WorldWideScience

Sample records for synthetic substrates implications

  1. Comparison of synthetic and natural glucosylceramides as substrate for glucosylceramidase assay

    International Nuclear Information System (INIS)

    Vaccaro, A.M.; Kobayashi, T.; Suzuki, K.

    1982-01-01

    Commercially available [ 3 H]glucosylceramide is derived from spleen tissue of patients with Gaucher's disease. When such tritiated glucosylceramide was diluted with unlabelled glucosylceramide from different sources and used as the substrate for assays of glucosylceramidase, the apparent activities obtained differed drastically. When diluted with synthetic N-stearoyl- or N-lignoceroyl-glucosyldihydrosphingosine, the release of [ 3 H]glucose was 4-5 times greater than when diluted with unlabelled glucosylceramide from Gaucher spleen, with either brain or fibroblast homogenate as the enzyme source. The Ksub(i) values of the synthetic substrates were 15-30 times greater than the Ksub(m) for the natural mixture, indicating much lower affinity of the synthetic substrates for the enzyme. Although the reason for the reduction in affinity could not be identified, caution is required when the commercial [ 3 H]glucosylceramide is to be diluted with unlabelled glucosylceramide. (Auth.)

  2. Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells

    DEFF Research Database (Denmark)

    Grankowski, N; Gasior, E; Issinger, O G

    1993-01-01

    Kinetic studies on the 60S protein kinase were conducted with synthetic peptides and ribosomal proteins as substrate. Peptide RRREEESDDD proved to be the best synthetic substrate for this enzyme. The peptide has a sequence of amino acids which most closely resembles the structure of potential...... phosphorylation sites in natural substrates, i.e., acidic ribosomal proteins. The superiority of certain kinetic parameters for 60S kinase obtained with the native whole 80S ribosomes over those of the isolated fraction of acidic ribosomal proteins indicates that the affinity of 60S kinase to the specific protein...

  3. Development of semi-synthetic bread substrates for examination of bread spoilage organisms

    DEFF Research Database (Denmark)

    Enk, Michael; Nielsen, Per Væggemose

    1998-01-01

    Shelf life studies of bread are highly irreproducible due to the very heterogenous structure of bread and the difficulties in obtaining sterile bread. We hypothesize that novel semi-synthetic bread substrates with chemical and microbial properties similar to those of bread can be developed....... The bread based substrates can prove valuable in predicting shelf life of bread and in the routine hygienic control of bread factories.Our objective was to develop substrates with properties, which both chemically and microbiologically resembles those of dark and white bread respectively.Nineteen dark (DB......) and 19 white (WB) bread based substrates were made based on a factorial design. Lactic acid, acetic acid, propionic acid, ethanol and glucose were added in amounts found in different brand of bread by chemical analysis. Water activity was adjusted by polyethylene glycol. The substrates were evaluated...

  4. Electrospun polystyrene scaffolds as a synthetic substrate for xeno-free expansion and differentiation of human induced pluripotent stem cells.

    Science.gov (United States)

    Leong, Meng Fatt; Lu, Hong Fang; Lim, Tze Chiun; Du, Chan; Ma, Nina K L; Wan, Andrew C A

    2016-12-01

    The use of human induced pluripotent stem cells (hiPSCs) for clinical tissue engineering applications requires expansion and differentiation of the cells using defined, xeno-free substrates. The screening and selection of suitable synthetic substrates however, is tedious, as their performance relies on the inherent material properties. In the present work, we demonstrate an alternative concept for xeno-free expansion and differentiation of hiPSCs using synthetic substrates, which hinges on the structure-function relationship between electrospun polystyrene scaffolds (ESPS) and pluripotent stem cell growth. ESPS of differential porosity was obtained by fusing the fibers at different temperatures. The more porous, loosely fused scaffolds were found to efficiently trap the cells, leading to a large number of three-dimensional (3D) aggregates which were shown to be pluripotent colonies. Immunostaining, PCR analyses, in vitro differentiation and in vivo teratoma formation studies demonstrated that these hiPSC aggregates could be cultured for up to 10 consecutive passages (P10) with maintenance of pluripotency. Flow cytometry showed that more than 80% of the cell population stained positive for the pluripotent marker OCT4 at P1, P5 and P10. P10 cells could be differentiated to neuronal-like cells and cultured within the ESPS for up to 18months. Our results suggest the usefulness of a generic class of synthetic substrates, exemplified by ESPS, for 'trapped aggregate culture' of hiPSCs. To realize the potential of human induced pluripotent stem cells (hiPSCs) in clinical medicine, robust, xeno-free substrates for expansion and differentiation of iPSCs are required. In the existing literature, synthetic materials have been reported that meet the requirement for non-xenogeneic substrates. However, the self-renewal and differentiation characteristics of hiPSCs are affected differently by the biocompatibility and physico-chemical properties of individual substrates. Although

  5. Enhanced/Synthetic Vision Systems - Human factors research and implications for future systems

    Science.gov (United States)

    Foyle, David C.; Ahumada, Albert J.; Larimer, James; Sweet, Barbara T.

    1992-01-01

    This paper reviews recent human factors research studies conducted in the Aerospace Human Factors Research Division at NASA Ames Research Center related to the development and usage of Enhanced or Synthetic Vision Systems. Research discussed includes studies of field of view (FOV), representational differences of infrared (IR) imagery, head-up display (HUD) symbology, HUD advanced concept designs, sensor fusion, and sensor/database fusion and evaluation. Implications for the design and usage of Enhanced or Synthetic Vision Systems are discussed.

  6. Clinical and financial implications of emergency department visits for synthetic marijuana.

    Science.gov (United States)

    Rowley, Eric; Benson, David; Tiffee, Aaron; Hockensmith, Adam; Zeng, Henry; Jones, Glenn N; Musso, Mandi W

    2017-10-01

    Many users believe that synthetic cannabinoids offer a safe and legal means of getting high. However, spikes in emergency department visits have been associated with use of synthetic cannabinoids. The purpose of the current study was to document emergency department visits from three large hospitals in one metropolitan area over a two month period. This was a retrospective chart review examining 218 patients presenting to three inner city emergency departments between March and April 2014. Data collected included demographic information, information regarding ED diagnosis and treatment, signs and symptoms, ancillary testing, ED disposition, and cost of the medical treatment. The majority of patients (75.7%) were discharged after ED workup, but 12.4% were admitted for medical treatment and 11.5% were admitted for psychiatric treatment. Ten patients (4.6%) were admitted to the ICU. Symptoms experienced most frequently include: hypertension, tachycardia, agitation, drowsiness, nausea, and confusion. Cluster analysis revealed four symptom clusters of individuals presenting after using synthetic cannabinoids: 1) confusion, hostility, agitation, 2) nausea, vomiting, abdominal pain, 3) drowsiness, and 4) the absence of these symptoms. This study has three important findings. First, significant ED resources are being used to treat individuals presenting due to effects of synthetic cannabis. Second, synthetic cannabis is not a benign substance. Third, while the hostile and agitated user is generally presented in the media, this study finds significant heterogeneity in presentation. Further research is needed to fully understand the implications of synthetic cannabinoid use. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21(DE3) carrying a synthetic metabolic pathway.

    Science.gov (United States)

    Dvorak, Pavel; Chrast, Lukas; Nikel, Pablo I; Fedr, Radek; Soucek, Karel; Sedlackova, Miroslava; Chaloupkova, Radka; de Lorenzo, Víctor; Prokop, Zbynek; Damborsky, Jiri

    2015-12-21

    Heterologous expression systems based on promoters inducible with isopropyl-β-D-1-thiogalactopyranoside (IPTG), e.g., Escherichia coli BL21(DE3) and cognate LacI(Q)/P(lacUV5)-T7 vectors, are commonly used for production of recombinant proteins and metabolic pathways. The applicability of such cell factories is limited by the complex physiological burden imposed by overexpression of the exogenous genes during a bioprocess. This burden originates from a combination of stresses that may include competition for the expression machinery, side-reactions due to the activity of the recombinant proteins, or the toxicity of their substrates, products and intermediates. However, the physiological impact of IPTG-induced conditional expression on the recombinant host under such harsh conditions is often overlooked. The physiological responses to IPTG of the E. coli BL21(DE3) strain and three different recombinants carrying a synthetic metabolic pathway for biodegradation of the toxic anthropogenic pollutant 1,2,3-trichloropropane (TCP) were investigated using plating, flow cytometry, and electron microscopy. Collected data revealed unexpected negative synergistic effect of inducer of the expression system and toxic substrate resulting in pronounced physiological stress. Replacing IPTG with the natural sugar effector lactose greatly reduced such stress, demonstrating that the effect was due to the original inducer's chemical properties. IPTG is not an innocuous inducer; instead, it exacerbates the toxicity of haloalkane substrate and causes appreciable damage to the E. coli BL21(DE3) host, which is already bearing a metabolic burden due to its content of plasmids carrying the genes of the synthetic metabolic pathway. The concentration of IPTG can be effectively tuned to mitigate this negative effect. Importantly, we show that induction with lactose, the natural inducer of P lac , dramatically lightens the burden without reducing the efficiency of the synthetic TCP degradation

  8. Life after the synthetic cell

    DEFF Research Database (Denmark)

    Rasmussen, Steen

    2010-01-01

    Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self-replicating ......Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self...

  9. Synthetic polymeric substrates as potent pro-oxidant versus anti-oxidant regulators of cytoskeletal remodeling and cell apoptosis.

    Science.gov (United States)

    Sung, Hak-Joon; Chandra, Prafulla; Treiser, Matthew D; Liu, Er; Iovine, Carmine P; Moghe, Prabhas V; Kohn, Joachim

    2009-03-01

    The role of reactive oxygen species (ROS)-mediated cell signal transduction pathways emanating from engineered cell substrates remains unclear. To elucidate the role, polymers derived from the amino acid L-tyrosine were used as synthetic matrix substrates. Variations in their chemical properties were created by co-polymerizing hydrophobic L-tyrosine derivatives with uncharged hydrophilic poly(ethylene glycol) (PEG, Mw = 1,000 Da), and negatively charged desaminotyrosyl-tyrosine (DT). These substrates were characterized for their intrinsic ability to generate ROS, as well as their ability to elicit Saos-2 cell responses in terms of intracellular ROS production, actin remodeling, and apoptosis. PEG-containing substrates induced both exogenous and intracellular ROS production, whereas the charged substrates reduced production of both types, indicating a coupling of exogenous ROS generation and intracellular ROS production. Furthermore, PEG-mediated ROS induction caused nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase and an increase in caspase-3 activity, confirming a link with apoptosis. PEG-rich pro-oxidant substrates caused cytoskeletal actin remodeling through beta-actin cleavage by caspase-3 into fractins. The fractins co-localized to the mitochondria and reduced the mitochondrial membrane potential. The remnant cytosolic beta-actin was polymerized and condensed, events consistent with apoptotic cell shrinkage. The cytoskeletal remodeling was integral to the further augmentation of intracellular ROS production. Conversely, the anti-oxidant DT-containing charged substrates suppressed the entire cascade of apoptotic progression. We demonstrate that ROS activity serves an important role in "outside-in" signaling for cells grown on substrates: the ROS activity couples exogenous stress, driven by substrate composition, to changes in intracellular signaling. This signaling causes cell apoptosis, which is mediated by actin remodeling.

  10. Bone toughness at the molecular scale: A model for fracture toughness using crosslinked osteopontin on synthetic and biogenic mineral substrates.

    Science.gov (United States)

    Cavelier, S; Dastjerdi, A K; McKee, M D; Barthelat, F

    2018-05-01

    The most prominent structural components in bone are collagen and mineral. However, bone additionally contains a substantial amount of noncollagenous proteins (most notably of the SIBLING protein family), some of which may act as cohesive/adhesive "binders" for the composite hybrid collagen/mineral scaffolding, whether in the bulk phase of bone, or at its interfaces. One such noncollagenous protein - osteopontin (OPN) - appears to be critical to the deformability and fracture toughness of bone. In the present study, we used a reconstructed synthetic mineral-OPN-mineral interface, and a biogenic (natural tooth dentin) mineral/collagen-OPN-mineral/collagen interface, to measure the fracture toughness of OPN on mineralized substrates. We used this system to test the hypothesis that OPN crosslinking by the enzyme tissue transglutaminase 2 (TG2) that is found in bone enhances interfacial adhesion to increase the fracture toughness of bone. For this, we prepared double-cantilever beam substrates of synthetic pure hydroxyapatite mineral, and of narwhal dentin, and directly apposed them to one another under different intervening OPN/crosslinking conditions, and fracture toughness was tested using a miniaturized loading stage. The work-of-fracture of the OPN interface was measured for different OPN formulations (monomer vs. polymer), crosslinking states, and substrate composition. Noncrosslinked OPN provided negligible adhesion on pure hydroxyapatite, whereas OPN crosslinking (by the chemical crosslinker glutaraldehyde, and TG2 enzyme) provided strong interfacial adhesion for both hydroxyapatite and dentin using monomeric and polymeric OPN. Pre-coating of the substrate beams with monomeric OPN further improved the adhesive performance of the samples, likely by allowing effective binding of this nascent OPN form to mineral/matrix components, with this pre-attachment providing a protein layer for additional crosslinking between the substrates. Copyright © 2018 Elsevier Inc

  11. Removal of chromium from synthetic wastewater using MFI zeolite membrane supported on inexpensive tubular ceramic substrate

    Directory of Open Access Journals (Sweden)

    R. Vinoth Kumar

    2017-09-01

    Full Text Available A mordenite framework inverted (MFI type zeolite membrane was produced on inexpensive tubular ceramic substrate through hydrothermal synthesis and applied for the removal of chromium from synthetic wastewater. The fabricated ceramic substrate and membrane was characterized by diverse standard techniques such as X-ray diffraction, field emission scanning electron microscope, porosity, water permeability and pore size measurements. The porosity of the ceramic substrate (53% was reduced by the deposition of MFI (51% zeolite layer. The pore size and water permeability of the membrane was evaluated as 0.272 μm and 4.43 × 10–7 m3/m2s.kPa, respectively, which are lower than that of the substrate pore size (0.309 μm and water permeability (5.93 × 10–7 m3/m2s.kPa values. To identify the effectiveness of the prepared membrane, the applied pressure of the filtration process and initial chromium concentration and cross flow rate were varied to study their influence on the permeate flux and percentage of removal. The maximum removal of chromium achieved was 78% under an applied pressure of 345 kPa and an initial feed concentration of 1,000 ppm. Finally, the efficiency of the membrane for chromium removal was assessed with other membranes reported in the literature.

  12. Oil palm waste and synthetic zeolite: an alternative soil-less growth substrate for lettuce production as a waste management practice

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, G.Y.; Tokashiki, Y.; Kitou, M.; Kinjo, K. [Kagoshima University, Kagoshima (Japan). United Graduate School of Agricultural Science

    2008-12-15

    A study was conducted to assess the characteristics and the prospective utilization of oil palm waste (OP) and synthetic zeolite (SZ) developed by coal fly ash, as an alternative substrate to peat and commercial perlite for lettuce (Lactuca sativa L.) production. The SZ, OP, sphagnum peat (PE), perlite (PL) and two different SZ-OP mixtures (v/v) at the ratio of 1 : 3 and 1 : 10 were utilized as the substrates under this study. The substrates formulated by mixing SZ with OP at the ratio of 1 : 3 and 1 : 10 showed improved substrate physical and chemical properties such as air space, bulk density, particle density, water-holding capacity, pH and electrical conductivity (EC), which were in the ideal substrate range when compared with PL. Furthermore, the water-holding capacity of the substrate having a 1 : 10 mixing ratio of SZ with OP was higher than that of the PL by 28.23%, whereas the bulk density was lower than that of PL by 35%. A greenhouse experiment was carried out to assess the influence of the substrates on the growth and development of lettuce. The results of the study suggest that the SZ-OP-based substrates and OP can be successfully utilized as alternatives to the commercial perlite and to substitute the conventional peat substrate for lettuce cultivation. In addition, this can be proposed as an alternative waste management practice.

  13. Atomically flat platinum films grown on synthetic mica

    Science.gov (United States)

    Tanaka, Hiroyuki; Taniguchi, Masateru

    2018-04-01

    Atomically flat platinum thin films were heteroepitaxially grown on synthetic fluorophlogopite mica [KMg3(AlSi3O10)F2] by van der Waals epitaxy. Platinum films deposited on a fluorophlogopite mica substrate by inductively coupled plasma-assisted sputtering with oxygen introduction on a synthetic mica substrate resulted in the growth of twin single-crystalline epitaxial Pt(111) films.

  14. Calcium-Dependent Protein Kinases from Arabidopsis show substrate specificity differences in an analysis of 103 substrates

    Directory of Open Access Journals (Sweden)

    Amy eCurran

    2011-08-01

    Full Text Available The identification of substrates represents a critical challenge for understanding any protein kinase-based signal transduction pathway. In Arabidopsis, there are more than 1000 different protein kinases, 34 of which belong to a family of Ca2+-dependent protein kinases (CPKs. While CPKs are implicated in regulating diverse aspects of plant biology, from ion transport to transcription, relatively little is known about isoform-specific differences in substrate specificity, or the number of phosphorylation targets. Here, in vitro kinase assays were used to compare phosphorylation targets of four CPKs from Arabidopsis (CPK1, 10, 16 and 34. Significant differences in substrate specificity for each kinase were revealed by assays using 103 different substrates. For example CPK16 phosphorylated Serine 109 in a peptide from the stress-regulated protein, Di19-2 with KM ~70 µM, but this site was not phosphorylated significantly by CPKs 1, 10, or 34. In contrast, CPKs 1, 10, and 34 phosphorylated 93 other peptide substrates not recognized by CPK16. Examples of substrate specificity differences among all four CPKs were verified by kinetic analyses. To test the correlation between in vivo phosphorylation events and in vitro kinase activities, assays were performed with 274 synthetic peptides that contained phosphorylation sites previously mapped in proteins isolated from plants (in vivo-mapped sites. Of these, 74 (27% were found to be phosphorylated by at least one of the four CPKs tested. This 27% success rate validates a robust strategy for linking the activities of specific kinases, such as CPKs, to the thousands of in planta phosphorylation sites that are being uncovered by emerging technologies.

  15. Development of an enzyme-linked immunosorbent assay-based method for measuring galactosyltransferase activity using a synthetic glycopolymer acceptor substrate.

    Science.gov (United States)

    Oubihi, M; Kitajima, K; Kobayashi, K; Adachi, T; Aoki, N; Matsuda, T

    1998-03-15

    A lectin-assisted enzyme-linked immunosorbent assay (ELISA)-based method using a synthetic glycopolymer as an acceptor substrate was developed for measuring beta 1,4-galactosyltransferase (GalT) activity. A polyacrylamide derivative having a beta-linked N-acetylglucosamine (GlcNAc beta) moiety on each monomeric unit was synthesized chemically and immobilized on a polystyrene microtiter plate as an acceptor substrate for GalT. After the plate was incubated with bovine GalT, the enzyme reaction product, beta-linked Gal residue on the polyacrylamide-bound GlcNAc residue, was detected by using Ricinus communis agglutinin 1 (RCA1), rabbit anti-RCA1 antibody, and a peroxidase-labeled anti-rabbit IgG. The lowest GalT concentration detectable by this method was about 0.5 mU/ml, which is comparable to those by the previously reported ELISA-based assays. The unique property of the glycopolymer, PAP(GlcNAc beta), of binding noncovalently but tightly to the polystyrene microtiter plate allowed the use of this acceptor substrate for the GalT activity measurement even in the presence of 1% Triton CF-54 and X-100. Our system was successfully applied to assess GalT activity in milk of various mammals.

  16. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: implications for stone conservation.

    Science.gov (United States)

    Rodriguez-Navarro, Carlos; Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; González-Muñoz, María Teresa

    2012-06-01

    The influence of mineral substrate composition and structure on bacterial calcium carbonate productivity and polymorph selection was studied. Bacterial calcium carbonate precipitation occurred on calcitic (Iceland spar single crystals, marble, and porous limestone) and silicate (glass coverslips, porous sintered glass, and quartz sandstone) substrates following culturing in liquid medium (M-3P) inoculated with different types of bacteria (Myxococcus xanthus, Brevundimonas diminuta, and a carbonatogenic bacterial community isolated from porous calcarenite stone in a historical building) and direct application of sterile M-3P medium to limestone and sandstone with their own bacterial communities. Field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), powder X-ray diffraction (XRD), and 2-dimensional XRD (2D-XRD) analyses revealed that abundant highly oriented calcite crystals formed homoepitaxially on the calcitic substrates, irrespective of the bacterial type. Conversely, scattered spheroidal vaterite entombing bacterial cells formed on the silicate substrates. These results show that carbonate phase selection is not strain specific and that under equal culture conditions, the substrate type is the overruling factor for calcium carbonate polymorph selection. Furthermore, carbonate productivity is strongly dependent on the mineralogy of the substrate. Calcitic substrates offer a higher affinity for bacterial attachment than silicate substrates, thereby fostering bacterial growth and metabolic activity, resulting in higher production of calcium carbonate cement. Bacterial calcite grows coherently over the calcitic substrate and is therefore more chemically and mechanically stable than metastable vaterite, which formed incoherently on the silicate substrates. The implications of these results for technological applications of bacterial carbonatogenesis, including building stone conservation, are discussed.

  17. Gecko Adhesion on Wet and Dry Patterned Substrates.

    Directory of Open Access Journals (Sweden)

    Alyssa Y Stark

    Full Text Available Perhaps one of the most astounding characteristics of the gecko adhesive system is its versatility. Geckos can locomote across complex substrates in a variety of conditions with apparent ease. In contrast, many of our synthetic pressure sensitive adhesives fail on substrates that are dirty, wet or rough. Although many studies have investigated the effect of environmental challenges on performance, the interaction of multiple, potentially compromising variables is studied less often. Here we focus on substrate structure and surface water, both of which are highly relevant to the biological system and to synthetic design. To do this we utilized a highly controlled, patterned substrate (Sharklet®, by Sharklet® Technologies Inc.. This allowed us to test independently and jointly the effects of reduced surface area substrates, with a defined pattern, on adhesion in both air and water. Our results show that adhesion is not significantly impaired in air, whereas surface area and pattern significantly affect adhesion in water. These findings highlight the need to study multiple parameters that are relevant to the gecko adhesive system to further improve our understanding of the biological system and to design better, more versatile synthetics.

  18. Synthetic opal as a template for nanostructured materials

    Science.gov (United States)

    White, Paul A.; Heales, Lindsey; Barber, Richard L.; Turney, Terence W.

    2001-04-01

    Synthetic opal has been used as a template for making 3D inverse opals of silica, titania and silicone rubber. The materials are mesoporous with connected pores and channels and have better opalescence than the opal templates they replace. Thin films of synthetic opal have been grown onto glass substrates by spin coating and these have also been used as templates for making thin films of inverse opal and as masks for depositing metal nanodots. This method produced hexagonally patterned 50 nm gold dots on a flat graphite substrate.

  19. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    International Nuclear Information System (INIS)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.; Garcia, Ben J.; Sweet, Lucas E.; Carman, April J.; Eiden, Gregory C.

    2013-01-01

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in

  20. Thermal Degradation of Synthetic Cathinones: Implications for Forensic Toxicology.

    Science.gov (United States)

    Kerrigan, Sarah; Savage, Megan; Cavazos, Cassandra; Bella, Paige

    2016-01-01

    The synthetic cathinones represent an important class of designer drugs. The widespread attention and publicity associated with these psychostimulants have resulted in numerous legislative actions at state and federal levels throughout the USA. These amphetamine-like compounds are characterized by a β-keto functional group. Although the synthetic cathinones share many properties of their phenethylamine counterparts, the presence of the ketone moiety is responsible for a number of unique and distinct differences in terms of their chemical characteristics and properties. Thermal degradation of methcathinone was first reported several decades ago but has received limited attention. In this study, we identified in situ thermal degradation products for 18 cathinones during gas chromatography-mass spectrometry (GC-MS) analysis. Oxidative degradation arises from the loss of two hydrogens, yielding a characteristic 2 Da mass shift. Degradation products were characterized by prominent iminium base peaks with mass-to-charge ratios 2 Da lower than the parent drug, and in the case of the pyrrolidine-containing cathinones, prominent molecular ions arising from the 2,3-enamine. Chromatographic and mass spectroscopic data are described for 4-ethylmethcathinone, 4-methylethcathinone, buphedrone, butylone, ethcathinone, ethylone, flephedrone, 3,4-methylenedioxy-α-pyrrolidinobutiophenone, 3,4-methylenedioxypyrovalerone, mephedrone, methcathinone, methedrone, methylone, 4-methyl-α-pyrrolidinobutiophenone, naphyrone, pentedrone, pentylone and pyrovalerone. Degradation was minimized by lowering injection temperatures, residence time in the inlet and eliminating active sites during chromatographic analysis. Chromatographic and mass spectral data for the cathinone degradation products are presented and discussed within the context of forensic toxicological analysis, selection of appropriate instrumental methods and implications for the interpretation of results. © The Author 2015

  1. Adhesive interactions of geckos with wet and dry fluoropolymer substrates.

    Science.gov (United States)

    Stark, Alyssa Y; Dryden, Daniel M; Olderman, Jeffrey; Peterson, Kelly A; Niewiarowski, Peter H; French, Roger H; Dhinojwala, Ali

    2015-07-06

    Fluorinated substrates like Teflon® (poly(tetrafluoroethylene); PTFE) are well known for their role in creating non-stick surfaces. We showed previously that even geckos, which can stick to most surfaces under a wide variety of conditions, slip on PTFE. Surprisingly, however, geckos can stick reasonably well to PTFE if it is wet. In an effort to explain this effect, we have turned our attention to the role of substrate surface energy and roughness when shear adhesion occurs in media other than air. In this study, we removed the roughness component inherent to commercially available PTFE and tested geckos on relatively smooth wet and dry fluoropolymer substrates. We found that roughness had very little effect on shear adhesion in air or in water and that the level of fluorination was most important for shear adhesion, particularly in air. Surface energy calculations of the two fluorinated substrates and one control substrate using the Tabor-Winterton approximation and the Young-Dupré equation were used to determine the interfacial energy of the substrates. Using these interfacial energies we estimated the ratio of wet and dry normal adhesion for geckos clinging to the three substrates. Consistent with the results for rough PTFE, our predictions show a qualitative trend in shear adhesion based on fluorination, and the quantitative experimental differences highlight the unusually low shear adhesion of geckos on dry smooth fluorinated substrates, which is not captured by surface energy calculations. Our work has implications for bioinspired design of synthetics that can preferentially stick in water but not in air.

  2. Detection of extracellular neutrophil elastase in hamster lungs after intratracheal instillation of E. coli lipopolysaccharide using a fluorogenic, elastase-specific, synthetic substrate.

    Science.gov (United States)

    Rudolphus, A.; Stolk, J.; van Twisk, C.; van Noorden, C. J.; Dijkman, J. H.; Kramps, J. A.

    1992-01-01

    Repeated intratracheal instillations of E. coli lipopolysaccharide (LPS) in hamster lungs cause an influx of polymorphonuclear leukocytes (PMNs) into the alveolar walls, with concomitant development of severe emphysema. It has been suggested that elastase, released by these PMNs, is involved in the development of emphysema. This study demonstrates the release of elastase from recruited PMNs in cryostat sections of hamster lungs, after being treated once, twice, or thrice with LPS, intratracheally. Elastase activity was visualized using two elastase-specific synthetic substrates, to which a methoxynaphthylamine (MNA) group had been bound covalently. Liberated MNA, when made insoluble by coupling with 5-nitrosalicylaldehyde, fluoresces strongly. The authors observed that the interval between start of incubation and appearance of fluorescence and the intensity of fluorescence correlated with the number of LPS administrations. Fluorescence was observed to be located in or in close vicinity to alveolar walls. No fluorescence was observed in sections of untreated hamsters. Liberation of MNA from synthetic substrates was delayed strongly by the addition of a recombinant secretory leukocyte proteinase inhibitor or a substituted cephalosporin neutrophil elastase inhibitor. The authors conclude that LPS-mediated PMN influx into the lung is accompanied by release of elastase from these cells and speculate that this PMN-elastase is involved in the development of LPS-mediated emphysema. Images Figure 1 Figure 2 Figure 3 PMID:1632460

  3. Arabidopsis ATG4 cysteine proteases specificity toward ATG8 substrates

    Science.gov (United States)

    Park, Eunsook; Woo, Jongchan; Dinesh-Kumar, SP

    2014-01-01

    Macroautophagy (hereafter autophagy) is a regulated intracellular process during which cytoplasmic cargo engulfed by double-membrane autophagosomes is delivered to the vacuole or lysosome for degradation and recycling. Atg8 that is conjugated to phosphatidylethanolamine (PE) during autophagy plays an important role not only in autophagosome biogenesis but also in cargo recruitment. Conjugation of PE to Atg8 requires processing of the C-terminal conserved glycine residue in Atg8 by the Atg4 cysteine protease. The Arabidopsis plant genome contains 9 Atg8 (AtATG8a to AtATG8i) and 2 Atg4 (AtATG4a and AtATG4b) family members. To understand AtATG4’s specificity toward different AtATG8 substrates, we generated a unique synthetic substrate C-AtATG8-ShR (citrine-AtATG8-Renilla luciferase SuperhRLUC). In vitro analyses indicated that AtATG4a is catalytically more active and has broad AtATG8 substrate specificity compared with AtATG4b. Arabidopsis transgenic plants expressing the synthetic substrate C-AtAtg8a-ShR is efficiently processed by endogenous AtATG4s and targeted to the vacuole during nitrogen starvation. These results indicate that the synthetic substrate mimics endogenous AtATG8, and its processing can be monitored in vivo by a bioluminescence resonance energy transfer (BRET) assay. The synthetic Atg8 substrates provide an easy and versatile method to study plant autophagy during different biological processes. PMID:24658121

  4. Synthetic biology: an emerging engineering discipline.

    Science.gov (United States)

    Cheng, Allen A; Lu, Timothy K

    2012-01-01

    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  5. Substrates and method for determining enzymes

    Science.gov (United States)

    Smith, R.E.; Bissell, E.R.

    1981-10-13

    A method is disclosed for determining the presence of an enzyme in a biological fluid, which includes the steps of contacting the fluid with a synthetic chromogenic substrate, which is an amino acid derivative of 7-amino-4-trifluoromethylcoumarin; incubating the substrate-containing fluid to effect enzymatic hydrolysis; and fluorometrically determining the presence of the free 7-amino-4-trifluoromethylcoumarin chromophore in the hydrolyzate. No Drawings

  6. Plant productivity and characterization of zeoponic substrates after three successive crops of radish

    Science.gov (United States)

    Gruener, J. E.; Ming, Doug; Galindo, C., Jr.; Henderson, K. E.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) has developed advanced life support (ALS) systems for long duration space missions that incorporate plants to regenerate the atmosphere (CO2 to O2), recycle water (via evapotranspiration), and produce food. NASA has also developed a zeolite-based synthetic substrate consisting of clinoptilolite and synthetic apatite to support plant growth for ALS systems (Ming et al., 1995). The substrate is called zeoponics and has been designed to slowly release all plant essential elements into "soil" solution. The substrate consists of K- and NH4-exchanged clinoptilolite and a synthetic hydroxyapatite that has Mg, S, and the plant-essential micronutrients incorporated into its structure in addition to Ca and P. Plant performance in zeoponic substrates has been improved by the addition of dolomite pH buffers, nitrifying bacteria, and other calcium-bearing minerals (Henderson et al., 2000; Gruener et al., 2003). Wheat was used as the test crop for all of these studies. The objectives of this study were to expand upon the previous studies to determine the growth and nutrient uptake of radish in zeoponic substrates and to determine the nutrient availability of the zeoponic substrate after three successive radish crops.

  7. Processing of metacaspase 2 from Trypanosoma brucei (TbMCA2) broadens its substrate specificity.

    Science.gov (United States)

    Gilio, Joyce M; Marcondes, Marcelo F; Ferrari, Débora; Juliano, Maria A; Juliano, Luiz; Oliveira, Vitor; Machado, Maurício F M

    2017-04-01

    Metacaspases are members of the cysteine peptidase family and may be implicated in programmed cell death in plants and lower eukaryotes. These proteases exhibit calcium-dependent activity and specificity for arginine residues at P 1 . In contrast to caspases, they do not require processing or dimerization for activity. Indeed, unprocessed metacaspase-2 of Trypanosoma brucei (TbMCA2) is active; however, it has been shown that cleavages at Lys 55 and Lys 268 increase TbMCA2 hydrolytic activity on synthetic substrates. The processed TbMCA2 comprises 3 polypeptide chains that remain attached by non-covalent bonds. Replacement of Lys 55 and Lys 268 with Gly via site-directed mutagenesis results in non-processed but enzymatically active mutant, TbMCA2 K55/268G. To investigate the importance of this processing for the activity and specificity of TbMCA2, we performed activity assays comparing the non-processed mutant (TbMCA2 K55/268G) with the processed TbMCA2 form. Significant differences between TbMCA2 WT (processed form) and TbMCA2 K55/268G (non-processed form) were observed. Specifically, we verified that although non-processed TbMCA2 is active when assayed with small synthetic substrates, the TbMCA2 form does not exhibit hydrolytic activity on large substrates such as azocasein, while processed TbMCA2 is able to readily digest this protein. Such differences can be relevant for understanding the physiological regulation and function of TbMCA2. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The impact of furfural concentrations and substrate-to-biomass ratios on biological hydrogen production from synthetic lignocellulosic hydrolysate using mesophilic anaerobic digester sludge.

    Science.gov (United States)

    Akobi, Chinaza; Hafez, Hisham; Nakhla, George

    2016-12-01

    This study evaluated the impact of furfural (a furan derivative) on hydrogen production rates and yields at initial substrate-to-microorganism ratios (S°/X°) of 4, 2, 1, and 0.5gCOD/gVSS and furfural concentrations of 4, 2, 1, and 0.5g/L. Fermentation studies were carried out in batches using synthetic lignocellulosic hydrolysate as substrate and mesophilic anaerobic digester sludge as seed. Contrary to other literature studies where furfural was inhibitory, this study showed that furfural concentrations of up to 1g/L enhanced hydrogen production with yields as high as 19% from the control (batch without furfural). Plots of hydrogen yields against gfurfural/gsugars and hydrogen yields versus gfurfural/gbiomass showed negative linear correlation indicating that these parameters influence biohydrogen production. Regression analysis indicated that gfurfural/gsugars initial exerted a greater effect on the degree of inhibition of hydrogen production than gfurfural/gVSS final . Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Porous chromatographic materials as substrates for preparing synthetic nuclear explosion debris particles

    International Nuclear Information System (INIS)

    Harvey, S.D.; Carman, A.J.; Martin Liezers; Antolick, K.C.; Garcia, B.J.; Eiden, G.C.; Sweet, L.E.

    2013-01-01

    Several porous chromatographic materials were investigated as synthetic substrates for preparing surrogate nuclear explosion debris particles. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110 deg C) to drive off water, and then treating them at high temperatures (up to 800 deg C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies characterized material balance and the formation of recalcitrant species. Metal loading was 1.5-3 times higher than expected from the pore volume alone, a result attributed to surface coating. Most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating selective loading. High-temperature treatments caused reduced solubility of several metals, and the loss of some volatile species (rhenium and tellurium). Sample preparation reproducibility was high (the inter- and intra-batch relative standard deviations were 7.8 and 0.84 %, respectively) indicating suitability for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in radioanalytical methods development and/or serve as a starting material for the synthesis of more complex nuclear explosion debris forms (e.g., Trinitite). (author)

  10. Influence of substrate modulus on gecko adhesion

    Science.gov (United States)

    Klittich, Mena R.; Wilson, Michael C.; Bernard, Craig; Rodrigo, Rochelle M.; Keith, Austin J.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2017-03-01

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Understanding the adhesion system’s performance on various surfaces can give clues as to gecko behaviour, as well as towards designing synthetic adhesive mimics. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard, rough tree trunks as well as soft, flexible leaves. While gecko adhesion on hard surfaces has been extensively studied, little work has been done on soft surfaces. Here, we investigate for the first time the influence of macroscale and nanoscale substrate modulus on whole animal adhesion on two different substrates (cellulose acetate and polydimethylsiloxane) in air and find that across 5 orders of magnitude in macroscale modulus, there is no change in adhesion. On the nanoscale, however, gecko adhesion is shown to depend on substrate modulus. This suggests that low surface-layer modulus may inhibit the gecko adhesion system, independent of other influencing factors such as macroscale composite modulus and surface energy. Understanding the limits of gecko adhesion is vital for clarifying adhesive mechanisms and in the design of synthetic adhesives for soft substrates (including for biomedical applications and wearable electronics).

  11. Chemometrics approach to substrate development, case: semisyntetic cheese

    DEFF Research Database (Denmark)

    Nielsen, Per Væggemose; Hansen, Birgitte Vedel

    1998-01-01

    from food production facilities.The Chemometrics approach to substrate development is illustrated by the development of a semisyntetic cheese substrate. Growth, colour formation and mycotoxin production of 6 cheese related fungi were studied on 9 types of natural cheeses and 24 synthetic cheese......, the most frequently occurring contaminant on semi-hard cheese. Growth experiments on the substrate were repeatable and reproducible. The substrate was also suitable for the starter P. camemberti. Mineral elements in cheese were shown to have strong effect on growth, mycotoxin production and colour...... formation of fungi. For P. roqueforti, P. discolor, P. verrucosum and Aspergillus versicolor the substrate was less suitable as a model cheese substrate, which indicates great variation in nutritional demands of the fungi. Substrates suitable for studies of specific cheese types was found for P. roqueforti...

  12. Synthetic Prions Provide Clues for Understanding Prion Diseases.

    Science.gov (United States)

    Imberdis, Thibaut; Harris, David A

    2016-04-01

    This Commentary highlights the article by Makarava et al that discusses the formation of synthetic prions and the role of substrate levels in their evolution. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.

  14. Synthetic biology, metaphors and responsibility.

    Science.gov (United States)

    McLeod, Carmen; Nerlich, Brigitte

    2017-08-29

    Metaphors are not just decorative rhetorical devices that make speech pretty. They are fundamental tools for thinking about the world and acting on the world. The language we use to make a better world matters; words matter; metaphors matter. Words have consequences - ethical, social and legal ones, as well as political and economic ones. They need to be used 'responsibly'. They also need to be studied carefully - this is what we want to do through this editorial and the related thematic collection. In the context of synthetic biology, natural and social scientists have become increasingly interested in metaphors, a wave of interest that we want to exploit and amplify. We want to build on emerging articles and books on synthetic biology, metaphors of life and the ethical and moral implications of such metaphors. This editorial provides a brief introduction to synthetic biology and responsible innovation, as well as a comprehensive review of literature on the social, cultural and ethical impacts of metaphor use in genomics and synthetic biology. Our aim is to stimulate an interdisciplinary and international discussion on the impact that metaphors can have on science, policy and publics in the context of synthetic biology.

  15. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  16. Degradation of Synthetic Dyes by Laccases – A Mini-Review

    Directory of Open Access Journals (Sweden)

    Legerská Barbora

    2016-06-01

    Full Text Available Laccases provide a promising future as a tool to be used in the field of biodegradation of synthetic dyes with different chemical structures. These enzymes are able to oxidize a wide range of phenolic substrates without the presence of additional co-factors. Laccases have been confirmed for their potential of synthetic dye degradation from wastewater and degradation products of these enzymatic reactions become less toxic than selected dyes. This study discusses the potential of laccase enzymes as agents for laccase-catalyzed degradation in terms of biodegradation efficiency of synthetic dyes, specifically: azo dyes, triphenylmethane, indigo and anthraquinone dyes. Review also summarizes the laccase-catalyzed degradation mechanisms of the selected synthetic dyes, as well as the degradation products and the toxicity of the dyes and their degradation products.

  17. Protein degradation: recognition of ubiquitinylated substrates

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2004-01-01

    A cell-free system has been developed in budding yeast that provides direct evidence that the Dsk2/Dph1, Rad23/Rhp23 and Rpn10/Pus1 multi-ubiquitin-binding proteins, long implicated in substrate recognition and presentation to the 26S proteasome, actually fulfil such a role.......A cell-free system has been developed in budding yeast that provides direct evidence that the Dsk2/Dph1, Rad23/Rhp23 and Rpn10/Pus1 multi-ubiquitin-binding proteins, long implicated in substrate recognition and presentation to the 26S proteasome, actually fulfil such a role....

  18. Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COX-2/ADMA axis.

    Science.gov (United States)

    Kirkby, Nicholas S; Tesfai, Abel; Ahmetaj-Shala, Blerina; Gashaw, Hime H; Sampaio, Walkyria; Etelvino, Gisele; Leão, Nádia Miricéia; Santos, Robson A; Mitchell, Jane A

    2016-12-01

    Nonsteroidal antiinflammatory drugs, including ibuprofen, are among the most commonly used medications and produce their antiinflammatory effects by blocking cyclooxygenase (COX)-2. Their use is associated with increased risk of heart attacks caused by blocking COX-2 in the vasculature and/or kidney, with our recent work implicating the endogenous NOS inhibitor asymmetric dimethylarginine (ADMA), a cardiotoxic hormone whose effects can be prevented by l-arginine. The ibuprofen salt ibuprofen arginate (Spididol) was created to increase solubility but we suggest that it could also augment the NO pathway through codelivery of arginine. Here we investigated the idea that ibuprofen arginate can act to simultaneously inhibit COX-2 and preserve the NO pathway. Ibuprofen arginate functioned similarly to ibuprofen sodium for inhibition of mouse/human COX-2, but only ibuprofen arginate served as a substrate for NOS. Ibuprofen arginate but not ibuprofen sodium also reversed the inhibitory effects of ADMA and N G -nitro-l-arginine methyl ester on inducible NOS (macrophages) and endothelial NOS in vitro (aorta) and in vivo (blood pressure). These observations show that ibuprofen arginate provides, in one preparation, a COX-2 inhibitor and NOS substrate that could act to negate the harmful cardiovascular consequences mediated by blocking renal COX-2 and increased ADMA. While remarkably simple, our findings are potentially game-changing in the nonsteroidal antiinflammatory drug arena.-Kirkby, N. S., Tesfai, A., Ahmetaj-Shala, B., Gashaw, H. H., Sampaio, W., Etelvino, G., Leão, N. M., Santos, R. A., Mitchell, J. A. Ibuprofen arginate retains eNOS substrate activity and reverses endothelial dysfunction: implications for the COX-2/ADMA axis. © The Author(s).

  19. Substrate-Directed Catalytic Selective Chemical Reactions.

    Science.gov (United States)

    Sawano, Takahiro; Yamamoto, Hisashi

    2018-05-04

    The development of highly efficient reactions at only the desired position is one of the most important subjects in organic chemistry. Most of the reactions in current organic chemistry are reagent- or catalyst-controlled reactions, and the regio- and stereoselectivity of the reactions are determined by the inherent nature of the reagent or catalyst. In sharp contrast, substrate-directed reaction determines the selectivity of the reactions by the functional group on the substrate and can strictly distinguish sterically and electronically similar multiple reaction sites in the substrate. In this Perspective, three topics of substrate-directed reaction are mainly reviewed: (1) directing group-assisted epoxidation of alkenes, (2) ring-opening reactions of epoxides by various nucleophiles, and (3) catalytic peptide synthesis. Our newly developed synthetic methods with new ligands including hydroxamic acid derived ligands realized not only highly efficient reactions but also pinpointed reactions at the expected position, demonstrating the substrate-directed reaction as a powerful method to achieve the desired regio- and stereoselective functionalization of molecules from different viewpoints of reagent- or catalyst-controlled reactions.

  20. Lithography-Free Fabrication of Reconfigurable Substrate Topography For Contact Guidance

    Science.gov (United States)

    Pholpabu, Pitirat; Kustra, Stephen; Wu, Haosheng; Balasubramanian, Aditya; Bettinger, Christopher J.

    2014-01-01

    Mammalian cells detect and respond to topographical cues presented in natural and synthetic biomaterials both in vivo and in vitro. Micro- and nano-structures influence the adhesion, morphology, proliferation, migration, and differentiation of many phenotypes. Although the mechanisms that underpin cell-topography interactions remain elusive, synthetic substrates with well-defined micro- and nano-structures are important tools to elucidate the origin of these responses. Substrates with reconfigurable topography are desirable because programmable cues can be harmonized with dynamic cellular responses. Here we present a lithography-free fabrication technique that can reversibly present topographical cues using an actuation mechanism that minimizes the confounding effects of applied stimuli. This method utilizes strain-induced buckling instabilities in bi-layer substrate materials with rigid uniform silicon oxide membranes that are thermally deposited on elastomeric substrates. The resulting surfaces are capable of reversible of substrates between three distinct states: flat substrates (A = 1.53 ± 0.55 nm, Rms = 0.317 ± 0.048 nm); parallel wavy grating arrays (A|| = 483.6 ± 7.8 nm and λ|| = 4.78 ± 0.16 μm); perpendicular wavy grating arrays (A⊥ = 429.3 ± 5.8 nm; λ⊥ = 4.95 ± 0.36 μm). The cytoskeleton dynamics of 3T3 fibroblasts in response to these surfaces was measured using optical microscopy. Fibroblasts cultured on dynamic substrates that are switched from flat to topographic features (FLAT-WAVY) exhibit a robust and rapid change in gross morphology as measured by a reduction in circularity from 0.30 ± 0.13 to 0.15 ± 0.08 after 5 min. Conversely, dynamic substrate sequences of FLAT-WAVY-FLAT do not significantly alter the gross steady-state morphology. Taken together, substrates that present topographic structures reversibly can elucidate dynamic aspects of cell-topography interactions. PMID:25468368

  1. Synthetic Biology and the Translational Imperative.

    Science.gov (United States)

    Heidari Feidt, Raheleh; Ienca, Marcello; Elger, Bernice Simone; Folcher, Marc

    2017-12-18

    Advances at the interface between the biological sciences and engineering are giving rise to emerging research fields such as synthetic biology. Harnessing the potential of synthetic biology requires timely and adequate translation into clinical practice. However, the translational research enterprise is currently facing fundamental obstacles that slow down the transition of scientific discoveries from the laboratory to the patient bedside. These obstacles including scarce financial resources and deficiency of organizational and logistic settings are widely discussed as primary impediments to translational research. In addition, a number of socio-ethical considerations inherent in translational research need to be addressed. As the translational capacity of synthetic biology is tightly linked to its social acceptance and ethical approval, ethical limitations may-together with financial and organizational problems-be co-determinants of suboptimal translation. Therefore, an early assessment of such limitations will contribute to proactively favor successful translation and prevent the promising potential of synthetic biology from remaining under-expressed. Through the discussion of two case-specific inventions in synthetic biology and their associated ethical implications, we illustrate the socio-ethical challenges ahead in the process of implementing synthetic biology into clinical practice. Since reducing the translational lag is essential for delivering the benefits of basic biomedical research to society at large and promoting global health, we advocate a moral obligation to accelerating translational research: the "translational imperative."

  2. In Vitro Screening of Synthetic Fluorogenic Substrates for Detection of Cancer Procoagulant Activity.

    Science.gov (United States)

    Krause, Jason; Frost, Carminita L

    2018-04-01

    Cancer procoagulant (CP), a direct activator of coagulation factor X, is among one of the tumour cell products or activities which may promote fibrin formation and has been suggested to be selectively associated with the malignant phenotype. At present, the most reliable assay for the quantification of CP activity is the three-stage chromogenic assay which utilises the ability of CP to activate factor X. In this assay, the activation of factor X leads to the formation of activated thrombin from prothrombin and the eventual hydrolyses of a thrombin chromogenic substrate which contains a p-nitroaniline leaving group. The complexity of the three-stage chromogenic assay suggests a need for a direct method of assaying CP activity. This study focuses on the design of a fluorogenic substrate that would enable the direct quantification of CP activity. The results of the study show two promising substrates for the determination of CP activity: Boc-PQVR-AMC and PQVR-AMC. Further analysis showed that Boc-PQVR-AMC could be excluded as a potential substrate for CP since it was also cleaved by collagenase.

  3. Aspects of the political economy of development and synthetic biology.

    Science.gov (United States)

    Wellhausen, Rachel; Mukunda, Gautam

    2009-12-01

    What implications might synthetic biology's potential as a wholly new method of production have for the world economy, particularly developing countries? Theories of political economy predict that synthetic biology can shift terms of trade and displace producers in developing countries. Governments, however, retain the ability to mitigate negative changes through social safety nets and to foster adaptation to some changes through research, education and investment. We consider the effects the synthetic production of otherwise naturally derived molecules are likely to have on trade and investment, particularly in developing countries. Both rubber in Malaysia and indigo dyes in India provide historical examples of natural molecules that faced market dislocations from synthetic competitors. Natural rubber was able to maintain significant market share, while natural indigo vanished from world markets. These cases demonstrate the two extremes of the impact synthetic biology might have on naturally derived products. If developing countries can cushion the pain of technological changes by providing producers support as they retool or exit, the harmful effects of synthetic biology can be mitigated while its benefits can still be captured.

  4. Studies of the stability of water-soluble polypeptoid helices and investigation of synthetic, biomimetic substrates for the development of a thermally triggered, enzymatically crosslinked hydrogel for biomedical applications

    Science.gov (United States)

    Sanborn, Tracy Joella

    Due to the unique 3D structures of proteins, these biopolymers are able to perform a myriad of vital functions and activities in vivo. Peptidomimetic oligomers are being synthesized to mimic the structure and function of natural peptides. We have examined the stability of secondary structure of a poly-N-substituted glycine (peptoid) and developed synthetic substrates for transglutaminase enzymes. We synthesized an amphipathic, helical, 36 residue peptoid to study the stability of peptoid secondary structure using circular dichroism. We saw no significant dependence of helical structure on concentration, solvent, or temperature. The extraordinary resistance of these peptoid helices to denaturation is consistent with a dominant role, of steric forces in their structural stabilization. The structured polypeptoids studied here have potential as robust mimics of helical polypeptides of therapeutic interest. The ability of transglutaminases to crosslink peptidomimetic substrates was also investigated. There is a medical need for robust, biocompatible hydrogels that can be rapidly crosslinked in situ, for application as surgical adhesives, bone-inductive materials, or for drug delivery. We have taken an enzymatic approach to the creation of a novel gelation system that fits these requirements, utilizing transglutaminase enzymes, thermo-responsive liposomes, and a biomimetic enzyme substrate based on a peptide-polymer conjugate. At room temperature, the hydrogel system is a solution. Upon heating to 37°C, the calcium-loaded liposomes release calcium that activates Factor XIII in the presence of thrombin, producing a gel within 9 minutes. Rheological studies demonstrated that the hydrogel behaves as a robust, elastic solid, while scanning electron microscopy studies revealed that the hydrogel has a very dense morphology overall. We also investigated the ability of transglutaminases to crosslink non-natural, peptoid-based substrates. The activity of five lysine

  5. Extraction Efficacy of Synthetic Cannabinoids From Damiana Leaf Substrates Utilizing Electrolytic Solvents

    Science.gov (United States)

    2014-02-01

    Herbal mixtures, such as “Spice” and “K2,” were exposed as hosts for synthetic molecules that imitate the effects of the psychoactive component of...as smoke and head shops with disclaimers that read “not for human consumption ” with only natural ingredients listed on their packages (11). When...by many military personnel as they can be purchased without age restrictions, are not detected in standard drug screens, and are commonly

  6. Impinging jet study of the deposition of colloidal particles on synthetic polymer (Zeonor)

    DEFF Research Database (Denmark)

    Vlček, Jakub; Lapčík, Lubomír; Cech, Jiri

    2014-01-01

    In this study, an impinging jet deposition experiments were performed on synthetic polymer (Zeonor) original and by micro-embossing modified substrates with exactly defined topology as confirmed by AFM and SEM. Deposition experiments were performed at ambient temperature and at selected flow regi...

  7. Biocatalytic Synthesis of Nitriles through Dehydration of Aldoximes: The Substrate Scope of Aldoxime Dehydratases.

    Science.gov (United States)

    Betke, Tobias; Higuchi, Jun; Rommelmann, Philipp; Oike, Keiko; Nomura, Taiji; Kato, Yasuo; Asano, Yasuhisa; Gröger, Harald

    2018-04-16

    Nitriles, which are mostly needed and produced by the chemical industry, play a major role in various industry segments, ranging from high-volume, low-price sectors, such as polymers, to low-volume, high-price sectors, such as chiral pharma drugs. A common industrial technology for nitrile production is ammoxidation as a gas-phase reaction at high temperature. Further popular approaches are substitution or addition reactions with hydrogen cyanide or derivatives thereof. A major drawback, however, is the very high toxicity of cyanide. Recently, as a synthetic alternative, a novel enzymatic approach towards nitriles has been developed with aldoxime dehydratases, which are capable of converting an aldoxime in one step through dehydration into nitriles. Because the aldoxime substrates are easily accessible, this route is of high interest for synthetic purposes. However, whenever a novel method is developed for organic synthesis, it raises the question of substrate scope as one of the key criteria for application as a "synthetic platform technology". Thus, the scope of this review is to give an overview of the current state of the substrate scope of this enzymatic method for synthesizing nitriles with aldoxime dehydratases. As a recently emerging enzyme class, a range of substrates has already been studied so far, comprising nonchiral and chiral aldoximes. This enzyme class of aldoxime dehydratases shows a broad substrate tolerance and accepts aliphatic and aromatic aldoximes, as well as arylaliphatic aldoximes. Furthermore, aldoximes with a stereogenic center are also recognized and high enantioselectivities are found for 2-arylpropylaldoximes, in particular. It is further noteworthy that the enantiopreference depends on the E and Z isomers. Thus, opposite enantiomers are accessible from the same racemic aldehyde and the same enzyme. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthetic biology, inspired by synthetic chemistry.

    Science.gov (United States)

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Understanding the Growing Threat of Synthetic Cannabinoids and Its Implications on University-Based Counselors

    Science.gov (United States)

    Golubovic, Nedeljko; Dew, Brian J.

    2017-01-01

    The rise in synthetic cannabinoid use has been one of the nation's most alarming drug-related trends. Considering the popularity of use among young adults, college counselors are likely to be among the 1st professionals to treat clients who use these drugs. In this article, the unique aspects of synthetic cannabinoids are reviewed, implications…

  10. Unnatural amino acids increase activity and specificity of synthetic substrates for human and malarial cathepsin C.

    Science.gov (United States)

    Poreba, Marcin; Mihelic, Marko; Krai, Priscilla; Rajkovic, Jelena; Krezel, Artur; Pawelczak, Malgorzata; Klemba, Michael; Turk, Dusan; Turk, Boris; Latajka, Rafal; Drag, Marcin

    2014-04-01

    Mammalian cathepsin C is primarily responsible for the removal of N-terminal dipeptides and activation of several serine proteases in inflammatory or immune cells, while its malarial parasite ortholog dipeptidyl aminopeptidase 1 plays a crucial role in catabolizing the hemoglobin of its host erythrocyte. In this report, we describe the systematic substrate specificity analysis of three cathepsin C orthologs from Homo sapiens (human), Bos taurus (bovine) and Plasmodium falciparum (malaria parasite). Here, we present a new approach with a tailored fluorogenic substrate library designed and synthesized to probe the S1 and S2 pocket preferences of these enzymes with both natural and a broad range of unnatural amino acids. Our approach identified very efficiently hydrolyzed substrates containing unnatural amino acids, which resulted in the design of significantly better substrates than those previously known. Additionally, in this study significant differences in terms of the structures of optimal substrates for human and malarial orthologs are important from the therapeutic point of view. These data can be also used for the design of specific inhibitors or activity-based probes.

  11. PrenDB, a Substrate Prediction Database to Enable Biocatalytic Use of Prenyltransferases.

    Science.gov (United States)

    Gunera, Jakub; Kindinger, Florian; Li, Shu-Ming; Kolb, Peter

    2017-03-10

    Prenyltransferases of the dimethylallyltryptophan synthase (DMATS) superfamily catalyze the attachment of prenyl or prenyl-like moieties to diverse acceptor compounds. These acceptor molecules are generally aromatic in nature and mostly indole or indole-like. Their catalytic transformation represents a major skeletal diversification step in the biosynthesis of secondary metabolites, including the indole alkaloids. DMATS enzymes thus contribute significantly to the biological and pharmacological diversity of small molecule metabolites. Understanding the substrate specificity of these enzymes could create opportunities for their biocatalytic use in preparing complex synthetic scaffolds. However, there has been no framework to achieve this in a rational way. Here, we report a chemoinformatic pipeline to enable prenyltransferase substrate prediction. We systematically catalogued 32 unique prenyltransferases and 167 unique substrates to create possible reaction matrices and compiled these data into a browsable database named PrenDB. We then used a newly developed algorithm based on molecular fragmentation to automatically extract reactive chemical epitopes. The analysis of the collected data sheds light on the thus far explored substrate space of DMATS enzymes. To assess the predictive performance of our virtual reaction extraction tool, 38 potential substrates were tested as prenyl acceptors in assays with three prenyltransferases, and we were able to detect turnover in >55% of the cases. The database, PrenDB (www.kolblab.org/prendb.php), enables the prediction of potential substrates for chemoenzymatic synthesis through substructure similarity and virtual chemical transformation techniques. It aims at making prenyltransferases and their highly regio- and stereoselective reactions accessible to the research community for integration in synthetic work flows. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Synthetic biology character and impact

    CERN Document Server

    Pade, Christian; Wigger, Henning; Gleich, Arnim

    2015-01-01

    Synthetic Biology is already an object of intensive debate. However, to a great extent the discussion to date has been concerned with fundamental ethical, religious and philosophical questions. By contrast, based on an investigation of the field’s scientific and technological character, this book focuses on new functionalities provided by synthetic biology and explores the associated opportunities and risks. Following an introduction to the subject and a discussion of the most central paradigms and methodologies, the book provides an overview of the structure of this field of science and technology. It informs the reader about the current stage of development, as well as topical problems and potential opportunities in important fields of application. But not only the science itself is in focus. In order to investigate its broader impact, ecological as well as ethical implications will be considered, paving the way for a discussion of responsibilities in the context of a field at a transitional crossroads be...

  13. Biochemical Characterisation of Phage Pseudomurein Endoisopeptidases PeiW and PeiP Using Synthetic Peptides.

    Science.gov (United States)

    Schofield, Linley R; Beattie, Amy K; Tootill, Catherine M; Dey, Debjit; Ronimus, Ron S

    2015-01-01

    Pseudomurein endoisopeptidases cause lysis of the cell walls of methanogens by cleaving the isopeptide bond Ala-ε-Lys in the peptide chain of pseudomurein. PeiW and PeiP are two thermostable pseudomurein endoisopeptidases encoded by phage ΨM100 of Methanothermobacter wolfei and phages ΨM1 and ΨM2 of Methanothermobacter marburgensis, respectively. A continuous assay using synthetic peptide substrates was developed and used in the biochemical characterisation of recombinant PeiW and PeiP. The advantages of these synthetic peptide substrates over natural substrates are sensitivity, high purity, and characterisation and the fact that they are more easily obtained than natural substrates. In the presence of a reducing agent, purified PeiW and PeiP each showed similar activity under aerobic and anaerobic conditions. Both enzymes required a divalent metal for activity and showed greater thermostability in the presence of Ca(2+). PeiW and PeiP involve a cysteine residue in catalysis and have a monomeric native conformation. The kinetic parameters, K(M) and k(cat), were determined, and the ε-isopeptide bond between alanine and lysine was confirmed as the bond lysed by these enzymes in pseudomurein. The new assay may have wider applications for the general study of peptidases and the identification of specific methanogens susceptible to lysis by specific pseudomurein endoisopeptidases.

