WorldWideScience

Sample records for synthetic protein tat-rh

  1. Reprogramming cells with synthetic proteins.

    Science.gov (United States)

    Yang, Xiaoxiao; Malik, Vikas; Jauch, Ralf

    2015-01-01

    Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs) has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to "read" genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivocounterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies.

  2. Reprogramming cells with synthetic proteins

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Yang

    2015-06-01

    Full Text Available Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to "read" genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivocounterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies.

  3. Reprogramming cells with synthetic proteins

    Science.gov (United States)

    Yang, Xiaoxiao; Malik, Vikas; Jauch, Ralf

    2015-01-01

    Conversion of one cell type into another cell type by forcibly expressing specific cocktails of transcription factors (TFs) has demonstrated that cell fates are not fixed and that cellular differentiation can be a two-way street with many intersections. These experiments also illustrated the sweeping potential of TFs to “read” genetically hardwired regulatory information even in cells where they are not normally expressed and to access and open up tightly packed chromatin to execute gene expression programs. Cellular reprogramming enables the modeling of diseases in a dish, to test the efficacy and toxicity of drugs in patient-derived cells and ultimately, could enable cell-based therapies to cure degenerative diseases. Yet, producing terminally differentiated cells that fully resemble their in vivo counterparts in sufficient quantities is still an unmet clinical need. While efforts are being made to reprogram cells nongenetically by using drug-like molecules, defined TF cocktails still dominate reprogramming protocols. Therefore, the optimization of TFs by protein engineering has emerged as a strategy to enhance reprogramming to produce functional, stable and safe cells for regenerative biomedicine. Engineering approaches focused on Oct4, MyoD, Sox17, Nanog and Mef2c and range from chimeric TFs with added transactivation domains, designer transcription activator-like effectors to activate endogenous TFs to reprogramming TFs with rationally engineered DNA recognition principles. Possibly, applying the complete toolkit of protein design to cellular reprogramming can help to remove the hurdles that, thus far, impeded the clinical use of cells derived from reprogramming technologies. PMID:25652623

  4. Rewiring protein synthesis: From natural to synthetic amino acids.

    Science.gov (United States)

    Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang

    2017-11-01

    The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    systems. We touch the role of topological confinement as expressed in the reptation model and discuss in some more detail processes limiting the confinement. In the second part we relate to some new developments concerning the measurement of large-scale internal dynamics of proteins by neutron spin echo. Keywords.

  6. Synthetic peptides and ribosomal proteins as substrate for 60S ribosomal protein kinase from yeast cells

    DEFF Research Database (Denmark)

    Grankowski, N; Gasior, E; Issinger, O G

    1993-01-01

    Kinetic studies on the 60S protein kinase were conducted with synthetic peptides and ribosomal proteins as substrate. Peptide RRREEESDDD proved to be the best synthetic substrate for this enzyme. The peptide has a sequence of amino acids which most closely resembles the structure of potential...

  7. Immunoreactivity of synthetic peptides derived from proteins of Cryptococcus gattii.

    Science.gov (United States)

    de Serpa Brandão, Rafael Melo Santos; Soares Martins, Liline Maria; de Andrade, Hélida Monteiro; Faria, Angélica Rosa; Soares Leal, Maria José; da Silva, Adalberto Socorro; Wanke, Bodo; dos Santos Lazéra, Márcia; Vainstein, Marilene Henning; Mendes, Rinaldo Poncio; Moris, Daniela Vanessa; de Souza Cavalcante, Ricardo; do Monte, Semiramis Jamil Hadad

    2014-01-01

    To determine the immunoreactivity of synthetic Cryptococcus-derived peptides. A total of 63 B-cell epitopes from previously identified Cryptococcus gattii immunoreactive proteins were synthesized and evaluated as antigens in ELISAs. The peptides were first evaluated for their ability to react against sera from immunocompetent subjects carrying cryptococcal meningitis. Peptides that yielded high sensitivity and specificity in the first test were then retested with sera from individuals with other fungal pathologies for cross-reactivity determination. Six of 63 synthetic peptides were recognized by antibodies in immunoassays, with a specificity of 100%, sensitivity of 78% and low cross-reactivity. We successfully determined the immunoreactivity of selected synthetic peptides of C. gattii derived proteins.

  8. Biopores/membrane proteins in synthetic polymer membranes.

    Science.gov (United States)

    Garni, Martina; Thamboo, Sagana; Schoenenberger, Cora-Ann; Palivan, Cornelia G

    2017-04-01

    Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016. Published by Elsevier B.V.

  9. Protein engineering techniques gateways to synthetic protein universe

    CERN Document Server

    Poluri, Krishna Mohan

    2017-01-01

    This brief provides a broad overview of protein-engineering research, offering a glimpse of the most common experimental methods. It also presents various computational programs with applications that are widely used in directed evolution, computational and de novo protein design. Further, it sheds light on the advantages and pitfalls of existing methodologies and future perspectives of protein engineering techniques.

  10. A homogeneous fluorometric assay platform based on novel synthetic proteins

    International Nuclear Information System (INIS)

    Vardar-Schara, Goenuel; Krab, Ivo M.; Yi, Guohua; Su, Wei Wen

    2007-01-01

    Novel synthetic recombinant sensor proteins have been created to detect analytes in solution, in a rapid single-step 'mix and read' noncompetitive homogeneous assay process, based on modulating the Foerster resonance energy transfer (FRET) property of the sensor proteins upon binding to their targets. The sensor proteins comprise a protein scaffold that incorporates a specific target-capturing element, sandwiched by genetic fusion between two molecules that form a FRET pair. The utility of the sensor proteins was demonstrated via three examples, for detecting an anti-biotin Fab antibody, a His-tagged recombinant protein, and an anti-FLAG peptide antibody, respectively, all done directly in solution. The diversity of sensor-target interactions that we have demonstrated in this study points to a potentially universal applicability of the biosensing concept. The possibilities for integrating a variety of target-capturing elements with a common sensor scaffold predict a broad range of practical applications

  11. Hepatic protein synthetic activity in vivo after ethanol administration

    International Nuclear Information System (INIS)

    Donohue, T.M. Jr.; Sorrell, M.F.; Tuma, D.J.

    1987-01-01

    Hepatic protein synthetic activity in vivo was measured by the incorporation of [ 3 H]puromycin into elongating nascent polypeptides of rat liver to form peptidyl-[ 3 H]puromycin. Our initial experiments showed that saturating doses of [ 3 H]puromycin were achieved at 3-6 mumol/100 g body weight, and that maximum labeling of nascent polypeptides was obtained 30 min after injection of the labeled precursor. Labeled puromycin was found to be suitable for measuring changes in the status of protein synthesis, since the formation of the peptidyl-[ 3 H]puromycin was decreased in fasted animals and was increased in rats pretreated with L-tryptophan. [ 3 H]Puromycin incorporation into polypeptides was then measured after acute ethanol administration as well as after prolonged consumption of ethanol which was administered as part of a liquid diet for 31 days. Acute alcohol treatment caused no significant change in [ 3 H]puromycin incorporation into liver polypeptides. In rats exposed to chronic ethanol feeding, peptidyl-[3H]puromycin formation, when expressed per mg of protein, was slightly lower compared to pair-fed controls, but was unchanged compared to chow-fed animals. When the data were expressed per mg of DNA or per 100 g body wt, no differences in protein synthetic activity were observed among the three groups. These findings indicate that neither acute nor chronic alcohol administration significantly affects protein synthetic activity in rat liver. They further suggest that accumulation of protein in the liver, usually seen after prolonged ethanol consumption, is apparently not reflected by an alteration of hepatic protein synthesis

  12. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  13. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    Science.gov (United States)

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  14. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments.

    Science.gov (United States)

    Lee, Kyung-Ho; Kim, Dong-Myung

    2013-11-01

    Synthetic biology is built on the synthesis, engineering, and assembly of biological parts. Proteins are the first components considered for the construction of systems with designed biological functions because proteins carry out most of the biological functions and chemical reactions inside cells. Protein synthesis is considered to comprise the most basic levels of the hierarchical structure of synthetic biology. Cell-free protein synthesis has emerged as a powerful technology that can potentially transform the concept of bioprocesses. With the ability to harness the synthetic power of biology without many of the constraints of cell-based systems, cell-free protein synthesis enables the rapid creation of protein molecules from diverse sources of genetic information. Cell-free protein synthesis is virtually free from the intrinsic constraints of cell-based methods and offers greater flexibility in system design and manipulability of biological synthetic machinery. Among its potential applications, cell-free protein synthesis can be combined with various man-made devices for rapid functional analysis of genomic sequences. This review covers recent efforts to integrate cell-free protein synthesis with various reaction devices and analytical platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Modular Synthetic Inverters from Zinc Finger Proteins and Small RNAs.

    Directory of Open Access Journals (Sweden)

    Justin Hsia

    Full Text Available Synthetic zinc finger proteins (ZFPs can be created to target promoter DNA sequences, repressing transcription. The binding of small RNA (sRNA to ZFP mRNA creates an ultrasensitive response to generate higher effective Hill coefficients. Here we combined three "off the shelf" ZFPs and three sRNAs to create new modular inverters in E. coli and quantify their behavior using induction fold. We found a general ordering of the effects of the ZFPs and sRNAs on induction fold that mostly held true when combining these parts. We then attempted to construct a ring oscillator using our new inverters. Our chosen parts performed insufficiently to create oscillations, but we include future directions for improvement upon our work presented here.

  16. Protein recognition using synthetic small-molecular binders toward optical protein sensing in vitro and in live cells.

    Science.gov (United States)

    Kubota, Ryou; Hamachi, Itaru

    2015-07-07

    Chemical sensing of amino acids, peptides, and proteins provides fruitful information to understand their biological functions, as well as to develop the medical and technological applications. To detect amino acids, peptides, and proteins in vitro and in vivo, vast kinds of chemical sensors including small synthetic binders/sensors, genetically-encoded fluorescent proteins and protein-based semisynthetic biosensors have been intensely investigated. This review deals with concepts, strategies, and applications of protein recognition and sensing using small synthetic binders/sensors, which are now actively studied but still in the early stage of investigation. The recognition strategies for peptides and proteins can be divided into three categories: (i) recognition of protein substructures, (ii) protein surface recognition, and (iii) protein sensing through protein-ligand interaction. Here, we overview representative examples of protein recognition and sensing, and discuss biological or diagnostic applications such as potent inhibitors/modulators of protein-protein interactions.

  17. Synthetic

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2010-06-01

    Full Text Available Traditionally materials have been associated with a series of physical properties that can be used as inputs to production and manufacturing. Recently we witnessed an interest in materials considered not only as ‘true matter’, but also as new breeds where geometry, texture, tooling and finish are able to provoke new sensations when they are applied to a substance. These artificial materials can be described as synthetic because they are the outcome of various qualities that are not necessarily true to the original matter, but they are the combination of two or more parts, whether by design or by natural processes. The aim of this paper is to investigate the potential of architectural surfaces to produce effects through the invention of new breeds of artificial matter, using micro-scale details derived from Nature as an inspiration.

  18. mRNA Display Based Selections Using Synthetic Peptide and Natural Protein Libraries

    Science.gov (United States)

    Cotten, Steve W.; Zou, Jianwei; Wang, Rong; Huang, Bao-cheng; Liu, Rihe

    2014-01-01

    mRNA display is a powerful in vitro selection technique that can be applied towards the identification of peptides or proteins with desired properties. The physical conjugation between a protein and its own RNA presents unique challenges in manipulating the displayed proteins in an RNase free environment. This protocol outlines the generation of synthetic peptide and natural proteome libraries as well as the steps required for generation of mRNA-protein fusion libraries, in vitro selection, and regeneration of the selected sequences. The selection procedures for the identification of Ca2+ dependent calmodulin binding proteins from synthetic peptide and natural proteome libraries are presented. PMID:22094812

  19. Synthetic Proteins and Peptides for the Direct Interrogation of α-Synuclein Posttranslational Modifications.

    Science.gov (United States)

    Pratt, Matthew R; Abeywardana, Tharindumala; Marotta, Nicholas P

    2015-06-25

    α-Synuclein is the aggregation-prone protein associated with Parkinson's disease (PD) and related neurodegenerative diseases. Complicating both its biological functions and toxic aggregation are a variety of posttranslational modifications. These modifications have the potential to either positively or negatively affect α-synuclein aggregation, raising the possibility that the enzymes that add or remove these modifications could be therapeutic targets in PD. Synthetic protein chemistry is uniquely positioned to generate site-specifically and homogeneously modified proteins for biochemical study. Here, we review the application of synthetic peptides and proteins towards understanding the effects of α-synuclein posttranslational modifications.

  20. Monoclonal antibodies against a synthetic peptide from human immunodeficiency virus type 1 Nef protein

    DEFF Research Database (Denmark)

    Steinaa, L; Wulff, A M; Saermark, T

    1994-01-01

    Monoclonal antibodies against a synthetic peptide (aa 138-152) from HIV-1 Nef protein were produced and characterized. Three hybridoma lines producing monoclonal antibodies (MAbs) against the synthetic peptide were generated by fusion between P3-X63 Ag8.653 myeloma cells and BALB/c splenocytes from...... mice immunized with the synthetic peptide coupled to keyhole limpet hemocyanin (KLH). The hybridomas were screened and selected by ELISA with the peptide coupled to bovine serum albumin (BSA) immobilized to the polystyrene surface and specificity for the peptide was confirmed by competitive ELISA...... with the peptide free in solution. The reactions of the MAbs with a 5-aa motif (WCYKL) included in the sequence were examined with synthetic peptides and two of the MAbs reacted with the motif. The recognitions of recombinant full-length Nef protein were also tested. One MAb reacted with the protein in both ELISA...

  1. Monoclonal antibodies against a synthetic peptide from human immunodeficiency virus type 1 Nef protein

    DEFF Research Database (Denmark)

    Steinaa, L; Wulff, A M; Saermark, T

    1994-01-01

    Monoclonal antibodies against a synthetic peptide (aa 138-152) from HIV-1 Nef protein were produced and characterized. Three hybridoma lines producing monoclonal antibodies (MAbs) against the synthetic peptide were generated by fusion between P3-X63 Ag8.653 myeloma cells and BALB/c splenocytes from...... mice immunized with the synthetic peptide coupled to keyhole limpet hemocyanin (KLH). The hybridomas were screened and selected by ELISA with the peptide coupled to bovine serum albumin (BSA) immobilized to the polystyrene surface and specificity for the peptide was confirmed by competitive ELISA...

  2. Biocontainment of genetically modified organisms by synthetic protein design

    Science.gov (United States)

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.

  3. Synthetic strategies for efficient conjugation of organometallic complexes with pendant protein reactive markers

    KAUST Repository

    Jantke, Dominik

    2013-11-01

    Site-directed conjugation of metal centers to proteins is fundamental for biological and bioinorganic applications of transition metals. However, methods for the site-selective introduction of metal centers remain scarce. Herein, we present broadly applicable synthetic strategies for the conjugation of bioactive molecules with a range of organometallic complexes. Following three different synthetic strategies, we were able to synthesize a small library of metal conjugated protein markers featuring different types of protein reactive sites (epoxides, phenylphosphonates, fluorosulfonates and fluorophosphonate groups) as well as different late transition metals (iron, ruthenium, rhodium, palladium and platinum). The products were isolated in moderate to excellent yields and high purity. Furthermore, X-ray diffraction of the metalated protein markers corroborates structural integrity of the metal complex and the protein reactive site. © 2013 Elsevier B.V. All rights reserved.

  4. Iron Sulfur Proteins and their Synthetic Analogues: Structure ...

    Indian Academy of Sciences (India)

    The understanding of structures and functions of iron sulfur proteins is an area ofbio-inorganic chemistry which has developed into a subject of great significance over the last two decades. This group of non-heme iron-sulfur (Fe-S) compounds are involved in electron transfer reactions in biological systems and are thus.

  5. Iron Sulfur Proteins and their Synthetic Analogues: Structure ...

    Indian Academy of Sciences (India)

    group of non-heme iron-sulfur (Fe-S) compounds are involved in ... The sulfur ligands are arranged tetrahedrally about the iron atoms. The presence of inorganic sulfur is indicated through the release of. H. 2. S gas when these proteins are treated with a ... analysis of this structure and the tri-iron cluster was corrected as.

  6. Different effects of surfactant proteins B and C - implications for development of synthetic surfactants.

    Science.gov (United States)

    Curstedt, Tore; Johansson, Jan

    2010-06-01

    Treatment of premature newborn rabbits with synthetic surfactants containing a surfactant protein C analogue in a simple phospholipid mixture gives similar tidal volumes as treatment with poractant alfa (Curosurf(R)) but ventilation with a positive end-expiratory pressure (PEEP) is needed for this synthetic surfactant to stabilize the alveoli at end-expiration. The effect on lung gas volumes seems to depend on the structure of the peptide since treatment with a synthetic surfactant containing the 21-residue peptide (LysLeu(4))(4)Lys (KL(4)) gives low lung gas volumes in experiments also performed with PEEP. Surfactant preparations containing both surfactant proteins B and C or their analogues prevent alveolar collapse at end-expiration even if ventilated without PEEP. Treatment of premature newborn rabbits with different natural surfactants indicates that both the lipid composition and the proteins are important in order to stabilize the alveoli at end-expiration. Synthetic surfactants containing two peptides may be able to replace natural surfactants within the near future but more trials need to be performed before any conclusion can be drawn about the ideal composition of this new generation of synthetic surfactants. Copyright 2010 S. Karger AG, Basel.

  7. The use of MALDI mass spectrometry to characterize synthetic protein conjugates

    Science.gov (United States)

    Keough, T.; Lacey, M. P.; Trakshel, G. M.; Asquith, T. N.

    1997-12-01

    MALDI mass spectrometry has been used to study the conjugation of two small molecules to hen egg white lysozyme and human serum albumin. Hapten densities were determined with both proteins. Synthetic peptide mixtures, designed to eliminate the need for subsequent sequencing experiments, were used to assess the potential reactivities of various amino acid side chains in proteins. Selective hydrolysis reactions were also used to differentiate ester and amide conjugates, which are expected to have quite different in vivo stabilities. Finally, MALDI was used to follow the kinetics of protein conjugation reactions, even for reactions having initial rates differing by as much as three orders of magnitude.

  8. Generation and analyses of human synthetic antibody libraries and their application for protein microarrays

    DEFF Research Database (Denmark)

    Säll, Anna; Walle, Maria; Wingren, Christer

    2016-01-01

    in a high-throughput manner. To address this we designed and constructed two human synthetic antibody fragment (scFv) libraries denoted HelL-11 and HelL-13. By the use of phage display technology, in total 466 unique scFv antibodies specific for 114 different antigens were generated. The specificities...... of these antibodies were analyzed in a variety of immunochemical assays and a subset was further evaluated for functionality in protein microarray applications. This high-throughput approach demonstrates the ability to rapidly generate a wealth of reagents not only for proteome research, but potentially also...... for diagnostics and therapeutics. In addition, this work provides a great example on how a synthetic approach can be used to optimize library designs. By having precise control of the diversity introduced into the antigen-binding sites, synthetic libraries offer increased understanding of how different diversity...

