas, P.

    2015-09-01

    Monitoring several human parameters (temperature, heart rate, blood pressure etc.) is an essential task in health care in hospitals as well as in home care. This paper presents the design and implementation of an integrated, embedded system that includes an electrocardiograph of nine leads and two channels, a digital thermometer for measuring the body temperature and a power supply. The system provides networking capabilities (wired or wireless) and is accessible by means of a web interface that allows the user to select the leads, as well as to review the values of heart rate (beats per minute) and body temperature. Furthermore, there is the option of saving all the data in a Micro SD memory card or in a Google Spreadsheet. The necessary analog circuits for signal conditioning (amplification and filtering) were manufactured on printed circuit boards (PCB). The system was built around Arduino Yun, which is a platform that contains a microcontroller and a microprocessor running a special LINUX distribution. Furthermore, the Arduino Yun provides the necessary network connectivity capabilities by means of the integrated Wi-Fi and Ethernet interfaces. The web interface was developed using HTML pages with JavaScript support. The system was tested on simulated data as well as real data, providing satisfactory accuracy regarding the measurement of the heart rate (±3 bpm error) and the temperature (±0.3°C error).

  10. WIPP shaft seal system parameters recommended to support compliance calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, L.D.; Knowles, M.K. [Sandia National Labs., Albuquerque, NM (United States); Kelley, V.A.; Jones, T.L.; Ogintz, J.B. [INTERA Inc., Austin, TX (United States); Pfeifle, T.W. [RE/SPEC, Inc., Rapid City, SD (United States)

    1997-12-01

    The US Department of Energy plans to dispose of transuranic waste at the Waste Isolation Pilot Plant (WIPP), which is sited in southeastern New Mexico. The WIPP disposal facility is located approximately 2,150 feet (650 m) below surface in the bedded halite of the Salado Formation. Prior to initiation of disposal activities, the Department of Energy must demonstrate that the WIPP will comply with all regulatory requirements. Applicable regulations require that contaminant releases from the WIPP remain below specified levels for a period of 10,000 years. To demonstrate that the WIPP will comply with these regulations, the Department of Energy has requested that Sandia National Laboratories develop and implement a comprehensive performance assessment of the WIPP repository for the regulatory period. This document presents the conceptual model of the shaft sealing system to be implemented in performance assessment calculations conducted in support of the Compliance Certification Application for the WIPP. The model was developed for use in repository-scale calculations and includes the seal system geometry and materials to be used in grid development as well as all parameters needed to describe the seal materials. These calculations predict the hydrologic behavior of the system. Hence conceptual model development is limited to those processes that could impact the fluid flow through the seal system.

  11. Derivation of global vegetation biophysical parameters from EUMETSAT Polar System

    Science.gov (United States)

    García-Haro, Francisco Javier; Campos-Taberner, Manuel; Muñoz-Marí, Jordi; Laparra, Valero; Camacho, Fernando; Sánchez-Zapero, Jorge; Camps-Valls, Gustau

    2018-05-01

    This paper presents the algorithm developed in LSA-SAF (Satellite Application Facility for Land Surface Analysis) for the derivation of global vegetation parameters from the AVHRR (Advanced Very High Resolution Radiometer) sensor on board MetOp (Meteorological-Operational) satellites forming the EUMETSAT (European Organization for the Exploitation of Meteorological Satellites) Polar System (EPS). The suite of LSA-SAF EPS vegetation products includes the leaf area index (LAI), the fractional vegetation cover (FVC), and the fraction of absorbed photosynthetically active radiation (FAPAR). LAI, FAPAR, and FVC characterize the structure and the functioning of vegetation and are key parameters for a wide range of land-biosphere applications. The algorithm is based on a hybrid approach that blends the generalization capabilities offered by physical radiative transfer models with the accuracy and computational efficiency of machine learning methods. One major feature is the implementation of multi-output retrieval methods able to jointly and more consistently estimate all the biophysical parameters at the same time. We propose a multi-output Gaussian process regression (GPRmulti), which outperforms other considered methods over PROSAIL (coupling of PROSPECT and SAIL (Scattering by Arbitrary Inclined Leaves) radiative transfer models) EPS simulations. The global EPS products include uncertainty estimates taking into account the uncertainty captured by the retrieval method and input errors propagation. A sensitivity analysis is performed to assess several sources of uncertainties in retrievals and maximize the positive impact of modeling the noise in training simulations. The paper discusses initial validation studies and provides details about the characteristics and overall quality of the products, which can be of interest to assist the successful use of the data by a broad user's community. The consistent generation and distribution of the EPS vegetation products will

  12. Observations of multiple order parameters in 5f electron systems

    International Nuclear Information System (INIS)

    Blackburn, E.

    2005-12-01

    In this thesis, multiple order parameters originating in the same electronic system are studied. The multi-k magnetic structures, where more than one propagation wavevector, k, is observed in the same volume, are considered as prototypical models. The effect of this structure on the elastic and inelastic response is studied. In cubic 3-k uranium rock-salts, unexpected elastic diffraction events were observed at positions in reciprocal space where the structure factor should have been zero. These diffraction peaks are identified with correlations between the (orthogonal) magnetic order parameters. The 3-k structure also affects the observed dynamics; the spin-wave fluctuations in uranium dioxide as observed by inelastic neutron polarization analysis can only be explained on the basis of a 3-k structure. In the antiferromagnetic superconductor UPd 2 Al 3 the magnetic order and the super-conducting state coexist, and are apparently generated by the same heavy fermions. The effect of an external magnetic field on both the normal and superconducting states is examined. In the normal state, the compound displays Fermi-liquid-like behaviour. The inelastic neutron response is strongly renormalized on entering the superconducting state, and high-precision measurements of the low-energy transfer part of this response confirm that the superconducting energy gap has the same symmetry as the antiferromagnetic lattice. (author)

  13. 30 CFR 75.351 - Atmospheric monitoring systems.

    Science.gov (United States)

    2010-07-01

    ... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.351 Atmospheric... maintained with each working section, with areas where mechanized mining equipment is being installed or... where mechanized mining equipment is being installed or removed when the carbon monoxide, smoke, or...

  14. Opportunity parameters in the development of Product/Service-Systems

    DEFF Research Database (Denmark)

    Matzen, Detlef; Andreasen, Mogens Myrup

    2006-01-01

    are generally applicable for guiding companies in the formulation of strategies and objectives in the process of shifting from product to product/service- orientation. The presented parameters are mainly extracted from analysis of existing PSS cases from industry and concept work conducted in study projects......In the light of the current focus on innovative business development throughout industry and society, the concept of product/service-systems (PSS) is a promising approach to product development, which may yield product offers that benefit the company, customer and society alike. Only recently...... researchers have made attempts to formulate requirements and procedures for the integration of product and service development [Steinbach 2005]. In the field of environmental studies, the concept of PSS has been investigated for some time, especially for the opportunities of lowering environmental impact...

  15. Dynamic systems models new methods of parameter and state estimation

    CERN Document Server

    2016-01-01

    This monograph is an exposition of a novel method for solving inverse problems, a method of parameter estimation for time series data collected from simulations of real experiments. These time series might be generated by measuring the dynamics of aircraft in flight, by the function of a hidden Markov model used in bioinformatics or speech recognition or when analyzing the dynamics of asset pricing provided by the nonlinear models of financial mathematics. Dynamic Systems Models demonstrates the use of algorithms based on polynomial approximation which have weaker requirements than already-popular iterative methods. Specifically, they do not require a first approximation of a root vector and they allow non-differentiable elements in the vector functions being approximated. The text covers all the points necessary for the understanding and use of polynomial approximation from the mathematical fundamentals, through algorithm development to the application of the method in, for instance, aeroplane flight dynamic...

  16. Next generation CANDU heat transport system parameter assessment

    International Nuclear Information System (INIS)

    Hau, K.F.; Love, J.W.; Vadera, M.; Vecchiarelli, J.

    2001-01-01

    AECL has initiated an innovative program to develop the next generation of technologies for CANDU reactors, and to apply them to a highly cost-effective new family of next generation power plants. Four major design changes were considered in the present conceptual design of the Heat Transport System (HTS) for the Next Generation (NG) CANDU. These include: light water replacement of heavy water as coolant, a compact core design resulting from a fuel channel lattice pitch reduction, use of Slightly Enriched Uranium (SEU) CANFLEX fuel bundles, and higher HTS and Turbine Generator (TG) operating pressures and temperatures. In designing the HTS, the goal is to reduce the capital cost while meeting the design and safety requirements with robust safety margins. This paper describes the studies to optimize key HTS parameters, including the assessment methodology and the basis of proposed design conditions for the NG CANDU HTS. (author)

  17. Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS

    Directory of Open Access Journals (Sweden)

    Sprovieri F.

    2013-04-01

    Full Text Available Consistent, high-quality measurements of atmospheric mercury (Hg are necessary in order to better understand Hg emissions, transport, and deposition on a global scale. Although the number of atmospheric Hg monitoring stations has increased in recent years, the available measurement database is limited and there are many regions of the world where measurements have not been extensively performed. Long-term atmospheric Hg monitoring and additional ground-based monitoring sites are needed in order to generate datasets that will offer new insight and information about the global scale trends of atmospheric Hg emissions and deposition. In the framework of the Global Mercury Observation System (GMOS project, a coordinated global observational network for atmospheric Hg is being established. The overall research strategy of GMOS is to develop a state-of-the-art observation system able to provide information on the concentration of Hg species in ambient air and precipitation on the global scale. This network is being developed by integrating previously established ground-based atmospheric Hg monitoring stations with newly established GMOS sites that are located both at high altitude and sea level locations, as well as in climatically diverse regions. Through the collection of consistent, high-quality atmospheric Hg measurement data, we seek to create a comprehensive assessment of atmospheric Hg concentrations and their dependence on meteorology, long-range atmospheric transport and atmospheric emissions.

  18. Evaluation of Critical Parameters to Improve Slope Drainage System

    Directory of Open Access Journals (Sweden)

    Yong Weng Long

    2017-01-01

    Full Text Available This study focuses on identifying and evaluating critical parameters of various drainage configurations, arrangement, and filter which affect the efficiency of water draining system in slopes. There are a total of seven experiments with different types of homogeneous soil, drainage envelope, filter material, and quantity of pipes performed utilizing a model box with a dimension of 0.8 m × 0.8 m × 0.6 m. The pipes were orientated at 5 degrees from the horizontal. Rainfall event was introduced via a rainfall simulator with rainfall intensity of 434.1 mm/h. From the experiments performed, the expected outcomes when utilizing double pipes and geotextile as envelope filter were verified in this study. The results obtained from these experiments were reviewed and compared with Chapter 14 “Subsurface Drainage Systems” of DID’s Irrigation and Agricultural Drainage Manual of Malaysia and the European standard. It is recommended that the pipe installed in the slope could be wrapped with geotextile and in tandem with application of granular filter to minimize clogging without affecting the water discharge rate. Terzaghi’s filter criteria could be followed closely when deciding on new materials to act as aggregate filter. A caging system could be introduced as it could maintain the integrity of the drainage system and could ease installation.

  19. The research of atmospheric 2D optical PPM CDMA system with turbo coding

    Science.gov (United States)

    Zhou, Xiuli; Li, Zaoxia

    2007-11-01

    The atmospheric two-dimensional optical code-division multiple-access (CDMA) systems using pulse-position modulation (PPM) and Turbo-coded were presented. We analyzed the bit-error rate (BER) of the proposed system using pulse-position modulation (PPM) with considering the effects of the scintillation, avalanche photodiode noise, thermal noise, and multi-user interference. We showed that the atmospheric two dimensional (2D) optical PPM CDMA systems can realize high-speed communications when the logarithm variance of the scintillation is less than 0.1, and the turbo-coded atmospheric optical CDMA system has better bit error rate(BER) performance than the atmospheric optical PPM CDMA systems without turbo-coded. We also showed that the turbo-coded system has better performance than the multi-user detection system.

  20. Robust control of distributed parameter mechanical systems using a multidimensional systems approach

    Czech Academy of Sciences Publication Activity Database

    Cichy, B.; Augusta, Petr; Rogers, E.; Galkowski, K.; Hurák, Z.

    2010-01-01

    Roč. 58, č. 1 (2010), s. 67-75 ISSN 0239-7269 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : robust control * distributed parameter mechanical systems * multidimensional systems Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2010/TR/augusta-0347866.pdf

  1. Pinus sylvestris L. needle surface wettability parameters as indicators of atmospheric environment pollution impacts: Novel contact angle hysteresis methodology

    Science.gov (United States)

    Pogorzelski, Stanisław J.; Rochowski, Pawel; Szurkowski, Janusz

    2014-02-01

    An investigation of water contact angles (CAs), contact angle hysteresis (CAH) was carried out for 1-year to 4-year old needles (Pinus sylvestris) collected in urban (Gdansk) and rural (Karsin) locations using an original measuring technique based on the geometry of the drop on a vertical filament. Concentrations of air pollutants (SO2, NOx, C6H6, and suspended particular matter - SPM) currently considered to be most important in causing direct damage to vegetation were simultaneously monitored. A set of the surface wettability parameters: the apparent surface free energy γSV, adhesive film tension Π, work of adhesion WA, and spreading WS, were determined from CAH data using the approach developed by Chibowski (2003) to quantify the surface energetics of the needle substrata affected by aging and pollution impacts. This formalism relates the total apparent surface free energy of the solid γSV with only three measurable quantities: the surface tension of the probe liquid γLV and its advancing θA and receding θR contact angle hysteresis. Since CAH depends on the outermost wax layer surface roughness and spatial physicochemical heterogeneity of a solid surface, CA data were corrected using surface architecture profiles registered with confocal scanning laser microscopy. It was found that the roughness parameter r is significantly negatively correlated (R = -0.74) with the needle age (collected at Karsin). The needle surface aging process resulted in its surface hydrophilization (CA↓ and CAH↓ with γSV↑ and WA↑). A temporal evolution of the needles wettability was traced with the data point distribution in the 2D space of CAH plotted versus WS. The wettability parameters were closely correlated to pollutant concentrations as evidenced from Spearman's rank correlation procedure (R = 0.63-0.91; p biological systems.

  2. Dependency of image quality on system configuration parameters in a stationary digital breast tomosynthesis system

    OpenAIRE

    Tucker, Andrew W.; Lu, Jianping; Zhou, Otto

    2013-01-01

    Purpose: In principle, a stationary digital breast tomosynthesis (s-DBT) system has better image quality when compared to continuous motion DBT systems due to zero motion blur of the source. The authors have developed a s-DBT system by using a linear carbon nanotube x-ray source array. The purpose of the current study was to quantitatively evaluate the performance of the s-DBT system; and investigate the dependence of imaging quality on the system configuration parameters.

  3. Parameter optimization CCPP and coolant system gas turbine

    OpenAIRE

    Клер, Александр Матвеевич; Захаров, Юрий Борисович; Потанина, Юлия Михайловна

    2013-01-01

    Today most researchers optimize the parameters of cycles in combined cycle power plants without detailed calculations of the gas turbine flow path, which often involves separate optimization of the steam cycle and the gas turbine parameters, including the parameters of the gas turbine flow path that are usually known beforehand. This paper is the first to suggest a technique for coordinated optimization of combined cycle power plants, where both the parameters of the steam cycle in the combin...

  4. Parameter estimation and prediction of nonlinear biological systems: some examples

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2006-01-01

    Rearranging and reparameterizing a discrete-time nonlinear model with polynomial quotient structure in input, output and parameters (xk = f(Z, p)) leads to a model linear in its (new) parameters. As a result, the parameter estimation problem becomes a so-called errors-in-variables problem for which

  5. Giant Planets of Our Solar System Atmospheres, Composition, and Structure

    CERN Document Server

    Irwin, Patrick G. J

    2009-01-01

    This book reviews the current state of knowledge of the atmospheres of the giant gaseous planets: Jupiter, Saturn, Uranus, and Neptune. The current theories of their formation are reviewed and their recently observed temperature, composition and cloud structures are contrasted and compared with simple thermodynamic, radiative transfer and dynamical models. The instruments and techniques that have been used to remotely measure their atmospheric properties are also reviewed, and the likely development of outer planet observations over the next two decades is outlined. This second edition has been extensively updated following the Cassini mission results for Jupiter/Saturn and the newest ground-based measurements for Uranus/Neptune as well as on the latest development in the theories on planet formation.

  6. Evaluation of severe accident risks: Quantification of major input parameters: MAACS [MELCOR Accident Consequence Code System] input

    International Nuclear Information System (INIS)

    Sprung, J.L.; Jow, H-N; Rollstin, J.A.; Helton, J.C.

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs

  7. Evaluation of severe accident risks: Quantification of major input parameters: MAACS (MELCOR Accident Consequence Code System) input

    Energy Technology Data Exchange (ETDEWEB)

    Sprung, J.L.; Jow, H-N (Sandia National Labs., Albuquerque, NM (USA)); Rollstin, J.A. (GRAM, Inc., Albuquerque, NM (USA)); Helton, J.C. (Arizona State Univ., Tempe, AZ (USA))

    1990-12-01

    Estimation of offsite accident consequences is the customary final step in a probabilistic assessment of the risks of severe nuclear reactor accidents. Recently, the Nuclear Regulatory Commission reassessed the risks of severe accidents at five US power reactors (NUREG-1150). Offsite accident consequences for NUREG-1150 source terms were estimated using the MELCOR Accident Consequence Code System (MACCS). Before these calculations were performed, most MACCS input parameters were reviewed, and for each parameter reviewed, a best-estimate value was recommended. This report presents the results of these reviews. Specifically, recommended values and the basis for their selection are presented for MACCS atmospheric and biospheric transport, emergency response, food pathway, and economic input parameters. Dose conversion factors and health effect parameters are not reviewed in this report. 134 refs., 15 figs., 110 tabs.

  8. Gaseous toroid around Saturn. [Saturnian ring system for atomic hydrogen trapping in Titan atmospheric model

    Science.gov (United States)

    Mcdonough, T. R.

    1974-01-01

    The trapping of Titan's escaping atmosphere in the Saturnian system by a toroidal ring is discussed. The radius of the toroid is comparable to Titan's orbit, or about ten times larger than the visible rings. Theoretical atmospheric models are formulated that consider Saturn's gravitational attraction and magnetospheric properties in forming this toroid and in protecting toroid particles from direct ionization by solar wind particles.

  9. Earth System Data Microsets for Education From the Atmospheric Sciences Data Center

    Science.gov (United States)

    Phelps, C. S.; Chambers, L. H.; Oots, P. C.; Moore, S. W.; Lorentz, K. E.; Dalton, A. J.

    2004-12-01

    The Atmospheric Sciences Data Center (ASDC) at NASA's Langley Research Center houses over 700 data sets related to Earth's radiation budget, clouds, aerosols and tropospheric chemistry. These data sets were produced to increase academic understanding of the natural and anthropogenic perturbations that influence global climate change. Scientists have been analyzing the extensive data to discover and quantify the complex interactions and feedbacks in the Earth system, communicating conclusions frequently with colleagues, policy makers and the general public. NASA's Science Mission Directorate aims to stimulate public interest in the understanding of these Earth system science findings and to encourage young scholars to consider careers in science, technology, engineering and mathematics. However, barriers still exist to the use of actual satellite observations in the classroom to energize the educational process. NASA is sponsoring the "Mentoring and inquirY using NASA Data on Atmospheric and earth science for Teachers and Amateurs" (MY NASA DATA) project to systematically support educational activities at all levels of formal and informal education by reducing the ASDC data holdings to `microsets' that will be easily accessible and explored by the K-12 and the citizen scientist communities. The microsets are available via Web site (http://mynasadata.larc.nasa.gov) with associated lesson plans, computer tools, data information pages, and a science glossary. Teacher workshops will be held each summer for five years to help teachers learn about incorporating the microsets in their curriculum. Additionally, a Live Access Server (LAS) has been populated with ASDC data holdings such that users can create custom microsets for desired time series, parameters and geographical regions. Currently, parameters from the Clouds and the Earth's Radiant Energy System (CERES), the Surface Radiation Budget (SRB), Tropospheric Ozone Residual (TOR) and the International Satellite Cloud

  10. HURRICANE AND SEVERE STORM SENTINEL (HS3) GLOBAL HAWK ADVANCED VERTICAL ATMOSPHERIC PROFILING SYSTEM (AVAPS) DROPSONDE SYSTEM V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hurricane and Severe Storm Sentinel (HS3) Global Hawk Advanced Vertical Atmospheric Profiling System (AVAPS) Dropsonde System dataset was collected by the...