  14. Biochemical Characterisation of Phage Pseudomurein Endoisopeptidases PeiW and PeiP Using Synthetic Peptides

    Directory of Open Access Journals (Sweden)

    Linley R. Schofield

    2015-01-01

    Full Text Available Pseudomurein endoisopeptidases cause lysis of the cell walls of methanogens by cleaving the isopeptide bond Ala-ε-Lys in the peptide chain of pseudomurein. PeiW and PeiP are two thermostable pseudomurein endoisopeptidases encoded by phage ΨM100 of Methanothermobacter wolfei and phages ΨM1 and ΨM2 of Methanothermobacter marburgensis, respectively. A continuous assay using synthetic peptide substrates was developed and used in the biochemical characterisation of recombinant PeiW and PeiP. The advantages of these synthetic peptide substrates over natural substrates are sensitivity, high purity, and characterisation and the fact that they are more easily obtained than natural substrates. In the presence of a reducing agent, purified PeiW and PeiP each showed similar activity under aerobic and anaerobic conditions. Both enzymes required a divalent metal for activity and showed greater thermostability in the presence of Ca2+. PeiW and PeiP involve a cysteine residue in catalysis and have a monomeric native conformation. The kinetic parameters, KM and kcat, were determined, and the ε-isopeptide bond between alanine and lysine was confirmed as the bond lysed by these enzymes in pseudomurein. The new assay may have wider applications for the general study of peptidases and the identification of specific methanogens susceptible to lysis by specific pseudomurein endoisopeptidases.

  15. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    International Nuclear Information System (INIS)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Liao, Liangsheng; Sun, Baoquan; Zhang, Ke-Qin

    2015-01-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq −1 , a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A −1 , demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices. (paper)

  16. Flexible organic light emitting diodes fabricated on biocompatible silk fibroin substrate

    Science.gov (United States)

    Liu, Yuqiang; Xie, Yuemin; Liu, Yuan; Song, Tao; Zhang, Ke-Qin; Liao, Liangsheng; Sun, Baoquan

    2015-10-01

    Flexible and biodegradable electronics are currently under extensive investigation for biocompatible and environmentally-friendly applications. Synthetic plastic foils are widely used as substrates for flexible electronics. But typical plastic substrates such as polyethylene naphthalate (PEN) could not be degraded in a natural bio-environment. A great demand still exists for a next-generation biocompatible and biodegradable substrate for future application. For example, electronic devices can be potentially integrated into the human body. In this work, we demonstrate that the biocompatible and biodegradable natural silk fibroin (SF) films embedded with silver nanowires (AgNWs) mesh could be employed as conductive transparent substrates to fabricate flexible organic light emitting diodes (OLEDs). Compared with commercial PEN substrates coated with indium tin oxide, the AgNWs/SF composite substrates exhibit a similar sheet resistance of 12 Ω sq-1, a lower surface roughness, as well as a broader light transmission range. Flexible OLEDs based on AgNWs/SF substrates achieve a current efficiency of 19 cd A-1, demonstrating the potential of the flexible AgNWs/SF films as conductive and transparent substrates for next-generation biodegradable devices.

  17. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.

    Science.gov (United States)

    Shi, Weidong; Song, Shuyan; Zhang, Hongjie

    2013-07-07

    Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area.

  18. Substrate recognition by ribonucleoprotein ribonuclease MRP.

    Science.gov (United States)

    Esakova, Olga; Perederina, Anna; Quan, Chao; Berezin, Igor; Krasilnikov, Andrey S

    2011-02-01

    The ribonucleoprotein complex ribonuclease (RNase) MRP is a site-specific endoribonuclease essential for the survival of the eukaryotic cell. RNase MRP closely resembles RNase P (a universal endoribonuclease responsible for the maturation of the 5' ends of tRNA) but recognizes distinct substrates including pre-rRNA and mRNA. Here we report the results of an in vitro selection of Saccharomyces cerevisiae RNase MRP substrates starting from a pool of random sequences. The results indicate that RNase MRP cleaves single-stranded RNA and is sensitive to sequences in the immediate vicinity of the cleavage site requiring a cytosine at the position +4 relative to the cleavage site. Structural implications of the differences in substrate recognition by RNases P and MRP are discussed.

  19. Synthetic Adhesive Attachment Discs based on Spider Pyriform Silk Architecture

    Science.gov (United States)

    Jain, Dharamdeep; Sahni, Vasav; Dhinojwala, Ali

    2014-03-01

    Among the variety of silks produced by spiders, pyriform silk is used in conjunction with the dragline silk to attach webs to different surfaces. Cob weaver spiders employ different architectural patterns to utilize the pyriform silk and form attachment joints with each pattern having a characteristic adhesive performance. The staple pin architecture is a one of the strongest attachment designs employed by spiders to attach their webs. Here we use a synthetic approach to create the a similar patterned architecture attachment discs on aluminum substrate using thermoplastic polyurethane. Measurable pull off forces are generated when the synthetic discs are peeled off a surface. This innovative adhesive strategy can be a source of design in various biomedical applications. Financial Support from National Science Foundation.

  20. Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions.

    Science.gov (United States)

    Silvas, Tania V; Hou, Shurong; Myint, Wazo; Nalivaika, Ellen; Somasundaran, Mohan; Kelch, Brian A; Matsuo, Hiroshi; Kurt Yilmaz, Nese; Schiffer, Celia A

    2018-05-14

    The APOBEC3 (A3) family of human cytidine deaminases is renowned for providing a first line of defense against many exogenous and endogenous retroviruses. However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s a double-edged sword. When overexpressed, A3s can mutate endogenous genomic DNA resulting in a variety of cancers. Although the sequence context for mutating DNA varies among A3s, the mechanism for substrate sequence specificity is not well understood. To characterize substrate specificity of A3A, a systematic approach was used to quantify the affinity for substrate as a function of sequence context, length, secondary structure, and solution pH. We identified the A3A ssDNA binding motif as (T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is modulated by substrate structure. Based on these findings and previously published A3A-ssDNA co-crystal structures, we propose a new model with intra-DNA interactions for the molecular mechanism underlying A3A sequence preference. Overall, the sequence and structural preferences identified for A3A leads to a new paradigm for identifying A3A's involvement in mutation of endogenous or exogenous DNA.

  1. Mesenchymal stem cell adhesion but not plasticity is affected by high substrate stiffness

    Directory of Open Access Journals (Sweden)

    Janice Kal Van Tam, Koichiro Uto, Mitsuhiro Ebara, Stefania Pagliari, Giancarlo Forte and Takao Aoyagi

    2012-01-01

    Full Text Available The acknowledged ability of synthetic materials to induce cell-specific responses regardless of biological supplies provides tissue engineers with the opportunity to find the appropriate materials and conditions to prepare tissue-targeted scaffolds. Stem and mature cells have been shown to acquire distinct morphologies in vitro and to modify their phenotype when grown on synthetic materials with tunable mechanical properties. The stiffness of the substrate used for cell culture is likely to provide cells with mechanical cues mimicking given physiological or pathological conditions, thus affecting the biological properties of cells. The sensitivity of cells to substrate composition and mechanical properties resides in multiprotein complexes called focal adhesions, whose dynamic modification leads to cytoskeleton remodeling and changes in gene expression. In this study, the remodeling of focal adhesions in human mesenchymal stem cells in response to substrate stiffness was followed in the first phases of cell–matrix interaction, using poly-ε-caprolactone planar films with similar chemical composition and different elasticity. As compared to mature dermal fibroblasts, mesenchymal stem cells showed a specific response to substrate stiffness, in terms of adhesion, as a result of differential focal adhesion assembly, while their multipotency as a bulk was not significantly affected by matrix compliance. Given the sensitivity of stem cells to matrix mechanics, the mechanobiology of such cells requires further investigations before preparing tissue-specific scaffolds.

  2. Interactions of Cannabinoids With Biochemical Substrates

    Directory of Open Access Journals (Sweden)

    Brian F Thomas

    2017-05-01

    Full Text Available Recent decades have seen much progress in the identification and characterization of cannabinoid receptors and the elucidation of the mechanisms by which derivatives of the Cannabis sativa plant bind to receptors and produce their physiological and psychological effects. The information generated in this process has enabled better understanding of the fundamental physiological and psychological processes controlled by the central and peripheral nervous systems and has fostered the development of natural and synthetic cannabinoids as therapeutic agents. A negative aspect of this decades-long effort is the proliferation of clandestinely synthesized analogs as recreational street drugs with dangerous effects. Currently, the interactions of cannabinoids with their biochemical substrates are extensively but inadequately understood, and the clinical application of derived and synthetic receptor ligands remains quite limited. The wide anatomical distribution and functional complexity of the cannabinoid system continue to indicate potential for both therapeutic and side effects, which offers challenges and opportunities for medicinal chemists involved in drug discovery and development.

  3. Seneca Valley Virus 3Cpro Substrate Optimization Yields Efficient Substrates for Use in Peptide-Prodrug Therapy.

    Directory of Open Access Journals (Sweden)

    Linde A Miles

    Full Text Available The oncolytic picornavirus Seneca Valley Virus (SVV-001 demonstrates anti-tumor activity in models of small cell lung cancer (SCLC, but may ultimately need to be combined with cytotoxic therapies to improve responses observed in patients. Combining SVV-001 virotherapy with a peptide prodrug activated by the viral protease 3Cpro is a novel strategy that may increase the therapeutic potential of SVV-001. Using recombinant SVV-001 3Cpro, we measured cleavage kinetics of predicted SVV-001 3Cpro substrates. An efficient substrate, L/VP4 (kcat/KM = 1932 ± 183 M(-1s(-1, was further optimized by a P2' N→P substitution yielding L/VP4.1 (kcat/KM = 17446 ± 2203 M(-1s(-1. We also determined essential substrate amino acids by sequential N-terminal deletion and substitution of amino acids found in other picornavirus genera. A peptide corresponding to the L/VP4.1 substrate was selectively cleaved by SVV-001 3Cpro in vitro and was stable in human plasma. These data define an optimized peptide substrate for SVV-001 3Cpro, with direct implications for anti-cancer therapeutic development.

  4. Uji produksi biosurfaktan oleh Pseudomonas sp. pada substrat yang berbeda

    Directory of Open Access Journals (Sweden)

    Fatimah Fatimah

    2012-02-01

    Full Text Available Biosurfactant, microbial metabolite whose properties like surfactant, was suggested to replace chemically synthesized surfactant for take in hand environtmental pollution by petroleum hydrocarbon. This work was done to examine potency of Pseudomonas sp. isolated from Tanjung Perak Harbor to produce biosurfactant. Also, to know the effect of different substrates (glucose + yeast extract, lubricating oil and hexadecane toward biosurfactant production. Pseudomonas sp. grown in mineral synthetic water and biosurfactant production was measured on stationary phase. Biosurfactant production based on emulsification activity and surface tension reduction of supernatant (using Du Nouy tensiometer. Solar, lubricating oil, and hexadecane were used to examine emulsification activity. Results indicated that Pseudomonas sp. have a potency to produce biosurfactant. Surface tension of supernatant decreased up to 20 dyne/cm, when grown on hexadecane substrate. Hexadecane is the best growing substrate for biosurfactant production than others.

  5. Bioelectro-Claus processes using MFC technology: Influence of co-substrate.

    Science.gov (United States)

    Raschitor, A; Soreanu, G; Fernandez-Marchante, C M; Lobato, J; Cañizares, P; Cretescu, I; Rodrigo, M A

    2015-01-01

    This work is focused on the removal of sulphide from wastewater using a two chamber microbial fuel cell, seeded with activated sludge and operated in semi-continuous mode. Two co-substrates were used in order to provide the system for carbon and nutrient source: actual urban wastewater and synthetic wastewater. Results show that sulphide is efficiency depleted (removals over 94%) and that electricity is efficiently produced (maximum power density is 150 mW m(-2)) meanwhile COD is also oxidised (removals higher than 60%). Sulphur and sulphate are obtained as the final products of the oxidation and final speciation depends on the type of co-substrate used. The start-up of the system is very rapid and production of electricity and polarisation curves do not depend on the co-substrate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Natural - synthetic - artificial!

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.......The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life....

  7. Diversity of total and functional microbiome of anammox reactors fed with complex and synthetic nitrogen-rich wastewaters

    DEFF Research Database (Denmark)

    Gülay, Arda; Pellicer i Nàcher, Carles; Mutlu, Ayten Gizem

    diversity than the bioreactors treating synthetic wastewaters inferred from observed OTUs0.03, Chao1, Shannon index and Phylogenetic distance calculations. Differences in total microbial diversity agreed with the ecological theory concerning the positive correlation between substrate complexity...

  8. Top-Emission Organic Light Emitting Diode Fabrication Using High Dissipation Graphite Substrate

    Directory of Open Access Journals (Sweden)

    Yu-Sheng Tsai

    2014-01-01

    Full Text Available This study uses a synthetic graphite fiber as the heat dissipation substrate for top-emission organic light emitting diode (TEOLED to reduce the impact from joule heat. UV glue (YCD91 was spin coated onto the substrate as the insulation layer. The TEOLED structure is (glass; copper; graphite substrate/YCD91 glue/Al/Au/EHI608/TAPC/Alq3/LiF/Al/Ag. The proposed graphite fiber substrate presents better luminous performance compared with glass and copper substrate devices with luminance of 3055 cd/m2 and current efficiency of 6.11 cd/A at 50 mA/cm2. When lighting period of different substrates TEOLED, the substrate case back temperature was observed using different lighting periods. A glass substrate element operating from 5 to 25 seconds at 3000 cd/m2 luminance produced a temperature rate of 1.207°C/sec. Under 4000 cd/m2 luminance the copper and graphite substrate temperature rates were 0.125°C/sec and 0.088°C/sec. Graphite component lifetime was determined to be 1.875 times higher than the glass components and 1.125 times higher than that of copper.

  9. Substrate-Based Noble-Metal Nanomaterials: Shape Engineering and Applications

    Science.gov (United States)

    Hajfathalian, Maryam

    Nanostructures have potential for use in state-of-the-art applications such as sensing, imaging, therapeutics, drug delivery, and electronics. The ability to fabricate and engineer these nanoscale materials is essential for the continued development of such devices. Because the morphological features of nanomaterials play a key role in determining chemical and physical properties, there is great interest in developing and improving methods capable of controlling their size, shape, and composition. While noble nanoparticles have opened the door to promising applications in fields such as imaging, cancer targeting, photothermal treatment, drug delivery, catalysis and sensing, the synthetic processes required to form these nanoparticles on surfaces are not well-developed. Herein is a detailed account on efforts for adapting established solution-based seed-mediated synthetic protocols to structure in a substrate-based platform. These syntheses start by (i) defining heteroepitaxially oriented nanostructured seeds at site-specific locations using lithographic or directed-assembly techniques, and then (ii) transforming the seeds using either a solution or vapor phase processing route to activate kinetically- or thermodynamically-driven growth modes, to arrive at nanocrystals with complex and useful geometries. The first series of investigations highlight synthesis-routes based on heterogeneous nucleation, where templates serve as nucleation sites for metal atoms arriving in the vapor phase. In the first research direction, the vapor-phase heterogeneous nucleation of Ag on Au was carried out at high temperatures, where the Ag vapor was sourced from a sublimating foil onto adjacent Au templates. This process transformed both the composition and morphology of the initial Au Wulff-shaped nanocrystals to a homogeneous AuAg nanoprism. In the second case, the vapor-phase heterogeneous nucleation of Cu atoms on Au nanocrystal templates was investigated by placing a Cu foil next

  10. Mimicking natural cell environments: design, fabrication and application of bio-chemical gradients on polymeric biomaterial substrates

    NARCIS (Netherlands)

    Benetti, Edmondo Maria; Klein Gunnewiek, Michel; van Blitterswijk, Clemens; Vancso, Gyula J.; Moroni, Lorenzo

    2016-01-01

    Gradients of biomolecules on synthetic, solid substrates can efficiently mimic the natural, graded variation of properties of the extracellular matrix (ECM). Such gradients represent accessible study platforms for the understanding of cellular activities, and they also provide functional supports

  11. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. In Silico Synthesis of Synthetic Receptors: A Polymerization Algorithm.

    Science.gov (United States)

    Cowen, Todd; Busato, Mirko; Karim, Kal; Piletsky, Sergey A

    2016-12-01

    Molecularly imprinted polymer (MIP) synthetic receptors have proposed and applied applications in chemical extraction, sensors, assays, catalysis, targeted drug delivery, and direct inhibition of harmful chemicals and pathogens. However, they rely heavily on effective design for success. An algorithm has been written which mimics radical polymerization atomistically, accounting for chemical and spatial discrimination, hybridization, and geometric optimization. Synthetic ephedrine receptors were synthesized in silico to demonstrate the accuracy of the algorithm in reproducing polymers structures at the atomic level. Comparative analysis in the design of a synthetic ephedrine receptor demonstrates that the new method can effectively identify affinity trends and binding site selectivities where commonly used alternative methods cannot. This new method is believed to generate the most realistic models of MIPs thus produced. This suggests that the algorithm could be a powerful new tool in the design and analysis of various polymers, including MIPs, with significant implications in areas of biotechnology, biomimetics, and the materials sciences more generally. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Au coated PS nanopillars as a highly ordered and reproducible SERS substrate

    Science.gov (United States)

    Kim, Yong-Tae; Schilling, Joerg; Schweizer, Stefan L.; Sauer, Guido; Wehrspohn, Ralf B.

    2017-07-01

    Noble metal nanostructures with nanometer gap size provide strong surface-enhanced Raman scattering (SERS) which can be used to detect trace amounts of chemical and biological molecules. Although several approaches were reported to obtain active SERS substrates, it still remains a challenge to fabricate SERS substrates with high sensitivity and reproducibility using low-cost techniques. In this article, we report on the fabrication of Au sputtered PS nanopillars based on a template synthetic method as highly ordered and reproducible SERS substrates. The SERS substrates are fabricated by anodic aluminum oxide (AAO) template-assisted infiltration of polystyrene (PS) resulting in hemispherical structures, and a following Au sputtering process. The optimum gap size between adjacent PS nanopillars and thickness of the Au layers for high SERS sensitivity are investigated. Using the Au sputtered PS nanopillars as an active SERS substrate, the Raman signal of 4-methylbenzenethiol (4-MBT) with a concentration down to 10-9 M is identified with good signal reproducibility, showing great potential as promising tool for SERS-based detection.

  14. Synthetic biology and the prospects for responsible innovation.

    Science.gov (United States)

    Macnaghten, Phil; Owen, Richard; Jackson, Roland

    2016-11-30

    In this article we provide a short review of the debate on responsible innovation and its intersection with synthetic biology, focusing on initiatives we have witnessed and been involved with in the UK. First, we describe the ways in which responsibility in science has been reconfigured institutionally, from an internal focus on the provision of objective and reliable knowledge, to a more external view that embraces the ways in which it has an impact on society. Secondly, we introduce a framework for responsible innovation as a (partial) response to this shift, highlighting its constituent dimensions and the capacities and competencies that are needed to put it into practice. Thirdly, we chart the development of social science research on synthetic biology, addressing its evolution from an 'ethical, legal and social implications' (ELSI) frame to a responsible innovation frame. Fourthly, we review findings from UK social science research with the synthetic biology community setting out challenges for productive collaboration. And finally, we conclude with suggestions on the need for changes in institutional governance. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  15. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  16. High-throughput kinase assays with protein substrates using fluorescent polymer superquenching

    Directory of Open Access Journals (Sweden)

    Weatherford Wendy

    2005-05-01

    Full Text Available Abstract Background High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small synthetic peptides as substrates. However, the use of natural protein substrates has the advantage that potential inhibitors can be detected that affect enzyme activity by binding to a site other than the catalytic site. We have previously reported a non-radioactive and non-antibody-based fluorescence quench assay for detection of phosphorylation or dephosphorylation using synthetic peptide substrates. The aim of this work is to develop an assay for detection of phosphorylation of chemically unmodified proteins based on this polymer superquenching platform. Results Using a modified QTL Lightspeed™ assay, phosphorylation of native protein was quantified by the interaction of the phosphorylated proteins with metal-ion coordinating groups co-located with fluorescent polymer deposited onto microspheres. The binding of phospho-protein inhibits a dye-labeled "tracer" peptide from associating to the phosphate-binding sites present on the fluorescent microspheres. The resulting inhibition of quench generates a "turn on" assay, in which the signal correlates with the phosphorylation of the substrate. The assay was tested on three different proteins: Myelin Basic Protein (MBP, Histone H1 and Phosphorylated heat- and acid-stable protein (PHAS-1. Phosphorylation of the proteins was detected by Protein Kinase Cα (PKCα and by the Interleukin -1 Receptor-associated Kinase 4 (IRAK4. Enzyme inhibition yielded IC50 values that were comparable to those obtained using

  17. High-throughput kinase assays with protein substrates using fluorescent polymer superquenching.

    Science.gov (United States)

    Rininsland, Frauke; Stankewicz, Casey; Weatherford, Wendy; McBranch, Duncan

    2005-05-31

    High-throughput screening is used by the pharmaceutical industry for identifying lead compounds that interact with targets of pharmacological interest. Because of the key role that aberrant regulation of protein phosphorylation plays in diseases such as cancer, diabetes and hypertension, kinases have become one of the main drug targets. With the exception of antibody-based assays, methods to screen for specific kinase activity are generally restricted to the use of small synthetic peptides as substrates. However, the use of natural protein substrates has the advantage that potential inhibitors can be detected that affect enzyme activity by binding to a site other than the catalytic site. We have previously reported a non-radioactive and non-antibody-based fluorescence quench assay for detection of phosphorylation or dephosphorylation using synthetic peptide substrates. The aim of this work is to develop an assay for detection of phosphorylation of chemically unmodified proteins based on this polymer superquenching platform. Using a modified QTL Lightspeed assay, phosphorylation of native protein was quantified by the interaction of the phosphorylated proteins with metal-ion coordinating groups co-located with fluorescent polymer deposited onto microspheres. The binding of phospho-protein inhibits a dye-labeled "tracer" peptide from associating to the phosphate-binding sites present on the fluorescent microspheres. The resulting inhibition of quench generates a "turn on" assay, in which the signal correlates with the phosphorylation of the substrate. The assay was tested on three different proteins: Myelin Basic Protein (MBP), Histone H1 and Phosphorylated heat- and acid-stable protein (PHAS-1). Phosphorylation of the proteins was detected by Protein Kinase Calpha (PKCalpha) and by the Interleukin -1 Receptor-associated Kinase 4 (IRAK4). Enzyme inhibition yielded IC50 values that were comparable to those obtained using peptide substrates. Statistical parameters that

  18. Reuse of Organomineral Substrate Waste from Hydroponic Systems as Fertilizer in Open-Field Production Increases Yields, Flavonoid Glycosides, and Caffeic Acid Derivatives of Red Oak Leaf Lettuce (Lactuca sativa L.) Much More than Synthetic Fertilizer.

    Science.gov (United States)

    Dannehl, Dennis; Becker, Christine; Suhl, Johanna; Josuttis, Melanie; Schmidt, Uwe

    2016-09-28

    Effects of organic waste from a hydroponic system added with minerals (organomineral fertilizer) and synthetic fertilizer on major polyphenols of red oak leaf lettuce using HPLC-DAD-ESI-MS(3) were investigated. Interestingly, contents of the main flavonoid glycosides and caffeic acid derivatives of lettuce treated with organomineral fertilizer were equal to those synthesized without soil additives. This was found although soil nutrient concentrations, including that of nitrogen, were much lower without additives. However, lettuce treated with synthetic fertilizer showed a significant decrease in contents of caffeic acid derivatives and flavonoid glycosides up to 78.3 and 54.2%, respectively. It is assumed that a negative effect of a high yield on polyphenols as described in the growth-differentiation balance hypothesis can be counteracted by (i) a higher concentration of Mg or (ii) optimal physical properties of the soil structure. Finally, the organomineral substrate waste reused as fertilizer and soil improver resulted in the highest yield (+78.7%), a total fertilizer saving of 322 kg ha(-1) and waste reduction in greenhouses.

  19. High-throughput functional screening of steroid substrates with wild-type and chimeric P450 enzymes.

    Science.gov (United States)

    Urban, Philippe; Truan, Gilles; Pompon, Denis

    2014-01-01

    The promiscuity of a collection of enzymes consisting of 31 wild-type and synthetic variants of CYP1A enzymes was evaluated using a series of 14 steroids and 2 steroid-like chemicals, namely, nootkatone, a terpenoid, and mifepristone, a drug. For each enzyme-substrate couple, the initial steady-state velocity of metabolite formation was determined at a substrate saturating concentration. For that, a high-throughput approach was designed involving automatized incubations in 96-well microplate with sixteen 6-point kinetics per microplate and data acquisition using LC/MS system accepting 96-well microplate for injections. The resulting dataset was used for multivariate statistics aimed at sorting out the correlations existing between tested enzyme variants and ability to metabolize steroid substrates. Functional classifications of both CYP1A enzyme variants and steroid substrate structures were obtained allowing the delineation of global structural features for both substrate recognition and regioselectivity of oxidation.

  20. Acute Intoxications Involving Synthetic Psychoactive Substances

    Directory of Open Access Journals (Sweden)

    Sergey A. Vasil'ev

    2018-01-01

    Full Text Available The purpose of this study was to evaluate the effectiveness of a succinic acid derivate, a substrate metabolic agent cytoflavin in patients with acute poisoning with synthetic psychoactive drugs.Materials and methods. A retrospective evaluation of effectiveness of a combined intensive care treatment protocol for 622 patients with acute narcotic poisoning (methadone and synthetic cannabinoids was carried out. All patients were divided into two groups. The main group (112 patients, median age 38.2±12.0 years included patients who, in addition to the basic treatment, received cytoflavin by intravenous drop infusion, 20–40 ml diluted in 400–500 ml of 10% glucose, for 5 days. Patients of the reference group (510 subjects, median age 37.6±14.1 years received treatment according to the «classical scheme». In addition to conventional examination, all patients underwent duplex scanning of cerebral vessels, examination of changes in the cerebral blood circulation and electroencephalogram findings. The severity of somatic disorders was assessed using criteria of the Glasgow coma scale. The severity of the asthenic syndrome was assessed according to the MFI-20 scale.Results. Compared to patients who received a standard therapy, patients of the main group had a significantly more rapid recovery from coma (by 1.5-fold: 23.5±3.1 days, versus 15.1±3.0 days, respectively, P0.05; the duration of psychotic disorders was shorter (by 1.8-fold: 15.5±4.2 hours vs 8.3±2.5 hours., respectively, P0.05, and the intensity of asthenic syndrome (by 2.8-fold: 64.1±3.3 rel. units vs 23.0±4,9 rel. units, respectively, P0.05 was also lower.Conclusion. Inclusion of cytoflavin in a protocol of a complex treatment of patients with synthetic drugs poisoning increased the effectiveness of the therapy. Data demonstrate that inclusion of the drug can be recommended for treatment of acute synthetic narcotic poisoning. 

  1. Strategy revealing phenotypic differences among synthetic oscillator designs.

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    2014-09-19

    Considerable progress has been made in identifying and characterizing the component parts of genetic oscillators, which play central roles in all organisms. Nonlinear interaction among components is sufficiently complex that mathematical models are required to elucidate their elusive integrated behavior. Although natural and synthetic oscillators exhibit common architectures, there are numerous differences that are poorly understood. Utilizing synthetic biology to uncover basic principles of simpler circuits is a way to advance understanding of natural circadian clocks and rhythms. Following this strategy, we address the following questions: What are the implications of different architectures and molecular modes of transcriptional control for the phenotypic repertoire of genetic oscillators? Are there designs that are more realizable or robust? We compare synthetic oscillators involving one of three architectures and various combinations of the two modes of transcriptional control using a methodology that provides three innovations: a rigorous definition of phenotype, a procedure for deconstructing complex systems into qualitatively distinct phenotypes, and a graphical representation for illuminating the relationship between genotype, environment, and the qualitatively distinct phenotypes of a system. These methods provide a global perspective on the behavioral repertoire, facilitate comparisons of alternatives, and assist the rational design of synthetic gene circuitry. In particular, the results of their application here reveal distinctive phenotypes for several designs that have been studied experimentally as well as a best design among the alternatives that has yet to be constructed and tested.

  2. [From synthetic biology to synthetic humankind].

    Science.gov (United States)

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. The population genetics of X-autosome synthetic lethals and steriles.

    Science.gov (United States)

    Lachance, Joseph; Johnson, Norman A; True, John R

    2011-11-01

    Epistatic interactions are widespread, and many of these interactions involve combinations of alleles at different loci that are deleterious when present in the same individual. The average genetic environment of sex-linked genes differs from that of autosomal genes, suggesting that the population genetics of interacting X-linked and autosomal alleles may be complex. Using both analytical theory and computer simulations, we analyzed the evolutionary trajectories and mutation-selection balance conditions for X-autosome synthetic lethals and steriles. Allele frequencies follow a set of fundamental trajectories, and incompatible alleles are able to segregate at much higher frequencies than single-locus expectations. Equilibria exist, and they can involve fixation of either autosomal or X-linked alleles. The exact equilibrium depends on whether synthetic alleles are dominant or recessive and whether fitness effects are seen in males, females, or both sexes. When single-locus fitness effects and synthetic incompatibilities are both present, population dynamics depend on the dominance of alleles and historical contingency (i.e., whether X-linked or autosomal mutations occur first). Recessive synthetic lethality can result in high-frequency X-linked alleles, and dominant synthetic lethality can result in high-frequency autosomal alleles. Many X-autosome incompatibilities in natural populations may be cryptic, appearing to be single-locus effects because one locus is fixed. We also discuss the implications of these findings with respect to standing genetic variation and the origins of Haldane's rule.

  4. Multifunctional activities of KSLW synthetic antimicrobial decapeptide: Implications for wound healing

    Science.gov (United States)

    Williams, Richard Leroy

    Wound healing is a complex process leading to the maintenance of skin integrity. Stress is known to increase susceptibility to bacterial infection, alter proinflammatory cytokine expression, and delay wound closure. Recently, antimicrobial peptides have generated interest due to their prokaryotic selectivity, decreased microbial resistance and multifunctional roles in wound healing, including fibroblast stimulation, keratinocyte migration and leukocyte migration. The objective of this dissertation project was to evaluate the effect of a synthetic antimicrobial decapeptide (KSLW) on bacterial clearance inflammation, and wound closure during stress-impaired healing. SKH-1 mice were randomly assigned to either control or restraint-stressed (RST) groups. Punch biopsy wounds (3.5 mm in diameter) were created bilaterally on the dorsal skin. Wounds were injected with 50 microL of empty carriers or KSLW prepared in Pluronic-F68, phospholipid micelles, or saline. Bacterial assays of harvested wounds were conducted on BHI agar. Wound closure was determined by photoplanimetry. Cytokine and growth factor mRNA expression was assessed with real-time RT-PCR. Human neutrophil migration assays and checkerboard analyses were performed using Transweli plates, and counting on hemacytometer. Oxidative burst activity was measured by spectrophotometric analysis of 2,7-dichlorofluorescein oxidation. KSLW-treatment resulted in significant reductions in bacterial load among RST mice, with no difference from control after 24h. The effect was sustained 5 days post-wounding, in RST mice treated with KSLW-F68. Temporal analysis of gene induction revealed reversals of stress-induced altered expression of growth factors, proinflammatory cytokines, and chemokines essential for favorable wound healing, at various time points. KSLW-treatment in RST mice demonstrated faster wound closure throughout the stress period. KSLW, at micromolar concentrations, demonstrated a significant effect on neutrophil

  5. Enhanced Enzymatic Production of Cephalexin at High Substrate Concentration with in situ Product Removal by Complexation

    Directory of Open Access Journals (Sweden)

    Dengchao Li

    2008-01-01

    Full Text Available Cephalexin (CEX was synthesized with 7-amino-3-deacetoxycephalosporanic acid (7-ADCA and D(–-phenylglycine methyl ester (PGME using immobilized penicillin G acylase from Escherichia coli. It was found that substrate concentration and in situ product could remarkably influence the ratio of synthesis to hydrolysis (S/H and the efficiency of CEX synthesis. The optimal ratio of enzyme to substrate was 65 IU/mM 7-ADCA. High substrate concentration improved the 7-ADCA conversion from 61 to 81 % in the process without in situ product removal (ISPR, while in the synthetic process with ISPR, high substrate concentration increased the 7-ADCA conversion from 88 to 98 %. CEX was easily separated from CEX/β-naphthol complex and its purity and overall yield were 99 and 70 %, respectively.

  6. High-Throughput Functional Screening of Steroid Substrates with Wild-Type and Chimeric P450 Enzymes

    Directory of Open Access Journals (Sweden)

    Philippe Urban

    2014-01-01

    Full Text Available The promiscuity of a collection of enzymes consisting of 31 wild-type and synthetic variants of CYP1A enzymes was evaluated using a series of 14 steroids and 2 steroid-like chemicals, namely, nootkatone, a terpenoid, and mifepristone, a drug. For each enzyme-substrate couple, the initial steady-state velocity of metabolite formation was determined at a substrate saturating concentration. For that, a high-throughput approach was designed involving automatized incubations in 96-well microplate with sixteen 6-point kinetics per microplate and data acquisition using LC/MS system accepting 96-well microplate for injections. The resulting dataset was used for multivariate statistics aimed at sorting out the correlations existing between tested enzyme variants and ability to metabolize steroid substrates. Functional classifications of both CYP1A enzyme variants and steroid substrate structures were obtained allowing the delineation of global structural features for both substrate recognition and regioselectivity of oxidation.

  7. Characterization of heparan sulfate N-deacetylase/N-sulfotransferase isoform 4 using synthetic oligosaccharide substrates.

    Science.gov (United States)

    Li, Yi-Jun; Yin, Feng-Xin; Zhang, Xin-Ke; Yu, Jie; Zheng, Shuang; Song, Xin-Lei; Wang, Feng-Shan; Sheng, Ju-Zheng

    2018-03-01

    The final structure of heparan sulfate chains is strictly regulated in vivo, though the biosynthesis is not guided by a template process. N-deacetylase/N-sulfotransferase (NDST) is the first modification enzyme in the HS biosynthetic pathway. The N-sulfo groups introduced by NDST are reportedly involved in determination of the susceptibility to subsequent processes catalyzed by C 5 -epimerse and 3-O-sulfotransferases. Understanding the substrate specificities of the four human NDST isoforms has become central to uncovering the regulatory mechanism of HS biosynthesis. Highly-purified recombinant NDST-4 (rNDST-4) and a selective library of structurally-defined oligosaccharides were employed to determine the substrate specificity of rNDST-4. Full-length rNDST-4 lacks obvious N-deacetylase activity, and displays only N-sulfotransferase activity. Unlike NDST-1, NDST-4 did not show directional N-sulfotransferase activity while the N-deacetylase domain was inactive. Individual NDST-4 could not effectively assume the key role in the distribution of N-S domains and N-Ac domains in HS biosynthesis in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Friction and shear strength at the nanowire-substrate interfaces.

    Science.gov (United States)

    Zhu, Yong; Qin, Qingquan; Gu, Yi; Wang, Zhonglin

    2009-11-28

    The friction and shear strength of nanowire (NW)-substrate interfaces critically influences the electrical/mechanical performance and life time of NW-based nanodevices. Yet, very few reports on this subject are available in the literature because of the experimental challenges involved and, more specifically no studies have been reported to investigate the configuration of individual NW tip in contact with a substrate. In this letter, using a new experimental method, we report the friction measurement between a NW tip and a substrate for the first time. The measurement was based on NW buckling in situ inside a scanning electron microscope. The coefficients of friction between silver NW and gold substrate and between ZnO NW and gold substrate were found to be 0.09-0.12 and 0.10-0.15, respectively. The adhesion between a NW and the substrate modified the true contact area, which affected the interfacial shear strength. Continuum mechanics calculation found that interfacial shear strengths between silver NW and gold substrate and between ZnO NW and gold substrate were 134-139 MPa and 78.9-95.3 MPa, respectively. This method can be applied to measure friction parameters of other NW-substrate systems. Our results on interfacial friction and shear strength could have implication on the AFM three-point bending tests used for nanomechanical characterisation.

  9. Friction and Shear Strength at the Nanowire–Substrate Interfaces

    Directory of Open Access Journals (Sweden)

    Gu Yi

    2009-01-01

    Full Text Available Abstract The friction and shear strength of nanowire (NW–substrate interfaces critically influences the electrical/mechanical performance and life time of NW-based nanodevices. Yet, very few reports on this subject are available in the literature because of the experimental challenges involved and, more specifically no studies have been reported to investigate the configuration of individual NW tip in contact with a substrate. In this letter, using a new experimental method, we report the friction measurement between a NW tip and a substrate for the first time. The measurement was based on NW buckling in situ inside a scanning electron microscope. The coefficients of friction between silver NW and gold substrate and between ZnO NW and gold substrate were found to be 0.09–0.12 and 0.10–0.15, respectively. The adhesion between a NW and the substrate modified the true contact area, which affected the interfacial shear strength. Continuum mechanics calculation found that interfacial shear strengths between silver NW and gold substrate and between ZnO NW and gold substrate were 134–139 MPa and 78.9–95.3 MPa, respectively. This method can be applied to measure friction parameters of other NW–substrate systems. Our results on interfacial friction and shear strength could have implication on the AFM three-point bending tests used for nanomechanical characterisation.

  10. Myocardial infarction associated with use of the synthetic cannabinoid K2.

    Science.gov (United States)

    Mir, Arshid; Obafemi, Adebisi; Young, Amy; Kane, Colin

    2011-12-01

    Designer drugs have been problematic over the years. Products such as K2 and Spice, which contain synthetic cannabinoids, are marketed as incense and are widely available on the Internet and at various specialty shops. The effects are reported as cannabis-like after smoking them. In addition, use of these synthetic cannabinoids will not appear on a routine urine toxicology screen. Recently, K2 became a popular alternative to marijuana among youths. Health implications of these designer drugs are not completely understood. Little has been reported about the harmful effects of K2. We report here the first (to our knowledge) cases of myocardial infarction (MI) after smoking K2. Three patients presented separately to the emergency department complaining of chest pain within days after the use of K2. Acute MI was diagnosed in each case on the basis of electrocardiogram changes and elevated troponin levels. Coronary angiography was performed, and the results were normal for the first 2 patients. The incidence of ST-elevation MI is low among teenagers, and association with drug use should be suspected. Public education and awareness need to be heightened about the possible health implications of K2.

  11. Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development.

    Science.gov (United States)

    Stribny, Jiri; Romagnoli, Gabriele; Pérez-Torrado, Roberto; Daran, Jean-Marc; Querol, Amparo

    2016-03-12

    The yeast amino acid catabolism plays an important role in flavour generation since higher alcohols and acetate esters, amino acid catabolism end products, are key components of overall flavour and aroma in fermented products. Comparative studies have shown that other Saccharomyces species, such as S. kudriavzevii, differ during the production of aroma-active higher alcohols and their esters compared to S. cerevisiae. In this study, we performed a comparative analysis of the enzymes involved in the amino acid catabolism of S. kudriavzevii with their potential to improve the flavour production capacity of S. cerevisiae. In silico screening, based on the severity of amino acid substitutions evaluated by Grantham matrix, revealed four candidates, of which S. kudriavzevii Aro10p (SkAro10p) had the highest score. The analysis of higher alcohols and esters produced by S. cerevisiae then revealed enhanced formation of isobutanol, isoamyl alcohol and their esters when endogenous ARO10 was replaced with ARO10 from S. kudriavzevii. Also, significant differences in the aroma profile were found in fermentations of synthetic wine must. Substrate specificities of SkAro10p were compared with those of S. cerevisiae Aro10p (ScAro10p) by their expression in a 2-keto acid decarboxylase-null S. cerevisiae strain. Unlike the cell extracts with expressed ScAro10p which showed greater activity for phenylpyruvate, which suggests this phenylalanine-derivative to be the preferred substrate, the decarboxylation activities measured in the cell extracts with SkAro10p ranged with all the tested substrates at the same level. The activities of SkAro10p towards substrates (except phenylpyruvate) were higher than of those for ScAro10p. The results indicate that the amino acid variations observed between the orthologues decarboxylases encoded by SkARO10 and ScARO10 could be the reason for the distinct enzyme properties, which possibly lead to the enhanced production of several flavour compounds. The

  12. Stepwise O-Atom Transfer in Heme-Based Tryptophan Dioxygenase: Role of Substrate Ammonium in Epoxide Ring Opening.

    Science.gov (United States)

    Shin, Inchul; Ambler, Brett R; Wherritt, Daniel; Griffith, Wendell P; Maldonado, Amanda C; Altman, Ryan A; Liu, Aimin

    2018-03-28

    Heme-based tryptophan dioxygenases are established immunosuppressive metalloproteins with significant biomedical interest. Here, we synthesized two mechanistic probes to specifically test if the α-amino group of the substrate directly participates in a critical step of the O atom transfer during catalysis in human tryptophan 2,3-dioxygenase (TDO). Substitution of the nitrogen atom of the substrate to a carbon (probe 1) or oxygen (probe 2) slowed the catalytic step following the first O atom transfer such that transferring the second O atom becomes less likely to occur, although the dioxygenated products were observed with both probes. A monooxygenated product was also produced from probe 2 in a significant quantity. Analysis of this new product by HPLC coupled UV-vis spectroscopy, high-resolution mass spectrometry, 1 H NMR, 13 C NMR, HSQC, HMBC, and infrared (IR) spectroscopies concluded that this monooxygenated product is a furoindoline compound derived from an unstable epoxyindole intermediate. These results prove that small molecules can manipulate the stepwise O atom transfer reaction of TDO and provide a showcase for a tunable mechanism by synthetic compounds. The product analysis results corroborate the presence of a substrate-based epoxyindole intermediate during catalysis and provide the first substantial experimental evidence for the involvement of the substrate α-amino group in the epoxide ring-opening step during catalysis. This combined synthetic, biochemical, and biophysical study establishes the catalytic role of the α-amino group of the substrate during the O atom transfer reactions and thus represents a substantial advance to the mechanistic comprehension of the heme-based tryptophan dioxygenases.

  13. The Influence of Safety, Efficacy, and Medical Condition Severity on Natural versus Synthetic Drug Preference.

    Science.gov (United States)

    Meier, Brian P; Lappas, Courtney M

    2016-11-01

    Research indicates that there is a preference for natural v. synthetic products, but the influence of this preference on drug choice in the medical domain is largely unknown. We present 5 studies in which participants were asked to consider a hypothetical situation in which they had a medical issue requiring pharmacological therapy. Participants ( N = 1223) were asked to select a natural, plant-derived, or synthetic drug. In studies 1a and 1b, approximately 79% of participants selected the natural v. synthetic drug, even though the safety and efficacy of the drugs were identical. Furthermore, participants rated the natural drug as safer than the synthetic drug, and as that difference increased, the odds of choosing the natural over synthetic drug increased. In studies 2 and 3, approximately 20% of participants selected the natural drug even when they were informed that it was less safe (study 2) or less effective (study 3) than the synthetic drug. Finally, in study 4, approximately 65% of participants chose a natural over synthetic drug regardless of the severity of a specific medical condition (mild v. severe hypertension), and this choice was predicted by perceived safety and efficacy differences. Overall, these data indicate that there is a bias for natural over synthetic drugs. This bias could have implications for drug choice and usage. © The Author(s) 2015.

  14. UV detectors based on epitaxial diamond films grown on single-crystal diamond substrates by vapor-phase synthesis

    International Nuclear Information System (INIS)

    Sharonov, G.V.; Petrov, S.A.; Bol'shakov, A.P.; Ral'chenko, V.G.; Kazyuchits, N.M.

    2010-01-01

    The prospects for use of CVD-technology for epitaxial growth of single-crystal diamond films of instrumental quality in UHF plasma for the production of optoelectronic devices are discussed. A technology for processing diamond single crystals that provides a perfect surface crystal structure with roughness less than 0,5 nm was developed. It was demonstrated that selective UV detectors based on synthetic single-crystal diamond substrates coated with single-crystal films can be produced. A criterion for selecting clean and structurally perfect single crystals of synthetic diamond was developed for the epitaxial growth technology. (authors)

  15. Surfactant-assisted synthesis of Ag nanostructures and their self-assembled films on copper and aluminum substrate

    International Nuclear Information System (INIS)

    Zhuo Yujiang; Sun Wendong; Dong Lihong; Chu Ying

    2011-01-01

    In this paper, silver nanostructures with controlled morphologies, such as plates, rods, belts, sheets and their self-assembled films have been prepared on copper and aluminum substrates by a surfactant-assisted colloidal chemical method. The X-ray powder diffraction (XRD) and the selected area electron diffraction (SAED) patterns indicated that the Ag nanostructures grew on the substrates with cubic symmetry and single-crystalline in nature. An oriented attachment with surfactant-assisted mechanism and a cooperative effect of surfactant and chloride ion on the morphology of Ag nanostructures were investigated systematically and synthetically.

  16. Microbial conversion of synthetic and food waste-derived volatile fatty acids to lipids.

    Science.gov (United States)

    Vajpeyi, Shashwat; Chandran, Kartik

    2015-01-01

    Lipid accumulation in the oleaginous yeast Cryptococcus albidus was evaluated using mixtures of volatile fatty acids (VFA) as substrates. In general, batch growth under nitrogen limitation led to higher lipid accumulation using synthetic VFA. During batch growth, an initial COD:N ratio of 25:1mg COD:mg N led to maximum intracellular lipid accumulation (28.3 ± 0.7% g/g dry cell weight), which is the maximum reported for C. albidus using VFA as the carbon source, without compromising growth kinetics. At this feed COD:N ratio, chemostat cultures fed with synthetic VFA yielded statistically similar intracellular lipid content as batch cultures (29.9 ± 1.9%, g/g). However, batch cultures fed with VFA produced from the fermentation of food waste, yielded a lower lipid content (14.9 ± 0.1%, g/g). The lipid composition obtained with synthetic and food-waste-derived VFA was similar to commercial biodiesel feedstock. We therefore demonstrate the feasibility of linking biochemical waste treatment and biofuel production using VFA as key intermediates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Substrate channel in nitrogenase revealed by a molecular dynamics approach.

    Science.gov (United States)

    Smith, Dayle; Danyal, Karamatullah; Raugei, Simone; Seefeldt, Lance C

    2014-04-15

    Mo-dependent nitrogenase catalyzes the biological reduction of N2 to two NH3 molecules at FeMo-cofactor buried deep inside the MoFe protein. Access of substrates, such as N2, to the active site is likely restricted by the surrounding protein, requiring substrate channels that lead from the surface to the active site. Earlier studies on crystallographic structures of the MoFe protein have suggested three putative substrate channels. Here, we have utilized submicrosecond atomistic molecular dynamics simulations to allow the nitrogenase MoFe protein to explore its conformational space in an aqueous solution at physiological ionic strength, revealing a putative substrate channel. The viability of this observed channel was tested by examining the free energy of passage of N2 from the surface through the channel to FeMo-cofactor, resulting in the discovery of a very low energy barrier. These studies point to a viable substrate channel in nitrogenase that appears during thermal motions of the protein in an aqueous environment and that approaches a face of FeMo-cofactor earlier implicated in substrate binding.

  18. Compartmentalization and Transport in Synthetic Vesicles

    Directory of Open Access Journals (Sweden)

    Christine eSchmitt

    2016-02-01

    Full Text Available Nano-scale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, like permeability, stability or chemical reactivity.In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multi-compartmented vesosomes as compartmentalized nano-scale bioreactors. In the bottom-up development of protocells from vesicular nano-reactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.

  19. Synthetic prions and other human neurodegenerative proteinopathies.

    Science.gov (United States)

    Le, Nhat Tran Thanh; Narkiewicz, Joanna; Aulić, Suzana; Salzano, Giulia; Tran, Hoa Thanh; Scaini, Denis; Moda, Fabio; Giachin, Gabriele; Legname, Giuseppe

    2015-09-02

    Transmissible spongiform encephalopathies (TSE) are a heterogeneous group of neurodegenerative disorders. The common feature of these diseases is the pathological conversion of the normal cellular prion protein (PrP(C)) into a β-structure-rich conformer-termed PrP(Sc). The latter can induce a self-perpetuating process leading to amplification and spreading of pathological protein assemblies. Much evidence suggests that PrP(Sc) itself is able to recruit and misfold PrP(C) into the pathological conformation. Recent data have shown that recombinant PrP(C) can be misfolded in vitro and the resulting synthetic conformers are able to induce the conversion of PrP(C) into PrP(Sc)in vivo. In this review we describe the state-of-the-art of the body of literature in this field. In addition, we describe a cell-based assay to test synthetic prions in cells, providing further evidence that synthetic amyloids are able to template conversion of PrP into prion inclusions. Studying prions might help to understand the pathological mechanisms governing other neurodegenerative diseases. Aggregation and deposition of misfolded proteins is a common feature of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other disorders. Although the proteins implicated in each of these diseases differ, they share a common prion mechanism. Recombinant proteins are able to aggregate in vitro into β-rich amyloid fibrils, sharing some features of the aggregates found in the brain. Several studies have reported that intracerebral inoculation of synthetic aggregates lead to unique pathology, which spread progressively to distal brain regions and reduced survival time in animals. Here, we review the prion-like features of different proteins involved in neurodegenerative disorders, such as α-synuclein, superoxide dismutase-1, amyloid-β and tau. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Synthetic protease substrate n-benzoyl-L-argininyl-p-nitroanilide activates specific binding of [3H]estradiol to a protein in rat pancreas: relationship of structure to activity

    International Nuclear Information System (INIS)

    Grossman, A.

    1984-01-01

    N-benzoyl-L-argininyl-p-nitroanilide (BAN), a synthetic substrate for trypsin-like proteolytic enzymes, is a potent activator of [ 3 H]estradiol-binding to a protein present in rat pancreas. When partially purified, this protein is almost devoid of [ 3 H]estradiol-binding activity in the absence of an endogenous accessory factor. BAN can mimic the natural coligand in this steroid binding reaction. The effect of BAN is specific since a number of derivatives of this substance are inactive or may even inhibit steroid binding. It is unlikely that BAN exerts this stimulatory action indirectly, possibly by preventing proteolytic inactivation of the [ 3 H]estradiol-binding protein, since preincubation of the protein in the absence of BAN resulted neither in reduced rate, nor extent, of steroid binding following BAN addition. Also, a number of protease inhibitors had no effect on the binding reaction. Of those inhibitors tested, only antipain significantly enhanced binding of [ 3 H]estradiol, but only about 20 percent as effectively as BAN. 13 references, 1 figure, 2 tables

  1. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  2. Solar cells with low cost substrates, process of making same and article of manufacture

    Science.gov (United States)

    Mitchell, K.W.

    A solar cell is disclosed having a substrate and an intermediate recrystallized film and a semiconductor material capable of absorbing light with the substrate being selected from one of a synthetic organic resin, graphite, glass and a crystalline material having a grain size less than about 1 micron/sup 2/. The intermediate recrystallized film has a grain size in the range of from about 10 microns/sup 2/ to about 10,000 microns/sup 2/ and a lattice mismatch with the semiconductor material not greater than about 4%. The semiconductor material has a grain size not less than about 10 microns/sup 2/. An anti-reflective layer and electrical contact means are provided. Also disclosed is a subcombination of substrate, intermediate recrystallized film and semiconductor material. Also, methods of formulating the solar cell and subcombination are disclosed.

  3. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates

    DEFF Research Database (Denmark)

    Hoffman, Nolan J; Parker, Benjamin L; Chaudhuri, Rima

    2015-01-01

    -intensity exercise bout, revealing 1,004 unique exercise-regulated phosphosites on 562 proteins. These included substrates of known exercise-regulated kinases (AMPK, PKA, CaMK, MAPK, mTOR), yet the majority of kinases and substrate phosphosites have not previously been implicated in exercise signaling. Given...

  4. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth.

    Science.gov (United States)

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark

    2014-06-01

    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Chemoselective, Substrate-directed Fluorination of Functionalized Cyclopentane β-Amino Acids.

    Science.gov (United States)

    Kiss, Loránd; Nonn, Melinda; Sillanpää, Reijo; Haukka, Matti; Fustero, Santos; Fülöp, Ferenc

    2016-12-06

    This work describes a substrate-directed fluorination of some highly functionalized cyclopentane derivatives. The cyclic products incorporating CH 2 F or CHF 2 moieties in their structure have been synthesized from diexo- or diendo-norbornene β-amino acids following a stereocontrolled strategy. The synthetic study was based on an oxidative transformation of the ring carbon-carbon double bond of the norbornene β-amino acids, followed by transformation of the resulted "all cis" and "trans" diformyl intermediates by fluorination with "chemodifferentiation". © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Enhancing Water Evaporation with Floating Synthetic Leaves

    Science.gov (United States)

    Boreyko, Jonathan; Vieitez, Joshua; Berrier, Austin; Roseveare, Matthew; Shi, Weiwei

    2017-11-01

    When a wetted nanoporous medium is exposed to a subsaturated ambient environment, the water menisci assume a concave curvature to achieve a negative pressure. This negative water pressure is required to balance the mismatch in water activity across the water-air interface to achieve local equilibrium. Here, we show that the diffusive evaporation rate of water can be greatly modulated by floating a nanoporous synthetic leaf at the water's free interface. For high ambient humidities, adding the leaf serves to enhance the evaporation rate, presumably by virtue of the menisci enhancing the effective liquid-vapor surface area. For low humidities, the menisci cannot achieve a local equilibrium and retreat partway into the leaf, which increases the local humidity directly above the menisci. In light of these two effects, we find the surprising result that leaves exposed to an ambient humidity of 90 percent can evaporate water at the same rate as leaves exposed to only 50 percent humidity. These findings have implications for using synthetic trees to enhance steam generation or water harvesting. This work was supported by the National Science Foundation (CBET-1653631).

  7. Electrochemical behaviour of titanium coated stainless steel by r.f. sputtering in synthetic sweat solutions for electrode applications

    International Nuclear Information System (INIS)

    Fonseca, C.; Vaz, F.; Barbosa, M.A.

    2004-01-01

    The r.f. sputtering technique was used to deposit titanium thin films on stainless steel substrates, aiming at the application of the coated samples as skin contact materials for 'dry' active electrodes. In this work the electrochemical behaviour of the coated samples was investigated in synthetic sweat solutions and their performance was compared with that of uncoated stainless steel and bulk titanium. The characterisation of the samples was carried out by electrochemical techniques and scanning electron microscopy. The coated samples displayed corrosion resistance values in synthetic sweat solutions much higher than stainless steel samples and of the same order of the values measured for bulk titanium in the same conditions

  8. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    OpenAIRE

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with...

  9. Quartz substrate infrared photonic crystal

    Science.gov (United States)

    Ghadiri, Khosrow; Rejeb, Jalel; Vitchev, Vladimir N.

    2003-01-01

    This paper presents the fabrication of a planar photonic crystal (p2c) made of a square array of dielectric rods embedded in air, operating in the infrared spectrum. A quartz substrate is employed instead of the commonly used silicon or column III-V substrate. Our square structure has a normalized cylinder radius-to-pitch ratio of r/a = 0.248 and dielectric material contrast ɛr of 4.5. We choose a Z-cut synthetic quartz for its cut (geometry), and etching properties. Then a particular Z-axis etching process is employed in order to ensure the sharp-edged verticality of the rods and fast etching speed. We also present the computer simulations that allowed the establishment of the photonic band gaps (PBG) of our photonic crystal, as well as the actual measurements. An experimental measurement have been carried out and compared with different simulations. It was found that experimental results are in good agreement with different simulation results. Finally, a frequency selective device for optical communication based on the introduction of impurity sites in the photonic crystal is presented. With our proposed structure Optical System on a Chip (OsoC) with micro-cavity based active devices such as lasers, diodes, modulators, couplers, frequency selective emitters, add-drop filters, detectors, mux/demuxes and polarizers connected by passive waveguide links can be realized.

  10. Optimizing Polymer Lab-on-Chip Platforms for Ultrasonic Manipulation: Influence of the Substrate

    Directory of Open Access Journals (Sweden)

    Itziar González

    2015-05-01

    Full Text Available The choice of substrate material in a chip that combines ultrasound with microfluidics for handling biological and synthetic microparticles can have a profound effect on the performance of the device. This is due to the high surface-to-volume ratio that exists within such small structures and acquires particular relevance in polymer-based resonators with 3D standing waves. This paper presents three chips developed to perform particle flow-through separation by ultrasound based on a polymeric SU-8 layer containing channelization over three different substrates: Polymethyl methacrylate (PMMA; Pyrex; and a cracked PMMA composite-like structure. Through direct observations of polystyrene microbeads inside the channel, the three checked chips exhibit their potential as disposable continuous concentration devices with different spatial pressure patterns at frequencies of resonance close to 1 Mhz. Chips with Pyrex and cracked PMMA substrates show restrictions on the number of pressure nodes established in the channel associated with the inhibition of 3D modes in the solid structure. The glass-substrate chip presents some advantages associated with lower energy requirements to collect particles. According to the results, the use of polymer-based chips with rigid substrates can be advantageous for applications that require short treatment times (clinical tests handling human samples and low-cost fabrication.

  11. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils

    Directory of Open Access Journals (Sweden)

    Anand Kumar Tripathi

    2015-03-01

    Full Text Available Engine oils undergo oxidative degradation and wears out during service. Hence it is important to characterize ageing of engine oils at different simulated conditions to evaluate the performance of existing oils and also design new formulations. This work focuses on characterizing the thermo-oxidative degradation of synthetic and semi-synthetic engine oils aged at 120, 149 and 200 °C. Apparent activation energy of decomposition of aged oils evaluated using the isoconversional Kissinger-Akahira-Sunose technique was used as a thermal stability marker. The temporal variation of stability at different ageing temperatures was corroborated with kinematic viscosity, oxidation, sulfation and nitration indices, total base number, antiwear additive content and molecular structure of the organic species present in the oils. At the lowest temperature employed, synthetic oil underwent higher rate of oxidation, while semi-synthetic oil was stable for longer time periods. At higher temperatures, the initial rate of change of average apparent activation energy of synthetic oil correlated well with a similar variation in oxidation number. A mixture of long chain linear, branched, and cyclic hydrocarbons were observed when semi-synthetic oil was degraded at higher temperatures.