  9. Production and characterization of polyclonal antibody against a synthetic peptide from β-actin protein

    Directory of Open Access Journals (Sweden)

    Nazila Amini

    2014-06-01

    Full Text Available Objective(s:Antibodies against actin, as one of the most widely studied structural and multifunctional housekeeping proteins in eukaryotic cells, are used as internal loading controls in western blot analyses. The aim of this study was to produce polyclonal antibody against a synthetic peptide derived from N-terminal region of β-actin protein to be used as a protein loading control in western blot and other assay systems. Materials and Methods: A synthetic peptide derived from β-actin protein was designed and conjugated to Keyhole limpet hemocyanin (KLH (and used to immunize a white New Zealand rabbit. The antibody was purified from serum by affinity chromatography column. The purity of the antibody was determined by SDS-PAGE and its ability to recognize the immunizing peptide was measured by ELISA. The reactivity of the antibody with β-actin protein in a panel of different cell lysates was then evaluated by western blot. In addition, the reactivity of the antibody with the corresponding protein was also evaluated by Immunocytochemistry and Immunohistochemistry in different samples. Results: The antibody could recognize the immunizing peptide in ELISA. It could also recognize            β-actin protein in western blot as well as in immunocytochemistry and immunohistochemistry. Conclusion: Our data suggest that this antibody may be used as an internal control in western blot analyses as well as in other immunological applications such as ELISA,immunocytochemistry and immunohistochemistry.

  10. Production and characterization of polyclonal antibody against a synthetic peptide from β-actin protein.

    Science.gov (United States)

    Amini, Nazila; Vishteh, Mohadeseh Naghi; Zarei, Omid; Hadavi, Reza; Ahmadvand, Negah; Rabbani, Hodjattallah; Jeddi-Tehrani, Mahmood

    2014-06-01

    Antibodies against actin, as one of the most widely studied structural and multifunctional housekeeping proteins in eukaryotic cells, are used as internal loading controls in western blot analyses. The aim of this study was to produce polyclonal antibody against a synthetic peptide derived from N-terminal region of β-actin protein to be used as a protein loading control in western blot and other assay systems. A synthetic peptide derived from β-actin protein was designed and conjugated to Keyhole limpet hemocyanin (KLH) and used to immunize a white New Zealand rabbit. The antibody was purified from serum by affinity chromatography column. The purity of the antibody was determined by SDS-PAGE and its ability to recognize the immunizing peptide was measured by ELISA. The reactivity of the antibody with β-actin protein in a panel of different cell lysates was then evaluated by western blot. In addition, the reactivity of the antibody with the corresponding protein was also evaluated by Immunocytochemistry and Immunohistochemistry in different samples. The antibody could recognize the immunizing peptide in ELISA. It could also recognize β-actin protein in western blot as well as in immunocytochemistry and immunohistochemistry. Our data suggest that this antibody may be used as an internal control in western blot analyses as well as in other immunological applications such as ELISA, immunocytochemistry and immunohistochemistry.

  11. Protein C-Terminal Labeling and Biotinylation Using Synthetic Peptide and Split-Intein

    Science.gov (United States)

    Volkmann, Gerrit; Liu, Xiang-Qin

    2009-01-01

    Background Site-specific protein labeling or modification can facilitate the characterization of proteins with respect to their structure, folding, and interaction with other proteins. However, current methods of site-specific protein labeling are few and with limitations, therefore new methods are needed to satisfy the increasing need and sophistications of protein labeling. Methodology A method of protein C-terminal labeling was developed using a non-canonical split-intein, through an intein-catalyzed trans-splicing reaction between a protein and a small synthetic peptide carrying the desired labeling groups. As demonstrations of this method, three different proteins were efficiently labeled at their C-termini with two different labels (fluorescein and biotin) either in solution or on a solid surface, and a transferrin receptor protein was labeled on the membrane surface of live mammalian cells. Protein biotinylation and immobilization on a streptavidin-coated surface were also achieved in a cell lysate without prior purification of the target protein. Conclusions We have produced a method of site-specific labeling or modification at the C-termini of recombinant proteins. This method compares favorably with previous protein labeling methods and has several unique advantages. It is expected to have many potential applications in protein engineering and research, which include fluorescent labeling for monitoring protein folding, location, and trafficking in cells, and biotinylation for protein immobilization on streptavidin-coated surfaces including protein microchips. The types of chemical labeling may be limited only by the ability of chemical synthesis to produce the small C-intein peptide containing the desired chemical groups. PMID:20027230

  12. Design of Surfactant Protein B Peptide Mimics Based on the Saposin Fold for Synthetic Lung Surfactants.

    Science.gov (United States)

    Walther, Frans J; Gordon, Larry M; Waring, Alan J

    2016-01-01

    Surfactant protein (SP)-B is a 79-residue polypeptide crucial for the biophysical and physiological function of endogenous lung surfactant. SP-B is a member of the Saposin or Saposin-like proteins (SAPLIP) family of proteins that share an overall three-dimensional folding pattern based on secondary structures and disulfide connectivity and exhibit a wide diversity of biological functions. Here we review the synthesis, molecular biophysics and activity of synthetic analogs of Saposin proteins designed to mimic those interactions of the parent proteins with lipids that enhance interfacial activity. Saposin proteins generally interact with target lipids as either monomers or multimers via well-defined amphipathic helices, flexible hinge domains, and insertion sequences. Based on the known 3D-structural motif for the Saposin family, we show how bioengineering techniques may be used to develop minimal peptide constructs that maintain desirable structural properties and activities in biomedical applications. One important application is the molecular design, synthesis and activity of Saposin mimics based on the SP-B structure. Synthetic lung surfactants containing active SP-B analogs may be potentially useful in treating diseases of surfactant deficiency or dysfunction including the neonatal respiratory distress syndrome and acute lung injury/acute respiratory distress syndrome.

  13. Immune response to synthetic peptides of dengue prM protein.

    Science.gov (United States)

    Vázquez, Susana; Guzmán, María Guadalupe; Guillen, Gerardo; Chinea, Glay; Pérez, Ana Beatriz; Pupo, Maritza; Rodriguez, Rosmary; Reyes, Osvaldo; Garay, Hilda Elisa; Delgado, Iselys; García, Gissel; Alvarez, Mayling

    2002-03-15

    The immunological activities of five synthetic peptides of the prM protein of dengue-2 (DEN-2) virus containing B cell epitopes were evaluated in BALB/c mice. Two peptides elicited neutralizing antibodies against all four DEN serotypes. Virus-specific proliferative responses were demonstrated in mice immunized with four of the five peptides, demonstrating the presence of T cell epitopes. Mice immunized with three of the five peptides conjugated with bovine albumin showed statistically significant levels (Pvaccines.

  14. MS/MS of synthetic peptide is not sufficient to confirm new types of protein modifications.

    Science.gov (United States)

    Lee, Sangkyu; Tan, Minjia; Dai, Lunzhi; Kwon, Oh Kwang; Yang, Jeong Soo; Zhao, Yingming; Chen, Yue

    2013-02-01

    Protein post-translational modification (PTM) is one of the major regulatory mechanisms that fine-tune protein functions. Undescribed mass shifts, which may suggest novel types of PTMs, continue to be discovered because of the availabilities of more sensitive mass spectrometry technologies and more powerful sequence alignment algorithms. In this study, the histone extracted from HeLa cells was analyzed using an approach that takes advantages of in vitro propionylation, efficient peptide separation using isoelectric focusing fractionation, and the high sensitivity of the linear ion trap coupled with hybrid FT mass spectrometer. One modified peptide was identified with a new type of protein modification (+42 Da), which was assigned to acetylation of threonine 15 in histone2A. The modified peptide was verified by careful manual evaluation of the tandem mass spectrum and confirmed by high-resolution MS/MS analysis of the corresponding synthetic peptide. However, HPLC coelution and MS/MS/MS of key ions showed that the +42 Da mass shifts at threonine residue did not correspond to acetylation. The key fragment ion, y4, in the MS/MS/MS spectra (indicative of the modification site) differed between the in vivo and synthetic peptide. We showed that the misidentification was originated from sequence homologues and chemical derivitization during sample preparation. This result indicated that a more stringent procedure that includes MS/MS, MS/MS/MS, and HPLC coelution of synthetic peptides is required to identify a new PTM.

  15. Direct and tunable modulation of protein levels in rice and wheat with a synthetic small molecule.

    Science.gov (United States)

    Zhang, Jingbo; Yin, Kangquan; Sun, Juan; Gao, Jinlan; Du, Qiuli; Li, Huali; Qiu, Jin-Long

    2018-02-01

    Direct control of protein level enables rapid and efficient analyses of gene functions in crops. Previously, we developed the RDDK-Shield1 (Shld1) system in the model plant Arabidopsis thaliana for direct modulation of protein stabilization using a synthetic small molecule. However, it was unclear whether this system is applicable to economically important crops. In this study, we show that the RDDK-Shld1 system enables rapid and tunable control of protein levels in rice and wheat. Accumulation of RDDK fusion proteins can be reversibly and spatio-temporally controlled by the synthetic small-molecule Shld1. Moreover, RDDK-Bar and RDDK-Pid3 fusions confer herbicide and rice blast resistance, respectively, in a Shld1-dependent manner. Therefore, the RDDK-Shld1 system provides a reversible and tunable technique for controlling protein functions and conditional expression of transgenes in crops. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  16. Patchwork protein chemistry: a practitioner's treatise on the advances in synthetic peptide stitchery.

    Science.gov (United States)

    Verzele, Dieter; Madder, Annemieke

    2013-06-17

    With the study of peptides and proteins at the heart of many scientific endeavors, the omics era heralded a multitude of opportunities for chemists and biologists alike. Across the interface with life sciences, peptide chemistry plays an indispensable role, and progress made over the past decades now allows proteins to be treated as molecular patchworks stitched together through synthetic tailoring. The continuous elaboration of sophisticated strategies notwithstanding, Merrifield's solid-phase methodology remains a cornerstone of chemical protein design. Although the non-practitioner might misjudge peptide synthesis as trivial, routine, or dull given its long history, we comment here on its many advances, obstacles, and prospects from a practitioner's point of view. While sharing our perspectives through thematic highlights across the literature, this treatise provides an interpretive overview as a guide to novices, and a recap for specialists. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Aging Is Accompanied by a Blunted Muscle Protein Synthetic Response to Protein Ingestion

    OpenAIRE

    Wall, Benjamin Toby; Gorissen, Stefan H.; Pennings, Bart; Koopman, Ren?; Groen, Bart B. L.; Verdijk, Lex B.; van Loon, Luc J. C.

    2015-01-01

    Purpose Progressive loss of skeletal muscle mass with aging (sarcopenia) forms a global health concern. It has been suggested that an impaired capacity to increase muscle protein synthesis rates in response to protein intake is a key contributor to sarcopenia. We assessed whether differences in post-absorptive and/or post-prandial muscle protein synthesis rates exist between large cohorts of healthy young and older men. Procedures We performed a cross-sectional, retrospective study comparing ...

  18. Synthetic affinity ligands as a novel tool to improve protein stability.

    Science.gov (United States)

    Sousa, I T; Ruiu, L; Lowe, C R; Taipa, M A

    2009-01-01

    Cutinase from Fusarium solani pisi is the model-system for a new approach to assess and enhance protein stability based on the use of synthetic triazine-scaffolded affinity ligands as a novel protein-stabilizing tool. The active site of cutinase is excluded from the main surface regions postulated to be involved in early protein's thermal unfolding events. Hence, these regions are suitable targets for binding complementary affinity ligands with a potential stabilizing effect. A random solid-phase combinatorial library of triazine-bisubstituted molecules was screened for binding cutinase by a rapid fluorescence-based method and affinity chromatography. The best binding substituents were combined with those previously selected by screening a rationally designed library. A second-generation solid-phase biased library was designed and synthesized, following a semi-rational methodology. A dual screening of this library enabled the selection of ligands binding cutinase with higher affinity while retaining its functionality. These compounds were utilized for thermostability assessment with adsorbed cutinase at 60 degrees C and pH 8.0. When bound to different types of ligands, the enzyme showed markedly distinct activity retention profiles, with some synthetic affinity ligands displaying a stabilizing effect on cutinase and others a clearly destabilizing effect, when compared with the free enzyme. Copyright (c) 2008 John Wiley & Sons, Ltd.

  19. Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Fabian Machens

    2017-10-01

    Full Text Available Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems.

  20. Application of Minicircle Technology of Self-Reproducing Synthetic Protein Drugs in Preventing Skin Allograft Rejection.

    Science.gov (United States)

    Lim, Sun Woo; Kim, Young Kyun; Park, Narae; Jin, Long; Jin, Jian; Doh, Kyoung Chan; Ju, Ji Hyeon; Yang, Chul Woo

    2015-07-30

    Recently, it has been reported that minicircle vectors could allow the expression of transgenes using the protein synthesis system of the host. Here, we tested a novel strategy to permit the production of synthetic biologics using minicircle technology and evaluated their feasibility as a therapeutic tool in a skin allograft model. We engineered vectors to carry cassette sequences for tocilizumab [anti-soluble interleukin-6 receptor (sIL-6R) antibody] and/or etanercept [tumor necrosis factor receptor 2 (TNFR2)-Fc fusion protein], and then isolated minicircle vectors from the parent vectors. We verified the production of proteins from minicircles and their duration in HEK293T cells and mice. We also evaluated whether these proteins were expressed at levels sufficient to ameliorate skin allograft rejection in mice. Each minicircle transfected into cells was detectable for at least 30 days. In mice, the drugs were mainly expressed in the liver and were detectable for at least 10 days after a single injection. These drugs were also detected in the blood. Treatment of mice with minicircles prolonged skin allograft survival, which was accompanied by a reduction of the number of interferon-γ+ or interleukin-17+ lymphocytes and an induction of forkhead box P3 expression. These findings suggest that blocking of sIL-6R and/or TNF-α using minicircles encoding tocilizumab and/or etanercept was functionally active and relevant for preventing acute allograft rejection. Self-reproducing synthetic protein drugs produced using minicircle technology are potentially powerful tools for preventing acute rejection in transplantation.

  1. Dynamics of Membrane Proteins within Synthetic Polymer Membranes with Large Hydrophobic Mismatch.

    Science.gov (United States)

    Itel, Fabian; Najer, Adrian; Palivan, Cornelia G; Meier, Wolfgang

    2015-06-10

    The functioning of biological membrane proteins (MPs) within synthetic block copolymer membranes is an intriguing phenomenon that is believed to offer great potential for applications in life and medical sciences and engineering. The question why biological MPs are able to function in this completely artificial environment is still unresolved by any experimental data. Here, we have analyzed the lateral diffusion properties of different sized MPs within poly(dimethylsiloxane) (PDMS)-containing amphiphilic block copolymer membranes of membrane thicknesses between 9 and 13 nm, which results in a hydrophobic mismatch between the membrane thickness and the size of the proteins of 3.3-7.1 nm (3.5-5 times). We show that the high flexibility of PDMS, which provides membrane fluidities similar to phospholipid bilayers, is the key-factor for MP incorporation.

  2. Chemical protein synthesis: Inventing synthetic methods to decipher how proteins work.

    Science.gov (United States)

    Kent, Stephen

    2017-09-15

    Total chemical synthesis of proteins has been rendered practical by the chemical ligation principle: chemoselective condensation of unprotected peptide segments equipped with unique, mutually reactive functional groups, enabled by formation of a non-native replacement for the peptide bond. Ligation chemistries are briefly described, including native chemical ligation - thioester-mediated, amide-forming reaction at Xaa-Cys sites - and its extensions. Case studies from the author's own works are used to illustrate the utility and applications of chemical protein synthesis. Selected recent developments in the field are briefly discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Synthetic biology for the directed evolution of protein biocatalysts: navigating sequence space intelligently

    Science.gov (United States)

    Currin, Andrew; Swainston, Neil; Day, Philip J.

    2015-01-01

    The amino acid sequence of a protein affects both its structure and its function. Thus, the ability to modify the sequence, and hence the structure and activity, of individual proteins in a systematic way, opens up many opportunities, both scientifically and (as we focus on here) for exploitation in biocatalysis. Modern methods of synthetic biology, whereby increasingly large sequences of DNA can be synthesised de novo, allow an unprecedented ability to engineer proteins with novel functions. However, the number of possible proteins is far too large to test individually, so we need means for navigating the ‘search space’ of possible protein sequences efficiently and reliably in order to find desirable activities and other properties. Enzymologists distinguish binding (K d) and catalytic (k cat) steps. In a similar way, judicious strategies have blended design (for binding, specificity and active site modelling) with the more empirical methods of classical directed evolution (DE) for improving k cat (where natural evolution rarely seeks the highest values), especially with regard to residues distant from the active site and where the functional linkages underpinning enzyme dynamics are both unknown and hard to predict. Epistasis (where the ‘best’ amino acid at one site depends on that or those at others) is a notable feature of directed evolution. The aim of this review is to highlight some of the approaches that are being developed to allow us to use directed evolution to improve enzyme properties, often dramatically. We note that directed evolution differs in a number of ways from natural evolution, including in particular the available mechanisms and the likely selection pressures. Thus, we stress the opportunities afforded by techniques that enable one to map sequence to (structure and) activity in silico, as an effective means of modelling and exploring protein landscapes. Because known landscapes may be assessed and reasoned about as a whole

  4. Short communication: Muscle protein synthetic response to microparticulated whey protein in middle-aged men.

    Science.gov (United States)

    Mitchell, C J; D'Souza, R F; Fanning, A C; Poppitt, S D; Cameron-Smith, D

    2017-06-01

    Whey protein concentrate (WPC) is a high-quality dairy ingredient that is often included in formulated food products designed to stimulate muscle anabolism. Whey protein concentrate can be affected by UHT processing, and its sensory properties are not compatible with some formulated food products. Microparticulated WPC (mWPC) is a novel ingredient that is resistant to heat treatment and has enhanced sensory properties. When 16 healthy middle-aged men consumed 20 g of either WPC or mWPC, both proteins increased plasma essential AA and leucine concentrations with no detectable difference in curve kinetics. Myofibrillar protein synthesis was increased in both groups for 90 min after ingestion with no difference between groups. Ingestion of mWPC resulted in a muscle anabolic response that was equivalent to that of WPC over the full 210-min measurement period. Formulated products incorporating mWPC or standard WPC would provoke equivalent anabolic responses. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Temporary Conversion of Protein Amino Groups to Azides: A Synthetic Strategy for Glycoconjugate Vaccines.