  11. New Stereo Vision Digital Camera System for Simultaneous Measurement of Cloud Base Height and Atmospheric Visibility

    Science.gov (United States)

    Janeiro, F. M.; Carretas, F.; Palma, N.; Ramos, P. M.; Wagner, F.

    2013-12-01

    Clouds play an important role in many aspects of everyday life. They affect both the local weather as well as the global climate and are an important parameter on climate change studies. Cloud parameters are also important for weather prediction models which make use of actual measurements. It is thus important to have low-cost instrumentation that can be deployed in the field to measure those parameters. This kind of instruments should also be automated and robust since they may be deployed in remote places and be subject to adverse weather conditions. Although clouds are very important in environmental systems, they are also an essential component of airplane safety when visual flight rules (VFR) are enforced, such as in most small aerodromes where it is not economically viable to install instruments for assisted flying. Under VFR there are strict limits on the height of the cloud base, cloud cover and atmospheric visibility that ensure the safety of the pilots and planes. Although there are instruments, available in the market, to measure those parameters, their relatively high cost makes them unavailable in many local aerodromes. In this work we present a new prototype which has been recently developed and deployed in a local aerodrome as proof of concept. It is composed by two digital cameras that capture photographs of the sky and allow the measurement of the cloud height from the parallax effect. The new developments consist on having a new geometry which allows the simultaneous measurement of cloud base height, wind speed at cloud base height and atmospheric visibility, which was not previously possible with only two cameras. The new orientation of the cameras comes at the cost of a more complex geometry to measure the cloud base height. The atmospheric visibility is calculated from the Lambert-Beer law after the measurement of the contrast between a set of dark objects and the background sky. The prototype includes the latest hardware developments that

  12. Atmospheric models in the numerical simulation system (SPEEDI-MP) for environmental studies

    International Nuclear Information System (INIS)

    Nagai, Haruyasu; Terada, Hiroaki

    2007-01-01

    As a nuclear emergency response system, numerical models to predict the atmospheric dispersion of radionuclides have been developed at Japan Atomic Energy Agency (JAEA). Evolving these models by incorporating new schemes for physical processes and up-to-date computational technologies, a numerical simulation system, which consists of dynamical models and material transport models for the atmospheric, terrestrial, and oceanic environments, has been constructed to apply for various environmental studies. In this system, the combination of a non-hydrostatic atmospheric dynamic model and Lagrangian particle dispersion model is used for the emergency response system. The utilization of detailed meteorological field by the atmospheric model improves the model performance for diffusion and deposition calculations. It also calculates a large area domain with coarse resolution and local area domain with high resolution simultaneously. The performance of new model system was evaluated using measurements of surface deposition of 137 Cs over Europe during the Chernobyl accident. (author)

  13. External Thermal Insulation Composite Systems: Critical Parameters for Surface Hygrothermal Behaviour

    Directory of Open Access Journals (Sweden)

    Eva Barreira

    2014-01-01

    Full Text Available External Thermal Insulation Composite Systems (ETICS are often used in Europe. Despite its thermal advantages, low cost, and ease of application, this system has serious problems of biological growth causing the cladding defacement. Recent studies pointed that biological growth is due to high values of surface moisture content, which mostly results from the combined effect of exterior surface condensation, wind-driven rain, and drying process. Based on numerical simulation, this paper points the most critical parameters involved in hygrothermal behaviour of ETICS, considering the influence of thermal and hygric properties of the external rendering, the effect of the characteristics of the façade, and the consequences of the exterior and interior climate on exterior surface condensation, wind-driven rain, and drying process. The model used was previously validated by comparison with the results of an “in situ” campaign. The results of the sensitivity analyses show that relative humidity and temperature of the exterior air, atmospheric radiation, and emissivity of the exterior rendering are the parameters that most influence exterior surface condensation. Wind-driven rain depends mostly on horizontal rain, building’s height, wind velocity, and orientation. The drying capacity is influenced by short-wave absorbance, incident solar radiation, and orientation.

  14. Management-retrieval code system of fission barrier parameter sub-library

    International Nuclear Information System (INIS)

    Zhang Limin; Su Zongdi; Ge Zhigang

    1995-01-01

    The fission barrier parameter (FBP) library, which is a sub-library of Chinese Evaluated Nuclear Parameter library (CENPL), stores various popular used fission barrier parameters from different historical period, and could retrieve the required fission barrier parameters by using the management retrieval code system of the FBP sub-library. The function, feature and operation instruction of the code system are described briefly

  15. Design and Simulation of PID parameters self-tuning based on DC speed regulating system

    Directory of Open Access Journals (Sweden)

    Feng Wei Jie

    2016-01-01

    Full Text Available The DC speed regulating system has many difficult issues such as system parameters and PID control parameters are difficult to determine. On the basis of model for a single closed-loop DC speed regulating system, this paper puts forward a method of PID parameters self-tuning based on the step response detection and reduced order equivalent. First, detect system step response and get response parameters. Then equal it to a second order system model, and achieve optimal PID control parameters based on optimal second order system to realize of PID parameters self-tuning. The PID parameters self-tuning process of DC speed regulating system is simulated with the help of MATLAB/Simulink. The simulation results show that the method is simple and effective. The system can obtain good dynamic and static performance when the PID parameters are applied to DC speed regulating system.

  16. The electronic system for mechanical oscillation parameters registration

    Directory of Open Access Journals (Sweden)

    Bulavin L. A.

    2008-08-01

    Full Text Available On the basis of the 8-bit microcontroller Microchip PIC16F630 the digital electronic device for harmonic oscillation parameters registration was developed. The device features are simple electric circuit and high operating speed (response time is less than 10 microseconds. The relevant software for the computer-controlled recording of harmonic oscillation parameters was designed. The device can be used as a part of the experimental setup for consistent fluids rheological parameters measurements.

  17. Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation.

    Science.gov (United States)

    Tsuda, Toshitaka

    2014-01-01

    The wind velocity and temperature profiles observed in the middle atmosphere (altitude: 10-100 km) show perturbations resulting from superposition of various atmospheric waves, including atmospheric gravity waves. Atmospheric gravity waves are known to play an important role in determining the general circulation in the middle atmosphere by dynamical stresses caused by gravity wave breaking. In this paper, we summarize the characteristics of atmospheric gravity waves observed using the middle and upper atmosphere (MU) radar in Japan, as well as novel satellite data obtained from global positioning system radio occultation (GPS RO) measurements. In particular, we focus on the behavior of gravity waves in the mesosphere (50-90 km), where considerable gravity wave attenuation occurs. We also report on the global distribution of gravity wave activity in the stratosphere (10-50 km), highlighting various excitation mechanisms such as orographic effects, convection in the tropics, meteorological disturbances, the subtropical jet and the polar night jet.

  18. Tritium in atmospheric precipitations and water systems of Belarus

    International Nuclear Information System (INIS)

    Bondar', Yu.I.; Zabrodskij, V.N.; Voronik, A.I.; Vazhinskij, A.G.

    2001-01-01

    Experimental and literature data concerning analysis of tritium in atmospheric precipitation and natural waters of Belarus including the lakes near the Ignalina NPP are compared and analyzed. It is concluded that the maximum of the curve 'amount of the samples - their activity' is shifted to the higher activity in the period 1994-2000 in comparison with 1980-1989. This increasing of the concentration of tritium in water can not be explained definitely by the Chernobyl accident. Consumption of drinking water with maximum registered tritium concentration in natural waters (10 Bq/l) will produce accumulation of dose equal 1,3·10 -3 of public permissible dose limit (authors)

  19. On the control of distributed parameter systems using a multidimensional systems setting

    Czech Academy of Sciences Publication Activity Database

    Cichy, B.; Augusta, Petr; Rogers, E.; Galkowski, K.; Hurák, Z.

    2008-01-01

    Roč. 22, č. 7 (2008), s. 1566-1581 ISSN 0888-3270 R&D Projects: GA MŠk(CZ) 1M0567 Institutional research plan: CEZ:AV0Z10750506 Keywords : Distributed parameter systems * Modelling * Control law design Subject RIV: BC - Control Systems Theory Impact factor: 1.984, year: 2008

  20. A design of atmospheric laser communication system based on semiconductor laser

    Science.gov (United States)

    Rao, Jionghui; Yao, Wenming; Wen, Linqiang

    2016-01-01

    This paper uses semiconductor laser with 905nm wave length as light source to design a set of short-distance atmospheric laser communication system. This system consists of laser light source, launch modulation circuit, detector, receiving and amplifying circuit and so on. First, this paper analyzes the factors which lead to the decrease of luminous power of laser communication link under the applicable environment-specific sea level, then this paper elicits the relationship of luminous power of receiving optical systems and distance, slant angle and divergence angle which departures from the laser beam axis by using gaussian beam geometric attenuation mode. Based on the two reasons that PPM modulation theory limits the transmission rate of PPM modulation, that is, this paper makes an analysis on repetition frequency and pulse width of laser, makes theoretical calculation for typical parameters of semiconductor laser and gets the repetition frequency which is 10KHz, pulse width is50ns, the transmission rate is 71.66 Kb/s, at this time, modulation digit is 9; then this paper selects frame synchronization code of PPM modulation and provides implementation method for test; lastly, programs language based on Verilog, uses the FPGA development board to realize PPM modulation code and does simulation test and hardware test. This paper uses APD as the detector of receiving and amplifying circuit. Then this paper designs optical receiving circuit such as amplifying circuit, analog-digital conversion circuit based on the characteristics of receipt.

  1. Incidence of the geometric parameters and of flow in the primary ventilation rate and of carbon monoxide emissions in burning atmospherics of medium and high pressure

    International Nuclear Information System (INIS)

    Amell A, Andres; Hernandez V, Jaime; Cortes T, Jaime

    2000-01-01

    In this kind of atmospheric burners, high-pressure gas supply and Venturi geometry guarantee a good primary air entrance for combustion. In this project we analyze the most important burner geometric parameters (outlet diameter, injection diameter and mixer geometry) and gas flux conditions (supply pressure) that have an influence over primary aeration rate. The results of this investigation will contribute with the methodology design improvement, focused to use this kind of burners in our country

  2. A UV multifunctional Raman lidar system for the observation and analysis of atmospheric temperature, humidity, aerosols and their conveying characteristics over Xi'an

    Science.gov (United States)

    Yufeng, Wang; Qiang, Fu; Meina, Zhao; Fei, Gao; Huige, Di; Yuehui, Song; Dengxin, Hua

    2018-01-01

    To monitor the variability and the correlation of multiple atmospheric parameters in the whole troposphere and the lower stratosphere, a ground-based ultraviolet multifunctional Raman lidar system was established to simultaneously measure the atmospheric parameters in Xi'an (34.233°N, 108.911°E). A set of dichroic mirrors (DMs) and narrow-band interference filters (IFs) with narrow angles of incidence were utilized to construct a high-efficiency 5-channel polychromator. A series of high-quality data obtained from October 2013 to December 2015 under different weather conditions were used to investigate the functionality of the Raman lidar system and to study the variability of multiple atmospheric parameters in the whole stratosphere. Their conveying characteristics are also investigated using back trajectories with a hybrid single-particle Lagrangian integrated trajectory model (HYSPLIT). The lidar system can be operated efficiently under weather conditions with a cloud backscattering ratio of less than 18 and an atmospheric visibility of 3 km. We observed an obvious temperature inversion phenomenon at the tropopause height of 17-18 km and occasional temperature inversion layers below the boundary layer. The rapidly changing atmospheric water vapor is mostly concentrated at the lower troposphere, below ∼4-5 km, accounting for ∼90% of the total water vapor content at 0.5-10 km. The back trajectory analysis shows that the air flow from the northwest and the west mainly contributes to the transport of aerosols and water vapor over Xi'an. The simultaneous continuous observational results demonstrate the variability and correlation among the multiple atmospheric parameters, and the accumulated water vapor density in the bottom layer causes an increase in the aerosol extinction coefficient and enhances the relative humidity in the early morning. The long-term observations provide a large amount of reliable atmospheric data below the lower stratosphere, and can be

  3. Effectiveness and limitations of parameter tuning in reducing biases of top-of-atmosphere radiation and clouds in MIROC version 5

    Science.gov (United States)

    Ogura, Tomoo; Shiogama, Hideo; Watanabe, Masahiro; Yoshimori, Masakazu; Yokohata, Tokuta; Annan, James D.; Hargreaves, Julia C.; Ushigami, Naoto; Hirota, Kazuya; Someya, Yu; Kamae, Youichi; Tatebe, Hiroaki; Kimoto, Masahide

    2017-12-01

    This study discusses how much of the biases in top-of-atmosphere (TOA) radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5) generation. We used output of a perturbed parameter ensemble (PPE) experiment conducted with an atmosphere-ocean general circulation model (AOGCM) without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5) was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude-longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.

  4. Miniaturized In Situ Atmospheric Probe Sampling Inlet System for Uranus or Saturn, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Thorleaf Research, Inc. proposes to develop a miniaturized in situ atmospheric probe sampling inlet system for measuring chemical and isotopic composition of the...

  5. LBA-ECO CD-36 South American Land Data Assimilation System Atmospheric Forcing Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides South American Land Data Assimilation System (SALDAS) forcing data including atmospheric fields necessary for land surface modeling for South...

  6. Numerical Prediction of Marine Fog Using the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)

    National Research Council Canada - National Science Library

    Dumas, John

    2001-01-01

    .... The Naval Research Laboratory's Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) is a leap forward in the Navy's numerical modeling ability but it still does not show great skill in fog forecasting...

  7. Software Test Description (STD) for the Globally Relocatable Navy Tide/Atmospheric Modeling System (PCTides)

    National Research Council Canada - National Science Library

    Posey, Pamela

    2002-01-01

    The purpose of this Software Test Description (STD) is to establish formal test cases to be used by personnel tasked with the installation and verification of the Globally Relocatable Navy Tide/Atmospheric Modeling System (PCTides...

  8. MAPSS: Mapped Atmosphere-Plant-Soil System Model, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: MAPSS (Mapped Atmosphere-Plant-Soil System) is a landscape to global vegetation distribution model that was developed to simulate the potential biosphere...

  9. MAPSS: Mapped Atmosphere-Plant-Soil System Model, Version 1.0

    Data.gov (United States)

    National Aeronautics and Space Administration — MAPSS (Mapped Atmosphere-Plant-Soil System) is a landscape to global vegetation distribution model that was developed to simulate the potential biosphere impacts and...

  10. Ocean-atmosphere dynamics during Hurricane Ida and Nor'Ida: An application of the coupled ocean-atmosphere-wave-sediment transport (COAWST) modeling system

    Science.gov (United States)

    Olabarrieta, Maitane; Warner, John C.; Armstrong, Brandy N.; Zambon, Joseph B.; He, Ruoying

    2012-01-01

    The coupled ocean–atmosphere–wave–sediment transport (COAWST) modeling system was used to investigate atmosphere–ocean–wave interactions in November 2009 during Hurricane Ida and its subsequent evolution to Nor’Ida, which was one of the most costly storm systems of the past two decades. One interesting aspect of this event is that it included two unique atmospheric extreme conditions, a hurricane and a nor’easter storm, which developed in regions with different oceanographic characteristics. Our modeled results were compared with several data sources, including GOES satellite infrared data, JASON-1 and JASON-2 altimeter data, CODAR measurements, and wave and tidal information from the National Data Buoy Center (NDBC) and the National Tidal Database. By performing a series of numerical runs, we were able to isolate the effect of the interaction terms between the atmosphere (modeled with Weather Research and Forecasting, the WRF model), the ocean (modeled with Regional Ocean Modeling System (ROMS)), and the wave propagation and generation model (modeled with Simulating Waves Nearshore (SWAN)). Special attention was given to the role of the ocean surface roughness. Three different ocean roughness closure models were analyzed: DGHQ (which is based on wave age), TY2001 (which is based on wave steepness), and OOST (which considers both the effects of wave age and steepness). Including the ocean roughness in the atmospheric module improved the wind intensity estimation and therefore also the wind waves, surface currents, and storm surge amplitude. For example, during the passage of Hurricane Ida through the Gulf of Mexico, the wind speeds were reduced due to wave-induced ocean roughness, resulting in better agreement with the measured winds. During Nor’Ida, including the wave-induced surface roughness changed the form and dimension of the main low pressure cell, affecting the intensity and direction of the winds. The combined wave age- and wave steepness

  11. Development of regional atmospheric dynamic and air pollution models for nuclear emergency response system WSPEEDI

    International Nuclear Information System (INIS)

    Furuno, Akiko; Yamazawa, Hiromi; Lee, Soon-Hwan; Tsujita, Yuichi; Takemiya, Hiroshi; Chino, Masamichi

    2000-01-01

    WSPEEDI (Worldwide version of System for Prediction of Environmental Emergency Dose Information) is a computer-based emergency response system to predict long-range atmospheric dispersion of radionuclides discharged into the atmosphere due to a nuclear accident. WSPEEDI has been applied to several international exercises and real events. Through such experiences, the new version of WSPEEDI aims to employ a combination of an atmospheric dynamic model and a particle random walk model for more accurate predictions. This paper describes these models, improvement of prediction and computational techniques for quick responses. (author)

  12. Atmospheric Mining in the Outer Solar System:. [Aerial Vehicle Reconnaissance and Exploration Options

    Science.gov (United States)

    Palaszewski, Bryan A.

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or helium 4 may be designed to probe the higher density regions of the gas giants. Outer planet atmospheric properties, atmospheric storm data, and mission planning for future outer planet UAVs are presented.

  13. Total solar eclipse of 16 February 1980 and the vertical profiles of atmospheric parameters in the lowest 200M

    Digital Repository Service at National Institute of Oceanography (India)

    RameshBabu, V.; Sastry, J.S.

    Vertical profiles of air temperature, wind and humidity at Raichur (16 degrees 12'N and 77 degrees 21'E) in the lowest 200m of the atmosphere are presented for the period 15-18 February 1980. The effect of the total solar eclipse, on 16 February...

  14. Methodology for Evaluating Safety System Operability using Virtual Parameter Network

    International Nuclear Information System (INIS)

    Park, Sukyoung; Heo, Gyunyoung; Kim, Jung Taek; Kim, Tae Wan

    2014-01-01

    KAERI (Korea Atomic Energy Research Institute) and UTK (University of Tennessee Knoxville) are working on the I-NERI project to suggest complement of this problem. This research propose the methodology which provide the alternative signal in case of unable guaranteed reliability of some instrumentation with KAERI. Proposed methodology is assumed that several instrumentations are working normally under the power supply condition because we do not consider the instrumentation survivability itself. Thus, concept of the Virtual Parameter Network (VPN) is used to identify the associations between plant parameters. This paper is extended version of the paper which was submitted last KNS meeting by changing the methodology and adding the result of the case study. In previous research, we used Artificial Neural Network (ANN) inferential technique for estimation model but every time this model showed different estimate value due to random bias each time. Therefore Auto-Associative Kernel Regression (AAKR) model which have same number of inputs and outputs is used to estimate. Also the importance measures in the previous method depend on estimation model but importance measure of improved method independent on estimation model. Also importance index of previous method depended on estimation model but importance index of improved method is independent on estimation model. In this study, we proposed the methodology to identify the internal state of power plant when severe accident happens also it has been validated through case study. SBLOCA which has large contribution to severe accident is considered as initiating event and relationship amongst parameter has been identified. VPN has ability to identify that which parameter has to be observed and which parameter can be alternative to the missing parameter when some instruments are failed in severe accident. In this study we have identified through results that commonly number 2, 3, 4 parameter has high connectivity while

  15. Inferring transit time distributions from atmospheric tracer data: Assessment of the predictive capacities of Lumped Parameter Models on a 3D crystalline aquifer model

    Science.gov (United States)

    Marçais, J.; de Dreuzy, J.-R.; Ginn, T. R.; Rousseau-Gueutin, P.; Leray, S.