  12. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    Science.gov (United States)

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  13. Biomimetic poly(amidoamine hydrogels as synthetic materials for cell culture

    Directory of Open Access Journals (Sweden)

    Lenardi Cristina

    2008-11-01

    Full Text Available Abstract Background Poly(amidoamines (PAAs are synthetic polymers endowed with many biologically interesting properties, being highly biocompatible, non toxic and biodegradable. Hydrogels based on PAAs can be easily modified during the synthesis by the introduction of functional co-monomers. Aim of this work is the development and testing of novel amphoteric nanosized poly(amidoamine hydrogel film incorporating 4-aminobutylguanidine (agmatine moieties to create RGD-mimicking repeating units for promoting cell adhesion. Results A systematic comparative study of the response of an epithelial cell line was performed on hydrogels with agmatine and on non-functionalized amphoteric poly(amidoamine hydrogels and tissue culture plastic substrates. The cell adhesion on the agmatine containing substrates was comparable to that on plastic substrates and significantly enhanced with respect to the non-functionalized controls. Interestingly, spreading and proliferation on the functionalized supports are slower than on plastic exhibiting the possibility of an easier control of the cell growth kinetics. In order to favor the handling of the samples, a procedure for the production of bi-layered constructs was also developed by means the deposition via spin coating of a thin layer of hydrogel on a pre-treated cover slip. Conclusion The obtained results reveal that PAAs hydrogels can be profitably functionalized and, in general, undergo physical and chemical modifications to meet specific requirements. In particular the incorporation of agmatine warrants good potential in the field of cell culturing and the development of supported functionalized hydrogels on cover glass are very promising substrates for applications in cell screening devices.

  14. Biochemical Characterisation of Phage Pseudomurein Endoisopeptidases PeiW and PeiP Using Synthetic Peptides

    OpenAIRE

    Schofield, Linley R.; Beattie, Amy K.; Tootill, Catherine M.; Dey, Debjit; Ronimus, Ron S.

    2015-01-01

    Pseudomurein endoisopeptidases cause lysis of the cell walls of methanogens by cleaving the isopeptide bond Ala-ε-Lys in the peptide chain of pseudomurein. PeiW and PeiP are two thermostable pseudomurein endoisopeptidases encoded by phage ΨM100 of Methanothermobacter wolfei and phages ΨM1 and ΨM2 of Methanothermobacter marburgensis, respectively. A continuous assay using synthetic peptide substrates was developed and used in the biochemical characterisation of recombinant PeiW and PeiP. The a...

  15. Rapid in situ detection of street samples of drugs of abuse on textile substrates using microRaman spectroscopy

    Science.gov (United States)

    Ali, Esam M. A.; Edwards, Howell G. M.; Scowen, Ian J.

    2011-10-01

    Trace amounts of street samples of cocaine hydrochloride and N-methyl-3,4-methylenedioxy-amphetamine (MDMA) on natural and synthetic textiles were successfully detected in situ using confocal Raman microscopy. The presence of some excipient bands in the spectra of the drugs did not prevent the unambiguous identification of the drugs. Raman spectra of the drugs were readily obtained without significant interference from the fibre substrates. Interfering bands arising from the fibre natural or synthetic polymer structure and/or dye molecules did not overlap with the characteristic Raman bands of the drugs. If needed, interfering bands could be successfully removed by spectral subtraction. Also, Raman spectra could be acquired from drug particles trapped between the fibres of highly fluorescent textile specimens. The total acquisition time of the spectra of the drug particles was 90 s accomplished non-destructively and without detachment from their substrates. Sample preparation was not required and spectra of the drugs could be obtained non-invasively preserving the integrity of the evidential material for further analysis.

  16. Proteolysis inside the membrane is a rate-governed reaction not driven by substrate affinity.

    Science.gov (United States)

    Dickey, Seth W; Baker, Rosanna P; Cho, Sangwoo; Urban, Siniša

    2013-12-05

    Enzymatic cleavage of transmembrane anchors to release proteins from the membrane controls diverse signaling pathways and is implicated in more than a dozen diseases. How catalysis works within the viscous, water-excluding, two-dimensional membrane is unknown. We developed an inducible reconstitution system to interrogate rhomboid proteolysis quantitatively within the membrane in real time. Remarkably, rhomboid proteases displayed no physiological affinity for substrates (K(d) ~190 μM/0.1 mol%). Instead, ~10,000-fold differences in proteolytic efficiency with substrate mutants and diverse rhomboid proteases were reflected in k(cat) values alone. Analysis of gate-open mutant and solvent isotope effects revealed that substrate gating, not hydrolysis, is rate limiting. Ultimately, a single proteolytic event within the membrane normally takes minutes. Rhomboid intramembrane proteolysis is thus a slow, kinetically controlled reaction not driven by transmembrane protein-protein affinity. These properties are unlike those of other studied proteases or membrane proteins but are strikingly reminiscent of one subset of DNA-repair enzymes, raising important mechanistic and drug-design implications. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Evaluating and modeling biogas production from municipal fat, oil, and grease and synthetic kitchen waste in anaerobic co-digestions.

    Science.gov (United States)

    Li, Chenxi; Champagne, Pascale; Anderson, Bruce C

    2011-10-01

    The feasibility of using synthetic kitchen waste (KW) and fat, oil, and grease (FOG) as co-substrates in the anaerobic digestion of waste activated sludge (WAS) was investigated using two series of biochemical methane potential (BMP) tests. Ranges of ideal substrate to inoculum (S/I) ratio were determined for the FOG (0.25-0.75) and KW (0.80-1.26) as single substrates in the first experiment. The second experiment, which estimated the methane production performances of FOG and KW as co-substrates for WAS co-digestion, was conducted based on the optimal parameters selected from the results of the first experiment. Results indicated that co-digestions with FOG and KW enhanced methane production from 117±2.02 mL/gTVS (with only WAS) to 418±13.7 mL/gTVS and 324±4.11 mL/gTVS, respectively. FOG exhibited more biogas production than KW as co-substrate. Non-linear regression results showed that co-substrate addition shortened the lag phases of organic biodegradation from 81.8 (with only WAS) to 28.3 h with FOG and 3.90 h with KW. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Synthetic environments

    Science.gov (United States)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  19. The Effect of Substrate Elasticity and Actomyosin Contractility on Different Forms of Endocytosis

    Science.gov (United States)

    Missirlis, Dimitris

    2014-01-01

    Substrate mechanical properties have emerged as potent determinants of cell functions and fate. We here tested the hypothesis that different forms of endocytosis are regulated by the elasticity of the synthetic hydrogels cells are cultured on. Towards this objective, we quantified cell-associated fluorescence of the established endocytosis markers transferrin (Tf) and cholera toxin subunit B (CTb) using a flow-cytometry based protocol, and imaged marker internalization using microscopy techniques. Our results demonstrated that clathrin-mediated endocytosis of Tf following a 10-minute incubation with a fibroblast cell line was lower on the softer substrates studied (5 kPa) compared to those with elasticities of 40 and 85 kPa. This effect was cancelled after 1-hour incubation revealing that intracellular accumulation of Tf at this time point did not depend on substrate elasticity. Lipid-raft mediated endocytosis of CTb, on the other hand, was not affected by substrate elasticity in the studied range of time and substrate elasticity. The use of pharmacologic contractility inhibitors revealed inhibition of endocytosis for both Tf and CTb after a 10-minute incubation and a dissimilar effect after 1 hour depending on the inhibitor type. Further, the internalization of fluorescent NPs, used as model drug delivery systems, showed a dependence on substrate elasticity, while transfection efficiency was unaffected by it. Finally, an independence on substrate elasticity of Tf and CTb association with HeLa cells indicated that there are cell-type differences in this respect. Overall, our results suggest that clathrin-mediated but not lipid-raft mediated endocytosis is potentially influenced by substrate mechanics at the cellular level, while intracellular trafficking and accumulation show a more complex dependence. Our findings are discussed in the context of previous work on how substrate mechanics affect the fundamental process of endocytosis and highlight important

  20. Secretomic survey of Trichoderma harzianum grown on plant biomass substrates.

    Science.gov (United States)

    Gómez-Mendoza, Diana Paola; Junqueira, Magno; do Vale, Luis Henrique Ferreira; Domont, Gilberto Barbosa; Ferreira Filho, Edivaldo Ximenes; Sousa, Marcelo Valle de; Ricart, Carlos André Ornelas

    2014-04-04

    The present work aims at characterizing T. harzianum secretome when the fungus is grown in synthetic medium supplemented with one of the four substrates: glucose, cellulose, xylan, and sugarcane bagasse (SB). The characterization was done by enzymatic assays and proteomic analysis using 2-DE/MALDI-TOF and gel-free shotgun LC-MS/MS. The results showed that SB induced the highest cellulolytic and xylanolytic activities when compared with the other substrates, while remarkable differences in terms of number and distribution of protein spots in 2-DE gels were also observed among the samples. Additionally, treatment of the secretomes with PNGase F revealed that most spot trails in 2-DE gels corresponded to N-glycosylated proteoforms. The LC-MS/MS analysis of the samples identified 626 different protein groups, including carbohydrate-active enzymes and accessory, noncatalytic, and cell-wall-associated proteins. Although the SB-induced secretome displayed the highest cellulolytic and xylanolytic activities, it did not correspond to a higher proteome complexity because CM-cellulose-induced secretome was significantly more diverse. Among the identified proteins, 73% were exclusive to one condition, while only 5% were present in all samples. Therefore, this study disclosed the variation of T. harzianum secretome in response to different substrates and revealed the diversity of the fungus enzymatic toolbox.

  1. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  2. From noise to synthetic nucleoli: can synthetic biology achieve new insights?

    Science.gov (United States)

    Ciechonska, Marta; Grob, Alice; Isalan, Mark

    2016-04-18

    Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."

  3. Resveratrol serves as a protein-substrate interaction stabilizer in human SIRT1 activation

    Science.gov (United States)

    Hou, Xuben; Rooklin, David; Fang, Hao; Zhang, Yingkai

    2016-11-01

    Resveratrol is a natural compound found in red wine that has been suggested to exert its potential health benefit through the activation of SIRT1, a crucial member of the mammalian NAD+-dependent deacetylases. SIRT1 has emerged as an attractive therapeutic target for many aging related diseases, however, how its activity can only be activated toward some specific substrates by resveratrol has been poorly understood. Herein, by employing extensive molecular dynamics simulations as well as fragment-centric topographical mapping of binding interfaces, we have clarified current controversies in the literature and elucidated that resveratrol plays an important activation role by stabilizing SIRT1/peptide interactions in a substrate-specific manner. This new mechanism highlights the importance of the N-terminal domain in substrate recognition, explains the activity restoration role of resveratrol toward some “loose-binding” substrates of SIRT1, and has significant implications for the rational design of new substrate-specific SIRT1 modulators.

  4. Synthetic cation-selective nanotube: permeant cations chaperoned by anions.

    Science.gov (United States)

    Hilder, Tamsyn A; Gordon, Dan; Chung, Shin-Ho

    2011-01-28

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  5. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Directory of Open Access Journals (Sweden)

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  6. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  7. Synthetic flux as a whitening agent for ceramic tiles

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues dos Santos, Geocris, E-mail: geocris.rodrigues@gmail.com [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Salvetti, Alfredo Roque [Departamento De Física, Universidade Federal De Mato Grosso Do Sul (Brazil); Cabrelon, Marcelo Dezena [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Morelli, Márcio Raymundo [Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil)

    2014-12-05

    Highlights: • The synthetic flux acts as a whitening agent of firing color in raw material ceramics. • The raw material ceramics have high levels of the iron oxides and red color. • The different process obtained red color clays with hematite and illite phases. • The whiteness ceramic obtained herein can be used in a porcelain tile industry. - Abstract: A synthetic flux is proposed as a whitening agent of firing color in tile ceramic paste during the sinterization process, thus turning the red firing color into whiteness. By using this mechanism in the ceramic substrates, the stoneware tiles can be manufactured using low cost clays with high levels of iron oxides. This method proved to be an economical as well as commercial strategy for the ceramic tile industries because, in Brazil, the deposits have iron compounds as mineral component (Fe{sub 2}O{sub 3}) in most of the raw materials. Therefore, several compositions of tile ceramic paste make use of natural raw materials, and a synthetic flux in order to understand how the interaction of the iron element, in the mechanism of firing color ceramic, occurs in this system. The bodies obtained were fired at 1100 °C for 5 min in air atmosphere to promote the color change. After the heating, the samples were submitted to X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analyses. The results showed that the change of firing color occurs because the iron element, which is initially in the crystal structure of the hematite phase, is transformed into a new crystal (clinopyroxenes phase) formed during the firing, so as to make the final firing color lighter.

  8. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  9. Role of unsaturated derivatives of spermidine as substrates for spermine synthase and in supporting growth of SV-3T3 cells.

    OpenAIRE

    Pegg, A E; Nagarajan, S; Naficy, S; Ganem, B

    1991-01-01

    Synthetic unsaturated analogues of the natural polyamine were examined as possible substrates for spermine synthase and as replacements for spermidine in supporting the growth of SV-3T3 cells. It was found that N-(3-aminopropyl)-1,4-diamino-cis-but-2-ene [the cis isomer of the alkene analogue of spermidine] was a good substrate for spermine synthase, but that the trans isomer [N-(3-aminopropyl)-1,4-diamino-trans-but-2-ene] and the alkene analogue [N-(3-aminopropyl)-1,4-diaminobut-2-yne] were ...

  10. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    Science.gov (United States)

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.

  11. Exacerbation of substrate toxicity by IPTG in Escherichia coli BL21 (DE3) carrying a synthetic metabolic pathway

    Czech Academy of Sciences Publication Activity Database

    Dvořák, P.; Chrást, L.; Nikel, P.; Fedr, Radek; Souček, Karel; Sedláčková, M.; Chaloupková, R.; Lorenzo, V.; Prokop, Z.; Damborský, J.

    2015-01-01

    Roč. 14, č. 201 (2015) ISSN 1475-2859 Institutional support: RVO:68081707 Keywords : Metabolic burden * Substrate toxicity * Escherichia coli Subject RIV: BO - Biophysics Impact factor: 3.744, year: 2015

  12. Antioxidants, their properties, uses in food products and their legal implications

    Directory of Open Access Journals (Sweden)

    Indrajit D. Thorat

    2013-04-01

    Full Text Available Oxidation decreases consumer acceptability of food by changing its organoleptic properties, destroying essential nutrients and producing toxic compounds. Antioxidants delay oxidation of lipids in foods as well in human systems. Studies reveal that synthetic antioxidants may trigger diseases in human when consumed over a certain concentration. The toxicological effects of synthetic food antioxidants have been the focus of controversy in recent years. There is scope to use natural antioxidants, present in many components of food and plant sources, as a preservative. In this review different synthetic and natural antioxidants present in various foods, reactions with food and the biological system, extraction techniques and their pitfalls as well as legal implication are discussed.

  13. Synthetic biology and occupational risk.

    Science.gov (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  14. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  15. Tracking the emergence of synthetic biology.

    Science.gov (United States)

    Shapira, Philip; Kwon, Seokbeom; Youtie, Jan

    2017-01-01

    Synthetic biology is an emerging domain that combines biological and engineering concepts and which has seen rapid growth in research, innovation, and policy interest in recent years. This paper contributes to efforts to delineate this emerging domain by presenting a newly constructed bibliometric definition of synthetic biology. Our approach is dimensioned from a core set of papers in synthetic biology, using procedures to obtain benchmark synthetic biology publication records, extract keywords from these benchmark records, and refine the keywords, supplemented with articles published in dedicated synthetic biology journals. We compare our search strategy with other recent bibliometric approaches to define synthetic biology, using a common source of publication data for the period from 2000 to 2015. The paper details the rapid growth and international spread of research in synthetic biology in recent years, demonstrates that diverse research disciplines are contributing to the multidisciplinary development of synthetic biology research, and visualizes this by profiling synthetic biology research on the map of science. We further show the roles of a relatively concentrated set of research sponsors in funding the growth and trajectories of synthetic biology. In addition to discussing these analyses, the paper notes limitations and suggests lines for further work.

  16. Locomotion in degus on terrestrial substrates varying in orientation - implications for biomechanical constraints and gait selection.

    Science.gov (United States)

    Schmidt, André

    2014-04-01

    To gain new insights into running gaits on sloped terrestrial substrates, metric and selected kinematic parameters of the common degu (Octodon degus) were examined. Individuals were filmed at their maximum voluntary running speed using a high-speed camera placed laterally to the terrestrial substrate varying in orientations from -30° to +30°, at 10° increments. Degus used trotting, lateral-sequence (LS) and diagonal-sequence (DS) running gaits at all substrate orientations. Trotting was observed across the whole speed range whereas DS running gaits occurred at significantly higher speeds than LS running gaits. Metric and kinematic changes on sloped substrates in degus paralleled those noted for most other mammals. However, the timing of metric and kinematic locomotor adjustments differed significantly between individual degus. In addition, most of these adjustments took place at 10° rather than 30° inclines and declines, indicating significant biomechanical demands even on slightly sloped terrestrial substrates. The results of this study suggest that DS and LS running gaits may represent an advantage in small to medium-sized mammals for counteracting some level of locomotor instability. Finally, changes in locomotor parameters of the forelimbs rather than the hindlimbs seem to play an important role in gait selection in small to medium-sized mammals. Copyright © 2013 Elsevier GmbH. All rights reserved.

  17. Printability of Synthetic Papers by Electrophotography

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2010-04-01

    Full Text Available This paper deals with the printability of synthetic papers by the electrophotography technique. Prints of cmyk colour fields from 20% to 100% raster tone values were printed on three types of synthetic papers (one film synthetic paper and two fiber synthetic papers. The investigation of the appearance included densitometric measurement of the cmyk prints. The results have shown differences in the optical density and optical tone value between cmyk prints made on various synthetic papers. The highest optical density and the increase of the optical tone value were observed on the film synthetic paper, where cmyk prints were more saturated. The highest abrasion resistance of cmyk prints was obtained from the fibre synthetic paper.

  18. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  19. PREFACE: Cell-substrate interactions Cell-substrate interactions

    Science.gov (United States)

    Gardel, Margaret; Schwarz, Ulrich

    2010-05-01

    One of the most striking achievements of evolution is the ability to build cellular systems that are both robust and dynamic. Taken by themselves, both properties are obvious requirements: robustness reflects the fact that cells are there to survive, and dynamics is required to adapt to changing environments. However, it is by no means trivial to understand how these two requirements can be implemented simultaneously in a physical system. The long and difficult quest to build adaptive materials is testimony to the inherent difficulty of this goal. Here materials science can learn a lot from nature, because cellular systems show that robustness and dynamics can be achieved in a synergetic fashion. For example, the capabilities of tissues to repair and regenerate are still unsurpassed in the world of synthetic materials. One of the most important aspects of the way biological cells adapt to their environment is their adhesive interaction with the substrate. Numerous aspects of the physiology of metazoan cells, including survival, proliferation, differentiation and migration, require the formation of adhesions to the cell substrate, typically an extracellular matrix protein. Adhesions guide these diverse processes both by mediating force transmission from the cell to the substrate and by controlling biochemical signaling pathways. While the study of cell-substrate adhesions is a mature field in cell biology, a quantitative biophysical understanding of how the interactions of the individual molecular components give rise to the rich dynamics and mechanical behaviors observed for cell-substrate adhesions has started to emerge only over the last decade or so. The recent growth of research activities on cell-substrate interactions was strongly driven by the introduction of new physical techniques for surface engineering into traditional cell biological work with cell culture. For example, microcontact printing of adhesive patterns was used to show that cell fate depends

  20. Effects of Exposed Artificial Substrate on the Competition between Phytoplankton and Benthic Algae: Implications for Shallow Lake Restoration

    Directory of Open Access Journals (Sweden)

    Hu He

    2017-01-01

    Full Text Available Phytoplankton and benthic algae coexist in shallow lakes and the outcome of the competition between these two photoautotrophs can markedly influence water clarity. It is well established that exposed artificial substrate in eutrophic waters can remove nutrients and fine particles from the water column via the attached periphyton canopy. However, the effects of the introduction of artificial substrate on the competition between planktonic and benthic primary producers remain to be elucidated. We conducted a short-term outdoor mesocosm experiment to test the hypothesis that the nutrient and light changes induced by exposed artificial substrate (polythene nets would benefit the benthic algae. Artificial substrate significantly reduced total nitrogen and phosphorus concentrations and water clarity improved, the latter due to the substrate-induced reduction of both organic and inorganic suspended solids. Consequently, as judged from changes in chlorophyll a (Chl-a concentrations in water and sediment, respectively, exposed artificial substrate significantly reduced the phytoplankton biomass, while benthic algae biomass increased. Our results thus indicate that exposed artificial substrate may be used as a tool to re-establish benthic primary production in eutrophic shallow lakes after an external nutrient loading reduction, paving the way for a benthic- or a macrophyte-dominated system. Longer term and larger scale experiments are, however, needed before any firm conclusions can be drawn on this.

  1. Synthetic lethality between gene defects affecting a single non-essential molecular pathway with reversible steps.

    Directory of Open Access Journals (Sweden)

    Andrei Zinovyev

    2013-04-01

    Full Text Available Systematic analysis of synthetic lethality (SL constitutes a critical tool for systems biology to decipher molecular pathways. The most accepted mechanistic explanation of SL is that the two genes function in parallel, mutually compensatory pathways, known as between-pathway SL. However, recent genome-wide analyses in yeast identified a significant number of within-pathway negative genetic interactions. The molecular mechanisms leading to within-pathway SL are not fully understood. Here, we propose a novel mechanism leading to within-pathway SL involving two genes functioning in a single non-essential pathway. This type of SL termed within-reversible-pathway SL involves reversible pathway steps, catalyzed by different enzymes in the forward and backward directions, and kinetic trapping of a potentially toxic intermediate. Experimental data with recombinational DNA repair genes validate the concept. Mathematical modeling recapitulates the possibility of kinetic trapping and revealed the potential contributions of synthetic, dosage-lethal interactions in such a genetic system as well as the possibility of within-pathway positive masking interactions. Analysis of yeast gene interaction and pathway data suggests broad applicability of this novel concept. These observations extend the canonical interpretation of synthetic-lethal or synthetic-sick interactions with direct implications to reconstruct molecular pathways and improve therapeutic approaches to diseases such as cancer.

  2. Synthetic Cathinones ("Bath Salts")

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  3. Reduced substrate supply limits the temperature response of soil organic carbon decomposition

    Science.gov (United States)

    Cinzia Fissore; Christian P. Giardina; Randall K. Kolka

    2013-01-01

    Controls on the decomposition rate of soil organic carbon (SOC), especially the more stable fraction of SOC, remain poorly understood, with implications for confidence in efforts to model terrestrial C balance under future climate. We investigated the role of substrate supply in the temperature sensitivity of SOC decomposition in laboratory incubations of coarse-...

  4. SfDredd, a Novel Initiator Caspase Possessing Activity on Effector Caspase Substrates in Spodoptera frugiperda.

    Science.gov (United States)

    Yang, Zhouning; Zhou, Ke; Liu, Hao; Wu, Andong; Mei, Long; Liu, Qingzhen

    2016-01-01

    Sf9, a cell line derived from Spodoptera frugiperda, is an ideal model organism for studying insect apoptosis. The first notable study that attempted to identify the apoptotic pathway in Sf9 was performed in 1997 and included the discovery of Sf-caspase-1, an effector caspase of Sf9. However, it was not until 2013 that the first initiator caspase in Sf9, SfDronc, was discovered, and the apoptotic pathway in Sf9 became clearer. In this study, we report another caspase of Sf9, SfDredd. SfDredd is highly similar to insect initiator caspase Dredd homologs. Experimentally, recombinant SfDredd underwent autocleavage and exhibited different efficiencies in cleavage of synthetic caspase substrates. This was attributed to its caspase activity for the predicted active site mutation blocked the above autocleavage and synthetic caspase substrates cleavage activity. SfDredd was capable of not only cleaving Sf-caspase-1 in vitro but also cleaving Sf-caspase-1 and inducing apoptosis when it was co-expressed with Sf-caspase-1 in Sf9 cells. The protein level of SfDredd was increased when Sf9 cells were treated by Actinomycin D, whereas silencing of SfDredd reduced apoptosis and Sf-caspase-1 cleavage induced by Actinomycin D treatment. These results clearly indicate that SfDredd functioned as an apoptotic initiator caspase. Apoptosis induced in Sf9 cells by overexpression of SfDredd alone was not as obvious as that induced by SfDronc alone, and the cleavage sites of Sf-caspase-1 for SfDredd and SfDronc are different. In addition, despite sharing a sequence homology with initiator caspases and possessing weak activity on initiator caspase substrates, SfDredd showed strong activity on effector caspase substrates, making it the only insect caspase reported so far functioning similar to human caspase-2 in this aspect. We believe that the discovery of SfDredd, and its different properties from SfDronc, will improve the understanding of apoptosis pathway in Sf9 cells.

  5. Altered vocal fold kinematics in synthetic self-oscillating models that employ adipose tissue as a lateral boundary condition.

    Science.gov (United States)

    Saidi, Hiba; Erath, Byron D.

    2015-11-01

    The vocal folds play a major role in human communication by initiating voiced sound production. During voiced speech, the vocal folds are set into sustained vibrations. Synthetic self-oscillating vocal fold models are regularly employed to gain insight into flow-structure interactions governing the phonation process. Commonly, a fixed boundary condition is applied to the lateral, anterior, and posterior sides of the synthetic vocal fold models. However, physiological observations reveal the presence of adipose tissue on the lateral surface between the thyroid cartilage and the vocal folds. The goal of this study is to investigate the influence of including this substrate layer of adipose tissue on the dynamics of phonation. For a more realistic representation of the human vocal folds, synthetic multi-layer vocal fold models have been fabricated and tested while including a soft lateral layer representative of adipose tissue. Phonation parameters have been collected and are compared to those of the standard vocal fold models. Results show that vocal fold kinematics are affected by adding the adipose tissue layer as a new boundary condition.

  6. Identification of the endogenous key substrates of the human organic cation transporter OCT2 and their implication in function of dopaminergic neurons.

    Directory of Open Access Journals (Sweden)

    Dirk Taubert

    Full Text Available BACKGROUND: The etiology of neurodegenerative disorders, such as the accelerated loss of dopaminergic neurons in Parkinson's disease, is unclear. Current hypotheses suggest an abnormal function of the neuronal sodium-dependent dopamine transporter DAT to contribute to cell death in the dopaminergic system, but it has not been investigated whether sodium-independent amine transporters are implicated in the pathogenesis of Parkinson's disease. METHODOLOGY/PRINCIPAL FINDINGS: By the use of a novel tandem-mass spectrometry-based substrate search technique, we have shown that the dopaminergic neuromodulators histidyl-proline diketopiperazine (cyclo(his-pro and salsolinol were the endogenous key substrates of the sodium-independent organic cation transporter OCT2. Quantitative real-time mRNA expression analysis revealed that OCT2 in contrast to its related transporters was preferentially expressed in the dopaminergic regions of the substantia nigra where it colocalized with DAT and tyrosine hydroxylase. By assessing cell viability with the MTT reduction assay, we found that salsolinol exhibited a selective toxicity toward OCT2-expressing cells that was prevented by cyclo(his-pro. A frequent genetic variant of OCT2 with the amino acid substitution R400C reduced the transport efficiency for the cytoprotective cyclo(his-pro and thereby increased the susceptibility to salsolinol-induced cell death. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that the OCT2-regulated interplay between cyclo(his-pro and salsolinol is crucial for nigral cell integrity and that a shift in transport efficiency may impact the risk of Parkinson's disease.

  7. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  8. New designer drugs (synthetic cannabinoids and synthetic cathinones): review of literature.

    Science.gov (United States)

    Cottencin, Olivier; Rolland, Benjamin; Karila, Laurent

    2014-01-01

    New designer drugs (synthetic cannabinoids and synthetic cathinones) are new "legal highs" that are sold online for recreational public or private use. Synthetic cannabinoids are psychoactive herbal and chemical products that mimic the effects of cannabis when used. These drugs are available on the Internet or in head shops as incense or air fresheners to circumvent the law. Cathinone is a naturally occurring beta-ketone amphetamine analog found in the leaves of the Catha edulis plant. Synthetic cathinones are phenylalkylamine derivatives that may possess amphetamine-like properties. These drugs are sold online as bath salts. Designer drugs are often labeled as "not for human consumption" to circumvent drug abuse legislation. The absence of legal risks, the ease of obtaining these drugs, the moderate cost, and the availability via the Internet are the main features that attract users, but the number of intoxicated people presenting with emergencies is increasing. There is evidence that negative health and social consequences may affect recreational and chronic users. The addictive potential of designer drugs is not negligible.

  9. Current status of synthetic epikeratoplasty.

    Science.gov (United States)

    Thompson, K P; Hanna, K; Waring, G O; Gipson, I; Liu, Y; Gailitis, R P; Johnson-Wint, B; Green, K

    1991-01-01

    Many of the deficiencies with human tissue epikeratoplasty might be improved by the use of a suitable synthetic lenticule. Potential biomaterials for epikeratoplasty include collagen (types I, III, or IV), collagen-hydrogel copolymers, bioactive synthetics, and coated hydrogels. The biomaterial must be engineered to achieve strict specifications of optical clarity, support of epithelial migration and adhesion, permeability to solutes, and stability to corneal proteases. Attaching synthetic lenticules to the cornea without cutting Bowman's layer by adhesives, laser welding, or direct adhesion may also improve the efficacy of synthetic epikeratoplasty.

  10. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  11. Power electronics substrate for direct substrate cooling

    Science.gov (United States)

    Le, Khiet [Mission Viejo, CA; Ward, Terence G [Redondo Beach, CA; Mann, Brooks S [Redondo Beach, CA; Yankoski, Edward P [Corona, CA; Smith, Gregory S [Woodland Hills, CA

    2012-05-01

    Systems and apparatus are provided for power electronics substrates adapted for direct substrate cooling. A power electronics substrate comprises a first surface configured to have electrical circuitry disposed thereon, a second surface, and a plurality of physical features on the second surface. The physical features are configured to promote a turbulent boundary layer in a coolant impinged upon the second surface.

  12. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo.

    Science.gov (United States)

    Sharma, Sunil V; Tong, Xiaoxue; Pubill-Ulldemolins, Cristina; Cartmell, Christopher; Bogosyan, Emma J A; Rackham, Emma J; Marelli, Enrico; Hamed, Refaat B; Goss, Rebecca J M

    2017-08-09

    Marrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C-Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures.Coupling synthetic biology and chemical reactions in cells is a challenging task. The authors engineer bacteria capable of generating bromo-metabolites, develop a mild Suzuki-Miyaura cross-coupling reaction compatible with cell growth and carry out the cross-coupling chemistry in live cell cultures.

  13. Ultrasmooth, Polydopamine Modified Surfaces for Block Copolymer Nanopatterning on Inert and Flexible Substrates

    Science.gov (United States)

    Katsumata, Reika; Cho, Joon Hee; Zhou, Sunshine; Kim, Chae Bin; Dulaney, Austin; Janes, Dustin; Ellison, Christopher

    Nature has engineered universal, catechol-containing adhesives that can be synthetically mimicked in the form of polydopamine (PDA). We exploited PDA to enable block copolymer (BCP) nanopatterning on a variety of soft material surfaces in a way that can potentially be applied to flexible electrical devices. Applying BCP nanopatterning to soft substrates is challenging because soft substrates are often chemically inert and possess incompatible low surface energies. In this study, we exploited PDA to enable the formation of BCP nanopatterns on a variety of surfaces such as Teflon, poly(ethylene terephthalate) (PET), and Kapton. While previous studies produced a PDA coating layer too rough for BCP nanopatterning, we succeeded in fabricating conformal and ultra-smooth surfaces of PDA by engineering the PDA coating process and post-sonication procedure. This chemically functionalized, biomimetic thin film (3 nm thick) served as a reactive platform for subsequently grafting a surface treatment to perpendicularly orient a lamellae-forming BCP layer. Furthermore, we demonstrated that a perfectly nanopatterned PDA-PET substrate can be bent without distorting or damaging the nanopattern in conditions that far exceeds typical bending curvatures in roll-to-roll manufacturing.

  14. Suppression of AKT phosphorylation restores rapamycin-based synthetic lethality in SMAD4-defective pancreatic cancer cells.

    Science.gov (United States)

    Le Gendre, Onica; Sookdeo, Ayisha; Duliepre, Stephie-Anne; Utter, Matthew; Frias, Maria; Foster, David A

    2013-05-01

    mTOR has been implicated in survival signals for many human cancers. Rapamycin and TGF-β synergistically induce G1 cell-cycle arrest in several cell lines with intact TGF-β signaling pathway, which protects cells from the apoptotic effects of rapamycin during S-phase of the cell cycle. Thus, rapamycin is cytostatic in the presence of serum/TGF-β and cytotoxic in the absence of serum. However, if TGF-β signaling is defective, rapamycin induced apoptosis in both the presence and absence of serum/TGF-β in colon and breast cancer cell lines. Because genetic dysregulation of TGF-β signaling is commonly observed in pancreatic cancers-with defects in the Smad4 gene being most prevalent, we hypothesized that pancreatic cancers would display a synthetic lethality to rapamycin in the presence of serum/TGF-β. We report here that Smad4-deficient pancreatic cancer cells are killed by rapamycin in the absence of serum; however, in the presence of serum, we did not observe the predicted synthetic lethality with rapamycin. Rapamycin also induced elevated phosphorylation of the survival kinase Akt at Ser473. Suppression of rapamycin-induced Akt phosphorylation restored rapamycin sensitivity in Smad4-null, but not Smad4 wild-type pancreatic cancer cells. This study shows that the synthetic lethality to rapamycin in pancreatic cancers with defective TGF-β signaling is masked by rapamycin-induced increases in Akt phosphorylation. The implication is that a combination of approaches that suppress both Akt phosphorylation and mTOR could be effective in targeting pancreatic cancers with defective TGF-β signaling. ©2013 AACR.

  15. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  16. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  17. Synthetic Defects for Vibrothermography

    Science.gov (United States)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  18. The limitations of seedling growth and drought tolerance to novel soil substrates in arid systems: Implications for restoration success

    Science.gov (United States)

    Bateman, Amber; Lewandrowski, Wolfgang; Stevens, Jason; Muñoz-Rojas, Miriam

    2016-04-01

    Introduction With the limited knowledge available regarding the impact of drought on seedling growth, an understanding of seedling tolerance to arid conditions is crucial for restoration success (James et al., 2013; Muñoz-Rojas et al., 2014). However, restoration in semi-arid areas faces the challenge of re-establishing plant communities on altered soil substrates (Muñoz-Rojas et al., 2015). These substrates are a result of anthropogenic disturbances such as mining which have altered the plant-soil-water dynamics of the ecosystem (Machado et al., 2013). The aim of this study was to assess the impact of mining on the plant-soil-water dynamics of an arid ecosystem of Western Australia (Pilbara region, North Western Australia) and the implications these altered relationships have on seedling growth and their responses to drought. Methods Drought responses of native plant species were assessed through a series of glasshouse experiments. Firstly, 21 species dominant to the Pilbara region were subjected to drought in a topsoil growth media to assess variation in responses (leaf water potential at the time of stomatal closure) across species and identify traits associated with drought tolerance. Secondly, four species ranging in their drought tolerance identified previously, were grown to two leaf stages (second and fourth leaf stage) in three mining substrates (topsoil, a topsoil and waste mix and waste) to assess seedling drought responses to various potential restoration substrates and how that varied with plant development stage. Results and discussion Four morphological traits were found to be significantly associated with drought indicators (leaf mass ratio, stem area, stem length, stem weight), however, these were weak correlations. Waste substrate and its addition to topsoil reduced plant total biomass but did not alter species responses to drought. However, the soil physical properties of the waste reduced water retention and water availability for plant uptake

  19. Synthetic biology: Emerging bioengineering in Indonesia

    Science.gov (United States)

    Suhandono, Sony

    2017-05-01

    The development of synthetic biology will shape the new era of science and technology. It is an emerging bioengineering technique involving genetic engineering which can alter the phenotype and behavior of the cell or the new product. Synthetic biology may produce biomaterials, drugs, vaccines, biosensors, and even a recombinant secondary metabolite used in herbal and complementary medicine, such as artemisinin, a malaria drug which is usually extracted from the plant Artemisia annua. The power of synthetic biology has encouraged scientists in Indonesia, and is still in early development. This paper also covers some research from an Indonesian research institute in synthetic biology such as observing the production of bio surfactants and the enhanced production of artemisinin using a transient expression system. Synthetic biology development in Indonesia may also be related to the iGEM competition, a large synthetic biology research competition which was attended by several universities in Indonesia. The application of synthetic biology for drug discovery will be discussed.

  20. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology.

    Science.gov (United States)

    Galdzicki, Michal; Clancy, Kevin P; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline Y; Rodriguez, Cesar A; Roehner, Nicholas; Wilson, Mandy L; Adam, Laura; Anderson, J Christopher; Bartley, Bryan A; Beal, Jacob; Chandran, Deepak; Chen, Joanna; Densmore, Douglas; Endy, Drew; Grünberg, Raik; Hallinan, Jennifer; Hillson, Nathan J; Johnson, Jeffrey D; Kuchinsky, Allan; Lux, Matthew; Misirli, Goksel; Peccoud, Jean; Plahar, Hector A; Sirin, Evren; Stan, Guy-Bart; Villalobos, Alan; Wipat, Anil; Gennari, John H; Myers, Chris J; Sauro, Herbert M

    2014-06-01

    The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a community-driven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.

  1. Purification and substrate specificity of Staphylococcus hyicus lipase.

    Science.gov (United States)

    van Oort, M G; Deveer, A M; Dijkman, R; Tjeenk, M L; Verheij, H M; de Haas, G H; Wenzig, E; Götz, F

    1989-11-28

    The Staphylococcus hyicus lipase gene has been cloned and expressed in Staphylococcus carnosus. From the latter organism the enzyme was secreted into the medium as a protein with an apparent molecular mass of 86 kDa. This protein was purified, and the amino-terminal sequence showed that the primary gene product was indeed cleaved at the proposed signal peptide cleavage site. The protein was purified from large-scale preparations after tryptic digestion. This limited proteolysis reduced the molecular mass to 46 kDa and increased the specific activity about 3-fold. Although the enzyme had a low specific activity in the absence of divalent cations, the activity increased about 40-fold in the presence of Sr2+ or Ca2+ ions. The purified lipase has a broad substrate specificity. The acyl chains were removed from the primary and secondary positions of natural neutral glycerides and from a variety of synthetic glyceride analogues. Thus triglycerides were fully hydrolyzed to free fatty acid and glycerol. The enzyme hydrolyzed naturally occurring phosphatidylcholines, their synthetic short-chain analogues, and lysophospholipids to free fatty acids and water-soluble products. The enzyme had a 2-fold higher activity on micelles of short-chain D-lecithins than on micelles composed of the L-isomers. Thus the enzyme from S. hyicus has lipase activity and also high phospholipase A and lysophospholipase activity.

  2. A Canadian refiner's perspective of synthetic crudes

    International Nuclear Information System (INIS)

    Halford, T.L.; McIntosh, A.P.; Rasmussen

    1997-01-01

    Some of the factors affecting a refiner's choice of crude oil include refinery hardware, particularly gas oil crackers, products slate and product specifications, crude availability, relative crude price and crude quality. An overview of synthetic crude, the use of synthetic crude combined with other crudes and a comparison of synthetic crude with conventional crude oil was given. The two main users of synthetic crude are basically two groups of refiners, those large groups who use synthetic crude combined with other crudes, and a smaller group who run synthetic crude on specially designed units as a sole feed. The effects of changes in fuel legislation were reviewed. It was predicted that the changes will have a mixed impact on the value of synthetic crude, but low sulphur diesel regulations and gasoline sulphur regulations will make current synthetic crudes attractive. The big future change with a negative impact will be diesel cetane increases to reduce engine emissions. This will reduce synthetic crude attractiveness due to distillate yields and quality and high gas oil yields. Similarly, any legislation limiting aromatics in diesel fuel will also make synthetic crudes less attractive. Problems experienced by refiners with hardware dedicated to synthetic crude (salt, naphthenic acid, fouling, quality variations) were also reviewed. 3 tabs

  3. A simple biosynthetic pathway for large product generation from small substrate amounts

    Science.gov (United States)

    Djordjevic, Marko; Djordjevic, Magdalena

    2012-10-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways.

  4. A simple biosynthetic pathway for large product generation from small substrate amounts

    Energy Technology Data Exchange (ETDEWEB)

    Djordjevic, Marko [Institute of Physiology and Biochemistry, Faculty of Biology, University of Belgrade (Serbia); Djordjevic, Magdalena [Institute of Physics Belgrade, University of Belgrade (Serbia)

    2012-10-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways. (paper)

  5. A simple biosynthetic pathway for large product generation from small substrate amounts

    International Nuclear Information System (INIS)

    Djordjevic, Marko; Djordjevic, Magdalena

    2012-01-01

    A recently emerging discipline of synthetic biology has the aim of constructing new biosynthetic pathways with useful biological functions. A major application of these pathways is generating a large amount of the desired product. However, toxicity due to the possible presence of toxic precursors is one of the main problems for such production. We consider here the problem of generating a large amount of product from a potentially toxic substrate. To address this, we propose a simple biosynthetic pathway, which can be induced in order to produce a large number of the product molecules, by keeping the substrate amount at low levels. Surprisingly, we show that the large product generation crucially depends on fast non-specific degradation of the substrate molecules. We derive an optimal induction strategy, which allows as much as three orders of magnitude increase in the product amount through biologically realistic parameter values. We point to a recently discovered bacterial immune system (CRISPR/Cas in E. coli) as a putative example of the pathway analysed here. We also argue that the scheme proposed here can be used not only as a stand-alone pathway, but also as a strategy to produce a large amount of the desired molecules with small perturbations of endogenous biosynthetic pathways. (paper)

  6. Using a Redox Modality to Connect Synthetic Biology to Electronics: Hydrogel-Based Chemo-Electro Signal Transduction for Molecular Communication.

    Science.gov (United States)

    Liu, Yi; Tsao, Chen-Yu; Kim, Eunkyoung; Tschirhart, Tanya; Terrell, Jessica L; Bentley, William E; Payne, Gregory F

    2017-01-01

    A hydrogel-based dual film coating is electrofabricated for transducing bio-relevant chemical information into electronical output. The outer film has a synthetic biology construct that recognizes an external molecular signal and transduces this input into the expression of an enzyme that converts redox-inactive substrate into a redox-active intermediate, which is detected through an amplification mechanism of the inner redox-capacitor film. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Phage display selection of efficient glutamine-donor substrate peptides for transglutaminase 2.

    Science.gov (United States)

    Keresztessy, Zsolt; Csosz, Eva; Hársfalvi, Jolán; Csomós, Krisztián; Gray, Joe; Lightowlers, Robert N; Lakey, Jeremy H; Balajthy, Zoltán; Fésüs, László

    2006-11-01

    Understanding substrate specificity and identification of natural targets of transglutaminase 2 (TG2), the ubiquitous multifunctional cross-linking enzyme, which forms isopeptide bonds between protein-linked glutamine and lysine residues, is crucial in the elucidation of its physiological role. As a novel means of specificity analysis, we adapted the phage display technique to select glutamine-donor substrates from a random heptapeptide library via binding to recombinant TG2 and elution with a synthetic amine-donor substrate. Twenty-six Gln-containing sequences from the second and third biopanning rounds were susceptible for TG2-mediated incorporation of 5-(biotinamido)penthylamine, and the peptides GQQQTPY, GLQQASV, and WQTPMNS were modified most efficiently. A consensus around glutamines was established as pQX(P,T,S)l, which is consistent with identified substrates listed in the TRANSDAB database. Database searches showed that several proteins contain peptides similar to the phage-selected sequences, and the N-terminal glutamine-rich domain of SWI1/SNF1-related chromatin remodeling proteins was chosen for detailed analysis. MALDI/TOF and tandem mass spectrometry-based studies of a representative part of the domain, SGYGQQGQTPYYNQQSPHPQQQQPPYS (SnQ1), revealed that Q(6), Q(8), and Q(22) are modified by TG2. Kinetic parameters of SnQ1 transamidation (K(M)(app) = 250 microM, k(cat) = 18.3 sec(-1), and k(cat)/K(M)(app) = 73,200) classify it as an efficient TG2 substrate. Circular dichroism spectra indicated that SnQ1 has a random coil conformation, supporting its accessibility in the full-length parental protein. Added together, here we report a novel use of the phage display technology with great potential in transglutaminase research.

  8. Finding Hope in Synthetic Biology.

    Science.gov (United States)

    Takala, Tuija

    2017-04-01

    For some, synthetic biology represents great hope in offering possible solutions to many of the world's biggest problems, from hunger to sustainable development. Others remain fearful of the harmful uses, such as bioweapons, that synthetic biology can lend itself to, and most hold that issues of biosafety are of utmost importance. In this article, I will evaluate these points of view and conclude that although the biggest promises of synthetic biology are unlikely to become reality, and the probability of accidents is fairly substantial, synthetic biology could still be seen to benefit humanity by enhancing our ethical understanding and by offering a boost to world economy.

  9. Geo synthetic-reinforced Pavement systems

    International Nuclear Information System (INIS)

    Zornberg, J. G.

    2014-01-01

    Geo synthetics have been used as reinforcement inclusions to improve pavement performance. while there are clear field evidence of the benefit of using geo synthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geo synthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geo synthetics. (Author)

  10. Biological armors under impact—effect of keratin coating, and synthetic bio-inspired analogues

    International Nuclear Information System (INIS)

    Achrai, B; Wagner, H D; Bar-On, B

    2015-01-01

    A number of biological armors, such as turtle shells, consist of a strong exoskeleton covered with a thin keratin coating. The mechanical role upon impact of this keratin coating has surprisingly not been investigated thus far. Low-velocity impact tests on the turtle shell reveal a unique toughening phenomenon attributed to the thin covering keratin layer, the presence of which noticeably improves the fracture energy and shell integrity. Synthetic substrate/coating analogues were subsequently prepared and exhibit an impact behavior similar to the biological ones. The results of the present study may improve our understanding, and even future designs, of impact-tolerant structures. (paper)

  11. Defining the Construct of Synthetic Androgen Intoxication: An Application of General Brain Arousal.

    Science.gov (United States)

    Hildebrandt, Tom; Heywood, Ashley; Wesley, Daniel; Schulz, Kurt

    2018-01-01

    Synthetic androgens (i. e., anabolic-androgenic steroids) are the primary component to the majority of problematic appearance and performance enhancing drug (APED) use. Despite evidence that these substances are associated with increased risk for aggression, violence, body image disturbances, and polypharmacy and can develop a pattern of chronic use consistent with drug dependence, there are no formal definitions of androgen intoxication. Consequently, the purpose of this paper is to establish a testable theory of androgen intoxication. We present evidence and theorize that synthetic androgen intoxication can be defined by a pattern of poor self-regulation characterized by increased propensity for a range of behaviors (e.g., aggression, sex, drug seeking, exercise, etc.) via androgen mediated effects on general brain arousal. This theory posits that androgens reduce threshold for emotional reactivity, motor response, and alertness to sensory stimuli and disrupt inhibitory control over the behaviors associated with synthetic androgen use. These changes result from alteration to basic neurocircuitry that amplifies limbic activation and reduces top-down cortical control. The implications for this definition are to inform APED specific hypotheses about the behavioral and psychological effects of APED use and provide a basis for establishing clinical, legal, and public health guidelines to address the use and misuse of these substances.

  12. Defining the Construct of Synthetic Androgen Intoxication: An Application of General Brain Arousal

    Directory of Open Access Journals (Sweden)

    Tom Hildebrandt

    2018-03-01

    Full Text Available Synthetic androgens (i. e., anabolic-androgenic steroids are the primary component to the majority of problematic appearance and performance enhancing drug (APED use. Despite evidence that these substances are associated with increased risk for aggression, violence, body image disturbances, and polypharmacy and can develop a pattern of chronic use consistent with drug dependence, there are no formal definitions of androgen intoxication. Consequently, the purpose of this paper is to establish a testable theory of androgen intoxication. We present evidence and theorize that synthetic androgen intoxication can be defined by a pattern of poor self-regulation characterized by increased propensity for a range of behaviors (e.g., aggression, sex, drug seeking, exercise, etc. via androgen mediated effects on general brain arousal. This theory posits that androgens reduce threshold for emotional reactivity, motor response, and alertness to sensory stimuli and disrupt inhibitory control over the behaviors associated with synthetic androgen use. These changes result from alteration to basic neurocircuitry that amplifies limbic activation and reduces top-down cortical control. The implications for this definition are to inform APED specific hypotheses about the behavioral and psychological effects of APED use and provide a basis for establishing clinical, legal, and public health guidelines to address the use and misuse of these substances.

  13. Growing of synthetic diamond boron-doped films for analytical applications

    International Nuclear Information System (INIS)

    Barros, Rita de Cassia Mendes de; Suarez-Iha, Maria Encarnacion Vazquez; Corat, Evaldo Jose; Iha, Koshun

    1999-01-01

    Chemical vapor deposition (CVD) technology affords the possibility of producing synthetic diamond film electrodes, with several advantageous properties due the unique characteristics of diamond. In this work, we present the study of boron-doped diamond films growth on molybdenum and silicon substrates, using boron trioxide as dopant in a filament assisted CVD reactor. The objective was to obtain semiconductor diamond for use as electrode. The samples were characterized by scanning electron microscopy and Raman spectroscopy to confirm morphology and doping levels. We have assembled electrodes with the various samples, Pt, Mo, Si and diamond, by utilizing brass and left as base materials. The electrodes were tested in neutralization potentiometric titrations for future use in electroanalysis. Boron-doped electrodes have very good performance compared with Pt, widely used in analytical chemistry. (author)

  14. Evaluation of vermicompost as bioadsorbent substrate of Pb, Ni, V and Cr for waste waters remediation using Total Reflection X-ray Fluorescence

    International Nuclear Information System (INIS)

    Urdaneta, Cynthia; Parra, Lue-Meru Marco; Matute, Saida; Garaboto, Mayantino Angel; Barros, Hayden; Vazquez, Cristina

    2008-01-01

    The use of vermicompost as adsorbent substrate for removing Pb, Ni, V and Cr from waste waters is proposed. In this work, after a preliminary physical and chemical characterization of the vermicompost, the optimal parameters for the heavy metal adsorption were obtained. A synthetic multielemental solution of Pb, Cr and Ni and a solution of NH 4 VO 3 for vanadium were evaluated. The optimized parameters were pH, vermicompost mass to volume ratio, agitation time and particle size of the adsorbent. A batch system was employed for the assays. The elements were determined in the supernatant solution after filtration of the substrate. An optimal pH of 4.5 was found for ion removal. The agitation time slightly influences the adsorption of Pb and Cr, but it has a high influence on the Ni and V adsorption. The highest adsorption and removal of the metals was observed for a vermicompost mass of 2 g per 500 mL using a particle size between 75 to 841 μm for Pb, Cr and Ni, and 841 till 1192 μm for V. The mean removal percentage for each element is around 95% for Pb. Ni and Cr in the multielemental synthetic sample, demonstrating a high removal capacity of the substrate. For V it was found a removal efficiency of 50%

  15. Menadione serves as a substrate for P-glycoprotein: implication in chemosensitizing activity.

    Science.gov (United States)

    Oh, Seok-Jeong; Han, Hyo-Kyung; Kang, Keon-Wook; Lee, Young-Joo; Lee, Moo-Yeol

    2013-04-01

    Based on its chemosensitizing effect, we questioned whether menadione is an inhibitor or a substrate of P-glycoprotein (P-gp). To test this hypothesis, we assessed the effect of menadione on P-gp activity and examined the P-gp-dependency of cellular accumulation and cytotoxicity of menadione as well. Treatment with menadione resulted in the concentration-dependent increase of rhodamine 123 (Rh123) accumulation in P-gp-overexpressing MDCKII/MDR1 and NCI/ADR-RES cells, suggesting that menadione inhibits Rh123 extrusion by P-gp. Compared with MDCKII or MCF-7, intracellular distribution of [(3)H]-menadione was significantly lower in MDCKII/MDR1 or NCI/ADR-RES cells, which could be restored by the P-gp inhibitors, verapamil and quinidine. Consistent with these results, MDCKII/MDR1 or NCI/ADR-RES cells were more resistant to the cytotoxicity of menadione than MDCKII or MCF-7 cells, respectively. Such resistance was abolished by the combined treatment of verapamil and quinidine in NCI/ADR-RES cells. Our study identified menadione as a substrate of P-gp, which presumably, acts as the mechanism for the chemosensitizing effect. Menadione may be a promising chemotherapeutic enhancer by its ability of circumventing drug resistance, in addition to its own anti-cancer activity.

  16. Anaerobic digestion of agricultural and other substrates--implications for greenhouse gas emissions.

    Science.gov (United States)

    Pucker, J; Jungmeier, G; Siegl, S; Pötsch, E M

    2013-06-01

    The greenhouse gas (GHG) emissions, expressed in carbon dioxide equivalents (CO2-eq), of different Austrian biogas systems were analyzed and evaluated using life-cycle assessment (LCA) as part of a national project. Six commercial biogas plants were investigated and the analysis included the complete process chain: viz., the production and collection of substrates, the fermentation of the substrates in the biogas plant, the upgrading of biogas to biomethane (if applicable) and the use of the biogas or biomethane for heat and electricity or as transportation fuel. Furthermore, the LCA included the GHG emissions of construction, operation and dismantling of the major components involved in the process chain, as well as the use of by-products (e.g. fermentation residues used as fertilizers). All of the biogas systems reduced GHG emissions (in CO2-eq) compared with fossil reference systems. The potential for GHG reduction of the individual biogas systems varied between 60% and 100%. Type of feedstock and its reference use, agricultural practices, coverage of storage tanks for fermentation residues, methane leakage at the combined heat and power plant unit and the proportion of energy used as heat were identified as key factors influencing the GHG emissions of anaerobic digestion processes.

  17. Models for synthetic biology.

    Science.gov (United States)

    Kaznessis, Yiannis N

    2007-11-06

    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.

  18. Comparative assessment of the effect of synthetic and natural fungicides on soil respiration.

    Science.gov (United States)

    Stefani, Angelo; Felício, Joanna D'Arc; de Andréa, Mara M

    2012-01-01

    As toxic pesticide residues may persist in agricultural soils and cause environmental pollution, research on natural fungicides to replace the synthetic compounds is currently increasing. The effect of the synthetic fungicide chlorothalonil and a natural potential fungicide on the soil microbial activity was evaluated here by the substrate-induced respiration by addition of glucose (SIR), as bioindicator in two soils (Eutrophic Humic Gley-GHE and Typic Eutroferric Chernosol-AVEC). The induced soil respiration parameter was followed during 28 days after soil treatment either with chlorathalonil (11 μg·g(-1)), or the methanolic fraction from Polymnia sonchifolia extraction (300 μg·g(-1)), and (14)C-glucose (4.0 mg and 5.18 Bq of (14)C-glucose g(-1)). The (14)C-CO(2) produced by the microbial respiration was trapped in NaOH (0.1 M) which was changed each two hours during the first 10 h, and 1, 3, 5, 7, 14 and 28 days after the treatments. The methanolic fraction of the plant extract inhibited (2.2%) and stimulated (1.8%) the respiration of GHE and AVEC, respectively, but the synthetic chlorothalonil caused 16.4% and 2.6% inhibition of the respiration, respectively of the GHE and AVEC soils. As the effects of the natural product were statistically small, this bioindicator indicates that the methanolic fraction of the Polymnia sonchifolia extract, which has fungicide properties, has no environmental effects.

  19. The sustainability of changes in agricultural technology: The carbon, economic and labour implications of mechanisation and synthetic fertiliser use.

    Science.gov (United States)

    Gathorne-Hardy, Alfred

    2016-12-01

    New agricultural technologies bring multiple impacts which are hard to predict. Two changes taking place in Indian agriculture are a transition from bullocks to tractors and an associated replacement of manure with synthetic fertilisers. This paper uses primary data to model social, environmental and economic impacts of these transitions in South India. It compares ploughing by bullocks or tractors and the provision of nitrogen from manure or synthetic urea for irrigated rice from the greenhouse gas (GHG), economic and labour perspective. Tractors plough nine times faster than bullocks, use substantially less labour, with no significant difference in GHG emissions. Tractors are twice as costly as bullocks yet remain more popular to hire. The GHG emissions from manure-N paddy are 30 % higher than for urea-N, largely due to the organic matter in manure driving methane emissions. Labour use is significantly higher for manure, and the gender balance is more equal. Manure is substantially more expensive as a source of nutrients compared to synthetic nutrients, yet remains popular when available. This paper demonstrates the need to take a broad approach to analysing the sustainability impacts of new technologies, as trade-offs between different metrics are common.

  20. Nitrogen and chemical oxygen demand removal from septic tank wastewater in subsurface flow constructed wetlands: substrate (cation exchange capacity) effects.

    Science.gov (United States)

    Collison, Robert S; Grismer, Mark E

    2014-04-01

    The current article focuses on chemical oxygen demand (COD) and nitrogen (ammonium and nitrate) removal performance from synthetic human wastewater as affected by different substrate rocks having a range of porosities and cation exchange capacities (CECs). The aggregates included lava rock, lightweight expanded shale, meta-basalt (control), and zeolite. The first three had CECs of 1 to 4 mequiv/100 gm, whereas the zeolite CEC was much greater (-80 mequiv/100 gm). Synthetic wastewater was gravity fed to each constructed wetland system, resulting in a 4-day retention time. Effluent samples were collected, and COD and nitrogen species concentrations measured regularly during four time periods from November 2008 through June 2009. Chemical oxygen demand and nitrogen removal fractions were not significantly different between the field and laboratory constructed wetland systems when corrected for temperature. Similarly, overall COD and nitrogen removal fractions were practically the same for the aggregate substrates. The important difference between aggregate effects was the zeolite's ammonia removal process, which was primarily by adsorption. The resulting single-stage nitrogen removal process may be an alternative to nitrification and denitrification that may realize significant cost savings in practice.

  1. Determinants of the acetate recovery factor: implications for estimation of 13C substrate oxidation.

    NARCIS (Netherlands)

    P. Schrauwen; E.E. Blaak; A.J.M. Wagenmakers; dr. Lars B. Borghouts; D.P.C. van Aggel-Leijssen

    2000-01-01

    The data of this study indicate that the acetate recovery factor, used in stable isotope research, needs to be deteremined in every subject, under similar conditions as used for the tracer-derived determination of substrate oxidation.

  2. Acanthamoeba polyphaga mimivirus stability in environmental and clinical substrates: implications for virus detection and isolation.

    Directory of Open Access Journals (Sweden)

    Fábio P Dornas

    Full Text Available Viruses are extremely diverse and abundant and are present in countless environments. Giant viruses of the Megavirales order have emerged as a fascinating research topic for virologists around the world. As evidence of their ubiquity and ecological impact, mimiviruses have been found in multiple environmental samples. However, isolation of these viruses from environmental samples is inefficient, mainly due to methodological limitations and lack of information regarding the interactions between viruses and substrates. In this work, we demonstrate the long-lasting stability of mimivirus in environmental (freshwater and saline water and hospital (ventilator plastic device tube substrates, showing the detection of infectious particles after more than 9 months. In addition, an enrichment protocol was implemented that remarkably increased mimivirus detection from all tested substrates, including field tests. Moreover, biological, morphological and genetic tests revealed that the enrichment protocol maintained mimivirus particle integrity. In conclusion, our work demonstrated the stability of APMV in samples of environmental and health interest and proposed a reliable and easy protocol to improve giant virus isolation. The data presented here can guide future giant virus detection and isolation studies.