    Science.gov (United States)

    Lipinski, Tomasz; Bundle, David R

    2015-01-01

    Conjugation of synthetic oligosaccharides and native polysaccharides to proteins is an important tool in glycobiology to create vaccines and antigens to screen lectins, toxins, and antibodies. A novel approach to potentiate and profile the immune response to vaccines involves targeting antigens directly to dendritic cells (DCs), the key cells engaged in the immunization process. Inclusion of a carbohydrate ligand recognized by C-type lectins expressed on their cell surface ensures targeting of vaccines to DCs and improved immunological responses. Here we describe a strategy that permits three sequential orthogonal conjugation reactions to prepare glycoconjugates and apply them to the synthesis of a conjugate vaccine that is targeted for uptake by DCs. The carrier protein is treated with an azo-transfer reagent to convert accessible amino groups to azide and then amide bond formation via reaction with carboxylic acid side chains is used to attach amino tether groups of a ligand to the protein. Azide-alkyne Huisgen cycloaddition conjugation, "click chemistry" is used to attach a second ligand equipped with a propargyl group or an analogous terminal alkyne, and following reduction of protein azide groups back to amine, these amino acid side chains can be subjected to amide formation such as reaction with succinimide esters or homobifunctional coupling reagents such as dialkyl squarate.

  6. A synthetic garden of state of the art natural protein nanoarchitectures dispersed in nanofluids.

    Science.gov (United States)

    Esmaeilzadeh, Pegah; Fakhroueian, Zahra; Jahanshahi, Mohsen; Chamani, Mohammad; Zamanizadeh, Hamid Reza; Rasekh, Behnam

    2011-06-01

    As a significant discovery in the 20th century, carbon nanotubes are attracting particular attention in many unique fields such as electronics, catalysts, hydrogen storage composites, gas sensors, drug delivery, medical diagnostics, therapeutics and nanofluids. In this project, we focus on self-assembled synthetic special natural protein alpha-lactalbumin nanotubes with different (straight, waved, coiled, regularly bent, branched, beaded) shapes, nanospherical particles, nanorods, nanowires, nanopores, polyhedral (hexagonal network, spherical, cubic) nanostructures, nanochannels, nanofibers, nanosheets, nanoleaves, nanowave branched structures, nanobeads, nanoflowers, nanocapsules, novel nano-hybrids consisting of tubes and rods (new core-shell), nanocrystal shapes, apiary or cobweb, branched nanotubes with Y-junctions, nano membrane structures, nano sweep symmetrical shape, nano sponge structures, nano helical homogeneous structures and nano perpendicular and horizontal stable hollow single-walled natural protein nanotubes (NPNTs). These were successfully synthesized by the chemical hydrolysis sol--gel method and partial biochemical enzymatic hydrolysis by cleavage sites (Asp-X and Glu-X) of the milk protein a-lactalbumin by using various organic surfactants, pH controller functions and divalent metallic salt ions as a binding site or ions ligand formation between two bio-based building blocks to form remarkable various new morphologies in appearance of nanoemulsions and clear green nanofluids, for application in the diet nutrition food science and pharmaceutical industry. The characterization by SEM, TEM, XRD and Raman spectroscopy (specific D and G bond in protein nanotubes) confirmed the novelty of these products.

  7. A new strategy to deliver synthetic protein drugs: self-reproducible biologics using minicircles.

    Science.gov (United States)

    Yi, Hyoju; Kim, Youngkyun; Kim, Juryun; Jung, Hyerin; Rim, Yeri Alice; Jung, Seung Min; Park, Sung-Hwan; Ju, Ji Hyeon

    2014-08-05

    Biologics are the most successful drugs used in anticytokine therapy. However, they remain partially unsuccessful because of the elevated cost of their synthesis and purification. Development of novel biologics has also been hampered by the high cost. Biologics are made of protein components; thus, theoretically, they can be produced in vivo. Here we tried to invent a novel strategy to allow the production of synthetic drugs in vivo by the host itself. The recombinant minicircles encoding etanercept or tocilizumab, which are synthesized currently by pharmaceutical companies, were injected intravenously into animal models. Self-reproduced etanercept and tocilizumab were detected in the serum of mice. Moreover, arthritis subsided in mice that were injected with minicircle vectors carrying biologics. Self-reproducible biologics need neither factory facilities for drug production nor clinical processes, such as frequent drug injection. Although this novel strategy is in its very early conceptual stage, it seems to represent a potential alternative method for the delivery of biologics.

  8. Mild and cost-effective green fluorescent protein purification employing small synthetic ligands.

    Science.gov (United States)

    Pina, Ana Sofia; Dias, Ana Margarida G C; Ustok, Fatma Isik; El Khoury, Graziella; Fernandes, Cláudia S M; Branco, Ricardo J F; Lowe, Christopher R; Roque, A Cecília A

    2015-10-30

    The green fluorescent protein (GFP) is a useful indicator in a broad range of applications including cell biology, gene expression and biosensing. However, its full potential is hampered by the lack of a selective, mild and low-cost purification scheme. In order to address this demand, a novel adsorbent was developed as a generic platform for the purification of GFP or GFP fusion proteins, giving GFP a dual function as reporter and purification tag. After screening a solid-phase combinatorial library of small synthetic ligands based on the Ugi-reaction, the lead ligand (A4C7) selectively recovered GFP with 94% yield and 94% purity under mild conditions and directly from Escherichia coli extracts. Adsorbents containing the ligand A4C7 maintained the selectivity to recover other proteins fused to GFP. The performance of A4C7 adsorbents was compared with two commercially available methods (immunoprecipitation and hydrophobic interaction chromatography), confirming the new adsorbent as a low-cost viable alternative for GFP purification. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Multi-step excitation energy transfer engineered in genetic fusions of natural and synthetic light-harvesting proteins.

    Science.gov (United States)

    Mancini, Joshua A; Kodali, Goutham; Jiang, Jianbing; Reddy, Kanumuri Ramesh; Lindsey, Jonathan S; Bryant, Donald A; Dutton, P Leslie; Moser, Christopher C

    2017-02-01

    Synthetic proteins designed and constructed from first principles with minimal reference to the sequence of any natural protein have proven robust and extraordinarily adaptable for engineering a range of functions. Here for the first time we describe the expression and genetic fusion of a natural photosynthetic light-harvesting subunit with a synthetic protein designed for light energy capture and multi-step transfer. We demonstrate excitation energy transfer from the bilin of the CpcA subunit (phycocyanin α subunit) of the cyanobacterial photosynthetic light-harvesting phycobilisome to synthetic four-helix-bundle proteins accommodating sites that specifically bind a variety of selected photoactive tetrapyrroles positioned to enhance energy transfer by relay. The examination of combinations of different bilin, chlorin and bacteriochlorin cofactors has led to identification of the preconditions for directing energy from the bilin light-harvesting antenna into synthetic protein-cofactor constructs that can be customized for light-activated chemistry in the cell. © 2017 The Author(s).

  10. Protein stabilization with a dipeptide-mimic triazine-scaffolded synthetic affinity ligand.

    Science.gov (United States)

    Sousa, I T; Lourenço, N M T; Afonso, C A M; Taipa, M A

    2013-02-01

    Protein stabilization was achieved by a novel approach based on the adsorption and establishment of affinity-like interactions with a biomimetic triazine-scaffolded ligand. A synthetic lead compound (ligand 3'/11, K(a) ≈ 10(4) M(-1)) was selected from a previously screened solid-phase library of affinity ligands for studies of adsorption and stabilization of cutinase from Fusarium solani pisi used as a model system. This ligand, directly synthesized in agarose by a well-established solid-phase synthesis method, was able to strongly bind cutinase and led to impressive half-lives of more than 8 h at 70 °C, and of approximately 34 h at 60 °C for bound protein (a 25- and 57-fold increase as compared with the free enzyme, respectively). The ligand density in the solid matrix was found to be a determinant parameter for cutinase stabilization. It is conceivable that the highly stabilizing effect observed results from the binding of more than one ligand residue to the enzyme, creating specific macromolecular configurations that lock structural mobility thus improving molecular stability. Copyright © 2013 John Wiley & Sons, Ltd.

  11. A synthetic prestin reveals protein domains and molecular operation of outer hair cell piezoelectricity.

    Science.gov (United States)

    Schaechinger, Thorsten J; Gorbunov, Dmitry; Halaszovich, Christian R; Moser, Tobias; Kügler, Sebastian; Fakler, Bernd; Oliver, Dominik

    2011-06-24

    Prestin, a transporter-like protein of the SLC26A family, acts as a piezoelectric transducer that mediates the fast electromotility of outer hair cells required for cochlear amplification and auditory acuity in mammals. Non-mammalian prestin orthologues are anion transporters without piezoelectric activity. Here, we generated synthetic prestin (SynPres), a chimera of mammalian and non-mammalian prestin exhibiting both, piezoelectric properties and anion transport. SynPres delineates two distinct domains in the protein's transmembrane core that are necessary and sufficient for generating electromotility and associated non-linear charge movement (NLC). Functional analysis of SynPres showed that the amplitude of NLC and hence electromotility are determined by the transport of monovalent anions. Thus, prestin-mediated electromotility is a dual-step process: transport of anions by an alternate access cycle, followed by an anion-dependent transition generating electromotility. The findings define structural and functional determinants of prestin's piezoelectric activity and indicate that the electromechanical process evolved from the ancestral transport mechanism.

  12. A Protocol for the Design of Protein and Peptide Nanostructure Self-Assemblies Exploiting Synthetic Amino Acids.

    Science.gov (United States)

    Haspel, Nurit; Zheng, Jie; Aleman, Carlos; Zanuy, David; Nussinov, Ruth

    2017-01-01

    In recent years there has been increasing interest in nanostructure design based on the self-assembly properties of proteins and polymers. Nanodesign requires the ability to predictably manipulate the properties of the self-assembly of autonomous building blocks, which can fold or aggregate into preferred conformational states. The design includes functional synthetic materials and biological macromolecules. Autonomous biological building blocks with available 3D structures provide an extremely rich and useful resource. Structural databases contain large libraries of protein molecules and their building blocks with a range of sizes, shapes, surfaces, and chemical properties. The introduction of engineered synthetic residues or short peptides into these building blocks can greatly expand the available chemical space and enhance the desired properties. Herein, we summarize a protocol for designing nanostructures consisting of self-assembling building blocks, based on our recent works. We focus on the principles of nanostructure design with naturally occurring proteins and synthetic amino acids, as well as hybrid materials made of amyloids and synthetic polymers.

  13. Evaluation of the Hydrolysis Specificity of an Aminopeptidase from Bacillus licheniformis SWJS33 Using Synthetic Peptides and Soybean Protein Isolate.

    Science.gov (United States)

    Lei, Fenfen; Zhao, Qiangzhong; Lin, Lianzhu; Sun, Baoguo; Zhao, Mouming

    2017-01-11

    The substrate specificity of aminopeptidases has often been determined against aminoacyl-p-nitroanilide; thus, its specificity toward synthetic peptides and complex substrates remained unclear. The hydrolysis specificity of an aminopeptidase from Bacillus licheniformis SWJS33 (BLAM) was evaluated using a series of synthetic peptides and soybean protein isolate. The aminopeptidase showed high specificity for dipeptides with Leu, Val, Ala, Gly, and Phe at the N-terminus, and the specificity was significantly affected by the nature of the penultimate residue. In the hydrolysis of soy protein isolate, BLAM preferred peptides with Leu, Glu, Gly, and Ala at the N-terminus by free amino acid analysis and preferred peptides with Leu, Ala, Ser, Trp, and Tyr at the N-terminus by UPLC-MS/MS. The introduction of complex substrates provides a deeper understanding of the aminopeptidase's specificity, which can instruct the application of the enzyme in protein hydrolysis.

  14. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells.

    Science.gov (United States)

    Bacakova, Marketa; Pajorova, Julia; Stranska, Denisa; Hadraba, Daniel; Lopot, Frantisek; Riedel, Tomas; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2017-01-01

    Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide- co -glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.

  15. Novel Protein-Protein Inhibitor Based Approach to Control Plant Ethylene Responses: Synthetic Peptides for Ripening Control

    Directory of Open Access Journals (Sweden)

    Mareike Kessenbrock

    2017-09-01

    Full Text Available Ethylene signaling is decisive for many plant developmental processes. Among these, control of senescence, abscission and fruit ripening are of fundamental relevance for global agriculture. Consequently, detailed knowledge of the signaling network along with the molecular processes of signal perception and transfer are expected to have high impact on future food production and agriculture. Recent advances in ethylene research have demonstrated that signaling of the plant hormone critically depends on the interaction of the ethylene receptor family with the NRAMP-like membrane protein ETHYLENE INSENSITIVE 2 (EIN2 at the ER membrane, phosphorylation-dependent proteolytic processing of ER-localized EIN2 and subsequent translocation of the cleaved EIN2 C-terminal polypeptide (EIN2-CEND to the nucleus. EIN2 nuclear transport, but also interaction with the receptors sensing the ethylene signal, both, depend on a nuclear localization signal (NLS located at the EIN2 C-terminus. Loss of the tight interaction between receptors and EIN2 affects ethylene signaling and impairs plant ethylene responses. Synthetic peptides derived from the NLS sequence interfere with the EIN2–receptor interaction and have utility in controlling plant ethylene responses such as ripening. Here, we report that a synthetic peptide (NOP-1 corresponding to the NLS motif of Arabidopsis EIN2 (aa 1262–1269 efficiently binds to tomato ethylene receptors LeETR4 and NR and delays ripening in the post-harvest phase when applied to the surface of sampled green fruits pre-harvest. In particular, degradation of chlorophylls was delayed by several days, as monitored by optical sensors and confirmed by analytical methods. Similarly, accumulation of β-carotene and lycopene in the fruit pulp after NOP-1 application was delayed, without having impact on the total pigment concentration in the completely ripe fruits. Likewise, the peptide had no negative effects on fruit quality. Our molecular

  16. SNaPe: a versatile method to generate multiplexed protein fusions using synthetic linker peptides for in vitro applications.

    Science.gov (United States)

    Ulrich, Veronika; Cryle, Max J

    2017-01-01

    Understanding the structure and function of protein complexes and multi-domain proteins is highly important in biology, although the in vitro characterization of these systems is often complicated by their size or the transient nature of protein/protein interactions. To assist in the characterization of such protein complexes, we have developed a modular approach to fusion protein generation that relies upon Sortase-mediated and Native chemical ligation using synthetic Peptide linkers (SNaPe) to link two separately expressed proteins. In this approach, we utilize two separate linking steps - sortase-mediated and native chemical ligation - together with a library of peptide linkers to generate libraries of fusion proteins. We have demonstrated the viability of SNaPe to generate libraries from fusion protein constructs taken from the biosynthetic enzymes responsible for late stage aglycone assembly during glycopeptide antibiotic biosynthesis. Crucially, SNaPe was able to generate fusion proteins that are inaccessible via direct expression of the fusion construct itself. This highlights the advantages of SNaPe to not only access fusion proteins that have been previously unavailable for biochemical and structural characterization but also to do so in a manner that enables the linker itself to be controlled as an experimental parameter of fusion protein generation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  17. Application of atomic force microscopy to protein anatomy:. Imaging of supramolecular structures of self-assemblies formed from synthetic peptides

    Science.gov (United States)

    Shibata-Seki, T.; Masai, J.; Ogawa, Y.; Sato, K.; Yanagawa, H.

    This paper reports morphological studies of structures of self-assemblies from synthetic peptide fragments with the use of atomic force microscope (AFM) and transmission electron microscope (TEM). Two systems of synthetic peptides have been examined: one is peptides from barnase (a ribonuclease) and the other is those from tau protein (Alzheimer's disease-related protein). The AFM observation was carried out by using a commercially available AFM operated in the tapping mode in air. The general appearance in shape and size of the peptide assemblies in AFM images was essentially similar to that in TEM images, except that the AFM images provide us with fruitful three-dimensional information about the assemblies. For assemblies from barnase peptides, possible formation processes of the supramolecular structures from the corresponding peptide fragment have been proposed on the basis of the AFM images.

  18. Selection of glutamate-rich protein long synthetic peptides for vaccine development: antigenicity and relationship with clinical protection and immunogenicity

    DEFF Research Database (Denmark)

    Theisen, M; Dodoo, D; Toure-Balde, A

    2001-01-01

    Antibodies against three long synthetic peptides (LSPs) derived from the glutamate-rich protein (GLURP) of Plasmodium falciparum were analyzed in three cohorts from Liberia, Ghana, and Senegal. Two overlapping LSPs, LR67 and LR68, are derived from the relatively conserved N-terminal nonrepeat...... antisera recognized parasite proteins as determined by immunofluorescence and immunoblotting. This indicates that synthetic peptides derived from relatively conserved epitopes of GLURP might serve as useful immunogens for vaccination against P. falciparum malaria....... were confined to the nonrepeat region. When used as immunogens, the LR67 and LR68 peptides elicited strong IgG responses in outbred mice and LR67 also induced antibodies in mice of different H-2 haplotypes, confirming the presence of T-helper-cell epitopes in these constructs. Mouse antipeptide...

  19. Effective sampling range of a synthetic protein-based attractant for Ceratitis capitata (Diptera: Tephritidae).

    Science.gov (United States)

    Epsky, Nancy D; Espinoza, Hernán R; Kendra, Paul E; Abernathy, Robert; Midgarden, David; Heath, Robert R

    2010-10-01

    Studies were conducted in Honduras to determine effective sampling range of a female-targeted protein-based synthetic attractant for the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Multilure traps were baited with ammonium acetate, putrescine, and trimethylamine lures (three-component attractant) and sampled over eight consecutive weeks. Field design consisted of 38 traps (over 0.5 ha) placed in a combination of standard and high-density grids to facilitate geostatistical analysis, and tests were conducted in coffee (Coffea arabica L.),mango (Mangifera indica L.),and orthanique (Citrus sinensis X Citrus reticulata). Effective sampling range, as determined from the range parameter obtained from experimental variograms that fit a spherical model, was approximately 30 m for flies captured in tests in coffee or mango and approximately 40 m for flies captured in orthanique. For comparison, a release-recapture study was conducted in mango using wild (field-collected) mixed sex C. capitata and an array of 20 baited traps spaced 10-50 m from the release point. Contour analysis was used to document spatial distribution of fly recaptures and to estimate effective sampling range, defined by the area that encompassed 90% of the recaptures. With this approach, effective range of the three-component attractant was estimated to be approximately 28 m, similar to results obtained from variogram analysis. Contour maps indicated that wind direction had a strong influence on sampling range, which was approximately 15 m greater upwind compared with downwind from the release point. Geostatistical analysis of field-captured insects in appropriately designed trapping grids may provide a supplement or alternative to release-recapture studies to estimate sampling ranges for semiochemical-based trapping systems.