    2015-06-01

    While central in groundwater resources and contaminant fate, Transit Time Distributions (TTDs) are never directly accessible from field measurements but always deduced from a combination of tracer data and more or less involved models. We evaluate the predictive capabilities of approximate distributions (Lumped Parameter Models abbreviated as LPMs) instead of fully developed aquifer models. We develop a generic assessment methodology based on synthetic aquifer models to establish references for observable quantities as tracer concentrations and prediction targets as groundwater renewal times. Candidate LPMs are calibrated on the observable tracer concentrations and used to infer renewal time predictions, which are compared with the reference ones. This methodology is applied to the produced crystalline aquifer of Plœmeur (Brittany, France) where flows leak through a micaschists aquitard to reach a sloping aquifer where they radially converge to the producing well, issuing broad rather than multi-modal TTDs. One, two and three parameters LPMs were calibrated to a corresponding number of simulated reference anthropogenic tracer concentrations (CFC-11, 85Kr and SF6). Extensive statistical analysis over the aquifer shows that a good fit of the anthropogenic tracer concentrations is neither a necessary nor a sufficient condition to reach acceptable predictive capability. Prediction accuracy is however strongly conditioned by the use of a priori relevant LPMs. Only adequate LPM shapes yield unbiased estimations. In the case of Plœmeur, relevant LPMs should have two parameters to capture the mean and the standard deviation of the residence times and cover the first few decades [0; 50 years]. Inverse Gaussian and shifted exponential performed equally well for the wide variety of the reference TTDs from strongly peaked in recharge zones where flows are diverging to broadly distributed in more converging zones. When using two sufficiently different atmospheric tracers like

  16. Parameters of calibration of the measurement system of 222 Rn based in LR-115

    International Nuclear Information System (INIS)

    Garcia, M.L.; Mireles, F.; Quirino, L.; Davila, I.; Lugo, F.; Pinedo, J.L.; Chavez, A.

    2003-01-01

    Since the SSNTD technique (Solid State Nuclear Track Detection) it was discovered it has been used as passive method for the detection of subnuclear particles in great variety of fields of the science. The use of the technique in measurements of 222 Rn in air have already been established implying better methodologies in the exhibition to the environment until their engraving and reading processes. The SSNTD technique is since a method by comparison since the material it can be used a single time, therefore it requires of calibration in one controlled radon atmosphere, using gauged standards. The objective of this work is to show the calibration of the devices used as radon monitors based on SSNTD. The material used as SSNTD is LR-115 Il. The standardization of the parameters used in the exhibition to radon in air, engraving and reading process, its are based on the response of the LR-115 Il, the one arrangement of the device, engraving speed and mainly the calibration factor. They are considered two types of monitors: Open camera and Closed camera, the difference among the calibration factors of both cameras is the percentage of the descendants of radon in the open camera. The standardized parameters are operation voltage of the counting system; temperature, time and concentration of the engraving solution; and thickness. (Author)

  17. Estimation of Flow Channel Parameters for Flowing Gas Mixed with Air in Atmospheric-pressure Plasma Jets

    Science.gov (United States)

    Yambe, Kiyoyuki; Saito, Hidetoshi

    2017-12-01

    When the working gas of an atmospheric-pressure non-equilibrium (cold) plasma flows into free space, the diameter of the resulting flow channel changes continuously. The shape of the channel is observed through the light emitted by the working gas of the atmospheric-pressure plasma. When the plasma jet forms a conical shape, the diameter of the cylindrical shape, which approximates the conical shape, defines the diameter of the flow channel. When the working gas flows into the atmosphere from the inside of a quartz tube, the gas mixes with air. The molar ratio of the working gas and air is estimated from the corresponding volume ratio through the relationship between the diameter of the cylindrical plasma channel and the inner diameter of the quartz tube. The Reynolds number is calculated from the kinematic viscosity of the mixed gas and the molar ratio. The gas flow rates for the upper limit of laminar flow and the lower limit of turbulent flow are determined by the corresponding Reynolds numbers estimated from the molar ratio. It is confirmed that the plasma jet length and the internal plasma length associated with strong light emission increase with the increasing gas flow rate until the rate for the upper limit of laminar flow and the lower limit of turbulent flow, respectively. Thus, we are able to explain the increasing trend in the plasma lengths with the diameter of the flow channel and the molar ratio by using the cylindrical approximation.

  18. Identification of a Discontinuous Parameter in Stochastic Parabolic Systems

    International Nuclear Information System (INIS)

    Aihara, S. I.

    1998-01-01

    The purpose of this paper is to study the identification problem for a spatially varying discontinuous parameter in stochastic diffusion equations. The consistency property of the maximum likelihood estimate (M.L.E.) and a generating algorithm for M.L.E. have been explored under the condition that the unknown parameter is in a sufficiently regular space with respect to spatial variables. In order to prove the consistency property of the M.L.E. for a discontinuous diffusion coefficient, we use the method of sieves, i.e., first the admissible class of unknown parameters is projected into a finite-dimensional space and next the convergence of the derived finite-dimensional M.L.E. to the infinite-dimensional M.L.E. is justified under some conditions. An iterative algorithm for generating the M.L.E. is also proposed with two numerical examples

  19. Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahlers, M.; /Wisconsin U., Madison; Ahn, E.J.; /Fermilab; Albuquerque, I.F.M.; /Sao Paulo U.; Allard, D.; /APC, Paris; Allekotte, I.; /Buenos Aires, CONICET; Allen, J.; /New York U.; Allison, P.; /Ohio State U.; Almela, A.; /Natl. Tech. U., San Nicolas /Buenos Aires, CONICET; Alvarez Castillo, J.; /Mexico U., ICN /Santiago de Compostela U.

    2012-01-01

    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargue and averaged monthly models, the utility of the GDAS data is shown.

  20. Evaluation of Routine Atmospheric Sounding Measurements Using Unmanned Systems (ERASMUS) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, Gijs [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Lawrence, Dale [Univ. of Colorado, Boulder, CO (United States); Palo, Scott [Univ. of Colorado, Boulder, CO (United States); Argrow, Brian [Univ. of Colorado, Boulder, CO (United States); LoDolce, Gabriel [Univ. of Colorado, Boulder, CO (United States); Curry, Nathan [Univ. of Colorado, Boulder, CO (United States); Weibel, Douglas [Univ. of Colorado, Boulder, CO (United States); Finnamore, W [Univ. of Colorado, Boulder, CO (United States); D' Amore, P [Univ. of Colorado, Boulder, CO (United States); Borenstein, Steven [Univ. of Colorado, Boulder, CO (United States); Nichols, Tevis [Univ. of Colorado, Boulder, CO (United States); Elston, Jack [Blackswift Technologies, Boulder, CO (United States); Ivey, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bendure, Al [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schmid, Beat [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Long, Chuck [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Telg, Hagen [Univ. of Colorado, Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences (CIRES); Gao, Rushan [National Oceanic and Atmospheric Administration (NOAA), Boulder, CO (United States). Earth System Research Lab.; Hock, T [National Center for Atmospheric Research, Boulder, CO (United States); Bland, Geoff [National Aeronautics and Space Administration (NASA), Washington, DC (United States)

    2017-03-01

    The Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) campaign was proposed with two central goals; to obtain scientifically relevant measurements of quantities related to clouds, aerosols, and radiation, including profiles of temperature, humidity, and aerosol particles, the structure of the arctic atmosphere during transitions between clear and cloudy states, measurements that would allow us to evaluate the performance of retrievals from U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility remote sensors in the Arctic atmosphere, and information on the spatial variability of heat and moisture fluxes from the arctic surface; and to demonstrate unmanned aerial system (UAS) capabilities in obtaining measurements relevant to the ARM and ASR programs, particularly for improving our understanding of Arctic clouds and aerosols.

  1. Atmospheric Mining in the Outer Solar System: Resource Capturing, Storage, and Utilization

    Science.gov (United States)

    Palaszewski, Bryan

    2014-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as helium 3 and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and hydrogen (deuterium, etc.) were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate for hydrogen helium 4 and helium 3, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues.

  2. Evaluation of a Modified Atmosphere Packaging System to Increase Fresh Fruit and Vegetable Shelf Life for Extended Military Supply Chains

    Science.gov (United States)

    2012-02-24

    STORAGE STABILITY LOGISTICS MANAGEMENT SUPPLIES LETTUCE AFGHANISTAN FOOD SERVICE MAP( MODIFIED ATMOSPHERE ...chain. This technology is a case level modified atmosphere packaging system (MAPS). The evaluation included three produce items – iceberg lettuce ... MODIFIED ATMOSPHERE PACKAGING SYSTEM TO INCREASE FRESH FRUIT AND VEGETABLE SHELF LIFE FOR EXTENDED MILITARY SUPPLY CHAINS 5a. CONTRACT NUMBER 5b

  3. Geometry parameters for musculoskeletal modelling of the shoulder system

    NARCIS (Netherlands)

    Van der Helm, F C; Veeger, DirkJan (H. E. J.); Pronk, G M; Van der Woude, L H; Rozendal, R H

    A dynamical finite-element model of the shoulder mechanism consisting of thorax, clavicula, scapula and humerus is outlined. The parameters needed for the model are obtained in a cadaver experiment consisting of both shoulders of seven cadavers. In this paper, in particular, the derivation of

  4. Multi-Scale Hydrometeorological Modeling, Land Data Assimilation and Parameter Estimation with the Land Information System

    Science.gov (United States)

    Peters-Lidard, Christa D.

    2011-01-01

    Center (EMC) for their land data assimilation systems to support weather and climate modeling. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through "plugins". LIS has been coupled to the Weather Research and Forecasting (WRF) model to support studies of land-atmosphere coupling be enabling ensembles of land surface states to be tested against multiple representations of the atmospheric boundary layer. LIS has also been demonstrated for parameter estimation, who showed that the use of sequential remotely sensed soil moisture products can be used to derive soil hydraulic and texture properties given a sufficient dynamic range in the soil moisture retrievals and accurate precipitation inputs.LIS has also recently been demonstrated for multi-model data assimilation using an Ensemble Kalman Filter for sequential assimilation of soil moisture, snow, and temperature.Ongoing work has demonstrated the value of bias correction as part of the filter, and also that of joint calibration and assimilation.Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeorological modeling, assimilation and parameter estimation will be presented as advancements towards the next generation of integrated observation and modeling systems

  5. Application of Joint Parameter Identification and State Estimation to a Fault-Tolerant Robot System

    DEFF Research Database (Denmark)

    Sun, Zhen; Yang, Zhenyu

    2011-01-01

    , it would further simplify the reconfigurable design task and possibly speed up the system recovery, if the system state information under the new operating circumstance can be available along with faulty parameter information. The joint parameter identification and state estimation using the combined......The joint parameter identification and state estimation technique is applied to develop a fault-tolerant space robot system. The potential faults in the considered system are abrupt parametric faults, which indicate that some system parameters will immediately deviate from their nominal values...... if a fault happens. The concerned system parameters consist of deterministic parts as well as those describing the stochastic features in the system. Due to the purpose for design of reconfigurable control, these deviated system parameters need to be identified as precisely and quickly as possible. Meanwhile...

  6. Errors in Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Kinetic Temperature Caused by Non-Local Thermodynamic Equilibrium Model Parameters

    Science.gov (United States)

    Garcia-Comas, Maya; Lopez-Puertas, M.; Funke, B.; Bermejo-Pantaleon, D.; Marshall, Benjamin T.; Mertens, Christopher J.; Remsberg, Ellis E.; Mlynczak, Martin G.; Gordley, L. L.; Russell, James M.

    2008-01-01

    The vast set of near global and continuous atmospheric measurements made by the SABER instrument since 2002, including daytime and nighttime kinetic temperature (T(sub k)) from 20 to 105 km, is available to the scientific community. The temperature is retrieved from SABER measurements of the atmospheric 15 micron CO2 limb emission. This emission separates from local thermodynamic equilibrium (LTE) conditions in the rarefied mesosphere and thermosphere, making it necessary to consider the CO2 vibrational state non-LTE populations in the retrieval algorithm above 70 km. Those populations depend on kinetic parameters describing the rate at which energy exchange between atmospheric molecules take place, but some of these collisional rates are not well known. We consider current uncertainties in the rates of quenching of CO2 (v2 ) by N2 , O2 and O, and the CO2 (v2 ) vibrational-vibrational exchange to estimate their impact on SABER T(sub k) for different atmospheric conditions. The T(sub k) is more sensitive to the uncertainty in the latter two and their effects depend on altitude. The T(sub k) combined systematic error due to non-LTE kinetic parameters does not exceed +/- 1.5 K below 95 km and +/- 4-5 K at 100 km for most latitudes and seasons (except for polar summer) if the Tk profile does not have pronounced vertical structure. The error is +/- 3 K at 80 km, +/- 6 K at 84 km and +/- 18 K at 100 km under the less favourable polar summer conditions. For strong temperature inversion layers, the errors reach +/- 3 K at 82 km and +/- 8 K at 90 km. This particularly affects tide amplitude estimates, with errors of up to +/- 3 K.

  7. Water cycles in closed ecological systems: effects of atmospheric pressure

    Science.gov (United States)

    Rygalov, Vadim Y.; Fowler, Philip A.; Metz, Joannah M.; Wheeler, Raymond M.; Bucklin, Ray A.; Sager, J. C. (Principal Investigator)

    2002-01-01

    In bioregenerative life support systems that use plants to generate food and oxygen, the largest mass flux between the plants and their surrounding environment will be water. This water cycle is a consequence of the continuous change of state (evaporation-condensation) from liquid to gas through the process of transpiration and the need to transfer heat (cool) and dehumidify the plant growth chamber. Evapotranspiration rates for full plant canopies can range from 1 to 10 L m-2 d-1 (1 to 10 mm m-2 d-1), with the rates depending primarily on the vapor pressure deficit (VPD) between the leaves and the air inside the plant growth chamber. VPD in turn is dependent on the air temperature, leaf temperature, and current value of relative humidity (RH). Concepts for developing closed plant growth systems, such as greenhouses for Mars, have been discussed for many years and the feasibility of such systems will depend on the overall system costs and reliability. One approach for reducing system costs would be to reduce the operating pressure within the greenhouse to reduce structural mass and gas leakage. But managing plant growth environments at low pressures (e.g., controlling humidity and heat exchange) may be difficult, and the effects of low-pressure environments on plant growth and system water cycling need further study. We present experimental evidence to show that water saturation pressures in air under isothermal conditions are only slightly affected by total pressure, but the overall water flux from evaporating surfaces can increase as pressure decreases. Mathematical models describing these observations are presented, along with discussion of the importance for considering "water cycles" in closed bioregenerative life support systems.

  8. Transboundary radioactive and chemical pollution simulation using an atmospheric/marine predicting system

    International Nuclear Information System (INIS)

    Telenta, B.; Antic, D.

    2001-01-01

    The atmospheric models can be used to simulate the transport of contaminants in typical accidental cases and for realistic meteorological conditions. Some numerical models for weather forecast can be used for near to real simulations of propagation of radioactive nuclides or classical chemical pollutants to the atmosphere. The various meteorological parameters are taken into account and various meteorological conditions, even complex ones, can be analyzed. The models can be used for very well assessment of the airborne pollution from energy sources and industrial installations, for comparative studies and for safety analysis. This report describes an proposal for a project of the transboundary pollution simulation, that can be used for the East Mediterranean Region. The project is based on the numerical models developed in the in simulating of the Chernobyl accident and similar hypothetical cases. The study is based on an atmospheric models developed in Euro-Mediterranean Centre on Insular Coastal Dynamics (ICoD), Foundation for International Studies, Valeta, Malta

  9. Parachute systems for the atmospheric reentry of launcher upper stages

    Directory of Open Access Journals (Sweden)

    Bogdan DOBRESCU

    2017-03-01

    Full Text Available Parachute systems can be used to control the reentry trajectory of launcher upper stages, in order to lower the risks to the population or facilitate the retrieval of the stage. Several types of parachutes deployed at subsonic, supersonic and hypersonic speeds are analyzed, modeled as single and multistage systems. The performance of deceleration parachutes depends on their drag area and deployment conditions, while gliding parachutes are configured to achieve stable flight with a high glide ratio. Gliding parachutes can be autonomously guided to a low risk landing area. Sizing the canopy is shown to be an effective method to reduce parachute sensitivity to wind. The reentry trajectory of a launcher upper stage is simulated for each parachute system configuration and the results are compared to the nominal reentry case.

  10. The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

    Science.gov (United States)

    Perry, Jay L.; Croomes, Scott D. (Technical Monitor)

    2002-01-01

    Although designed to remove organic contaminants from a variety of waste water streams, the planned U.S.- and present Russian-provided water processing systems onboard the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance. A comparison of cabin atmospheric loading with volatile cleaning solvents from ISS, Mir, and Shuttle are presented to predict acceptable limits to maintain optimal water processing system performance.

  11. The rapid atmospheric monitoring system of the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahlers, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr; Vícha, Jakub

    2012-01-01

    Roč. 7, č. 9 (2012), s. 1-40 ISSN 1748-0221 R&D Projects: GA TA ČR TA01010517; GA MŠk(CZ) MEB111003; GA AV ČR KJB100100904; GA MŠk LA08015; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : large detector systems for particle and astroparticle physics * real-time monitoring * control and monitor systems online Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.869, year: 2011

  12. Atmosphere behavior in gas-closed mouse-algal systems - An experimental and modelling study

    Science.gov (United States)

    Averner, M. M.; Moore, B., III; Bartholomew, I.; Wharton, R.

    1984-01-01

    A NASA-sponsored research program initiated using mathematical modelling and laboratory experimentation aimed at examining the gas-exchange characteristics of artificial animal/plant systems closed to the ambient atmosphere is studied. The development of control techniques and management strategies for maintaining the atmospheric levels of carbon dioxide and oxygen at physiological levels is considered. A mathematical model simulating the behavior of a gas-closed mouse-algal system under varying environmental conditions is described. To verify and validate the model simulations, an analytical system with which algal growth and gas exchange characteristics can be manipulated and measured is designed, fabricated, and tested. The preliminary results are presented.

  13. Climate and atmosphere simulator for experiments on ecological systems in changing environments.

    Science.gov (United States)

    Verdier, Bruno; Jouanneau, Isabelle; Simonnet, Benoit; Rabin, Christian; Van Dooren, Tom J M; Delpierre, Nicolas; Clobert, Jean; Abbadie, Luc; Ferrière, Régis; Le Galliard, Jean-François

    2014-01-01

    Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.