  3. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges.

    Science.gov (United States)

    Zhang, Yi-Heng Percival

    2015-11-15

    The largest obstacle to the cost-competitive production of low-value and high-impact biofuels and biochemicals (called biocommodities) is high production costs catalyzed by microbes due to their inherent weaknesses, such as low product yield, slow reaction rate, high separation cost, intolerance to toxic products, and so on. This predominant whole-cell platform suffers from a mismatch between the primary goal of living microbes - cell proliferation and the desired biomanufacturing goal - desired products (not cell mass most times). In vitro synthetic biosystems consist of numerous enzymes as building bricks, enzyme complexes as building modules, and/or (biomimetic) coenzymes, which are assembled into synthetic enzymatic pathways for implementing complicated bioreactions. They emerge as an alternative solution for accomplishing a desired biotransformation without concerns of cell proliferation, complicated cellular regulation, and side-product formation. In addition to the most important advantage - high product yield, in vitro synthetic biosystems feature several other biomanufacturing advantages, such as fast reaction rate, easy product separation, open process control, broad reaction condition, tolerance to toxic substrates or products, and so on. In this perspective review, the general design rules of in vitro synthetic pathways are presented with eight supporting examples: hydrogen, n-butanol, isobutanol, electricity, starch, lactate,1,3-propanediol, and poly-3-hydroxylbutyrate. Also, a detailed economic analysis for enzymatic hydrogen production from carbohydrates is presented to illustrate some advantages of this system and the remaining challenges. Great market potentials will motivate worldwide efforts from multiple disciplines (i.e., chemistry, biology and engineering) to address the remaining obstacles pertaining to cost and stability of enzymes and coenzymes, standardized building parts and modules, biomimetic coenzymes, biosystem optimization, and scale

  4. A systematic investigation of production of synthetic prions from recombinant prion protein.

    Science.gov (United States)

    Schmidt, Christian; Fizet, Jeremie; Properzi, Francesca; Batchelor, Mark; Sandberg, Malin K; Edgeworth, Julie A; Afran, Louise; Ho, Sammy; Badhan, Anjna; Klier, Steffi; Linehan, Jacqueline M; Brandner, Sebastian; Hosszu, Laszlo L P; Tattum, M Howard; Jat, Parmjit; Clarke, Anthony R; Klöhn, Peter C; Wadsworth, Jonathan D F; Jackson, Graham S; Collinge, John

    2015-12-01

    According to the protein-only hypothesis, infectious mammalian prions, which exist as distinct strains with discrete biological properties, consist of multichain assemblies of misfolded cellular prion protein (PrP). A critical test would be to produce prion strains synthetically from defined components. Crucially, high-titre 'synthetic' prions could then be used to determine the structural basis of infectivity and strain diversity at the atomic level. While there have been multiple reports of production of prions from bacterially expressed recombinant PrP using various methods, systematic production of high-titre material in a form suitable for structural analysis remains a key goal. Here, we report a novel high-throughput strategy for exploring a matrix of conditions, additives and potential cofactors that might generate high-titre prions from recombinant mouse PrP, with screening for infectivity using a sensitive automated cell-based bioassay. Overall, approximately 20,000 unique conditions were examined. While some resulted in apparently infected cell cultures, this was transient and not reproducible. We also adapted published methods that reported production of synthetic prions from recombinant hamster PrP, but again did not find evidence of significant infectious titre when using recombinant mouse PrP as substrate. Collectively, our findings are consistent with the formation of prion infectivity from recombinant mouse PrP being a rare stochastic event and we conclude that systematic generation of prions from recombinant PrP may only become possible once the detailed structure of authentic ex vivo prions is solved. © 2015 The Authors.

  5. Potentially toxic concentrations of synthetic pyrethroids associated with low density residential land use

    Directory of Open Access Journals (Sweden)

    Stephen Marshall

    2016-11-01

    Full Text Available Trace organic compounds associated with human activity are now ubiquitous in the environment. As the population becomes more urbanised and the use of pesticides and person care products continues to increase, urban waterways are likely to receive higher loads of trace organic contaminants with unknown ecological consequences. To establish the extent of trace organic contamination in urban runoff, concentrations of emerging chemicals of concern were determined in sediments from 99 urban wetlands in and around Melbourne, Australia between February and April, 2015. As a preliminary estimation of potential risks to aquatic biota, we compared measured concentrations with thresholds for acute and chronic toxicity, and modelled toxic units as a function of demographic and land use trends. The synthetic pyrethroid insecticide bifenthrin was common and widespread, and frequently occurred at concentrations likely to cause toxicity to aquatic life. Personal care products DEET and triclosan were common and widely distributed, while the herbicides diuron and prometryn, and the fungicides pyrimethanil and trifloxystrobin occurred less frequently. Toxic unit modelling using random forests found complex and unexpected associations between urban land uses and trace organic concentrations. Synthetic pyrethroid insecticides were identified as emerging compounds of concern, particularly bifenthrin. In contrast with previous surveys, the highest bifenthrin concentrations were associated with lower housing and population density, implicating low-density residential land use in bifenthrin contamination. We discuss the implications for pesticide regulation and urban wetland management in a global context.

  6. Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hui; Elferich, Johannes; Gouaux, Eric (Oregon HSU)

    2012-02-13

    Neurotransmitter sodium symporters (NSSs) catalyze the uptake of neurotransmitters into cells, terminating neurotransmission at chemical synapses. Consistent with the role of NSSs in the central nervous system, they are implicated in multiple diseases and disorders. LeuT, from Aquifex aeolicus, is a prokaryotic ortholog of the NSS family and has contributed to our understanding of the structure, mechanism and pharmacology of NSSs. At present, however, the functional state of LeuT in crystals grown in the presence of n-octyl-{beta}-D-glucopyranoside ({beta}-OG) and the number of substrate binding sites are controversial issues. Here we present crystal structures of LeuT grown in DMPC-CHAPSO bicelles and demonstrate that the conformations of LeuT-substrate complexes in lipid bicelles and in {beta}-OG detergent micelles are nearly identical. Furthermore, using crystals grown in bicelles and the substrate leucine or the substrate analog selenomethionine, we find only a single substrate molecule in the primary binding site.

  7. Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Xiaoyu; Yu, Hongwei; Yang, Haitao; Xue, Fei; Wu, Zhixin; Shen, Wei; Li, Jun; Zhou, Zhe; Ding, Yi; Zhao, Qi; Zhang, Xuejun C.; Liao, Ming; Bartlam, Mark; Rao, Zihe (SCAU); (Tsinghua); (Chinese Aca. Sci.)

    2008-07-21

    Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) MP{sup pro} and a severe acute respiratory syndrome CoV (SARS-CoV) M{sup pro} mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M{sup pro}. A monomeric form of IBV M{sup pro} was identified for the first time in CoV M{sup pro} structures. A comparison of these two structures to other available M{sup pro} structures provides new insights for the design of substrate-based inhibitors targeting CoV M{sup pro}s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M{sup pro} and was found to demonstrate in vitro inactivation of IBV M{sup pro} and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M{sup pro}.

  8. Applications of fibrous substrates containing insolubilized phase change polymers

    Science.gov (United States)

    Vigo, Tyrone L.; Bruno, Joseph S.

    1993-01-01

    Incorporation of polyethylene glycols into fibrous substrates produces several improved functional properties when they are insolubilized by crosslinking with a methylolamide resin or by polyacetal formation by their reaction with glyoxal. The range of molecular weights of polyols that may be insolubilized is broad as are the curing conditions (0.25-10 min at 80-200C). Most representative fiber types and blends (natural and synthetic) and all types of fabric constructions (woven, nonwoven and knit) have been modified by incorporation of the bound polyols. The most novel property is the thermal adaptability of the modified substrates to many climatic conditions. This adaptability is due to the high latent heat of the crosslinked polyols that function as phase change materials, the hydrophilic nature of the crosslinked polymer and its enhanced thermal conductivity. Other enhanced properties imparted to fabrics include flex and flat abrasion, antimicrobial activity, reduced static charge, resistance to oily soils, resiliency, wind resistance and reduced lint loss. Applications commercialized in the U.S. and Japan include sportswear and skiwear. Several examples of electric sets of properties useful for specific end uses are given. In addition, other uses are biomedical horticultural, aerospace, indoor insulation, automotive interiors and components and packaging material.

  9. Applications of fibrous substrates containing insolubilized phase change polymers

    Science.gov (United States)

    Vigo, Tyrone L.; Bruno, Joseph S.

    1993-02-01

    Incorporation of polyethylene glycols into fibrous substrates produces several improved functional properties when they are insolubilized by crosslinking with a methylolamide resin or by polyacetal formation by their reaction with glyoxal. The range of molecular weights of polyols that may be insolubilized is broad as are the curing conditions (0.25-10 min at 80-200C). Most representative fiber types and blends (natural and synthetic) and all types of fabric constructions (woven, nonwoven and knit) have been modified by incorporation of the bound polyols. The most novel property is the thermal adaptability of the modified substrates to many climatic conditions. This adaptability is due to the high latent heat of the crosslinked polyols that function as phase change materials, the hydrophilic nature of the crosslinked polymer and its enhanced thermal conductivity. Other enhanced properties imparted to fabrics include flex and flat abrasion, antimicrobial activity, reduced static charge, resistance to oily soils, resiliency, wind resistance and reduced lint loss. Applications commercialized in the U.S. and Japan include sportswear and skiwear. Several examples of electric sets of properties useful for specific end uses are given. In addition, other uses are biomedical horticultural, aerospace, indoor insulation, automotive interiors and components and packaging material.

  10. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    Science.gov (United States)

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  11. 21 CFR 73.1200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  12. 21 CFR 73.200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  13. 21 CFR 172.888 - Synthetic petroleum wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a...

  14. Synthetic biology: programming cells for biomedical applications.

    Science.gov (United States)

    Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried

    2012-01-01

    The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry.

  15. Role of Synthetic and Dimensional Synthetic Organic Chemistry in Block Copolymer Micelle Nanosensor Engineering

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar

    This thesis investigated the role of amphiphilic triblock copolymer micelle nanomaterials in nanosensors, with emphasis on the synthesis of micelle particle sensors. The thesis is focused on the role of synthetic and dimensional synthetic organic chemistry in amphiphilic triblock core-shellcorona...

  16. Molecular dynamics investigations of BioH protein substrate specificity for biotin synthesis.

    Science.gov (United States)

    Xue, Qiao; Cui, Ying-Lu; Zheng, Qing-Chuan; Zhang, Hong-Xing

    2016-05-01

    BioH, an enzyme of biotin synthesis, plays an important role in fatty acid synthesis which assembles the pimelate moiety. Pimeloyl-acyl carrier protein (ACP) methyl ester, which is long known to be a biotin precursor, is the physiological substrate of BioH. Azelayl methyl ester, which has a longer chain than pimeloyl methyl ester, conjugated to ACP is also indeed accepted by BioH with very low rate of hydrolysis. To date, the substrate specificity for BioH and the molecular origin for the experimentally observed rate changes of hydrolysis by the chain elongation have remained elusive. To this end, we have investigated chain elongation effects on the structures by using the fully atomistic molecular dynamics simulations combined with binding free energy calculations. The results indicate that the substrate specificity is determined by BioH together with ACP. The added two methylenes would increase the structural flexibility by protein motions at the interface of ACP and BioH, instead of making steric clashes with the side chains of the BioH hydrophobic cavity. On the other hand, the slower hydrolysis of azelayl substrate is suggested to be associated with the loose of contacts between BioH and ACP, and with the lost electrostatic interactions of two ionic/hydrogen bonding networks at the interface of the two proteins. The present study provides important insights into the structure-function relationships of the complex of BioH with pimeloyl-ACP methyl ester, which could contribute to further understanding about the mechanism of the biotin synthetic pathway, including the catalytic role of BioH.

  17. Word selection affects perceptions of synthetic biology

    Directory of Open Access Journals (Sweden)

    Tonidandel Scott

    2011-07-01

    Full Text Available Abstract Members of the synthetic biology community have discussed the significance of word selection when describing synthetic biology to the general public. In particular, many leaders proposed the word "create" was laden with negative connotations. We found that word choice and framing does affect public perception of synthetic biology. In a controlled experiment, participants perceived synthetic biology more negatively when "create" was used to describe the field compared to "construct" (p = 0.008. Contrary to popular opinion among synthetic biologists, however, low religiosity individuals were more influenced negatively by the framing manipulation than high religiosity people. Our results suggest that synthetic biologists directly influence public perception of their field through avoidance of the word "create".

  18. Synthetic Cognitive Apprenticeship Model – Possible Way to Enhance Students’ Metacognitive Skills

    Directory of Open Access Journals (Sweden)

    Jelena Suchanova

    2011-12-01

    Full Text Available The article presents the kaleidoscopic view on the concept of metacognition. There are a lot of implications showing the link between metacognitive skills, learning and teaching. Metacognitive skills such as self-direction, self-evaluation, and self-control, as well as orientation, planning, monitoring, testing, diagnosing, repairing, evaluation and reflection play an important role in facilitating the process of transition from teacher-centered environment to autonomous foreign language studies. Synthetic Cognitive Apprenticeship model is suggested as possible way to help students enhance their metacognitive skills thus becoming more prepared for autonomous foreign language studies.

  19. Pyrimidine nucleoside analogues, potential chemotherapeutic agents, and substrates/inhibitors in various enzyme systems

    International Nuclear Information System (INIS)

    Kulikowski, T.; Bretner, M.; Felczak, K.; Drabikowska, A.; Shugar, D.

    1998-01-01

    Full text. Pyrimidine nucleoside analogues are an important class of compounds with antimetabolic (antitumor, antiparasitic and antiviral) properties. The synthesis of thiated nucleoside and nucleotide analogues, determination of structures, conformation and dissociation constans, their potential chemotherapeutic activities, and their substrate/inhibitor properties in various enzyme systems, with emphasis on enzymes related to chemotherapeutic activities, were investigated. In the series of thionated inhibitors of thymidylate synthase (TS), potential antitumor agents, regioselective syntheses were elaborated for 2- and 4-thio, and 2,4-dithio derivatives of 2'-deoxyuridine (dUrd), 5-fluoro-2'-deoxyuridine (FdUrd), and several other 5-fluoro-, 5-bromo- and 5-trifluoromethyl congeners, and the 2-thio derivatives of FdUrd and its α-anomer, which proved to be selective agents with high cytotoxicities correlated with the inhibitory activities vs TS of their corresponding 5'-monophosphates. Regioslective syntheses were also elaborated for 2'-deoxycytidin e and 5-fluoro-2'-deoxycitidine derivatives. Solution conformation of these nucleosides were deduced from high-resolution (500 MHz) 1 H NMR spectra. Substrate/inhibitor properties of 2-thio-2'-deoxycitidine (S 2 dCyd) and 5-fluoro-2-thio-2'-deoxycitidine ( S 2 FdCyd) with respect to human leukemic spleen deoxycytidine kinase have been examined. Both are substrates, and also good inhibitors, of phosphorylation of 2'-deoxycitidine and 2'-deoxyadenosine. Particular attention was directed to the specificity of t he NTP phosphate donor for several nucleoside kinases, and procedures have been developed for distinguishing between ATP and other NTP donors, a problem of importance in chemotherapy with nucleoside analogues. Biological properties of the newly synthetize d thiated pyrimidine 2',3'-dideoxy-3'-fluoronucleosides, S 2 ,3'-FddUrd and S 2 ,3'-FddThd, were also investigated. Thiated 3'-fluoronucleosides were moderate

  20. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process

    International Nuclear Information System (INIS)

    Rasool, Kashif; Mahmoud, Khaled A.; Lee, Dae Sung

    2015-01-01

    Highlights: • Textile wastewater treatment performance was investigated with different co-substrates. • Dye biodegradation and biotransformation enhanced with lactate as co-substrate. • Sulfate removal significantly decreased under limited co-substrate concentration. • Changes in microbial community structure were studied using bar-coded pyrosequencing. • Lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria. - Abstract: This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB.

  1. Influence of co-substrate on textile wastewater treatment and microbial community changes in the anaerobic biological sulfate reduction process

    Energy Technology Data Exchange (ETDEWEB)

    Rasool, Kashif; Mahmoud, Khaled A. [Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, PO BOX 5825, Doha (Qatar); Lee, Dae Sung, E-mail: daesung@knu.ac.kr [Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 702-701 (Korea, Republic of)

    2015-12-15

    Highlights: • Textile wastewater treatment performance was investigated with different co-substrates. • Dye biodegradation and biotransformation enhanced with lactate as co-substrate. • Sulfate removal significantly decreased under limited co-substrate concentration. • Changes in microbial community structure were studied using bar-coded pyrosequencing. • Lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria. - Abstract: This study investigated the anaerobic treatment of sulfate-rich synthetic textile wastewater in three sulfidogenic sequential batch reactors (SBRs). The experimental protocol was designed to examine the effect of three different co-substrates (lactate, glucose, and ethanol) and their concentrations on wastewater treatment performance. Sulfate reduction and dye degradation were improved when lactate and ethanol were used as electron donors, as compared with glucose. Moreover, under co-substrate limited concentrations, color, sulfate, and chemical oxygen demand (COD) removal efficiencies were declined. By reducing co-substrate COD gradually from 3000 to 500 mg/L, color removal efficiencies were decreased from 98.23% to 78.46%, 63.37%, and 69.10%, whereas, sulfate removal efficiencies were decreased from 98.42%, 82.35%, and 87.0%, to 30.27%, 21.50%, and 10.13%, for lactate, glucose, and ethanol fed reactors, respectively. Fourier transform infrared spectroscopy (FTIR) and total aromatic amine analysis revealed lactate to be a potential co-substrate for further biodegradation of intermediate metabolites formed after dye degradation. Pyrosequencing analysis showed that microbial community structure was significantly affected by the co-substrate. The reactor with lactate as co-substrate showed the highest relative abundance of sulfate reducing bacteria (SRBs), followed by ethanol, whereas the glucose-fed reactor showed the lowest relative abundance of SRB.

  2. Synthetic Biology for Specialty Chemicals.

    Science.gov (United States)

    Markham, Kelly A; Alper, Hal S

    2015-01-01

    In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

  3. Mammalian synthetic biology: emerging medical applications.

    Science.gov (United States)

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  5. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.

    Science.gov (United States)

    Weinstock, B André; Guiney, Linda M; Loose, Christopher

    2012-11-01

    We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

  6. Synergistic Synthetic Biology: Units in Concert

    Science.gov (United States)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications. PMID:25022769

  7. Synergistic Synthetic Biology: Units in Concert

    International Nuclear Information System (INIS)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications.

  8. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite

    Science.gov (United States)

    Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D.; Pumera, Martin

    2012-01-01

    Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research. PMID:22826262

  9. Using synthetic bacterial enhancers to reveal a looping-based mechanism for quenching-like repression

    Science.gov (United States)

    Brunwasser-Meirom, Michal; Pollak, Yaroslav; Goldberg, Sarah; Levy, Lior; Atar, Orna; Amit, Roee

    2016-01-01

    We explore a model for ‘quenching-like' repression by studying synthetic bacterial enhancers, each characterized by a different binding site architecture. To do so, we take a three-pronged approach: first, we compute the probability that a protein-bound dsDNA molecule will loop. Second, we use hundreds of synthetic enhancers to test the model's predictions in bacteria. Finally, we verify the mechanism bioinformatically in native genomes. Here we show that excluded volume effects generated by DNA-bound proteins can generate substantial quenching. Moreover, the type and extent of the regulatory effect depend strongly on the relative arrangement of the binding sites. The implications of these results are that enhancers should be insensitive to 10–11 bp insertions or deletions (INDELs) and sensitive to 5–6 bp INDELs. We test this prediction on 61 σ54-regulated qrr genes from the Vibrio genus and confirm the tolerance of these enhancers' sequences to the DNA's helical repeat. PMID:26832446

  10. Chemically reduced graphene contains inherent metallic impurities present in parent natural and synthetic graphite.

    Science.gov (United States)

    Ambrosi, Adriano; Chua, Chun Kiang; Khezri, Bahareh; Sofer, Zdeněk; Webster, Richard D; Pumera, Martin

    2012-08-07

    Graphene-related materials are in the forefront of nanomaterial research. One of the most common ways to prepare graphenes is to oxidize graphite (natural or synthetic) to graphite oxide and exfoliate it to graphene oxide with consequent chemical reduction to chemically reduced graphene. Here, we show that both natural and synthetic graphite contain a large amount of metallic impurities that persist in the samples of graphite oxide after the oxidative treatment, and chemically reduced graphene after the chemical reduction. We demonstrate that, despite a substantial elimination during the oxidative treatment of graphite samples, a significant amount of impurities associated to the chemically reduced graphene materials still remain and alter their electrochemical properties dramatically. We propose a method for the purification of graphenes based on thermal treatment at 1,000 °C in chlorine atmosphere to reduce the effect of such impurities on the electrochemical properties. Our findings have important implications on the whole field of graphene research.

  11. Using Synthetic Biology to Engineer Living Cells That Interface with Programmable Materials.

    Science.gov (United States)

    Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Zhang, Ruihua; Ruder, Warren C

    2017-03-09

    We have developed an abiotic-biotic interface that allows engineered cells to control the material properties of a functionalized surface. This system is made by creating two modules: a synthetically engineered strain of E. coli cells and a functionalized material interface. Within this paper, we detail a protocol for genetically engineering selected behaviors within a strain of E. coli using molecular cloning strategies. Once developed, this strain produces elevated levels of biotin when exposed to a chemical inducer. Additionally, we detail protocols for creating two different functionalized surfaces, each of which is able to respond to cell-synthesized biotin. Taken together, we present a methodology for creating a linked, abiotic-biotic system that allows engineered cells to control material composition and assembly on nonliving substrates.

  12. Control theory meets synthetic biology.

    Science.gov (United States)

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. © 2016 The Author(s).

  13. Recalcitrant Compounds Removal in Raw Leachate and Synthetic Effluents Using the White-Rot Fungus Bjerkandera adusta

    Directory of Open Access Journals (Sweden)

    Alessandra Bardi

    2017-10-01

    Full Text Available Recalcitrant compounds limit the efficiency of conventional biological processes for wastewater treatment, representing one of the major issues in the field. This study focused on the treatment of three effluents with White-Rot-Fungus (WRF Bjerkandera adusta MUT 2295 in batch tests, with biomass cultivated in attached form on polyurethane foam cubes (PUFs to test its efficiency in the removal of the target effluents’ recalcitrant fraction. Treatment efficiency of B. adusta was evaluated on landfill leachate (Canada and two solutions containing synthetic recalcitrant compounds, which were prepared with tannic and humic acid. Chemical Oxygen Demand (COD and color removal, the production of manganese peroxidases, and the consumption of a co-substrate (glucose were monitored during the experiment. Biological Oxygen Demand (BOD5 and fungal dry weight were measured at the beginning and at the end of the experiment. After co-substrate addition, effluent COD was 2300 ± 85, 2545 ± 84, and 2580 ± 95 (mg/L in raw leachate and tannic and humic acids, respectively. COD removal of 48%, 61%, and 48% was obtained in raw leachate and in the synthetic effluents containing tannic and humic acids, respectively. Color removal of 49%, 25%, and 42% was detected in raw leachate and in tannic and humic acid solutions, respectively. COD and color removals were associated with the increase of fungal dry weight, which was observed in all the trials. These results encourage the use of the selected fungal strain to remove tannic acid, while further investigations are required to optimize leachate and humic acid bioremediation.

  14. Approaches to chemical synthetic biology.

    Science.gov (United States)

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Experimental evidence for friction-enhancing integumentary modifications of chameleons and associated functional and evolutionary implications

    Science.gov (United States)

    Khannoon, Eraqi R.; Endlein, Thomas; Russell, Anthony P.; Autumn, Kellar

    2014-01-01

    The striking morphological convergence of hair-like integumentary derivatives of lizards and arthropods (spiders and insects) demonstrates the importance of such features for enhancing purchase on the locomotor substrate. These pilose structures are responsible for the unique tractive abilities of these groups of animals, enabling them to move with seeming ease on overhanging and inverted surfaces, and to traverse inclined smooth substrates. Three groups of lizards are well known for bearing adhesion-promoting setae on their digits: geckos, anoles and skinks. Similar features are also found on the ventral subdigital and distal caudal skin of chameleons. These have only recently been described in any detail, and structurally and functionally are much less well understood than are the setae of geckos and anoles. The seta-like structures of chameleons are not branched (a characteristic of many geckos), nor do they terminate in spatulate tips (which is characteristic of geckos, anoles and skinks). They are densely packed and have attenuated blunt, globose tips or broad, blade-like shafts that are flattened for much of their length. Using a force transducer, we tested the hypothesis that these structures enhance friction and demonstrate that the pilose skin has a greater frictional coefficient than does the smooth skin of these animals. Our results are consistent with friction being generated as a result of side contact of the integumentary filaments. We discuss the evolutionary and functional implications of these seta-like structures in comparison with those typical of other lizard groups and with the properties of seta-mimicking synthetic structures. PMID:24285195

  16. Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2008-01-01

    A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective is to im......A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective...... is to improve and obtain a more range independent lateral resolution compared to conventional dynamic receive focusing (DRF) without compromising frame rate. SASB is a two-stage procedure using two separate beamformers. First a set of Bmode image lines using a single focal point in both transmit and receive...... is stored. The second stage applies the focused image lines from the first stage as input data. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The performance of SASB with a static image object is compared with DRF...

  17. Towards a synthetic chloroplast.

    Directory of Open Access Journals (Sweden)

    Christina M Agapakis

    2011-04-01

    Full Text Available The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.

  18. Component characterization and predictive modeling for green roof substrates optimized to adsorb P and improve runoff quality: A review.

    Science.gov (United States)

    Jennett, Tyson S; Zheng, Youbin

    2018-06-01

    This review is a synthesis of the current knowledge regarding the effects of green roof substrate components and their retentive capacity for nutrients, particularly phosphorus (P). Substrates may behave as either sources or sinks of P depending on the components they are formulated from, and to date, the total P-adsorbing capacity of a substrate has not been quantified as the sum of the contributions of its components. Few direct links have been established among substrate components and their physicochemical characteristics that would affect P-retention. A survey of recent literature presented herein highlights the trends within individual component selection (clays and clay-like material, organics, conventional soil and sands, lightweight inorganics, and industrial wastes and synthetics) for those most common during substrate formulation internationally. Component selection will vary with respect to ease of sourcing component materials, cost of components, nutrient-retention capacity, and environmental sustainability. However, the number of distinct components considered for inclusion in green roof substrates continues to expand, as the desires of growers, material suppliers, researchers and industry stakeholders are incorporated into decision-making. Furthermore, current attempts to characterize the most often used substrate components are also presented whereby runoff quality is correlated to entire substrate performance. With the use of well-described characterization (constant capacitance model) and modeling techniques (the soil assemblage model), it is proposed that substrates optimized for P adsorption may be developed through careful selection of components with prior knowledge of their chemical properties, that may increase retention of P in plant-available forms, thereby reducing green roof fertilizer requirements and P losses in roof runoff. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. How to object to radically new technologies on the basis of justice: the case of synthetic biology.

    Science.gov (United States)

    Hunter, David

    2013-10-01

    A recurring objection to the exploration, development and deployment of radical new technologies is based on their implications with regards to social justice. In this article, using synthetic biology as an example, I explore this line of objection and how we ought to think about justice in the context of the development and introduction of radically new technologies. I argue that contrary to popular opinion, justice rarely provides a reason not to investigate, develop and introduce radical new technologies, although it may have significant implications for how they ought to be introduced. In particular I focus on the time dependency of justice objections and argue that often these function by looking only at the implications of the introduction of the technology at the point of introduction, rather than the more important long-term impact on patterns of distribution and opportunity. © 2013 John Wiley & Sons Ltd.

  20. Synthetic Biology: Advancing Biological Frontiers by Building Synthetic Systems

    OpenAIRE

    Chen, Yvonne Yu-Hsuan; Galloway, Kate E; Smolke, Christina D

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  1. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  2. Synthetic LDL as targeted drug delivery vehicle

    Science.gov (United States)

    Forte, Trudy M [Berkeley, CA; Nikanjam, Mina [Richmond, CA

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  3. Programming languages for synthetic biology.

    Science.gov (United States)

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  4. Role of primary substrate composition and concentration on attenuation of trace organic chemicals in managed aquifer recharge systems

    KAUST Repository

    Alidina, Mazahirali

    2014-11-01

    This study was undertaken to investigate the role of primary substrate composition and concentration on the attenuation of biodegradable emerging trace organic chemicals (TOrCs) in simulated managed aquifer recharge (MAR) systems. Four sets of soil columns were established in the laboratory, each receiving synthetic feed solutions comprising different ratios and concentrations of peptone-yeast and humic acid as the primary substrate to investigate the effect on removal of six TOrCs (atenolol, caffeine, diclofenac, gemfibrozil, primidone, and trimethoprim). Based on abiotic control experiments, adsorption was not identified as a significant attenuation mechanism for primidone, gemfibrozil and diclofenac. Caffeine, atenolol and trimethoprim displayed initial adsorptive losses, however, adsorption coefficients derived from batch tests confirmed that adsorption was limited and in the long-term experiment, biodegradation was the dominant attenuation process. Within a travel time of 16h, caffeine - an easily degradable compound exhibited removal exceeding 75% regardless of composition or concentration of the primary substrate. Primidone - a poorly degradable compound, showed no removal in any column regardless of the nature of the primary substrate. The composition and concentration of the primary substrate, however, had an effect on attenuation of moderately degradable TOrCs, such as atenolol, gemfibrozil and diclofenac, with the primary substrate composition seeming to have a larger impact on TOrC attenuation than its concentration. When the primary substrate consisted mainly of refractory substrate (humic acid), higher removal of the moderately degradable TOrCs was observed. The microbial communities in the columns receiving more refractory carbon, were noted to be more diverse and hence likely able to express a wider range of enzymes, which were more suitable for TOrC transformation. The effect of the primary substrate on microbial community composition, diversity

  5. Role of primary substrate composition and concentration on attenuation of trace organic chemicals in managed aquifer recharge systems.

    Science.gov (United States)

    Alidina, Mazahirali; Li, Dong; Ouf, Mohamed; Drewes, Jörg E

    2014-11-01

    This study was undertaken to investigate the role of primary substrate composition and concentration on the attenuation of biodegradable emerging trace organic chemicals (TOrCs) in simulated managed aquifer recharge (MAR) systems. Four sets of soil columns were established in the laboratory, each receiving synthetic feed solutions comprising different ratios and concentrations of peptone-yeast and humic acid as the primary substrate to investigate the effect on removal of six TOrCs (atenolol, caffeine, diclofenac, gemfibrozil, primidone, and trimethoprim). Based on abiotic control experiments, adsorption was not identified as a significant attenuation mechanism for primidone, gemfibrozil and diclofenac. Caffeine, atenolol and trimethoprim displayed initial adsorptive losses, however, adsorption coefficients derived from batch tests confirmed that adsorption was limited and in the long-term experiment, biodegradation was the dominant attenuation process. Within a travel time of 16 h, caffeine - an easily degradable compound exhibited removal exceeding 75% regardless of composition or concentration of the primary substrate. Primidone - a poorly degradable compound, showed no removal in any column regardless of the nature of the primary substrate. The composition and concentration of the primary substrate, however, had an effect on attenuation of moderately degradable TOrCs, such as atenolol, gemfibrozil and diclofenac, with the primary substrate composition seeming to have a larger impact on TOrC attenuation than its concentration. When the primary substrate consisted mainly of refractory substrate (humic acid), higher removal of the moderately degradable TOrCs was observed. The microbial communities in the columns receiving more refractory carbon, were noted to be more diverse and hence likely able to express a wider range of enzymes, which were more suitable for TOrC transformation. The effect of the primary substrate on microbial community composition, diversity

  6. DECOLORISATION OF AQUEOUS SOLUTIONS OF SYNTHETIC DYES BY Lentinus polychrous Lév. CULTIVATED ON CASSAVA RHIZOME

    Directory of Open Access Journals (Sweden)

    Jirachaya Boonyarit

    2015-02-01

    Full Text Available Cassava rhizomes are left in fields after harvesting. This agricultural waste is rich in lignocellulosic material which is a substrate for white rot fungi. Disposal of synthetic dyes poses a problem to the environment and it needs to be addressed. The ability of Lentinus polychrous Lév., a white rot fungus, grown on the cassava rhizome chips, to decolorise three kinds of synthetic dye was studied. The effects of the initial moisture content of cassava rhizome used for fungal cultivation, the temperature during the decolorisation, and the pH of synthetic dye solution on the extent of decolorisation were investigated. The decolorisations of Reactive blue 49, Navy blue and Acid blue 62 were affected by the initial moisture content of cassava rhizome. The highest extents of decolorisation of these dyestuffs were observed when the fungus was cultivated at 70% initial moisture content. Temperatures of 30, 37 and 45oC did not alter the extent of decolorisation of the dyestuffs. The most extensive decolorisations of Reactive blue 49 and Acid blue 62 (anthraquinone dyes were at pH 3.0 while that of Navy blue (azo dye was at pH 7.0. Adsorption was the main mechanism of decolorisation of Navy blue. However, both enzymic degradation and adsorption were involved in the decolorisations of Reactive blue 49 and Acid blue 62.

  7. Synthetic biology as red herring.

    Science.gov (United States)

    Preston, Beth

    2013-12-01

    It has become commonplace to say that with the advent of technologies like synthetic biology the line between artifacts and living organisms, policed by metaphysicians since antiquity, is beginning to blur. But that line began to blur 10,000 years ago when plants and animals were first domesticated; and has been thoroughly blurred at least since agriculture became the dominant human subsistence pattern many millennia ago. Synthetic biology is ultimately only a late and unexceptional offshoot of this prehistoric development. From this perspective, then, synthetic biology is a red herring, distracting us from more thorough philosophical consideration of the most truly revolutionary human practice-agriculture. In the first section of this paper I will make this case with regard to ontology, arguing that synthetic biology crosses no ontological lines that were not crossed already in the Neolithic. In the second section I will construct a parallel case with regard to cognition, arguing that synthetic biology as biological engineering represents no cognitive advance over what was required for domestication and the new agricultural subsistence pattern it grounds. In the final section I will make the case with regard to human existence, arguing that synthetic biology, even if wildly successful, is not in a position to cause significant existential change in what it is to be human over and above the massive existential change caused by the transition to agriculture. I conclude that a longer historical perspective casts new light on some important issues in philosophy of technology and environmental philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. US Competitiveness in Synthetic Biology.

    Science.gov (United States)

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized.

  9. Synthetic Biology: Mapping the Scientific Landscape

    Science.gov (United States)

    Oldham, Paul; Hall, Stephen; Burton, Geoff

    2012-01-01

    This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves. PMID:22539946

  10. Functional mapping and implications of substrate specificity of the yeast high-affinity leucine permease Bap2.

    Science.gov (United States)

    Usami, Yuki; Uemura, Satsohi; Mochizuki, Takahiro; Morita, Asami; Shishido, Fumi; Inokuchi, Jin-ichi; Abe, Fumiyoshi

    2014-07-01

    Leucine is a major amino acid in nutrients and proteins and is also an important precursor of higher alcohols during brewing. In Saccharomyces cerevisiae, leucine uptake is mediated by multiple amino acid permeases, including the high-affinity leucine permease Bap2. Although BAP2 transcription has been extensively analyzed, the mechanisms by which a substrate is recognized and moves through the permease remain unknown. Recently, we determined 15 amino acid residues required for Tat2-mediated tryptophan import. Here we introduced homologous mutations into Bap2 amino acid residues and showed that 7 residues played a role in leucine import. Residues I109/G110/T111 and E305 were located within the putative α-helix break in TMD1 and TMD6, respectively, according to the structurally homologous Escherichia coli arginine/agmatine antiporter AdiC. Upon leucine binding, these α-helix breaks were assumed to mediate a conformational transition in Bap2 from an outward-open to a substrate-binding occluded state. Residues Y336 (TMD7) and Y181 (TMD3) were located near I109 and E305, respectively. Bap2-mediated leucine import was inhibited by some amino acids according to the following order of severity: phenylalanine, leucine>isoleucine>methionine, tyrosine>valine>tryptophan; histidine and asparagine had no effect. Moreover, this order of severity clearly coincided with the logP values (octanol-water partition coefficients) of all amino acids except tryptophan. This result suggests that the substrate partition efficiency to the buried Bap2 binding pocket is the primary determinant of substrate specificity rather than structural amino acid side chain recognition. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  12. The Ethics of Synthetic Biology

    DEFF Research Database (Denmark)

    Christiansen, Andreas

    The dissertation analyses and discusses a number of ethical issues that have been raised in connection with the development of synthetic biology. Synthetic biology is a set of new techniques for DNA-level design and construction of living beings with useful properties. The dissertation especially...

  13. Conserved regions of ribonucleoprotein ribonuclease MRP are involved in interactions with its substrate.

    Science.gov (United States)

    Esakova, Olga; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S

    2013-08-01

    Ribonuclease (RNase) MRP is a ubiquitous and essential site-specific eukaryotic endoribonuclease involved in the metabolism of a wide range of RNA molecules. RNase MRP is a ribonucleoprotein with a large catalytic RNA moiety that is closely related to the RNA component of RNase P, and multiple proteins, most of which are shared with RNase P. Here, we report the results of an ultraviolet-cross-linking analysis of interactions between a photoreactive RNase MRP substrate and the Saccharomyces cerevisiae RNase MRP holoenzyme. The results show that the substrate interacts with phylogenetically conserved RNA elements universally found in all enzymes of the RNase P/MRP family, as well as with a phylogenetically conserved RNA region that is unique to RNase MRP, and demonstrate that four RNase MRP protein components, all shared with RNase P, interact with the substrate. Implications for the structural organization of RNase MRP and the roles of its components are discussed.

  14. Effects of trace of nitrogen on the helium atmospheric pressure plasma jet interacting with a dielectric substrate

    Science.gov (United States)

    Ning, Wenjun; Dai, Dong; Zhang, Yuhui; Han, Yongxia; Li, Licheng

    2018-03-01

    Experimental observations and simulation results regarding a pure He atmospheric pressure plasma jet (APPJ) and He  +  N2 APPJs interacting with a downstream dielectric substrate are presented in this paper. Experiments utilizing spatial-temporal imaging show that, in the case of the pure He APPJ, an annular plasma-substrate interaction pattern is formed. With the introduction of N2, the plasma is more uniformly distributed on the substrate surface, appearing a solid interaction pattern. The experimental measurements indicate 0.5% N2 mixture is the optimal condition to achieve the most intense discharge, while the plasma-substrate contact area is slightly reduced by 6.1% in comparison to that of the pure He APPJ. A 2D self-consistent fluid model is constructed to provide insights into the role of the addition of trace of N2 on the discharge dynamics. The discharge morphologies predicated by the model is in principle consistent with the experimental observations. The simulation reveals that the conversion from the annular plasma-substrate interaction pattern to the solid one is attributed to the synthetic effect of the addition of N2 and the presentence of the substrate acting as the cathode to enhance the local electric field. In the solid interaction pattern, the Penning ionization makes a significant contribution to the surface discharge, especially in the afterglow region. The dominant positive ions (N2+ and N4+ ) and the reactive oxygen and nitrogen species including O and N gain remarkable increment in the flux intensity to the central surface, which merits great application potential.

  15. Content metamorphosis in synthetic holography

    International Nuclear Information System (INIS)

    Desbiens, Jacques

    2013-01-01

    A synthetic hologram is an optical system made of hundreds of images amalgamated in a structure of holographic cells. Each of these images represents a point of view on a three-dimensional space which makes us consider synthetic holography as a multiple points of view perspective system. In the composition of a computer graphics scene for a synthetic hologram, the field of view of the holographic image can be divided into several viewing zones. We can attribute these divisions to any object or image feature independently and operate different transformations on image content. In computer generated holography, we tend to consider content variations as a continuous animation much like a short movie. However, by composing sequential variations of image features in relation with spatial divisions, we can build new narrative forms distinct from linear cinematographic narration. When observers move freely and change their viewing positions, they travel from one field of view division to another. In synthetic holography, metamorphoses of image content are within the observer's path. In all imaging Medias, the transformation of image features in synchronisation with the observer's position is a rare occurrence. However, this is a predominant characteristic of synthetic holography. This paper describes some of my experimental works in the development of metamorphic holographic images.

  16. Too Soft to Stick: Influence of Substrate Modulus on Gecko Adhesion

    Science.gov (United States)

    Wilson, Michael; Klittich, Mena; Bernard, Craig; Rodrigo, Rochelle; Keith, Austin; Niewiarowski, Peter; Dhinojwala, Ali

    The gecko adhesion system fascinates biologists and materials scientists alike for its strong, reversible, glue-free, dry adhesion. Geckos encounter a variety of surfaces in their natural habitats; tropical geckos, such as Gekko gecko, encounter hard rough tree trunks as well as soft flexible leaves. Gecko adhesion on a wide variety of hard surfaces has been extensively studied, however there has been no work focused on adhesion to soft surfaces. Here, we investigate for the first time the influence of substrate modulus on gecko adhesion using two different surfaces (cellulose acetate and polydimethylsiloxane). Understanding the limitations of the gecko system is critical for gecko experimental design as well as for the development of synthetic adhesives, particularly in the biomedical field. National Science Foundation.

  17. Switching from Reactant to Substrate Engineering in the Selective Synthesis of Graphene Nanoribbons.

    Science.gov (United States)

    Merino-Díez, Néstor; Lobo-Checa, Jorge; Nita, Pawel; Garcia-Lekue, Aran; Basagni, Andrea; Vasseur, Guillaume; Tiso, Federica; Sedona, Francesco; Das, Pranab K; Fujii, Jun; Vobornik, Ivana; Sambi, Mauro; Pascual, José Ignacio; Ortega, J Enrique; de Oteyza, Dimas G

    2018-04-27

    The challenge of synthesizing graphene nanoribbons (GNRs) with atomic precision is currently being pursued along a one-way road, based on the synthesis of adequate molecular precursors that react in predefined ways through self-assembly processes. The synthetic options for GNR generation would multiply by adding a new direction to this readily successful approach, especially if both of them can be combined. We show here how GNR synthesis can be guided by an adequately nanotemplated substrate instead of by the traditionally designed reactants. The structural atomic precision, unachievable to date through top-down methods, is preserved by the self-assembly process. This new strategy's proof-of-concept compares experiments using 4,4''-dibromo-para-terphenyl as a molecular precursor on flat Au(111) and stepped Au(322) substrates. As opposed to the former, the periodic steps of the latter drive the selective synthesis of 6 atom-wide armchair GNRs, whose electronic properties have been further characterized in detail by scanning tunneling spectroscopy, angle resolved photoemission, and density functional theory calculations.

  18. Multiply-Imputed Synthetic Data: Advice to the Imputer

    Directory of Open Access Journals (Sweden)

    Loong Bronwyn

    2017-12-01

    Full Text Available Several statistical agencies have started to use multiply-imputed synthetic microdata to create public-use data in major surveys. The purpose of doing this is to protect the confidentiality of respondents’ identities and sensitive attributes, while allowing standard complete-data analyses of microdata. A key challenge, faced by advocates of synthetic data, is demonstrating that valid statistical inferences can be obtained from such synthetic data for non-confidential questions. Large discrepancies between observed-data and synthetic-data analytic results for such questions may arise because of uncongeniality; that is, differences in the types of inputs available to the imputer, who has access to the actual data, and to the analyst, who has access only to the synthetic data. Here, we discuss a simple, but possibly canonical, example of uncongeniality when using multiple imputation to create synthetic data, which specifically addresses the choices made by the imputer. An initial, unanticipated but not surprising, conclusion is that non-confidential design information used to impute synthetic data should be released with the confidential synthetic data to allow users of synthetic data to avoid possible grossly conservative inferences.

  19. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  20. Synthetic cannabis and acute ischemic stroke.

    Science.gov (United States)

    Bernson-Leung, Miya E; Leung, Lester Y; Kumar, Sandeep

    2014-01-01

    An association between marijuana use and stroke has been previously reported. However, the health risks of newer synthetic cannabinoid compounds are less well known. We describe 2 cases that introduce a previously unreported association between synthetic cannabis use and ischemic stroke in young adults. A 22-year-old woman presented with dysarthria, left hemiplegia, and left hemianesthesia within hours of first use of synthetic cannabis. She was healthy and without identified stroke risk factors other than oral contraceptive use and a patent foramen ovale without venous thromboses. A 26-year-old woman presented with nonfluent aphasia, left facial droop, and left hemianesthesia approximately 12 hours after first use of synthetic cannabis. Her other stroke risk factors included migraine with aura, oral contraceptive use, smoking, and a family history of superficial thrombophlebitis. Both women were found to have acute, large-territory infarctions of the right middle cerebral artery. Our 2 cases had risk factors for ischemic stroke but were otherwise young and healthy and the onset of their deficits occurred within hours after first-time exposure to synthetic cannabis. Synthetic cannabis use is an important consideration in the investigation of stroke in young adults. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  1. Graphene frameworks synthetized with Na2CO3 as a renewable water-soluble substrate and their high rate capability for supercapacitors

    Science.gov (United States)

    Cui, Huijuan; Zheng, Jianfeng; Zhu, Yanyan; Wang, Zhijian; Jia, Suping; Zhu, Zhenping

    2015-10-01

    Substrates are normally required in the chemical synthesis of graphene to enhance its formation. However, removing substrates in the post purification stage is difficult, during which harsh reagents are used and the substrates are usually consumed undesirably. In this paper, we report that universal sodium carbonate (Na2CO3) particles can effectively promote the construction of well-structured graphene frameworks based on a quick thermal decomposition of fumaric acids. Notably, the Na2CO3 particles are easily separated from graphene through a simple and green method, namely, washing with water at room temperature. Together with the reused characteristic of the recovered Na2CO3 particles, this approach is undoubtedly beneficial to the low-cost and clean synthesis of graphene. Benefiting from the framework structure, the as-synthesized graphene exhibits excellent performance in the supercapacitor. The specific capacitance of the GFs-modified electrode was calculated to be 242 F g-1 at 0.5 A g-1, which was almost twice that of the RGO-modified electrode (134 F g-1). More importantly, the GFs-modified electrode maintained 92.6% retention of its initial specific capacitance (from current density of 0.5 to 16 A g-1), which was much higher than that of 2D graphene-modified electrode.

  2. The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition

    Science.gov (United States)

    B.M. Cheever; J. R. Webster; E. E. Bilger; S. A. Thomas

    2013-01-01

    Heterotrophic microbes colonizing detritus obtain nitrogen (N) for growth by assimilating N from their substrate or immobilizing exogenous inorganic N. Microbial use of these two pools has different implications for N cycling and organic matter decomposition in the face of the global increase in biologically available N. We used sugar maple leaves labeled with

  3. Nanocrystallography measurements of early stage synthetic malaria pigment

    International Nuclear Information System (INIS)

    Dilanian, Ruben A.; Coughlan, Hannah D.

    2017-01-01

    The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of β-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in β-hematin data collected during SFX and synchrotron crystallography experiments. To interpret these differences two possibilities are considered: structural differences between the nanocrystal and larger crystalline forms of β-hematin, and radiation damage. Simulation studies show that structural inhomogeneity appears at present to provide a better fit to the experimental data. If confirmed, these observations will have implications for designing compounds that inhibit hemozoin formation and suggest that, for some systems at least, additional information may be gained by comparing structures obtained from nanocrystals and macroscopic crystals of the same molecule.

  4. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly.

    Science.gov (United States)

    Pacher, Pal; Steffens, Sabine; Haskó, György; Schindler, Thomas H; Kunos, George

    2018-03-01

    Dysregulation of the endogenous lipid mediators endocannabinoids and their G-protein-coupled cannabinoid receptors 1 and 2 (CB 1 R and CB 2 R) has been implicated in a variety of cardiovascular pathologies. Activation of CB 1 R facilitates the development of cardiometabolic disease, whereas activation of CB 2 R (expressed primarily in immune cells) exerts anti-inflammatory effects. The psychoactive constituent of marijuana, Δ 9 -tetrahydrocannabinol (THC), is an agonist of both CB 1 R and CB 2 R, and exerts its psychoactive and adverse cardiovascular effects through the activation of CB 1 R in the central nervous and cardiovascular systems. The past decade has seen a nearly tenfold increase in the THC content of marijuana as well as the increased availability of highly potent synthetic cannabinoids for recreational use. These changes have been accompanied by the emergence of serious adverse cardiovascular events, including myocardial infarction, cardiomyopathy, arrhythmias, stroke, and cardiac arrest. In this Review, we summarize the role of the endocannabinoid system in cardiovascular disease, and critically discuss the cardiovascular consequences of marijuana and synthetic cannabinoid use. With the legalization of marijuana for medicinal purposes and/or recreational use in many countries, physicians should be alert to the possibility that the use of marijuana or its potent synthetic analogues might be the underlying cause of severe cardiovascular events and pathologies.

  5. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  6. Effects of Exposed Artificial Substrate on the Competition between Phytoplankton and Benthic Algae: Implications for Shallow Lake Restoration

    OpenAIRE

    Hu He; Xuguang Luo; Hui Jin; Jiao Gu; Erik Jeppesen; Zhengwen Liu; Kuanyi Li

    2017-01-01

    Phytoplankton and benthic algae coexist in shallow lakes and the outcome of the competition between these two photoautotrophs can markedly influence water clarity. It is well established that exposed artificial substrate in eutrophic waters can remove nutrients and fine particles from the water column via the attached periphyton canopy. However, the effects of the introduction of artificial substrate on the competition between planktonic and benthic primary producers remain to be elucidated. ...

  7. [Treatment approaches for synthetic drug addiction].

    Science.gov (United States)

    Kobayashi, Ohji

    2015-09-01

    In Japan, synthetic drugs have emerged since late 2000s, and cases of emergency visits and fatal traffic accidents due to acute intoxication have rapidly increased. The synthetic drugs gained popularity mainly because they were cheap and thought to be "legal". The Japanese government restricted not only production and distribution, but also its possession and use in April 2014. As the synthetic drug dependent patients have better social profiles compared to methamphetamine abusers, this legal sanction may have triggered the decrease in the number of synthetic drug dependent patient visits observed at Kanagawa Psychiatric Center since July 2014. Treatment of the synthetic drug dependent patients should begin with empathic inquiry into the motives and positive psychological effects of the drug use. In the maintenance phase, training patients to trust others and express their hidden negative emotions through verbal communications is essential. The recovery is a process of understanding the relationship between psychological isolation and drug abuse, and gaining trust in others to cope with negative emotions that the patients inevitably would face in their subsequent lives.

  8. [Synthetic biology and rearrangements of microbial genetic material].

    Science.gov (United States)

    Liang, Quan-Feng; Wang, Qian; Qi, Qing-Sheng

    2011-10-01

    As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.

  9. A synthetic system links FeFe-hydrogenases to essential E. coli sulfur metabolism

    Directory of Open Access Journals (Sweden)

    Grandl Gerald

    2011-05-01

    Full Text Available Abstract Background FeFe-hydrogenases are the most active class of H2-producing enzymes known in nature and may have important applications in clean H2 energy production. Many potential uses are currently complicated by a crucial weakness: the active sites of all known FeFe-hydrogenases are irreversibly inactivated by O2. Results We have developed a synthetic metabolic pathway in E. coli that links FeFe-hydrogenase activity to the production of the essential amino acid cysteine. Our design includes a complementary host strain whose endogenous redox pool is insulated from the synthetic metabolic pathway. Host viability on a selective medium requires hydrogenase expression, and moderate O2 levels eliminate growth. This pathway forms the basis for a genetic selection for O2 tolerance. Genetically selected hydrogenases did not show improved stability in O2 and in many cases had lost H2 production activity. The isolated mutations cluster significantly on charged surface residues, suggesting the evolution of binding surfaces that may accelerate hydrogenase electron transfer. Conclusions Rational design can optimize a fully heterologous three-component pathway to provide an essential metabolic flux while remaining insulated from the endogenous redox pool. We have developed a number of convenient in vivo assays to aid in the engineering of synthetic H2 metabolism. Our results also indicate a H2-independent redox activity in three different FeFe-hydrogenases, with implications for the future directed evolution of H2-activating catalysts.

  10. Dynamics of Preferential Substrate Recognition in HIV-1 Protease: Redefining the Substrate Envelope

    Science.gov (United States)

    Özen, Ayşegül; Haliloğlu, Türkan; Schiffer, Celia A.

    2011-01-01

    HIV-1 protease (PR) permits viral maturation by processing the Gag and Gag-Pro-Pol polyproteins. Though HIV-1 PR inhibitors (PIs) are used in combination antiviral therapy, the emergence of drug resistance has limited their efficacy. The rapid evolution of HIV-1 necessitates the consideration of drug resistance in novel drug-design strategies. Drug-resistant HIV-1 PR variants, while no longer efficiently inhibited, continue to efficiently hydrolyze the natural viral substrates. Though highly diverse in sequence, the HIV-1 PR substrates bind in a conserved three-dimensional shape we defined as the “substrate envelope”. We previously showed that resistance mutations arise where PIs protrude beyond the substrate envelope, as these regions are crucial for drug binding but not for substrate recognition. Here, we extend this model by considering the role of protein dynamics in the interaction of HIV-1 PR with its substrates. Seven molecular dynamics simulations of PR-substrate complexes were performed to estimate the conformational flexibility of substrates in their complexes. Interdependency of the substrate-protease interactions may compensate for the variations in cleavage-site sequences, and explain how a diverse set of sequences can be recognized as substrates by the same enzyme. This diversity may be essential for regulating sequential processing of substrates. We also define a dynamic substrate envelope as a more accurate representation of PR-substrate interactions. This dynamic substrate envelope, described by a probability distribution function, is a powerful tool for drug design efforts targeting ensembles of resistant HIV-1 PR variants with the aim of developing drugs that are less susceptible to resistance. PMID:21762811

  11. Synthetic biology era: Improving antibiotic's world.

    Science.gov (United States)

    Guzmán-Trampe, Silvia; Ceapa, Corina D; Manzo-Ruiz, Monserrat; Sánchez, Sergio

    2017-06-15

    The emergence of antibiotic-resistant pathogen microorganisms is problematic in the context of the current spectrum of available medication. The poor specificity and the high toxicity of some available molecules have made imperative the search for new strategies to improve the specificity and to pursue the discovery of novel compounds with increased bioactivity. Using living cells as platforms, synthetic biology has counteracted this problem by offering novel pathways to create synthetic systems with improved and desired functions. Among many other biotechnological approaches, the advances in synthetic biology have made it possible to design and construct novel biological systems in order to look for new drugs with increased bioactivity. Advancements have also been made in the redesigning of RNA and DNA molecules in order to engineer antibiotic clusters for antibiotic overexpression. As for the production of these antibacterial compounds, yeasts and filamentous fungi as well as gene therapy are utilized to enhance protein solubility. Specific delivery is achieved by creating chimeras using plant genes into bacterial hosts. Some of these synthetic systems are currently in clinical trials, proving the proficiency of synthetic biology in terms of both pharmacological activities as well as an increase in the biosafety of treatments. It is possible that we may just be seeing the tip of the iceberg, and synthetic biology applications will overpass expectations beyond our present knowledge. Copyright © 2017. Published by Elsevier Inc.

  12. Synthetic bedding and wheeze in childhood.

    Science.gov (United States)

    Ponsonby, Anne-Louise; Dwyer, Terence; Kemp, Andrew; Cochrane, Jennifer; Couper, David; Carmichael, Allan

    2003-01-01

    The reasons for the increase in childhood asthma over time are unclear. The indoor environment is of particular concern. An adverse role for synthetic bedding on asthma development in childhood has been suggested by cross-sectional studies that have found an association between synthetic pillow use and childhood wheeze. Prospective data on infant bedding have not been available. Bedding data at 1 month of age were available from an infant survey for children who were participating in a 1995 follow-up study (N = 863; 78% traced). The 1995 follow-up was embedded in a larger cross-sectional survey involving 6,378 seven year olds in Tasmania (N = 92% of eligible). Outcome measures included respiratory symptoms as defined in the International Study of Asthma and Allergies in Childhood protocol. Frequent wheeze was defined as more than 12 wheeze episodes over the past year compared with no wheeze. Synthetic pillow use at 1 month of age was associated with frequent wheeze at age 7 (adjusted relative risk [aRR] = 2.5; 95% confidence interval [CI] = 1.2-5.5) independent of childhood exposure. Current synthetic pillow and quilt use was strongly associated with frequent wheeze (aRR = 5.2; CI = 1.3-20.6). Substantial trends were evident for an association of increasing number of synthetic bedding items with frequent wheeze and with increasing wheeze frequency. Among children with asthma, the age of onset of asthma occurred earlier if synthetic bedding was used in infancy. In this cohort, synthetic bedding was strongly and consistently associated with frequent childhood wheeze. The association did not appear to be attributable to bedding choice as part of an asthma management strategy.

  13. Investigating Microbial Biofilm Formations on Crustal Rock Substrates

    Science.gov (United States)

    Weiser, M.; D'Angelo, T.; Carr, S. A.; Orcutt, B.

    2017-12-01

    Ocean crust hosts microbial life that, in some cases, alter the component rocks as a means of obtaining energy. Variations in crust lithology, included trace metal and mineral content, as well as the chemistry of the fluids circulating through them, provide substrates for some microbes to metabolize, leading to formation of biofilm community structures. Microbes have different parameters for the situations in which they will form biofilms, but they must have some source of energy in excess at the site of biofilm formation for them to become stationary and form the carbohydrate-rich structures connecting the cells to one another and the substrate. Generally, the requirements for microbes to form biofilms on crustal minerals are unclear. We designed two experiments to test (1) mineral preference and biofilm formation rates by natural seawater microbial communities, and (2) biofilm development as a function of phosphate availability for an organism isolated from subseafloor ocean crust. In Experiment 1, we observed that phyric basalt groundmass is preferentially colonized over aphyric basalt or metal sulfides in a shallow water and oxic seawater environment. In experiment 2, tests of the anaerobic heterotroph Thalassospira bacteria isolated from oceanic crustal fluids showed that they preferentially form biofilms, lose motility, and increase exponentially in number over time in higher-PO4 treatments (50 micromolar), including with phosphate-doped basalts, than in treatments with low phosphate concentrations (0.5 micromolar) often found in crustal fluids. These observations suggest phosphate as a main driver of biofilm formation in subsurface crust. Overall, these data suggest that the drivers of microbial biofilm formation on crustal substrates are selective to the substrate conditions, which has important implications for estimating the global biomass of life harbored in oceanic crust.