  20. Definition of linear antigenic regions of the HPV16 L1 capsid protein using synthetic virion-like particles.

    Science.gov (United States)

    Zhou, J; Sun, X Y; Davies, H; Crawford, L; Park, D; Frazer, I H

    1992-08-01

    Mice of three haplotypes (H-2d, H-2b, and H-2d/b) were immunized with synthetic HPV16 virus-like particles (VLPs), produced using a vaccinia virus doubly recombinant for the L1 and L2 proteins of HPV16. The resultant anti-VLP antisera recognized HPV16 capsids by ELISA assay and baculovirus recombinant HPV16 L1 and L2 protein on immunoblot. Overlapping peptides corresponding to the HPV16 L1 amino acid sequence were used to define the immunoreactive regions of the L1 protein. The majority of the L1 peptides were reactive with IgG from the mice immunized with the synthetic HPV16 capsids. A computer algorithm predicted seven B epitopes in HPV16 L1, five of which lay within peptides strongly reactive with the murine antisera. The murine anti-VLP antisera failed to react with the two peptides recognized by anti-HPV16L1 monoclonal antibodies raised by others against recombinant L1 fusion protein. We conclude that the immunoreactive epitopes of HPV16 defined using virus-like particles differ significantly from those defined using recombinant HPV16 L1 fusion proteins, which implies that such fusion proteins may not be the antigens to look for HPV16L1 specific immune responses in HPV-infected patients.

  1. Peripheral blood mononuclear cell responses to heat shock proteins and their derived synthetic peptides in juvenile idiopathic arthritis patients

    Czech Academy of Sciences Publication Activity Database

    Sedláčková, L.; Velek, Jiří; Vavřincová, P.; Hromadníková, I.

    2006-01-01

    Roč. 55, č. 4 (2006), s. 153-159 ISSN 1023-3830 Grant - others:Transeurope(XE) QLK3-2002-01936; Transnet(XE) MRTN-CT-2004-512253 Institutional research plan: CEZ:AV0Z40550506 Keywords : heat shock proteins * proliferative response * juvenile idiopathic arthritis * Hsp-derived synthetic peptides Subject RIV: CC - Organic Chemistry Impact factor: 1.485, year: 2006

  2. [The immunological responses induced by Mycobacterium tuberculosis heat shock protein 16.3 and its synthetic peptide in mice].

    Science.gov (United States)

    Shi, Chang-hong; Zhang, Ting-fen; Zhu, De-sheng; Zhang, Hai; Bai, Bing; Zhao, Yong; Yue, Chen-li; Zhao, Lei; Liu, Jian-li

    2009-08-01

    To evaluate the immune responses and resistance against Mycobacterium tuberculosis (MTB) infection in the mice induced by HSP16.3 of MTB and its synthetic peptide. BALB/c mice were immunized subcutaneously 3 times at 2 week interval at the base of tail. The doses of HSP16.3 protein and synthetic peptide were both 50 microg each time. A single dose of BCG (5 x 10(6) CFU/mouse) was used to immunize the mice. The concentrations of specific antibodies in serum obtained at 0, 2, 4, 6, 8 weeks after the first immunization and the titer of serum obtained at 8th week, were analyzed by enzyme linked immunosorbent assay (ELISA). Four weeks after the final immunization, 8 mice from each group were sacrificed and single-cell suspensions of splenocytes were prepared, some of which were used for lymphocyte proliferation by MTT colorimetry with HSP16.3 stimulation, and the remaining cells were used for IFN-gamma level assay by sandwich ELISA. The remaining mice in each group were challenged intravenously with 10(5) colony forming units (CFU) of MTB H(37)Rv and were sacrificed 4 weeks after infection, and the number of bacteria in the spleens and lungs were determined by plating serial dilutions of homogenized tissue on Middlebrook 7H10 agar. The statistical significance of differences among means was assessed by an LSD-t test. The level of specific antibody to HSP16.3 protein and the peptide increased rapidly in the former 4 weeks and moderately in the later weeks. The average antibody-specific titers of 3 experiment groups (HSP16.3 protein + DDA + MPL, synthetic peptide + DDA + MPL and synthetic peptide + IFA) were higher than the BCG group. The indexes of spleen lymphocyte proliferation (SI) of the 3 experiment groups (3.13 +/- 0.18, 3.21 +/- 0.21 and 2.40 +/- 0.15) were significantly higher than the BCG group (1.67 +/- 0.12) and the saline group (1.04 +/- 0.09) respectively. The SI of HSP16.3 protein + DDA + MPL group (3.13 +/- 0.18) and synthetic peptide + DDA + MPL group (3

  3. Animal derived surfactant extract versus protein free synthetic surfactant for the prevention and treatment of respiratory distress syndrome.

    Science.gov (United States)

    Ardell, Stephanie; Pfister, Robert H; Soll, Roger

    2015-08-24

    A wide variety of surfactant preparations have been developed and tested including synthetic surfactants and surfactants derived from animal sources. Although clinical trials have demonstrated that both synthetic surfactant and animal derived surfactant preparations are effective, comparison in animal models has suggested that there may be greater efficacy of animal derived surfactant products, perhaps due to the protein content of animal derived surfactant. To compare the effect of animal derived surfactant to protein free synthetic surfactant preparations in preterm infants at risk for or having respiratory distress syndrome (RDS). Searches were updated of the Cochrane Central Register of Controlled Trials (CENTRAL) in The Cochrane Library (2014), PubMed, CINAHL and EMBASE (1975 through November 2014). All languages were included. Randomized controlled trials comparing administration of protein free synthetic surfactants to administration of animal derived surfactant extracts in preterm infants at risk for or having respiratory distress syndrome were considered for this review. Data collection and analysis were conducted according to the standards of the Cochrane Neonatal Review Group. Fifteen trials met the inclusion criteria. The meta-analysis showed that the use of animal derived surfactant rather than protein free synthetic surfactant resulted in a significant reduction in the risk of pneumothorax [typical relative risk (RR) 0.65, 95% CI 0.55 to 0.77; typical risk difference (RD) -0.04, 95% CI -0.06 to -0.02; number needed to treat to benefit (NNTB) 25; 11 studies, 5356 infants] and a marginal reduction in the risk of mortality (typical RR 0.89, 95% CI 0.79 to 0.99; typical RD -0.02, 95% CI -0.04 to -0.00; NNTB 50; 13 studies, 5413 infants).Animal derived surfactant was associated with an increase in the risk of necrotizing enterocolitis [typical RR 1.38, 95% CI 1.08 to 1.76; typical RD 0.02, 95% CI 0.01 to 0.04; number needed to treat to harm (NNTH) 50; 8

  4. A novel synthetic medium and expression system for subzero growth and recombinant protein production in Pseudoalteromonas haloplanktis TAC125.

    Science.gov (United States)

    Sannino, F; Giuliani, M; Salvatore, U; Apuzzo, G A; de Pascale, D; Fani, R; Fondi, M; Marino, G; Tutino, M L; Parrilli, E

    2017-01-01

    The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 is a model organism of cold-adapted bacteria. The interest in the study of this psychrophilic bacterium stems from its capability either as a non-conventional system for production of recombinant protein and as a rich source of bioactive compounds. To further explore the biotechnological ability of P. haloplanktis TAC125, we have developed a synthetic medium, containing D-gluconate and L-glutamate (GG), which allows the bacterium to grow even at subzero temperatures. P. haloplanktis TAC125 growing in GG medium at low temperature displays growth kinetic parameters which confirm its spectacular adaptation to cold environment and subzero lifestyle, paving the way to the definition of the underlying molecular strategies. Moreover, in this paper, we report the setup of a finely regulated gene expression system inducible by D-galactose to produce recombinant protein in GG synthetic medium at temperatures as low as -2.5 °C. Thanks to the combination of the novel medium and the new expression system, we obtained for the first time the production of a recombinant protein at subzero temperature, thus providing an innovative strategy for the recombinant production of "difficult" proteins.

  5. Effective sampling range of a synthetic protein-based attractant for Ceratitis capitata (Diptera: Tephritidae)

    Science.gov (United States)

    Studies were conducted in Honduras to determine sampling range for female-targeted food-based synthetic attractants for pest tephritid fruit flies. Field studies were conducted in shaded coffee and adults of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann), were captured. Traps (38 traps ...

  6. Fast and easy protocol for the purification of recombinant S-layer protein for synthetic biology applications

    KAUST Repository

    Norville, Julie E.

    2011-06-17

    A goal of synthetic biology is to make biological systems easier to engineer. One of the aims is to design, with nanometer-scale precision, biomaterials with well-defined properties. The surface-layer protein SbpA forms 2D arrays naturally on the cell surface of Lysinibacillus sphaericus, but also as the purified protein in solution upon the addition of divalent cations. The high propensity of SbpA to form crystalline arrays, which can be simply controlled by divalent cations, and the possibility to genetically alter the protein, make SbpA an attractive molecule for synthetic biology. To be a useful tool, however, it is important that a simple protocol can be used to produce recombinant wild-type and modified SbpA in large quantities and in a biologically active form. The present study addresses this requirement by introducing a mild and non-denaturing purification protocol to produce milligram quantities of recombinant, active SbpA.

  7. Rapid Communication Fast and easy protocol for the purification of recombinant S-layer protein for synthetic biology applications

    Science.gov (United States)

    Norville, Julie E; Kelly, Deborah F; Knight, Thomas F; Belcher, Angela M; Walz, Thomas

    2015-01-01

    A goal of synthetic biology is to make biological systems easier to engineer. One of the aims is to design – with nanometer-scale precision – biomaterials with well-defined properties. The surface layer protein SbpA forms two-dimensional (2D) arrays naturally on the cell surface of Lysinibacillus sphaericus but also as purified protein in solution upon addition of divalent cations. Its high propensity to form crystalline arrays, the simple way by which its crystallization can be controlled by divalent cations and the possibility to genetically alter the protein make SbpA an attractive molecule for synthetic biology. To be a useful tool, however, it is important that a simple protocol can be used to produce recombinant wild-type as well as modified SbpA in large quantities and in a biologically active form. The present study addresses this requirement by introducing a mild and non-denaturing purification protocol to produce milligram quantities of recombinant, active SbpA. PMID:21681963

  8. Anti-Candidal Activity and Functional Mapping of Recombinant and Synthetic Neosartorya fischeri Antifungal Protein 2 (NFAP2

    Directory of Open Access Journals (Sweden)

    Liliána Tóth

    2018-03-01

    Full Text Available The increasing number of life-threatening Candida infections caused by antifungal drug-resistant strains urges the development of new therapeutic strategies. The small, cysteine-rich, and cationic Neosartorya fischeri antifungal protein 2 (NFAP2 effectively inhibits the growth of Candida spp. Limiting factors of its future application, are the low-yield production by the native producer, unavailable information about potential clinical application, and the unsolved relationship between the structure and function. In the present study we adopted a Penicillium chrysogenum-based expression system for bulk production of recombinant NFAP2. Furthermore, solid-phase peptide synthesis and native chemical ligation were applied to produce synthetic NFAP2. The average yield of recombinant and synthetic NFAP2 was 40- and 16-times higher than in the native producer, respectively. Both proteins were correctly processed, folded, and proved to be heat-stable. They showed the same minimal inhibitory concentrations as the native NFAP2 against clinically relevant Candida spp. Minimal inhibitory concentrations were higher in RPMI 1640 mimicking the human inner fluid than in a low ionic strength medium. The recombinant NFAP2 interacted synergistically with fluconazole, the first-line Candida therapeutic agent and significantly decreased its effective in vitro concentrations in RPMI 1640. Functional mapping with synthetic peptide fragments of NFAP2 revealed that not the evolutionary conserved antimicrobial γ-core motif, but the mid-N-terminal part of the protein influences the antifungal activity that does not depend on the primary structure of this region. Preliminary nucleic magnetic resonance measurements signed that the produced recombinant NFAP2 is suitable for further structural investigations.

  9. Efficient Malic Acid Production in Escherichia coli Using a Synthetic Scaffold Protein Complex.

    Science.gov (United States)

    Somasundaram, Sivachandiran; Eom, Gyeong Tae; Hong, Soon Ho

    2018-04-01

    Recently, malic acid has gained attention due to its potential application in food, pharmaceutical, and medical industries. In this study, the synthetic scaffold complex strategy was employed between the two key enzymes pyruvate kinase (PykF) and malic enzyme (SfcA); SH3 ligand was attached to PykF, and the SH3 domain was attached to the C-terminus of ScfA. Synthetic scaffold systems can organize enzymes spatially and temporally to increase the local concentration of intermediates. In a flask culture, the recombinant strain harboring scaffold complex produced a maximum concentration of 5.72 g/L malic acid from 10 g/L glucose. The malic acid production was significantly increased 2.1-fold from the initial culture period. Finally, malic acid production was elevated to 30.2 g in a 5 L bioreactor from recombinant strain XL-1 blue.

  10. Inhibition of adjuvant-induced arthritis by nasal administration of novel synthetic peptides from heat shock protein 65.

    Science.gov (United States)

    Shi, Xiao-Lian; Wang, Li-Ping; Feng, Xuan; Fan, Dan-Dan; Zang, Wei-Jin; Wang, Bing; Zhou, Jun

    2014-07-25

    Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease mediated by T cells. The aim of the present study was to investigate the therapeutic efficacy of synthetic peptides (HP-R1, HP-R2 and HP-R3), derived from the sequence of 65-kD mycobacterial heat shock protein (HSP), in the treatment of RA using adjuvant-induced arthritis (AA) animal model. AA was induced by a single intradermal injection Freund's complete adjuvant in male Lewis rats. At the first clinical sign of disease, rats were administered nasally by micropipette of peptides or phosphate buffer saline (PBS). Disease progression was monitored by measurement of body weight, arthritis score and paw swelling. The changes of histopathology were assessed by hematoxylin eosin staining. The serum levels of tumor necrosis factor (TNF) - alpha and interleukin (IL)-4 were measured by enzyme-linked immunosorbent assay (ELISA). The peptides efficiently inhibited the footpad swelling and arthritic symptoms in AA rats. The synthetic peptides displayed significantly less inflammatory cellular infiltration and synovium hyperplasia than model controls. This effect was associated with a suppression of pro-inflammatory cytokine TNF-alpha production and an increase of anti-inflammatory cytokine IL-4 production after peptides treatment. These results suggest that the synthetic peptides derived from HSP65 induce highly effective protection against AA, which is mediated in part by down-regulation of inflammatory cytokines, and support the view that the synthetic peptides is a potential therapy for RA that may help to diminish both joint inflammation and destruction.

  11. Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs

    International Nuclear Information System (INIS)

    Gandhy, Shruti U; Kim, KyoungHyun; Larsen, Lesley; Rosengren, Rhonda J; Safe, Stephen

    2012-01-01

    Curcumin inhibits growth of several cancer cell lines, and studies in this laboratory in bladder and pancreatic cancer cells show that curcumin downregulates specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and pro-oncogenic Sp-regulated genes. In this study, we investigated the anticancer activity of curcumin and several synthetic cyclohexanone and piperidine analogs in colon cancer cells. The effects of curcumin and synthetic analogs on colon cancer cell proliferation and apoptosis were determined using standardized assays. The changes in Sp proteins and Sp-regulated gene products were analysed by western blots, and real time PCR was used to determine microRNA-27a (miR-27a), miR-20a, miR-17-5p and ZBTB10 and ZBTB4 mRNA expression. The IC 50 (half-maximal) values for growth inhibition (24 hr) of colon cancer cells by curcumin and synthetic cyclohexanone and piperidine analogs of curcumin varied from 10 μM for curcumin to 0.7 μM for the most active synthetic piperidine analog RL197, which was used along with curcumin as model agents in this study. Curcumin and RL197 inhibited RKO and SW480 colon cancer cell growth and induced apoptosis, and this was accompanied by downregulation of specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 and Sp-regulated genes including the epidermal growth factor receptor (EGFR), hepatocyte growth factor receptor (c-MET), survivin, bcl-2, cyclin D1 and NFκB (p65 and p50). Curcumin and RL197 also induced reactive oxygen species (ROS), and cotreatment with the antioxidant glutathione significantly attenuated curcumin- and RL197-induced growth inhibition and downregulation of Sp1, Sp3, Sp4 and Sp-regulated genes. The mechanism of curcumin-/RL197-induced repression of Sp transcription factors was ROS-dependent and due to induction of the Sp repressors ZBTB10 and ZBTB4 and downregulation of microRNAs (miR)-27a, miR-20a and miR-17-5p that regulate these repressors. These results identify a new and highly potent

  12. A Novel Monoclonal Antibody Against a Synthetic Peptide from β-Actin can React with its Corresponding Protein.

    Science.gov (United States)

    Amini, Nazila; Bayat, Ali-Ahmad; Zarei, Omid; Hadavi, Reza; Mahmoudian, Jafar; Mahmoudi, Ahmad R; Darzi, Maryam; Rabbani, Hodjattallah; Jeddi-Tehrani, Mahmood

    2015-01-01

    Actin is one of the most widely studied structural and multifunctional housekeeping proteins in eukaryotic cells with important roles in many cell functions. Antibodies against β-actin and other housekeeping gene-encoded proteins are used as internal loading controls in Western blot analyses. The aim of this study was to produce a monoclonal antibody (mAb) against a synthetic peptide derived from N-terminal region of β-actin and to study its reactivity with different organisms. A synthetic peptide, derived from β-actin, was designed and used to produce a mAb by hybridoma technology. The produced antibody (clone 4E5- A10) was purified by an affinity chromatography column followed by characterization of purified mAb using SDS-PAGE, ELISA and Western blot. Our results showed that 4E5-A10 was an IgM and had desired purity and excellent reactivity with the immunizing peptide with an affinity constant of 2.7x10(8) M(-1)>. It could detect a band of about 45 kDa, corresponding to β-actin, in Western blot. Furthermore, it could react in a more sensitive manner and with a wider range of organisms than a known commercial anti β-actin antibody. Our data suggest that 4E5-A10 can act as a sensitive probe for detection of β-actin as an internal loading control, for a wide range of organisms, in Western blot analyses.

  13. A synthetic cadmium metallothionein gene (PMCd1syn) of Paramecium species: expression, purification and characteristics of metallothionein protein.