  14. CosmoSIS: A System for MC Parameter Estimation

    Energy Technology Data Exchange (ETDEWEB)

    Zuntz, Joe [Manchester U.; Paterno, Marc [Fermilab; Jennings, Elise [Chicago U., EFI; Rudd, Douglas [U. Chicago; Manzotti, Alessandro [Chicago U., Astron. Astrophys. Ctr.; Dodelson, Scott [Chicago U., Astron. Astrophys. Ctr.; Bridle, Sarah [Manchester U.; Sehrish, Saba [Fermilab; Kowalkowski, James [Fermilab

    2015-01-01

    Cosmological parameter estimation is entering a new era. Large collaborations need to coordinate high-stakes analyses using multiple methods; furthermore such analyses have grown in complexity due to sophisticated models of cosmology and systematic uncertainties. In this paper we argue that modularity is the key to addressing these challenges: calculations should be broken up into interchangeable modular units with inputs and outputs clearly defined. We present a new framework for cosmological parameter estimation, CosmoSIS, designed to connect together, share, and advance development of inference tools across the community. We describe the modules already available in Cosmo- SIS, including camb, Planck, cosmic shear calculations, and a suite of samplers. We illustrate it using demonstration code that you can run out-of-the-box with the installer available at http://bitbucket.org/joezuntz/cosmosis.

  15. Sonographical parameters of the finger pulley system in healthy adults.

    Science.gov (United States)

    Bassemir, Dominik; Unglaub, Frank; Hahn, Peter; Müller, Lars Peter; Bruckner, Thomas; Spies, Christian K

    2015-11-01

    To establish normative values of tendon to bone distances (TBDs) to evaluate the A2 and A4 annular pulley integrity, we hypothesized that these values correlate with gender, athletic exercise, occupation, individual's age and body height. Ultrasonography of 200 healthy individuals was performed prospectively. TBDs for the A2 and A4 pulley sections were measured for all fingers. Evaluation was performed in resting position and active forced flexion. Examination parameters included gender, age, body height, occupation, athletic exercise level, and hand dominance. Assessment of resting position and active forced flexion was done. No clinically relevant differences of TBDs with respect to the aforementioned parameters were observed. But TBDs were significantly greater in active forced flexion than in resting position for all measured pulley sections. Intraobserver reliability was very satisfactory. Establishing normative values will help to detect injured pulleys more precisely and examination should be performed both in resting position and active forced flexion.

  16. Effectiveness and limitations of parameter tuning in reducing biases of top-of-atmosphere radiation and clouds in MIROC version 5

    Directory of Open Access Journals (Sweden)

    T. Ogura

    2017-12-01

    Full Text Available This study discusses how much of the biases in top-of-atmosphere (TOA radiation and clouds can be removed by parameter tuning in the present-day simulation of a climate model in the Coupled Model Inter-comparison Project phase 5 (CMIP5 generation. We used output of a perturbed parameter ensemble (PPE experiment conducted with an atmosphere–ocean general circulation model (AOGCM without flux adjustment. The Model for Interdisciplinary Research on Climate version 5 (MIROC5 was used for the PPE experiment. Output of the PPE was compared with satellite observation data to evaluate the model biases and the parametric uncertainty of the biases with respect to TOA radiation and clouds. The results indicate that removing or changing the sign of the biases by parameter tuning alone is difficult. In particular, the cooling bias of the shortwave cloud radiative effect at low latitudes could not be removed, neither in the zonal mean nor at each latitude–longitude grid point. The bias was related to the overestimation of both cloud amount and cloud optical thickness, which could not be removed by the parameter tuning either. However, they could be alleviated by tuning parameters such as the maximum cumulus updraft velocity at the cloud base. On the other hand, the bias of the shortwave cloud radiative effect in the Arctic was sensitive to parameter tuning. It could be removed by tuning such parameters as albedo of ice and snow both in the zonal mean and at each grid point. The obtained results illustrate the benefit of PPE experiments which provide useful information regarding effectiveness and limitations of parameter tuning. Implementing a shallow convection parameterization is suggested as a potential measure to alleviate the biases in radiation and clouds.

  17. The 890 nm Methane Band: Line by Line Parameters for the Outer Solar System

    Science.gov (United States)

    Benner, D. Chris; O'Brien, J. J.; Shaji, S.; Malathy Devi, V.; Spickler, P. T.; Houck, C. P.; Coakley, J. A.; Haga, K. J.; Dolph, J. D.

    2010-10-01

    The near infrared bands of methane were the first observed in the outer planets and Titan. With the very long paths of rays within the atmospheres of these objects, scattering, pressure and temperature inhomogeneities are important. The spectrum of methane is very complex and long laboratory gas cells are difficult to cool to outer solar system temperatures. The absorption is usually modeled statistically. Violations of the modeling assumptions cause poor extrapolations of simulations based upon laboratory parameters. These band models generally do not provide transmissions that are multiplicative, so proper modeling of scattering and inhomogeneous atmospheres is not possible. The Intra Cavity Laser Spectrometer of the University of Missouri, St. Louis obtained low temperature (99-161K), low pressure ( few Torr), long path (few km) and high resolution ( 0.01 cm-1 HWHM) spectra of methane covering the entire 890 nm feature (10925-11500 cm-1), the deepest band below 1.1 µm. At these temperatures fewer spectral lines are visible and the Doppler width is substantially smaller than at room temperature. The result is a dense, but manageable spectrum from which line positions, intensities and lower state energies are derived on a line by line basis by the William and Mary multispectrum nonlinear least squares fitting technique. For temperatures less than 160K, simulation of the spectrum at infinite resolution is possible. Simulations at various physical conditions will be shown and compared to band models and other laboratory spectra. Support at William and Mary was provided by NASA through grant NNX08AF06G. Support at UM, St. Louis provided by NASA through grant NAG5-12013, from NSF through grant CHE-0213356 and by the University of Missouri Research Board. Partial support at Bridgewater College was provided by its Martin Science Research Institute and from an AAS Small Research Grant.

  18. Numerical Simulation and Investigation of System Parameters of Sonochemical Process

    Directory of Open Access Journals (Sweden)

    Sankar Chakma

    2013-01-01

    Full Text Available This paper presents the effects of various parameters that significantly affect the cavitation. In this study, three types of liquid mediums with different physicochemical properties were considered as the cavitation medium. The effects of various operating parameters such as temperature, pressure, initial bubble radius, dissolved gas content and so forth, were investigated in detail. The simulation results of cavitation bubble dynamics model showed a very interesting link among these parameters for production of oxidizing species. The formation of •OH radical and H2O2 is considered as the results of main effects of sonochemical process. Simulation results of radial motion of cavitation bubble dynamics revealed that bubble with small initial radius gives higher sonochemical effects. This is due to the bubble with small radius can undergo many acoustic cycles before reaching its critical radius when it collapses and produces higher temperature and pressure inside the bubble. On the other hand, due to the low surface tension and high vapor pressure, organic solvents are not suitable for sonochemical reactions.

  19. Computer system for nuclear power plant parameter display

    International Nuclear Information System (INIS)

    Stritar, A.; Klobuchar, M.

    1990-01-01

    The computer system for efficient, cheap and simple presentation of data on the screen of the personal computer is described. The display is in alphanumerical or graphical form. The system can be used for the man-machine interface in the process monitoring system of the nuclear power plant. It represents the third level of the new process computer system of the Nuclear Power Plant Krsko. (author)

  20. An universal multi-parameter data acquisition system MOLDAS1

    International Nuclear Information System (INIS)

    Jiao Dunpang; Zhou Yanyen; Ge Wenxiu; Wang Yanyu; Yu Jusheng; Jing Lan

    1988-01-01

    MOLDAS1 is a data acquisition system to be used for data-taking from reactions induced by heavy-ion in IMP. Its configuration both on hardware and software, system control logic, data flow and functions are intraduced. System specification is discussed as well

  1. Safety parameter display system: an operator support system for enhancement of safety in Indian PHWRs

    International Nuclear Information System (INIS)

    Subramaniam, K.; Biswas, T.

    1994-01-01

    Ensuring operational safety in nuclear power plants is important as operator errors are observed to contribute significantly to the occurrence of accidents. Computerized operator support systems, which process and structure information, can help operators during both normal and transient conditions, and thereby enhance safety and aid effective response to emergency conditions. An important operator aid being developed and described in this paper, is the safety parameter display system (SPDS). The SPDS is an event-independent, symptom-based operator aid for safety monitoring. Knowledge-based systems can provide operators with an improved quality of information. An information processing model of a knowledge based operator support system (KBOSS) developed for emergency conditions using an expert system shell is also presented. The paper concludes with a discussion of the design issues involved in the use of a knowledge based systems for real time safety monitoring and fault diagnosis. (author). 8 refs., 4 figs., 1 tab

  2. Atmospheric radiative flux divergence from Clouds and Earth Radiant Energy System (CERES)

    Science.gov (United States)

    Smith, Louis G.; Charlock, Thomas P.; Crommelynk, D.; Rutan, David; Gupta, Shashi

    1990-01-01

    A major objective of the Clouds and Earth Radiant Energy System (CERES) is the computation of vertical profiles through the atmosphere of the divergence of radiation flux, with global coverage. This paper discusses the need for radiation divergence and presents some options for its inference from CERES measurements and other data from the Earth Observating System.

  3. On the atmospheric chemistry of NO2 - O3 systems : a laboratory study

    NARCIS (Netherlands)

    Verhees, P.W.C.

    1986-01-01

    In this dissertation a laboratory study dealing with the atmospheric chemistry of NO 2 -O 3 systems is described. Knowledge of this system is relevant for a better

  4. On the role of patterns in understanding the functioning of soil-vegetation-atmosphere systems

    Science.gov (United States)

    In this paper, we review the role of patterns to improve our understanding of water, mass and energy exchange processes in soil-vegetation-atmosphere systems. We explore the main mechanisms that lead to the formation of patterns in these systems and discuss different approaches to characterizing and...

  5. The Hamburg Ocean-Atmosphere Parameters and Fluxes from Satellite Data (HOAPS): A climatological atlas of satellite-derived air-sea interaction parameters over the world oceans

    Digital Repository Service at National Institute of Oceanography (India)

    Grassl, H.; Jost, V.; Schulz, J.; RameshKumar, M.R.; Bauer, P.; Schluessel, P.

    throughout the period covered by the climatology. The SSM/I data used have been the so called compact antenna temperature tapes (Remote Sensing Systems, F. Wentz) which contain the SSM/I brightness temperature data set with the highest consistency. In order... is only possible if satellite measurements are em- ployed. The number of surface based rain gauges or radar sites is simply too low to derive fields from such data. Because of this many algorithms for rainfall estimation employing infra- red and passive...

  6. Modified Atmosphere Packaging and Its Feasibility for Military Feeding Systems

    Science.gov (United States)

    1994-12-01

    effectively increases the lag phase and generation time of microbes and is responsible for inhibiting spoilage bacterial growth [24]. Carbon dioxide has a...mishandling at any point in production can make it unsafe for consumption. Cwnmon food spoilage microbes give off putrid odors and that is an indication that...the shelf life extension of several foods , and their feasibility for military feeding systems. Several trials were conducted on packaging food

  7. Scaling laws for perturbations in the ocean–atmosphere system following large CO2 emissions

    Directory of Open Access Journals (Sweden)

    N. Towles

    2015-07-01

    Full Text Available Scaling relationships are found for perturbations to atmosphere and ocean variables from large transient CO2 emissions. Using the Long-term Ocean-atmosphere-Sediment CArbon cycle Reservoir (LOSCAR model (Zeebe et al., 2009; Zeebe, 2012b, we calculate perturbations to atmosphere temperature, total carbon, ocean temperature, total ocean carbon, pH, alkalinity, marine-sediment carbon, and carbon-13 isotope anomalies in the ocean and atmosphere resulting from idealized CO2 emission events. The peak perturbations in the atmosphere and ocean variables are then fit to power law functions of the form of γ DαEβ, where D is the event duration, E is its total carbon emission, and γ is a coefficient. Good power law fits are obtained for most system variables for E up to 50 000 PgC and D up to 100 kyr. Although all of the peak perturbations increase with emission rate E/D, we find no evidence of emission-rate-only scaling, α + β = 0. Instead, our scaling yields α + β ≃ 1 for total ocean and atmosphere carbon and 0 < α + β < 1 for most of the other system variables.

  8. The satellite power system - Assessment of the environmental impact on middle atmosphere composition and on climate

    Science.gov (United States)

    Whitten, R. C.; Borucki, W. J.; Park, C.; Pfister, L.; Woodward, H. T.; Turco, R. P.; Capone, L. A.; Riegel, C. A.; Kropp, T.

    1982-01-01

    Numerical models were developed to calculate the total deposition of watervapor, hydrogen, CO2, CO, SO2, and NO in the middle atmosphere from operation of heavy lift launch vehicles (HLLV) used to build a satellite solar power system (SPS). The effects of the contaminants were examined for their effects on the upper atmosphere. One- and two-dimensional models were formulated for the photochemistry of the upper atmosphere and for rocket plumes and reentry. An SPS scenario of 400 launches per year for 10 yr was considered. The build-up of the contaminants in the atmosphere was projected to have no significant effects, even at the launch latitude. Neither would there by any dangerous ozone depletion. It was found that H, OH, and HO2 species would double in the thermosphere. No measurable changes in climate were foreseen.

  9. Estimation of the Ocean Skin Temperature using the NASA GEOS Atmospheric Data Assimilation System

    Science.gov (United States)

    Koster, Randal D.; Akella, Santha; Todling, Ricardo; Suarez, Max

    2016-01-01

    This report documents the status of the development of a sea surface temperature (SST) analysis for the Goddard Earth Observing System (GEOS) Version-5 atmospheric data assimilation system (ADAS). Its implementation is part of the steps being taken toward the development of an integrated earth system analysis. Currently, GEOS-ADAS SST is a bulk ocean temperature (from ocean boundary conditions), and is almost identical to the skin sea surface temperature. Here we describe changes to the atmosphere-ocean interface layer of the GEOS-atmospheric general circulation model (AGCM) to include near surface diurnal warming and cool-skin effects. We also added SST relevant Advanced Very High Resolution Radiometer (AVHRR) observations to the GEOS-ADAS observing system. We provide a detailed description of our analysis of these observations, along with the modifications to the interface between the GEOS atmospheric general circulation model, gridpoint statistical interpolation-based atmospheric analysis and the community radiative transfer model. Our experiments (with and without these changes) show improved assimilation of satellite radiance observations. We obtained a closer fit to withheld, in-situ buoys measuring near-surface SST. Evaluation of forecast skill scores corroborate improvements seen in the observation fits. Along with a discussion of our results, we also include directions for future work.

  10. Calculating the balance between atmospheric CO2 drawdown and organic carbon oxidation in subglacial hydrochemical systems

    Science.gov (United States)

    Graly, Joseph A.; Drever, James I.; Humphrey, Neil F.

    2017-04-01

    In order to constrain CO2 fluxes from biogeochemical processes in subglacial environments, we model the evolution of pH and alkalinity over a range of subglacial weathering conditions. We show that subglacial waters reach or exceed atmospheric pCO2 levels when atmospheric gases are able to partially access the subglacial environment. Subsequently, closed system oxidation of sulfides is capable of producing pCO2 levels well in excess of atmosphere levels without any input from the decay of organic matter. We compared this model to published pH and alkalinity measurements from 21 glaciers and ice sheets. Most subglacial waters are near atmospheric pCO2 values. The assumption of an initial period of open system weathering requires substantial organic carbon oxidation in only 4 of the 21 analyzed ice bodies. If the subglacial environment is assumed to be closed from any input of atmospheric gas, large organic carbon inputs are required in nearly all cases. These closed system assumptions imply that order of 10 g m-2 y-1 of organic carbon are removed from a typical subglacial environment—a rate too high to represent soil carbon built up over previous interglacial periods and far in excess of fluxes of surface deposited organic carbon. Partial open system input of atmospheric gases is therefore likely in most subglacial environments. The decay of organic carbon is still important to subglacial inorganic chemistry where substantial reserves of ancient organic carbon are found in bedrock. In glaciers and ice sheets on silicate bedrock, substantial long-term drawdown of atmospheric CO2 occurs.

  11. Analysis of improvement in performance and design parameters for enhancing resolution in an atmospheric scanning electron microscope.

    Science.gov (United States)

    Yoon, Yeo Hun; Kim, Seung Jae; Kim, Dong Hwan

    2015-12-01

    The scanning electron microscope is used in various fields to go beyond diffraction limits of the optical microscope. However, the electron pathway should be conducted in a vacuum so as not to scatter electrons. The pretreatment of the sample is needed for use in the vacuum. To directly observe large and fully hydrophilic samples without pretreatment, the atmospheric scanning electron microscope (ASEM) is needed. We developed an electron filter unit and an electron detector unit for implementation of the ASEM. The key of the electron filter unit is that electrons are transmitted while air molecules remain untransmitted through the unit. The electron detector unit collected the backscattered electrons. We conducted experiments using the selected materials with Havar foil, carbon film and SiN film. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Investigation of Mesh Choosing Parameters in Screen Printing System

    OpenAIRE

    Ahmet AKGÜL

    2012-01-01

    The mesh, which is made by weaving of natural silk, plastic, or metal fibers, is basic material for screen-printing. Image is created on stretched on a frame in screen-printing. Mesh should be selected correctly for a high quality printing. Therefore, substrates, types of print job and mesh parameters have importance. Need to know more about to mesh, yarn type, yarn thickness, frequency of weaving, stretching tension, the kind of weaving, etc. In this study, for a high quality screen-printing...

  13. A electric parameters measurement and control system for NBIS

    International Nuclear Information System (INIS)

    Tian Zhongjun; Hu Chundong; Liu Sheng

    2010-01-01

    It presents a data acquisition and control system for neutral beam injection system by LabVIEW, PLC, sensors and PXI. Through the RS232, the communication between PLC and IPC, as well as the underlying data acquisition and control was achieved. The system integrated of a variety of techniques, providing a good platform, can also be applied to the industrial field data acquisition and control. (authors)

  14. Binary system parameters and the hibernation model of cataclysmic variables

    International Nuclear Information System (INIS)

    Livio, M.; Shara, M.M.; Space Telescope Science Institute, Baltimore, MD)

    1987-01-01

    The hibernation model, in which nova systems spend most of the time between eruptions in a state of low mass transfer rate, is examined. The binary systems more likely to undergo hibernation are determined. The predictions of the hibernation scenario are shown to be consistent with available observational data. It is shown how the hibernation scenario provides links between classical novae, dwarf novae, and novalike variables, all of which represent different stages in the cyclic evolution of the same systems. 72 references

  15. Coordination of atmospheric dispersion activities for the real-time decision support system RODOS

    International Nuclear Information System (INIS)

    Mikkelsen, T.

    1997-05-01

    This projects task has been to coordinate activities among the RODOS Atmospheric Dispersion sub-group A participants, with the overall objective of developing and integrating an atmospheric transport and dispersion module for the joint European Real-time On-line DecisiOn Support system RODOS headed by FZK (formerly KfK), Germany. The project's final goal is the establishment of a fully operational, system-integrated atmospheric transport module for the RODOS system by year 2000, capable of consistent now- and forecasting of radioactive airborne spread over all types of terrain and on all scales of interest, including in particular complex terrain and the different scales of operation, such as the local, the national and the European scale. (au)

  16. Impact of transmission parameters on Nyquist WDM system

    Science.gov (United States)

    Kowalczyk, Agnieszka; Perlicki, Krzysztof

    2015-09-01

    In this paper the analysis of the transmission quality in Nyquist WDM transport system is presented. Results are presented of a system simulation carried out for different modulation format, symbol rates, channel spacing and filter characteristics of the transmitter and receiver. This paper also contains the comparison between results obtained for the N-WDM (Nyquist Wavelength Division Multiplexing) and DWDM (Dense Wavelength Division Multiplexing) system. Two quality indicators are taken into consideration: interchannel crosstalk and symbol error rate for both different system configurations.

  17. Thawed chilled Barents Sea cod fillets in modified atmosphere packaging-application of multivariate data analysis to select key parameters in good manufacturing practice

    DEFF Research Database (Denmark)

    Bøknæs, Niels; Jensen, K.N.; Guldager, H.S.