  14. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    International Nuclear Information System (INIS)

    Jannat, Risat A; Hammer, Daniel A; Robbins, Gregory P; Ricart, Brendon G; Dembo, Micah

    2010-01-01

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K D of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against β 2 -integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  15. Neutrophil adhesion and chemotaxis depend on substrate mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, Risat A; Hammer, Daniel A [Department of Bioengineering, University of Pennsylvania, 240 Skirkanich Hall, 210 South 33rd Street, Philadelphia, PA 19104 (United States); Robbins, Gregory P; Ricart, Brendon G [Department of Chemical and Biomolecular Engineering, University of Pennsylvania, 311A Towne Building, 220 South 33rd Street, Philadelphia, PA 19104 (United States); Dembo, Micah, E-mail: hammer@seas.upenn.ed [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States)

    2010-05-19

    Neutrophil adhesion to the vasculature and chemotaxis within tissues play critical roles in the inflammatory response to injury and pathogens. Unregulated neutrophil activity has been implicated in the progression of numerous chronic and acute diseases such as rheumatoid arthritis, asthma and sepsis. Cell migration of anchorage-dependent cells is known to depend on both chemical and mechanical interactions. Although neutrophil responses to chemical cues have been well characterized, little is known about the effect of underlying tissue mechanics on neutrophil adhesion and migration. To address this question, we quantified neutrophil migration and traction stresses on compliant hydrogel substrates with varying elasticity in a micromachined gradient chamber in which we could apply either a uniform concentration or a precise gradient of the bacterial chemoattractant fMLP. Neutrophils spread more extensively on substrates of greater stiffness. In addition, increasing the stiffness of the substrate leads to a significant increase in the chemotactic index for each fMLP gradient tested. As the substrate becomes stiffer, neutrophils generate higher traction forces without significant changes in cell speed. These forces are often displayed in pairs and focused in the uropod. Increases in the mean fMLP concentration beyond the K{sub D} of the receptor lead to a decrease in chemotactic index on all surfaces. Blocking with an antibody against {beta}{sub 2}-integrins leads to a significant reduction, but not an elimination, of directed motility on stiff materials, but no change in motility on soft materials, suggesting neutrophils can display both integrin-dependent and integrin-independent motility. These findings are critical for understanding how neutrophil migration may change in different mechanical environments in vivo and can be used to guide the design of migration inhibitors that more efficiently target inflammation.

  16. Synthetic biology analysed tools for discussion and evaluation

    CERN Document Server

    2016-01-01

    Synthetic biology is a dynamic, young, ambitious, attractive, and heterogeneous scientific discipline. It is constantly developing and changing, which makes societal evaluation of this emerging new science a challenging task, prone to misunderstandings. Synthetic biology is difficult to capture, and confusion arises not only regarding which part of synthetic biology the discussion is about, but also with respect to the underlying concepts in use. This book offers a useful toolbox to approach this complex and fragmented field. It provides a biological access to the discussion using a 'layer' model that describes the connectivity of synthetic or semisynthetic organisms and cells to the realm of natural organisms derived by evolution. Instead of directly reviewing the field as a whole, firstly our book addresses the characteristic features of synthetic biology that are relevant to the societal discussion. Some of these features apply only to parts of synthetic biology, whereas others are relevant to synthetic bi...

  17. Synthetic Sling Failure - Evaluations and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. S. [Washington River Protection Solutions, Richland, WA (United States); Mackey, Thomas C. [Washington River Protection Solutions, Richland, WA (United States)

    2009-10-26

    The information and evaluations provided in this report were compiled to address the recurring problem of synthetic sling failure. As safety is the number one priority in all work aspects, a solution must be devised to prevent accidents from occurring. A total of thirteen cases regarding synthetic sling failure were evaluated in order to determine their causes, effects, and preventative measures. From the collected data, it was found that all cases in which the synthetic sling contacted the edge of its load resulted in sling failure. It is required that adequate synthetic sling protection devices be used to protect slings in any lift where the sling comes in direct contact with the edge or corner of its load. However, there are no consensus codes or standards stating the type, material, or purpose of the type of protective device used to protect the sling from being cut. Numerous industry standards and codes provide vague descriptions on how to protect synthetic slings. Without a clear, concise statement of how to protect synthetic slings, it is common for inadequate materials and sling protection devices to be used in an attempt to meet the intent of these requirements. The use of an inadequate sling protection device is the main cause of synthetic sling failure in all researched cases. Commercial sling protection devices come in many shapes and sizes, and have a variety of names, as well as advertised uses. 'Abrasion pads' and 'wear protectors' are two different names for products with the same intended purpose. There is no distinguishable way to determine the extent of sling protection which these devices will provide, or what specific scenarios they are made for. This creates room for error in a field where error is unacceptable. This report provides a recommended action for hoisting and rigging activities which require synthetic slings to contact a load, as well as recommended changes to industry standards which will benefit overall

  18. Improving long term oxidation protection for {gamma}-TiAl substrates

    Energy Technology Data Exchange (ETDEWEB)

    Bobzin, K.; Schlaefer, T.; Bruehl, M.; Linke, T.F. [Thermisches Spritzen, Institut fuer Oberflaechentechnik (IOT), RWTH Aachen University (Germany); Warda, T.

    2011-11-15

    In previous work, a thermal spray multilayer system consisting of Zirconia (ZrO{sub 2}) and MCrAlY top coat showed promising results regarding the oxidation behavior of the Gamma Titanium Aluminides substrates tested, which encouraged further research activities. Diffusion of substrate material was successfully inhibited by a ceramic Zirconia coating. A building up of a dense and stable oxide layer could be achieved by additional application of an MCrAlY top coat, leading to improved oxidation resistance and thus showing feasibility. In this work the main focus for development was put on enhancing adhesion and lowering residual stresses of the coatings in order to allow long term and cyclic testing without delamination taking place. Being a very brittle material, Gamma Titanium Aluminides require special surface treatment to enable roughening which is crucial for a strong mechanical bond between substrate and coating. Alternatives to conventional grit blasting as a standard preparation method were investigated. These were micro-abrasive blasting and blasting at elevated temperature ({approx}300-550 C) to allow a more ductile behavior. The paper will highlight the implications by means of these measures and will also show the present development status of the multilayer system. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  20. Philosophy of Systems and Synthetic Biology

    DEFF Research Database (Denmark)

    Green, Sara

    2017-01-01

    This entry aims to clarify how systems and synthetic biology contribute to and extend discussions within philosophy of science. Unlike fields such as developmental biology or molecular biology, systems and synthetic biology are not easily demarcated by a focus on a specific subject area or level...... of organization. Rather, they are characterized by the development and application of mathematical, computational, and synthetic modeling strategies in response to complex problems and challenges within the life sciences. Proponents of systems and synthetic biology often stress the necessity of a perspective...... that goes beyond the scope of molecular biology and genetic engineering, respectively. With the emphasis on systems and interaction networks, the approaches explicitly engage in one of the oldest philosophical discussions on the relationship between parts and wholes, or between reductionism and holism...

  1. Defining the Synthetic Biology Supply Chain.

    Science.gov (United States)

    Frazar, Sarah L; Hund, Gretchen E; Bonheyo, George T; Diggans, James; Bartholomew, Rachel A; Gehrig, Lindsey; Greaves, Mark

    Several recent articles have described risks posed by synthetic biology and spurred vigorous discussion in the scientific, commercial, and government communities about how to best detect, prevent, regulate, and respond to these risks. The Pacific Northwest National Laboratory's (PNNL) deep experience working with dual-use technologies for the nuclear industry has shown that analysis of supply chains can reveal security vulnerabilities and ways to mitigate security risk without hindering beneficial research and commerce. In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology to illustrate new insights about the effectiveness of current regulations, the possible need for different screening approaches, and new technical solutions that could help identify or mitigate risks in the synthetic biology supply chain.

  2. Development of new peptide synthetic method of enzyme using the extraction reactivity; Chushutsu hanno wo mochiita shiki pepuchido koso goseiho no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Makoto [Oita University, Oita (Japan)

    1999-03-05

    Recently, taste and bioactivation of large number of oligopeptide become clear, and the development of the efficient synthetic method becomes the urgency. In the production process by conventional enzyme reaction which combined the crystallization, because the solubility of the product to the water which is reaction solvent is low, the yield remained at about 60%, and the problem of reaction inhibition of the product by the crystal had also been indicated. In the enzyme synthesis of the aspartame in which he is the representative oligopeptide, it aimed at the establishment of the new synthesis method which can improve yield and reaction rate, while the segregation enzyme was continuously utilized. In this synthetic method, supply of organic solvent which dissolved the substrate, extraction of the substrate from organic solvent to water phase, synthesis reaction by the segregation enzyme in water phase, extraction of the aspartame which is a product from water phase to organic solvent progress, and they continuously progress by one complete mixing reactor. The process which controlled these speeds and yields was quantitatively analyzed, and material balance style considering substrate, enzyme and mass transfer of the product and enzyme reaction speed was deduced. The optimum operating condition for improving yield and productivity of the purpose product using this solution was examined, and optimum supply concentration and agitation speed of aspartic acid which was a substrate were started, and the optimum operating condition which realizes the improvement in high yield and productivity over 90% of the aspartame was clarified. Like this, it is that this research adopts features of liquid Citrus nobilis two-phase partition for the enzyme synthesis of the aspartame, and it is considered that there is a value, because it is the creative research which verified that the productivity can be greatly improved by the utilization of the chemical-engineering technique, and

  3. Identification of protein tyrosine phosphatase 1B and casein as substrates for 124-v-Mos

    Directory of Open Access Journals (Sweden)

    Stabel Silvia

    2002-04-01

    Full Text Available Abstract Background The mos proto-oncogene encodes a cytoplasmic serine/threonine-specific protein kinase with crucial function during meiotic cell division in vertebrates. Based on oncogenic amino acid substitutions the viral derivative, 124-v-Mos, displays constitutive protein kinase activity and functions independent of unknown upstream effectors of mos protein kinase. We have utilized this property of 124-v-Mos and screened for novel mos substrates in immunocomplex kinase assays in vitro. Results We generated recombinant 124-v-Mos using the baculovirus expression system in Spodoptera frugiperda cells and demonstrated constitutive kinase activity by the ability of 124-v-Mos to auto-phosphorylate and to phosphorylate vimentin, a known substrate of c-Mos. Using this approach we analyzed a panel of acidic and basic substrates in immunocomplex protein kinase assays and identified novel in vitro substrates for 124-v-Mos, the protein tyrosine phosphatase 1B (PTP1B, alpha-casein and beta-casein. We controlled mos-specific phosphorylation of PTP1B and casein in comparative assays using a synthetic kinase-inactive 124-v-Mos mutant and further, tryptic digests of mos-phosphorylated beta-casein identified a phosphopeptide specifically targeted by wild-type 124-v-Mos. Two-dimensional phosphoamino acid analyses showed that 124-v-mos targets serine and threonine residues for phosphorylation in casein at a 1:1 ratio but auto-phosphorylation occurs predominantly on serine residues. Conclusion The mos substrates identified in this study represent a basis to approach the identification of the mos-consensus phosphorylation motif, important for the development of specific inhibitors of the Mos protein kinase.

  4. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI......-TOF-MS and LC-MS of synthetic peptides....

  5. Structural insights into conserved L-arabinose metabolic enzymes reveal the substrate binding site of a thermophilic L-arabinose isomerase.

    Science.gov (United States)

    Lee, Yong-Jik; Lee, Sang-Jae; Kim, Seong-Bo; Lee, Sang Jun; Lee, Sung Haeng; Lee, Dong-Woo

    2014-03-18

    Structural genomics demonstrates that despite low levels of structural similarity of proteins comprising a metabolic pathway, their substrate binding regions are likely to be conserved. Herein based on the 3D-structures of the α/β-fold proteins involved in the ara operon, we attempted to predict the substrate binding residues of thermophilic Geobacillus stearothermophilus L-arabinose isomerase (GSAI) with no 3D-structure available. Comparison of the structures of L-arabinose catabolic enzymes revealed a conserved feature to form the substrate-binding modules, which can be extended to predict the substrate binding site of GSAI (i.e., D195, E261 and E333). Moreover, these data implicated that proteins in the l-arabinose metabolic pathway might retain their substrate binding niches as the modular structure through conserved molecular evolution even with totally different structural scaffolds. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. The emerging age of cell-free synthetic biology.

    Science.gov (United States)

    Smith, Mark Thomas; Wilding, Kristen M; Hunt, Jeremy M; Bennett, Anthony M; Bundy, Bradley C

    2014-08-25

    The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Adding Spice to the Porridge: The development of a synthetic cannabinoid market in an English prison.

    Science.gov (United States)

    Ralphs, Rob; Williams, Lisa; Askew, Rebecca; Norton, Anna

    2017-02-01

    In 2014, the annual report of the Her Majesty's Chief Inspector of Prisons (HMIP) for England and Wales raised concerns regarding New Psychoactive Substance (NPS) use in custody, specifically the consumption of synthetic cannabinoids. To date, however, the use of these substances in prison populations, and the markets that have emerged to facilitate it, have been under-researched. Our research was conducted in an English adult male prison using multi-method techniques. These included: in-depth interviews and focus groups with prison staff and prisoners; observations of prisoner-led focus groups, workshops and restorative justice circles involving discussion of synthetic cannabinoid use and markets; and analysis of routinely collected prison data measuring drug seizures, incidents of violence and incidents of self-harm. The findings highlight: (1) the scale and nature of synthetic cannabinoid markets in a custodial setting and the motivations for establishing them; (2) the nature and motivations for synthetic cannabinoids use in prison; and (3) the impact synthetic cannabinoid markets in this setting have upon prisoners, the prison system and the wider criminal justice system. The policy implications of the stated motivations for use and reported problems are discussed in relation to both prison and community settings, and the recently implemented Psychoactive Substance Act (2016). The paper concludes that the rise in synthetic cannabinoid use in custody and the size of the drug market are posing significant challenges to the management of offenders; including healthcare, appropriate detection techniques, license recall and sanctions for both use and supply. We argue that the primary motivation for consumption in this setting is the avoidance of drug use detection, and that this is likely to supersede other motivations for consumption in the future. We propose a revision of the use of mandatory drug tests (MDTs) both in prisons and in the management of offenders in

  8. Automated radiofrequency-based US measurement of common carotid intima-media thickness in RA patients treated with synthetic vs synthetic and biologic DMARDs.

    Science.gov (United States)

    Naredo, Esperanza; Möller, Ingrid; Corrales, Alfonso; Bong, David A; Cobo-Ibáñez, Tatiana; Corominas, Hector; Garcia-Vivar, Ma Luz; Macarrón, Pilar; Navio, Teresa; Richi, Patricia; Iagnocco, Annamaria; Garrido, Jesús; Martínez-Hernández, David

    2013-02-01

    To compare the carotid intima-media thickness (IMT) assessed with automated radiofrequency-based US in RA patients treated with synthetic vs synthetic and biologic DMARDs and controls. Ninety-four RA patients and 94 sex- and age-matched controls were prospectively recruited at seven centres. Cardiovascular (CV) risk factors and co-morbidities, RA characteristics and therapy were recorded. Common carotid artery (CCA)-IMT was assessed in RA patients and controls with automated radiofrequency-based US by the same investigator at each centre. Forty-five (47.9%) RA patients had been treated with synthetic DMARDs and 49 (52.1%) with synthetic and biologic DMARDs. There were no significant differences between the RA patients and controls in demographics, CV co-morbidities and CV disease. There were significantly more smokers among RA patients treated with synthetic and biologic DMARDs (P = 0.036). Disease duration and duration of CS and synthetic DMARD therapy was significantly longer in RA patients treated with synthetic and biologic DMARDs (P radiofrequency-based measurement of CCA-IMT can discriminate between RA patients treated with synthetic DMARDs vs RA patients treated with synthetic and biologic DMARDs.

  9. Substrate system for spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  10. Photolithographic Synthesis of High-Density DNA and RNA Arrays on Flexible, Transparent, and Easily Subdivided Plastic Substrates.

    Science.gov (United States)

    Holden, Matthew T; Carter, Matthew C D; Wu, Cheng-Hsien; Wolfer, Jamison; Codner, Eric; Sussman, Michael R; Lynn, David M; Smith, Lloyd M

    2015-11-17

    The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.

  11. Robust synthetic biology design: stochastic game theory approach.

    Science.gov (United States)

    Chen, Bor-Sen; Chang, Chia-Hung; Lee, Hsiao-Ching

    2009-07-15

    Synthetic biology is to engineer artificial biological systems to investigate natural biological phenomena and for a variety of applications. However, the development of synthetic gene networks is still difficult and most newly created gene networks are non-functioning due to uncertain initial conditions and disturbances of extra-cellular environments on the host cell. At present, how to design a robust synthetic gene network to work properly under these uncertain factors is the most important topic of synthetic biology. A robust regulation design is proposed for a stochastic synthetic gene network to achieve the prescribed steady states under these uncertain factors from the minimax regulation perspective. This minimax regulation design problem can be transformed to an equivalent stochastic game problem. Since it is not easy to solve the robust regulation design problem of synthetic gene networks by non-linear stochastic game method directly, the Takagi-Sugeno (T-S) fuzzy model is proposed to approximate the non-linear synthetic gene network via the linear matrix inequality (LMI) technique through the Robust Control Toolbox in Matlab. Finally, an in silico example is given to illustrate the design procedure and to confirm the efficiency and efficacy of the proposed robust gene design method. http://www.ee.nthu.edu.tw/bschen/SyntheticBioDesign_supplement.pdf.

  12. Catalytic Micromotors Moving Near Polyelectrolyte-Modified Substrates: The Roles of Surface Charges, Morphology, and Released Ions.

    Science.gov (United States)

    Wei, Mengshi; Zhou, Chao; Tang, Jinyao; Wang, Wei

    2018-01-24

    Synthetic microswimmers, or micromotors, are finding potential uses in a wide range of applications, most of which involve boundaries. However, subtle yet important effects beyond physical confinement on the motor dynamics remain less understood. In this letter, glass substrates were functionalized with positively and negatively charged polyelectrolytes, and the dynamics of micromotors moving close to the modified surfaces was examined. Using acoustic levitation and numerical simulation, we reveal how the speed of a chemically propelled micromotor slows down significantly near a polyelectrolyte-modified surface by the combined effects of surface charges, surface morphology, and ions released from the films.

  13. Synthetic biology of polyketide synthases

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Backman, Tyler W.H.; Keasling, Jay D.

    2018-01-01

    ). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we...... realize the potential that synthetic biology approaches bring to this class of molecules....

  14. Modelling substrate specificity and enantioselectivity for lipases and esterases by substrate-imprinted docking

    Directory of Open Access Journals (Sweden)

    Tyagi Sadhna

    2009-06-01

    Full Text Available Abstract Background Previously, ways to adapt docking programs that were developed for modelling inhibitor-receptor interaction have been explored. Two main issues were discussed. First, when trying to model catalysis a reaction intermediate of the substrate is expected to provide more valid information than the ground state of the substrate. Second, the incorporation of protein flexibility is essential for reliable predictions. Results Here we present a predictive and robust method to model substrate specificity and enantioselectivity of lipases and esterases that uses reaction intermediates and incorporates protein flexibility. Substrate-imprinted docking starts with covalent docking of reaction intermediates, followed by geometry optimisation of the resulting enzyme-substrate complex. After a second round of docking the same substrate into the geometry-optimised structures, productive poses are identified by geometric filter criteria and ranked by their docking scores. Substrate-imprinted docking was applied in order to model (i enantioselectivity of Candida antarctica lipase B and a W104A mutant, (ii enantioselectivity and substrate specificity of Candida rugosa lipase and Burkholderia cepacia lipase, and (iii substrate specificity of an acetyl- and a butyrylcholine esterase toward the substrates acetyl- and butyrylcholine. Conclusion The experimentally observed differences in selectivity and specificity of the enzymes were reproduced with an accuracy of 81%. The method was robust toward small differences in initial structures (different crystallisation conditions or a co-crystallised ligand, although large displacements of catalytic residues often resulted in substrate poses that did not pass the geometric filter criteria.

  15. Visual cues in low-level flight - Implications for pilotage, training, simulation, and enhanced/synthetic vision systems

    Science.gov (United States)

    Foyle, David C.; Kaiser, Mary K.; Johnson, Walter W.

    1992-01-01

    This paper reviews some of the sources of visual information that are available in the out-the-window scene and describes how these visual cues are important for routine pilotage and training, as well as the development of simulator visual systems and enhanced or synthetic vision systems for aircraft cockpits. It is shown how these visual cues may change or disappear under environmental or sensor conditions, and how the visual scene can be augmented by advanced displays to capitalize on the pilot's excellent ability to extract visual information from the visual scene.

  16. Mass Spectrometric Analysis of Synthetic Organic Pigments.

    Science.gov (United States)

    Sugaya, Naeko; Takahashi, Mitsuko; Sakurai, Katsumi; Tanaka, Nobuko; Okubo, Ichiro; Kawakami, Tsuyoshi

    2018-04-18

    Though synthetic organic colorants are used in various applications nowadays, there is the concern that impurities by-produced during the manufacturing and degradation products in some of these colorants are persistent organic pollutants and carcinogens. Thus, it is important to identify the synthetic organic colorants in various products, such as commercial paints, ink, cosmetics, food, textile, and plastics. Dyes, which are soluble in water and other solvents, could be analyzed by chromatographic methods. In contrast, it is difficult to analyze synthetic organic pigments by these methods because of their insolubility. This review is an overview of mass spectrometric analysis of synthetic organic pigments by various ionization methods. We highlight a recent study of textile samples by atmospheric pressure solid analysis probe MS. Furthermore, the mass spectral features of synthetic organic pigments and their separation from other components such as paint media and plasticizers are discussed.

  17. Biophysical properties of intrinsically disordered p130Cas substrate domain--implication in mechanosensing.

    Directory of Open Access Journals (Sweden)

    Kinya Hotta

    2014-04-01

    Full Text Available Mechanical stretch-induced tyrosine phosphorylation in the proline-rich 306-residue substrate domain (CasSD of p130Cas (or BCAR1 has eluded an experimentally validated structural understanding. Cellular p130Cas tyrosine phosphorylation is shown to function in areas without internal actomyosin contractility, sensing force at the leading edge of cell migration. Circular dichroism shows CasSD is intrinsically disordered with dominant polyproline type II conformations. Strongly conserved in placental mammals, the proline-rich sequence exhibits a pseudo-repeat unit with variation hotspots 2-9 residues before substrate tyrosine residues. Atomic-force microscopy pulling experiments show CasSD requires minimal extension force and exhibits infrequent, random regions of weak stability. Proteolysis, light scattering and ultracentrifugation results show that a monomeric intrinsically disordered form persists for CasSD in solution with an expanded hydrodynamic radius. All-atom 3D conformer sampling with the TraDES package yields ensembles in agreement with experiment when coil-biased sampling is used, matching the experimental radius of gyration. Increasing β-sampling propensities increases the number of prolate conformers. Combining the results, we conclude that CasSD has no stable compact structure and is unlikely to efficiently autoinhibit phosphorylation. Taking into consideration the structural propensity of CasSD and the fact that it is known to bind to LIM domains, we propose a model of how CasSD and LIM domain family of transcription factor proteins may function together to regulate phosphorylation of CasSD and effect machanosensing.

  18. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  19. Super-Resolution for Synthetic Zooming

    Directory of Open Access Journals (Sweden)

    Li Xin

    2006-01-01

    Full Text Available Optical zooming is an important feature of imaging systems. In this paper, we investigate a low-cost signal processing alternative to optical zooming—synthetic zooming by super-resolution (SR techniques. Synthetic zooming is achieved by registering a sequence of low-resolution (LR images acquired at varying focal lengths and reconstructing the SR image at a larger focal length or increased spatial resolution. Under the assumptions of constant scene depth and zooming speed, we argue that the motion trajectories of all physical points are related to each other by a unique vanishing point and present a robust technique for estimating its D coordinate. Such a line-geometry-based registration is the foundation of SR for synthetic zooming. We address the issue of data inconsistency arising from the varying focal length of optical lens during the zooming process. To overcome the difficulty of data inconsistency, we propose a two-stage Delaunay-triangulation-based interpolation for fusing the LR image data. We also present a PDE-based nonlinear deblurring to accommodate the blindness and variation of sensor point spread functions. Simulation results with real-world images have verified the effectiveness of the proposed SR techniques for synthetic zooming.

  20. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  1. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  2. Use of synthetic cathinones and cannabimimetics among injection drug users in San Diego, California.

    Science.gov (United States)

    Wagner, Karla D; Armenta, Richard F; Roth, Alexis M; Maxwell, Jane C; Cuevas-Mota, Jazmine; Garfein, Richard S

    2014-08-01

    Use of synthetic cathinones (SC) and cannabimimetics (i.e., "THC homologues" [TH]) is associated with adverse health effects. We investigated the epidemiology of synthetic drug use among a cohort of injection drug users (IDUs) in San Diego, California. We used logistic regression analysis to identify correlates of SC and TH use among 485 IDUs enrolled from June 2012 to September 2013. Seven percent of participants reported ever using SC and 30% reported ever using TH. In multivariate logistic regression, age and recent hospitalization were significantly associated with odds of SC use (Adjusted Odds Ratio [AOR] 0.93, 95% Confidence Interval [C.I.] 0.90, 0.97; and AOR 2.34 95% C.I. 1.00, 5.49, respectively) and TH use (AOR 0.96, 95% C.I. 0.94, 0.98; and AOR 2.62, 95% C.I. 1.47, 4.68, respectively). Use of methamphetamine (AOR 9.35, 95% C.I. 1.20, 72.79) and club drugs in the past six months (AOR 3.38, 95% C.I. 1.17, 9.76) were significantly associated with SC use. Being on probation/parole (AOR 2.42, 95% C.I. 1.44, 4.07), initiating injection drug use with stimulants (AOR 1.89 95% C.I. 1.13, 3.16), and past six-month marijuana (AOR 9.22, 95% C.I. 4.49, 18.96) and prescription drug use (AOR 1.98, 95% C.I. 1.20, 3.27) were significantly associated with TH use. A considerable proportion of IDU use synthetic drugs and may experience harms associated with their use. Findings have implications for criminal justice system management. Prevention efforts should emphasize the risks associated with rapidly changing synthetic formulations, and the potential harms associated with polydrug use. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Synthetic Rutile

    International Nuclear Information System (INIS)

    Burastero, J.

    1975-01-01

    This work is about the laboratory scale investigation of the conditions in the rutile synthetic production from one me nita in Aguas Dulces reservoir. The iron mineral is chlorinated and volatilized selectively leaving a residue enriched in titanium dioxide which can be used as a substitute of rutile mineral

  4. Anisotropic evaluation of synthetic surgical meshes.

    Science.gov (United States)

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  5. Electrophoretic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates: Application to proenkephalin processing enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, J.W.; Roberts, S.F.; Lindberg, I. (Louisiana State Univ. Medical Center, New Orleans (USA))

    1990-10-01

    A novel method is described for the zymographic analysis of proteinases in sodium dodecyl sulfate-polyacrylamide gels containing copolymerized radiolabeled protein substrates such as ({sup 35}S)methionine-labeled proenkephalin or {sup 125}I-labeled proinsulin. After electrophoresis the enzyme is reactivated and cleaves the radiolabeled in situ substrate into smaller peptides. These small peptides are able to diffuse out of the gel, leaving clear areas against a dark background when visualized by autoradiography. The technique can be used to detect as little as 200 fg of trypsin using only 50 ng (1.25 microCi) of ({sup 35}S)proenkephalin. Soluble- and membrane-bound adrenal trypsin-like enzyme were isolated from bovine adrenal chromaffin granules. Both proteinases cleaved ({sup 35}S)methionine-labeled proenkephalin but not {sup 125}I-labeled proinsulin. Moreover, both had a Mr of approximately 30,000. The potential of this technique for general use is discussed. An additional method using the synthetic fluorogenic substrate t-butoxycarbonyl Glu-Lys-Lys aminomethylcoumarin is also described.

  6. Wave-induced ripple development in mixed clay-sand substrates

    Science.gov (United States)

    Wu, Xuxu; Parsons, Daniel; Baas, Jaco H.; Mouazé, Dominique; McLelland, Stuart; Amoudry, Laurent; Eggenhuisen, Jorris; Cartigny, Matthieu; Ruessink, Gerben

    2016-04-01

    This paper reports on a series of experiments that aim to provide a fuller understanding of ripple development within clay-sand mixture substrates under oscillatory flow conditions. The work was conducted in the Total Environment Simulator at the University of Hull and constituted 6 separate runs, in which 5 runs were conducted under identical sets of regular waves (an additional run was conducted under irregular waves, but is not discussed in present paper). The bed content was systematically varied in its composition ranging from a pure sand bed through to a bed comprising 7.4% clay. A series of state-of-the-art measurements were employed to quantify interactions of near-bed hydrodynamics, sediment transport, and turbulence over rippled beds formed by wave action, during and after, each run. The experimental results demonstrate the significant influence of the amount of cohesive clay materials in the substrate on ripple evolution under waves. Most importantly, addition of clay in the bed dramatically slowed down the rate of ripple development and evolution. The equilibrium time of each run increased exponentially from 30 minutes under the control conditions of a pure sand bed, rising to ~350 minutes for the bed with the highest fraction of clay. The paper discusses the slower ripple growth rates with higher cohesive fractions, via an influence on critical shear, but highlights that the end equilibrium size of ripples is found to be independent of increasing substrate clay fraction. The suspended particles mass (SPM) concentration indicates that clay particles were suspended and winnowed by wave action. Additionally, laser granulometry of the final substrates verified that ripple crests were composed of pure sand layers that were absent at ripple troughs, reflecting a relatively higher winnowing efficiency at wave ripples crest. The winnowing process and its efficiency is inexorably linked to wave ripple development and evolution. The implications of the results

  7. The Structural Basis of Substrate Recognition in an exo-beta-d-Glucosaminidase Involved in Chitosan Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lammerts van Bueren, A.; Ghinet, M; Gregg, K; Fleury, A; Brzezinski, R; Boraston, A

    2009-01-01

    Family 2 of the glycoside hydrolase classification is one of the largest families. Structurally characterized members of this family include enzymes with beta-galactosidase activity (Escherichia coli LacZ), beta-glucuronidase activity (Homo sapiens GusB), and beta-mannosidase activity (Bacteroides thetaiotaomicron BtMan2A). Here, we describe the structure of a family 2 glycoside hydrolase, CsxA, from Amycolatopsis orientalis that has exo-beta-D-glucosaminidase (exo-chitosanase) activity. Analysis of a product complex (1.85 A resolution) reveals a unique negatively charged pocket that specifically accommodates the nitrogen of nonreducing end glucosamine residues, allowing this enzyme to discriminate between glucose and glucosamine. This also provides structural evidence for the role of E541 as the catalytic nucleophile and D469 as the catalytic acid/base. The structures of an E541A mutant in complex with a natural beta-1,4-D-glucosamine tetrasaccharide substrate and both E541A and D469A mutants in complex with a pNP-beta-D-glucosaminide synthetic substrate provide insight into interactions in the +1 subsite of this enzyme. Overall, a comparison with the active sites of other GH2 enzymes highlights the unique architecture of the CsxA active site, which imparts specificity for its cationic substrate.

  8. The Structural Basis of Substrate Recognition in an exo-b-d-glucosaminidase Involved in Chitosan Hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Van Bueren, A.; Ghinet, M; Gregg, K; Fleury, A; Brzezinski, R; Boraston, A

    2009-01-01

    Family 2 of the glycoside hydrolase classification is one of the largest families. Structurally characterized members of this family include enzymes with ?-galactosidase activity (Escherichia coli LacZ), ?-glucuronidase activity (Homo sapiens GusB), and ?-mannosidase activity (Bacteroides thetaiotaomicron BtMan2A). Here, we describe the structure of a family 2 glycoside hydrolase, CsxA, from Amycolatopsis orientalis that has exo-?-d-glucosaminidase (exo-chitosanase) activity. Analysis of a product complex (1.85 A resolution) reveals a unique negatively charged pocket that specifically accommodates the nitrogen of nonreducing end glucosamine residues, allowing this enzyme to discriminate between glucose and glucosamine. This also provides structural evidence for the role of E541 as the catalytic nucleophile and D469 as the catalytic acid/base. The structures of an E541A mutant in complex with a natural ?-1,4-d-glucosamine tetrasaccharide substrate and both E541A and D469A mutants in complex with a pNP-?-d-glucosaminide synthetic substrate provide insight into interactions in the + 1 subsite of this enzyme. Overall, a comparison with the active sites of other GH2 enzymes highlights the unique architecture of the CsxA active site, which imparts specificity for its cationic substrate.

  9. Synthetic Lipoproteins as Carriers for Drug Delivery.

    Science.gov (United States)

    Huang, Gangliang; Liu, Yang; Huang, Hualiang

    2016-01-01

    Synthetic lipoprotein is an effective carrier of targeted delivery for drugs. It has the very small size, good biocompatibility, suitable half-life, and specific lipoprotein receptorbinding capacity. Compared with the traditional natural lipoprotein, synthetic lipoprotein not only retains the original biological characteristics and functions, but also exhibits the excellent characteristics in drug delivery. Herein, the advantages, development, applications, and prospect of synthetic lipoproteins as drug carriers were summarized.

  10. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments.

    Science.gov (United States)

    Lee, Kyung-Ho; Kim, Dong-Myung

    2013-11-01

    Synthetic biology is built on the synthesis, engineering, and assembly of biological parts. Proteins are the first components considered for the construction of systems with designed biological functions because proteins carry out most of the biological functions and chemical reactions inside cells. Protein synthesis is considered to comprise the most basic levels of the hierarchical structure of synthetic biology. Cell-free protein synthesis has emerged as a powerful technology that can potentially transform the concept of bioprocesses. With the ability to harness the synthetic power of biology without many of the constraints of cell-based systems, cell-free protein synthesis enables the rapid creation of protein molecules from diverse sources of genetic information. Cell-free protein synthesis is virtually free from the intrinsic constraints of cell-based methods and offers greater flexibility in system design and manipulability of biological synthetic machinery. Among its potential applications, cell-free protein synthesis can be combined with various man-made devices for rapid functional analysis of genomic sequences. This review covers recent efforts to integrate cell-free protein synthesis with various reaction devices and analytical platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  12. Effect of substrate thickness on ejection of phenylalanine molecules adsorbed on free-standing graphene bombarded by 10 keV C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Golunski, M. [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland); Verkhoturov, S.V.; Verkhoturov, D.S.; Schweikert, E.A. [Department of Chemistry, Texas A& M University, College Station, TX 77840 (United States); Postawa, Z., E-mail: zbigniew.postawa@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Lojasiewicza 11, 30-348 Krakow (Poland)

    2017-02-15

    Highlights: • Substrate thickness has a prominent effect on the molecular ejection mechanism. • Collisions with projectile atoms leads to molecular ejection at thin substrates. • Interactions with deforming graphene sheet ejects molecules from thicker substrates. • Probability of fragmentation process decreases with the graphene substrate thickness. - Abstract: Molecular dynamics computer simulations have been employed to investigate the effect of substrate thickness on the ejection mechanism of phenylalanine molecules deposited on free-standing graphene. The system is bombarded from the graphene side by 10 keV C{sub 60} projectiles at normal incidence and the ejected particles are collected both in transmission and reflection directions. It has been found that the ejection mechanism depends on the substrate thickness. At thin substrates mostly organic fragments are ejected by direct collisions between projectile atoms and adsorbed molecules. At thicker substrates interaction between deforming topmost graphene sheet and adsorbed molecules becomes more important. As this process is gentle and directionally correlated, it leads predominantly to ejection of intact molecules. The implications of the results to a novel analytical approach in Secondary Ion Mass Spectrometry based on ultrathin free-standing graphene substrates and a transmission geometry are discussed.

  13. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  14. Social cognition and neural substrates of face perception: implications for neurodevelopmental and neuropsychiatric disorders.

    Science.gov (United States)

    Lazar, Steven M; Evans, David W; Myers, Scott M; Moreno-De Luca, Andres; Moore, Gregory J

    2014-04-15

    Social cognition is an important aspect of social behavior in humans. Social cognitive deficits are associated with neurodevelopmental and neuropsychiatric disorders. In this study we examine the neural substrates of social cognition and face processing in a group of healthy young adults to examine the neural substrates of social cognition. Fifty-seven undergraduates completed a battery of social cognition tasks and were assessed with electroencephalography (EEG) during a face-perception task. A subset (N=22) were administered a face-perception task during functional magnetic resonance imaging. Variance in the N170 EEG was predicted by social attribution performance and by a quantitative measure of empathy. Neurally, face processing was more bilateral in females than in males. Variance in fMRI voxel count in the face-sensitive fusiform gyrus was predicted by quantitative measures of social behavior, including the Social Responsiveness Scale (SRS) and the Empathizing Quotient. When measured as a quantitative trait, social behaviors in typical and pathological populations share common neural pathways. The results highlight the importance of viewing neurodevelopmental and neuropsychiatric disorders as spectrum phenomena that may be informed by studies of the normal distribution of relevant traits in the general population. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Advances in utilization of renewable substrates for biosurfactant production

    Science.gov (United States)

    2011-01-01

    Biosurfactants are amphiphilic molecules that have both hydrophilic and hydrophobic moieties which partition preferentially at the interfaces such as liquid/liquid, gas/liquid or solid/liquid interfaces. Such characteristics enable emulsifying, foaming, detergency and dispersing properties. Their low toxicity and environmental friendly nature and the wide range of potential industrial applications in bioremediation, health care, oil and food processing industries makes them a highly sought after group of chemical compounds. Interest in them has also been encouraged because of the potential advantages they offer over their synthetic counterparts in many fields spanning environmental, food, biomedical, petrochemical and other industrial applications. Their large scale production and application however are currently restricted by the high cost of production and by the limited understanding of their interactions with cells and with the abiotic environment. In this paper, we review the current knowledge and latest advances in the search for cost effective renewable agro industrial alternative substrates for their production. PMID:21906330

  16. Bionanoscience landscape in South Africa and its implications in the development of a post-graduate curriculum - Presentation

    CSIR Research Space (South Africa)

    Sparrow, R

    2009-11-01

    Full Text Available Africa and its Implications in the Development of a Post-Graduate Curriculum Presented at UWC – Nano-biotechnology Seminar. Dr. Raymond Sparrow Manager of the SynBioTIC Programme. CSIR – Synthetic Biology ERA. 20th November 2009 Nanoscience...

  17. A signal-substrate match in the substrate-borne component of a multimodal courtship display

    Directory of Open Access Journals (Sweden)

    Damian O. ELIAS, Andrew C. MASON, Eileen A. HEBETS

    2010-06-01

    Full Text Available The environment can impose strong limitations on the efficacy of signal transmission. In particular, for vibratory communication, the signaling environment is often extremely heterogeneous at very small scales. Nevertheless, natural selection is expected to select for signals well-suited to effective transmission. Here, we test for substrate-dependent signal efficacy in the wolf spider Schizocosa stridulans Stratton 1991. We first explore the transmission characteristics of this important signaling modality by playing recorded substrate-borne signals through three different substrates (leaf litter, pine litter, and red clay and measuring the propagated signal. We found that the substrate-borne signal of S. stridulans attenuates the least on leaf litter, the substrate upon which the species is naturally found. Next, by assessing mating success with artificially muted and non-muted males across different signaling substrates (leaf litter, pine litter, and sand, we explored the relationship between substrate-borne signaling and substrate for mating success. We found that muted males were unsuccessful in obtaining copulations regardless of substrate, while mating success was dependent on the signaling substrate for non-muted males. For non-muted males, more males copulated on leaf litter than any other substrate. Taken together, these results confirm the importance of substrate-borne signaling in S. stridulans and suggest a match between signal properties and signal efficacy – leaf litter transmits the signal most effectively and males are most successful in obtaining copulations on leaf litter [Current Zoology 56 (3: 370–378, 2010].

  18. Acetoacetate is a more efficient energy-yielding substrate for human mesenchymal stem cells than glucose and generates fewer reactive oxygen species.

    Science.gov (United States)

    Board, Mary; Lopez, Colleen; van den Bos, Christian; Callaghan, Richard; Clarke, Kieran; Carr, Carolyn

    2017-07-01

    Stem cells have been assumed to demonstrate a reliance on anaerobic energy generation, suited to their hypoxic in vivo environment. However, we found that human mesenchymal stem cells (hMSCs) have an active oxidative metabolism with a range of substrates. More ATP was consistently produced from substrate oxidation than glycolysis by cultured hMSCs. Strong substrate preferences were shown with the ketone body, acetoacetate, being oxidised at up to 35 times the rate of glucose. ROS-generation was 45-fold lower during acetoacetate oxidation compared with glucose and substrate preference may be an adaptation to reduce oxidative stress. The UCP2 inhibitor, genipin, increased ROS production with either acetoacetate or glucose by 2-fold, indicating a role for UCP2 in suppressing ROS production. Addition of pyruvate stimulated acetoacetate oxidation and this combination increased ATP production 27-fold, compared with glucose alone, which has implications for growth medium composition. Oxygen tension during culture affected metabolism by hMSCs. Between passages 2 and 5, rates of both glycolysis and substrate-oxidation increased at least 2-fold for normoxic (20% O 2 )- but not hypoxic (5% O 2 )-cultured hMSCs, despite declining growth rates and no detectable signs of differentiation. Culture of the cells with 3-hydroxybutyrate abolished the increased rates of these pathways. These findings have implications for stem cell therapy, which necessarily involves in vitro culture of cells, since low passage number normoxic cultured stem cells show metabolic adaptations without detectable changes in stem-like status. Copyright © 2017. Published by Elsevier Ltd.

  19. Synthetic Sediments and Stochastic Groundwater Hydrology

    Science.gov (United States)

    Wilson, J. L.

    2002-12-01

    For over twenty years the groundwater community has pursued the somewhat elusive goal of describing the effects of aquifer heterogeneity on subsurface flow and chemical transport. While small perturbation stochastic moment methods have significantly advanced theoretical understanding, why is it that stochastic applications use instead simulations of flow and transport through multiple realizations of synthetic geology? Allan Gutjahr was a principle proponent of the Fast Fourier Transform method for the synthetic generation of aquifer properties and recently explored new, more geologically sound, synthetic methods based on multi-scale Markov random fields. Focusing on sedimentary aquifers, how has the state-of-the-art of synthetic generation changed and what new developments can be expected, for example, to deal with issues like conceptual model uncertainty, the differences between measurement and modeling scales, and subgrid scale variability? What will it take to get stochastic methods, whether based on moments, multiple realizations, or some other approach, into widespread application?

  20. 14C-labeled lignins as substrates for the study of lignin biodegradation and transformation

    International Nuclear Information System (INIS)

    Crawford, R.L.; Robinson, L.E.; Chen, A.M.

    1980-01-01

    Methods, both classical and isotopic, for quantifying lignin degradation are reviewed. Preparation and chemical characterization of 14 C-labeled lignins (both synthetic and plant-synthesized) are reviewed, with emphasis on the utilization of these 14 C-labeled substrates in biodegradation and biotransformation experiments. The scientific literature is reviewed concerning the use of 14 C-lignins to examine the following: microbial groups that are able to degrade lignins; lignin degradation in natural environments; biochemistry and microbial physiology of lignin degradation; biodegradability of industrial lignins and their by-products; and screening for industrially valuable, lignin-modifying microorganisms. Recent results obtained in our laboratory concerning lignin degradation by eubacteria are presented. Future directions for 14 C-methodology are examined

  1. Suitability of Synthetic Driving Profiles from Traffic Micro-Simulation for Real-World Energy Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Yunfei; Wood, Eric; Burton, Evan; Gonder, Jeffrey

    2015-10-14

    in this study did not result in a significant discrepancy between fuel economy simulations based on synthetic and empirical data; a finding with implications on the potential energy efficiency gains of automated vehicle technology.

  2. Biomechanical implications of walking with indigenous footwear.

    Science.gov (United States)

    Willems, Catherine; Stassijns, Gaetane; Cornelis, Wim; D'Août, Kristiaan

    2017-04-01

    This study investigates biomechanical implications of walking with indigenous "Kolhapuri" footwear compared to barefoot walking among a population of South Indians. Ten healthy adults from South India walked barefoot and indigenously shod at voluntary speed on an artificial substrate. The experiment was repeated outside, on a natural substrate. Data were collected from (1) a heel-mounted 3D-accelerometer recording peak impact at heel contact, (2) an ankle-mounted 3D-goniometer (plantar/dorsiflexion and inversion/eversion), and (3) sEMG electrodes at the m. tibialis anterior and the m. gastrocnemius medialis. Data show that the effect of indigenous footwear on the measured variables, compared to barefoot walking, is relatively small and consistent between substrates (even though subjects walked faster on the natural substrate). Walking barefoot, compared to shod walking yields higher impact accelerations, but the differences are small and only significant for the artificial substrate. The main rotations of the ankle joint are mostly similar between conditions. Only the shod condition shows a faster ankle rotation over the rapid eversion motion on the natural substrate. Maximal dorsiflexion in late stance differs between the footwear conditions on an artificial substrate, with the shod condition involving a less dorsiflexed ankle, and the plantar flexion at toe-off is more extreme when shod. Overall the activity pattern of the external foot muscles is similar. The indigenous footwear studied (Kolhapuri) seems to alter foot biomechanics only in a subtle way. While offering some degree of protection, walking in this type of footwear resembles barefoot gait and this type of indigenous footwear might be considered "minimal". © 2017 The Authors American Journal of Physical Anthropology Published by Wiley Periodicals, Inc.

  3. [Progress in synthetic biology of "973 Funding Program" in China].

    Science.gov (United States)

    Chen, Guoqiang; Wang, Ying

    2015-06-01

    This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.

  4. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering.

    Science.gov (United States)

    Rosellini, Elisabetta; Cristallini, Caterina; Guerra, Giulio D; Barbani, Niccoletta

    2015-01-01

    The aim of this work was the development of new synthetic polymeric systems, functionalized by surface chemical modification with bioactive peptides, for myocardial tissue engineering. Polycaprolactone and a poly(ester-ether-ester) block copolymer synthesized in our lab, polycaprolactone-poly(ethylene oxide)-polycaprolactone (PCL-PEO-PCL), were used as the substrates to be modified. Two pentapeptides, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS) from fibronectin and H-Tyr-Ile-Gly-Ser-Arg-OH (YIGSR) from laminin, were used for the functionalization. Polymeric membranes were obtained by casting from solutions and then functionalized by means of alkaline hydrolysis and subsequent coupling of the bioactive molecules through 1-(3-dimethylaminopropyl)-3-ethylcarbodimide hydrochloride/N-hydroxysuccinimide chemistry. The hydrolysis conditions, in terms of hydrolysis time, temperature, and sodium hydroxide concentration, were optimized for the two materials. The occurrence of the coupling reaction was demonstrated by infrared spectroscopy, as the presence on the functionalized materials of the absorption peaks typical of the two peptides. The peptide surface density was determined by chromatographic analysis and the distribution was studied by infrared chemical imaging. The results showed a nearly homogeneous peptide distribution, with a density above the minimum value necessary to promote cell adhesion. Preliminary in vitro cell culture studies demonstrated that the introduction of the bioactive molecules had a positive effect on improving C2C12 myoblasts growth on the synthetic materials.

  5. Methods for preparing synthetic freshwaters.

    Science.gov (United States)

    Smith, E J; Davison, W; Hamilton-Taylor, J

    2002-03-01

    Synthetic solutions that emulate the major ion compositions of natural waters are useful in experiments aimed at understanding biogeochemical processes. Standard recipes exist for preparing synthetic analogues of seawater, with its relatively constant composition, but, due to the diversity of freshwaters, a range of compositions and recipes is required. Generic protocols are developed for preparing synthetic freshwaters of any desired composition. The major problems encountered in preparing hard and soft waters include dissolving sparingly soluble calcium carbonate, ensuring that the ionic components of each concentrated stock solution cannot form an insoluble salt and dealing with the supersaturation of calcium carbonate in many hard waters. For acidic waters the poor solubility of aluminium salts requires attention. These problems are overcome by preparing concentrated stock solutions according to carefully designed reaction paths that were tested using a combination of experiment and equilibrium modeling. These stock solutions must then be added in a prescribed order to prepare a final solution that is brought into equilibrium with the atmosphere. The example calculations for preparing hard, soft and acidic freshwater surrogates with major ion compositions the same as published analyses, are presented in a generalized fashion that should allow preparation of any synthetic freshwater according to its known analysis.

  6. Reasons for Synthetic THC Use among College Students

    Science.gov (United States)

    Vidourek, Rebecca A.; King, Keith A.; Burbage, Michelle L.

    2013-01-01

    Synthetic THC, also known as fake marijuana, is used by college students in the United States. The present study examined reasons for recent synthetic THC use among college students (N = 339). Students completed a 3-page survey during regularly scheduled class times. Results indicated students reported using synthetic THC for curiosity, to get…

  7. Defining the Synthetic Biology Supply Chain

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Hund, Gretchen E.; Bonheyo, George T.; Diggans, James; Bartholomew, Rachel A.; Gehrig, Lindsey; Greaves, Mark

    2017-08-01

    In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology. The team analyzes selected interactions within that network to better understand the risks raised by synthetic biology and identifies opportunities for risk mitigation. To introduce the concept, the article will briefly describe how an understanding of supply chains has been important in promoting nuclear nonproliferation objectives. The article concludes by assessing the structure and networks identified in the supply chains to reveal potential opportunities for future biodefense research and development; options for additional information exchange; and means to interdict, detect, or deter suspicious activity.

  8. Cultivation of Human Microvascular Endothelial Cells on Topographical Substrates to Mimic the Human Corneal Endothelium

    Directory of Open Access Journals (Sweden)

    Jie Shi Chua

    2013-03-01

    Full Text Available Human corneal endothelial cells have a limited ability to replicate in vivo and in vitro. Allograft transplantation becomes necessary when an accident or trauma results in excessive cell loss. The reconstruction of the cornea endothelium using autologous cell sources is a promising alternative option for therapeutic or in vitro drug testing applications. The native corneal endothelium rests on the Descemet’s membrane, which has nanotopographies of fibers and pores. The use of synthetic topographies mimics the native environment, and it is hypothesized that this can direct the behavior and growth of human microvascular endothelial cells (HMVECs to resemble the corneal endothelium. In this study, HMVECs are cultivated on substrates with micron and nano-scaled pillar and well topographies. Closely packed HMVEC monolayers with polygonal cells and well-developed tight junctions were formed on the topographical substrates. Sodium/potassium (Na+/K+ adenine triphosphatase (ATPase expression was enhanced on the microwells substrate, which also promotes microvilli formation, while more hexagonal-like cells are found on the micropillars samples. The data obtained suggests that the use of optimized surface patterning, in particular, the microtopographies, can induce HMVECs to adopt a more corneal endothelium-like morphology with similar barrier and pump functions. The mechanism involved in cell contact guidance by the specific topographical features will be of interest for future studies.

  9. Misuse of Novel Synthetic Opioids: A Deadly New Trend

    Science.gov (United States)

    Prekupec, Matthew P.; Mansky, Peter A.; Baumann, Michael H.

    2017-01-01

    Novel synthetic opioids (NSOs) include various analogs of fentanyl and newly emerging non-fentanyl compounds. Together with illicitly manufactured fentanyl (IMF), these drugs have caused a recent spike in overdose deaths, whereas deaths from prescription opioids have stabilized. NSOs are used as stand-alone products, as adulterants in heroin, or as constituents of counterfeit prescription medications. During 2015 alone, there were 9580 deaths from synthetic opioids other than methadone. Most of these fatalities were associated with IMF rather than diverted pharmaceutical fentanyl. In opioid overdose cases, where the presence of fentanyl analogs was examined, analogs were implicated in 17% of fatalities. Recent data from law enforcement sources show increasing confiscation of acetylfentanyl, butyrylfentanyl, and furanylfentanyl, in addition to non-fentanyl compounds such as U-47700. Since 2013, deaths from NSOs in the United States were 52 for acetylfentanyl, 40 for butyrylfentanyl, 128 for furanylfentanyl, and 46 for U-47700. All of these substances induce a classic opioid toxidrome, which can be reversed with the competitive antagonist naloxone. However, due to the putative high potency of NSOs and their growing prevalence, it is recommended to forgo the 0.4 mg initial dose of naloxone and start with 2 mg. Because NSOs offer enormous profit potential, and there is strong demand for their use, these drugs are being trafficked by organized crime. NSOs present major challenges for medical professionals, law enforcement agencies, and policymakers. Resources must be distributed equitably to enhance harm reduction though public education, medication-assisted therapies, and improved access to naloxone. PMID:28590391

  10. Self-Assembled Local Artificial Substrates of GaAs on Si Substrate

    Directory of Open Access Journals (Sweden)

    Frigeri C

    2010-01-01

    Full Text Available Abstract We propose a self-assembling procedure for the fabrication of GaAs islands by Droplet Epitaxy on silicon substrate. Controlling substrate temperature and amount of supplied gallium is possible to tune the base size of the islands from 70 up to 250 nm and the density from 107 to 109 cm−2. The islands show a standard deviation of base size distribution below 10% and their shape evolves changing the aspect ratio from 0.3 to 0.5 as size increases. Due to their characteristics, these islands are suitable to be used as local artificial substrates for the integration of III–V quantum nanostructures directly on silicon substrate.

  11. [How to be prudent with synthetic biology. Synthetic Biology and the precautionary principle].

    Science.gov (United States)

    Rodríguez López, Blanca

    2014-01-01

    Synthetic biology is a new discipline that is twofold: firstly it offers the promise to pay benefits that can alleviate some of the ills that plague mankind; On the other hand, like all technologies, holds risks. Given these, the most critical and concerned about the risks, invoke the application of the precautionary principle, common in cases where an activity or new technology creates risks to the environment and/or human health, but far from universally accepted happens to be currently one of the most controversial principles. In this paper the question of the risks and benefits of synthetic biology and the relevance of applying the precautionary principle are analyzed. To do this we proceed as follows. The first part focuses on synthetic biology. At first, this discipline is characterized, with special attention to what is novel compared to the known as "genetic engineering". In the second stage both the benefits and the risks associated with it are discussed. The first part concludes with a review of the efforts currently being made to control or minimize the risks. The second part aims to analyze the precautionary principle and its possible relevance to the case of Synthetic Biology. At first, the different versions and interpretations of the principle and the various criticisms of which has been the subject are reviewed. Finally, after discarding the Precautionary Principle as an useful tool, it is seen as more appropriate some recent proposals to treat technologies that take into account not only risks but also their benefits.

  12. WISB: Warwick Integrative Synthetic Biology Centre.

    Science.gov (United States)

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. © 2016 The Author(s).

  13. Cooperative effects of fibronectin matrix assembly and initial cell-substrate adhesion strength in cellular self-assembly.

    Science.gov (United States)

    Brennan, James R; Hocking, Denise C

    2016-03-01

    The cell-dependent polymerization of intercellular fibronectin fibrils can stimulate cells to self-assemble into multicellular structures. The local physical cues that support fibronectin-mediated cellular self-assembly are largely unknown. Here, fibronectin matrix analogs were used as synthetic adhesive substrates to model cell-matrix fibronectin fibrils having different integrin-binding specificity, affinity, and/or density. We utilized this model to quantitatively assess the relationship between adhesive forces derived from cell-substrate interactions and the ability of fibronectin fibril assembly to induce cellular self-assembly. Results indicate that the strength of initial, rather than mature, cell-substrate attachments correlates with the ability of substrates to support fibronectin-mediated cellular self-assembly. The cellular response to soluble fibronectin was bimodal and independent of the integrin-binding specificity of the substrate; increasing soluble fibronectin levels above a critical threshold increased aggregate cohesion on permissive substrates. Once aggregates formed, continuous fibronectin polymerization was necessary to maintain cohesion. During self-assembly, soluble fibronectin decreased cell-substrate adhesion strength and induced aggregate cohesion via a Rho-dependent mechanism, suggesting that the balance of contractile forces derived from fibronectin fibrils within cell-cell versus cell-substrate adhesions controls self-assembly and aggregate cohesion. Thus, initial cell-substrate attachment strength may provide a quantitative basis with which to build predictive models of fibronectin-mediated microtissue fabrication on a variety of substrates. Cellular self-assembly is a process by which cells and extracellular matrix (ECM) proteins spontaneously organize into three-dimensional (3D) tissues in the absence of external forces. Cellular self-assembly can be initiated in vitro, and represents a potential tool for tissue engineers to

  14. Oxygen Sensing by the Hybrid Langmuir-Blodgett Films of Iridium(III Complexes and Synthetic Saponite on the Basis of Energy Transfer

    Directory of Open Access Journals (Sweden)

    Hisako Sato

    2017-09-01

    Full Text Available An ultra-thin hybrid film of amphiphilic iridium(III complexes and synthetic saponite was manipulated by means of the modified Langmuir-Blodgett method. In the film deposited onto a quartz substrate, the external mixed molecular layer of amphiphilic iridium(III complexes was reinforced by the inner layer of exfoliated synthetic saponite. As components of the molecular layer, two iridium(III complexes were used: [Ir(dfppy2(dc9bpy]+ (dfppyH = 2-(4′,6′-difluorophenyl pyridine; dc9bpy = 4,4′-dinonyl-2,2′-bipyridine (denoted as DFPPY and [Ir(piq2(dc9bpy]+ (piqH = 1-phenyisoquinoline denoted as PIQ. The emission spectra from the films changed from blue to red maxima with the decrease of a ratio of DFPPY/PIQ due to the energy transfer from excited DFPPY to PIQ. The intensity of red decreased with the increase of oxygen pressure through the quenching of excited iridium(III complexes, promising a possibility as an oxygen-sensing film.

  15. Comparison of outcome expectancies for synthetic cannabinoids and botanical marijuana.

    Science.gov (United States)

    Lauritsen, Kirstin J; Rosenberg, Harold

    2016-07-01

    Although initially developed for medical purposes, synthetic cannabinoids have also been consumed for recreational purposes. To evaluate whether agreement with positive and negative outcome expectancies differed for synthetic cannabinoids versus botanical marijuana, and assess reported reasons for using synthetic cannabinoids. Using a web-based recruitment and data collection procedure, 186 adults who had used both synthetic cannabinoids and botanical marijuana and 181 adults who had used botanical marijuana but not synthetic cannabinoids, completed measures of outcome expectancies and other relevant questionnaires. A significant interaction revealed that participants who had used both synthetic cannabinoids and botanical marijuana indicated lower agreement with positive expectancies for synthetic cannabinoids, and higher agreement with positive expectancies for botanical marijuana, than did those participants who used only botanical marijuana. There was no interaction between type of drug and use history on agreement with negative expectancies, and participants agreed more strongly with negative outcome expectancies for synthetic cannabinoids than for botanical marijuana whether they had used one or both types of these drugs. The most frequently provided reasons for using synthetic cannabinoids included availability, perceived legality, cost, curiosity, and social interaction. Given growing public acceptance of recreational and medical marijuana, coupled with negative perceptions and increasing regulation of synthetic cannabinoid compounds, botanical marijuana is likely to remain more available and more popular than synthetic cannabinoids.