    Science.gov (United States)

    Dar, Saira; Shuja, Rukhsana N; Shakoori, Abdul Rauf

    2013-02-01

    Metallothioneins (MTs) are metal binding proteins that are rich in cysteine residues constituting 10-30 % of the total protein, and in which the thiol groups bind to the metal ions. The increasing amount of metal ions in the medium have shown increased production of MTs by different organisms such as bacteria, protozoa and mammals like humans. PMCd1 is the first gene ever discovered in Paramecium, a ciliated protozoan, that could produce this MT in response to cadmium. In this study the PMCd1syn gene has been cloned in pET41a expression vector and expressed in an Escherichia coli BL21-codonplus strain for the first time. Since the gene PMCd1 amplified from Paramecium contained 10 codons, which could act as stop codons during expression in E. coli, this gene of 612 bps was synthesized to substitute these (stop) codons for the Paramecium sp. specific amino acids. For stability of the expressed protein, glutathione-S-transferase gene was fused with PMCd1syn gene and coexpressed. The cells expressing PMCd1syn demonstrated increased accumulation of cadmium. This is the first report of cadmium MT protein expressed from Paramecium species, particularly from synthetic MT gene (PMCd1syn). This fusion protein, the molecular weight of which has been confirmed to be 53.03 kDa with MALDI analysis, is rich in cysteine residues, and has been shown for the first time in this ciliate to bind to and sequester Cd(2+)-ions.

  14. A synthetic peptide derived from the animo acid sequence of canine parvovirus structural proteins which defines a B cell epitope and elicits antiviral antibody in BALB c mice.

    NARCIS (Netherlands)

    G.F. Rimmelzwaan (Guus); J. Carlson; F.G.C.M. Uytdehaag (Fons); A.D.M.E. Osterhaus (Albert)

    1990-01-01

    textabstractSynthetic peptides, recombinant fusion proteins and mouse monoclonal antibodies were used to delineate a B cell epitope of the VP'2 structural protein of canine parvovirus (CPV). Although this epitope is not preferentially recognized in the normal antibody response to CPV, virus-specific

  15. Synthetic study on prion protein fragments using a SPPS and native chemical ligation

    Czech Academy of Sciences Publication Activity Database

    Zawada, Z.; Šebestík, Jaroslav; Bednárová, Lucie; Bouř, Petr; Hlaváček, Jan; Stibor, Ivan

    2009-01-01

    Roč. 37, Suppl. 1 (2009), s. 44-44 ISSN 0939-4451. [International Congress on Amino Acids, Peptides and Proteins /11./. 03.08.2009-07.08.2009, Vienna] Institutional research plan: CEZ:AV0Z40550506 Keywords : prion protein * SPPS * native chemical ligation * fragments Subject RIV: CC - Organic Chemistry

  16. Effects of Dietary Crude Protein Levels and Cysteamine Supplementation on Protein Synthetic and Degradative Signaling in Skeletal Muscle of Finishing Pigs.

    Science.gov (United States)

    Zhou, Ping; Zhang, Lin; Li, Jiaolong; Luo, Yiqiu; Zhang, Bolin; Xing, Shen; Zhu, Yuping; Sun, Hui; Gao, Feng; Zhou, Guanghong

    2015-01-01

    Dietary protein levels and cysteamine (CS) supplementation can affect growth performance and protein metabolism of pigs. However, the influence of dietary protein intake on the growth response of CS-treated pigs is unclear, and the mechanisms involved in protein metabolism remain unknown. Hence, we investigated the interactions between dietary protein levels and CS supplementation and the effects of dietary crude protein levels and CS supplementation on protein synthetic and degradative signaling in skeletal muscle of finishing pigs. One hundred twenty barrows (65.84 ± 0.61 kg) were allocated to a 2 × 2 factorial arrangement with five replicates of six pigs each. The primary variations were dietary crude protein (CP) levels (14% or 10%) and CS supplemental levels (0 or 700 mg/kg). The low-protein (LP) diets (10% CP) were supplemented with enough essential amino acids (EAA) to meet the NRC AA requirements of pigs and maintain the balanced supply of eight EAA including lysine, methionine, threonine, tryptophan, valine, phenylalanine, isoleucine, and leucine. After 41 days, 10 pigs per treatment were slaughtered. We found that LP diets supplemented with EAA resulted in decreased concentrations of plasma somatostatin (SS) (Pprotein levels did not affect other traits. However, CS supplementation increased the average daily gain (Psupplementation also increased the concentrations of plasma insulin-like growth factor 1 (IGF-1) (Psupplementation increased the protein levels for the phosphorylated mammalian target of rapamycin (mTOR), eIF-4E binding protein 1, and ribosomal protein S6 kinase 1 (Pprotein levels and CS supplementation for all traits. In conclusion, dietary protein levels and CS supplementation influenced growth and protein metabolism through independent mechanisms in pigs. In addition, LP diets supplemented with EAA did not affect growth performance and other traits except the concentrations of SS and PUN probably through maintenance of protein synthesis

  17. Rational Design of Adjuvant for Skin Delivery: Conjugation of Synthetic β-Glucan Dectin-1 Agonist to Protein Antigen.

    Science.gov (United States)

    Donadei, Agnese; Gallorini, Simona; Berti, Francesco; O'Hagan, Derek T; Adamo, Roberto; Baudner, Barbara C

    2015-05-04

    The potential benefits of skin delivery of vaccines derive from the presence of a densely connected network of antigen presenting cells in the skin layer, most significantly represented by Langerhans cells and dermal dendritic cells. Targeting these cells by adjuvant conjugated to an antigen should result in enhanced immunogenicity of a vaccine. Since one of the most widely used adjuvants is an insoluble salt of aluminum (aluminum hydroxide) that cannot be used for skin delivery due to reactogenicity, we focused our attention on agonists of receptors present on skin dendritic cells, including the Dectin-1 receptor. β-(1-3)-glucans, which are the most abundant components of the fungal surface, are known to activate the innate immune response by interaction with the C-type lectin-like Dectin-1 receptor. In this work we identified by rational design a well-defined synthetic β-(1-3)-glucan hexasaccharide as a Dectin-1 agonist and chemically conjugated it to the genetically detoxified diphtheria toxin (CRM197) protein antigen, as a means to increase the binding to Dectin-1 receptor and to target to skin dendritic cells. We demonstrated that the in vitro activation of the receptor was significantly impacted by the presentation of the glucan on the protein carrier. In vivo results in mice showed that the conjugation of the synthetic β-(1-3)-glucan when delivered intradermally resulted in higher antibody titers in comparison to intramuscular (i.m.) immunization and was not different from subcutaneous (s.c.) delivery. These findings suggest that weak receptor binders can be turned into more potent agonists by the multivalent presentation of many ligands covalently conjugated to the protein core. Moreover, this approach is particularly valuable to increase the immunogenicity of antigens administered via skin delivery.

  18. Analysis of HIV-1 fusion peptide inhibition by synthetic peptides from E1 protein of GB virus C.

    Science.gov (United States)

    Sánchez-Martín, Maria Jesús; Hristova, Kalina; Pujol, Montserrat; Gómara, Maria J; Haro, Isabel; Alsina, M Asunción; Busquets, M Antònia

    2011-08-01

    The aim of this study was to identify proteins that could inhibit the activity of the peptide sequence representing the N-terminal of the surface protein gp41 of HIV, corresponding to the fusion peptide of the virus (HIV-1 FP). To do this we synthesized and studied 58 peptides corresponding to the envelope protein E1 of the hepatitis G virus (GBV-C). Five of the E1 synthetic peptides: NCCAPEDIGFCLEGGCLV (P7), APEDIGFCLEGGCLVALG (P8), FCLEGGCLVALGCTICTD (P10), QAGLAVRPGKSAAQLVGE (P18) and AQLVGELGSLYGPLSVSA (P22) were capable of inhibiting the leakage of vesicular contents caused by HIV-1 FP. A series of experiments were carried out to determine how these E1 peptides interact with HIV-1 FP. Our studies analyzed the interactions with and without the presence of lipid membranes. Isothermal titration calorimetry revealed that the binding of P7, P18 and P22 peptides to HIV-1 FP is strongly endothermic, and that binding is entropy-driven. Gibbs energy for the process indicates a spontaneous binding between E1 peptides and HIV-1 FP. Moreover, confocal microscopy of Giant Unilamellar Vesicles revealed that the disruption of the lipid bilayer by HIV-1 FP alone was inhibited by the presence of any of the five selected peptides. Our results highlight that these E1 synthetic peptides could be involved in preventing the entry of HIV-1 by binding to the HIV-1 FP. Therefore, the continued study into the interaction between GBV-C peptides and HIV-1 FP could lead to the development of new therapeutic agents for the treatment of AIDS. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Advantages of a synthetic peptide immunogen over a protein immunogen in the development of an anti-pilus vaccine for Pseudomonas aeruginosa.

    Science.gov (United States)

    Kao, Daniel J; Hodges, Robert S

    2009-07-01

    The type IV pilus is an important adhesin in the establishment of infection by Pseudomonas aeruginosa. We have previously reported on a synthetic peptide vaccine targeting the receptor-binding domain of the main structural subunit of the pilus, PilA. The receptor-binding domain is a 14-residue disulfide loop at the C-terminal end of the pilin protein. The objective of this study was to compare the immunogenicity of a peptide-conjugate to a protein subunit immunogen to determine which was superior for use in an anti-pilus vaccine. BALB/c mice were immunized with the native PAK strain pilin protein and a synthetic peptide of the receptor-binding domain conjugated to keyhole limpet haemocyanin. A novel pilin protein with a scrambled receptor-binding domain was used to characterize receptor-binding domain-specific antibodies. The titres against the native pilin of the animals immunized with the synthetic peptide-conjugate were higher than the titres of animals immunized with the pilin protein. In addition, the affinities of anti-peptide sera for the intact pilin receptor-binding domain were significantly higher than affinities of anti-pilin protein sera. These results have significant implications for vaccine design and show that there are significant advantages in using a synthetic peptide-conjugate over a subunit pilin protein for an anti-pilus vaccine.

  20. Synthetic biology approaches for protein production optimization in bacterial cell factories

    DEFF Research Database (Denmark)

    Rennig, Maja; Andersen, Mikael Rørdam

    such sustainable alternative if converted into so-called microbial cell factories. Instead of crude oil, cell factories use renewable resources or waste products as source material. The challenge is, however, that microbial production needs to be economically feasible to compete with the classical chemical...... devices and their fusion to antibiotic selection markers enables subsequent selection of high-expressing constructs. The approach is a simple and inexpensive alternative to advanced screening techniques. In addition, a second synthetic biology approach provides the means for fast and efficient plasmid......Society’s strong dependence on fossil fuels and petroleum-based products leads not only to a rapid decline of natural oil reserves but contributes massively to global warming and environmental damage. This consequently urges society to look into more sustainable alternatives. Microorganisms present...

  1. Antioxidant activity and protective role on protein glycation of synthetic aminocoumarins

    Directory of Open Access Journals (Sweden)

    Akram Aminjafari

    2016-11-01

    Conclusions: By the analogues, in vitro ascertained AO and AG properties of 4-ACD may be recognized as rationale for their protective role against oxidative changes of proteins, thereby precluding diabetic complications in humans.

  2. Measurement of Hepatic Protein Fractional Synthetic Rate with Stable Isotope Labeling Technique in Thapsigargin Stressed HepG2 Cells

    Science.gov (United States)

    Song, Juquan; Zhang, Xiao-jun; Boehning, Darren; Brooks, Natasha C.; Herndon, David N.; Jeschke, Marc G.

    2012-01-01

    Severe burn-induced liver damage and dysfunction is associated with endoplasmic reticulum (ER) stress. ER stress has been shown to regulate global protein synthesis. In the current study, we induced ER stress in vitro and estimated the effect of ER stress on hepatic protein synthesis. The aim was two-fold: (1) to establish an in vitro model to isotopically measure hepatic protein synthesis and (2) to evaluate protein fractional synthetic rate (FSR) in response to ER stress. Human hepatocellular carcinoma cells (HepG2) were cultured in medium supplemented with stable isotopes 1,2-13C2-glycine and L-[ring-13C6]phenylalanine. ER stress was induced by exposing the cells to 100 nM of thapsigargin (TG). Cell content was collected from day 0 to 14. Alterations in cytosolic calcium were measured by calcium imaging and ER stress markers were confirmed by Western blotting. The precursor and product enrichments were detected by GC-MS analysis for FSR calculation. We found that the hepatic protein FSR were 0.97±0.02 and 0.99±0.05%/hr calculated from 1,2-13C2-glycine and L-[ring-13C6]phenylalanine, respectively. TG depleted ER calcium stores and induced ER stress by upregulating p-IRE-1 and Bip. FSR dramatically decreased to 0.68±0.03 and 0.60±0.06%/hr in the TG treatment group (pisotope tracer incorporation technique is a useful method for studying the effects of ER stress on hepatic protein synthesis. PMID:22298954

  3. Protein synthetic requirements for caffeine amelioration of radiation-induced G/sub 2/-arrest

    International Nuclear Information System (INIS)

    Rowley, R.; Colkitt, D.

    1984-01-01

    Irradiated cells are arrested in G/sub 2/ (transition point [TP] = 32 min before cell selection in mitosis). Irradiated cells do not recover from G/sub 2/ arrest in the presence of cycloheximide (CHM) indicating dependence of recovery on protein synthesis. Irradiated cells in the presence of caffeine progress to mitosis without arrest. The authors investigate whether irradiated cells in the presence of caffeine require protein synthesis to progress to mitosis. Mitotic cell selection was used to monitor the progression of irradiated CHO cells (150 rad) during exposure to 5 mM caffeine and/or 50 μg/ml CHM. Protein synthesis inhibition was confirmed using /sup 3/H-leucine incorporation. Cells exposed to CHM alone are arrested in G/sub 2/ (TP=49 min), thus cells beyond this point have synthesized all proteins necessary for entry into mitosis. In the presence of caffeine, unirradiated cells exposed to CHM are not arrested at all in G/sub 2/, instead arrest occurs near the S/G/sub 2/ boundary (TP=95 min) indicating that caffeine alleviates the dependence of G/sub 2/ cell progression on protein synthesis. However, irradiated cells exposed to both caffeine and CHM are only able to progress to mitosis if beyond the CHM-TP. Irradiated cells in the presence of caffeine thus behave as untreated cells and require protein synthesis for progression to mitosis when prior to the CHM-TP

  4. Engineering Synthetic Proteins to Generate Ca2+Signals in Mammalian Cells.

    Science.gov (United States)

    Qudrat, Anam; Truong, Kevin

    2017-03-17

    The versatility of Ca 2+ signals allows it to regulate diverse cellular processes such as migration, apoptosis, motility and exocytosis. In some receptors (e.g., VEGFR2), Ca 2+ signals are generated upon binding their ligand(s) (e.g., VEGF-A). Here, we employed a design strategy to engineer proteins that generate a Ca 2+ signal upon binding various extracellular stimuli by creating fusions of protein domains that oligomerize to the transmembrane domain and the cytoplasmic tail of the VEGFR2. To test the strategy, we created chimeric proteins that generate Ca 2+ signals upon stimulation with various extracellular stimuli (e.g., rapamycin, EDTA or extracellular free Ca 2+ ). By coupling these chimeric proteins that generate Ca 2+ signals with proteins that respond to Ca 2+ signals, we rewired, for example, dynamic cellular blebbing to increases in extracellular free Ca 2+ . Thus, using this design strategy, it is possible to engineer proteins to generate a Ca 2+ signal to rewire a wide range of extracellular stimuli to a wide range of Ca 2+ -activated processes.

  5. Modular design of synthetic protein mimics. Characterization of the helical conformation of a 13-residue peptide in crystals

    International Nuclear Information System (INIS)

    Karle, I.L.; Flippen-Anderson, J.L.; Uma, K.; Balaram, P.

    1989-01-01

    The incorporation of α-aminoisobutyryl (Aib) residues into peptide sequences facilitates helical folding. Aib-containing sequences have been chosen for the design of rigid helical segments in a modular approach to the construction of a synthetic protein mimic. The helical conformation of the synthetic peptide Boc-Aib-(Val-Ala-Leu-Aib) 3 -OMe in crystals is established by X-ray diffraction. The 13-residue apolar peptide adopts a helical form in the crystal with seven α-type hydrogen bonds in the middle and 3 10 -type hydrogen bonds at either end. The helices stack in columns, zigzag rather than linear, by means of direct NH hor-ellipsis OC head to tail hydrogen bonds. Leucyl side chains are extended on one side of the helix and valyl side chains on the other side. Water molecules form hydrogen bonds with several backbone carbonyl oxygens that also participate in α-helix hydrogen bonds. There is no apparent distortion of the helix caused by hydration

  6. Synthetic Peptides as cGMP-Independent Activators of cGMP-Dependent Protein Kinase Iα.

    Science.gov (United States)

    Moon, Thomas M; Tykocki, Nathan R; Sheehe, Jessica L; Osborne, Brent W; Tegge, Werner; Brayden, Joseph E; Dostmann, Wolfgang R

    2015-12-17

    PKG is a multifaceted signaling molecule and potential pharmaceutical target due to its role in smooth muscle function. A helix identified in the structure of the regulatory domain of PKG Iα suggests a novel architecture of the holoenzyme. In this study, a set of synthetic peptides (S-tides), derived from this helix, was found to bind to and activate PKG Iα in a cyclic guanosine monophosphate (cGMP)-independent manner. The most potent S-tide derivative (S1.5) increased the open probability of the potassium channel KCa1.1 to levels equivalent to saturating cGMP. Introduction of S1.5 to smooth muscle cells in isolated, endothelium-denuded cerebral arteries through a modified reversible permeabilization procedure inhibited myogenic constriction. In contrast, in endothelium-intact vessels S1.5 had no effect on myogenic tone. This suggests that PKG Iα activation by S1.5 in vascular smooth muscle would be sufficient to inhibit augmented arterial contractility that frequently occurs following endothelial damage associated with cardiovascular disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Novel synthetic approach to the prion protein: Kinetic study optimization of a native chemical ligation

    Czech Academy of Sciences Publication Activity Database

    Zawada, Zbigniew; Šebestík, Jaroslav; Bouř, Petr; Hlaváček, Jan; Stibor, Ivan

    2008-01-01

    Roč. 14, č. 8 (2008), s. 76-77 ISSN 1075-2617. [European Peptide Symposium /30./. 31.08.2008-05.09.2008, Helsinki] R&D Projects: GA ČR GA203/07/1517 Institutional research plan: CEZ:AV0Z40550506 Keywords : prion protein * neurodegenerative diseases * chemical synthesis * ligation conditions Subject RIV: CC - Organic Chemistry

  8. CAPILLARY ZONE ELECTROPHORESIS IONSPRAY MASS-SPECTROMETRY OF A SYNTHETIC DRUG PROTEIN CONJUGATE MIXTURE

    NARCIS (Netherlands)

    KOSTIAINEN, R; FRANSSEN, EJF; BRUINS, AP

    1993-01-01

    Low-molecular-mass proteins, such as lysozyme, may be suitable carriers to target drugs to the kidney. Naproxen, an anti-inflammatory drug, has been conjugated with lysozyme via a covalent amide bond formed between the carboxylic acid function of naproxen and the amino group of one of the lysines in

  9. TARSyn: Tunable Antibiotic Resistance Devices Enabling Bacterial Synthetic Evolution and Protein Production

    DEFF Research Database (Denmark)

    Rennig, Maja; Martinez, Virginia; Mirzadeh, Kiavash

    2018-01-01

    and allows expression levels in large clone libraries to be probed using a simple cell survival assay on the respective antibiotic. The power of the approach is demonstrated by substantially increasing production of two commercially interesting proteins, a Nanobody and an Affibody. The method is a simple...