    2002-01-01

    The purpose of the present study was to select key parameters in good manufacturing practice for production of thawed chilled modified atmosphere packed (MAP) cod (Gadus morhua) fillets. The effect of frozen storage temperature (-20 and -30 C), frozen storage period (3, 6, 9 and 12 mo) and chill...... parameters in good manufacturing practice for this product. Frozen storage of up to 12 mo had no significant effect on quality attributes and shelf-life at 2degreesC was above 14 d irrespective of the time of frozen storage. As compared to a previous study with Baltic Sea, cod drip losses during chill...... storage periods up to 21 d at 2 C were evaluated for thawed MAP Barents Sea cod fillets. Sensory, chemical, microbiological and physical quality attributes were evaluated and multivariate data analysis (principal component analysis and partial least- squares regression) applied for identification of key...

  18. Deposition of hybrid organic-inorganic composite coatings using an atmospheric plasma jet system.

    Science.gov (United States)

    Dembele, Amidou; Rahman, Mahfujur; Reid, Ian; Twomey, Barry; MacElroy, J M Don; Dowling, Denis P

    2011-10-01

    The objective of this study is to investigate the influence of alcohol addition on the incorporation of metal oxide nanoparticles into nm thick siloxane coatings. Titanium oxide (TiO2) nanoparticles with diameters of 30-80 nm were incorporated into an atmospheric plasma deposited tetramethylorthosilicate (TMOS) siloxane coating. The TMOS/TiO2 coating was deposited using the atmospheric plasma jet system known as PlasmaStream. In this system the liquid precursor/nanoparticle mixture is nebulised into the plasma. It was observed that prior to being nebulised the TiO2 particles agglomerated and settled over time in the TMOS/TiO2 mixture. In order to obtain a more stable nanoparticle/TMOS suspension the addition of the alcohols methanol, octanol and pentanol to this mixture was investigated. The addition of each of these alcohols was found to stabilise the nanoparticle suspension. The effect of the alcohol was therefore assessed with respect to the properties of the deposited coatings. It was observed that coatings deposited from TMOS/TiO2, with and without the addition of methanol were broadly similar. In contrast the coatings deposited with octanol and pentanol addition to the TMOS/TiO2 mixture were significantly thicker, for a given set of deposition parameters and were also more homogeneous. This would indicate that the alcohol precursor was incorporated into the plasma polymerised siloxane. The incorporation of the organic functionality from the alcohols was confirmed from FTIR spectra of the coatings. The difference in behaviour with alcohol type is likely to be due to the lower boiling point of methanol (65 degrees C), which is lower than the maximum plasma temperature measured at the jet orifice (77 degrees C). This temperature is significantly lower than the 196 degrees C and 136 degrees C boiling points of octanol and pentanol respectively. The friction of the coatings was determined using the Pin-on-disc technique. The more organic coatings deposited with

  19. Atmospheric CO2 capture for the artificial photosynthetic system

    Science.gov (United States)

    Nogalska, Adrianna; Zukowska, Adrianna; Garcia-Valls, Ricard

    2017-11-01

    The scope of these studies is to evaluate the ambient CO2 capture abilities of the membrane contactor system in the same conditions as leaves works during photosynthesis, such as ambient temperature, pressure and low CO2 concentration, where the only driving force is the concentration gradient. The polysulfone membrane was made by phase inversion process and characterized by ESEM micrographs which were used to determine the thickness, asymmetry and pore size. Besides, the porosity of the membrane was measured from the membrane and polysulfone density correlation and hydrophobicity was analyzed by contact angle measurements. Moreover, the compatibility of the membrane and absorbent solution was evaluated, in order to exclude wetting issues. The prepared membranes were introduced in a cross flow module and used as contactor between the CO2 and the potassium hydroxide solution, as absorbing media. The influence of the membrane thickness, absorbent stirring rate and absorption time, on CO2 capture were evaluated. The results show that the efficiency of our CO2 capture system is similar to stomatal carbon dioxide assimilation rate.

  20. Atmospheric CO2 capture for the artificial photosynthetic system

    Directory of Open Access Journals (Sweden)

    Nogalska Adrianna

    2017-01-01

    Full Text Available The scope of these studies is to evaluate the ambient CO2 capture abilities of the membrane contactor system in the same conditions as leaves works during photosynthesis, such as ambient temperature, pressure and low CO2 concentration, where the only driving force is the concentration gradient. The polysulfone membrane was made by phase inversion process and characterized by ESEM micrographs which were used to determine the thickness, asymmetry and pore size. Besides, the porosity of the membrane was measured from the membrane and polysulfone density correlation and hydrophobicity was analyzed by contact angle measurements. Moreover, the compatibility of the membrane and absorbent solution was evaluated, in order to exclude wetting issues. The prepared membranes were introduced in a cross flow module and used as contactor between the CO2 and the potassium hydroxide solution, as absorbing media. The influence of the membrane thickness, absorbent stirring rate and absorption time, on CO2 capture were evaluated. The results show that the efficiency of our CO2 capture system is similar to stomatal carbon dioxide assimilation rate.

  1. Atmospheric CO2capture for the artificial photosynthetic system.

    Science.gov (United States)

    Nogalska, Adrianna; Zukowska, Adrianna; Garcia-Valls, Ricard

    2018-04-15

    The aim of these studies is to evaluate the ambient CO 2 capture abilities of the membrane contactor system in the same conditions as leafs, such as ambient temperature, pressure and low CO 2 concentration, where the only driving force is the concentration gradient. The polysulfone membrane employed was made by a phase inversion process and characterized by ESEM micrographs which were used to determine the thickness, asymmetry and pore size. Besides, the porosity of the membrane was measured from the membrane and polysulfone density correlation and the hydrophobicity was analyzed by contact angle measurements. Moreover, the compatibility of membrane and absorbent was evaluated, in order to exclude wetting issues by meaning of swelling, dynamic contact angle and AFM analysis. The prepared membranes were introduced into a cross flow module and used as contactors between CO 2 and the absorbing media, a potassium hydroxide solution. The influence of the membrane thickness, absorbent stirring rate, solution pH and absorption time on CO 2 capture were evaluated. Absorbent solution stirring rate showed no statistically significant influence on absorption. We observed a non-linear correlation between the capture rate and the increase of absorbent solution pH as well as absorption time. The results showed that the efficiency of our CO 2 capture system is similar to stomatal carbon dioxide assimilation rate, achieving stable value of 20μmol/m 2 ·s after 1h of experiment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. SHELF –LIFE OF SEA BREAM (SPARUS AURATA PACKAGED IN MODIFIED ATMOSPHERE: RELATIONSHIPs BETWEEN SENSORY AND MICROBIOLOGICAL PARAMETERS

    Directory of Open Access Journals (Sweden)

    L. Pennisi

    2013-02-01

    Full Text Available The research evaluates sensorial and microbiological parameters of gilthead sea bream (Sparus aurata during storage in MAP. Fish samples, obtained from three off-shore breedings located in Messina, Pisa and Sassari, were analyzed after 1, 5, 8, 12, 15 and 19 days of storage. Sensory assessment was carried out using the Quality Index Method (QIM. Microbiological assays (CMT, CPT, H2S-producing bacteria were performed on muscle pools. The results show that the shelf-life of gilthead sea bream packaged in MAP as determined by acceptability sensory scores, was lower than 12 days. A relationship between QIM and the microbiological parameter of H2S producing bacteria has been found, even if not it cannot be considered statistically significant according to statistical analysis.

  3. Ion neutral gas coupling in the polar atmosphere: Use of EISCAT for the calculation of thermospheric parameters

    Science.gov (United States)

    Figueroamartinez, Dante R.

    Data collected by the method of incoherent retrodiffusion about the electrically charged particles of the ionosphere was used for derivation of the parameters of the neutral gas, whose temperature and velocity was deduced from energy and impulse equations. The DTM (Drag Temperature Model) model was used to obtain a better evaluation of the calculated values. Measurements were achieved with a Fabry-Perot interferometer and showed that by a high magnetic parasitic degree a strong coupling exists between ions and neutral gas.

  4. Research on Intelligent Control System of DC SQUID Magnetometer Parameters for Multi-channel System

    Science.gov (United States)

    Chen, Hua; Yang, Kang; Lu, Li; Kong, Xiangyan; Wang, Hai; Wu, Jun; Wang, Yongliang

    2018-03-01

    In a multi-channel SQUID measurement system, adjusting device parameters to optimal condition for all channels is time-consuming. In this paper, an intelligent control system is presented to determine the optimal working point of devices which is automatic and more efficient comparing to the manual one. An optimal working point searching algorithm is introduced as the core component of the control system. In this algorithm, the bias voltage V_bias is step scanned to obtain the maximal value of the peak-to-peak current value I_pp of the SQUID magnetometer modulation curve. We choose this point as the optimal one. Using the above control system, more than 30 weakly damped SQUID magnetometers with area of 5 × 5 mm^2 or 10 × 10 mm^2 are adjusted and a 36-channel magnetocardiography system perfectly worked in a magnetically shielded room. The average white flux noise is 15 μΦ_0/Hz^{1/2}.

  5. Identification of System Parameters by the Random Decrement Technique

    DEFF Research Database (Denmark)

    Brincker, Rune; Kirkegaard, Poul Henning; Rytter, Anders

    -Walker equations and finally least square fitting of the theoretical correlation function. The results are compared to the results of fitting an Auto Regressive Moving Average(ARMA) model directly to the system output. All investigations are performed on the simulated output from a single degree-off-freedom system...

  6. H-infinity Tracking Problems for a Distributed Parameter System

    DEFF Research Database (Denmark)

    Larsen, Mikael

    1997-01-01

    The thesis considers the problem of finding a finite dimensional controller for an infinite dimensional system (A tunnel Pasteurizer) combinedwith a rubustness analysis.......The thesis considers the problem of finding a finite dimensional controller for an infinite dimensional system (A tunnel Pasteurizer) combinedwith a rubustness analysis....

  7. Effects of pulse parameters on the atmospheric-pressure dielectric barrier discharges driven by the high-voltage pulses in Ar and N2

    International Nuclear Information System (INIS)

    Pan, J; Tan, Z Y; Wang, X L; Sha, C; Nie, L L; Chen, X X

    2014-01-01

    In this work, the atmospheric-pressure dielectric barrier discharges in Ar and N 2 excited by repetitive voltage pulses have been numerically studied using a 1D fluid model. The differences between the discharge characteristics for Ar and N 2 have been presented when changing the parameters of the applied pulse voltage. In this work we present the following significant results. With an increase of the amplitude of the applied pulse voltage, the increase of the maximum discharge current density in Ar is evident, compared with N 2 ; and the discharge mode changes from the weak atmospheric-pressure glow discharge (APGD) to the standard APGD for Ar, and from the atmospheric-pressure Townsend discharge to the APGD for N 2 . In addition, the increase of the averaged electron density in N 2 is more evident than that in Ar, especially when the standard APGD occurs in N 2 . The increasing frequency leads to lower maximum discharge current density for Ar, however, the reverse is true for N 2 . With an increase of the pulse width of the applied pulse voltage, the averaged electron density and the maximum discharge current density change slightly in Ar, but they increase drastically in N 2 . (paper)

  8. Thermodynamics and kinetics parameters of co-combustion between sewage sludge and water hyacinth in CO2/O2 atmosphere as biomass to solid biofuel.

    Science.gov (United States)

    Huang, Limao; Liu, Jingyong; He, Yao; Sun, Shuiyu; Chen, Jiacong; Sun, Jian; Chang, KenLin; Kuo, Jiahong; Ning, Xun'an

    2016-10-01

    Thermodynamics and kinetics of sewage sludge (SS) and water hyacinth (WH) co-combustion as a blend fuel (SW) for bioenergy production were studied through thermogravimetric analysis. In CO2/O2 atmosphere, the combustion performance of SS added with 10-40wt.% WH was improved 1-1.97 times as revealed by the comprehensive combustion characteristic index (CCI). The conversion of SW in different atmospheres was identified and their thermodynamic parameters (ΔH,ΔS,ΔG) were obtained. As the oxygen concentration increased from 20% to 70%, the ignition temperature of SW decreased from 243.1°C to 240.3°C, and the maximum weight loss rate and CCI increased from 5.70%·min(-1) to 7.26%·min(-1) and from 4.913%(2)·K(-3)·min(-2) to 6.327%(2)·K(-3)·min(-2), respectively, which corresponded to the variation in ΔS and ΔG. The lowest activation energy (Ea) of SW was obtained in CO2/O2=7/3 atmosphere. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Vertical profiles of atmospheric fluorescent aerosols observed by a mutil-channel lidar spectrometer system

    Science.gov (United States)

    Huang, Z.; Huang, J.; Zhou, T.; Sugimoto, N.; Bi, J.

    2015-12-01

    Zhongwei Huang1*, Jianping Huang1, Tian Zhou1, Nobuo Sugimoto2, Jianrong Bi1 and Jinsen Shi11Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University, Lanzhou, China. 2Atmospheric Environment Division, National Institutes for Environmental Studies, Tsukuba, Japan Email: huangzhongwei@lzu.edu.cn Abstract Atmospheric aerosols have a significant impact on regional and globe climate. The challenge in quantifying aerosol direct radiative forcing and aerosol-cloud interactions arises from large spatial and temporal heterogeneity of aerosol concentrations, compositions, sizes, shape and optical properties (IPCC, 2007). Lidar offers some remarkable advantages for determining the vertical structure of atmospheric aerosols and their related optical properties. To investigate the characterization of atmospheric aerosols (especially bioaerosols) with high spatial and temporal resolution, we developed a Raman/fluorescence/polarization lidar system employed a multi-channel spectrometer, with capabilities of providing measurements of Raman scattering and laser-induced fluorescence excitation at 355 nm from atmospheric aerosols. Meanwhile, the lidar system operated polarization measurements both at 355nm and 532nm wavelengths, aiming to obtain more information of aerosols. It employs a high power pulsed laser and a received telescope with 350mm diameter. The receiver could simultaneously detect a wide fluorescent spectrum about 178 nm with spectral resolution 5.7 nm, mainly including an F/3.7 Crossed Czerny-Turner spectrograph, a grating (1200 gr/mm) and a PMT array with 32 photocathode elements. Vertical structure of fluorescent aerosols in the atmosphere was observed by the developed lidar system at four sites across northwest China, during 2014 spring field observation that conducted by Lanzhou University. It has been proved that the developed lidar could detect the fluorescent aerosols with high temporal and

  10. Development of Laser, Detector, and Receiver Systems for an Atmospheric CO2 Lidar Profiling System

    Science.gov (United States)

    Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Singh, Upendra

    2008-01-01

    A ground-based Differential Absorption Lidar (DIAL) is being developed with the capability to measure range-resolved and column amounts of atmospheric CO2. This system is also capable of providing high-resolution aerosol profiles and cloud distributions. It is being developed as part of the NASA Earth Science Technology Office s Instrument Incubator Program. This three year program involves the design, development, evaluation, and fielding of a ground-based CO2 profiling system. At the end of a three-year development this instrument is expected to be capable of making measurements in the lower troposphere and boundary layer where the sources and sinks of CO2 are located. It will be a valuable tool in the validation of NASA Orbiting Carbon Observatory (OCO) measurements of column CO2 and suitable for deployment in the North American Carbon Program (NACP) regional intensive field campaigns. The system can also be used as a test-bed for the evaluation of lidar technologies for space-application. This DIAL system leverages 2-micron laser technology developed under a number of NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements.

  11. Model Predictive Control of Nonlinear Parameter Varying Systems via Receding Horizon Control Lyapunov Functions

    National Research Council Canada - National Science Library

    Sznaier, Mario

    2001-01-01

    .... In this chapter we propose a suboptimal regulator for nonlinear parameter varying, control affine systems based upon the combination of model predictive and control Lyapunov function techniques...

  12. Adaptive synchronization of fractional Lorenz systems using a reduced number of control signals and parameters

    International Nuclear Information System (INIS)

    Aguila-Camacho, Norelys; Duarte-Mermoud, Manuel A.; Delgado-Aguilera, Efredy

    2016-01-01

    This paper analyzes the synchronization of two fractional Lorenz systems in two cases: the first one considering fractional Lorenz systems with unknown parameters, and the second one considering known upper bounds on some of the fractional Lorenz systems parameters. The proposed control strategies use a reduced number of control signals and control parameters, employing mild assumptions. The stability of the synchronization errors is analytically demonstrated in all cases, and the convergence to zero of the synchronization errors is analytically proved in the case when the upper bounds on some system parameters are assumed to be known. Simulation studies are presented, which allows verifying the effectiveness of the proposed control strategies.

  13. BER of subcarrier MPSK and MDPSK systems in atmospheric turbulence

    KAUST Repository

    Song, Xuegui

    2015-01-01

    Bit-error rate (BER) performance of subcarrier $M$-ary phase-shift keying (MPSK) and $M$-ary differential PSK (MDPSK) is analyzed for optical wireless communications over Gamma-Gamma and lognormal turbulence channels. We study the relation between the exact BER and the approximate BER, which is obtained by dividing the symbol-error rate by the number of bits per symbol, for subcarrier MPSK and MDPSK modulations. The asymptotic BER performance gap between the exact and the approximate BERs is quantified analytically through our asymptotic analyses. The accuracy of the approximate BER of both MPSK and MDPSK depends on the channel conditions. Under weak turbulence conditions, the approximate BER expression can be used to predict the system performance with high accuracy, while under strong turbulence conditions the approximate BER becomes inaccurate and can only serve as a loose lower bound of the exact BER. The asymptotic BER performance loss of MDPSK with respect to MPSK is also quantified analytically.

  14. Using Unmanned Air Systems to Monitor Methane in the Atmosphere

    Science.gov (United States)

    Clow, Jacqueline; Smith, Jeremy Christopher

    2016-01-01

    Methane is likely to be an important contributor to global warming, and our current knowledge of its sources, distributions, and transport is insufficient. It is estimated that there could be from 7.5 to 400 billion tons carbon-equivalent of methane in the arctic region, a broad range that is indicative of the uncertainty within the Earth Science community. Unmanned Air Systems (UASs) are often used for combat or surveillance by the military, but they also have been used for Earth Science field missions. In this study, we will analyze the utility of the NASA Global Hawk and the Aurora Flight Sciences Orion UASs compared to the manned DC-8 aircraft for conducting a methane monitoring mission. The mission will focus on the measurement of methane along the boundaries of Arctic permafrost thaw and melting glaciers. The use of Long Endurance UAS brings a new range of possibilities including the ability to obtain long- term and persistent observations and to significantly augment methane measurements/retrievals collected by satellite. Furthermore, we discuss the future of long endurance UAS and their potential for science applications in the next twenty to twenty-five years.

  15. Analysis of parameters for leachate treatment in a greenhouse system

    Directory of Open Access Journals (Sweden)

    Ana Laura Gómez Blasco

    2017-06-01

    Full Text Available In this paper is presented an approach for landfill leachate treatment using enhanced natural evaporation. Experimental set up considered using a greenhouse pilot prototype placed into the municipal landfill of Puebla city, México. The greenhouse was built with a basement surface enough to place 9 trays with leachate. Treatment follow up was done through the following parameters: air temperature inside and outside the greenhouse; leachate temperature at surface and middle liquid height. Results of the first set of experiments defined a minimal initial liquid height of 20% in respect to the tray height; the 2nd set allowed defining optimal evaporation rate conditions evaluated in respect of a tray placed outside, considered as reference of 100% efficiency (blank, obtained results showed that morning and night processes provided efficiencies up to 2 times the reference; otherwise, afternoon measurements showed similar temperature values inside and outside. In general collected data at winter season provided efficiencies between 82% and 147%, in periods of 24 h, it was observed that higher liquid reductions took place at North, and lower ones at the South positions. Based on these results it was proposed a 20 days experiment, using stagnant (E and recharge (R conditions referred to the blank (L, the R process showed greater efficiency (168% than the stagnant one (158%. Leachate chemical characterization indicates that pH is highly stable; while total solids, chemical oxygen demand, sulfate and chloride exhibit an increase in concentration reaching values of 1.2–2.5 times the initial concentration, phosphate was the only parameter exhibiting a decreasing trend ending with 40% of its initial concentration.