  16. Copper substrate as a catalyst for the oxidation of chemical vapor deposition-grown graphene

    International Nuclear Information System (INIS)

    Li, Zhiting; Zhou, Feng; Parobek, David; Shenoy, Ganesh J.; Muldoon, Patrick; Liu, Haitao

    2015-01-01

    We report the catalytic effect of copper substrate on graphene–oxygen reaction at high temperature. Previous studies showed that graphene grown on copper are mostly defect-free with strong oxidation resistance. We found that a freshly prepared copper-supported graphene sample can be completely oxidized in trace amount of oxygen (<3 ppm) at 600 °C within 2 h. Both X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) suggest that upon ambient air exposure, oxygen molecules diffuse into the space between graphene and copper, resulting in the formation of copper oxide which acts as catalytic sites for the graphene-oxygen reaction. This result has important implications for the characterization, processing, and storage of copper-supported graphene samples. - Graphical abstract: The copper substrate enhances the thermel oxidation of single-layer graphene. - Highlights: • A copper-supported graphene can be oxidized in Ar (O 2 <3 ppm, 600 °C, 2 h). • O 2 intercalates between graphene and copper upon exposure to air. • The copper foil should not be considered as an inert substrate

  17. Health Risk Behaviors With Synthetic Cannabinoids Versus Marijuana.

    Science.gov (United States)

    Clayton, Heather B; Lowry, Richard; Ashley, Carmen; Wolkin, Amy; Grant, Althea M

    2017-04-01

    Data are limited on the behavioral risk correlates of synthetic cannabinoid use. The purpose of this study was to compare the behavioral risk correlates of synthetic cannabinoid use with those among marijuana users. Data from the 2015 Youth Risk Behavior Survey, a cross-sectional survey conducted in a nationally representative sample of students in grades 9 through 12 ( N = 15 624), were used to examine the association between self-reported type of marijuana use (ie, never use of marijuana and synthetic cannabinoids, ever use of marijuana only, and ever use of synthetic cannabinoids) and self-report of 36 risk behaviors across 4 domains: substance use, injury/violence, mental health, and sexual health. Multivariable models were used to calculate adjusted prevalence ratios. Students who ever used synthetic cannabinoids had a significantly greater likelihood of engaging in each of the behaviors in the substance use and sexual risk domains compared with students who ever used marijuana only. Students who ever used synthetic cannabinoids were more likely than students who ever used marijuana only to have used marijuana before age 13 years, to have used marijuana ≥1 times during the past 30 days, and to have used marijuana ≥20 times during the past 30 days. Several injury/violence behaviors were more prevalent among students who ever used synthetic cannabinoids compared with students who ever used marijuana only. Health professionals and school-based substance use prevention programs should include strategies focused on the prevention of both synthetic cannabinoids and marijuana. Copyright © 2017 by the American Academy of Pediatrics.

  18. 2-Diazo-1-(4-hydroxyphenyl)ethanone: a versatile photochemical and synthetic reagent.

    Science.gov (United States)

    Senadheera, Sanjeewa N; Evans, Anthony S; Toscano, John P; Givens, Richard S

    2014-02-01

    α-Diazo arylketones are well-known substrates for Wolff rearrangement to phenylacetic acids through a ketene intermediate by either thermal or photochemical activation. Likewise, α-substituted p-hydroxyphenacyl (pHP) esters are substrates for photo-Favorskii rearrangements to phenylacetic acids by a different pathway that purportedly involves a cyclopropanone intermediate. In this paper, we show that the photolysis of a series of α-diazo-p-hydroxyacetophenones and p-hydroxyphenacyl (pHP) α-esters both generate the identical rearranged phenylacetates as major products. Since α-diazo-p-hydroxyacetophenone (1a, pHP N2) contains all the necessary functionalities for either Wolff or Favorskii rearrangement, we were prompted to probe this intriguing mechanistic dichotomy under conditions favorable to the photo-Favorskii rearrangement, i.e., photolysis in hydroxylic media. An investigation of the mechanism for conversion of 1a to p-hydroxyphenyl acetic acid (4a) using time-resolved infrared (TRIR) spectroscopy clearly demonstrates the formation of a ketene intermediate that is subsequently trapped by solvent or nucleophiles. The photoreaction of 1a is quenched by oxygen and sensitized by triplet sensitizers and the quantum yields for 1a-c range from 0.19 to a robust 0.25. The lifetime of the triplet, determined by Stern-Volmer quenching, is 31 ns with a rate for appearance of 4a of k = 7.1 × 10(6) s(-1) in aq. acetonitrile (1 : 1 v : v). These studies establish that the primary rearrangement pathway for 1a involves ketene formation in accordance with the photo-Wolff rearrangement. Furthermore we have also demonstrated the synthetic utility of 1a as an esterification and etherification reagent with a variety of substituted α-diazo-p-hydroxyacetophenones, using them as synthons for efficiently coupling it to acids and phenols to produce pHP protect substrates.

  19. 2-Diazo-1-(4-hydroxyphenyl)ethanone: A Versatile Photochemical and Synthetic Reagenta

    Science.gov (United States)

    Senadheera, Sanjeewa N.; Evans, Anthony S.; Toscano, John P.; Givens, Richard S.

    2014-01-01

    α-Diazo arylketones are well-known substrates for Wolff rearrangement to phenylacetic acids through a ketene intermediate by either thermal or photochemical activation. Likewise, α-substituted p-hydroxyphenacyl (pHP) esters are substrates for photo-Favorskii rerrangements to phenylacetic acids by a different pathway that purportedly involves a cyclopropanone intermediate. In this paper, we show that the photolysis of a series of α-diazo-p-hydroxyacetophenones and p-hydroxyphenacyl (pHP) α-esters both generate the identical rearranged phenylacetates as major products. Since α-diazo-p-hydroxyacetophenone (1a, pHP N2) contains all the necessary functionalities for either Wolff or Favorskii rearrangement, we were prompted to probe this intriguing mechanistic dichotomy under conditions favorable to the photo-Favorskii reangement, i.e., photolysis in hydroxylic media. An investigation of the mechanism for conversion of 1a to p-hydroxyphenyl acetic acid (4a) using time-resolved infrared (TRIR) spectroscopy clearly demonstrates the formation of a ketene intermediate that is subsequently trapped by solvent or nucleophiles. The photoreaction of 1a is quenched by oxygen and sensitized by triplet sensitizers and the quantum yields for 1a–c range from 0.19 to a robust 0.25. The lifetime of the triplet, determined by Stern-Volmer quenching, is 15 ns with a rate for appearance of 4a of k = 7,1 × 106 s−1 in aq. acetonitrile (1:1 v:v). These studies establish that the primary rearrangement pathway for 1a involves ketene formation in accordance with the photo-Wolff rearrangement. Furthermore we have also demonstrated the synthetic utility of 1a as an esterification and etherification reagent with a variety of substituted α-diazo-p-hydroxyacetophenones, using them as synthons for efficiently coupling it to acids and phenols to produce pHP protect substrates. PMID:24305682

  20. Synthesis and properties of layered synthetic microstructure (LSM) dispersion elements for 62 eV (200A) to 1.24 keV (10A) radiation. Final report

    International Nuclear Information System (INIS)

    Barbee, T.W. Jr.

    1981-08-01

    The opportunities offered by engineered synthetic multilayer dispersion elements for x-rays have been recognized since the earliest days of x-ray diffraction analysis. In this paper, application of sputter deposition technology to the synthesis of Layered Synthetic Microstructure (LSMs) of sufficient quality for use as x-ray dispersion elements is discussed. It will be shown that high efficiency, controllable bandwidth dispersion elements, with d spacings varying from 15 A to 180 A, may be synthesized onto both mechanically stiff and flexible substrates. Multilayer component materials include tungsten, niobium, molybdenum, titanium, vanadium, and silicon layers separated by carbon layers. Experimental observations of peak reflectivity in first order, integrated reflectivity in first order, and diffraction performance at selected photon energies in the range, 100 to 15,000 eV, are reported and compared to theory

  1. Poly-Ub-substrate-degradative activity of 26S proteasome is not impaired in the aging rat brain.

    Directory of Open Access Journals (Sweden)

    Carolin Giannini

    Full Text Available Proteostasis is critical for the maintenance of life. In neuronal cells an imbalance between protein synthesis and degradation is thought to be involved in the pathogenesis of neurodegenerative diseases during aging. Partly, this seems to be due to a decrease in the activity of the ubiquitin-proteasome system, wherein the 20S/26S proteasome complexes catalyse the proteolytic step. We have characterised 20S and 26S proteasomes from cerebrum, cerebellum and hippocampus of 3 weeks old (young and 24 month old (aged rats. Our data reveal that the absolute amount of the proteasome is not dfferent between both age groups. Within the majority of standard proteasomes in brain the minute amounts of immuno-subunits are slightly increased in aged rat brain. While this goes along with a decrease in the activities of 20S and 26S proteasomes to hydrolyse synthetic fluorogenic tripeptide substrates from young to aged rats, the capacity of 26S proteasomes for degradation of poly-Ub-model substrates and its activation by poly-Ub-substrates is not impaired or even slightly increased in brain of aged rats. We conclude that these alterations in proteasome properties are important for maintaining proteostasis in the brain during an uncomplicated aging process.

  2. Modeling gravity effects on water retention and gas transport characteristics in plant growth substrates

    DEFF Research Database (Denmark)

    Deepagoda Thuduwe Kankanamge Kelum, Chamindu; Jones, Scott B.; Tuller, Markus

    2014-01-01

    utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions....... Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air...... that estimates the gas percolation threshold based on the pore size distribution. The model successfully captured measured data for all investigated media and demonstrated the implications of the poorly-understood shift in gas percolation threshold with improved gas percolation in reduced gravity. Finally, using...

  3. Cardiomyocytes from late embryos and neonates do optimal work and striate best on substrates with tissue-level elasticity: metrics and mathematics.

    Science.gov (United States)

    Majkut, Stephanie F; Discher, Dennis E

    2012-11-01

    In this review, we discuss recent studies on the mechanosensitive morphology and function of cardiomyocytes derived from embryos and neonates. For early cardiomyocytes cultured on substrates of various stiffnesses, contractile function as measured by force production, work output and calcium handling is optimized when the culture substrate stiffness mimics that of the tissue from which the cells were obtained. This optimal contractile function corresponds to changes in sarcomeric protein conformation and organization that promote contractile ability. In light of current models for myofibillogenesis, a recent mathematical model of striation and alignment on elastic substrates helps to illuminate how substrate stiffness modulates early myofibril formation and organization. During embryonic heart formation and maturation, cardiac tissue mechanics change dynamically. Experiments and models highlighted here have important implications for understanding cardiomyocyte differentiation and function in development and perhaps in regeneration processes.

  4. Autonomy and Fear of Synthetic Biology: How Can Patients' Autonomy Be Enhanced in the Field of Synthetic Biology? A Qualitative Study with Stable Patients.

    Science.gov (United States)

    Rakic, Milenko; Wienand, Isabelle; Shaw, David; Nast, Rebecca; Elger, Bernice S

    2017-04-01

    We analyzed stable patients' views regarding synthetic biology in general, the medical application of synthetic biology, and their potential participation in trials of synthetic biology in particular. The aim of the study was to find out whether patients' views and preferences change after receiving more detailed information about synthetic biology and its clinical applications. The qualitative study was carried out with a purposive sample of 36 stable patients, who suffered from diabetes or gout. Interviews were transcribed verbatim, translated and fully anonymized. Thematic analysis was applied in order to examine stable patients' attitudes towards synthetic biology, its medical application, and their participation in trials. When patients were asked about synthetic biology in general, most of them were anxious that something uncontrollable could be created. After a concrete example of possible future treatment options, patients started to see synthetic biology in a more positive way. Our study constitutes an important first empirical insight into stable patients' views on synthetic biology and into the kind of fears triggered by the term "synthetic biology." Our results show that clear and concrete information can change patients' initial negative feelings towards synthetic biology. Information should thus be transmitted with great accuracy and transparency in order to reduce irrational fears of patients and to minimize the risk that researchers present facts too positively for the purposes of persuading patients to participate in clinical trials. Potential participants need to be adequately informed in order to be able to autonomously decide whether to participate in human subject research involving synthetic biology.

  5. GSHSite: exploiting an iteratively statistical method to identify s-glutathionylation sites with substrate specificity.

    Directory of Open Access Journals (Sweden)

    Yi-Ju Chen

    Full Text Available S-glutathionylation, the covalent attachment of a glutathione (GSH to the sulfur atom of cysteine, is a selective and reversible protein post-translational modification (PTM that regulates protein activity, localization, and stability. Despite its implication in the regulation of protein functions and cell signaling, the substrate specificity of cysteine S-glutathionylation remains unknown. Based on a total of 1783 experimentally identified S-glutathionylation sites from mouse macrophages, this work presents an informatics investigation on S-glutathionylation sites including structural factors such as the flanking amino acids composition and the accessible surface area (ASA. TwoSampleLogo presents that positively charged amino acids flanking the S-glutathionylated cysteine may influence the formation of S-glutathionylation in closed three-dimensional environment. A statistical method is further applied to iteratively detect the conserved substrate motifs with statistical significance. Support vector machine (SVM is then applied to generate predictive model considering the substrate motifs. According to five-fold cross-validation, the SVMs trained with substrate motifs could achieve an enhanced sensitivity, specificity, and accuracy, and provides a promising performance in an independent test set. The effectiveness of the proposed method is demonstrated by the correct identification of previously reported S-glutathionylation sites of mouse thioredoxin (TXN and human protein tyrosine phosphatase 1b (PTP1B. Finally, the constructed models are adopted to implement an effective web-based tool, named GSHSite (http://csb.cse.yzu.edu.tw/GSHSite/, for identifying uncharacterized GSH substrate sites on the protein sequences.

  6. Production evaluation of Lentinula edodes Pegler fungi in synthetic logs based on agricultural wastes

    International Nuclear Information System (INIS)

    Villegas Escobar, Valeska; Perez, Ana Milena; Clara Arredondo

    2007-01-01

    Production of Lentinula edodes, medicinal and gourmet mushroom commonly known as shiitake, was evaluated in synthetic blocks with the aim of using agroindustrial wastes not jet studied quantitatively and environmentally problematical for many industries. Fifty five different combinations of substrates were analyzed using two agroindustrial wastes (cocoa husk and cotton waste), one wood supplement (oak), one nitrogen source (wheat bran), one pH controller (CaC0 3 ), and one growth stimulator (CaS0 4 ). It was found that the substrate formulation has a considerable effect upon the colonization time of the block (P < 0.05), being the oak supplement essential for the time colonization reduction. Furthermore, the cocoa husk Was not a good waste for shiitake production. The treatments that gave the best conditions for shiitake culture contained 75% of oak, and 20 to 25% of wheat bran or 25% of cotton waste. Depending on the treatment evaluated, the biological efficiency achieved were between 5.3 to 21.5%, the pileo size from 4.7 to 9.3 cm for the first flush and the colonization precocity between 69 to 125 days with C/N relationship superior to 110 and with better nutritional value to those reported by other researchers

  7. Evaluating the Atrial Myopathy Underlying Atrial Fibrillation: Identifying the Arrhythmogenic and Thrombogenic Substrate

    Science.gov (United States)

    Goldberger, Jeffrey J.; Arora, Rishi; Green, David; Greenland, Philip; Lee, Daniel C.; Lloyd-Jones, Donald M.; Markl, Michael; Ng, Jason; Shah, Sanjiv J.

    2015-01-01

    Atrial disease or myopathy forms the substrate for atrial fibrillation (AF) and underlies the potential for atrial thrombus formation and subsequent stroke. Current diagnostic approaches in patients with AF focus on identifying clinical predictors with evaluation of left atrial size by echocardiography serving as the sole measure specifically evaluating the atrium. Although the atrial substrate underlying AF is likely developing for years prior to the onset of AF, there is no current evaluation to identify the pre-clinical atrial myopathy. Atrial fibrosis is one component of the atrial substrate that has garnered recent attention based on newer MRI techniques that have been applied to visualize atrial fibrosis in humans with prognostic implications regarding success of treatment. Advanced ECG signal processing, echocardiographic techniques, and MRI imaging of fibrosis and flow provide up-to-date approaches to evaluate the atrial myopathy underlying AF. While thromboembolic risk is currently defined by clinical scores, their predictive value is mediocre. Evaluation of stasis via imaging and biomarkers associated with thrombogenesis may provide enhanced approaches to assess risk for stroke in patients with AF. Better delineation of the atrial myopathy that serves as the substrate for AF and thromboembolic complications might improve treatment outcomes. Furthermore, better delineation of the pathophysiologic mechanisms underlying the development of the atrial substrate for AF, particularly in its earlier stages, could help identify blood and imaging biomarkers that could be useful to assess risk for developing new onset AF and suggest specific pathways that could be targeted for prevention. PMID:26216085

  8. Spice drugs are more than harmless herbal blends: a review of the pharmacology and toxicology of synthetic cannabinoids.

    Science.gov (United States)

    Seely, Kathryn A; Lapoint, Jeff; Moran, Jeffery H; Fattore, Liana

    2012-12-03

    "K2" and "Spice" drugs (collectively hereafter referred to as Spice) represent a relatively new class of designer drugs that have recently emerged as popular alternatives to marijuana, otherwise characterized as "legal highs". These drugs are readily available on the Internet and sold in many head shops and convenience stores under the disguise of innocuous products like herbal blends, incense, or air fresheners. Although package labels indicate "not for human consumption", the number of intoxicated people presenting to emergency departments is dramatically increasing. The lack of validated and standardized human testing procedures and an endless supply of potential drugs of abuse are primary reasons why researchers find it difficult to fully characterize clinical consequences associated with Spice. While the exact chemical composition and toxicology of Spice remains to be determined, there is mounting evidence identifying several synthetic cannabinoids as causative agents responsible for psychoactive and adverse physical effects. This review provides updates of the legal status of common synthetic cannabinoids detected in Spice and analytical procedures used to test Spice products and human specimens collected under a variety of clinical circumstances. The pharmacological and toxicological consequences of synthetic cannabinoid abuse are also reviewed to provide a future perspective on potential short- and long-term implications. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. The effect of natural and synthetic fatty acids on membrane structure, microdomain organization, cellular functions and human health.

    Science.gov (United States)

    Ibarguren, Maitane; López, David J; Escribá, Pablo V

    2014-06-01

    This review deals with the effects of synthetic and natural fatty acids on the biophysical properties of membranes, and on their implication on cell function. Natural fatty acids are constituents of more complex lipids, like triacylglycerides or phospholipids, which are used by cells to store and obtain energy, as well as for structural purposes. Accordingly, natural and synthetic fatty acids may modify the structure of the lipid membrane, altering its microdomain organization and other physical properties, and provoking changes in cell signaling. Therefore, by modulating fatty acids it is possible to regulate the structure of the membrane, influencing the cell processes that are reliant on this structure and potentially reverting pathological cell dysfunctions that may provoke cancer, diabetes, hypertension, Alzheimer's and Parkinson's disease. The so-called Membrane Lipid Therapy offers a strategy to regulate the membrane composition through drug administration, potentially reverting pathological processes by re-adapting cell membrane structure. Certain fatty acids and their synthetic derivatives are described here that may potentially be used in such therapies, where the cell membrane itself can be considered as a target to combat disease. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction.

    Science.gov (United States)

    Elsheshtawy, Moustafa; Sriganesh, Priatharsini; Virparia, Vasudev; Patel, Falgun; Khanna, Ashok

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  11. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    OpenAIRE

    Moustafa Elsheshtawy; Priatharsini Sriganesh; Vasudev Virparia; Falgun Patel; Ashok Khanna

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  12. Synthetic cannabinoid: prevalence, mechanisms of addiction development, mental disorders associated with the use of synthetic cannabinoid

    Directory of Open Access Journals (Sweden)

    Antsyborov A.V.

    2017-04-01

    Full Text Available according to the authors among the new psychoactive substances, the number of which is growing every year, despite the measures aimed at the obstacles to their dissemination there discovered the most frequent violations of psychotic conditions associated with use of synthetic cannabinoid in clinical practice. On the black market, they are distributed through online shops, under the guise of herbal mixtures for Smoking. When ingested, this group of drugs at the peak of intoxication raises a number of mental (different according to the depth of impaired consciousness, auditory and visual hallucinations, panic attacks, acute psychotic paranoid disorders, catatonic stupor, polar affective disorders, acute polythematic delusional symptoms and somatic disorders (disorders of heart rhythm and conduction, acute ischemic disorders, hypertension, depression of respiratory activity, violation of thermoregulation, development of acute renal failure, vomiting, expressed cephalgia, clinic of hypokalemia. In the reviewed literature and authors own observations there have been discovered some cases of mental addiction development to synthetic cannabinoids. The analysis of new literature data and own clinical observations helped the authors to compare the psychotropic effects caused by this group of drugs, relative to other known surfactants. The toxic effects of CSC on the body greatly exceeds the use of plant cannabinoids, and it has almost the same effects as the synthetic cathinone’s. The speed of formation of psychological dependence is lower compared to synthetic cathinone. Developing current strategies for diagnosis, treatment, and rehabilitation of patients who use synthetic cannabinoids remains an important task for practical healthcare.

  13. Micro-nano zinc oxide film fabricated by biomimetic mineralization: Designed architectures for SERS substrates

    Science.gov (United States)

    Lu, Fei; Guo, Yue; Wang, Yunxin; Song, Wei; Zhao, Bing

    2018-05-01

    In this study, we have investigated the effect of the surface morphologies of the zinc oxide (ZnO) substrates on surface enhanced Raman spectroscopy (SERS). During synthetic process, the self-assembly monolayers (SAMs) with different terminal groups are used as templates to induce the nucleation and growth of Zn(NO3)2·6H2O crystals, then different morphologies micro-nano ZnO powders are obtained by annealing Zn(NO3)2·6H2O crystals at 450 °C. The products obtained at different conditions are characterized by means of X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM) and Raman spectra. The as-prepared ZnO micro-sized particles have been used the efficient Surface enhanced Raman scattering (SERS) substrates, and the SERS signals of 4-mercaptopyridine (Mpy) probe molecules are much influenced by the morphologies of the ZnO structures. Results indicated that the more (0001) facets appear in the of ZnO morphology, the greater degree of charge-transfer (PCT) for the SERS enhancement on the surface of semiconductors is achieved. The chemical interaction between ZnO structures and Mpy molecules plays a very important role in the SERS enhancement.

  14. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    Khan, N.A.; Yahya, K.M.

    2003-01-01

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  15. The Bio-accessibility of Synthetic Fe-Organo Complexes in Subsurface Soil with Elevated Temperature: a Proxy for the Vulnerability of Mineral Associated Carbon to Warming Rachel C. Porras, Peter S. Nico, and Margaret Torn Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA

    Science.gov (United States)

    Porras, R. C.; Hicks Pries, C.

    2015-12-01

    Globally, subsurface soils (>30 cm) represent an important reservoir of soil organic carbon (SOC). However, the vulnerability of this deep SOC and, in particular mineral-associated SOC, to warming, and its potential to amplify the effects of climate change is highly uncertain. To gain insight into the bio-accessibility and temperature sensitivity of mineral-associated organic C, we conducted a series of incubations using soils collected from three depths (0-10, 50-60, and 80-90 cm) under coniferous forest. The soils are moderately acidic (mean pH=6.5) sandy, mixed, mesic Ultic Haploxeralfs. To understand how mechanisms controlling SOC bio-accessibilty or temperature sensitivity differ with depth and with the properties of Fe-organo complexes (i.e.,degree of crystallinity, amount of reactive surface area, or surface saturation), we used a 13C labeled glucose substrate to prepare synthetic Fe-organo complexes spanning a range of crystallinity and mineral surface saturation. The synthetic Fe-organo complexes were then added to soil from three depths. The soils containing the 13C labeled Fe-organo adduct were incubated at two temperatures (ambient and +4°C) and respired 13CO2 was measured and used to estimate flux rates. Differences in measured 13CO2 fluxes as a function of depth, surface loading, and mineral properties are discussed in terms of their implications for the temperature sensitivity of mineral protected organic carbon in subsurface soils.

  16. Synthetic biology and the technicity of biofuels.

    Science.gov (United States)

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  18. Brain imaging with synthetic MR in children: clinical quality assessment

    Energy Technology Data Exchange (ETDEWEB)

    Betts, Aaron M.; Serai, Suraj [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Leach, James L.; Jones, Blaise V. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); University of Cincinnati College of Medicine, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Biostatistics and Epidemiology, Cincinnati, OH (United States)

    2016-10-15

    Synthetic magnetic resonance imaging is a quantitative imaging technique that measures inherent T1-relaxation, T2-relaxation, and proton density. These inherent tissue properties allow synthesis of various imaging sequences from a single acquisition. Clinical use of synthetic MR imaging has been described in adult populations. However, use of synthetic MR imaging has not been previously reported in children. The purpose of this study is to report our assessment of diagnostic image quality using synthetic MR imaging in children. Synthetic MR acquisition was obtained in a sample of children undergoing brain MR imaging. Image quality assessments were performed on conventional and synthetic T1-weighted, T2-weighted, and FLAIR images. Standardized linear measurements were performed on conventional and synthetic T2 images. Estimates of patient age based upon myelination patterns were also performed. Conventional and synthetic MR images were evaluated on 30 children. Using a 4-point assessment scale, conventional imaging performed better than synthetic imaging for T1-weighted, T2-weighted, and FLAIR images. When the assessment was simplified to a dichotomized scale, the conventional and synthetic T1-weighted and T2-weighted images performed similarly. However, the superiority of conventional FLAIR images persisted in the dichotomized assessment. There were no statistically significant differences between linear measurements made on T2-weighted images. Estimates of patient age based upon pattern of myelination were also similar between conventional and synthetic techniques. Synthetic MR imaging may be acceptable for clinical use in children. However, users should be aware of current limitations that could impact clinical utility in the software version used in this study. (orig.)

  19. The Role of Synthetic Biology in NASA's Missions

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    The time has come to for NASA to exploit synthetic biology in pursuit of its missions, including aeronautics, earth science, astrobiology and most notably, human exploration. Conversely, NASA advances the fundamental technology of synthetic biology as no one else can because of its unique expertise in the origin of life and life in extreme environments, including the potential for alternate life forms. This enables unique, creative "game changing" advances. NASA's requirement for minimizing upmass in flight will also drive the field toward miniaturization and automation. These drivers will greatly increase the utility of synthetic biology solutions for military, health in remote areas and commercial purposes. To this end, we have begun a program at NASA to explore the use of synthetic biology in NASA's missions, particular space exploration. As part of this program, we began hosting an iGEM team of undergraduates drawn from Brown and Stanford Universities to conduct synthetic biology research at NASA Ames Research Center. The 2011 team (http://2011.igem.org/Team:Brown-Stanford) produced an award-winning project on using synthetic biology as a basis for a human Mars settlement.

  20. [Smart therapeutics based on synthetic gene circuits].

    Science.gov (United States)

    Peng, Shuguang; Xie, Zhen

    2017-03-25

    Synthetic biology has an important impact on biology research since its birth. Applying the thought and methods that reference from electrical engineering, synthetic biology uncovers many regulatory mechanisms of life systems, transforms and expands a series of biological components. Therefore, it brings a wide range of biomedical applications, including providing new ideas for disease diagnosis and treatment. This review describes the latest advances in the field of disease diagnosis and therapy based on mammalian cell or bacterial synthetic gene circuits, and provides new ideas for future smart therapy design.

  1. Collembola and macroarthropod community responses to carbamate, organophosphate and synthetic pyrethroid insecticides: Direct and indirect effects

    Energy Technology Data Exchange (ETDEWEB)

    Frampton, Geoff K. [Ecology and Evolutionary Biology Group, School of Biological Sciences, University of Southampton, Bassett Crescent East, Southampton SO16 7PX (United Kingdom)]. E-mail: gkf@soton.ac.uk; Brink, Paul J. van den [Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen (Netherlands); Wageningen University, Department of Aquatic Ecology and Water Quality Management, Wageningen University and Research Centre, P.O. Box 8080, 6700 DD Wageningen (Netherlands)

    2007-05-15

    Non-target effects on terrestrial arthropod communities of the broad-spectrum insecticides chlorpyrifos and cypermethrin and the selective insecticide pirimicarb were investigated in winter wheat fields in summer. Effects of chlorpyrifos on arthropod abundance and taxonomic richness were consistently negative whereas effects of cypermethrin were negative for predatory arthropods but positive for soil surface Collembola. Pirimicarb effects were marginal, primarily on aphids and their antagonists, with no effect on the Collembola community. Collembola-predator ratios were significantly higher following cypermethrin treatment, suggesting that cypermethrin-induced increases in collembolan abundance represent a classical resurgence. Observations in other studies suggest Collembola resurgences may be typical after synthetic pyrethroid applications. Collembola responses to insecticides differed among species, both in terms of effect magnitude and persistence, suggesting that coarse taxonomic monitoring would not adequately detect pesticide risks. These findings have implications for pesticide risk assessments and for the selection of indicator species. - Direct and indirect insecticide effects differ among closely-related arthropod taxa; resurgence of Collembola may occur widely after synthetic pyrethroid insecticide applications.

  2. Collembola and macroarthropod community responses to carbamate, organophosphate and synthetic pyrethroid insecticides: Direct and indirect effects

    International Nuclear Information System (INIS)

    Frampton, Geoff K.; Brink, Paul J. van den

    2007-01-01

    Non-target effects on terrestrial arthropod communities of the broad-spectrum insecticides chlorpyrifos and cypermethrin and the selective insecticide pirimicarb were investigated in winter wheat fields in summer. Effects of chlorpyrifos on arthropod abundance and taxonomic richness were consistently negative whereas effects of cypermethrin were negative for predatory arthropods but positive for soil surface Collembola. Pirimicarb effects were marginal, primarily on aphids and their antagonists, with no effect on the Collembola community. Collembola-predator ratios were significantly higher following cypermethrin treatment, suggesting that cypermethrin-induced increases in collembolan abundance represent a classical resurgence. Observations in other studies suggest Collembola resurgences may be typical after synthetic pyrethroid applications. Collembola responses to insecticides differed among species, both in terms of effect magnitude and persistence, suggesting that coarse taxonomic monitoring would not adequately detect pesticide risks. These findings have implications for pesticide risk assessments and for the selection of indicator species. - Direct and indirect insecticide effects differ among closely-related arthropod taxa; resurgence of Collembola may occur widely after synthetic pyrethroid insecticide applications

  3. Synthetic Metabolic Pathways

    DEFF Research Database (Denmark)

    topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Synthetic Metabolic Pathways: Methods and Protocols aims to ensure successful results in the further study...

  4. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    Directory of Open Access Journals (Sweden)

    Moustafa Elsheshtawy

    2016-01-01

    Full Text Available Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  5. Application of the Organic Synthetic Designs to Astrobiology

    Science.gov (United States)

    Kolb, V. M.

    2009-12-01

    In this paper we propose a synthesis of the heterocyclic compounds and the insoluble materials on the meteorites. Our synthetic scheme involves the reaction of sugars and amino acids, the so-called Maillard reaction. We have developed this scheme based on the combined analysis of the regular and retrosynthetic organic synthetic principles. The merits of these synthetic methods for the prebiotic design are addressed.

  6. Structures of Saccharomyces cerevisiae D-arabinose dehydrogenase Ara1 and its complex with NADPH: implications for cofactor-assisted substrate recognition.

    Science.gov (United States)

    Hu, Xiao-Qian; Guo, Peng-Chao; Ma, Jin-Di; Li, Wei-Fang

    2013-11-01

    The primary role of yeast Ara1, previously mis-annotated as a D-arabinose dehydrogenase, is to catalyze the reduction of a variety of toxic α,β-dicarbonyl compounds using NADPH as a cofactor at physiological pH levels. Here, crystal structures of Ara1 in apo and NADPH-complexed forms are presented at 2.10 and 2.00 Å resolution, respectively. Ara1 exists as a homodimer, each subunit of which adopts an (α/β)8-barrel structure and has a highly conserved cofactor-binding pocket. Structural comparison revealed that induced fit upon NADPH binding yielded an intact active-site pocket that recognizes the substrate. Moreover, the crystal structures combined with computational simulation defined an open substrate-binding site to accommodate various substrates that possess a dicarbonyl group.

  7. Synthetic neurosteroids on brain protection

    Directory of Open Access Journals (Sweden)

    Mariana Rey

    2015-01-01

    Full Text Available Neurosteroids, like allopregnanolone and pregnanolone, are endogenous regulators of neuronal excitability. Inside the brain, they are highly selective and potent modulators of GABA A receptor activity. Their anticonvulsant, anesthetics and anxiolytic properties are useful for the treatments of several neurological and psychiatric disorders via reducing the risks of side effects obtained with the commercial drugs. The principal disadvantages of endogenous neurosteroids administration are their rapid metabolism and their low oral bioavailability. Synthetic steroids analogues with major stability or endogenous neurosteroids stimulation synthesis might constitute promising novel strategies for the treatment of several disorders. Numerous studies indicate that the 3α-hydroxyl configuration is the key for binding and activity, but modifications in the steroid nucleus may emphasize different pharmacophores. So far, several synthetic steroids have been developed with successful neurosteroid-like effects. In this work, we summarize the properties of various synthetic steroids probed in trials throughout the analysis of several neurosteroids-like actions.

  8. Paper-based synthetic gene networks.

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A; Ferrante, Tom; Cameron, D Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J

    2014-11-06

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides an alternate, versatile venue for synthetic biologists to operate and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze dried onto paper, enabling the inexpensive, sterile, and abiotic distribution of synthetic-biology-based technologies for the clinic, global health, industry, research, and education. For field use, we create circuits with colorimetric outputs for detection by eye and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small-molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors.

  9. Paper-based Synthetic Gene Networks

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.

    2014-01-01

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167

  10. Engineering of synthetic, stress-responsive yeast promoters

    DEFF Research Database (Denmark)

    Rajkumar, Arun Stephen; Liu, Guodong; Bergenholm, David

    2016-01-01

    Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducibleby specific endogenous or environmental conditions...

  11. Opportunities for microfluidic technologies in synthetic biology

    OpenAIRE

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed.

  12. Substrate specificity changes for human reticulocyte and epithelial 15-lipoxygenases reveal allosteric product regulation.

    Science.gov (United States)

    Wecksler, Aaron T; Kenyon, Victor; Deschamps, Joshua D; Holman, Theodore R

    2008-07-15

    Human reticulocyte 15-lipoxygenase (15-hLO-1) and epithelial 15-lipoxygenase (15-hLO-2) have been implicated in a number of human diseases, with differences in their substrate specificity potentially playing a central role. In this paper, we present a novel method for accurately measuring the substrate specificity of the two 15-hLO isozymes and demonstrate that both cholate and specific LO products affect substrate specificity. The linoleic acid (LA) product, 13-hydroperoxyoctadienoic acid (13-HPODE), changes the ( k cat/ K m) (AA)/( k cat/ K m) (LA) ratio more than 5-fold for 15-hLO-1 and 3-fold for 15-hLO-2, while the arachidonic acid (AA) product, 12-( S)-hydroperoxyeicosatetraenoic acid (12-HPETE), affects only the ratio of 15-hLO-1 (more than 5-fold). In addition, the reduced products, 13-( S)-hydroxyoctadecadienoic acid (13-HODE) and 12-( S)-hydroxyeicosatetraenoic acid (12-HETE), also affect substrate specificity, indicating that iron oxidation is not responsible for the change in the ( k cat/ K m) (AA)/( k cat/ K m) (LA) ratio. These results, coupled with the dependence of the 15-hLO-1 k cat/ K m kinetic isotope effect ( (D) k cat/ K m) on the presence of 12-HPETE and 12-HETE, indicate that the allosteric site, previously identified in 15-hLO-1 [Mogul, R., Johansen, E., and Holman, T. R. (1999) Biochemistry 39, 4801-4807], is responsible for the change in substrate specificity. The ability of LO products to regulate substrate specificity may be relevant with respect to cancer progression and warrants further investigation into the role of this product-feedback loop in the cell.

  13. [Research progress of mammalian synthetic biology in biomedical field].

    Science.gov (United States)

    Yang, Linfeng; Yin, Jianli; Wang, Meiyan; Ye, Haifeng

    2017-03-25

    Although still in its infant stage, synthetic biology has achieved remarkable development and progress during the past decade. Synthetic biology applies engineering principles to design and construct gene circuits uploaded into living cells or organisms to perform novel or improved functions, and it has been widely used in many fields. In this review, we describe the recent advances of mammalian synthetic biology for the treatment of diseases. We introduce common tools and design principles of synthetic gene circuits, and then we demonstrate open-loop gene circuits induced by different trigger molecules used in disease diagnosis and close-loop gene circuits used for biomedical applications. Finally, we discuss the perspectives and potential challenges of synthetic biology for clinical applications.

  14. Manipulating novel quantum phenomena using synthetic gauge fields

    Science.gov (United States)

    Zhang, Shao-Liang; Zhou, Qi

    2017-11-01

    The past few years have seen fascinating progress in the creation and utilization of synthetic gauge fields for charge-neutral ultracold atoms. Whereas the synthesis of gauge fields in itself is readily interesting, it is more exciting to explore the new era that will be brought by the interplay between synthetic gauge fields and many other degrees of freedom of highly tunable ultracold atoms. This topical review surveys recent developments in using synthetic gauge fields to manipulate novel quantum phenomena that are not easy to access in other systems. We first summarize current experimental methods of creating synthetic gauge fields, including the use of Raman schemes, shaken lattices, and Raman-dressed lattices. We then discuss how synthetic gauge fields bring new physics to non-interacting systems, including degenerate single-particle ground states, quartic dispersions, topological band structures in lattices, and synthetic dimensions. As for interacting systems, we focus on novel quantum many-body states and quantum macroscopic phenomena induced by interactions in the presence of unconventional single-particle dispersions. For bosons, we discuss how a quartic dispersion leads to non-condensed bosonic states at low temperatures and at the ground state. For fermions, we discuss chiral superfluids in the presence of attractive s-wave interaction, where high partial-wave interactions are not required. Finally, we discuss the challenges in current experiments, and conclude with an outlook for what new exciting developments synthetic gauge fields may bring us in the near future.

  15. Study of seed for synthetical quartz

    International Nuclear Information System (INIS)

    Suzuki, C.K.; Torikai, D.

    1988-01-01

    Natural quartz blocks for seed (synthetic quartz technology) were studied by using various characterization techniques, such as X-ray topography, optical micrography, inspectoscopy, polariscopy and conoscopy, and etching. One of the most commonly found defect is the electrical or Dauphine twin. In The present research, we have developed a methodology to obtain a highly perfect seed for the synthetic quartz industries. (author) [pt

  16. 75 FR 52752 - Request for Comments on Synthetic Biology

    Science.gov (United States)

    2010-08-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Request for Comments on Synthetic Biology AGENCY... Bioethical Issues is requesting public comment on the emerging science of synthetic biology, including its... Commission has begun an inquiry into the emerging science of synthetic biology. The President asked the...

  17. Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates

    International Nuclear Information System (INIS)

    Venturi, F; Calizzi, M; Pasquini, L; Bals, S; Perkisas, T

    2015-01-01

    Magnesium nanoparticles (NPs) with initial size in the 10–50 nm range were synthesized by inert gas condensation under helium flow and deposited on room temperature substrates. The morphology and crystal structure of the NPs ensemble were investigated as a function of the deposition time by complementary electron microscopy techniques, including high resolution imaging and chemical mapping. With increasing amount of material, strong coarsening phenomena were observed at room temperature: small NPs disappeared while large faceted NPs developed, leading to a 5-fold increase of the average NPs size within a few minutes. The extent of coarsening and the final morphology depended also on the nature of the substrate. Furthermore, large single-crystal NPs were seen to arise from the self-organization of primary NPs units, providing a mechanism for crystal growth. The dynamics of the self-assembly process involves the basic steps of NPs sticking, diffusion on substrate, coordinated rotation and attachment/coalescence. Key features are the surface energy anisotropy, reflected by the faceted shape of the NPs, and the low melting point of the material. The observed phenomena have strong implications in relation to the synthesis and stability of nanostructures based on Mg or other elements with similar features. (paper)

  18. Automated cassette-to-cassette substrate handling system

    Science.gov (United States)

    Kraus, Joseph Arthur; Boyer, Jeremy James; Mack, Joseph; DeChellis, Michael; Koo, Michael

    2014-03-18

    An automated cassette-to-cassette substrate handling system includes a cassette storage module for storing a plurality of substrates in cassettes before and after processing. A substrate carrier storage module stores a plurality of substrate carriers. A substrate carrier loading/unloading module loads substrates from the cassette storage module onto the plurality of substrate carriers and unloads substrates from the plurality of substrate carriers to the cassette storage module. A transport mechanism transports the plurality of substrates between the cassette storage module and the plurality of substrate carriers and transports the plurality of substrate carriers between the substrate carrier loading/unloading module and a processing chamber. A vision system recognizes recesses in the plurality of substrate carriers corresponding to empty substrate positions in the substrate carrier. A processor receives data from the vision system and instructs the transport mechanism to transport substrates to positions on the substrate carrier in response to the received data.

  19. On the anomalies in gold nanoparticles prepared by micelle nanolithography and their impact on one-dimensional material synthesis. Role of substrate, size effects and impurity

    Energy Technology Data Exchange (ETDEWEB)

    Mbenkum, B.N.

    2007-07-23

    The synthesis of one-dimensional (1-D) inorganic semiconductor materials such as nanotubes and silicon (Si) nanowires is usually achieved by catalyst nanoparticlemediated synthetic routes. Despite the well-established nature of this technique, problems such as low temperature synthesis and adequate control of catalyst nanoparticle diameter in order to control 1-D material diameter still prevail. Additionally, the expansion of this technology from crystalline to cheaper substrates such as glass remains demanding. This work employs a previously established selfassembly route to produce controlled spatial distribution of substrate anchored small diameter gold nanoparticles with controlled size. This enabled successful synthesis of Si 1-D structures with controlled diameters less than 20 nm. Low temperature synthesis due to enhanced catalytic activity was achieved via introduction of impurity by treatment of gold nanoparticles in different plasma environments. This enabled Si 1-D structure growth on Si, SiO{sub x}/Si and borosilicate glass substrates at 320 C. Substrate-induced stress affected Si diffusion at the gold nanoparticle determining whether Si nanowires or nanotubes were grown. These results are of technological relevance because low temperature synthesis provides an economical approach and controlled diameter enhances material functionality. Additionally, exploiting substrate-induced stress to influence Si diffusion in nanoparticles provides an alternate route to tuning Si 1-D structure. (orig.)

  20. Parity-Time Synthetic Phononic Media

    DEFF Research Database (Denmark)

    Christensen, Johan; Willatzen, Morten; Velasco, V. R.

    2016-01-01

    media, have been devised in many optical systems with the ground breaking potential to create nonreciprocal structures and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where the most important ingredients within synthetic materials, loss and gain......, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection....

  1. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  2. 21 CFR 172.275 - Synthetic paraffin and succinic derivatives.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic paraffin and succinic derivatives. 172... FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.275 Synthetic paraffin and succinic derivatives. Synthetic paraffin and succinic derivatives identified in this section may be safely...

  3. Cold adaptation and replicable microbial community development during long-term low-temperature anaerobic digestion treatment of synthetic sewage.

    Science.gov (United States)

    Keating, C; Hughes, D; Mahony, T; Cysneiros, D; Ijaz, U Z; Smith, C J; O'Flaherty, V

    2018-07-01

    The development and activity of a cold-adapting microbial community was monitored during low-temperature anaerobic digestion (LtAD) treatment of wastewater. Two replicate hybrid anaerobic sludge bed-fixed-film reactors treated a synthetic sewage wastewater at 12°C, at organic loading rates of 0.25-1.0 kg chemical oxygen demand (COD) m-3 d-1, over 889 days. The inoculum was obtained from a full-scale anaerobic digestion reactor, which was operated at 37°C. Both LtAD reactors readily degraded the influent with COD removal efficiencies regularly exceeding 78% for both the total and soluble COD fractions. The biomass from both reactors was sampled temporally and tested for activity against hydrolytic and methanogenic substrates at 12°C and 37°C. Data indicated that significantly enhanced low-temperature hydrolytic and methanogenic activity developed in both systems. For example, the hydrolysis rate constant (k) at 12°C had increased 20-30-fold by comparison to the inoculum by day 500. Substrate affinity also increased for hydrolytic substrates at low temperature. Next generation sequencing demonstrated that a shift in a community structure occurred over the trial, involving a 1-log-fold change in 25 SEQS (OTU-free approach) from the inoculum. Microbial community structure changes and process performance were replicable in the LtAD reactors.

  4. Influence of airflow rate and substrate nature on heterogeneous struvite precipitation.

    Science.gov (United States)

    Saidou, H; Ben Moussa, S; Ben Amor, M

    2009-01-01

    In wastewater treatment plants a hard scale consisting of struvite crystals can be formed, in pipes and recirculation pumps, during anaerobic digestion of wastewater. This study was conducted to evaluate the effect of airflow rate and substrate nature on nucleation type, induction period and supersaturation coefficient during struvite precipitation. A crystallization reactor similar to that designed for calcium carbonate precipitation was used. The pH of synthetic wastewater solution was increased by air bubbling. Experimental results indicated that the airflow increased heterogeneous precipitation of struvite. The susceptibility to scale formation was more important on polyamide and polyvinyl chloride than on stainless steel. In all cases, X-ray diffraction and infrared spectroscopy showed that the precipitated solid phase was solely struvite. No difference in crystal morphology was observed. However, at similar experimental conditions, the particle size of struvite was higher for stainless-steel material than that for plastic materials.

  5. The effects of electrospun substrate-mediated cell colony morphology on the self-renewal of human induced pluripotent stem cells.

    Science.gov (United States)

    Maldonado, Maricela; Wong, Lauren Y; Echeverria, Cristina; Ico, Gerardo; Low, Karen; Fujimoto, Taylor; Johnson, Jed K; Nam, Jin

    2015-05-01

    The development of xeno-free, chemically defined stem cell culture systems has been a primary focus in the field of regenerative medicine to enhance the clinical application of pluripotent stem cells (PSCs). In this regard, various electrospun substrates with diverse physiochemical properties were synthesized utilizing various polymer precursors and surface treatments. Human induced pluripotent stem cells (IPSCs) cultured on these substrates were characterized by their gene and protein expression to determine the effects of the substrate physiochemical properties on the cells' self-renewal, i.e., proliferation and the maintenance of pluripotency. The results showed that surface chemistry significantly affected cell colony formation via governing the colony edge propagation. More importantly, when surface chemistry of the substrates was uniformly controlled by collagen conjugation, the stiffness of substrate was inversely related to the sphericity, a degree of three dimensionality in colony morphology. The differences in sphericity subsequently affected spontaneous differentiation of IPSCs during a long-term culture, implicating that the colony morphology is a deciding factor in the lineage commitment of PSCs. Overall, we show that the capability of controlling IPSC colony morphology by electrospun substrates provides a means to modulate IPSC self-renewal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Design and construction of "synthetic species".

    Directory of Open Access Journals (Sweden)

    Eduardo Moreno

    Full Text Available Synthetic biology is an area of biological research that combines science and engineering. Here, I merge the principles of synthetic biology and regulatory evolution to create a new species with a minimal set of known elements. Using preexisting transgenes and recessive mutations of Drosophila melanogaster, a transgenic population arises with small eyes and a different venation pattern that fulfils the criteria of a new species according to Mayr's Biological Species Concept. The population described here is the first transgenic organism that cannot hybridize with the original wild type population but remains fertile when crossed with other identical transgenic animals. I therefore propose the term "synthetic species" to distinguish it from "natural species", not only because it has been created by genetic manipulation, but also because it may never be able to survive outside the laboratory environment. The use of genetic engineering to design artificial species barriers could help us understand natural speciation and may have practical applications. For instance, the transition from transgenic organisms towards synthetic species could constitute a safety mechanism to avoid the hybridization of genetically modified animals with wild type populations, preserving biodiversity.

  7. High-throughput screening of microscale pitted substrate topographies for enhanced nonviral transfection efficiency in primary human fibroblasts

    DEFF Research Database (Denmark)

    Adler, Andrew F; Speidel, Alessondra T; Christoforou, Nicolas

    2011-01-01

    of microscale topographies, we have demonstrated an improvement in nonviral transfection efficiency for cells cultured on dense micropit patterns compared to smooth substrates, as verified with flow cytometry. A 25% increase in GFP(+) cells was observed independent of proliferation rate, accompanied by SEM....... Emerging literature has highlighted the influence of cell-topography interactions on modulation of many cell phenotypes, including protein expression and cytoskeletal behaviors implicated in endocytosis. Using high-throughput screening of primary human dermal fibroblasts cultured on a combinatorial library...... and confocal microscopy characterization to help explain the phenomenon qualitatively. This finding encourages researchers to investigate substrate topography as a new design consideration for the optimization of nonviral transfection systems....

  8. Functional visual sensitivity to ultraviolet wavelengths in the Pileated Woodpecker (Dryocopus pileatus), and its influence on foraging substrate selection

    Science.gov (United States)

    O'Daniels, Sean T.; Kesler, Dylan C.; Mihail, Jeanne D.; Webb, Elisabeth B.; Werner, Scott J.

    2017-01-01

    Most diurnal birds are presumed visually sensitive to near ultraviolet (UV) wavelengths, however, controlled behavioral studies investigating UV sensitivity remain few. Although woodpeckers are important as primary cavity excavators and nuisance animals, published work on their visual systems is limited. We developed a novel foraging-based behavioral assay designed to test UV sensitivity in the Pileated Woodpecker (Dryocopus pileatus). We acclimated 21 wild-caught woodpeckers to foraging for frozen mealworms within 1.2 m sections of peeled cedar (Thuja spp.) poles. We then tested the functional significance of UV cues by placing frozen mealworms behind UV-reflective covers, UV-absorptive covers, or decayed red pine substrates within the same 1.2 m poles in independent experiments. Behavioral responses were greater toward both UV-reflective and UV-absorptive substrates in three experiments. Study subjects therefore reliably differentiated and attended to two distinct UV conditions of a foraging substrate. Cue-naïve subjects showed a preference for UV-absorptive substrates, suggesting that woodpeckers may be pre-disposed to foraging from such substrates. Behavioral responses were greater toward decayed pine substrates (UV-reflective) than sound pine substrates suggesting that decayed pine can be a useful foraging cue. The finding that cue-naïve subjects selected UV-absorbing foraging substrates has implications for ecological interactions of woodpeckers with fungi. Woodpeckers transport fungal spores, and communication methods analogous to those of plant-pollinator mutualisms (i.e. UV-absorbing patterns) may have evolved to support woodpecker-fungus mutualisms.

  9. Efficacy of bio and synthetic pesticides against the American ...

    African Journals Online (AJOL)

    Management for the bollworm complex in Uganda is largely synthetic chemical use with little or no biopesticide use which reduces natural enemies population and resistance development to continuous use of a single synthetic pesticide product. Therefore this study aimed at determining the efficacy of bio and synthetic ...

  10. Metal immobilization in soils using synthetic zeolites

    NARCIS (Netherlands)

    Osté, L.A.; Lexmond, T.M.; Riemsdijk, van W.H.

    2002-01-01

    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type,

  11. Synthetic Self-Assembled Materials in Biological Environments

    NARCIS (Netherlands)

    Versluis, F.; van Esch, J.H.; Eelkema, R.

    2016-01-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA,

  12. Stereoscopy in cinematographic synthetic imagery

    Science.gov (United States)

    Eisenmann, Jonathan; Parent, Rick

    2009-02-01

    In this paper we present experiments and results pertaining to the perception of depth in stereoscopic viewing of synthetic imagery. In computer animation, typical synthetic imagery is highly textured and uses stylized illumination of abstracted material models by abstracted light source models. While there have been numerous studies concerning stereoscopic capabilities, conventions for staging and cinematography in stereoscopic movies have not yet been well-established. Our long-term goal is to measure the effectiveness of various cinematography techniques on the human visual system in a theatrical viewing environment. We would like to identify the elements of stereoscopic cinema that are important in terms of enhancing the viewer's understanding of a scene as well as providing guidelines for the cinematographer relating to storytelling. In these experiments we isolated stereoscopic effects by eliminating as many other visual cues as is reasonable. In particular, we aim to empirically determine what types of movement in synthetic imagery affect the perceptual depth sensing capabilities of our viewers. Using synthetic imagery, we created several viewing scenarios in which the viewer is asked to locate a target object's depth in a simple environment. The scenarios were specifically designed to compare the effectiveness of stereo viewing, camera movement, and object motion in aiding depth perception. Data were collected showing the error between the choice of the user and the actual depth value, and patterns were identified that relate the test variables to the viewer's perceptual depth accuracy in our theatrical viewing environment.

  13. Where Synthetic Biology Meets ET

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  14. Assessment of synthetic image fidelity

    Science.gov (United States)

    Mitchell, Kevin D.; Moorhead, Ian R.; Gilmore, Marilyn A.; Watson, Graham H.; Thomson, Mitch; Yates, T.; Troscianko, Tomasz; Tolhurst, David J.

    2000-07-01

    Computer generated imagery is increasingly used for a wide variety of purposes ranging from computer games to flight simulators to camouflage and sensor assessment. The fidelity required for this imagery is dependent on the anticipated use - for example when used for camouflage design it must be physically correct spectrally and spatially. The rendering techniques used will also depend upon the waveband being simulated, spatial resolution of the sensor and the required frame rate. Rendering of natural outdoor scenes is particularly demanding, because of the statistical variation in materials and illumination, atmospheric effects and the complex geometric structures of objects such as trees. The accuracy of the simulated imagery has tended to be assessed subjectively in the past. First and second order statistics do not capture many of the essential characteristics of natural scenes. Direct pixel comparison would impose an unachievable demand on the synthetic imagery. For many applications, such as camouflage design, it is important that nay metrics used will work in both visible and infrared wavebands. We are investigating a variety of different methods of comparing real and synthetic imagery and comparing synthetic imagery rendered to different levels of fidelity. These techniques will include neural networks (ICA), higher order statistics and models of human contrast perception. This paper will present an overview of the analyses we have carried out and some initial results along with some preliminary conclusions regarding the fidelity of synthetic imagery.

  15. The Pharmacologic and Clinical Effects of Illicit Synthetic Cannabinoids.

    Science.gov (United States)

    White, C Michael

    2017-03-01

    This article presents information on illicitly used synthetic cannabinoids. Synthetic cannabinoids are structurally heterogeneous and commonly used drugs of abuse that act as full agonists of the cannabinoid type-1 receptor but have a variety of additional pharmacologic effects. There are numerous cases of patient harm and death in the United States, Europe, and Australia with many psychological, neurological, cardiovascular, pulmonary, and renal adverse events. Although most users prefer using cannabis, there are convenience, legal, and cost reasons driving the utilization of synthetic cannabinoids. Clinicians should be aware of pharmacologic and clinical similarities and differences between synthetic cannabinoid and cannabis use, the limited ability to detect synthetic cannabinoids in the urine or serum, and guidance to treat adverse events. © 2016, The American College of Clinical Pharmacology.

  16. Synthetic biology for pharmaceutical drug discovery

    Directory of Open Access Journals (Sweden)

    Trosset JY

    2015-12-01

    Full Text Available Jean-Yves Trosset,1 Pablo Carbonell2,3 1Bioinformation Research Laboratory, Sup’Biotech, Villejuif, France; 2Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK; 3Department of Experimental and Health Sciences (DCEXS, Research Programme on Biomedical Informatics (GRIB, Hospital del Mar Medical Research Institute (IMIM, Universitat Pompeu Fabra (UPF, Barcelona, Spain Abstract: Synthetic biology (SB is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell–cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity. Keywords: metabolic engineering, plant synthetic biology, natural products, synthetic quorum sensing, drug resistance

  17. Hsc66 substrate specificity is directed toward a discrete region of the iron-sulfur cluster template protein IscU.

    Science.gov (United States)

    Hoff, Kevin G; Ta, Dennis T; Tapley, Tim L; Silberg, Jonathan J; Vickery, Larry E

    2002-07-26

    Hsc66 and Hsc20 comprise a specialized chaperone system important for the assembly of iron-sulfur clusters in Escherchia coli. Only a single substrate, the Fe/S template protein IscU, has been identified for the Hsc66/Hsc20 system, but the mechanism by which Hsc66 selectively binds IscU is unknown. We have investigated Hsc66 substrate specificity using phage display and a peptide array of IscU. Screening of a heptameric peptide phage display library revealed that Hsc66 prefers peptides with a centrally located Pro-Pro motif. Using a cellulose-bound peptide array of IscU we determined that Hsc66 interacts specifically with a region (residues 99-103, LPPVK) that is invariant among all IscU family members. A synthetic peptide (ELPPVKIHC) corresponding to IscU residues 98-106 behaves in a similar manner to native IscU, stimulating the ATPase activity of Hsc66 with similar affinity as IscU, preventing Hsc66 suppression of bovine rhodanese aggregation, and interacting with the peptide-binding domain of Hsc66. Unlike native IscU, however, the synthetic peptide is not bound by Hsc20 and does not synergistically stimulate Hsc66 ATPase activity with Hsc20. Our results indicate that Hsc66 and Hsc20 recognize distinct regions of IscU and further suggest that Hsc66 will not bind LPPVK motifs with high affinity in vivo unless they are in the context of native IscU and can be directed to Hsc66 by Hsc20.

  18. Carbon nanotube substrates and catalyzed hot stamp for polishing and patterning the substrates

    Science.gov (United States)

    Wang, Yuhuang [Evanston, IL; Hauge, Robert H [Houston, TX; Schmidt, Howard K [Houston, TX; Kim, Myung Jong [Houston, TX; Kittrell, W Carter [Houston, TX

    2009-09-08

    The present invention is generally directed to catalyzed hot stamp methods for polishing and/or patterning carbon nanotube-containing substrates. In some embodiments, the substrate, as a carbon nanotube fiber end, is brought into contact with a hot stamp (typically at 200-800.degree. C.), and is kept in contact with the hot stamp until the morphology/patterns on the hot stamp have been transferred to the substrate. In some embodiments, the hot stamp is made of material comprising one or more transition metals (Fe, Ni, Co, Pt, Ag, Au, etc.), which can catalyze the etching reaction of carbon with H.sub.2, CO.sub.2, H.sub.2O, and/or O.sub.2. Such methods can (1) polish the carbon nanotube-containing substrate with a microscopically smooth finish, and/or (2) transfer pre-defined patterns from the hot stamp to the substrate. Such polished or patterned carbon nanotube substrates can find application as carbon nanotube electrodes, field emitters, and field emitter arrays for displays and electron sources.