  10. A synthetic Protein G adsorbent based on the multi-component Ugi reaction for the purification of mammalian immunoglobulins.

    Science.gov (United States)

    Qian, Jianing; El Khoury, Graziella; Issa, Hamzah; Al-Qaoud, Khaled; Shihab, Penelope; Lowe, Christopher R

    2012-06-01

    Numerous efforts have been devoted to develop synthetic affinity ligands mimicking natural immunoglobulin-binding proteins, such as Proteins A and L, in order to overcome intrinsic drawbacks involving their high cost and acidic pH elution. However, few reports have focused on a Protein G mimic. This work describes the use of the solid phase multi-component Ugi reaction to generate a low cost, rationally designed, affinity ligand to mimic Protein G for the purification of mammalian immunoglobulins, including the heavy-chain only camelid IgGs, with effective elution at neutral pH. An aldehyde-functionalised Sepharose™ resin constituted one component (aldehyde) of the four-component Ugi reaction, whilst the other three components (a primary or secondary amine, a carboxylic acid and an isonitrile) were varied to generate a tri-substituted Ugi scaffold, with a wide range of functionality, suitable for mimicking peptides for immunoglobulin purification. Ligand A2C11I1 was designed to mimic Asn35 and Trp43 of Protein G (PDB: 1FCC) and in silico docking into the Fc domain showed a key binding interface closely resembling native Protein G. This candidate ligand demonstrated affinity towards IgGs derived from human, cow, goat, mouse, sheep, pig, rabbit and rat serum, chicken IgY and recombinant camelid Fc domain, out of which cow and sheep IgG demonstrated 100% binding under the conditions selected. Preparative chromatography of IgG from human serum under a standardised buffer regime eluted IgG of ∼65% purity, compared to ∼62% with Protein G. This adsorbent achieved highest elution of IgG at neutral pH (0.1M sodium phosphate pH 7.0, 30%, v/v, ethylene glycol), an advantage for purifying antibodies sensitive to extremes of pH. The ligand demonstrated a static binding capacity of 24.6 mg Ig G ml⁻¹ resin and a dissociation constant (K(d)) of 4.78 × 10⁻⁶ M. The solid phase Ugi scaffold provides a strategy to develop pseudo-biospecific ligands to purify

  11. Humoral and cellular immune responses to synthetic peptides of the Leishmania donovani kinetoplastid membrane protein-11

    DEFF Research Database (Denmark)

    Jensen, A T; Gasim, S; Ismail, A

    1998-01-01

    Native kinetoplastid membrane protein-11 (KMP-11), purified from crude extracts of Leishmania donovani parasites, activates T cells from individuals who have recovered from visceral leishmaniasis. In this work we used three 38-mer peptides spanning the amino acid sequence of the L. donovani KMP-11...... as solid-phase ligands in enzyme-linked immunosorbent assays (ELISAs) and as stimulating antigens in lymphoproliferative assays in order to evaluate humoral and cellular immune responses to well-defined sequences of the protein. Antibody reactivity against the three peptides was measured in plasma from 63......-11 peptides was detected in plasma from Sudanese patients suffering from Leishmania major infections and in plasma from Sudanese and Danish patients infected with Plasmodium falciparum. In lymphoproliferative assays, 10 of 17 PBMC isolates from donors previously infected with L. donovani showed...

  12. Resolving Electronic Transitions in Synthetic Fluorescent Protein Chromophores by Magnetic Circular Dichroism

    Czech Academy of Sciences Publication Activity Database

    Štěpánek, P.; Cowie, T. Y.; Šafařík, Martin; Šebestík, Jaroslav; Pohl, Radek; Bouř, Petr

    2016-01-01

    Roč. 17, č. 15 (2016), s. 2348-2354 ISSN 1439-4235 R&D Projects: GA ČR GA13-03978S; GA ČR(CZ) GA16-05935S Institutional support: RVO:61388963 Keywords : density functional calculations * fluorescence protein chromophores * magnetic circular dichroism * organic synthesis * spectral simulations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.075, year: 2016

  13. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field?

    Science.gov (United States)

    Bouyer, Eléonore; Mekhloufi, Ghozlene; Rosilio, Véronique; Grossiord, Jean-Louis; Agnely, Florence

    2012-10-15

    Emulsions are widely used in pharmaceutics for the encapsulation, solubilization, entrapment, and controlled delivery of active ingredients. In order to answer the increasing demand for clean label excipients, natural polymers can replace the potentially irritative synthetic surfactants used in emulsion formulation. Indeed, biopolymers are currently used in the food industry to stabilize emulsions, and they appear as promising candidates in the pharmaceutical field too. All proteins and some polysaccharides are able to adsorb at a globule surface, thus decreasing the interfacial tension and enhancing the interfacial elasticity. However, most polysaccharides stabilize emulsions simply by increasing the viscosity of the continuous phase. Proteins and polysaccharides may also be associated either through covalent bonding or electrostatic interactions. The combination of the properties of these biopolymers under appropriate conditions leads to increased emulsion stability. Alternative layers of oppositely charged biopolymers can also be formed around the globules to obtain multi-layered "membranes". These layers can provide electrostatic and steric stabilization thus improving thermal stability and resistance to external treatment. The novel biopolymer-stabilized emulsions have a great potential in the pharmaceutical field for encapsulation, controlled digestion, and targeted release although several challenging issues such as storage and bacteriological concerns still need to be addressed. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. SANS investigation of the Self-organization behavior in Synthetic Resilin Gels: A Perfect Rubber-like protein

    International Nuclear Information System (INIS)

    Dutta, N.K.; Tran, N.D.; Roy Choudhury, N.; Hill, A.J.; Elvin, C.; Knott, Robert

    2005-01-01

    Full text: Elastic proteins are observed in a wide range of biological systems, from plants to invertebrates to humans, where they have evolved to fulfill precise biological function. The elasticity of resilins is exploited by animals in locomotion, through storing energy, especially in jumping and flight. Resilins are composed of naturally occurring protein polymers in which biological control of the polypeptide sequence made a material with mechanical and resilience characteristics superior to any synthetic and non-peptide natural polymer. We have successfully cloned, expressed and in vitro crosslinked insect pro-resilin to prepare resilin like polypeptide (Jaano-Resilin) with unusual viscoelastic characteristics with resilience characteristics more than 95% in preferred swollen gel state. The molecular basis of the unusual resilience characteristics of the resilin-gel is unknown but of significant scientific interest. In this research investigation Small angle neutron scattering (SANS) has be employed to explore the self-organisation behaviour of crosslinked resilin gel in equilibrium-swollen condition over a wide range of temperature (5 to 80 degrees C). The effect of drying and re-swelling on the organisational behaviour has been established. We also evaluate the viscoelastic characteristic of this resilin elastomer gels over a wide range of experimental conditions. The correlation between self-organisation and unique resilience behaviour will also be discussed. (authors)

  15. Mycobacterium tuberculosis copper-regulated protein SocB is an intrinsically disordered protein that folds upon interaction with a synthetic phospholipid bilayer.

    Science.gov (United States)

    Nowicka, Urszula; Hoffman, Morgan; Randles, Leah; Shi, Xiaoshan; Khavrutskii, Lyuba; Stefanisko, Karen; Tarasova, Nadya I; Darwin, K Heran; Walters, Kylie J

    2016-02-01

    Multiple genes in Mycobacterium tuberculosis (Mtb) are regulated by copper including socAB (small orf induced by copper A and B), which is induced by copper and repressed by RicR (regulated in copper repressor). socA and socB encode hypothetical proteins of 61 and 54 amino acids, respectively. Here, we use biophysical and computational methods to evaluate the SocB structure. We find that SocB lacks evidence for secondary structure, with no thermal cooperative unfolding event, according to circular dichroism measurements. 2D NMR spectra similarly exhibit hallmarks of a disordered structural state, which is also supported by analyzing SocB diffusion. Altogether, these findings suggest that by itself SocB is intrinsically disordered. Interestingly, SocB interacts with a synthetic phospholipid bilayer and becomes helical, which suggests that it may be membrane-associated. © 2015 Wiley Periodicals, Inc.

  16. Effects of Synthetic Neural Adhesion Molecule Mimetic Peptides and Related Proteins on the Cardiomyogenic Differentiation of Mouse Embryonic Stem Cells

    Directory of Open Access Journals (Sweden)

    Ruodan Xu

    2015-04-01

    Full Text Available Background/Aims: Pluripotent stem cells differentiating into cardiomyocyte-like cells in an appropriate cellular environment have attracted significant attention, given the potential use of such cells for regenerative medicine. However, the precise mechanisms of lineage specification of pluripotent stem cells are still largely to be explored. Identifying the role of various small synthetic peptides involved in cardiomyogenesis may provide new insights into pathways promoting cardiomyogenesis. Methods: In the present study, using a transgenic murine embryonic stem (ES cell lineage expressing enhanced green fluorescent protein (EGFP under the control of α-myosin heavy chain (α-MHC promoter (pαMHC-EGFP, we investigated the cardiomyogenic effects of 7 synthetic peptides (Betrofin3, FGLs, FGLL, hNgf_C2, EnkaminE, Plannexin and C3 on cardiac differentiation. The expression of several cardiac-specific markers was determined by RT-PCR whereas the structural and functional properties of derived cardiomyocytes were examined by immunofluorescence and electrophysiology, respectively. Results: The results revealed that Betrofin3, an agonist of brain derived neurotrophic factor (BDNF peptide exerted the most striking pro-cardiomyogenic effect on ES cells. We found that BDNF receptor, TrkB expression was up-regulated during differentiation. Treatment of differentiating cells with Betrofin3 between days 3 and 5 enhanced the expression of cardiac-specific markers and improved cardiomyocyte differentiation and functionality as revealed by genes regulation, flow cytometry and patch clamp analysis. Thus Betrofin3 may exert its cardiomyogenic effects on ES cells via TrkB receptor. Conclusion: Taken together, the results suggest that Betrofin3 modulates BDNF signaling with positive cardiomyogenic effect in stage and dose-dependent manner providing an effective strategy to increase ES cell-based generation of cardiomyocytes and offer a novel therapeutic approach to

  17. Lipolysis of natural long chain and synthetic medium chain galactolipids by pancreatic lipase-related protein 2.

    Science.gov (United States)

    Amara, Sawsan; Barouh, Nathalie; Lecomte, Jérôme; Lafont, Dominique; Robert, Sylvie; Villeneuve, Pierre; De Caro, Alain; Carrière, Frédéric

    2010-04-01

    Monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) are the most abundant lipids in nature, mainly as important components of plant leaves and chloroplast membranes. Pancreatic lipase-related protein 2 (PLRP2) was previously found to express galactolipase activity, and it is assumed to be the main enzyme involved in the digestion of these common vegetable lipids in the gastrointestinal tract. Most of the previous in vitro studies were however performed with medium chain synthetic galactolipids as substrates. It was shown here that recombinant guinea pig (Cavia porcellus) as well as human PLRP2 hydrolyzed at high rates natural DGDG and MGDG extracted from spinach leaves. Their specific activities were estimated by combining the pH-stat technique, thin layer chromatography coupled to scanning densitometry and gas chromatography. The optimum assay conditions for hydrolysis of these natural long chain galactolipids were investigated and the optimum bile salt to substrate ratio was found to be different from that established with synthetic medium chains MGDG and DGDG. Nevertheless the length of acyl chains and the nature of the galactosyl polar head of the galactolipid did not have major effects on the specific activities of PLRP2, which were found to be very high on both medium chain [1786+/-100 to 5420+/-85U/mg] and long chain [1756+/-208 to 4167+/-167U/mg] galactolipids. Fatty acid composition analysis of natural MGDG, DGDG and their lipolysis products revealed that PLRP2 only hydrolyzed one ester bond at the sn-1 position of galactolipids. PLRP2 might be used to produce lipid and free fatty acid fractions enriched in either 16:3 n-3 or 18:3 n-3 fatty acids, both found at high levels in galactolipids. 2010 Elsevier B.V. All rights reserved.

  18. Synthetic antibodies and peptides recognizing progressive multifocal leukoencephalopathy-specific point mutations in polyomavirus JC capsid viral protein 1.

    Science.gov (United States)

    Chen, Gang; Gorelik, Leonid; Simon, Kenneth J; Pavlenco, Alevtina; Cheung, Anne; Brickelmaier, Margot; Chen, Ling Ling; Jin, Ping; Weinreb, Paul H; Sidhu, Sachdev S

    2015-01-01

    Polyomavirus JC (JCV) is the causative agent of progressive multifocal leukoencephalopathy (PML), a rare and frequently fatal brain disease that afflicts a small fraction of the immune-compromised population, including those affected by AIDS and transplantation recipients on immunosuppressive drug therapy. Currently there is no specific therapy for PML. The major capsid viral protein 1 (VP1) involved in binding to sialic acid cell receptors is believed to be a key player in pathogenesis. PML-specific mutations in JCV VP1 sequences present at the binding pocket of sialic acid cell receptors, such as L55F and S269F, abolish sialic acid recognition and might favor PML onset. Early diagnosis of these PML-specific mutations may help identify patients at high risk of PML, thus reducing the risks associated with immunosuppressive therapy. As a first step in the development of such early diagnostic tools, we report identification and characterization of affinity reagents that specifically recognize PML-specific mutations in VP1 variants using phage display technology. We first identified 2 peptides targeting wild type VP1 with moderate specificity. Fine-tuning via selection of biased libraries designed based on 2 parental peptides yielded peptides with different, yet still moderate, bindinspecificities. In contrast, we had great success in identifying synthetic antibodies that recognize one of the PML-specific mutations (L55F) with high specificity from the phage-displayed libraries. These peptides and synthetic antibodies represent potential candidates for developing tailored immune-based assays for PML risk stratification in addition to complementing affinity reagents currently available for the study of PML and JCV.

  19. Effects of synthetic neural adhesion molecule mimetic peptides and related proteins on the cardiomyogenic differentiation of mouse embryonic stem cells.

    Science.gov (United States)

    Xu, Ruodan; Srinivasan, Sureshkumar Perumal; Sureshkumar, Poornima; Nembo, Erastus Nembu; Schäfer, Christoph; Semmler, Judith; Matzkies, Matthias; Albrechtsen, Morten; Hescheler, Jürgen; Nguemo, Filomain

    2015-01-01

    Pluripotent stem cells differentiating into cardiomyocyte-like cells in an appropriate cellular environment have attracted significant attention, given the potential use of such cells for regenerative medicine. However, the precise mechanisms of lineage specification of pluripotent stem cells are still largely to be explored. Identifying the role of various small synthetic peptides involved in cardiomyogenesis may provide new insights into pathways promoting cardiomyogenesis. In the present study, using a transgenic murine embryonic stem (ES) cell lineage expressing enhanced green fluorescent protein (EGFP) under the control of α-myosin heavy chain (α-MHC) promoter (pαMHC-EGFP), we investigated the cardiomyogenic effects of 7 synthetic peptides (Betrofin3, FGLs, FGL(L), hNgf_C2, EnkaminE, Plannexin and C3) on cardiac differentiation. The expression of several cardiac-specific markers was determined by RT-PCR whereas the structural and functional properties of derived cardiomyocytes were examined by immunofluorescence and electrophysiology, respectively. The results revealed that Betrofin3, an agonist of brain derived neurotrophic factor (BDNF) peptide exerted the most striking pro-cardiomyogenic effect on ES cells. We found that BDNF receptor, TrkB expression was up-regulated during differentiation. Treatment of differentiating cells with Betrofin3 between days 3 and 5 enhanced the expression of cardiac-specific markers and improved cardiomyocyte differentiation and functionality as revealed by genes regulation, flow cytometry and patch clamp analysis. Thus Betrofin3 may exert its cardiomyogenic effects on ES cells via TrkB receptor. Taken together, the results suggest that Betrofin3 modulates BDNF signaling with positive cardiomyogenic effect in stage and dose-dependent manner providing an effective strategy to increase ES cell-based generation of cardiomyocytes and offer a novel therapeutic approach to cardiac pathologies where BDNF levels are impaired.

  20. Human T-cell recognition of synthetic peptides representing conserved and variant sequences from the merozoite surface protein 2 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Theander, T G; Hviid, L; Dodoo, D

    1997-01-01

    Merozoite surface protein 2 (MSP2) is a malaria vaccine candidate currently undergoing clinical trials. We analyzed the peripheral blood mononuclear cell (PBMC) response to synthetic peptides corresponding to conserved and variant regions of the FCQ-27 allelic form of MSP2 in Ghanaian individuals...

  1. Chloroquine inhibits accessory cell presentation of soluble natural and synthetic protein antigens

    DEFF Research Database (Denmark)

    Buus, S; Werdelin, O

    1984-01-01

    We have studied the in vitro effect of the lysosomotrophic agent, chloroquine, on the presentation of soluble protein antigens by guinea pig accessory cells. Chloroquine inhibited the capacity of antigen-pulsed accessory cells to stimulate proliferation in appropriately primed T cells. The effect...... was time- and dose-dependent. A brief treatment solely of the accessory cells with the drug compromised their ability to stimulate primed T cells in a subsequent culture provided the accessory cells were treated with chloroquine before their exposure to the antigen. These results suggest that chloroquine...... acts on an early event in the antigen handling by accessory cells. Chloroquine is a well known inhibitor of lysosomal proteolysis, and it is likely that its effect on antigen presentation is caused by an inhibition of antigen degradation....