  16. Stability of asynchronous pulse systems with random perturbations of parameters

    NARCIS (Netherlands)

    Gelig, AK

    The mean-square frequency stability conditions under arbitrary initial perturbations for an asynchronous system consisting of a linear part with Gaussian perturbations of coefficients and a fete pulse elements are derived.

  17. Adaptive neuro-fuzzy estimation of optimal lens system parameters

    Science.gov (United States)

    Petković, Dalibor; Pavlović, Nenad T.; Shamshirband, Shahaboddin; Mat Kiah, Miss Laiha; Badrul Anuar, Nor; Idna Idris, Mohd Yamani

    2014-04-01

    Due to the popularization of digital technology, the demand for high-quality digital products has become critical. The quantitative assessment of image quality is an important consideration in any type of imaging system. Therefore, developing a design that combines the requirements of good image quality is desirable. Lens system design represents a crucial factor for good image quality. Optimization procedure is the main part of the lens system design methodology. Lens system optimization is a complex non-linear optimization task, often with intricate physical constraints, for which there is no analytical solutions. Therefore lens system design provides ideal problems for intelligent optimization algorithms. There are many tools which can be used to measure optical performance. One very useful tool is the spot diagram. The spot diagram gives an indication of the image of a point object. In this paper, one optimization criterion for lens system, the spot size radius, is considered. This paper presents new lens optimization methods based on adaptive neuro-fuzzy inference strategy (ANFIS). This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated.

  18. Do It Yourself solution of Internet of Things Healthcare System: Measuring body parameters and environmental parameters affecting health.

    Directory of Open Access Journals (Sweden)

    Mirjana Maksimović

    2016-03-01

    Full Text Available The rapid advancements in information and communications technologies (ICT and the increasing number of smart things shift an old-fashioned healthcare system to a model better suited for a population of the 21st century. New healthcare approaches based on Internet of Things (IoT/Internet of Medical Things (IoMT powered systems make health monitoring, diagnostics and treatment more personalized, timely and convenient, enabling a global approach to the healthcare system infrastructure development. Commercial systems in this area exist in various forms but usually do not fit the general patient needs, and those that do are usually economically unacceptable due to the high operational and development costs. Do It Yourself (DIY healthcare, including mobile applications and consumer medical devices, nowadays is the top healthcare trend. Therefore, this paper, based on well-known low-cost technologies, presents a DIY IoMT solution for observing human vital parameter as well as environmental factors affecting health.

  19. A variational data assimilation system for soil–atmosphere flux estimates for the Community Land Model (CLM3.5

    Directory of Open Access Journals (Sweden)

    C. M. Hoppe

    2014-05-01

    Full Text Available This paper presents the development and implementation of a spatio-temporal variational data assimilation system (4D-var for the soil–vegetation–atmosphere transfer model "Community Land Model" (CLM3.5, along with the development of the adjoint code for the core soil–atmosphere transfer scheme of energy and soil moisture. The purpose of this work is to obtain an improved estimation technique for the energy fluxes (sensible and latent heat fluxes between the soil and the atmosphere. Optimal assessments of these fluxes are neither available from model simulations nor measurements alone, while a 4D-var data assimilation has the potential to combine both information sources by a Best Linear Unbiased Estimate (BLUE. The 4D-var method requires the development of the adjoint model of the CLM which is established in this work. The new data assimilation algorithm is able to assimilate soil temperature and soil moisture measurements for one-dimensional columns of the model grid. Numerical experiments were first used to test the algorithm under idealised conditions. It was found that the analysis delivers improved results whenever there is a dependence between the initial values and the assimilated quantity. Furthermore, soil temperature and soil moisture from in situ field measurements were assimilated. These calculations demonstrate the improved performance of flux estimates, whenever soil property parameters are available of sufficient quality. Misspecifications could also be identified by the performance of the variational scheme.

  20. Atmospheric Dispersion about a Heavy Gas Vapor Detention System.

    Science.gov (United States)

    Shin, Seong-Hee

    Dispersion of liquefied natural gas (LNG) in the event of an accidental spill is a major concern in LNG storage and transport safety planning, hazard response, and facility siting. Falcon Series large scale LNG spill experiments were planned by Lawrence Livermore National Laboratory (LLNL) for the Department of Transportation (DOT) and the Gas Research Institute (GRI) as part of a joint government/industry study in 1987 to evaluate the effectiveness of vapor fences as a mitigating technique for accidental release of LNG and to assist in validating wind tunnel and numerical methods for vapor dispersion simulation. Post-field-spill wind-tunnel experiments were performed in Environmental Wind Tunnel (EWT) (1988, 1989) to augment the LNG Vapor Fence Program data obtained during the Falcon Test Series. The program included four different model length scales and two different simulant gases. The purpose of this program is to provide a basis for the analysis of the simulation of physical modeling tests using proper physical modeling techniques and to assist in the development and verification of analytical models. Field data and model data were compared and analyzed by surface pattern comparisons and statistical methods. A layer-averaged slab model developed by Meroney et al. (1988) (FENC23) was expanded to evaluate an enhanced entrainment model proposed for dense gas dispersion including the effect of vapor barriers, and the numerical model was simulated for Falcon tests without the fence and with the vapor fence to examine the effectiveness of vapor detention system on heavy gas dispersion. Model data and the field data were compared with the numerical model data, and degree of similarity between data were assessed.

  1. The RAVE-on Catalog of Stellar Atmospheric Parameters and Chemical Abundances for Chemo-dynamic Studies in the Gaia Era

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Andrew R.; Hawkins, Keith; Koposov, Sergey; Sanders, Jason; Gilmore, Gerry [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hogg, David W. [Simons Center for Data Analysis, 160 Fifth Avenue, 7th Floor, New York, NY 10010 (United States); Ness, Melissa; Rix, Hans-Walter [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Kordopatis, Georges; Kunder, Andrea; Steinmetz, Matthias; Enke, Harry [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Zwitter, Tomaž; Matijevič, Gal [University of Ljubljana, Faculty of Mathematics and Physics, Jadranska 19, 1000 Ljubljana (Slovenia); Freeman, Kenneth C.; Casagrande, Luca [Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, The Australian National University, ACT 2611 (Australia); Seabroke, George [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, RH5 6NT (United Kingdom); Bienaymé, Olivier [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l’Université, F-67000 Strasbourg (France); Bland-Hawthorn, Joss [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia); Gibson, Brad K. [E.A. Milne Centre for Astrophysics, University of Hull, Hull, HU6 7RX (United Kingdom); and others

    2017-05-01

    The orbits, atmospheric parameters, chemical abundances, and ages of individual stars in the Milky Way provide the most comprehensive illustration of galaxy formation available. The Tycho- Gaia Astrometric Solution (TGAS) will deliver astrometric parameters for the largest ever sample of Milky Way stars, though its full potential cannot be realized without the addition of complementary spectroscopy. Among existing spectroscopic surveys, the RAdial Velocity Experiment (RAVE) has the largest overlap with TGAS (≳200,000 stars). We present a data-driven re-analysis of 520,781 RAVE spectra using The Cannon . For red giants, we build our model using high-fidelity APOGEE stellar parameters and abundances for stars that overlap with RAVE. For main sequence and sub-giant stars, our model uses stellar parameters from the K2/EPIC . We derive and validate effective temperature T {sub eff}, surface gravity log g , and chemical abundances of up to seven elements (O, Mg, Al, Si, Ca, Fe, and Ni). We report a total of 1,685,851 elemental abundances with a typical precision of 0.07 dex, a substantial improvement over previous RAVE data releases. The synthesis of RAVE-on and TGAS is the most powerful data set for chemo-dynamic analyses of the Milky Way ever produced.

  2. Dynamics of a distributed drill string system: Characteristic parameters and stability maps

    Science.gov (United States)

    Aarsnes, Ulf Jakob F.; van de Wouw, Nathan

    2018-03-01

    This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.

  3. Parameter Identification and Synchronization of Uncertain Chaotic Systems Based on Sliding Mode Observer

    Directory of Open Access Journals (Sweden)

    Li-lian Huang

    2013-01-01

    Full Text Available The synchronization of nonlinear uncertain chaotic systems is investigated. We propose a sliding mode state observer scheme which combines the sliding mode control with observer theory and apply it into the uncertain chaotic system with unknown parameters and bounded interference. Based on Lyapunov stability theory, the constraints of synchronization and proof are given. This method not only can realize the synchronization of chaotic systems, but also identify the unknown parameters and obtain the correct parameter estimation. Otherwise, the synchronization of chaotic systems with unknown parameters and bounded external disturbances is robust by the design of the sliding surface. Finally, numerical simulations on Liu chaotic system with unknown parameters and disturbances are carried out. Simulation results show that this synchronization and parameter identification has been totally achieved and the effectiveness is verified very well.

  4. Vertical Sampling Scales for Atmospheric Boundary Layer Measurements from Small Unmanned Aircraft Systems (sUAS

    Directory of Open Access Journals (Sweden)

    Benjamin L. Hemingway

    2017-09-01

    Full Text Available The lowest portion of the Earth’s atmosphere, known as the atmospheric boundary layer (ABL, plays an important role in the formation of weather events. Simple meteorological measurements collected from within the ABL, such as temperature, pressure, humidity, and wind velocity, are key to understanding the exchange of energy within this region, but conventional surveillance techniques such as towers, radar, weather balloons, and satellites do not provide adequate spatial and/or temporal coverage for monitoring weather events. Small unmanned aircraft, or aerial, systems (sUAS provide a versatile, dynamic platform for atmospheric sensing that can provide higher spatio-temporal sampling frequencies than available through most satellite sensing methods. They are also able to sense portions of the atmosphere that cannot be measured from ground-based radar, weather stations, or weather balloons and have the potential to fill gaps in atmospheric sampling. However, research on the vertical sampling scales for collecting atmospheric measurements from sUAS and the variabilities of these scales across atmospheric phenomena (e.g., temperature and humidity is needed. The objective of this study is to use variogram analysis, a common geostatistical technique, to determine optimal spatial sampling scales for two atmospheric variables (temperature and relative humidity captured from sUAS. Results show that vertical sampling scales of approximately 3 m for temperature and 1.5–2 m for relative humidity were sufficient to capture the spatial structure of these phenomena under the conditions tested. Future work is needed to model these scales across the entire ABL as well as under variable conditions.

  5. Updating reliability parameters for safety injection system and containment spray system pumps

    International Nuclear Information System (INIS)

    Aufort, P.

    1993-01-01

    When probabilistic safety studies were carried out for the EDF 1 300 MWe PWR plants, the equipment reliability parameters were assessed using a frequency-based statistical approach, which still meets most requirements, even quantitatively. However, this conventional approach can prove inadapted to estimation of reliability parameters in the case of nuclear plant safeguard systems which remain inactive during normal plant operation. This equipment is only required to function in the event of operating transient incidents or during periodic tests. Moreover, since it is high reliability equipment, failures and rare, so that although all such failures are recorded for all EDF nuclear power plants, the resulting operating feedback is extremely limited. In this case, the use of Bayes' inference statistics is deemed preferable, since a predictive decision-aid tool based on this approach enables determination of the probability density distribution for the parameter considered, rather than an assessment of the value of this parameter at a given moment or for a given interval. This probability distribution is derived from a priori knowledge of this equipment: expert appraisal, special data, specific inquiry, past operating feedback, etc. and from the updating of this knowledge in the light of recent operating feedback. (author). 2 figs

  6. Parameter Estimation for Dynamic Model of the Financial System

    Directory of Open Access Journals (Sweden)

    Veronika Novotná

    2015-01-01

    Full Text Available Economy can be considered a large, open system which is influenced by fluctuations, both internal and external. Based on non-linear dynamics theory, the dynamic models of a financial system try to provide a new perspective by explaining the complicated behaviour of the system not as a result of external influences or random behaviour, but as a result of the behaviour and trends of the system’s internal structures. The present article analyses a chaotic financial system from the point of view of determining the time delay of the model variables – the interest rate, investment demand, and price index. The theory is briefly explained in the first chapters of the paper and serves as a basis for formulating the relations. This article aims to determine the appropriate length of time delay variables in a dynamic model of the financial system in order to express the real economic situation and respect the effect of the history of factors under consideration. The determination of the delay length is carried out for the time series representing Euro area. The methodology for the determination of the time delay is illustrated by a concrete example.

  7. A Biomedical Assessment of a One-Atmosphere Diving System: JIM-4.

    Science.gov (United States)

    1981-12-01

    diving dress ................................. A7 Fig. 9. Galeazzi diving suit ................................. A8 Fig. 10. Peress’s diving system, the...joints, one in each shoulder and two in each leg. Around the time that Neufeldt and Kuhnke were developing their system, an Italian developer Galeazzi ...produced an atmospheric diving system (Davis, 1969). A photograph in Davis’s book shows a 1930’s Galeazzi suit that is virtually identical to a recent

  8. On identification of dynamic system parameters from experimental data

    CSIR Research Space (South Africa)

    Shatalov, M

    2007-08-01

    Full Text Available -linear differen- tial equations frequently used to describe the dynamics of biological systems in which two species interact. They were proposed independently by Alfred J. Lotka [1] and Vito Volterra in 1926 [2]. This system can be written in the form x′1(t...) = x1 (a11 − a12x2) x′2(t) = x2 (ηa12x1 − a22) When solved for x1 and x2 the above system of equations yields x1 = 0, x1 = 0 and 1 x1 = a22 ηa12 , x1 = a11 a12 hence there are two equilibria. The solution in the neighborhood of the first...

  9. 40 CFR 63.9306 - What are my continuous parameter monitoring system (CPMS) installation, operation, and...

    Science.gov (United States)

    2010-07-01

    ... device to the atmosphere. (ii) Car-seal or lock-and-key valve closures. Secure any bypass line valve in the closed position with a car-seal or a lock-and-key type configuration. You must visually inspect...) Automatic shutdown system. Use an automatic shutdown system in which the engine testing operation is stopped...

  10. Measuring and recording system for electron beam welding parameters

    International Nuclear Information System (INIS)

    Lobanova, N.G.; Lifshits, M.L.; Efimov, I.I.

    1987-01-01

    The observation possibility during electron beam welding of circular articles with guaranteed clearance of welding bath leading front in joint gap and flare cloud over the bath by means of television monitor is considered. The composition and operation mode of television measuring system for metric characteristics of flare cloud and altitude of welding bath leading front in the clearance are described

  11. Critical parameters in the design of urban soakaway systems in ...

    African Journals Online (AJOL)

    The influence of the hydraulic characteristics of subsurface soils in the performance of septicsoakaway systems is studied to achieve a very realistic design. In-situ infiltration tests were conducted on three marked horizons between 0 and 400 cm below the ground surface. Soil samples taken from the same locations were ...

  12. Automatic Measuring System for Oil Stream Paraffin Deposits Parameters

    Science.gov (United States)

    Kopteva, A. V.; Koptev, V. Yu

    2018-03-01

    This paper describes a new method for monitoring oil pipelines, as well as a highly efficient and automated paraffin deposit monitoring method. When operating oil pipelines, there is an issue of paraffin, resin and salt deposits on the pipeline walls that come with the oil stream. It ultimately results in frequent transportation suspension to clean or even replace pipes and other equipment, thus shortening operation periods between repairs, creating emergency situations and increasing production expenses, badly affecting environment, damaging ecology and spoil underground water, killing animals, birds etc. Oil spills contaminate rivers, lakes, and ground waters. Oil transportation monitoring issues are still subject for further studying. Thus, there is the need to invent a radically new automated process control and management system, together with measurement means intellectualization. The measurement principle is based on the Lambert-Beer law that describes the dependence between the gamma-radiation frequency and the density together with the linear attenuation coefficient for a substance. Using the measuring system with high accuracy (± 0,2%), one can measure the thickness of paraffin deposits with an absolute accuracy of ± 5 mm, which is sufficient to ensure reliable operation of the pipeline system. Safety is a key advantage, when using the proposed control system.

  13. Antisynchronization of a novel hyperchaotic system with parameter ...

    Indian Academy of Sciences (India)

    College of Information Science and Engineering, Hunan University, Changsha 410082,. People's Republic ... construct a new hyperchaotic system is to add an additional nonlinear state feedback con- troller into these .... Figure 5 shows the time domain waveform, and it can be observed that the time domain waveform has.

  14. Bubbling and bistability in two parameter discrete systems

    Indian Academy of Sciences (India)

    Attempts to extend the criteria to continuous and higher dimensional systems are under way and will be reported elsewhere. Acknowledgements. SNV thanks the UGC, New Delhi for financial assistance through a junior research fellow- ship and GA acknowledges the warm hospitality and computer facility at IUCAA, Pune.

  15. Online Parameter Estimation for a Centrifugal Decanter System

    DEFF Research Database (Denmark)

    Larsen, Jesper Abildgaard; Alstrøm, Preben

    2014-01-01

    In many processing plants decanter systems are used for separation of heterogenious mixtures, and even though they account for a large fraction of the energy consumption, most decanters just runs at a fixed setpoint. Here, multi model estimation is applied to a waste water treatment plant, and it...

  16. Phase Modulation Method for Control Systems of Rotary Machine Parameters

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2014-01-01

    Full Text Available Traditionally, vibration-based diagnostics takes the main place in a large complex of technical control means of rotary machine operation. It allows us to control the onset of extreme limit states of operating construction and its elements. However, vibration-based diagnostics is incapable to provide differentiated information about the condition of particular units, type of fault and point of its occurrence.From the practical experience of optoelectronic sensors development, methods of phase coding information about the behavior of the investigated object are known. They allow us to overcome the abovementioned disadvantage of vibration-based diagnostics through the modulation of the reflected radiation from the object. This phase modulation is performed with the image analyzers, in which the modulating raster (alternating transparent and nontransparent sectors is designed so, that the carrier frequency of oscillations is absent (suppressed in frequency spectrum, and all useful information can be found in the side frequencies.Carrier frequency suppression appears for two complete turns of the modulating raster. Each time during this process oscillations have a 180° phase shift (hop relatively to the initial oscillation on the boundary of each turn. It leads to a substantial increase in signal/noise ratio and possibility to conduct high-accuracy diagnostics.The principle of the pseudo inversion is used for measurements to suppress an adverse effect of various factors in dynamic control system. For this principle the leaving and returned beams practically go on the same way with small spatial shift. This shift occurs then the leaving beam reflects from a basic surface and the reflected – from the measured surface of the object. Therefore the measurements become insensitive to any other errors of system, except relative position of system «model-object».The main advantages of such measurements are the following:- system steadiness to error

  17. Relevance of long term time - Series of atmospheric parameters at a mountain observatory to models for climate change

    Science.gov (United States)

    Kancírová, M.; Kudela, K.; Erlykin, A. D.; Wolfendale, A. W.