  19. Cfd modeling of a synthetic jet actuator

    International Nuclear Information System (INIS)

    Dghim, Marouane; Ben Chiekh, Maher; Ben Nasrallah, Sassi

    2009-01-01

    Synthetic jet actuators show good promise as an enabling technology for innovative boundary layer flow control applied to external surfaces, like airplane wings, and to internal flows, like those occurring in a curved engine inlet. The appealing characteristics of a synthetic jet are zero-net-mass flux operation and an efficient control effect that takes advantages of unsteady fluid phenomena. The formation of a synthetic jet in a quiescent external air flow is only beginning to be understood and a rational understanding of these devices is necessary before they can be applied to the control of flows outside of the laboratory. The synthetic jet flow generated by a planar orifice is investigated here using computational approach. Computations of the 2D synthetic jet are performed with unsteady RANS modeled with the Realizable κ - ε turbulence model available in FLUENT environment. In this present work, the ability of the first order turbulence model, employed in our computations, to model the formation of the counter-rotating-vortex pair (CVP) that appears in the flow-field was investigated. Computational results were in good agreement with experimental measurements. The effectiveness of such control actuator was tested on separated boundary layer. Preliminary investigation were presented and discussed

  20. Biofuel production in Escherichia coli. The role of metabolic engineering and synthetic biology

    Energy Technology Data Exchange (ETDEWEB)

    Clomburg, James M. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Gonzalez, Ramon [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Rice Univ., Houston, TX (United States). Dept. of Bioengineering

    2010-03-15

    The microbial production of biofuels is a promising avenue for the development of viable processes for the generation of fuels from sustainable resources. In order to become cost and energy effective, these processes must utilize organisms that can be optimized to efficiently produce candidate fuels from a variety of feedstocks. Escherichia coli has become a promising host organism for the microbial production of biofuels in part due to the ease at which this organism can be manipulated. Advancements in metabolic engineering and synthetic biology have led to the ability to efficiently engineer E. coli as a biocatalyst for the production of a wide variety of potential biofuels from several biomass constituents. This review focuses on recent efforts devoted to engineering E. coli for the production of biofuels, with emphasis on the key aspects of both the utilization of a variety of substrates as well as the synthesis of several promising biofuels. Strategies for the efficient utilization of carbohydrates, carbohydrate mixtures, and noncarbohydrate carbon sources will be discussed along with engineering efforts for the exploitation of both fermentative and nonfermentative pathways for the production of candidate biofuels such as alcohols and higher carbon biofuels derived from fatty acid and isoprenoid pathways. Continued advancements in metabolic engineering and synthetic biology will help improve not only the titers, yields, and productivities of biofuels discussed herein, but also increase the potential range of compounds that can be produced. (orig.)

  1. Misconceptions of Synthetic Biology: Lessons from an Interdisciplinary Summer School

    DEFF Research Database (Denmark)

    Verseux, Cyprien; G Acevedo-Rocha, Carlos; Chizzolini, Fabio

    2016-01-01

    In 2014, an international group of scholars from various fields analysed the "societal dimensions" of synthetic biology in an interdisciplinary summer school. Here, we report and discuss the biologists' observations on the general perception of synthetic biology by non-biologists who took part...... in this event. Most attendees mainly associated synthetic biology with contributions from the best-known public figures of the field, rarely mentioning other scientists. Media extrapolations of those contributions appeared to have created unrealistic expectations and irrelevant fears that were widely...... disconnected from the current research in synthetic biology. Another observation was that when debating developments in synthetic biology, semantics strongly mattered: depending on the terms used to present an application of synthetic biology, attendees reacted in radically different ways. For example, using...

  2. SynTec Final Technical Report: Synthetic biology for Tailored Enzyme cocktails

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Janine [Novozymes, Inc., Davis, CA (United States); Teter, Sarah [Novozymes, Inc., Davis, CA (United States)

    2016-06-30

    Using a novel enzyme screening method inspired by synthetic biology, Novozymes developed new technology under SynTec which allows for more rapidly tailoring of enzyme cocktails. The methodology can be applied to specific feedstocks, and or coupled to address a specific hydrolytic conversion process context. Using combinatorial high throughput screening of libraries of enzyme domains, we can quickly assess which combination of catalytic modules delivers the best performance for a specific condition. To demonstrate the effectiveness of the screening process, we measured performance of the output catalytic cocktail compared to CTec3/HTec3. SynTec benchmark cocktail - blend of Cellic® CTec3 and HTec3. The test substrate was - ammonia fiber expansion pretreated corn stover (AFEX™ PCS).CTec3/HTec3 was assayed at the optimal pH and temperature, and also in the absence of any pH adjustment. The new enzyme cocktail discovered under SynTec was assayed in the absence of any pH adjustment and at the optimal temperature. Conversion is delivered by SynTec enzyme at significant dose reduction relative to CTec3/HTec3 at the controlled pH optimum, and without titrant required to maintain pH, which delivers additional cost savings relative to current state of the art process. In this 2.5 year $4M project, the team delivered an experimental cocktail that significantly outperformed CTec3/HTec3 for a specific substrate, and for specific hydrolysis conditions. As a means of comparing performance improvement delivered per research dollar spent, we note that SynTec delivered a similar performance improvement to the previous award, in a shorter time and with fewer resources than for the previously successful DOE project DECREASE, a 3.5 year, $25M project, though this project focused on a different substrate and used different hydrolysis conditions. The newly implemented technology for rapid sourcing of new cellulases and hemicellulases from nature is an example of Novozymes

  3. Synthetic and Empirical Capsicum Annuum Image Dataset

    NARCIS (Netherlands)

    Barth, R.

    2016-01-01

    This dataset consists of per-pixel annotated synthetic (10500) and empirical images (50) of Capsicum annuum, also known as sweet or bell pepper, situated in a commercial greenhouse. Furthermore, the source models to generate the synthetic images are included. The aim of the datasets are to

  4. Green remediation: enhanced reductive dechlorination using recycled rinse water as bioremediation substrate

    International Nuclear Information System (INIS)

    Dawson, Gaynor; McKeon, Tom

    2007-01-01

    wastewaters of both natural fruit juices and corn syrup solutions from carbonated beverages. Cost implications include both the reduced cost of substrate and the cost avoidance of needing to pay for treatment of the wastewater. (authors)

  5. Unmasking tandem site interaction in human acetylcholinesterase. Substrate activation with a cationic acetanilide substrate.

    Science.gov (United States)

    Johnson, Joseph L; Cusack, Bernadette; Davies, Matthew P; Fauq, Abdul; Rosenberry, Terrone L

    2003-05-13

    Acetylcholinesterase (AChE) contains a narrow and deep active site gorge with two sites of ligand binding, an acylation site (or A-site) at the base of the gorge, and a peripheral site (or P-site) near the gorge entrance. The P-site contributes to catalytic efficiency by transiently binding substrates on their way to the acylation site, where a short-lived acyl enzyme intermediate is produced. A conformational interaction between the A- and P-sites has recently been found to modulate ligand affinities. We now demonstrate that this interaction is of functional importance by showing that the acetylation rate constant of a substrate bound to the A-site is increased by a factor a when a second molecule of substrate binds to the P-site. This demonstration became feasible through the introduction of a new acetanilide substrate analogue of acetylcholine, 3-(acetamido)-N,N,N-trimethylanilinium (ATMA), for which a = 4. This substrate has a low acetylation rate constant and equilibrates with the catalytic site, allowing a tractable algebraic solution to the rate equation for substrate hydrolysis. ATMA affinities for the A- and P-sites deduced from the kinetic analysis were confirmed by fluorescence titration with thioflavin T as a reporter ligand. Values of a >1 give rise to a hydrolysis profile called substrate activation, and the AChE site-specific mutant W86F, and to a lesser extent wild-type human AChE itself, showed substrate activation with acetylthiocholine as the substrate. Substrate activation was incorporated into a previous catalytic scheme for AChE in which a bound P-site ligand can also block product dissociation from the A-site, and two additional features of the AChE catalytic pathway were revealed. First, the ability of a bound P-site ligand to increase the substrate acetylation rate constant varied with the structure of the ligand: thioflavin T accelerated ATMA acetylation by a factor a(2) of 1.3, while propidium failed to accelerate. Second, catalytic rate

  6. Synthetic biology platform technologies for antimicrobial applications.

    Science.gov (United States)

    Braff, Dana; Shis, David; Collins, James J

    2016-10-01

    The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Synthetic biology between technoscience and thing knowledge.

    Science.gov (United States)

    Gelfert, Axel

    2013-06-01

    Synthetic biology presents a challenge to traditional accounts of biology: Whereas traditional biology emphasizes the evolvability, variability, and heterogeneity of living organisms, synthetic biology envisions a future of homogeneous, humanly engineered biological systems that may be combined in modular fashion. The present paper approaches this challenge from the perspective of the epistemology of technoscience. In particular, it is argued that synthetic-biological artifacts lend themselves to an analysis in terms of what has been called 'thing knowledge'. As such, they should neither be regarded as the simple outcome of applying theoretical knowledge and engineering principles to specific technological problems, nor should they be treated as mere sources of new evidence in the general pursuit of scientific understanding. Instead, synthetic-biological artifacts should be viewed as partly autonomous research objects which, qua their material-biological constitution, embody knowledge about the natural world-knowledge that, in turn, can be accessed via continuous experimental interrogation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Comparison of candidate materials for a synthetic osteo-odonto keratoprosthesis device.

    Science.gov (United States)

    Tan, Xiao Wei; Perera, A Promoda P; Tan, Anna; Tan, Donald; Khor, K A; Beuerman, Roger W; Mehta, Jodhbir S

    2011-01-05

    Osteo-odonto keratoprosthesis is one of the most successful forms of keratoprosthesis surgery for end-stage corneal and ocular surface disease. There is a lack of detailed comparison studies on the biocompatibilities of different materials used in keratoprosthesis. The aim of this investigation was to compare synthetic bioinert materials used for keratoprosthesis surgery with hydroxyapatite (HA) as a reference. Test materials were sintered titanium oxide (TiO(2)), aluminum oxide (Al(2)O(3)), and yttria-stabilized zirconia (YSZ) with density >95%. Bacterial adhesion on the substrates was evaluated using scanning electron microscopy and the spread plate method. Surface properties of the implant discs were scanned using optical microscopy. Human keratocyte attachment and proliferation rates were assessed by cell counting and MTT assay at different time points. Morphologic analysis and immunoblotting were used to evaluate focal adhesion formation, whereas cell adhesion force was measured with a multimode atomic force microscope. The authors found that bacterial adhesion on the TiO(2), Al(2)O(3), and YSZ surfaces were lower than that on HA substrates. TiO(2) significantly promoted keratocyte proliferation and viability compared with HA, Al(2)O(3,) and YSZ. Immunofluorescent imaging analyses, immunoblotting, and atomic force microscope measurement revealed that TiO(2) surfaces enhanced cell spreading and cell adhesion compared with HA and Al(2)O(3). TiO(2) is the most suitable replacement candidate for use as skirt material because it enhanced cell functions and reduced bacterial adhesion. This would, in turn, enhance tissue integration and reduce device failure rates during keratoprosthesis surgery.

  9. Data-driven approach for creating synthetic electronic medical records

    Directory of Open Access Journals (Sweden)

    Moniz Linda

    2010-10-01

    Full Text Available Abstract Background New algorithms for disease outbreak detection are being developed to take advantage of full electronic medical records (EMRs that contain a wealth of patient information. However, due to privacy concerns, even anonymized EMRs cannot be shared among researchers, resulting in great difficulty in comparing the effectiveness of these algorithms. To bridge the gap between novel bio-surveillance algorithms operating on full EMRs and the lack of non-identifiable EMR data, a method for generating complete and synthetic EMRs was developed. Methods This paper describes a novel methodology for generating complete synthetic EMRs both for an outbreak illness of interest (tularemia and for background records. The method developed has three major steps: 1 synthetic patient identity and basic information generation; 2 identification of care patterns that the synthetic patients would receive based on the information present in real EMR data for similar health problems; 3 adaptation of these care patterns to the synthetic patient population. Results We generated EMRs, including visit records, clinical activity, laboratory orders/results and radiology orders/results for 203 synthetic tularemia outbreak patients. Validation of the records by a medical expert revealed problems in 19% of the records; these were subsequently corrected. We also generated background EMRs for over 3000 patients in the 4-11 yr age group. Validation of those records by a medical expert revealed problems in fewer than 3% of these background patient EMRs and the errors were subsequently rectified. Conclusions A data-driven method was developed for generating fully synthetic EMRs. The method is general and can be applied to any data set that has similar data elements (such as laboratory and radiology orders and results, clinical activity, prescription orders. The pilot synthetic outbreak records were for tularemia but our approach may be adapted to other infectious

  10. Data-driven approach for creating synthetic electronic medical records.

    Science.gov (United States)

    Buczak, Anna L; Babin, Steven; Moniz, Linda

    2010-10-14

    New algorithms for disease outbreak detection are being developed to take advantage of full electronic medical records (EMRs) that contain a wealth of patient information. However, due to privacy concerns, even anonymized EMRs cannot be shared among researchers, resulting in great difficulty in comparing the effectiveness of these algorithms. To bridge the gap between novel bio-surveillance algorithms operating on full EMRs and the lack of non-identifiable EMR data, a method for generating complete and synthetic EMRs was developed. This paper describes a novel methodology for generating complete synthetic EMRs both for an outbreak illness of interest (tularemia) and for background records. The method developed has three major steps: 1) synthetic patient identity and basic information generation; 2) identification of care patterns that the synthetic patients would receive based on the information present in real EMR data for similar health problems; 3) adaptation of these care patterns to the synthetic patient population. We generated EMRs, including visit records, clinical activity, laboratory orders/results and radiology orders/results for 203 synthetic tularemia outbreak patients. Validation of the records by a medical expert revealed problems in 19% of the records; these were subsequently corrected. We also generated background EMRs for over 3000 patients in the 4-11 yr age group. Validation of those records by a medical expert revealed problems in fewer than 3% of these background patient EMRs and the errors were subsequently rectified. A data-driven method was developed for generating fully synthetic EMRs. The method is general and can be applied to any data set that has similar data elements (such as laboratory and radiology orders and results, clinical activity, prescription orders). The pilot synthetic outbreak records were for tularemia but our approach may be adapted to other infectious diseases. The pilot synthetic background records were in the 4

  11. Multifunctionality is affected by interactions between green roof plant species, substrate depth, and substrate type.

    Science.gov (United States)

    Dusza, Yann; Barot, Sébastien; Kraepiel, Yvan; Lata, Jean-Christophe; Abbadie, Luc; Raynaud, Xavier

    2017-04-01

    Green roofs provide ecosystem services through evapotranspiration and nutrient cycling that depend, among others, on plant species, substrate type, and substrate depth. However, no study has assessed thoroughly how interactions between these factors alter ecosystem functions and multifunctionality of green roofs. We simulated some green roof conditions in a pot experiment. We planted 20 plant species from 10 genera and five families (Asteraceae, Caryophyllaceae, Crassulaceae, Fabaceae, and Poaceae) on two substrate types (natural vs. artificial) and two substrate depths (10 cm vs. 30 cm). As indicators of major ecosystem functions, we measured aboveground and belowground biomasses, foliar nitrogen and carbon content, foliar transpiration, substrate water retention, and dissolved organic carbon and nitrates in leachates. Interactions between substrate type and depth strongly affected ecosystem functions. Biomass production was increased in the artificial substrate and deeper substrates, as was water retention in most cases. In contrast, dissolved organic carbon leaching was higher in the artificial substrates. Except for the Fabaceae species, nitrate leaching was reduced in deep, natural soils. The highest transpiration rates were associated with natural soils. All functions were modulated by plant families or species. Plant effects differed according to the observed function and the type and depth of the substrate. Fabaceae species grown on natural soils had the most noticeable patterns, allowing high biomass production and high water retention but also high nitrate leaching from deep pots. No single combination of factors enhanced simultaneously all studied ecosystem functions, highlighting that soil-plant interactions induce trade-offs between ecosystem functions. Substrate type and depth interactions are major drivers for green roof multifunctionality.

  12. Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-02-01

    In yeast cell-surface displays, functional proteins, such as cellulases, are genetically fused to an anchor protein and expressed on the cell surface. Saccharomyces cerevisiae, which is often utilized as a cell factory for the production of fuels, chemicals, and proteins, is the most commonly used yeast for cell-surface display. To construct yeast cells with a desired function, such as the ability to utilize cellulose as a substrate for bioethanol production, cell-surface display techniques for the efficient expression of enzymes on the cell membrane need to be combined with metabolic engineering approaches for manipulating target pathways within cells. In this Minireview, we summarize the recent progress of biorefinery fields in the development and application of yeast cell-surface displays from a synthetic biology perspective and discuss approaches for further enhancing cell-surface display efficiency. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  13. Maintainable substrate carrier for electroplating

    Science.gov (United States)

    Chen, Chen-An [Milpitas, CA; Abas, Emmanuel Chua [Laguna, PH; Divino, Edmundo Anida [Cavite, PH; Ermita, Jake Randal G [Laguna, PH; Capulong, Jose Francisco S [Laguna, PH; Castillo, Arnold Villamor [Batangas, PH; Ma,; Xiaobing, Diana [Saratoga, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The carrier includes a non-conductive carrier body on which the substrates are placed and conductive lines embedded within the carrier body. A plurality of conductive clip attachment parts are attached in a permanent manner to the conductive lines embedded within the carrier body. A plurality of contact clips are attached in a removable manner to the clip attachment parts. The contact clips hold the substrates in place and conductively connecting the substrates with the conductive lines. Other embodiments, aspects and features are also disclosed.

  14. Fentanyl and Other Synthetic Opioids Drug Overdose Deaths

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  15. Assay of hybrid ribonuclease using a membrane filter-immobilized synthetic hybrid: application to the human leukemic cell

    International Nuclear Information System (INIS)

    Papaphilis, A.D.; Kamper, E.F.

    1985-01-01

    A method for assaying hybrid ribonuclease has been devised which utilizes as substrate the synthetic hybrid [ 3 H]polyriboadenylic acid [poly(rA)]:polydeoxythymidylic acid [poly(dT)] immobilized on the solid matrix of nitrocellulose filters. The hybridization on filter of [ 3 H]poly(rA) to poly(dT) has been explored in terms of efficacy of the process and the response of the product to RNase H. A pulse of uv irradiation of poly(dT) while in dry state on the filter increased its firm binding to the filter in a concentration-dependent manner, resulting in a concomitant increase of the yield of hybrid formation. The filter-immobilized hybrid was 95% resistant to RNase A but sensitive to RNase H. When stored in toluene in the cold the hybrid maintained its stability for over 6 months, as judged by its resistance to RNase A. The method offers a number of advantages over assays that use solution hybrids as substrates and was readily applicable in the screening of leukemic patients, in the leukocytes of which it has demonstrated increased RNase H levels

  16. Synthetic Biology: game changer in intelectual property

    Directory of Open Access Journals (Sweden)

    Laurens Landeweerd

    2016-12-01

    Full Text Available Synthetic biology can be considered a game changer that plays an important role in the current NBIC, or BINC convergence of nano-, bio-, info and cognitive sciences. Although most synthetic biology experts are unaware of it, the field appeals to the imagination in its adherence to targets that were usually associated with premodern alchemist science. This paper elaborates several aspects of synthetic biology as well as its consequences for long held notions of intellectual property and the ontological categories of scientific discovery on the one hand and engineering on the other, the distinction between natural and artificial, the grown and the made.

  17. Synthetic analog computation in living cells.

    Science.gov (United States)

    Daniel, Ramiz; Rubens, Jacob R; Sarpeshkar, Rahul; Lu, Timothy K

    2013-05-30

    A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications. Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells. Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems, operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells, this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.

  18. Controlling optical properties of periodic gold nanoparticle arrays by changing the substrate, topologic shapes of nanoparticles, and polarization direction of incident light

    International Nuclear Information System (INIS)

    Ting, Li; Li, Yu; Zhi-Xin, Lu; Gang, Song; Kai, Zhang

    2011-01-01

    The effects of various parameters including thickness and dielectric constants of substrates, shapes of nanoparticles, and polarization direction of incident light, on the extinction spectra of periodic gold nanoparticle arrays are investigated by the full-vectorial three-dimensional (3D) finite difference time domain (FDTD) method. The calculated results show that the substrate affects the extinction spectra by coupling the fields co-excited by the substrate and gold nanoparticles. Extinction spectra are influenced by the shapes of the nanoparticles, but there are no obvious changes in extinction spectra for similar shapes. The polarization direction of incident light has a great influence on the extinction spectra. The implications of these results are discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Clinical validation of synthetic brain MRI in children: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    West, Hollie; Leach, James L.; Jones, Blaise V.; Care, Marguerite; Radhakrishnan, Rupa; Merrow, Arnold C.; Alvarado, Enrique; Serai, Suraj D. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2017-01-15

    The purpose of this study was to determine the diagnostic accuracy of synthetic MR sequences generated through post-acquisition processing of a single sequence measuring inherent R1, R2, and PD tissue properties compared with sequences acquired conventionally as part of a routine clinical pediatric brain MR exam. Thirty-two patients underwent routine clinical brain MRI with conventional and synthetic sequences acquired (22 abnormal). Synthetic axial T1, T2, and T2 fluid attenuation inversion recovery or proton density-weighted sequences were made to match the comparable clinical sequences. Two exams for each patient were de-identified. Four blinded reviewers reviewed eight patients and were asked to generate clinical reports on each exam (synthetic or conventional) at two different time points separated by a mean of 33 days. Exams were rated for overall and specific finding agreement (synthetic/conventional and compared to gold standard consensus review by two senior reviewers with knowledge of clinical report), quality, and diagnostic confidence. Overall agreement between conventional and synthetic exams was 97%. Agreement with consensus readings was 84% (conventional) and 81% (synthetic), p = 0.61. There were no significant differences in sensitivity, specificity, or accuracy for specific imaging findings involving the ventricles, CSF, brain parenchyma, or vasculature between synthetic or conventional exams (p > 0.05). No significant difference in exam quality, diagnostic confidence, or noise/artifacts was noted comparing studies with synthetic or conventional sequences. Diagnostic accuracy and quality of synthetically generated sequences are comparable to conventionally acquired sequences as part of a standard pediatric brain exam. Further confirmation in a larger study is warranted. (orig.)

  20. Clinical validation of synthetic brain MRI in children: initial experience

    International Nuclear Information System (INIS)

    West, Hollie; Leach, James L.; Jones, Blaise V.; Care, Marguerite; Radhakrishnan, Rupa; Merrow, Arnold C.; Alvarado, Enrique; Serai, Suraj D.

    2017-01-01

    The purpose of this study was to determine the diagnostic accuracy of synthetic MR sequences generated through post-acquisition processing of a single sequence measuring inherent R1, R2, and PD tissue properties compared with sequences acquired conventionally as part of a routine clinical pediatric brain MR exam. Thirty-two patients underwent routine clinical brain MRI with conventional and synthetic sequences acquired (22 abnormal). Synthetic axial T1, T2, and T2 fluid attenuation inversion recovery or proton density-weighted sequences were made to match the comparable clinical sequences. Two exams for each patient were de-identified. Four blinded reviewers reviewed eight patients and were asked to generate clinical reports on each exam (synthetic or conventional) at two different time points separated by a mean of 33 days. Exams were rated for overall and specific finding agreement (synthetic/conventional and compared to gold standard consensus review by two senior reviewers with knowledge of clinical report), quality, and diagnostic confidence. Overall agreement between conventional and synthetic exams was 97%. Agreement with consensus readings was 84% (conventional) and 81% (synthetic), p = 0.61. There were no significant differences in sensitivity, specificity, or accuracy for specific imaging findings involving the ventricles, CSF, brain parenchyma, or vasculature between synthetic or conventional exams (p > 0.05). No significant difference in exam quality, diagnostic confidence, or noise/artifacts was noted comparing studies with synthetic or conventional sequences. Diagnostic accuracy and quality of synthetically generated sequences are comparable to conventionally acquired sequences as part of a standard pediatric brain exam. Further confirmation in a larger study is warranted. (orig.)

  1. Synthetic biology in the view of European public funding organisations

    Science.gov (United States)

    Pei, Lei; Gaisser, Sibylle; Schmidt, Markus

    2012-01-01

    We analysed the decisions of major European public funding organisations to fund or not to fund synthetic biology (SB) and related ethical, legal and social implication (ELSI) studies. We investigated the reaction of public organisations in six countries (Austria, France, Germany, the Netherlands, Switzerland and the UK) towards SB that may influence SB’s further development in Europe. We examined R&D and ELSI communities and their particular funding situation. Our results show that the funding situation for SB varies considerably among the analysed countries, with the UK as the only country with an established funding scheme for R&D and ELSI that successfully integrates these research communities. Elsewhere, we determined a general lack of funding (France), difficulties in funding ELSI work (Switzerland), lack of an R&D community (Austria), too small ELSI communities (France, Switzerland, Netherlands), or difficulties in linking existing communities with available funding sources (Germany), partly due to an unclear SB definition. PMID:22586841

  2. SCScore: Synthetic Complexity Learned from a Reaction Corpus.

    Science.gov (United States)

    Coley, Connor W; Rogers, Luke; Green, William H; Jensen, Klavs F

    2018-02-26

    Several definitions of molecular complexity exist to facilitate prioritization of lead compounds, to identify diversity-inducing and complexifying reactions, and to guide retrosynthetic searches. In this work, we focus on synthetic complexity and reformalize its definition to correlate with the expected number of reaction steps required to produce a target molecule, with implicit knowledge about what compounds are reasonable starting materials. We train a neural network model on 12 million reactions from the Reaxys database to impose a pairwise inequality constraint enforcing the premise of this definition: that on average, the products of published chemical reactions should be more synthetically complex than their corresponding reactants. The learned metric (SCScore) exhibits highly desirable nonlinear behavior, particularly in recognizing increases in synthetic complexity throughout a number of linear synthetic routes.

  3. Synthetic attractants for Anastrepha fruit flies in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Simuta, Y; Flores-Breceda, S; Lppez-Munoz, L [Subdireccion de Desarrollo de Metodos, Programa Moscamed, Tapachula, Chiapas (Mexico)

    2007-10-15

    The efficacy of synthetic attractants in the capture of Anastrepha fruit flies (Anastrepha ludens, A. obliqua and A. serpentina) was tested in three commercial orchards of known fruit fly hosts: mango (Mangifera indica L.), mammy (Calocarpum mammosum L.) and Mexican plum (Spondias purpurea L.) in Chiapas, Mexico. Among the synthetic attractants tested, we found that Ammonium Acetate (AA) plus Putrescine (PT) in a liquid trap was often the best combination for attracting flies. Interestingly, the reduction of release rate of AA increases the capture of fruit flies. We also found that Ammonium Bicarbonate (AB) plus PT in a wet trap was effective in a Mexican plum orchard in comparison with the other combinations of synthetic attractants. However, the synthetic attractants in dry traps were not effective and always presented the lowest Captures. (author)

  4. Synthetic biology and its promises

    Directory of Open Access Journals (Sweden)

    José Manuel De Cózar Escalante

    2016-12-01

    Full Text Available Synthetic biology is a new science and emerging technology, or rather a technoscience, which converges with others such as nanotechnology, information technology, robotics, artificial intelligence and neuroscience. All have common features that could have highly concerning social and environmental impacts. With its ambitious goals of controlling complexity, redesigning and creating new living entities, synthetic biology perfectly exemplifies the new bioeconomic reality. This requires expanding the focus of the discussion beyond the limited comparative analysis of risks and benefits, to address uncertainties, reassign responsibilities and initiate a thorough social assessment of what is at stake.

  5. Non-equilibrium ionization by a periodic electron beam. I. Synthetic coronal spectra and implications for interpretation of observations

    Science.gov (United States)

    Dzifčáková, E.; Dudík, J.; Mackovjak, Š.

    2016-05-01

    Context. Coronal heating is currently thought to proceed via the mechanism of nanoflares, small-scale and possibly recurring heating events that release magnetic energy. Aims: We investigate the effects of a periodic high-energy electron beam on the synthetic spectra of coronal Fe ions. Methods: Initially, the coronal plasma is assumed to be Maxwellian with a temperature of 1 MK. The high-energy beam, described by a κ-distribution, is then switched on every period P for the duration of P/ 2. The periods are on the order of several tens of seconds, similar to exposure times or cadences of space-borne spectrometers. Ionization, recombination, and excitation rates for the respective distributions are used to calculate the resulting non-equilibrium ionization state of Fe and the instantaneous and period-averaged synthetic spectra. Results: Under the presence of the periodic electron beam, the plasma is out of ionization equilibrium at all times. The resulting spectra averaged over one period are almost always multithermal if interpreted in terms of ionization equilibrium for either a Maxwellian or a κ-distribution. Exceptions occur, however; the EM-loci curves appear to have a nearly isothermal crossing-point for some values of κs. The instantaneous spectra show fast changes in intensities of some lines, especially those formed outside of the peak of the respective EM(T) distributions if the ionization equilibrium is assumed. Movies 1-5 are available in electronic form at http://www.aanda.org

  6. Allergic contact dermatitis from the synthetic fragrances Lyral and acetyl cedrene in separate underarm deodorant preparations.

    Science.gov (United States)

    Handley, J; Burrows, D

    1994-11-01

    The case is reported of a 28-year-old man who developed allergic contact dermatitis from 2 synthetic fragrance ingredients, Lyral (3- and 4-(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-aldehyde) and acetyl cedrene, in separate underarm deodorant preparations. The implications of the patient's negative patch test reactions to the European standard series (Trolab) and cosmetics and fragrance series (both Chemotechnique Diagnostics) are discussed. The importance is stressed of patch testing with the patient's own preparations when cosmetic dermatitis is suspected, and of identifying and reporting offending fragrance ingredients, with a view possibly to updating the European standard series and commercially available cosmetics and fragrance series.

  7. Time-frequency analysis of submerged synthetic jet

    Science.gov (United States)

    Kumar, Abhay; Saha, Arun K.; Panigrahi, P. K.

    2017-12-01

    The coherent structures transport the finite body of fluid mass through rolling which plays an important role in heat transfer, boundary layer control, mixing, cooling, propulsion and other engineering applications. A synthetic jet in the form of a train of vortex rings having coherent structures of different length scales is expected to be useful in these applications. The propagation and sustainability of these coherent structures (vortex rings) in downstream direction characterize the performance of synthetic jet. In the present study, the velocity signal acquired using the S-type hot-film probe along the synthetic jet centerline has been taken for the spectral analysis. One circular and three rectangular orifices of aspect ratio 1, 2 and 4 actuating at 1, 6 and 18 Hz frequency have been used for creating different synthetic jets. The laser induced fluorescence images are used to study the flow structures qualitatively and help in explaining the velocity signal for detection of coherent structures. The study depicts four regions as vortex rollup and suction region (X/D h ≤ 3), steadily translating region (X/D h ≤ 3-8), vortex breakup region (X/Dh ≤ 4-8) and dissipation of small-scale vortices (X/D h ≤ 8-15). The presence of coherent structures localized in physical and temporal domain is analyzed for the characterization of synthetic jet. Due to pulsatile nature of synthetic jet, analysis of velocity time trace or signal in time, frequency and combined time-frequency domain assist in characterizing the signatures of coherent structures. It has been observed that the maximum energy is in the first harmonic of actuation frequency, which decreases slowly in downstream direction at 6 Hz compared to 1 and 18 Hz of actuation.

  8. Air quality, health, and climate implications of China's synthetic natural gas development

    Science.gov (United States)

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R.; Mauzerall, Denise L.

    2017-05-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ˜32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.

  9. Synthetic biology for microbial heavy metal biosensors.

    Science.gov (United States)

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  10. Raman spectrum of natural and synthetic stishovite

    Science.gov (United States)

    Hemley, R.J.; Mao, Ho-kwang; Chao, E.C.T.

    1986-01-01

    Raman spectra of natural and synthetic samples of stishovite have been measured with a micro-optical spectrometer system. These spectra have a pattern that is characteristic of rutile-structured oxides. The spectrum of synthetic stishovite is characterized by well-resolved bands at 231, 589, 753, and 967 cm-1, which are assigned as the B1g, Eg, A1g, and B2g fundamentals, respectively, of the first-order Raman spectrum of the ideal, ordered structure. Natural stishovite obtained from Meteor Crater, Arizona has a first-order Raman spectrum that is fully consistent with that of the synthetic material. The observed spectrum of the natural sample, however, is weaker and has bands in addition to those identified as fundamentals in the spectrum of the synthetic material. A broad band at ???475 cm-1 may be indicative of glass or contaminants derived from the extraction procedure. Alternatively, this band may arise from multiphonon scattering that is enhanced by poor crystallinity or structural disorder in the natural shocked sample. ?? 1986 Springer-Verlag.

  11. Yeast synthetic biology toolbox and applications for biofuel production.

    Science.gov (United States)

    Tsai, Ching-Sung; Kwak, Suryang; Turner, Timothy L; Jin, Yong-Su

    2015-02-01

    Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  12. Queueing-Based Synchronization and Entrainment for Synthetic Gene Oscillators

    Science.gov (United States)

    Mather, William; Butzin, Nicholas; Hochendoner, Philip; Ogle, Curtis

    Synthetic gene oscillators have been a major focus of synthetic biology research since the beginning of the field 15 years ago. They have proven to be useful both for biotechnological applications as well as a testing ground to significantly develop our understanding of the design principles behind synthetic and native gene oscillators. In particular, the principles governing synchronization and entrainment of biological oscillators have been explored using a synthetic biology approach. Our work combines experimental and theoretical approaches to specifically investigate how a bottleneck for protein degradation, which is present in most if not all existing synthetic oscillators, can be leveraged to robustly synchronize and entrain biological oscillators. We use both the terminology and mathematical tools of queueing theory to intuitively explain the role of this bottleneck in both synchronization and entrainment, which extends prior work demonstrating the usefulness of queueing theory in synthetic and native gene circuits. We conclude with an investigation of how synchronization and entrainment may be sensitive to the presence of multiple proteolytic pathways in a cell that couple weakly through crosstalk. This work was supported by NSF Grant #1330180.

  13. CSBB: synthetic biology research at Newcastle University.

    Science.gov (United States)

    Goñi-Moreno, Angel; Wipat, Anil; Krasnogor, Natalio

    2017-06-15

    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties - Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. © 2017 The Author(s).

  14. Crosstalk between Substrates and Rho-Associated Kinase Inhibitors in Cryopreservation of Tissue-Engineered Constructs

    Directory of Open Access Journals (Sweden)

    Arindam Bit

    2017-01-01

    Full Text Available It is documented that human mesenchymal stem cells (hMSCs can be differentiated into various types of cells to present a tool for tissue engineering and regenerative medicine. Thus, the preservation of stem cells is a crucial factor for their effective long-term storage that further facilitates their continuous supply and transportation for application in regenerative medicine. Cryopreservation is the most important, practicable, and the only established mechanism for long-term preservation of cells, tissues, and organs, and engineered tissues; thus, it is the key step for the improvement of tissue engineering. A significant portion of MSCs loses cellular viability while freeze-thawing, which represents an important technical limitation to achieving sufficient viable cell numbers for maximum efficacy. Several natural and synthetic materials are extensively used as substrates for tissue engineering constructs and cryopreservation because they promote cell attachment and proliferation. Rho-associated kinase (ROCK inhibitors can improve the physiological function and postthaw viability of cryopreserved MSCs. This review proposes a crosstalk between substrate topology and interaction of cells with ROCK inhibitors. It is shown that incorporation of ionic nanoparticles in the presence of an external electrical field improves the generation of ROCK inhibitors to safeguard cellular viability for the enhanced cryopreservation of engineered tissues.

  15. Image quality at synthetic brain magnetic resonance imaging in children

    Energy Technology Data Exchange (ETDEWEB)

    Lee, So Mi; Cho, Seung Hyun; Kim, Won Hwa; Kim, Hye Jung [Kyungpook National University Hospital, Department of Radiology, Daegu (Korea, Republic of); Choi, Young Hun; Cheon, Jung-Eun; Kim, In-One [Seoul National University College of Medicine, Department of Radiology and Institute of Radiation Medicine, Seoul (Korea, Republic of); Cho, Hyun-Hae [Ewha Womans University Mokdong Hospital, Department of Radiology, Seoul (Korea, Republic of); You, Sun-Kyoung [Chungnam National University Hospital, Department of Radiology, Daejeon (Korea, Republic of); Park, Sook-Hyun [Kyungpook National University Hospital, Department of Pediatrics, Daegu (Korea, Republic of); Hwang, Moon Jung [GE Healthcare, MR Applications and Workflow, Seoul (Korea, Republic of)

    2017-11-15

    The clinical application of the multi-echo, multi-delay technique of synthetic magnetic resonance imaging (MRI) generates multiple sequences in a single acquisition but has mainly been used in adults. To evaluate the image quality of synthetic brain MR in children compared with that of conventional images. Twenty-nine children (median age: 6 years, range: 0-16 years) underwent synthetic and conventional imaging. Synthetic (T2-weighted, T1-weighted and fluid-attenuated inversion recovery [FLAIR]) images with settings matching those of the conventional images were generated. The overall image quality, gray/white matter differentiation, lesion conspicuity and image degradations were rated on a 5-point scale. The relative contrasts were assessed quantitatively and acquisition times for the two imaging techniques were compared. Synthetic images were inferior due to more pronounced image degradations; however, there were no significant differences for T1- and T2-weighted images in children <2 years old. The quality of T1- and T2-weighted images were within the diagnostically acceptable range. FLAIR images showed greatly reduced quality. Gray/white matter differentiation was comparable or better in synthetic T1- and T2-weighted images, but poorer in FLAIR images. There was no effect on lesion conspicuity. Synthetic images had equal or greater relative contrast. Acquisition time was approximately two-thirds of that for conventional sequences. Synthetic T1- and T2-weighted images were diagnostically acceptable, but synthetic FLAIR images were not. Lesion conspicuity and gray/white matter differentiation were comparable to conventional MRI. (orig.)

  16. Varieties of noise: analogical reasoning in synthetic biology.

    Science.gov (United States)

    Knuuttila, Tarja; Loettgers, Andrea

    2014-12-01

    The picture of synthetic biology as a kind of engineering science has largely created the public understanding of this novel field, covering both its promises and risks. In this paper, we will argue that the actual situation is more nuanced and complex. Synthetic biology is a highly interdisciplinary field of research located at the interface of physics, chemistry, biology, and computational science. All of these fields provide concepts, metaphors, mathematical tools, and models, which are typically utilized by synthetic biologists by drawing analogies between the different fields of inquiry. We will study analogical reasoning in synthetic biology through the emergence of the functional meaning of noise, which marks an important shift in how engineering concepts are employed in this field. The notion of noise serves also to highlight the differences between the two branches of synthetic biology: the basic science-oriented branch and the engineering-oriented branch, which differ from each other in the way they draw analogies to various other fields of study. Moreover, we show that fixing the mapping between a source domain and the target domain seems not to be the goal of analogical reasoning in actual scientific practice.

  17. Rewiring protein synthesis: From natural to synthetic amino acids.

    Science.gov (United States)

    Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang

    2017-11-01

    The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Synthetic cathinones: a new public health problem.

    Science.gov (United States)

    Karila, Laurent; Megarbane, Bruno; Cottencin, Olivier; Lejoyeux, Michel

    2015-01-01

    New psychoactive substances (NPS) have completely modified the drug scene and the current landscape of addiction. Synthetic substances, such as substituted or synthetic cathinones, also known as « legal highs », are often produced and used to mimic the effects of controlled drugs such as cocaine, methylenedioxymethamphetamine (MDMA, ecstasy), and methamphetamine. The overwhelming majority of synthetic cathinones are produced in China and South East Asian countries. The Internet has emerged as the new marketplace for NPS, playing a major role in providing information on acquisition, synthesis, extraction, identification, and substance use. All these compounds are intentionally mislabeled and sold on-line under slang terms such as bath salts, plant food, plant feeders and research chemicals. They are sometimes labeled « not for human use » or « not tested for hazards or toxicity ». The rapid spread of NPS forces member countries of the European Union to adapt their response to the potential new dangers that may cause. To date, not only health actors but also the general public need to be clearly informed and aware of dangers resulting from NPS spread and use. Here, we review the major clinical effects of synthetic cathinones to highlight their impact on public health. A literature search was conducted from 2009 to 2014 based on PubMed, Google Scholar, Erowid, and governmental websites, using the following keywords alone or in combination: "new psychoactive substances", "synthetic cathinones", "substituted cathinones", "mephedrone", "methylone", "MDPV", "4-MEC", "addiction", and "substance use disorder".

  19. The orbital ground state of the azide-substrate complex of human heme oxygenase is an indicator of distal H-bonding: Implications for the enzyme mechanism‡

    OpenAIRE

    Ogura, Hiroshi; Evans, John P.; Peng, Dungeng; Satterlee, James D.; de Montellano, Paul R. Ortiz; Mar, Gerd N. La

    2009-01-01

    The active site electronic structure of the azide complex of substrate-bound human heme oxygenase-1, (hHO) has been investigated by 1H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. 2D 1H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts, that places the lone iron π-spin in the dxz orbital, rather than the dyz orbital found in the cya...

  20. Hydrogen speciation in synthetic quartz

    Science.gov (United States)

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  1. Epidermal growth factor pathway substrate 15, Eps15

    DEFF Research Database (Denmark)

    Salcini, A E; Chen, H; Iannolo, G

    1999-01-01

    Eps15 was originally identified as a substrate for the kinase activity of the epidermal growth factor receptor (EGFR). Eps15 has a tripartite structure comprising a NH2-terminal portion, which contains three EH domains, a central putative coiled-coil region, and a COOH-terminal domain containing...... multiple copies of the amino acid triplet Aspartate-Proline-Phenylalanine. A pool of Eps15 is localized at clathrin coated pits where it interacts with the clathrin assembly complex AP-2 and a novel AP-2 binding protein, Epsin. Perturbation of Eps15 and Epsin function inhibits receptor-mediated endocytosis...... of EGF and transferrin, demonstrating that both proteins are components of the endocytic machinery. Since the family of EH-containing proteins is implicated in various aspects of intracellular sorting, biomolecular strategies aimed at interfering with these processes can now be envisioned...

  2. Identification of Phosphorylation Consensus Sequences and Endogenous Neuronal Substrates of the Psychiatric Risk Kinase TNIK.

    Science.gov (United States)

    Wang, Qi; Amato, Stephen P; Rubitski, David M; Hayward, Matthew M; Kormos, Bethany L; Verhoest, Patrick R; Xu, Lan; Brandon, Nicholas J; Ehlers, Michael D

    2016-02-01

    Traf2- and Nck-interacting kinase (TNIK) is a serine/threonine kinase highly expressed in the brain and enriched in the postsynaptic density of glutamatergic synapses in the mammalian brain. Accumulating genetic evidence and functional data have implicated TNIK as a risk factor for psychiatric disorders. However, the endogenous substrates of TNIK in neurons are unknown. Here, we describe a novel selective small molecule inhibitor of the TNIK kinase family. Using this inhibitor, we report the identification of endogenous neuronal TNIK substrates by immunoprecipitation with a phosphomotif antibody followed by mass spectrometry. Phosphorylation consensus sequences were defined by phosphopeptide sequence analysis. Among the identified substrates were members of the delta-catenin family including p120-catenin, δ-catenin, and armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF), each of which is linked to psychiatric or neurologic disorders. Using p120-catenin as a representative substrate, we show TNIK-induced p120-catenin phosphorylation in cells requires intact kinase activity and phosphorylation of TNIK at T181 and T187 in the activation loop. Addition of the small molecule TNIK inhibitor or knocking down TNIK by two shRNAs reduced endogenous p120-catenin phosphorylation in cells. Together, using a TNIK inhibitor and phosphomotif antibody, we identify endogenous substrates of TNIK in neurons, define consensus sequences for TNIK, and suggest signaling pathways by which TNIK influences synaptic development and function linked to psychiatric and neurologic disorders. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  3. SYNTHETIC EDUCATIONAL ENVIRONMENT – A FOOTPACE TO NEW EDUCATION

    Directory of Open Access Journals (Sweden)

    Olga P. Pinchuk

    2017-09-01

    Full Text Available The article studies the problems of introducing a synthetic learning environment in the practice of education. The modern views on the essence of the learning environment and its new forms based on information and communication technologies are analyzed. Particular attention is paid to a range of issues that are united in the English-language publications as a "synthetic environment", which is considered in two aspects – artificial environment and synthetic as is formed due to the synthesis of the real physical world and the results of simulation and modeling. There are considered issues of trends in usage of game-based learning and modeling as cognitive technologies, as well as of social networks as a synthetic environment of social development. Conclusions are drawn: synthetic learning environment becomes an independent subject of learning through the expansion of its content and didactic power, transformation of the individual as a recipient of knowledge into the synthesizing element of the educational process in the metaverse.

  4. Characterization of high speed synthetic jet actuators

    Science.gov (United States)

    Pikcilingis, Lucia

    Over the last 20 years, synthetic jets have been studied as a means for aerodynamic active flow control. Specifically, synthetic jets provide momentum transfer with zero-net mass flux, which has been proven to be effective for controlling flow fields. A synthetic jet is created by the periodic formation of vortex rings at its orifice due to the periodic motion of a piezoelectric disk(s). The present study seeks to optimize the performance of a synthetic jet actuator by utilizing different geometrical parameters such as disk thickness, orifice width and length, cavity height and cavity diameter, and different input parameters such as driving voltage and frequency. Two apparatuses were used with a cavity diameter of either 80 mm or 160 mm. Piezoelectric-based disks were provided by the Mide Corporation. Experiments were conducted using several synthetic jet apparatuses designed for various geometrical parameters utilizing a dual disk configuration. Velocity and temperature measurements were acquired at the center of the synthetic jet orifice using a temperature compensated hotwire and thermocouple probe. The disk(s) displacement was measured at the center of the disk with a laser displacement sensor. It was shown that the synthetic jets, having the 80 mm cavity diameter, are capable of exceeding peak velocities of 200 m/s with a relatively large orifice of dimensions AR = 12, hc* = 3, and hn* = 4. In addition, the conditions at which the disks were manufactured had minimal effect on the performance of the jet, except for the pair with overnight resting time as opposed to less than an hour resting time for the control units. Altering the tab style of the disks, where the tab allows the electrical circuit to be exposed for external power connection, showed that a thin fragile tab versus a tab of the same thickness as the disk has minimal effect on the performance but affects the durability of the disk due to the fragility or robustness of the tab. The synthetic jets

  5. Chemical communication between synthetic and natural cells: a possible experimental design.

    Directory of Open Access Journals (Sweden)

    Livia Leoni

    2013-09-01

    Full Text Available The bottom-up construction of synthetic cells is one of the most intriguing and interesting research arenas in synthetic biology. Synthetic cells are built by encapsulating biomolecules inside lipid vesicles (liposomes, allowing the synthesis of one or more functional proteins. Thanks to the in situ synthesized proteins, synthetic cells become able to perform several biomolecular functions, which can be exploited for a large variety of applications. This paves the way to several advanced uses of synthetic cells in basic science and biotechnology, thanks to their versatility, modularity, biocompatibility, and programmability. In the previous WIVACE (2012 we presented the state-of-the-art of semi-synthetic minimal cell (SSMC technology and introduced, for the first time, the idea of chemical communication between synthetic cells and natural cells. The development of a proper synthetic communication protocol should be seen as a tool for the nascent field of bio/chemical-based Information and Communication Technologies (bio-chem-ICTs and ultimately aimed at building soft-wet-micro-robots. In this contribution (WIVACE, 2013 we present a blueprint for realizing this project, and show some preliminary experimental results. We firstly discuss how our research goal (based on the natural capabilities of biological systems to manipulate chemical signals finds a proper place in the current scientific and technological contexts. Then, we shortly comment on the experimental approaches from the viewpoints of (i synthetic cell construction, and (ii bioengineering of microorganisms, providing up-to-date results from our laboratory. Finally, we shortly discuss how autopoiesis can be used as a theoretical framework for defining synthetic minimal life, minimal cognition, and as bridge between synthetic biology and artificial intelligence.

  6. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  7. Synthetic lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Jurado, J

    1953-01-01

    A yellow solid petroleum paraffin d/sup 60/ 0.808, I number 3.5, average molecular weight 350, chlorinated and condensed with benzene, xylene, or naphthalene by the Friedel and Crafts reaction, in the presence of anhydrous AlCl/sub 3/ or activated Al, gave synthetic lubricating oils. Xylene was the preferred aromatic compound, naphthalene required the use of less completely chlorinated paraffin, benzene produced resins difficult to remove and gave darker oils with excessive green fluorescence. Activated Al rather than anhydrous AlCl/sub 3/ gave darker oils with higher viscosity and Conradson C values. Tar from the low-temperature distillation of lignite, used as a source of a paraffin fraction melting 40/sup 0/ to 48/sup 0/ (chlorinated to 26.5 percent Cl) and an aromatic fraction, 45 percent aromatic compounds by volume (mainly polysubstituted benzenes), I number 10, was converted to a similar synthetic lubricant with the following properties: Kinematic viscosity at 210/sup 0/ F., 50.4 centistokes; viscosity index, 92; Conradson C, 1.5 percent; solidification point, 9/sup 0/; S, 0.41 percent.

  8. P-glycoprotein induction in Caco-2 cells by newly synthetized thioxanthones prevents paraquat cytotoxicity.

    Science.gov (United States)

    Silva, Renata; Palmeira, Andreia; Carmo, Helena; Barbosa, Daniel José; Gameiro, Mariline; Gomes, Ana; Paiva, Ana Mafalda; Sousa, Emília; Pinto, Madalena; Bastos, Maria de Lourdes; Remião, Fernando

    2015-10-01

    The induction of P-glycoprotein (P-gp), an ATP-dependent efflux pump, has been proposed as a strategy against the toxicity induced by P-gp substrates such as the herbicide paraquat (PQ). The aim of this study was to screen five newly synthetized thioxanthonic derivatives, a group known to interact with P-gp, as potential inducers of the pump's expression and/or activity and to evaluate whether they would afford protection against PQ-induced toxicity in Caco-2 cells. All five thioxanthones (20 µM) caused a significant increase in both P-gp expression and activity as evaluated by flow cytometry using the UIC2 antibody and rhodamine 123, respectively. Additionally, it was demonstrated that the tested compounds, when present only during the efflux of rhodamine 123, rapidly induced an activation of P-gp. The tested compounds also increased P-gp ATPase activity in MDR1-Sf9 membrane vesicles, indicating that all derivatives acted as P-gp substrates. PQ cytotoxicity was significantly reduced in the presence of four thioxanthone derivatives, and this protective effect was reversed upon incubation with a specific P-gp inhibitor. In silico studies showed that all the tested thioxanthones fitted onto a previously described three-feature P-gp induction pharmacophore. Moreover, in silico interactions between thioxanthones and P-gp in the presence of PQ suggested that a co-transport mechanism may be operating. Based on the in vitro activation results, a pharmacophore model for P-gp activation was built, which will be of further use in the screening for new P-gp activators. In conclusion, the study demonstrated the potential of the tested thioxanthonic compounds in protecting against toxic effects induced by P-gp substrates through P-gp induction and activation.

  9. Purifying synthetic or fermentation ethyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-22

    Synthetic or fermentation grade ethanol is treated with an alkaki metal sulfite for about 10 hours then rectified to give a product free of odor and taste defects. For example, ethanol from molasses was treated with 10g Na/sub 2/SO/sub 3/.7H/sub 2/O per liter of alcohol, (70/sup 0/ Gay-Lussac) for 10 hours. Synthetic ethanol was treated with 3g Na/sub 2/SO/sub 3/.7H/sub 2/O for 10 hours.

  10. Purifying synthetic or fermentation ethyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-22

    Synthetic or fermentation grade ethanol is treated with an alkali metal sulfite for about 10 hours then rectified to give a product free of odor and taste defects. For example, ethanol from molasses was treated with 10g, Na/sub 2/SO/sub 3/.7H/sub 2/0 per liter of alcohol, (70/sup 0/ Gay-Lussac) for 10 hours. Synthetic ethanol was treated with 3 g Na/sub 2/SO/sub 3/.7H/sub 2/O for 10 hours.

  11. Influence of Pupation Substrate on Mass Production and Fitness of Adult Anastrepha obliqua Macquart (Diptera: Tephritidae) for Sterile Insect Technique Application.

    Science.gov (United States)

    Aceituno-Medina, Marysol; Rivera-Ciprian, José Pedro; Hernández, Emilio

    2017-12-05

    Tephritid mass-rearing systems require an artificial substrate for pupation. Pupation substrate characteristics influence the quality of insects produced. Coconut fiber, as an alternative to the conventional pupation substrate vermiculite, was evaluated for Anastrepha obliqua Macquart (Diptera: Tephritidae) pupation behavior (pupation patterns, distribution, respiration rate, and pupal weight) and adult fitness (adult eclosion time, flight ability, and male mating competitiveness). Pupation percentage at 24 h, pupal weight, and flight ability were not significantly affected by substrate type. Adult eclosion levels of 50% were reached at 29.7 and 41.6 h for coconut fiber and vermiculite, respectively. Pupae distribution patterns differed between substrates because the larval aggregation level was reduced during the pupation process in coconut fiber. The pupae aggregation was three times greater in vermiculite than in coconut fiber. A higher respiratory rate in the last days of pupation and adult eclosion were recorded in the insects maintained in coconut fiber. Coconut fiber suitability as a pupation substrate for quality mass production of pupae and its implications for sterile insect technique are discussed. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Design of doubly focusing, tunable (5 to 30 keV), wide-bandpass optics made from layered synthetic microstructures

    International Nuclear Information System (INIS)

    Bilderback, D.H.; Lairson, B.M.; Barbee, T.W. Jr.; Ice, G.E.; Sparks, C.J. Jr.

    1982-01-01

    Layered Synthetic Microstructures (LSMs) show great promise as focusing, high-throughput, hard x-ray monochromators. Experimental reflectivity vs. energy curves have been obtained on carbon-tungsten and carbon-molybdenum LSMs of up to 260 layers in thickness. Reflectivities for three flat LSMs with different bandpasses were 70% with δE/E = 5.4%, 66% with δE/E = 1.4%, and 19% with δE/E = 0.6%. A new generation of variable bandwidth optics using two successive LSMs is proposed. The first element will be an LSM deposited on a substrate that can be water cooled as it intercepts direct radiation from a storage ring. It can be bent for vertical focusing. The bandpass can be adjusted by choosing interchangeable first elements from an assortment of LSM's with different bandpasses (for example, δE/E = 0.005, 0.01, 0.02, 0.05, 0.1). The second LSM will consist of a multilayered structure with a 10% bandpass built onto a flexible substrate that can be bent for sagittal focusing. The result will be double focusing optics with an adjustable energy bandpass that are tunable from 5 to 30 keV

  13. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP does not catalytically oxidize iron.

    Directory of Open Access Journals (Sweden)

    Kourosh Honarmand Ebrahimi

    Full Text Available The β-amyloid precursor protein (APP, which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II just as in ferritin. We measured the ferroxidase activity indirectly (i by the incorporation of the Fe(III product of the ferroxidase reaction into transferrin and directly (ii by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II oxidation by molecular oxygen. Zn(II binds to transferrin and diminishes its Fe(III incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  14. Misconceptions of Synthetic Biology: Lessons from an Interdisciplinary Summer School

    Science.gov (United States)

    Verseux, Cyprien; Acevedo-Rocha, Carlos G.; Chizzolini, Fabio; Rothschild, Lynn J.

    2016-01-01

    In 2014, an international group of scholars from various fields analysed the "societal dimensions" of synthetic biology in an interdisciplinary summer school. Here, we report and discuss the biologists' observations on the general perception of synthetic biology by non-biologists who took part in this event. Most attendees mainly associated synthetic biology with contributions from the best-known public figures of the field, rarely mentioning other scientists. Media extrapolations of those contributions appeared to have created unrealistic expectations and irrelevant fears that were widely disconnected from the current research in synthetic biology. Another observation was that when debating developments in synthetic biology, semantics strongly mattered: depending on the terms used to present an application of synthetic biology, attendees reacted in radically different ways. For example, using the term "GMOs" (genetically modified organisms) rather than the term "genetic engineering" led to very different reactions. Stimulating debates also happened with participants having unanticipated points of view, for instance biocentrist ethicists who argued that engineered microbes should not be used for human purposes. Another communication challenge emerged from the connotations and inaccuracies surrounding the word "life", which impaired constructive debates, thus leading to misconceptions about the abilities of scientists to engineer or even create living organisms. Finally, it appeared that synthetic biologists tend to overestimate the knowledge of non-biologists, further affecting communication. The motivation and ability of synthetic biologists to communicate their work outside their research field needs to be fostered, notably towards policymakers who need a more accurate and technical understanding of the field to make informed decisions. Interdisciplinary events gathering scholars working in and around synthetic biology are an effective tool in addressing those

  15. Non-permeable substrate carrier for electroplating

    Science.gov (United States)

    Abas, Emmanuel Chua; Chen, Chen-An; Ma, Diana Xiaobing; Ganti, Kalyana Bhargava

    2012-11-27

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier comprises a non-conductive carrier body on which the substrates are to be held. Electrically-conductive lines are embedded within the carrier body, and a plurality of contact clips are coupled to the electrically-conductive lines embedded within the carrier body. The contact clips hold the substrates in place and electrically couple the substrates to the electrically-conductive lines. The non-conductive carrier body is continuous so as to be impermeable to flow of electroplating solution through the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  16. The Cysteine S-Alkylation Reaction as a Synthetic Method to Covalently Modify Peptide Sequences.

    Science.gov (United States)

    Calce, Enrica; De Luca, Stefania

    2017-01-05

    Synthetic methodologies to chemically modify peptide molecules have long been investigated for their impact in the field of chemical biology. They allow the introduction of biochemical probes useful for studying protein functions, for manipulating peptides with therapeutic potential, and for structure-activity relationship investigations. The commonly used approach was the derivatization of an amino acid side chain. In this regard, the cysteine, for its unique reactivity, has been widely employed as the substrate for such modifications. Herein, we report on methodologies developed to modify the cysteine thiol group through the S-alkylation reaction. Some procedures perform the alkylation of cysteine derivatives, in order to prepare building blocks to be used during the peptide synthesis, whilst some others selectively modify peptide sequences containing a cysteine residue with a free thiol group, both in solution and in the solid phase. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Is It Time for Synthetic Biodiversity Conservation?

    Science.gov (United States)

    Piaggio, Antoinette J; Segelbacher, Gernot; Seddon, Philip J; Alphey, Luke; Bennett, Elizabeth L; Carlson, Robert H; Friedman, Robert M; Kanavy, Dona; Phelan, Ryan; Redford, Kent H; Rosales, Marina; Slobodian, Lydia; Wheeler, Keith

    2017-02-01

    Evidence indicates that, despite some critical successes, current conservation approaches are not slowing the overall rate of biodiversity loss. The field of synthetic biology, which is capable of altering natural genomes with extremely precise editing, might offer the potential to resolve some intractable conservation problems (e.g., invasive species or pathogens). However, it is our opinion that there has been insufficient engagement by the conservation community with practitioners of synthetic biology. We contend that rapid, large-scale engagement of these two communities is urgently needed to avoid unintended and deleterious ecological consequences. To this point we describe case studies where synthetic biology is currently being applied to conservation, and we highlight the benefits to conservation biologists from engaging with this emerging technology. Published by Elsevier Ltd.

  18. Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater.