  2. Short synthetic peptides derived from viral proteins compete with HIV gp120 for the binding to CD4 receptors.

    Science.gov (United States)

    Chersi, A; Pugliese, O; Federico, A; Viora, M

    2000-01-01

    In the complex mechanism of adhesion, internalization, and infection of cells by human immunodeficiency virus (HIV) viral particles, a determinant role is played by the viral envelope glycoprotein gp120, which binds to CD4 receptors of T cells and monocytes. We tested the ability of a panel of 7- to 12-residue synthetic peptides, selected from the region 414-434 of the HIV-1 gp120, to inhibit the binding of the viral protein to CD4 receptors of cultured human lymphoid cells. The assay was based on the observation that the binding of gp120 to the receptors interferes with the binding of a specific anti-CD4 monoclonal antibody, as a result of the masking of the antibody epitope; thus, we tested whether preincubation of cells with the peptides before gp120 addition might restore the recognition of the CD4 molecule by the antibody. High expression of CD4 receptors was thus assumed as indication that the binding of the viral protein had been inhibited. Maximum activity was displayed by a 9-residue peptide located near the amino terminal end of the 414-434 fragment. In addition, several fragments deduced from other viral proteins, possessing partial amino acid sequence homology with the HIV gp120 fragment, exhibited a similar type of interaction with the CD4 receptor. All active peptides contain the Cys residue (position 423 of gp120). This residue is essential, although not sufficient, for inhibiting gp120 binding, as few other amino acid residues within the fragment play a complementary role in increasing or decreasing the inhibitory ability.

  3. Improving serodiagnosis of human and canine leishmaniasis with recombinant Leishmania braziliensis cathepsin l-like protein and a synthetic peptide containing its linear B-cell epitope.

    Science.gov (United States)

    Menezes-Souza, Daniel; Mendes, Tiago Antônio de Oliveira; Gomes, Matheus de Souza; Bartholomeu, Daniella Castanheira; Fujiwara, Ricardo Toshio

    2015-01-01

    The early and correct diagnosis of human leishmaniasis is essential for disease treatment. Another important step in the control of visceral leishmaniasis is the identification of infected dogs, which are the main domestic reservoir of L. infantum. Recombinant proteins and synthetic peptides based on Leishmania genes have emerged as valuable targets for serodiagnosis due to their increased sensitivity, specificity and potential for standardization. Cathepsin L-like genes are surface antigens that are secreted by amastigotes and have little similarity to host proteins, factors that enable this protein as a good target for serodiagnosis of the leishmaniasis. We mapped a linear B-cell epitope within the Cathepsin L-like protein from L. braziliensis. A synthetic peptide containing the epitope and the recombinant protein was evaluated for serodiagnosis of human tegumentary and visceral leishmaniasis, as well as canine visceral leishmaniasis. The recombinant protein performed best for human tegumentary and canine visceral leishmaniasis, with 96.30% and 89.33% accuracy, respectively. The synthetic peptide was the best to discriminate human visceral leishmaniasis, with 97.14% specificity, 94.55% sensitivity and 96.00% accuracy. Comparison with T. cruzi-infected humans and dogs suggests that the identified epitope is specific to Leishmania parasites, which minimizes the likelihood of cross-reactions.

  4. Improving serodiagnosis of human and canine leishmaniasis with recombinant Leishmania braziliensis cathepsin l-like protein and a synthetic peptide containing its linear B-cell epitope.

    Directory of Open Access Journals (Sweden)

    Daniel Menezes-Souza

    2015-01-01

    Full Text Available The early and correct diagnosis of human leishmaniasis is essential for disease treatment. Another important step in the control of visceral leishmaniasis is the identification of infected dogs, which are the main domestic reservoir of L. infantum. Recombinant proteins and synthetic peptides based on Leishmania genes have emerged as valuable targets for serodiagnosis due to their increased sensitivity, specificity and potential for standardization. Cathepsin L-like genes are surface antigens that are secreted by amastigotes and have little similarity to host proteins, factors that enable this protein as a good target for serodiagnosis of the leishmaniasis.We mapped a linear B-cell epitope within the Cathepsin L-like protein from L. braziliensis. A synthetic peptide containing the epitope and the recombinant protein was evaluated for serodiagnosis of human tegumentary and visceral leishmaniasis, as well as canine visceral leishmaniasis.The recombinant protein performed best for human tegumentary and canine visceral leishmaniasis, with 96.30% and 89.33% accuracy, respectively. The synthetic peptide was the best to discriminate human visceral leishmaniasis, with 97.14% specificity, 94.55% sensitivity and 96.00% accuracy. Comparison with T. cruzi-infected humans and dogs suggests that the identified epitope is specific to Leishmania parasites, which minimizes the likelihood of cross-reactions.

  5. Response of Anastrepha suspensa to liquid protein baits and synthetic lure formulations

    Energy Technology Data Exchange (ETDEWEB)

    Epsky, Nancy D.; Kendra, Paul E.; Heath, Robert R., E-mail: Nancy.Epsky@ars.usda.go, E-mail: Paul.Kendra@ars.usda.go, E-mail: Bob.Heath@ars.usda.go [U.S. Department of Agriculture (USDA/ARS/SHRS), Miami, FL (United States). Agricultural Research Service. Subtropical Horticulture Research Station

    2006-07-01

    Traps baited with AAPt captured more A. suspensa than traps baited with ABPt even when the ammonia release rates were similar. Reducing dosage of ammonia by 50% of the commercially available AA lure slightly increased female capture, but reducing dosage to 25% tended to decrease female capture. The 5% CPH/3% borax bait captured the same number of flies as TYB, and was more effective than 10% CPH/3% borax. Further decreasing the amount of borax added to CPH may improve its effectiveness. As has been observed in field tests, fresh TYB captures more A. suspensa than fresh Nulure/borax but this difference decreases as the bait solutions age. EAG analysis indicates that volatiles from fresh Nulure/ borax elicit a higher antennal response than TYB, but this difference decreases as the TYB solution ages. Chemical analysis will be needed to determine the nature of reduced capture by fresh Nulure/borax and to identify additional attractive chemicals emitted by these protein baits. (author)

  6. Regulation of AMP-activated protein kinase by natural and synthetic activators

    Directory of Open Access Journals (Sweden)

    David Grahame Hardie

    2016-01-01

    Full Text Available The AMP-activated protein kinase (AMPK is a sensor of cellular energy status that is almost universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its role has become adapted so that it also regulates energy balance at the whole body level, by responding to hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer that have provided insight into the complex mechanisms for these effects will be discussed. Given the central importance of energy balance in diseases that are major causes of morbidity or death in humans, such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop pharmacological activators of AMPK. Many such activators have been described, and the various mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK activators are natural products of plants derived from traditional herbal medicines. While the mechanism by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be defensive compounds produced by plants to deter infection by pathogens or grazing by insects or herbivores, and that many of them will turn out to be inhibitors of mitochondrial function.

  7. Response of Anastrepha suspensa to liquid protein baits and synthetic lure formulations

    International Nuclear Information System (INIS)

    Epsky, Nancy D.; Kendra, Paul E.; Heath, Robert R.

    2006-01-01

    Traps baited with AAPt captured more A. suspensa than traps baited with ABPt even when the ammonia release rates were similar. Reducing dosage of ammonia by 50% of the commercially available AA lure slightly increased female capture, but reducing dosage to 25% tended to decrease female capture. The 5% CPH/3% borax bait captured the same number of flies as TYB, and was more effective than 10% CPH/3% borax. Further decreasing the amount of borax added to CPH may improve its effectiveness. As has been observed in field tests, fresh TYB captures more A. suspensa than fresh Nulure/borax but this difference decreases as the bait solutions age. EAG analysis indicates that volatiles from fresh Nulure/ borax elicit a higher antennal response than TYB, but this difference decreases as the TYB solution ages. Chemical analysis will be needed to determine the nature of reduced capture by fresh Nulure/borax and to identify additional attractive chemicals emitted by these protein baits. (author)

  8. Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides.

    Science.gov (United States)

    Soto, C; Kascsak, R J; Saborío, G P; Aucouturier, P; Wisniewski, T; Prelli, F; Kascsak, R; Mendez, E; Harris, D A; Ironside, J; Tagliavini, F; Carp, R I; Frangione, B

    2000-01-15

    Transmissible spongiform encephalopathies are associated with a structural transition in the prion protein that results in the conversion of the physiological PrPc to pathological PrP(Sc). We investigated whether this conformational transition can be inhibited and reversed by peptides homologous to the PrP fragments implicated in the abnormal folding, which contain specific residues acting as beta-sheet blockers (beta-sheet breaker peptides). We studied the effect of a 13-residue beta-sheet breaker peptide (iPrP13) on the reversion of the abnormal structure and properties of PrP(Sc) purified from the brains of mice with experimental scrapie and from human beings affected by sporadic and variant Creutzfeldt-Jakob disease. In a cellular model of familial prion disease, we studied the effect of the peptide in the production of the abnormal form of PrP in intact cells. The influence of the peptide on prion infectivity was studied in vivo by incubation time assays in mice with experimental scrapie. The beta-sheet breaker peptide partly reversed in-vitro PrP(Sc) to a biochemical and structural state similar to that of PrPc. The effect of the peptide was also detected in intact cells. Treatment of prion infectious material with iPrP13 delayed the appearance of clinical symptoms and decreased infectivity by 90-95% in mice with experimental scrapie. Beta-sheet breaker peptides reverse PrP conformational changes implicated in the pathogenesis of spongiform encephalopathies. These peptides or their derivatives provide a useful tool to study the role of PrP conformation and might represent a novel therapeutic approach for prion-related disorders.

  9. Chemoprotective effects of a recombinant protein from Pyropia yezoensis and synthetic peptide against acetaminophen-induced Chang liver cell death.

    Science.gov (United States)

    Choi, Youn Hee; Kim, Eun-Young; Mikami, Koji; Nam, Taek Jeong

    2015-08-01

    In the present study, the chemoprotective effects of recombinant Pyropia yezoensis (P. yezoensis) protein 1 (PYP1) were examined in acetaminophen (APAP)-treated Chang liver cells. The analysis of P. yezoensis revealed the presence of both mature and immature variants of PYP1. PYP1s, designated as PYP1 (15 kDa), PYP1-AC (12 kDa) and PYP1-B (5 kDa), were successfully expressed in Escherichia coli, and their chemoprotective effects were then examined. In addition, a peptide of 11 residues (ALEGGKSSGGG), which is a common sequence at the N-terminus all of the PYP1s, was synthesized and examined. The effects of treatment with PYP1s and the synthetic peptide (SP) on cell proliferation were determined by MTS assay. Our results clearly demonstrated that treatment with all the PYP1s and SP significantly promoted the proliferation of Chang liver cells, protecting them against APAP. Thus, we concluded that recombinant PYP1s exert protective effects against injury to Chang liver cells.

  10. Immunoregulatory activities of human immunodeficiency virus (HIV) proteins: Effect of HIV recombinant and synthetic peptides on immunoglobulin synthesis and proliferative responses by normal lymphocytes

    International Nuclear Information System (INIS)

    Nair, M.P.N.; Pottathil, R.; Heimer, E.P.; Schwartz, S.A.

    1988-01-01

    Recombinant and synthetic peptides corresponding to envelope proteins of the human immunodeficiency virus (HIV) were examined for their effects on the activities of lymphocytes from normal donors in vitro. Although lymphocytes cultured with env-gag peptides produced significant amounts of IgG, addition of env-gag peptides to a pokeweed mitogen-induced B-cell activation system resulted in suppression of immunoglobulin synthesis by normal lymphocytes. Recombinant antigens, env-gag and env-80 dihydrofolate reductase (DHFR), produced a substantial proliferative response by peripheral blood mononuclear cells (PBMC) as determined by [ 3 H]thymidine incorporation. PBMC precultured with HIV synthetic peptide env 578-608 also manifested significant proliferative responses as compared to control cultures. CD3 + lymphocytes precultured with recombinant HIV antigens, env-gag and env-80 DHFR, and synthetic HIV peptide, env 487-511, showed moderate but significant proliferative responses. Both recombinant antigens and synthetic peptides also produced a dose-dependent stimulatory effect on proliferation by CD3 - lymphocytes. These studies demonstrate that recombinant and synthetic peptides of the HIV genome express immunoregulatory T- and B-cell epitopes. Identification of unique HIV epitopes with immunogenic and immunoregulatory activities is necessary for the development of an effective vaccine against HIV infection

  11. A Synthetic Peptide with the Putative Iron Binding Motif of Amyloid Precursor Protein (APP) Does Not Catalytically Oxidize Iron

    Science.gov (United States)

    Ebrahimi, Kourosh Honarmand; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2012-01-01

    The β-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III) product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II) just as in ferritin. We measured the ferroxidase activity indirectly (i) by the incorporation of the Fe(III) product of the ferroxidase reaction into transferrin and directly (ii) by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II) oxidation by molecular oxygen. Zn(II) binds to transferrin and diminishes its Fe(III) incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and – by implication – of APP should be re-evaluated. PMID:22916096

  12. A synthetic peptide with the putative iron binding motif of amyloid precursor protein (APP does not catalytically oxidize iron.

    Directory of Open Access Journals (Sweden)

    Kourosh Honarmand Ebrahimi

    Full Text Available The β-amyloid precursor protein (APP, which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the ferroxidase site of ferritin. The activity was indirectly measured using transferrin, which scavenges the Fe(III product of the reaction. A 22-residue synthetic peptide, named FD1, with the putative ferroxidase site of APP, and the E2 domain of APP were each reported to exhibit 40% of the ferroxidase activity of APP and of ceruloplasmin. It was also claimed that the ferroxidase activity of APP is inhibited by Zn(II just as in ferritin. We measured the ferroxidase activity indirectly (i by the incorporation of the Fe(III product of the ferroxidase reaction into transferrin and directly (ii by monitoring consumption of the substrate molecular oxygen. The results with the FD1 peptide were compared to the established ferroxidase activities of human H-chain ferritin and of ceruloplasmin. For FD1 we observed no activity above the background of non-enzymatic Fe(II oxidation by molecular oxygen. Zn(II binds to transferrin and diminishes its Fe(III incorporation capacity and rate but it does not specifically bind to a putative ferroxidase site of FD1. Based on these results, and on comparison of the putative ligands of the ferroxidase site of APP with those of ferritin, we conclude that the previously reported results for ferroxidase activity of FD1 and - by implication - of APP should be re-evaluated.

  13. Development of a Serological Assay Based on a Synthetic Peptide Selected from the VP0 Capsid Protein for Detection of Human Parechoviruses▿

    Science.gov (United States)

    Abed, Yacine; Wolf, Dana; Dagan, Ron; Boivin, Guy

    2007-01-01

    A serological enzyme-linked immunosorbent assay was developed using a synthetic peptide from the VP0 protein of human parechoviruses (HPeVs). Seroprevalence for HPeVs was 70% in children of ≤5 years of age and 95% in adults. For children from whom serial sera were sampled, seropositivity increased from 22% to 88% between 2 and 24 months of age. PMID:17442804

  14. Differential recruitment efficacy of patient-derived amyloidogenic and myeloma light chain proteins by synthetic fibrils-A metric for predicting amyloid propensity.

    Directory of Open Access Journals (Sweden)

    Emily B Martin

    Full Text Available Monoclonal free light chain (LC proteins are present in the circulation of patients with immunoproliferative disorders such as light chain (AL amyloidosis and multiple myeloma (MM. Light chain-associated amyloid is a complex pathology composed of proteinaceous fibrils and extracellular matrix proteins found in all patients with AL and in ~10-30% of patients who presented with MM. Amyloid deposits systemically in multiple organs and tissues leading to dysfunction and ultimately death. The overall survival of patients with amyloidosis is worse than for those with early stage MM.We have developed a sensitive binding assay quantifying the recruitment of full length, patient-derived LC proteins by synthetic amyloid fibrils, as a method for studying their amyloidogenic potential. In a survey of eight urinary LC, both AL and MM-associated proteins were recruited by synthetic amyloid fibrils; however, AL-associated LC bound significantly more efficiently (p < 0.05 than did MM LCs. The LC proteins used in this study were isolated from urine and presumed to represent a surrogate of serum free light chains.The binding of LC to synthetic fibrils in this assay accurately differentiated LC with amyloidogenic propensity from MM LC that were not associated with clinical amyloid disease. Notably, the LC from a MM patient who subsequently developed amyloid behaved as an AL-associated protein in the assay, indicating the possibility for identifying MM patients at risk for developing amyloidosis based on the light chain recruitment efficacy. With this information, at risk patients can be monitored more closely for the development of amyloidosis, allowing timely administration of novel, amyloid-directed immunotherapies-this approach may improve the prognosis for these patients.

  15. Induction of avian musculoaponeurotic fibrosarcoma proteins by toxic bile acid inhibits expression of glutathione synthetic enzymes and contributes to cholestatic liver injury in mice.

    Science.gov (United States)

    Yang, Heping; Ko, Kwangsuk; Xia, Meng; Li, Tony W H; Oh, Pilsoo; Li, Jiaping; Lu, Shelly C

    2010-04-01

    We previously showed that hepatic expression of glutathione (GSH) synthetic enzymes and GSH levels fell 2 weeks after bile duct ligation (BDL) in mice. This correlated with a switch in nuclear anti-oxidant response element (ARE) binding activity from nuclear factor erythroid 2-related factor 2 (Nrf2) to c-avian musculoaponeurotic fibrosarcoma (c-Maf)/V-maf musculoaponeurotic fibrosarcoma oncogene homolog G (MafG). Our current aims were to examine whether the switch in ARE binding activity from Nrf2 to Mafs is responsible for decreased expression of GSH synthetic enzymes and the outcome of blocking this switch. Huh7 cells treated with lithocholic acid (LCA) exhibited a similar pattern of change in GSH synthetic enzyme expression as BDL mice. Nuclear protein levels of Nrf2 fell at 20 hours after LCA treatment, whereas c-Maf and MafG remained persistently induced. These changes translated to ARE nuclear binding activity. Knockdown of c-Maf or MafG individually blunted the LCA-induced decrease in Nrf2 ARE binding and increased ARE-dependent promoter activity, whereas combined knockdown was more effective. Knockdown of c-Maf or MafG individually increased the expression of GSH synthetic enzymes and raised GSH levels, and combined knockdown exerted an additive effect. Ursodeoxycholic acid (UDCA) or S-adenosylmethionine (SAMe) prevented the LCA-induced decrease in expression of GSH synthetic enzymes and promoter activity and prevented the increase in MafG and c-Maf levels. In vivo knockdown of the Maf genes protected against the decrease in GSH enzyme expression, GSH level, and liver injury after BDL. Toxic bile acid induces a switch from Nrf2 to c-Maf/MafG ARE nuclear binding, which leads to decreased expression of GSH synthetic enzymes and GSH levels and contributes to liver injury during BDL. UDCA and SAMe treatment targets this switch.

  16. Induction of Maf Proteins by Toxic Bile Acid Inhibits Expression of GSH Synthetic Enzymes and Contributes to Cholestatic Liver Injury in Mice

    Science.gov (United States)

    Yang, Heping; Ko, Kwangsuk; Xia, Meng; Li, Tony W.H.; Oh, Pilsoo; Li, Jiaping; Lu, Shelly C.