    2016-10-01

    A detailed analysis has been made based on annual meteorological and cosmic ray data from the Lomnicky stit mountain observatory (LS, 2634 masl; 49.40°N, 20.22°E; vertical cut-off rigidity 3.85 GV), from the standpoint of looking for possible solar cycle (including cosmic ray) manifestations. A comparison of the mountain data with the Global average for the cloud cover in general shows no correlation but there is a possible small correlation for low clouds (LCC in the Global satellite data). However, whereas it cannot be claimed that cloud cover observed at Lomnicky stit (LSCC) can be used directly as a proxy for the Global LCC, its examination has value because it is an independent estimate of cloud cover and one that has a different altitude weighting to that adopted in the satellite-derived LCC. This statement is derived from satellite data (http://isccp.giss.nasa.gov/climanal7.html) which shows the time series for the period 1983-2010 for 9 cloud regimes. There is a significant correlation only between cosmic ray (CR) intensity (and sunspot number (SSN)) and the cloud cover of the types cirrus and stratus. This effect is mainly confined to the CR intensity minimum during the epoch around 1990, when the SSN was at its maximum. This fact, together with the present study of the correlation of LSCC with our measured CR intensity, shows that there is no firm evidence for a significant contribution of CR induced ionization to the local (or, indeed, Global) cloud cover. Pressure effects are the preferred cause of the cloud cover changes. A consequence is that there is no evidence favouring a contribution of CR to the Global Warming problem. Our analysis shows that the LS data are consistent with the Gas Laws for a stable mass of atmosphere.

  18. Atmospheric Mining in the Outer Solar System: Aerial Vehicle Mission and Design Issues

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Atmospheric mining in the outer solar system has been investigated as a means of fuel production for high energy propulsion and power. Fusion fuels such as Helium 3 (3He) and deuterium can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. Helium 3 and deuterium were the primary gases of interest with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of atmospheric mining in the outer solar system. This included the gas capturing rate, storage options, and different methods of direct use of the captured gases. While capturing 3He, large amounts of hydrogen and 4He are produced. With these two additional gases, the potential for fueling small and large fleets of additional exploration and exploitation vehicles exists. The mining aerospacecraft (ASC) could fly through the outer planet atmospheres, for global weather observations, localized storm or other disturbance investigations, wind speed measurements, polar observations, etc. Analyses of orbital transfer vehicles (OTVs), landers, and in-situ resource utilization (ISRU) mining factories are included. Preliminary observations are presented on near-optimal selections of moon base orbital locations, OTV power levels, and OTV and lander rendezvous points.

  19. Radiative transfer solutions for coupled atmosphere ocean systems using the matrix operator technique

    International Nuclear Information System (INIS)

    Hollstein, André; Fischer, Jürgen

    2012-01-01

    Accurate radiative transfer models are the key tools for the understanding of radiative transfer processes in the atmosphere and ocean, and for the development of remote sensing algorithms. The widely used scalar approximation of radiative transfer can lead to errors in calculated top of atmosphere radiances. We show results with errors in the order of±8% for atmosphere ocean systems with case one waters. Variations in sea water salinity and temperature can lead to variations in the signal of similar magnitude. Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at Freie Universität Berlin, to treat these effects as accurately as possible. We describe our one-dimensional vector radiative transfer model for an atmosphere ocean system with a rough interface. We describe the matrix operator scheme and the bio-optical model for case one waters. We discuss some effects of neglecting polarization in radiative transfer calculations and effects of salinity changes for top of atmosphere radiances. Results are shown for the channels of the satellite instruments MERIS and OLCI from 412.5 nm to 900 nm.

  20. Estimation of atmospheric turbidity and surface radiative parameters using broadband clear sky solar irradiance models in Rio de Janeiro-Brasil

    Science.gov (United States)

    Flores, José L.; Karam, Hugo A.; Marques Filho, Edson P.; Pereira Filho, Augusto J.

    2016-02-01

    The main goal of this paper is to estimate a set of optimal seasonal, daily, and hourly values of atmospheric turbidity and surface radiative parameters Ångström's turbidity coefficient ( β), Ångström's wavelength exponent ( α), aerosol single scattering albedo ( ω o ), forward scatterance ( F c ) and average surface albedo ( ρ g ), using the Brute Force multidimensional minimization method to minimize the difference between measured and simulated solar irradiance components, expressed as cost functions. In order to simulate the components of short-wave solar irradiance (direct, diffuse and global) for clear sky conditions, incidents on a horizontal surface in the Metropolitan Area of Rio de Janeiro (MARJ), Brazil (22° 51' 27″ S, 43° 13' 58″ W), we use two parameterized broadband solar irradiance models, called CPCR2 and Iqbal C, based on synoptic information. The meteorological variables such as precipitable water ( u w ) and ozone concentration ( u o ) required by the broadband solar models were obtained from moderate-resolution imaging spectroradiometer (MODIS) sensor on Terra and Aqua NASA platforms. For the implementation and validation processes, we use global and diffuse solar irradiance data measured by the radiometric platform of LabMiM, located in the north area of the MARJ. The data were measured between the years 2010 and 2012 at 1-min intervals. The performance of solar irradiance models using optimal parameters was evaluated with several quantitative statistical indicators and a subset of measured solar irradiance data. Some daily results for Ångström's wavelength exponent α were compared with Ångström's parameter (440-870 nm) values obtained by aerosol robotic network (AERONET) for 11 days, showing an acceptable level of agreement. Results for Ångström's turbidity coefficient β, associated with the amount of aerosols in the atmosphere, show a seasonal pattern according with increased precipitation during summer months (December

  1. A Parameter Estimation Method for Nonlinear Systems Based on Improved Boundary Chicken Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Shaolong Chen

    2016-01-01

    Full Text Available Parameter estimation is an important problem in nonlinear system modeling and control. Through constructing an appropriate fitness function, parameter estimation of system could be converted to a multidimensional parameter optimization problem. As a novel swarm intelligence algorithm, chicken swarm optimization (CSO has attracted much attention owing to its good global convergence and robustness. In this paper, a method based on improved boundary chicken swarm optimization (IBCSO is proposed for parameter estimation of nonlinear systems, demonstrated and tested by Lorenz system and a coupling motor system. Furthermore, we have analyzed the influence of time series on the estimation accuracy. Computer simulation results show it is feasible and with desirable performance for parameter estimation of nonlinear systems.

  2. Structured Control of Affine Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2011-01-01

    This paper presents a new procedure to design structured controllers for discrete-time affine linear parametervarying systems (A LPV). The class of control structures includes decentralized of any order, fixed order output feedback, simultaneous plant-control design, among others. A parametervaryin...... non-convex condition for an upper bound on the induced L2-norm performance is solved by an iterative linear matrix inequalities (LMI) optimization algorithm. Numerical examples demostrate the effectiveness of the proposed approach....

  3. Data acquisition and remote monitoring system for indoor environmental parameters

    Directory of Open Access Journals (Sweden)

    Simić Mitar S.

    2015-01-01

    Full Text Available In this study a wireless sensor network for collecting information about indoor temperature, relative humidity and light level in four positions inside an office building is developed. Infrastructure of wireless sensor network is based on MAC and PHY layer of IEEE 802.15.4 standard and JenNet network protocol stack. The hardware of the system is built integrating JN5148 Evaluation Kit and a Hit65 GSM modem. Features integrated in the architecture of proposed system comprise: SQL database storage of results, real-time graphical trends of measured values, histograms with selection of the start and end date, adjustable sampling time, alarm notification via e-mail and SMS, and GSM and LAN remote access to the sensor readings. These implemented features give our system high practical value with possible application in large-scale environment monitoring of buildings aimed to improve work efficiency and thermal comfort of people and storage or working conditions for materials and equipment.

  4. Search Space Calculation to Improve Parameter Estimation of Excitation Control Systems

    Directory of Open Access Journals (Sweden)

    Andrés J. Saavedra-Montes

    2013-11-01

    Full Text Available A method to calculate the search space for each parameter in an excitation control system is presented in this paper. The calculated search space is intended to reduce the number of parameter solution sets that can be found by an estimation algorithm, reducing its processing time. The method considers a synchronous generator time constant range between 4s and 10s, an excitation control system performance index, a controller design technique, and the excitation control system model structure. When the obtained search space is used to estimate the parameters, less processing time is used by the algorithm. Also the estimated parameters are closer to the reference ones.

  5. A Controlled Environment System For Measuring Plant-Atmosphere Gas Exchange

    Science.gov (United States)

    James M. Brown

    1975-01-01

    Describes an inexpensive, efficient system for measuring plant-atmosphere gas exchange. Designed to measure transpiration from potted tree seedlings, it is readily adaptable for measuring other gas exchanges or gas exchange by plant parts. Light level, air and root temperature can be precisely controlled at minimum cost.

  6. SPRAYTRAN USER'S GUIDE: A GIS-BASED ATMOSPHERIC SPRAY DROPLET DISPERSION MODELING SYSTEM

    Science.gov (United States)

    The offsite drift of pesticide from spray operations is an ongoing source of concern. The SPRAY TRANsport (SPRAYTRAN) system, documented in this report, incorporates the near-field spray application model, AGDISP, into a meso-scale atmospheric transport model. The AGDISP model ...

  7. Dynamical systems modeling of low-frequency variability in low-order atmospheric models

    NARCIS (Netherlands)

    Broer, H.W.; Vitolo, R.

    2008-01-01

    The understanding of atmospheric and oceanic low-frequency variability is an old problem having both theoretical interest and practical importance, e.g., for the assessment of climate change. In this paper possible relations with dynamical systems theory are given, in particular through bifurcation

  8. Control system of digital x-ray systems by quality parameters

    International Nuclear Information System (INIS)

    Balashov, S.V.; Kovalenko, Yu.N.

    2013-01-01

    The paper proposed a control system of X-ray digital equipment on quality indicators. Two basic parameters were determined: image quality and patients' radiation load. A method for monitoring these indicators is proposed. The criterion of equipment suitability is to obtain control digital X-ray images of diagnostically acceptable quality at a fixed low entrance dose in the plane of the digital detector. It is shown that the control system of X-ray digital equipment based on indicators of quality is the most appropriate in situations of deficit of financial resources, since minimizing the costs for the purchase and running of control systems, does not require highly skilled technical personnel, and reduces the duration of the equipment inspection. (authors)

  9. A Simple Method for Estimation of Parameters in First order Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Miklos, Robert

    2014-01-01

    A simple method for estimation of parameters in first order systems with time delays is presented in this paper. The parameter estimation approach is based on a step response for the open loop system. It is shown that the estimation method does not require a complete step response, only a part of...

  10. TOCATTA: a dynamic transfer model of 3H from the atmosphere to soil–plant systems

    International Nuclear Information System (INIS)

    Le Dizès, S.; Aulagnier, C.; Henner, P.; Simon-Cornu, M.

    2013-01-01

    This paper describes a dynamic compartment model (TOCATTA) that simulates tritium transfer in agricultural plants of several categories including vegetables, pasture and annual crops, exposed to time-varying HTO concentrations of water vapour in the air and possibly in irrigation and rainwater. Consideration is also given to the transfer pathways of HTO in soil. Though the transfer of tritium is quite complex, from its release into the environment to its absorption and its incorporation within the organic material of living organisms, the TOCATTA model is relatively simple, with a limited number of compartments and input parameters appropriate to its use in an operational mode. In this paper, we took the opportunity to have data obtained on an ornamental plant – an indoor palm tree – within an industrial building where tritium was released accidentally over several weeks (or months). More specifically, the model's ability to provide hindsight on the chronology of the release scenario is discussed by comparing model predictions of TFWT and OBT activity concentrations in the plant leaves with measurements performed on three different leaves characterized by different developmental stages. The data-model comparison shows some limitations, mainly because of a lack of knowledge about the initial conditions of the accident and when it actually started and about the processes involved in the transfer of tritium. Efforts are needed in both experimental and modelling areas for future evaluation of tritium behaviour in agricultural soil and plants exposed to gaseous HTO releases and/or to irrigation with contaminated water. -- Highlights: • We modelled 3 H transfer from the atmosphere to soil-plant systems. • Model-data comparison provided hindsight on the chronology of a real case scenario. • Efforts are needed in experimental and modelling areas to handle discrete 3 H releases

  11. Fundamental (f) oscillations in a magnetically coupled solar interior-atmosphere system - An analytical approach

    Science.gov (United States)

    Pintér, Balázs; Erdélyi, R.

    2018-01-01

    Solar fundamental (f) acoustic mode oscillations are investigated analytically in a magnetohydrodynamic (MHD) model. The model consists of three layers in planar geometry, representing the solar interior, the magnetic atmosphere, and a transitional layer sandwiched between them. Since we focus on the fundamental mode here, we assume the plasma is incompressible. A horizontal, canopy-like, magnetic field is introduced to the atmosphere, in which degenerated slow MHD waves can exist. The global (f-mode) oscillations can couple to local atmospheric Alfvén waves, resulting, e.g., in a frequency shift of the oscillations. The dispersion relation of the global oscillation mode is derived, and is solved analytically for the thin-transitional layer approximation and for the weak-field approximation. Analytical formulae are also provided for the frequency shifts due to the presence of a thin transitional layer and a weak atmospheric magnetic field. The analytical results generally indicate that, compared to the fundamental value (ω =√{ gk }), the mode frequency is reduced by the presence of an atmosphere by a few per cent. A thin transitional layer reduces the eigen-frequencies further by about an additional hundred microhertz. Finally, a weak atmospheric magnetic field can slightly, by a few percent, increase the frequency of the eigen-mode. Stronger magnetic fields, however, can increase the f-mode frequency by even up to ten per cent, which cannot be seen in observed data. The presence of a magnetic atmosphere in the three-layer model also introduces non-permitted propagation windows in the frequency spectrum; here, f-mode oscillations cannot exist with certain values of the harmonic degree. The eigen-frequencies can be sensitive to the background physical parameters, such as an atmospheric density scale-height or the rate of the plasma density drop at the photosphere. Such information, if ever observed with high-resolution instrumentation and inverted, could help to

  12. Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System

    Science.gov (United States)

    Gasbarre, J. F.; Dillman, R. A.

    2003-01-01

    The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.

  13. Formation of the satellites of the outer solar system - Sources of their atmospheres

    International Nuclear Information System (INIS)

    Coradini, A.; Cerroni, P.; Magni, G.; Federico, C.

    1989-01-01

    The present account of the current understanding of regular satellite systems' origins gives attention to the essential processes leading to current satellite configurations, proceeding on the concept that the presence of atmospheres is connected with the final phases of satellite formation. Four major formation stages are envisioned: (1) the disk phase, linking the formation of the primary body to that of the satellites; (2) the formation phase of intermediate-sized bodies; (3) the collisional evolution of planatesimals; and (4) a series of evolutionary phases linking the primordial phases to currently observed states, in which the internal composition and thermal history of the satellites are key factors in satellite atmosphere formation

  14. Atmospheric Constituents in GEOS-5: Components for an Earth System Model

    Science.gov (United States)

    Pawson, Steven; Douglass, Anne; Duncan, Bryan; Nielsen, Eric; Ott, Leslie; Strode, Sarah

    2011-01-01

    The GEOS-S model is being developed for weather and climate processes, including the implementation of "Earth System" components. While the stratospheric chemistry capabilities are mature, we are presently extending this to include predictions of the tropospheric composition and chemistry - this includes CO2, CH4, CO, nitrogen species, etc. (Aerosols are also implemented, but are beyond the scope of this paper.) This work will give an overview of our chemistry modules, the approaches taken to represent surface emissions and uptake of chemical species, and some studies of the sensitivity of the atmospheric circulation to changes in atmospheric composition. Results are obtained through focused experiments and multi-decadal simulations.

  15. Hamiltonian formulation of distributed-parameter systems with boundary energy flow

    NARCIS (Netherlands)

    van der Schaft, A.J.; Maschke, B.M.

    2001-01-01

    A Hamiltonian formulation of classes of distributed-parameter systems is presented, which incorporates the energy flow through the boundary of the spatial domain of the system, and which allows to represent the system as a boundary control Hamiltonian system. The system is Hamiltonian with respect

  16. Hamiltonian formulation of distributed-parameter systems with boundary energy flow

    NARCIS (Netherlands)

    van der Schaft, Arjan; Maschke, B.M.

    A Hamiltonian formulation of classes of distributed-parameter systems is presented, which incorporates the energy flow through the boundary of the spatial domain of the system, and which allows to represent the system as a boundary control Hamiltonian system. The system is Hamiltonian with respect

  17. Hamiltonian formulation of distributed-parameter systems with boundary energy flow

    NARCIS (Netherlands)

    Schaft, A.J. van der; Maschke, B.M.

    2002-01-01

    A Hamiltonian formulation of classes of distributed-parameter systems is presented, which incorporates the energy flow through the boundary of the spatial domain of the system, and which allows to represent the system as a boundary control Hamiltonian system. The system is Hamiltonian with respect

  18. Radiative-conductive inverse problem for lumped parameter systems

    International Nuclear Information System (INIS)

    Alifanov, O M; Nenarokomov, A V; Gonzalez, V M

    2008-01-01

    The purpose of this paper is to introduce a iterative regularization method in the research of radiative and thermal properties of materials with applications in the design of Thermal Control Systems (TCS) of spacecrafts. In this paper the radiative and thermal properties (emissivity and thermal conductance) of a multilayered thermal-insulating blanket (MLI), which is a screen-vacuum thermal insulation as a part of the (TCS) for perspective spacecrafts, are estimated. Properties of the materials under study are determined in the result of temperature and heat flux measurement data processing based on the solution of the Inverse Heat Transfer Problem (IHTP) technique. Given are physical and mathematical models of heat transfer processes in a specimen of the multilayered thermal-insulating blanket located in the experimental facility. A mathematical formulation of the inverse heat conduction problem is presented too. The practical testing were performed for specimen of the real MLI.

  19. Simulation of rarefied gas flows in atmospheric pressure interfaces for mass spectrometry systems.

    Science.gov (United States)

    Garimella, Sandilya; Zhou, Xiaoyu; Ouyang, Zheng

    2013-12-01

    The understanding of the gas dynamics of the atmospheric pressure interface is very important for the development of mass spectrometry systems with high sensitivity. While the gas flows at high pressure (>1 Torr) and low pressure (pressure stage (1 to 10(-3) Torr) remains challenging. In this study, we used the direct simulation Monte Carlo (DMSC) method to develop the gas dynamic simulations for the continuous and discontinuous atmospheric pressure interfaces (API), with different focuses on the ion transfer by gas flows through a skimmer or directly from the atmospheric pressure to a vacuum stage, respectively. The impacts by the skimmer location in the continuous API and the temporal evolvement of the gas flow with a discontinuous API were characterized, which provide a solid base for the instrument design and performance improvement.

  20. Environmental assessment for the satellite power system concept development and evaluation program: atmospheric effects

    Energy Technology Data Exchange (ETDEWEB)

    Rote, D.M.; Brubaker, K.L.; Lee, J.L.

    1980-11-01

    The US Department of Energy (DOE) has undertaken a preliminary, three-year program to investigate the impacts of the construction and operation of a satellite power system, of unprecedented scale. The Department of Energy's program, titled The Concept Development and Evaluation Program, focused its investigations on a Reference System description that calls for the use of either silicon (Si) or gallium aluminum-arsenide (GaAlAs) photovoltaic cells on 60 satellites to be constructed in GEO over a 30-yr period. Rectennas would be constructed on the ground to receive microwave energy from the satellites. Each satellite-rectenna pair is designed to produce 5 GW of power on an essentially continuous basis for use as a baseload power source for an electric power distribution system. The environmental assessment part of the program was divided into five interdependent task areas. The present document constitutes the final technical report on one of the five task areas, the Assessment of the Atmospheric Effects, and as such presents an in-depth summary of work performed during the assessment program. The issues associated with SPS activities in the troposphere are examined. These include tropospheric weather modification related to rectenna operations and rocket launches, and air quality impacts related to rocketlaunch ground clouds. Then progressing upward through the various levels of the atmosphere, the principal middle and upper atmospheric effects associated with rocket effluents are analyzed. Finally, all of the potential SPS atmospheric effects are summarized.

  1. Environmental assessment for the satellite power system concept development and evaluation program: atmospheric effects

    International Nuclear Information System (INIS)

    Rote, D.M.; Brubaker, K.L.; Lee, J.L.