    Science.gov (United States)

    Commault, Audrey S; Lear, Gavin; Weld, Richard J

    2015-12-01

    Geobacter-dominated biofilms can be selected under stringent conditions that limit the growth of competing bacteria. However, in many practical applications, such stringent conditions cannot be maintained and the efficacy and stability of these artificial biofilms may be challenged. In this work, biofilms were selected on low-potential anodes (-0.36 V vs Ag/AgCl, i.e. -0.08 V vs SHE) in minimal acetate or ethanol media. Selection conditions were then relaxed by transferring the biofilms to synthetic wastewater supplemented with soil as a source of competing bacteria. We tracked community succession and functional changes in these biofilms. The Geobacter-dominated biofilms showed stability in their community composition and electrochemical properties, with Geobacter sp. being still electrically active after six weeks in synthetic wastewater with power densities of 100±19 mW·m(-2) (against 74±14 mW·m(-2) at week 0) for all treatments. After six weeks, the ethanol-selected biofilms, despite their high taxon richness and their efficiency at removing the chemical oxygen demand (0.8 g·L(-1) removed against the initial 1.3 g·L(-1) injected), were the least stable in terms of community structure. These findings have important implications for environmental microbial fuel cells based on Geobacter-dominated biofilms and suggest that they could be stable in challenging environments. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Agent-based modelling in synthetic biology.

    Science.gov (United States)

    Gorochowski, Thomas E

    2016-11-30

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).

  20. Bioinspired Chemical Communication between Synthetic Nanomotors.

    Science.gov (United States)

    Chen, Chuanrui; Chang, Xiaocong; Teymourian, Hazhir; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Lu, Xiaolong; Li, Jinxing; He, Sha; Fang, Chengcheng; Liang, Yuyan; Mou, Fangzhi; Guan, Jianguo; Wang, Joseph

    2018-01-02

    While chemical communication plays a key role in diverse natural processes, the intelligent chemical communication between synthetic nanomotors remains unexplored. The design and operation of bioinspired synthetic nanomotors is presented. Chemical communication between nanomotors is possible and has an influence on propulsion behavior. A chemical "message" is sent from a moving activator motor to a nearby activated (receiver) motor by release of Ag + ions from a Janus polystyrene/Ni/Au/Ag activator motor to the activated Janus SiO 2 /Pt nanomotor. The transmitted silver signal is translated rapidly into a dramatic speed change associated with the enhanced catalytic activity of activated motors. Selective and successive activation of multiple nanomotors is achieved by sequential localized chemical communications. The concept of establishing chemical communication between different synthetic nanomotors paves the way to intelligent nanoscale robotic systems that are capable of cooperating with each other. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora

    Energy Technology Data Exchange (ETDEWEB)

    Benner, R.; Maccubbin, A.E.; Hodson, R.E.

    1984-05-01

    Specifically radiolabeled (/sup 14/C-lignin)lignocelluloses and (/sup 14/C-polysaccharide)lignocelluloses were prepared from a variety of marine and freshwater wetland plants including a grass, a sedge, a rush, and a hardwood. These (/sup 14/C)lignocellulose preparations and synthetic (/sup 14/C)lignin were incubated anaerobically with anoxic sediments collected from a salt marsh, a freshwater marsh, and a mangrove swamp. During long-term incubations lasting up to 300 days, the lignin and polysaccharide components of the lignocelluloses were slowly degraded anaerobically to /sup 14/CO/sub 2/ and /sup 14/CH/sub 4/. Lignocelluloses derived from herbaceous plants were degraded more rapidly than lignocellulose derived from the hardwood. After 294 days, 16.9% of the lignin component and 30.0% of the polysaccharide component of lignocellulose derived from the grass used (Spartina alterniflora) were degraded to gaseous end products. In contrast, after 246 days, only 1.5% of the lignin component and 4.1% of the polysaccharide component of lignocellulose derived from the hardwood used (Rhizophora mangle) were degraded to gaseous end products. Synthetic (/sup 14/C) lignin was degraded anaerobically faster than the lignin component of the hardwood lignocellulose; after 276 days 3.7% of the synthetic lignin was degraded to gaseous end products. Contrary to previous reports, these results demonstrate that lignin and lignified plant tissues are biodegradable in the absence of oxygen. Although lignocelluloses are recalcitrant to anaerobic biodegradation, rates of degradation measured in aquatic sediments are significant and have important implications for the biospheric cycling of carbon from these abundant biopolymers. 31 references.

  2. THE RESPIRATORY SUBSTRATE RHODOQUINOL INDUCES Q-CYCLE BYPASS REACTIONS IN THE YEAST CYTOCHROME bc1 COMPLEX - MECHANISTIC AND PHYSIOLOGICAL IMPLICATIONS

    International Nuclear Information System (INIS)

    Cape, Jonathan L.; Strahan, Jeff R.; Lenaeus, Michael J.; Yuknis, Brook A.; Le, Trieu T.; Shepherd, Jennifer; Bowman, Michael K.; Kramer, David M.

    2005-01-01

    The mitochondrial cytochrome bc1 complex catalyzes the transfer of electrons from ubiquinol to cyt c, while generating a proton motive force for ATP synthesis, via the ''Qcycle'' mechanism. Under certain conditions, electron flow through the Q-cycle is blocked at the level of a reactive intermediate in the quinol oxidase site of the enzyme, resulting in ''bypass reactions'', some of which lead to superoxide production. Using analogs of the respiratory substrates, ubiquinol-3 and rhodoquinol-3, we show that the relative rates of Q-cycle bypass reactions in the Saccharomyces cerevisiae cyt bc1 complex are highly dependent, by a factor of up to one hundred-fold, on the properties of the substrate quinol. Our results suggest that the rate of Q-cycle bypass reactions is dependent on the steady state concentration of reactive intermediates produced at the quinol oxidase site of the enzyme. We conclude that normal operation of the Q-cycle requires a fairly narrow window of redox potentials, with respect to the quinol substrate, to allow normal turnover of the complex while preventing potentially damaging bypass reactions

  3. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Xian-bin Kong

    2017-01-01

    Full Text Available Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compelling findings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1 polyethylene glycol as an adjustable biomolecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2 Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3 Polyethylene glycol hydrogels have been used as supporting substrates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury

  4. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xian-bin Kong; Qiu-yan Tang; Xu-yi Chen; Yue Tu; Shi-zhong Sun; Zhong-lei Sun

    2017-01-01

    Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compellingfindings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1) polyethylene glycol as an adjustable bio-molecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2) Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3) Polyethylene glycol hydrogels have been used as supporting sub-strates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury.

  5. Synthetic multicellular oscillatory systems: controlling protein dynamics with genetic circuits

    International Nuclear Information System (INIS)

    Koseska, Aneta; Volkov, Evgenii; Kurths, Juergen

    2011-01-01

    Synthetic biology is a relatively new research discipline that combines standard biology approaches with the constructive nature of engineering. Thus, recent efforts in the field of synthetic biology have given a perspective to consider cells as 'programmable matter'. Here, we address the possibility of using synthetic circuits to control protein dynamics. In particular, we show how intercellular communication and stochasticity can be used to manipulate the dynamical behavior of a population of coupled synthetic units and, in this manner, finely tune the expression of specific proteins of interest, e.g. in large bioreactors.

  6. Technical Assessment: Synthetic Biology

    Science.gov (United States)

    2015-01-01

    Pfizer, Bausch & Lomb, Coca - Cola , and other Fortune 500 companies 8 Data estimated by the... financial prize for ideas to drive forward the production of a sensor relying on synthetic organisms that can detect exposure to 500 specific chemicals

  7. Synthetic Biology: Applications in the Food Sector.

    Science.gov (United States)

    Tyagi, Ashish; Kumar, Ashwani; Aparna, S V; Mallappa, Rashmi H; Grover, Sunita; Batish, Virender Kumar

    2016-08-17

    Synthetic biology also termed as "genomic alchemy" represents a powerful area of science that is based on the convergence of biological sciences with systems engineering. It has been fittingly described as "moving from reading the genetic code to writing it" as it focuses on building, modeling, designing and fabricating novel biological systems using customized gene components that result in artificially created genetic circuitry. The scientifically compelling idea of the technological manipulation of life has been advocated since long time. Realization of this idea has gained momentum with development of high speed automation and the falling cost of gene sequencing and synthesis following the completion of the human genome project. Synthetic biology will certainly be instrumental in shaping the development of varying areas ranging from biomedicine, biopharmaceuticals, chemical production, food and dairy quality monitoring, packaging, and storage of food and dairy products, bioremediation and bioenergy production, etc. However, potential dangers of using synthetic life forms have to be acknowledged and adoption of policies by the scientific community to ensure safe practice while making important advancements in the ever expanding field of synthetic biology is to be fully supported and implemented.

  8. Synthetic Genetic Targeting of Genome Instability in Cancer

    International Nuclear Information System (INIS)

    Sajesh, Babu V.; Guppy, Brent J.; McManus, Kirk J.

    2013-01-01

    Cancer is a leading cause of death throughout the World. A limitation of many current chemotherapeutic approaches is that their cytotoxic effects are not restricted to cancer cells, and adverse side effects can occur within normal tissues. Consequently, novel strategies are urgently needed to better target cancer cells. As we approach the era of personalized medicine, targeting the specific molecular defect(s) within a given patient’s tumor will become a more effective treatment strategy than traditional approaches that often target a given cancer type or sub-type. Synthetic genetic interactions are now being examined for their therapeutic potential and are designed to target the specific genetic and epigenetic phenomena associated with tumor formation, and thus are predicted to be highly selective. In general, two complementary approaches have been employed, including synthetic lethality and synthetic dosage lethality, to target aberrant expression and/or function associated with tumor suppressor genes and oncogenes, respectively. Here we discuss the concepts of synthetic lethality and synthetic dosage lethality, and explain three general experimental approaches designed to identify novel genetic interactors. We present examples and discuss the merits and caveats of each approach. Finally, we provide insight into the subsequent pre-clinical work required to validate novel candidate drug targets

  9. Segmental intelligibility of synthetic speech produced by rule.

    Science.gov (United States)

    Logan, J S; Greene, B G; Pisoni, D B

    1989-08-01

    This paper reports the results of an investigation that employed the modified rhyme test (MRT) to measure the segmental intelligibility of synthetic speech generated automatically by rule. Synthetic speech produced by ten text-to-speech systems was studied and compared to natural speech. A variation of the standard MRT was also used to study the effects of response set size on perceptual confusions. Results indicated that the segmental intelligibility scores formed a continuum. Several systems displayed very high levels of performance that were close to or equal to scores obtained with natural speech; other systems displayed substantially worse performance compared to natural speech. The overall performance of the best system, DECtalk--Paul, was equivalent to the data obtained with natural speech for consonants in syllable-initial position. The findings from this study are discussed in terms of the use of a set of standardized procedures for measuring intelligibility of synthetic speech under controlled laboratory conditions. Recent work investigating the perception of synthetic speech under more severe conditions in which greater demands are made on the listener's processing resources is also considered. The wide range of intelligibility scores obtained in the present study demonstrates important differences in perception and suggests that not all synthetic speech is perceptually equivalent to the listener.

  10. Segmental intelligibility of synthetic speech produced by rule

    Science.gov (United States)

    Logan, John S.; Greene, Beth G.; Pisoni, David B.

    2012-01-01

    This paper reports the results of an investigation that employed the modified rhyme test (MRT) to measure the segmental intelligibility of synthetic speech generated automatically by rule. Synthetic speech produced by ten text-to-speech systems was studied and compared to natural speech. A variation of the standard MRT was also used to study the effects of response set size on perceptual confusions. Results indicated that the segmental intelligibility scores formed a continuum. Several systems displayed very high levels of performance that were close to or equal to scores obtained with natural speech; other systems displayed substantially worse performance compared to natural speech. The overall performance of the best system, DECtalk—Paul, was equivalent to the data obtained with natural speech for consonants in syllable-initial position. The findings from this study are discussed in terms of the use of a set of standardized procedures for measuring intelligibility of synthetic speech under controlled laboratory conditions. Recent work investigating the perception of synthetic speech under more severe conditions in which greater demands are made on the listener’s processing resources is also considered. The wide range of intelligibility scores obtained in the present study demonstrates important differences in perception and suggests that not all synthetic speech is perceptually equivalent to the listener. PMID:2527884

  11. Memory Consolidation and Neural Substrate of Reward

    Directory of Open Access Journals (Sweden)

    Redolar-Ripoll, Diego

    2012-08-01

    Full Text Available The aim of this report is to analyze the relationships between reward and learning and memory processes. Different studies have described how information about rewards influences behavior and how the brain uses this reward information to control learning and memory processes. Reward nature seems to be processed in different ways by neurons in different brain structures, ranging from the detection and perception of rewards to the use of information about predicted rewards for the control of goal-directed behavior. The neural substrate underling this processing of reward information is a reliable way of improving learning and memory processes. Evidence from several studies indicates that this neural system can facilitate memory consolidation in a wide variety of learning tasks. From a molecular perspective, certain cardinal features of reward have been described as forms of memory. Studies of human addicts and studies in animal models of addiction show that chronic drug exposure produces stable changes in the brain at the cellular and molecular levels that underlie the long-lasting behavioral plasticity associated with addiction. These molecular and cellular adaptations involved in addiction are also implicated in learning and memory processes. Dopamine seems to be a critical common signal to activate different genetic mechanisms that ultimately remodel synapses and circuits. Despite memory is an active and complex process mediated by different brain areas, the neural substrate of reward is able to improve memory consolidation in a several paradigms. We believe that there are many equivalent traits between reward and learning and memory processes.

  12. Coating of substrates

    International Nuclear Information System (INIS)

    Cairns, J.A.; Nelson, R.L.; Woodhead, J.L.

    1979-01-01

    The process is concerned with providing substrates with coatings obtainable from sols, for example to protect the substrate (such as in nuclear reactors or hydrocarbon cracking plant) or to provide a carrier for catalytically active material. Hitherto, coatings obtained from sols have had a high porosity and high surface area so that they have not been entirely satisfactory for the above applications. In the process described, dense, low-porosity coatings are provided by contacting the substrate with a sol of refractory material (e.g. CeO 2 or SiO 2 ) convertible to a gel of density at least 40% of the theoretical density of the refractory material, and converting the sol to the gel. Optionally, the gel may be converted to a ceramic coating by firing. (author)

  13. Stabilization/solidification of synthetic Nigerian drill cuttings | Opete ...

    African Journals Online (AJOL)

    Stabilization/solidification of synthetic Nigerian drill cuttings. SEO Opete, IA Mangibo, ET Iyagba. Abstract. In the Nigerian oil and gas industry, large quantities of oily and synthetic drill cuttings are produced annually. These drill cuttings are heterogeneous wastes which comprises of hydrocarbons, heavy metals and ...

  14. Hydrological performance of dual-substrate-layer green roofs using porous inert substrates with high sorption capacities.

    Science.gov (United States)

    Wang, Xiaoou; Tian, Yimei; Zhao, Xinhua; Peng, Chenrui

    2017-06-01

    Given that the common medium in existing green roofs is a single layer composed of organic and inorganic substrates, seven pilot-scale dual-substrate-layer extensive green roofs (G1-G7), which include nutrition and adsorption substrate layers, were constructed in this study. The effectiveness of porous inert substrates (activated charcoal, zeolite, pumice, lava, vermiculite and expanded perlite) used as the adsorption substrate for stormwater retention was investigated. A single-substrate-layer green roof (G8) was built for comparison with G1-G7. Despite the larger total rainfall depth (mm) of six types of simulated rains (43.2, 54.6, 76.2, 87.0, 85.2 and 86.4, respectively), the total percent retention of G1-G7 varied between 14% and 82% with an average of 43%, exhibiting better runoff-retaining capacity than G8 based on the maximum potential rainfall storage depth per unit height of adsorption substrate. Regression analysis showed that there was a logarithmic relationship between cumulative rainfall depth with non-zero runoff and stormwater retention for G1-G4 and a linear relationship for G5-G8. To enhance the water retention capacity and extend the service life of dual-substrate-layer extensive green roofs, the mixture of activated charcoal and/or pumice with expanded perlite and/or vermiculite is more suitable as the adsorption substrate than the mixture containing lava and/or zeolite.

  15. The Next Generation of Synthetic Biology Chassis: Moving Synthetic Biology from the Laboratory to the Field.

    Science.gov (United States)

    Adams, Bryn L

    2016-12-16

    Escherichia coli (E. coli) has played a pivotal role in the development of genetics and molecular biology as scientific fields. It is therefore not surprising that synthetic biology (SB) was built upon E. coli and continues to dominate the field. However, scientific capabilities have advanced from simple gene mutations to the insertion of rationally designed, complex synthetic circuits and creation of entirely synthetic genomes. The point is rapidly approaching where E. coli is no longer an adequate host for the increasingly sophisticated genetic designs of SB. It is time to develop the next generation of SB chassis; robust organisms that can provide the advanced physiology novel synthetic circuits will require to move SB from the laboratory into fieldable technologies. This can be accomplished by developing chassis-specific genetic toolkits that are as extensive as those for E. coli. However, the holy grail of SB would be the development of a universal toolkit that can be ported into any chassis. This viewpoint article underscores the need for new bacterial chassis, as well as discusses some of the important considerations in their selection. It also highlights a few examples of robust, tractable bacterial species that can meet the demands of tomorrow's state-of-the-art in SB. Significant advances have been made in the first 15 years since this field has emerged. However, the advances over the next 15 years will occur not in laboratory organisms, but in fieldable species where the potential of SB can be fully realized in game changing technology.

  16. Novel mitochondrial substrates of omi indicate a new regulatory role in neurodegenerative disorders.

    Directory of Open Access Journals (Sweden)

    Felicity Johnson

    Full Text Available The mitochondrial protease OMI (also known as HtrA2 has been implicated in Parkinson's Disease (PD and deletion or protease domain point mutations have shown profound neuropathologies in mice. A beneficial role by OMI, in preserving cell viability, is assumed to occur via the avoidance of dysfunctional protein turnover. However relatively few substrates for mitochondrial Omi are known. Here we report our identification of three novel mitochondrial substrates that impact metabolism and ATP production. Using a dual proteomic approach we have identified three interactors based upon ability to bind to OMI, and/or to persist in the proteome after OMI activity has been selectively inhibited. One candidate, the chaperone HSPA8, was common to each independent study. Two others (PDHB subunit and IDH3A subunit did not appear to bind to OMI, however persisted in the mito-proteome when OMI was inhibited. Pyruvate dehydrogenase (PDH and isocitrate dehydrogenase (IDH are two key Kreb's cycle enzymes that catalyse oxidative decarboxylation control points in mitochondrial respiration. We verified both PDHB and IDH3A co-immunoprecipitate with HSPA8 and after elution, were degraded by recombinant HtrA2 in vitro. Additionally our gene expression studies, using rotenone (an inhibitor of Complex I showed Omi expression was silenced when pdhb and idh3a were increased when a sub-lethal dose was applied. However higher dose treatment caused increased Omi expression and decreased levels of pdhb and idh3a transcripts. This implicates mitochondrial OMI in a novel mechanism relating to metabolism.

  17. Biosynthesis of therapeutic natural products using synthetic biology.

    Science.gov (United States)

    Awan, Ali R; Shaw, William M; Ellis, Tom

    2016-10-01

    Natural products are a group of bioactive structurally diverse chemicals produced by microorganisms and plants. These molecules and their derivatives have contributed to over a third of the therapeutic drugs produced in the last century. However, over the last few decades traditional drug discovery pipelines from natural products have become far less productive and far more expensive. One recent development with promise to combat this trend is the application of synthetic biology to therapeutic natural product biosynthesis. Synthetic biology is a young discipline with roots in systems biology, genetic engineering, and metabolic engineering. In this review, we discuss the use of synthetic biology to engineer improved yields of existing therapeutic natural products. We further describe the use of synthetic biology to combine and express natural product biosynthetic genes in unprecedented ways, and how this holds promise for opening up completely new avenues for drug discovery and production. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Sealed substrate carrier for electroplating

    Science.gov (United States)

    Ganti, Kalyana Bhargava [Fremont, CA

    2012-07-17

    One embodiment relates to a substrate carrier for use in electroplating a plurality of substrates. The substrate carrier includes a non-conductive carrier body on which the substrates are held, and conductive lines are embedded within the carrier body. A conductive bus bar is embedded into a top side of the carrier body and is conductively coupled to the conductive lines. A thermoplastic overmold covers a portion of the bus bar, and there is a plastic-to-plastic bond between the thermoplastic overmold and the non-conductive carrier body. Other embodiments, aspects and features are also disclosed.

  19. Ultra-thin layer chromatography and surface enhanced Raman spectroscopy on silver nanorod array substrates prepared by oblique angle deposition

    Science.gov (United States)

    Chen, Jing; Abell, Justin; Huang, Yao-wen; Zhao, Yiping

    2012-06-01

    We demonstrate the potential use of silver nanorod (AgNR) array substrates for on-chip separation and detection of chemical mixtures by ultra-thin layer chromatography (UTLC) and surface enhanced Raman spectroscopy (SERS). The capability of the AgNR substrates to separate different compounds in a mixture was explored using a mixture of the food colorant Brilliant Blue FCF and lactic acid, and the mixtures of Methylene Violet and BSA at various concentrations. After the UTLC process, spatially-resolved SERS spectra were collected along the mobile phase development direction and the intensities of specific SERS peaks from each component were used to generate chromatograms. The AgNR substrates demonstrate the capability of separating Brilliant Blue from lactic acid, as well as revealing the SERS signal of Methylene Violet from the massive BSA background after a simple UTLC step. This technique may have significant practical implications in actual detection of small molecules from complex food or clinical backgrounds.

  20. PRODUCTION OF ENRICHED BIOMASS BY RED YEASTS OF SPOROBOLOMYCES SP. GROWN ON WASTE SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Emilia Breierova

    2012-02-01

    Full Text Available Carotenoids and ergosterol are industrially significant metabolites probably involved in yeast stress response mechanisms. Thus, controlled physiological and nutrition stress including use of waste substrates can be used for their enhanced production. In this work two red yeast strains of the genus Sporobolomyces (Sporobolomyces roseus, Sporobolomyces shibatanus were studied. To increase the yield of metabolites at improved biomass production, several types of exogenous as well as nutrition stress were tested. Each strain was cultivated at optimal growth conditions and in medium with modified carbon and nitrogen sources. Synthetic media with addition of complex substrates (e.g. yeast extract and vitamin mixtures as well as some waste materials (whey, apple fibre, wheat, crushed pasta were used as nutrient sources. Peroxide and salt stress were applied too, cells were exposed to oxidative stress (2-10 mM H2O2 and osmotic stress (2-10 % NaCl. During the experiment, growth characteristics and the production of biomass, carotenoids and ergosterol were evaluated. In optimal conditions tested strains substantially differed in biomass as well as metabolite production. S.roseus produced about 50 % of biomass produced by S.shibatanus (8 g/L. Oppositely, production of pigments and ergosterol by S.roseus was 3-4 times higher than in S.shibatanus. S.roseus was able to use most of waste substrates, the best production of ergosterol (8.9 mg/g d.w. and beta-carotene (4.33 mg/g d.w. was obtained in medium with crushed pasta hydrolyzed by mixed enzyme from Phanerochaetae chrysosporium. Regardless very high production of carotenes and ergosterol, S.roseus is probably not suitable for industrial use because of relatively low biomass production.

  1. Flexible and foldable paper-substrate thermoelectric generator (teg)

    KAUST Repository

    Rojas, Jhonathan Prieto

    2017-08-24

    Flexible and foldable paper-substrate thermoelectric generators (TEGs) and methods for making the paper-substrate TEGs are disclosed. A method includes depositing a plurality of thermocouples in series on a paper substrate to create a paper-substrate TEG, wherein the plurality of thermocouples is deposited between two contact points of the paper-substrate TEG. The method may also include setting the power density and maximum achievable temperature gradient of the paper-substrate TEG by folding the paper-substrate TEG. A paper-substrate TEG apparatus may include a paper substrate and a plurality of thermocouples deposited in series on the paper substrate between two contact points of the paper-substrate TEG, wherein the power density and maximum achievable temperature gradient of the paper-substrate TEG is set by folding the paper-substrate TEG.

  2. Comprehension of synthetic speech and digitized natural speech by adults with aphasia.

    Science.gov (United States)

    Hux, Karen; Knollman-Porter, Kelly; Brown, Jessica; Wallace, Sarah E

    2017-09-01

    Using text-to-speech technology to provide simultaneous written and auditory content presentation may help compensate for chronic reading challenges if people with aphasia can understand synthetic speech output; however, inherent auditory comprehension challenges experienced by people with aphasia may make understanding synthetic speech difficult. This study's purpose was to compare the preferences and auditory comprehension accuracy of people with aphasia when listening to sentences generated with digitized natural speech, Alex synthetic speech (i.e., Macintosh platform), or David synthetic speech (i.e., Windows platform). The methodology required each of 20 participants with aphasia to select one of four images corresponding in meaning to each of 60 sentences comprising three stimulus sets. Results revealed significantly better accuracy given digitized natural speech than either synthetic speech option; however, individual participant performance analyses revealed three patterns: (a) comparable accuracy regardless of speech condition for 30% of participants, (b) comparable accuracy between digitized natural speech and one, but not both, synthetic speech option for 45% of participants, and (c) greater accuracy with digitized natural speech than with either synthetic speech option for remaining participants. Ranking and Likert-scale rating data revealed a preference for digitized natural speech and David synthetic speech over Alex synthetic speech. Results suggest many individuals with aphasia can comprehend synthetic speech options available on popular operating systems. Further examination of synthetic speech use to support reading comprehension through text-to-speech technology is thus warranted. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Design Automation in Synthetic Biology.

    Science.gov (United States)

    Appleton, Evan; Madsen, Curtis; Roehner, Nicholas; Densmore, Douglas

    2017-04-03

    Design automation refers to a category of software tools for designing systems that work together in a workflow for designing, building, testing, and analyzing systems with a target behavior. In synthetic biology, these tools are called bio-design automation (BDA) tools. In this review, we discuss the BDA tools areas-specify, design, build, test, and learn-and introduce the existing software tools designed to solve problems in these areas. We then detail the functionality of some of these tools and show how they can be used together to create the desired behavior of two types of modern synthetic genetic regulatory networks. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  4. Synthetic greenhouse gases under control

    International Nuclear Information System (INIS)

    Horisberger, B.; Karlaganis, G.

    2003-01-01

    This article discusses new Swiss regulations on the use of synthetic materials that posses a considerable greenhouse-warming potential. Synthetic materials such as hydro-chlorofluorocarbons HCFCs, perfluoride-hydrocarbons and sulphur hexafluoride have, in recent years, replaced chlorofluorocarbons CFCs, which were banned on account of their ozone depletion characteristics. The use of these persistent substances is now being limited to applications where more environment-friendly alternatives are not available. The measures decreed in the legislation, which include a general ban on HCFCs as of 2004 and a ban on the export of installations and equipment that use ozone-depleting refrigerants are described. Details on the legislation's effects on the Swiss refrigeration industry are listed and discussed

  5. Artificial intelligence and synthetic biology: A tri-temporal contribution.

    Science.gov (United States)

    Bianchini, Francesco

    2016-10-01

    Artificial intelligence can make numerous contributions to synthetic biology. I would like to suggest three that are related to the past, present and future of artificial intelligence. From the past, works in biology and artificial systems by Turing and von Neumann prove highly interesting to explore within the new framework of synthetic biology, especially with regard to the notions of self-modification and self-replication and their links to emergence and the bottom-up approach. The current epistemological inquiry into emergence and research on swarm intelligence, superorganisms and biologically inspired cognitive architecture may lead to new achievements on the possibilities of synthetic biology in explaining cognitive processes. Finally, the present-day discussion on the future of artificial intelligence and the rise of superintelligence may point to some research trends for the future of synthetic biology and help to better define the boundary of notions such as "life", "cognition", "artificial" and "natural", as well as their interconnections in theoretical synthetic biology. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Bio-treatment of phosphate from synthetic wastewater using ...

    African Journals Online (AJOL)

    In this study, the efficient phosphate utilizing isolates were used to remove phosphate from synthetic phosphate wastewater was tested using batch scale process. Hence the objective of the present study was to examine the efficiency of bacterial species individually for the removal of phosphate from synthetic phosphate ...

  7. Synthetic mullite fabrication from smectite clays

    International Nuclear Information System (INIS)

    Lima, L.N. de; Kiminami, R.H.G.A.

    1988-01-01

    The technological importance of mullite is mostly due to its refractory properties. Mullite in native form is very rare, and therefore it may be necessary to produced it by synthetic means. Brazil has a large reserve of smectite clays. In this work the process to produce synthetic mullite from these clays by treatment with aluminum sulphate was studied. X-ray analyses has shown the presence of mullite crystals in treated smectite clays of several colours, sinterized at 1100 0 C. By sintering at 1300 0 C, pure mullite was obtained in some colours. (author) [pt

  8. Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques

    International Nuclear Information System (INIS)

    Doerner, M.F.; Gardner, D.S.; Nix, W.D.

    1986-01-01

    Substrate curvature and submicron indentation measurements have been used recently to study plastic deformation in thin films on substrates. In the present work both of these techniques have been employed to study the strength of aluminum and tungsten thin films on silicon substrates. In the case of aluminum films on silicon substrates, the film strength is found to increase with decreasing thickness. Grain size variations with film thickness do not account for the variations in strength. Wafer curvature measurements give strengths higher than those predicted from hardness measurements suggesting the substrate plays a role in strengthening the film. The observed strengthening effect with decreased thickness may be due to image forces on dislocations in the film due to the elastically stiffer silicon substrate. For sputtered tungsten films, where the substrate is less stiff than the film, the film strength decreases with decreasing film thickness

  9. Polyethylenimine-mediated synthetic insertion of gold nanoparticles into mesoporous silica nanoparticles for drug loading and biocatalysis.

    Science.gov (United States)

    Pandey, Prem C; Pandey, Govind; Narayan, Roger J

    2017-03-27

    Mesoporous silica nanoparticles (MSNPs) have been used as an efficient and safe carrier for drug delivery and biocatalysis. The surface modification of MSNPs using suitable reagents may provide a robust framework in which two or more components can be incorporated to give multifunctional capabilities (e.g., synthesis of noble metal nanoparticles within mesoporous architecture along with loading of a bioactive molecule). In this study, the authors reported on a new synthetic route for the synthesis of gold nanoparticles (AuNPs) within (1) unmodified MSNPs and (2) 3-trihydroxysilylpropyl methylphosphonate-modified MSNPs. A cationic polymer, polyethylenimine (PEI), and formaldehyde were used to mediate synthetic incorporation of AuNPs within MSNPs. The AuNPs incorporated within the mesoporous matrix were characterized by transmission electron microscopy, energy dispersive x-ray analysis, and high-resolution scanning electron microscopy. PEI in the presence of formaldehyde enabled synthetic incorporation of AuNPs in both unmodified and modified MSNPs. The use of unmodified MSNPs was associated with an increase in the polycrystalline structure of the AuNPs within the MSNPs. The AuNPs within modified MSNPs showed better catalytic activity than those within unmodified MSNPs. MSNPs with an average size of 200 nm and with a pore size of 4-6 nm were used for synthetic insertion of AuNPs. It was found that the PEI coating enabled AuNPs synthesis within the mesopores in the presence of formaldehyde or tetrahydrofuran hydroperoxide at a temperature between 10 and 25 °C or at 60 °C in the absence of organic reducing agents. The as-made AuNP-inserted MSNPs exhibited enhanced catalytic activity. For example, these materials enabled rapid catalytic oxidation of the o-dianisidine substrate to produce a colored solution in proportion to the amount of H 2 O 2 generated as a function of glucose oxidase-catalyzed oxidation of glucose; a linear concentration range from 80 to

  10. Identification of novel substrates of Shigella T3SA through analysis of its virulence plasmid-encoded secretome

    Science.gov (United States)

    Pinaud, Laurie; Ferrari, Mariana L.; Friedman, Robin; Jehmlich, Nico; von Bergen, Martin; Phalipon, Armelle; Sansonetti, Philippe J.

    2017-01-01

    Many human Gram-negative bacterial pathogens express a Type Three Secretion Apparatus (T3SA), including among the most notorious Shigella spp., Salmonella enterica, Yersinia enterocolitica and enteropathogenic Escherichia coli (EPEC). These bacteria express on their surface multiple copies of the T3SA that mediate the delivery into host cells of specific protein substrates critical to pathogenesis. Shigella spp. are Gram-negative bacterial pathogens responsible for human bacillary dysentery. The effector function of several Shigella T3SA substrates has largely been studied but their potential cellular targets are far from having been comprehensively delineated. In addition, it is likely that some T3SA substrates have escaped scrutiny as yet. Indeed, sequencing of the virulence plasmid of Shigella flexneri has revealed numerous open reading frames with unknown functions that could encode additional T3SA substrates. Taking advantage of label-free mass spectrometry detection of proteins secreted by a constitutively secreting strain of S. flexneri, we identified five novel substrates of the T3SA. We further confirmed their secretion through the T3SA and translocation into host cells using β-lactamase assays. The coding sequences of two of these novel T3SA substrates (Orf13 and Orf131a) have a guanine-cytosine content comparable to those of T3SA components and effectors. The three other T3SA substrates identified (Orf48, Orf86 and Orf176) have significant homology with antitoxin moieties of type II Toxin-Antitoxin systems usually implicated in the maintenance of low copy plasmids. While Orf13 and Orf131a might constitute new virulence effectors contributing to S. flexneri pathogenicity, potential roles for the translocation into host cells of antitoxins or antitoxin-like proteins during Shigella infection are discussed. PMID:29073283

  11. Identification of novel substrates of Shigella T3SA through analysis of its virulence plasmid-encoded secretome.

    Directory of Open Access Journals (Sweden)

    Laurie Pinaud

    Full Text Available Many human Gram-negative bacterial pathogens express a Type Three Secretion Apparatus (T3SA, including among the most notorious Shigella spp., Salmonella enterica, Yersinia enterocolitica and enteropathogenic Escherichia coli (EPEC. These bacteria express on their surface multiple copies of the T3SA that mediate the delivery into host cells of specific protein substrates critical to pathogenesis. Shigella spp. are Gram-negative bacterial pathogens responsible for human bacillary dysentery. The effector function of several Shigella T3SA substrates has largely been studied but their potential cellular targets are far from having been comprehensively delineated. In addition, it is likely that some T3SA substrates have escaped scrutiny as yet. Indeed, sequencing of the virulence plasmid of Shigella flexneri has revealed numerous open reading frames with unknown functions that could encode additional T3SA substrates. Taking advantage of label-free mass spectrometry detection of proteins secreted by a constitutively secreting strain of S. flexneri, we identified five novel substrates of the T3SA. We further confirmed their secretion through the T3SA and translocation into host cells using β-lactamase assays. The coding sequences of two of these novel T3SA substrates (Orf13 and Orf131a have a guanine-cytosine content comparable to those of T3SA components and effectors. The three other T3SA substrates identified (Orf48, Orf86 and Orf176 have significant homology with antitoxin moieties of type II Toxin-Antitoxin systems usually implicated in the maintenance of low copy plasmids. While Orf13 and Orf131a might constitute new virulence effectors contributing to S. flexneri pathogenicity, potential roles for the translocation into host cells of antitoxins or antitoxin-like proteins during Shigella infection are discussed.

  12. The Role of Factor XIa (FXIa) Catalytic Domain Exosite Residues in Substrate Catalysis and Inhibition by the Kunitz Protease Inhibitor Domain of Protease Nexin 2*

    Science.gov (United States)

    Su, Ya-Chi; Miller, Tara N.; Navaneetham, Duraiswamy; Schoonmaker, Robert T.; Sinha, Dipali; Walsh, Peter N.

    2011-01-01

    To select residues in coagulation factor XIa (FXIa) potentially important for substrate and inhibitor interactions, we examined the crystal structure of the complex between the catalytic domain of FXIa and the Kunitz protease inhibitor (KPI) domain of a physiologically relevant FXIa inhibitor, protease nexin 2 (PN2). Six FXIa catalytic domain residues (Glu98, Tyr143, Ile151, Arg3704, Lys192, and Tyr5901) were subjected to mutational analysis to investigate the molecular interactions between FXIa and the small synthetic substrate (S-2366), the macromolecular substrate (factor IX (FIX)) and inhibitor PN2KPI. Analysis of all six Ala mutants demonstrated normal Km values for S-2366 hydrolysis, indicating normal substrate binding compared with plasma FXIa; however, all except E98A and K192A had impaired values of kcat for S-2366 hydrolysis. All six Ala mutants displayed deficient kcat values for FIX hydrolysis, and all were inhibited by PN2KPI with normal values of Ki except for K192A, and Y5901A, which displayed increased values of Ki. The integrity of the S1 binding site residue, Asp189, utilizing p-aminobenzamidine, was intact for all FXIa mutants. Thus, whereas all six residues are essential for catalysis of the macromolecular substrate (FIX), only four (Tyr143, Ile151, Arg3704, and Tyr5901) are important for S-2366 hydrolysis; Glu98 and Lys192 are essential for FIX but not S-2366 hydrolysis; and Lys192 and Tyr5901 are required for both inhibitor and macromolecular substrate interactions. PMID:21778227

  13. Development of synthetic analysis program concerning on the safety of energy resources

    Energy Technology Data Exchange (ETDEWEB)

    Chang, S. H.; Choi, S. S.; Cheong, Y. H.; Ahn, S. H.; Chang, W. J. [Atomic Creative Technology, Daejeon (Korea, Republic of)

    2007-03-15

    Methodology development of synthetic analysis of energy resources: build system methodology of synthetic analysis of energy resources. Development of web-based enquete program, develop web-based enquete program to support synthetic analysis of energy resources. Aggregation Software development, develop AHP algorithm and aggregation software for the synthetic analysis of energy resources.

  14. Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions.

    Science.gov (United States)

    Rodríguez, Elisa; Lopes, Alexandre; Fdz-Polanco, María; Stams, Alfons J M; García-Encina, Pedro A

    2012-03-01

    The microbial communities (Bacteria and Archaea) established in an anaerobic fluidized bed reactor used to treat synthetic vinasse (betaine, glucose, acetate, propionate, and butyrate) were characterized by denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. This study was focused on the competitive and syntrophic interactions between the different microbial groups at varying influent substrate to sulfate ratios of 8, 4, and 2 and anaerobic or micro-aerobic conditions. Acetogens detected along the anaerobic phases at substrate to sulfate ratios of 8 and 4 seemed to be mainly involved in the fermentation of glucose and betaine, but they were substituted by other sugar or betaine degraders after oxygen application. Typical fatty acid degraders that grow in syntrophy with methanogens were not detected during the entire reactor run. Likely, sugar and betaine degraders outnumbered them in the DGGE analysis. The detected sulfate-reducing bacteria (SRB) belonged to the hydrogen-utilizing Desulfovibrio. The introduction of oxygen led to the formation of elemental sulfur (S(0)) and probably other sulfur compounds by sulfide-oxidizing bacteria (γ-Proteobacteria). It is likely that the sulfur intermediates produced from sulfide oxidation were used by SRB and other microorganisms as electron acceptors, as was supported by the detection of the sulfur respiring Wolinella succinogenes. Within the Archaea population, members of Methanomethylovorans and Methanosaeta were detected throughout the entire reactor operation. Hydrogenotrophic methanogens mainly belonging to the genus Methanobacterium were detected at the highest substrate to sulfate ratio but rapidly disappeared by increasing the sulfate concentration.

  15. Chromatin regulation at the frontier of synthetic biology

    Science.gov (United States)

    Keung, Albert J.; Joung, J. Keith; Khalil, Ahmad S.; Collins, James J.

    2016-01-01

    As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including `epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication. PMID:25668787

  16. Graphene on insulating crystalline substrates

    International Nuclear Information System (INIS)

    Akcoeltekin, S; El Kharrazi, M; Koehler, B; Lorke, A; Schleberger, M

    2009-01-01

    We show that it is possible to prepare and identify ultra-thin sheets of graphene on crystalline substrates such as SrTiO 3 , TiO 2 , Al 2 O 3 and CaF 2 by standard techniques (mechanical exfoliation, optical and atomic force microscopy). On the substrates under consideration we find a similar distribution of single layer, bilayer and few-layer graphene and graphite flakes as with conventional SiO 2 substrates. The optical contrast C of a single graphene layer on any of those substrates is determined by calculating the optical properties of a two-dimensional metallic sheet on the surface of a dielectric, which yields values between C = -1.5% (G/TiO 2 ) and C = -8.8% (G/CaF 2 ). This contrast is in reasonable agreement with experimental data and is sufficient to make identification by an optical microscope possible. The graphene layers cover the crystalline substrate in a carpet-like mode and the height of single layer graphene on any of the crystalline substrates as determined by atomic force microscopy is d SLG = 0.34 nm and thus much smaller than on SiO 2 .

  17. Integration substrate with a ultra-high-density capacitor and a through-substrate via

    NARCIS (Netherlands)

    Klootwijk, J.H.; Roozeboom, F.; Ruigrok, J.J.M.; Reefman, D.

    2014-01-01

    An integration substrate for a system in package comprises a through-substrate via and a trench capacitor wherein with a trench filling that includes at least four electrically conductive capacitor-electrode layers in an alternating arrangement with dielectric layers. --The capacitor-electrode

  18. What Are Synthetic Cannabinoids?

    Science.gov (United States)

    ... years, synthetic cannabinoid mixtures have been easy to buy in drug paraphernalia shops, novelty stores, gas stations, and over ... abuse, authorities have made it illegal to sell, buy, or possess some of ... use is that standard drug tests cannot easily detect many of the chemicals ...

  19. Synthetic Teammates as Team Players: Coordination of Human and Synthetic Teammates

    Science.gov (United States)

    2016-05-31

    teammate interactions with human teammates reveal about human-automation coordination needs? 15. SUBJECT TERMS synthetic teammate, human- autonomy teaming...interacting with autonomy - not autonomous vehicles, but autonomous teammates. These experiments have led to a number of discoveries including: 1...given the preponderance of text-based communications in our society and its adoption in time critical military and civilian contexts, the

  20. Life by design: Philosophical perspectives on synthetic biology

    Directory of Open Access Journals (Sweden)

    Bensaude Vincent Bernadette

    2015-01-01

    This paper outlines a number of distinctive features of this emerging field in the constellation of bionanotechnologies. It then insists on the variety of research agendas and strategies gathered under the umbrella “synthetic biology”. While redesigning life is the central goal, synthetic biologists do not develop a uniform view of living organisms.

  1. Morphological adaptations in breast cancer cells as a function of prolonged passaging on compliant substrates.

    Directory of Open Access Journals (Sweden)

    Sana Syed

    Full Text Available Standard tissue culture practices involve propagating cells on tissue culture polystyrene (TCP dishes, which are flat, 2-dimensional (2D and orders of magnitude stiffer than most tissues in the body. Such simplified conditions lead to phenotypical cell changes and altered cell behaviors. Hence, much research has been focused on developing novel biomaterials and culture conditions that more closely emulate in vivo cell microenvironments. In particular, biomaterial stiffness has emerged as a key property that greatly affects cell behaviors such as adhesion, morphology, proliferation and motility among others. Here we ask whether cells that have been conditioned to TCP, would still show significant dependence on substrate stiffness if they are first pre-adapted to a more physiologically relevant environment. We used two commonly utilized breast cancer cell lines, namely MDA-MB-231 and MCF-7, and examined the effect of prolonged cell culturing on polyacrylamide substrates of varying compliance. We followed changes in cell adhesion, proliferation, shape factor, spreading area and spreading rate. After pre-adaptation, we noted diminished differences in cell behaviors when comparing between soft (1 kPa and stiff (103 kPa gels as well as rigid TCP control. Prolonged culturing of cells on complaint substrates further influenced responses of pre-adapted cells when transferred back to TCP. Our results have implications for the study of stiffness-dependent cell behaviors and indicate that cell pre-adaptation to the substrate needs consideration.

  2. Numerical study of circular synthetic jets at low Reynolds numbers

    International Nuclear Information System (INIS)

    Xia, Qingfeng; Lei, Shenghui; Ma, Jieyan; Zhong, Shan

    2014-01-01

    Highlights: • Parameter maps depicting different flow regimes of synthetic jets are produced. • Boundaries separating these regimes are defined using quantitative criteria. • The Reynolds number is most appropriate for classifying different flow regimes. • A use of high suction cycle factors enhances the effectiveness of synthetic jets. - Abstract: In this paper, the flow patterns of circular synthetic jets issuing into a quiescent flow at low Reynolds numbers are studied numerically. The results confirm the presence of the three jet flow regimes, i.e. no jet formation, jet flow without rollup and jet flow with rollup reported in the literature. The boundaries of the different jet flow regimes are determined by tracking the structures produced by the synthetic jets in the near field of the jet orifice over several actuation cycles and examining the cycle-averaged streamwise velocity profiles along the jet central axis. When the Stokes number is above a certain threshold value appropriate for the corresponding flow regime, a good correlation between the flow patterns and the jet Reynolds number defined using the jet orifice diameter, Re Do , is also found. Furthermore, the flow structures of synthetic jets with different suction duty cycle factors are compared. The use of a high suction duty cycle factor strengthens the synthetic jet resulting in a greater penetration depth into the surrounding fluid. Overall, the finding from this study enables the flow regimes, in which a synthetic jet actuator with a circular orifice operates, to be determined. It also provides a way of designing more effective synthetic jet actuators for enhancing mass and momentum transfer at very low Reynolds numbers

  3. Tunable promoters in synthetic and systems biology

    DEFF Research Database (Denmark)

    Dehli, Tore; Solem, Christian; Jensen, Peter Ruhdal

    2012-01-01

    in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available......Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central...... for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression...

  4. Yeast synthetic biology for high-value metabolites.

    Science.gov (United States)

    Dai, Zhubo; Liu, Yi; Guo, Juan; Huang, Luqi; Zhang, Xueli

    2015-02-01

    Traditionally, high-value metabolites have been produced through direct extraction from natural biological sources which are inefficient, given the low abundance of these compounds. On the other hand, these high-value metabolites are usually difficult to be synthesized chemically, due to their complex structures. In the last few years, the discovery of genes involved in the synthetic pathways of these metabolites, combined with advances in synthetic biology tools, has allowed the construction of increasing numbers of yeast cell factories for production of these metabolites from renewable biomass. This review summarizes recent advances in synthetic biology in terms of the use of yeasts as microbial hosts for the identification of the pathways involved in the synthesis, as well as for the production of high-value metabolites. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  5. Synthetic Cannabinoids.

    Science.gov (United States)

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  6. Challenges and opportunities in synthetic biology for chemical engineers.

    Science.gov (United States)

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement.

  7. Integration substrate with a ultra-high-density capacitor and a through-substrate via

    NARCIS (Netherlands)

    2008-01-01

    An integration substrate for a system in package comprises a through-substrate via and a trench capacitor wherein with a trench filling that includes at least 4 elec. conductive capacitor-electrode layers in an alternating arrangement with dielec. layers. The capacitor-electrode layers are

  8. Soil microbial community structure and nitrogen cycling responses to agroecosystem management and carbon substrate addition

    Science.gov (United States)

    Berthrong, S. T.; Buckley, D. H.; Drinkwater, L. E.

    2011-12-01

    nitrate as conventional soils (44 vs 23 ug N/g soil), and organic soils with continuous glucose addition produced more nitrate than organic controls or single glucose additions (52 vs 39 ug N/g soil). Management of soils created distinct soil microbial compositions that led to organic soil communities that were more able to utilize labile carbon substrates and mineralize N from SOM. This suggests that organic management fostered a community better adapted to plant carbon substrates with a more tightly coupled C and N cycle that produces more plant available N. This increased N production could reduce the need for synthetic N fertilizer application.

  9. Role of arginine-292 in the substrate specificity of aspartate aminotransferase as examined by site-directed mutagenesis

    International Nuclear Information System (INIS)

    Cronin, C.N.; Kirsch, J.F.

    1988-01-01

    X-ray crystallographic data have implicated Arg-292 as the residue responsible for the preferred side-chain substrate specificity of asparate aminotransferase. It forms a salt bridge with the β or γ carboxylate group of the substrate. In order to test this proposal and, in addition, to attempt to reverse the substrate charge specificity of this enzyme, Arg-292 has been converted to Asp-292 by site-directed mutagenesis. The activity k/sub cat//K/sub M/) of the mutant enzyme, R292D, toward the natural anionic substrates L-aspartate, L-glutamate, and α-ketoglutarate is depressed by over 5 orders of magnitude, whereas the activity toward the keto acid pyruvate and a number of aromatic and other neutral amino acids is reduced by only 2-9-fold. These results confirm the proposal that Arg-292 is critical for the rapid turnover of substrates bearing anionic side chains and show further that, apart from the desired alteration no major perturbations of the remainder of the molecule have been made. The activity of R292D toward the cationic amino acids L-arginine, L-lysine, and L-ornithine is increased by 9-16-fold over that of wild type and the ratio (k/sub cat//K/sub M/)/sub cationic//(k/sub cat//K/sub M/)/sub anionic/ is in the range 2-40-fold for R292D, whereas this ratio has a range of [(0.3-6) x 10 -6 ]-fold for wild type. Thus, the mutation has produced an inversion of the substrate charge specificity. Possible explanations for the less-than-expected reactivity of R292D with arginine are discussed

  10. GC X GCTOFMS OF SYNTHETIC PYRETHROIDS IN FOODS SAMPLES

    Science.gov (United States)

    Pyrethrins are natural insecticides in the extract of chrysanthemum flowers1. Pyrethroids are synthetic forms of pyrethrins, and many are halogenated (F, Cl, Br). Synthetic pyrethroids have become popular replacements for organophosphorus pesticides, which have become increasin...

  11. Bottom-up synthetic biology: modular design for making artificial platelets

    Science.gov (United States)

    Majumder, Sagardip; Liu, Allen P.

    2018-01-01

    Engineering artificial cells to mimic one or multiple fundamental cell biological functions is an emerging area of synthetic biology. Reconstituting functional modules from biological components in vitro is a challenging yet an important essence of bottom-up synthetic biology. Here we describe the concept of building artificial platelets using bottom-up synthetic biology and the four functional modules that together could enable such an ambitious effort.

  12. Synthetic biology in the UK - An outline of plans and progress.

    Science.gov (United States)

    Clarke, L J; Kitney, R I

    2016-12-01

    Synthetic biology is capable of delivering new solutions to key challenges spanning the bioeconomy, both nationally and internationally. Recognising this significant potential and the associated need to facilitate its translation and commercialisation the UK government commissioned the production of a national Synthetic Biology Roadmap in 2011, and subsequently provided crucial support to assist its implementation. Critical infrastructural investments have been made, and important strides made towards the development of an effectively connected community of practitioners and interest groups. A number of Synthetic Biology Research Centres, DNA Synthesis Foundries, a Centre for Doctoral Training, and an Innovation Knowledge Centre have been established, creating a nationally distributed and integrated network of complementary facilities and expertise. The UK Synthetic Biology Leadership Council published a UK Synthetic Biology Strategic Plan in 2016, increasing focus on the processes of translation and commercialisation. Over 50 start-ups, SMEs and larger companies are actively engaged in synthetic biology in the UK, and inward investments are starting to flow. Together these initiatives provide an important foundation for stimulating innovation, actively contributing to international research and development partnerships, and helping deliver useful benefits from synthetic biology in response to local and global needs and challenges.

  13. Synthetic cannabinoid and marijuana exposures reported to poison centers.

    Science.gov (United States)

    Forrester, M B; Kleinschmidt, K; Schwarz, E; Young, A

    2012-10-01

    Synthetic cannabinoids have recently gained popularity as a recreational drug because they are believed to result in a marijuana-like high. This investigation compared synthetic cannabinoids and marijuana exposures reported to a large statewide poison center system. Synthetic cannabinoid and marijuana exposures reported to Texas poison centers during 2010 were identified. The distribution of exposures to the two agents with respect to various demographic and clinical factors were compared by calculating the rate ratio (RR) of the synthetic cannabinoid and marijuana percentages for each subgroup and 95% confidence interval (CI). The proportion of synthetic cannabinoid and marijuana exposures, respectively, were 87.3% and 46.5% via inhalation (RR 1.88, 95% CI 1.38-2.61), 74.9% and 65.7% in male (RR 1.14, 95% CI 0.87-1.51), 40.2% and 56.6% age ≤ 19 years (RR 0.71, 95% CI 0.52-0.98), 79.2% and 58.6% occurring at a residence (RR 1.35, 95% CI 1.02-1.82), 8.4% and 16.2% managed on-site (RR 0.52. 95% CI 0.28-1.00), and 59.3% and 41.4% with serious medical outcomes (RR 1.43, 95% CI 1.03-2.05). Compared to marijuana, synthetic cannabinoid exposures were more likely to be used through inhalation, to involve adults, to be used at a residence, and to result in serious outcomes.

  14. Application of Enzyme Coupling Reactions to Shift Thermodynamically Limited Biocatalytic Reactions

    DEFF Research Database (Denmark)

    Abu, Rohana; Woodley, John M.

    2015-01-01

    , it can be challenging to combine several engineered enzymes in vitro for the conversion of non-natural substrates. In this mini-review we focus on enzyme coupling reactions as a tool to alleviate thermodynamic constraints in synthetically useful biocatalytic reactions. The implications of thermodynamic...... shift the equilibrium of otherwise thermodynamically unfavourable reactions to give a higher conversion of the target product. By coupling an energetically unfavourable reaction with a more favourable one, the multi-enzyme cascade mimics the approach taken in nature in metabolic pathways. Nevertheless...

  15. Synthetic Control of Exciton Behavior in Colloidal Quantum Dots.

    Science.gov (United States)

    Pu, Chaodan; Qin, Haiyan; Gao, Yuan; Zhou, Jianhai; Wang, Peng; Peng, Xiaogang

    2017-03-08

    Colloidal quantum dots are promising optical and optoelectronic materials for various applications, whose performance is dominated by their excited-state properties. This article illustrates synthetic control of their excited states. Description of the excited states of quantum-dot emitters can be centered around exciton. We shall discuss that, different from conventional molecular emitters, ground-state structures of quantum dots are not necessarily correlated with their excited states. Synthetic control of exciton behavior heavily relies on convenient and affordable monitoring tools. For synthetic development of ideal optical and optoelectronic emitters, the key process is decay of band-edge excitons, which renders transient photoluminescence as important monitoring tool. On the basis of extensive synthetic developments in the past 20-30 years, synthetic control of exciton behavior implies surface engineering of quantum dots, including surface cation/anion stoichiometry, organic ligands, inorganic epitaxial shells, etc. For phosphors based on quantum dots doped with transition metal ions, concentration and location of the dopant ions within a nanocrystal lattice are found to be as important as control of the surface states in order to obtain bright dopant emission with monoexponential yet tunable photoluminescence decay dynamics.

  16. Role playing with synthetic cultures: the evasive rules of the game

    NARCIS (Netherlands)

    Hofstede, G.J.

    2005-01-01

    This article sums up ten years of experience with over 1400 participants of simulation games using synthetic cultures. Synthetic cultures are scripts for role players. They are derived from the five dimensions of culture in Hofstede¿s model. Playing the synthetic cultures leads to dynamics that

  17. Cell-free synthetic biology for in vitro prototype engineering.

    Science.gov (United States)

    Moore, Simon J; MacDonald, James T; Freemont, Paul S

    2017-06-15

    Cell-free transcription-translation is an expanding field in synthetic biology as a rapid prototyping platform for blueprinting the design of synthetic biological devices. Exemplar efforts include translation of prototype designs into medical test kits for on-site identification of viruses (Zika and Ebola), while gene circuit cascades can be tested, debugged and re-designed within rapid turnover times. Coupled with mathematical modelling, this discipline lends itself towards the precision engineering of new synthetic life. The next stages of cell-free look set to unlock new microbial hosts that remain slow to engineer and unsuited to rapid iterative design cycles. It is hoped that the development of such systems will provide new tools to aid the transition from cell-free prototype designs to functioning synthetic genetic circuits and engineered natural product pathways in living cells. © 2017 The Author(s).

  18. Slurry growth and gas retention in synthetic Hanford waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

    1992-09-01

    This work seeks to establish chemical and physical processes responsible for the generation and retention of gases within waste from a particular high-level waste tank on the Hanford Site, Tank 101-SY, through the use of synthetic wastes on a laboratory scale. The goal of these activities is to support the development of mitigation/remediation strategies for Tank 101-SY. Laboratory studies of aged synthetic waste have shown that gas generation occurs thermally at a significant level at current tank temperatures. Gas compositions include the same gases produced in actual tank waste, primarily N 2 , N 2 O, and H 2 . Gas stoichiometries have been shown to be greatly influenced by several organic and inorganic constituents within the synthetic waste. Retention of gases in the synthetic waste is in the form of bubble attachment to solid particles

  19. Synchronous long-term oscillations in a synthetic gene circuit.

    Science.gov (United States)

    Potvin-Trottier, Laurent; Lord, Nathan D; Vinnicombe, Glenn; Paulsson, Johan

    2016-10-27

    Synthetically engineered genetic circuits can perform a wide variety of tasks but are generally less accurate than natural systems. Here we revisit the first synthetic genetic oscillator, the repressilator, and modify it using principles from stochastic chemistry in single cells. Specifically, we sought to reduce error propagation and information losses, not by adding control loops, but by simply removing existing features. We show that this modification created highly regular and robust oscillations. Furthermore, some streamlined circuits kept 14 generation periods over a range of growth conditions and kept phase for hundreds of generations in single cells, allowing cells in flasks and colonies to oscillate synchronously without any coupling between them. Our results suggest that even the simplest synthetic genetic networks can achieve a precision that rivals natural systems, and emphasize the importance of noise analyses for circuit design in synthetic biology.

  20. An Ultra-high Resolution Synthetic Precipitation Data for Ungauged Sites

    Science.gov (United States)

    Kim, Hong-Joong; Choi, Kyung-Min; Oh, Jai-Ho

    2018-05-01

    Despite the enormous damage caused by record heavy rainfall, the amount of precipitation in areas without observation points cannot be known precisely. One way to overcome these difficulties is to estimate meteorological data at ungauged sites. In this study, we have used observation data over Seoul city to calculate high-resolution (250-meter resolution) synthetic precipitation over a 10-year (2005-2014) period. Furthermore, three cases are analyzed by evaluating the rainfall intensity and performing statistical analysis over the 10-year period. In the case where the typhoon "Meari" passed to the west coast during 28-30 June 2011, the Pearson correlation coefficient was 0.93 for seven validation points, which implies that the temporal correlation between the observed precipitation and synthetic precipitation was very good. It can be confirmed that the time series of observation and synthetic precipitation in the period almost completely matches the observed rainfall. On June 28-29, 2011, the estimation of 10 to 30 mm h-1 of continuous strong precipitation was correct. In addition, it is shown that the synthetic precipitation closely follows the observed precipitation for all three cases. Statistical analysis of 10 years of data reveals a very high correlation coefficient between synthetic precipitation and observed rainfall (0.86). Thus, synthetic precipitation data show good agreement with the observations. Therefore, the 250-m resolution synthetic precipitation amount calculated in this study is useful as basic data in weather applications, such as urban flood detection.