    1980-11-01

    The US Department of Energy (DOE) has undertaken a preliminary, three-year program to investigate the impacts of the construction and operation of a satellite power system, of unprecedented scale. The Department of Energy's program, titled The Concept Development and Evaluation Program, focused its investigations on a Reference System description that calls for the use of either silicon (Si) or gallium aluminum-arsenide (GaAlAs) photovoltaic cells on 60 satellites to be constructed in GEO over a 30-yr period. Rectennas would be constructed on the ground to receive microwave energy from the satellites. Each satellite-rectenna pair is designed to produce 5 GW of power on an essentially continuous basis for use as a baseload power source for an electric power distribution system. The environmental assessment part of the program was divided into five interdependent task areas. The present document constitutes the final technical report on one of the five task areas, the Assessment of the Atmospheric Effects, and as such presents an in-depth summary of work performed during the assessment program. The issues associated with SPS activities in the troposphere are examined. These include tropospheric weather modification related to rectenna operations and rocket launches, and air quality impacts related to rocketlaunch ground clouds. Then progressing upward through the various levels of the atmosphere, the principal middle and upper atmospheric effects associated with rocket effluents are analyzed. Finally, all of the potential SPS atmospheric effects are summarized

  2. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    de Boer, G [University of Colorado, Boulder/CIRES; Argrow, B [University of Colorado; Bland, G [NASA - Goddard Space Flight Center - Wallops Flight Facility; Elston, J [University of Colorado, Boulder; Lawrence, D [University of Colorado; Maslanik, J [University of Colorado; Palo, S [University of Colorado; Tschudi, M [NCAR

    2015-12-01

    The use of unmanned aerial systems (UAS) is becoming increasingly popular for a variety of applications. One way in which these systems can provide revolutionary scientific information is through routine measurement of atmospheric conditions, particularly properties related to clouds, aerosols, and radiation. Improved understanding of these topics at high latitudes, in particular, has become very relevant because of observed decreases in ice and snow in polar regions.

  3. Atmospheric Mining in the Outer Solar System: Resource Capturing, Exploration, and Exploitation

    Science.gov (United States)

    Palaszewski, Bryan

    2015-01-01

    Atmospheric mining in the outer solar system (AMOSS) has been investigated as a means of fuel production for high-energy propulsion and power. Fusion fuels such as helium 3 (He-3) and hydrogen can be wrested from the atmospheres of Uranus and Neptune and either returned to Earth or used in-situ for energy production. 3He and hydrogen (deuterium, etc.) were the primary gases of interest, with hydrogen being the primary propellant for nuclear thermal solid core and gas core rocket-based atmospheric flight. A series of analyses were undertaken to investigate resource capturing aspects of AMOSS. These analyses included the gas capturing rate, storage options, and different methods of direct use of the captured gases. Additional supporting analyses were conducted to illuminate vehicle sizing and orbital transportation issues. While capturing 3He, large amounts of hydrogen and helium 4 (He-4) are produced. With these two additional gases, the potential exists for fueling small and large fleets of additional exploration and exploitation vehicles. Additional aerospacecraft or other aerial vehicles (UAVs, balloons, rockets, etc.) could fly through the outer-planet atmosphere to investigate cloud formation dynamics, global weather, localized storms or other disturbances, wind speeds, the poles, and so forth. Deep-diving aircraft (built with the strength to withstand many atmospheres of pressure) powered by the excess hydrogen or 4He may be designed to probe the higher density regions of the gas giants.

  4. Detection of traveling ionospheric disturbances induced by atmospheric gravity waves using the global positioning system

    Science.gov (United States)

    Bassiri, Sassan; Hajj, George A.

    1993-01-01

    Natural and man-made events like earthquakes and nuclear explosions launch atmospheric gravity waves (AGW) into the atmosphere. Since the particle density decreases exponentially with height, the gravity waves increase exponentially in amplitude as they propagate toward the upper atmosphere and ionosphere. As atmospheric gravity waves approach the ionospheric heights, the neutral particles carried by gravity waves collide with electrons and ions, setting these particles in motion. This motion of charged particles manifests itself by wave-like fluctuations and disturbances that are known as traveling ionospheric disturbances (TID). The perturbation in the total electron content due to TID's is derived analytically from first principles. Using the tilted dipole magnetic field approximation and a Chapman layer distribution for the electron density, the variations of the total electron content versus the line-of-sight direction are numerically analyzed. The temporal variation associated with the total electron content measurements due to AGW's can be used as a means of detecting characteristics of the gravity waves. As an example, detection of tsunami generated earthquakes from their associated atmospheric gravity waves using the Global Positioning System is simulated.

  5. Closed-loop Identification for Control of Linear Parameter Varying Systems

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Trangbæk, Klaus

    2014-01-01

    , closed- loop system identification is more difficult than open-loop identification. In this paper we prove that the so-called Hansen Scheme, a technique known from linear time-invariant systems theory for transforming closed-loop system identification problems into open-loop-like problems, can......This paper deals with system identification for control of linear parameter varying systems. In practical applications, it is often important to be able to identify small plant changes in an incremental manner without shutting down the system and/or disconnecting the controller; unfortunately...... be extended to accommodate linear parameter varying systems as well. We investigate the identified subsystem’s parameter dependency and observe that, under mild assumptions, the identified subsystem is affine in the parameter vector. Various identification methods are compared in direct and Hansen Scheme...

  6. Methodology to estimate parameters of an excitation system based on experimental conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saavedra-Montes, A.J. [Carrera 80 No 65-223, Bloque M8 oficina 113, Escuela de Mecatronica, Universidad Nacional de Colombia, Medellin (Colombia); Calle 13 No 100-00, Escuela de Ingenieria Electrica y Electronica, Universidad del Valle, Cali, Valle (Colombia); Ramirez-Scarpetta, J.M. [Calle 13 No 100-00, Escuela de Ingenieria Electrica y Electronica, Universidad del Valle, Cali, Valle (Colombia); Malik, O.P. [2500 University Drive N.W., Electrical and Computer Engineering Department, University of Calgary, Calgary, Alberta (Canada)

    2011-01-15

    A methodology to estimate the parameters of a potential-source controlled rectifier excitation system model is presented in this paper. The proposed parameter estimation methodology is based on the characteristics of the excitation system. A comparison of two pseudo random binary signals, two sampling periods for each one, and three estimation algorithms is also presented. Simulation results from an excitation control system model and experimental results from an excitation system of a power laboratory setup are obtained. To apply the proposed methodology, the excitation system parameters are identified at two different levels of the generator saturation curve. The results show that it is possible to estimate the parameters of the standard model of an excitation system, recording two signals and the system operating in closed loop with the generator. The normalized sum of squared error obtained with experimental data is below 10%, and with simulation data is below 5%. (author)

  7. Adaptive synchronization of T-S fuzzy chaotic systems with unknown parameters

    International Nuclear Information System (INIS)

    Kim, Jae-Hun; Park, Chang-Woo; Kim, Euntai; Park, Mignon

    2005-01-01

    This paper presents a fuzzy model-based adaptive approach for synchronization of chaotic systems which consist of the drive and response systems. Takagi-Sugeno (T-S) fuzzy model is employed to represent the chaotic drive and response systems. Since the parameters of the drive system are assumed unknown, we design the response system that estimates the parameters of the drive system by adaptive strategy. The adaptive law is derived to estimate the unknown parameters and its stability is guaranteed by Lyapunov stability theory. In addition, the controller in the response system contains two parts: one part that can stabilize the synchronization error dynamics and the other part that estimates the unknown parameters. Numerical examples, including Duffing oscillator and Lorenz attractor, are given to demonstrate the validity of the proposed adaptive synchronization approach

  8. AMFIC Web Data Base - A Satellite System for the Monitoring and Forecasting of Atmospheric Pollution

    Directory of Open Access Journals (Sweden)

    P. Symeonidis

    2008-01-01

    Full Text Available In this work we present the contribution of the Laboratory of Atmospheric Pollution and Pollution Control Engineering of Democritus University of Thrace in the AMFIC-Air Monitoring and Forecasting In China European project. Within the framework of this project our laboratory in co-operation with DRAXIS company will create and manage a web satellite data base. This system will host atmospheric pollution satellite data for China and for the whole globe in general. Atmospheric pollution data with different spatial resolution such as O3 and NO2 total columns and measurements of other important trace gasses from GOME (ERS-2, SCIAMACHY (ENVISAT and OMI (EOS-AURA along with aerosol total load estimates from AATSR (ENVISAT will be brought to a common spatial and temporal resolution and become available to the scientific community in simple ascii files and maps format. Available will also be the results from the validation procedure of the satellite data with the use of ground-based observations and a set of high resolution maps and forecasts emerging from atmospheric pollution models. Data will be available for two geographical clusters. The one cluster includes the greater area of China and the other the whole globe. This integrated satellite system will be fully operational within the next two years and will also include a set of innovative tools that allow easy manipulation and analysis of the data. Automatic detection of features such as plumes and monitoring of their evolution, data covariance analysis enabling the detection of emission signatures of different sources, cluster analysis etc will be possible through those tools. The AMFIC satellite system shares a set of characteristics with its predecessor, AIRSAT. Here, we present some of these characteristics in order to bring out the contribution of such a system in atmospheric sciences.

  9. Screening key parameters related to passive system performance based on Analytic Hierarchy Process

    International Nuclear Information System (INIS)

    Ma, Guohang; Yu, Yu; Huang, Xiong; Peng, Yuan; Ma, Nan; Shan, Zuhua; Niu, Fenglei; Wang, Shengfei

    2015-01-01

    Highlights: • An improved AHP method is presented for screening key parameters used in passive system reliability analysis. • We take the special bottom parameters as criterion for calculation and the abrupt change of the results are verified. • Combination weights are also affected by uncertainty of input parameters. - Abstract: Passive safety system is widely used in the new generation nuclear power plant (NPP) designs such as AP1000 to improve the reactor safety benefitting from its simple construction and less request for human intervene. However, the functional failure induced by uncertainty in the system thermal–hydraulic (T–H) performance becomes one of the main contributors to system operational failure since the system operates based on natural circulation, which should be considered in the system reliability evaluation. In order to improve the calculation efficiency the key parameters which significantly affect the system T–H characteristics can be screened and then be analyzed in detail. The Analytical Hierarchy Process (AHP) is one of the efficient methods to analyze the influence of the parameters on a passive system based on the experts’ experience. The passive containment cooling system (PCCS) in AP1000 is one of the typical passive safety systems, nevertheless too many parameters need to be analyzed and the T–H model itself is more complicated, so the traditional AHP method should be mended to use for screening key parameters efficiently. In this paper, we adapt the improved method in hierarchy construction and experts’ opinions integration, some parameters at the bottom justly in the traditional hierarchy are studied as criterion layer in improved AHP, the rationality of the method and the effect of abrupt change with the data are verified. The passive containment cooling system (PCCS) in AP1000 is evaluated as an example, and four key parameters are selected from 49 inputs

  10. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lazzús, Juan A., E-mail: jlazzus@dfuls.cl; Rivera, Marco; López-Caraballo, Carlos H.

    2016-03-11

    A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.

  11. Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm

    International Nuclear Information System (INIS)

    Lazzús, Juan A.; Rivera, Marco; López-Caraballo, Carlos H.

    2016-01-01

    A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.

  12. Quantum-classical correspondences of the Berry-Robnik parameter through bifurcations in lemon billiard systems

    Science.gov (United States)

    Makino, H.; Harayama, T.; Aizawa, Y.

    2001-05-01

    The quantum level statistics affected by bifurcations in classical dynamics is studied by using a one-parameter family of lemon billiard systems. The classical phase space of our system consists of regular and irregular regions. We determine an analytic solution of the phase volume for these regions as a function of the system parameter and show that the function reveals a cusp singularity at the bifurcation point. The function is compared with its quantum mechanical counterpart, the Berry-Robnik parameter. By estimating the semiclassical regime from the effective Planck constant that validates the quantum-classical correspondence of the Berry-Robnik parameter, we determine a region of the system parameter where the cusp can be reproduced by the statistical properties of the eigenenergy levels.

  13. Patterns of behavior of 14C in atmosphere-plant system under conditions of variable 14CO2 concentration in air

    International Nuclear Information System (INIS)

    Fedorov, E.A.; Ponomareva, R.P.; Milakina, L.A.

    1985-01-01

    The parameters of the behavior of 14 C in the atmosphere-plant system are examined. It was established in a growth experiment that after a one-hour exposure of plants in a 14 CO 2 atmosphere the change with time in the organ specific activity occurs according to a biexponential function with elimination half-lives T/sub 1,2/ of 2 and 40 days and fractions B/sub 1,2/ of 0.6 and 0.4. Increase in the number of exposures increases the T 2 value to 100 days and B 2 to 0.8. According to calculations, an equilibrium state in the atmosphere-leaf component occurs after 78 days

  14. Development of a laser Doppler system for the detection and monitoring of atmospheric disturbances

    Science.gov (United States)

    Jeffreys, H. B.; Bilbro, J. W.

    1975-01-01

    A Scanning Laser Doppler Velocimeter System (SLDVS) capable of detecting and monitoring atmospheric disturbances, including wake vortices of landing aircraft and vertical wind profiles in the atmosphere was developed. The SLDVS is a focused, continuous wave, CO2 system that determines the line-of-sight velocities of particles in the focal volume by measuring the Doppler shift created by these particles. At present, the SLDVS is designed to have a range coverage of approximately 2000 ft with a vertical angle coverage of approximately 60 deg. It is also designed to detect Doppler velocities of up to 200 ft/sec with a velocity resolution of approximately 1.8 ft/sec. A complete velocity spectrum is provided by the SLDVS at each point in space at which it is focused. The overall operation and performance of the system and the description of its individual components and data handling capabilities were given.

  15. Identification of the Color Parameters in Pattern Recognition in Real-time Security Systems

    Directory of Open Access Journals (Sweden)

    A. N. Dronov

    2011-03-01

    Full Text Available Problems of identification of the color parameters of moving raster image objects in pattern recognition in modern security systems, which include real-time video-surveillance systems, are declared in this paper. The description of algorithms of identification of the color parameters in frames coming from real-time video streams is given. The practical application of the developed algorithms in program modules of corresponding video systems is demonstrated.

  16. Control and stabilization system of extensive air showers Cherenkov detector parameters

    International Nuclear Information System (INIS)

    Bryanskij, S.V.; Basil'chenko, Yu.V.; Dudkin, G.N.; Egorov, V.Yu.; Zhavoronkov, N.A.; Padalko, V.N.

    1995-01-01

    Hardware and functional capabilities of control and stabilization system for parameters of photometric channels of extensive air showers Cherenkov detectors are described. The results of the system operation under severe climatic conditions are presented. The system is shown to ensure permanent stability of parameters of amplitude-measurement channels within ∼2% limits and measurement accuracy of time intervals equal to ∼0.2 ns. 6 refs.; 8 figs

  17. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration.

    Science.gov (United States)

    Scott, Andrew C; Glasspool, Ian J

    2006-07-18

    By comparing Silurian through end Permian [approximately 250 million years (Myr)] charcoal abundance with contemporaneous macroecological changes in vegetation and climate we aim to demonstrate that long-term variations in fire occurrence and fire system diversification are related to fluctuations in Late Paleozoic atmospheric oxygen concentration. Charcoal, a proxy for fire, occurs in the fossil record from the Late Silurian (approximately 420 Myr) to the present. Its presence at any interval in the fossil record is already taken to constrain atmospheric oxygen within the range of 13% to 35% (the "fire window"). Herein, we observe that, as predicted, atmospheric oxygen levels rise from approximately 13% in the Late Devonian to approximately 30% in the Late Permian so, too, fires progressively occur in an increasing diversity of ecosystems. Sequentially, data of note include: the occurrence of charcoal in the Late Silurian/Early Devonian, indicating the burning of a diminutive, dominantly rhyniophytoid vegetation; an apparent paucity of charcoal in the Middle to Late Devonian that coincides with a predicted atmospheric oxygen low; and the subsequent diversification of fire systems throughout the remainder of the Late Paleozoic. First, fires become widespread during the Early Mississippian, they then become commonplace in mire systems in the Middle Mississippian; in the Pennsylvanian they are first recorded in upland settings and finally, based on coal petrology, become extremely important in many Permian mire settings. These trends conform well to changes in atmospheric oxygen concentration, as predicted by modeling, and indicate oxygen levels are a significant control on long-term fire occurrence.

  18. NASA's Earth Observing System (EOS): Observing the Atmosphere, Land, Oceans, and Ice from Space

    Science.gov (United States)

    King, Michael D.

    2005-01-01

    The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by whch scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. During this year, the last of the first series of EOS missions, Aura, was launched. Aura is designed exclusively to conduct research on the composition, chemistry, and dynamics of the Earth's upper and lower atmosphere, employing multiple instruments on a single spacecraft. Aura is the third in a series of major Earth observing satellites to study the environment and climate change and is part of NASA's Earth Science Enterprise. The first and second missions, Terra and Aqua, are designed to study the land, oceans, atmospheric constituents (aerosols, clouds, temperature, and water vapor), and the Earth's radiation budget. The other seven EOS spacecraft include satellites to study (i) land cover & land use change, (ii) solar irradiance and solar spectral variation, (iii) ice volume, (iv) ocean processes (vector wind and sea surface topography), and (v) vertical variations of clouds, water vapor, and aerosols up to and including the stratosphere. Aura's chemistry measurements will also follow up on measurements that began with NASA's Upper Atmosphere Research Satellite and continue the record of satellite ozone data collected from the TOMS missions. In this presentation I will describe how scientists are using EOS data to examine the health of the earth's atmosphere, including atmospheric chemistry, aerosol properties, and cloud properties, with a special look at the latest earth observing mission, Aura.

  19. Development and Testing of a Sorbent-Based Atmosphere Revitalization System 2010/2011

    Science.gov (United States)

    Miller, Lee A.; Knox, James C.

    2012-01-01

    Spacecraft being developed for future exploration missions incorporate Environmental Control and Life Support Systems (ECLSS) that limit weight, power, and volume thus requiring systems with higher levels of efficiency while maintaining high dependability and robustness. For air revitalization, an approach that meets those goals utilizes a regenerative Vacuum-Swing Adsorption (VSA) system that removes 100% of the CO2 from the cabin atmosphere as well as 100% of the water. A Sorbent Based Atmosphere Revitalization (SBAR) system is a VSA system that utilizes standard commercial adsorbents that have been proven effective and safe in spacecraft including Skylab and the International Space Station. The SBAR system is the subject of a development, test, and evaluation program that is being conducted at NASA s Marshall Space Flight Center. While previous testing had validated that the technology is a viable option, potential improvements to system design and operation were identified. Modifications of the full-scale SBAR test articles and adsorption cycles have been implemented and have shown significant performance gains resulting in a decrease in the consumables required for a mission as well as improved mission safety. Previous testing had utilized single bed test articles, during this period the test facility was enhanced to allow testing on the full 2-bed SBAR system. The test facility simulates a spacecraft ECLSS and allows testing of the SBAR system over the full range of operational conditions using mission simulations that assess the real-time performance of the SBAR system during scenarios that include the metabolic transients associated with extravehicular activity. Although future manned missions are currently being redefined, the atmosphere revitalization requirements for the spacecraft are expected to be quite similar to the Orion and the Altair vehicles and the SBAR test program addressed validation to the defined mission requirements as well as operation

  20. Research measuring system for the study of climate parameters quality plants

    OpenAIRE

    Самарцев, Юрій Миколайович; Татарчук, О Д.

    2016-01-01

    The methods of building measurement systems to study the impact of climate parameters on the quality of the plants in order to establish a correspondence between climatic parameters and parameters of development are considered.The described measuring systemare is intended to test the hypothesis that the various greenhouses will have the same quality indicators vegetable products under the same climatic conditions.An analysis of the factors that affect the performance of plant products defined...