    2010-01-01

    Background and rationale We previously showed that hepatic expression of GSH synthetic enzymes and GSH levels fell two weeks after bile duct ligation (BDL) in mice. This correlated with a switch in nuclear anti-oxidant response element (ARE) binding activity from nuclear factor-erythroid 2 related factor 2 (Nrf2) to c-Maf/MafG. Our current aims were to examine whether the switch in ARE binding activity from Nrf2 to Mafs is responsible for decreased expression of GSH synthetic enzymes and the outcome of blocking this switch. Results HuH-7 cells treated with lithocholic acid (LCA) exhibited a similar pattern of change in GSH synthetic enzyme expression as BDL mice. Nuclear protein levels of Nrf2 fell at 20 hours following LCA treatment while c-Maf and MafG remained persistently induced. These changes translated to ARE nuclear binding activity. Knockdown of c-Maf or MafG individually blunted the LCA-induced fall in Nrf2 ARE binding and increased ARE-dependent promoter activity while combined knockdown was more effective. Knockdown of c-Maf or MafG individually increased the expression of GSH synthetic enzymes and raised GSH levels and combined knockdown exerted additive effect. Ursodeoxycholic acid (UDCA) or S-adenosylmethionine (SAMe) prevented the LCA-induced fall in expression of GSH synthetic enzymes and promoter activity and prevented the increase in MafG and c-Maf levels. In vivo knockdown of the Maf genes protected against fall in GSH enzymes expression, GSH level and liver injury following BDL. Conclusions Toxic bile acid induces a switch from Nrf2 to c-Maf/MafG ARE nuclear binding, which leads to decreased expression of GSH synthetic enzymes and GSH levels and contributes to liver injury during BDL. UDCA and SAMe treatment targets this switch. PMID:20146260

  17. Model-Based Discovery of Synthetic Agonists for the Zn2+-Sensing G-Protein-Coupled Receptor 39 (GPR39) Reveals Novel Biological Functions

    DEFF Research Database (Denmark)

    Frimurer, Thomas M.; Mende, Franziska; Graae, Anne-Sofie

    2017-01-01

    The G-protein coupled receptor 39 (GPR39) is a G protein-coupled receptor activated by Zn2. We used a homol. model-based approach to identify small-mol. pharmacol. tool compds. for the receptor. The method focused on a putative binding site in GPR39 for synthetic ligands and knowledge of ligand....... of the initial library were inactive when tested alone, but lead compds. were identified using Zn2 as an allosteric enhancer. Highly selective, highly potent Zn2-independent GPR39 agonists were found in subsequent mini-libraries. These agonists identified GPR39 as a novel regulator of gastric somatostatin...

  18. [Development of an antigen 'sandwich' enzyme immunoassay for the detection of antibodies against HIV-2 by using a biotinylated synthetic peptide of gp36 protein].

    Science.gov (United States)

    Delahanty-Fernández, Aurora; Bequer-Ariza, Dunia Clara; Hernández-Marín, Milenen; Zulueta-Rodríguez, Orlando; Pozo-Peña, Lilliam; Hernández-Spengler, Idialis; Ramos-Martínez, Grisell; Valdespino-Díaz, Marcos Antonio; Ventura-Paz, Julio

    2015-01-01

    Among the several existing methods for the detection of antibodies to HIV, the 'sandwich' ELISA is currently the most used. This study aims to assess a biotinylated monomeric synthetic peptide of the glycoprotein trans-membrane gp36 from HIV-2, in a sandwich assay, for the detection of antibodies against this HIV-2 protein. To perform the assay, plates coated with recombinant protein gp36 at 0.5μg/mL and synthetic peptide gp36(5) at 1μg/mL were used. The concentration of the biotinylated synthetic peptide (gp36(5)-B) used was 0.1μg/mL prepared with a Tris-BSA-NaCl buffer solution and the Streptavidin- Alkaline Phosphatase conjugate diluted 1:30000 prepared with a PBS-Sucrose-BSA solution. Positive serum samples to antibodies against HIV-1 and HIV-2 viruses (88 and 34, respectively) were tested, with 483 negative samples from blood donors and 96 serum samples to assess the analytical specificity. All the samples were tested using the UMELISA HIV 1+2 RECOMBINANT assay, and all positives were confirmed using a DAHIV-BLOT assay. Thirty four samples with antibodies against HIV-2 were assessed as positive for both coating variants. The highest specificity was obtained with the variant using the synthetic peptide gp36(5) in its coating. The antigen 'sandwich' assay developed by using gp36(5)-B enables the detection of antibodies against gp36 protein of HIV-2. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  19. A synthetic DNA and fusion PCR approach to the ectopic expression of high levels of the D1 protein of photosystem II in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Nagarajan, Aparna; Winter, Regan; Eaton-Rye, Julian; Burnap, Robert

    2011-01-01

    A hybrid approach involving synthetic DNA, fusion PCR, and ectopic expression has been used to genetically manipulate the expression of the D1 protein of photosystem II (PSII) in the model cyanobacterium Synechocystis sp. PCC6803. Due to the toxicity of the full-length psbA gene in E. coli, a chimeric psbA2 gene locus was commercially synthesised and cloned in two halves. High-fidelity fusion PCR utilizing sequence overlap between the two synthetic gene halves allowed the production of a DNA fragment that was able to recombine the full-length psbA2 gene into the Synechocystis chromosome at an ectopic (non-native) location. This was accomplished by designing the synthetic DNA/fusion PCR product to have the psbA2 gene, with control sequences, interposed between chimeric sequences corresponding to an ectopic target chromosomal location. Additionally, a recipient strain of Synechocystis lacking all three psbA genes was produced by a combination of traditional marker replacement and markerless replacement techniques. Transformation of this multiple deletion strain by the synthetic DNA/fusion PCR product faithfully restored D1 expression in terms of its expression and PSII repair capacity. The advantages and potential issues for using this approach to rapidly introduce chimeric sequence characteristics as a general tool to produce novel genetic constructs are discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Effect of gamma irradiation on nutritional components and Cry1Ab protein in the transgenic rice with a synthetic cry1Ab gene from Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Wu Dianxing; Ye Qingfu; Wang Zhonghua; Xia Yingwu

    2004-01-01

    The effects of gamma irradiation on the transgenic rice containing a synthetic cry1Ab gene from Bacillus thuringiensis were investigated. There was almost no difference in the content of the major nutritional components, i.e. crude protein, crude lipid, eight essential amino acids and total ash between the irradiated grains and the non-irradiated transgenic rice. However, the amounts of Cry1Ab protein and apparent amylose in the irradiated transgenic rice were reduced significantly by the doses higher than 200 Gy. In vivo observation showed that Cry1Ab protein contents also decreased in the fresh leaf tissues of survival seedlings after irradiation with 200 Gy or higher doses and showed inhibition of seedling growth. The results indicate that gamma irradiation might improve the quality of transgenic rice due to removal of the toxic Cry1Ab protein

  1. Synthetic cold-inducible promoter enhances recombinant protein accumulation during Agrobacterium-mediated transient expression in Nicotiana excelsior at chilling temperatures.

    Science.gov (United States)

    Gerasymenko, I M; Sheludko, Y V

    2017-07-01

    To exploit cold-inducible biochemical processes beneficial for foreign mRNA transcription, translation and storage, as well as protein product stability, during Agrobacterium-mediated transient expression. The efficiency of three different 5'-regulatory sequences to achieve transient expression of the GFP-based reporter gene under chilling conditions (6-8 °C since the 3rd day post inoculation) was compared. We studied the upstream sequences of a cold-inducible Arabidopsis thaliana cor15a gene, the core element of 35S CaMV promoter fused to the TMV omega 5'-UTR, and the synthetic promoter including the 35S core sequence and two binding sites for cold-inducible CBF transcription factors (P_DRE::35S). Cultivation of plants transiently expressing reporter gene under control of the synthetic P_DRE::35S promoter under chilling conditions since the 3rd dpi led to the reliably higher reporter accumulation as compared to the other tested regulatory sequences under chilling or greenhouse conditions. Reporter protein fluorescence under chilling conditions using P_DRE::35S reached 160% as compared to the transient expression in the greenhouse. Period of transient expression considerably extended if plants were cultivated at chilling temperature since the 3rd dpi: reporter protein fluorescence reached its maximum at the 20th dpi and was detected in leaves up to the 65th dpi. The enhanced protein accumulation at low temperature was accompanied by the prolonged period of corresponding mRNA accumulation. Transient expression under chilling conditions using synthetic cold-inducible promoter enhances target protein accumulation and may decrease greenhouse heating expenses.

  2. Palladium Mediated Rapid Deprotection of N-Terminal Cysteine under Native Chemical Ligation Conditions for the Efficient Preparation of Synthetically Challenging Proteins.

    Science.gov (United States)

    Jbara, Muhammad; Maity, Suman Kumar; Seenaiah, Mallikanti; Brik, Ashraf

    2016-04-20

    Facilitating the process of chemical protein synthesis is an important goal in order to enable the efficient preparation of large and novel protein analogues. Native chemical ligation, which is widely used in the synthesis and semisynthesis of proteins, has been going through several developments to expedite the synthetic process and to obtain the target protein in high yield. A key aspect of this approach is the utilization of protecting groups for the N-terminal Cys in the middle fragments, which bear simultaneously the two reactive groups, i.e., N-terminal Cys and C-terminal thioester. Despite important progress in this area, as has been demonstrated in the use of thiazolidine protecting group in the synthesis of over 100 proteins, finding optimal protecting group(s) remains a challenge. For example, the thiazolidine removal step is very slow (>8 h), and in some cases the applied conditions lead to undesired side reactions. Here we show that water-soluble palladium(II) complexes are excellent reagents for the effective unmasking of thiazolidine, enabling its complete removal within 15 min under native chemical ligation conditions. Moreover, palladium is also able to rapidly remove propargyloxycarbonyl-protecting group from the N-terminal Cys in a similar efficiency. The utility of the new removal conditions for both protecting groups is exemplified in the rapid and efficient synthesis of Lys34-ubiquitinated H2B and for the first time neddlyated peptides derived from cullin1. The current approach expands the use of palladium in protein chemistry and should significantly facilitate the chemical and semisynthesis of synthetically challenging proteins from multiple fragments.

  3. Synthetic Peptides Analogue to Enamel Proteins Promote Osteogenic Differentiation of MC3T3-E1 and Mesenchymal Stem Cells

    Czech Academy of Sciences Publication Activity Database

    Rubert, M.; Ramis, J. M.; Vondrášek, Jiří; Gaya, A.; Lyngstadaas, S. P.; Monjo, M.

    2011-01-01

    Roč. 1, č. 2 (2011), s. 198-209 ISSN 2157-9083 Grant - others:GA ČR(CZ) GAP302/10/0427 Institutional research plan: CEZ:AV0Z40550506 Keywords : proline-rich regions * synthetic peptides * bone formation * mineralization * In Vitro Subject RIV: EI - Biotechnology ; Bionics

  4. Mammalian Synthetic Biology

    OpenAIRE

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-01-01

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-pote...

  5. Efficient generation of dopamine neuron-like cells from skin-derived precursors with a synthetic peptide derived from von Hippel-Lindau protein.

    Science.gov (United States)

    Kubo, Atsuhiko; Yoshida, Tetsuhiko; Kobayashi, Nahoko; Yokoyama, Takaakira; Mimura, Toshiro; Nishiguchi, Takao; Higashida, Tetsuhiro; Yamamoto, Isao; Kanno, Hiroshi

    2009-12-01

    Skin-derived precursors (SKPs) from mammalian dermis represent neural crest-related stem cells capable of differentiating into both neural and mesodermal progency. SKPs are of clinical interest because they serve as accessible autologous donor cells for neuronal repair for neuronal intractable diseases. However, little is known about the efficient generation of neurons from SKPs, and phenotypes of neurons generated from SKPs have been restricted. In addition, the neuronal repair using their generated neurons as donor cells has not been achieved. The von Hippel-Lindau protein (pVHL) is one of the proteins that play an important role during neuronal differentiation, and recently neuronal differentiation of neural progenitor cells by intracellular delivery of a synthetic VHL peptide derived from elongin BC-binding site has been demonstrated. In the present study, a synthetic VHL peptide derived from elongin BC-binding site was conjugated to the protein transduction domain (PTD) of HIV-TAT protein (TATVHL peptide) to facilitate entry into cells, and we demonstrate the efficient generation of cells with dopaminergic phenotype from SKPs with the intracellular delivery of TATVHL peptide, and characterized the generated cells. The TATVHL peptide-treated SKPs expressed neuronal marker proteins, particularly dopamine neuron markers, and also up-regulated mRNA levels of proneural basic helix-loop-helix factors. After the TATVHL peptide treatment, transplanted SKPs into Parkinson's disease (PD) model rats sufficiently differentiated into dopamine neuron-like cells in PD model rats, and partially but significantly corrected behavior of PD model rats. The generated dopamine neuron-like cells are expected to serve as donor cells for neuronal repair for PD.

  6. Synthetic peptides from heat-shock protein 65 inhibit proinflammatory cytokine secretion by peripheral blood mononuclear cells from rheumatoid arthritis patients.

    Science.gov (United States)

    Zhou, Jun; Wang, Li-Ping; Feng, Xuan; Fan, Dan-Dan; Zang, Wei-Jin; Wang, Bing

    2014-01-01

    1. Rheumatoid arthritis (RA) is a systemic autoimmune disease mediated by T cells. Proinflammatory cytokines plays a critical role in the pathogenesis of RA. The aim of the present study was to investigate the effects of synthetic peptides (HP-R1, HP-R2 and HP-R3), derived from the sequence of 65 kDa mycobacterial heat shock protein (HSP), on the proliferation of and cytokine secretion by peripheral blood mononuclear cells (PBMC) from RA patients. 2. The PBMC were obtained from RA patients and collected by Ficoll-Hypaque density centrifugation. Peripheral blood mononuclear cells were treated with one of the three synthetic peptides for 4 h, after which time proliferation and cytokine production were determined. The effects of the three peptides on the proliferation of PBMC were analysed by the colorimetric cell proliferation (CCK-8) assay. Cytokine production was measured in culture supernatants using specific ELISAs. 3. None of the three peptides had any significant effect on the proliferation of PBMC from healthy controls. However, the proliferation of PBMC from RA patients was inhibited by all three peptides. The production of tumour necrosis factor-α from RA patients was significantly inhibited by all three peptides. The secretion of interferon-γ was significantly suppressed by HP-R1 and HP-R2. Unlike the other two peptides, HP-R2 increased the secretion of interleukin (IL)-4. None of the peptides had any significant effect on the production of IL-10. 4. The results of the present study suggest that the synthetic peptides derived from HSP65 exhibit antiproliferative and anti-inflammatory activity, and support the potential use of synthetic peptides as therapeutic drugs in RA patients. © 2013 Wiley Publishing Asia Pty Ltd.

  7. A fusion protein of the synthetic IgG-binding domain and aequorin: Expression and purification from E. coli cells and its application.

    Science.gov (United States)

    Inouye, Satoshi; Sahara-Miura, Yuiko

    2017-09-01

    Aequorin is a Ca 2+ -binding photoprotein that is a complex of apoaequorin (apoAQ) and 2-peroxycoelenterazine. In this study, the fusion protein (ZZ-apoAQ) composed of the synthetic IgG-binding domain (ZZ domain) derived from Staphylococcus aureus protein A and apoAQ was expressed into the periplasmic space of Escherichia coli cells. ZZ-apoAQ was highly purified using Ni-chelate affinity chromatography followed by IgG affinity chromatography. ZZ-AQ was prepared from purified ZZ-apoAQ by incubation with coelenterazine and was characterized, including its luminescence properties. ZZ-AQ could be used as a reporter for detecting IgG and the measurable range of IgG coated on a 96-well plate was 1-1000 ng/mL. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. A synthetic peptide corresponding to the C-terminal 25 residues of phage MS2 coded lysis protein dissipates the protonmotive force in Escherichia coli membrane vesicles by generating hydrophilic pores

    NARCIS (Netherlands)

    Goessens, Wil H.F.; Driessen, Arnold J.M.; Wilschut, Jan; Duin, Jan van

    1988-01-01

    The RNA phage MS2 encodes a protein, 75 amino acids long, that is necessary and sufficient for lysis of the host cell. DNA deletion analysis has shown that the lytic activity is confined to the C-terminal half of the protein. We have examined the effects of a synthetic peptide, covering the

  9. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  10. Inheritance of Protein Patterns in a Synthetic Allopolyploid of Triticum Monococcum (AA) and Aegilops Ventricosa (DDMvMv)

    DEFF Research Database (Denmark)

    Siddiqui, K. A.; Ingversen, J.; Køie, B.

    1972-01-01

    in the main reserve-protein group — the gliadins, with a concomitant decrease in the salt-soluble proteins and the glutenins. Also the amino-acid composition, especially of the gliadins, was influenced by the amphiploidy. The gliadins from T. monococcum had higher contents of histidine, arginine, aspartic...... acid, serine, and isoleucine than Ae. ventricosa. In the amphiploid the epistasis of Ae. ventricosa over T. monococcum in most morphological attributes was parallelled in the amino-acid composition of the Osborne protein fractions. Such parallelism may have evolutionary significance. The salt...

  11. Insulinotropic and Muscle Protein Synthetic Effects of Branched-Chain Amino Acids: Potential Therapy for Type 2 Diabetes and Sarcopenia

    Directory of Open Access Journals (Sweden)

    Darren G. Candow

    2012-11-01

    Full Text Available The loss of muscle mass and strength with aging (i.e., sarcopenia has a negative effect on functional independence and overall quality of life. One main contributing factor to sarcopenia is the reduced ability to increase skeletal muscle protein synthesis in response to habitual feeding, possibly due to a reduction in postprandial insulin release and an increase in insulin resistance. Branched-chain amino acids (BCAA, primarily leucine, increases the activation of pathways involved in muscle protein synthesis through insulin-dependent and independent mechanisms, which may help counteract the “anabolic resistance” to feeding in older adults. Leucine exhibits strong insulinotropic characteristics, which may increase amino acid availability for muscle protein synthesis, reduce muscle protein breakdown, and enhance glucose disposal to help maintain blood glucose homeostasis.

  12. An in vitro screening assay based on synthetic prion protein peptides for identification of fibril-interfering compounds

    NARCIS (Netherlands)

    Boshuizen, R.S.; Langeveld, J.P.M.; Salmona, M.; Williams, A.; Meloen, R.H.; Langendijk, J.P.

    2004-01-01

    Transmissible spongiform encephalopathies are neurodegenerative diseases and are considered to be caused by malformed prion proteins accumulated into fibrillar structures that can then aggregate to form larger deposits or amyloid plaques. The identification of fibril-interfering compounds is of

  13. Identification of Murine B-Cell and T-Cell Epitopes of Escherichia coli Outer Membrane Protein F with Synthetic Polypeptides

    Science.gov (United States)

    Williams, Kristina M.; Bigley, Elmer C.; Raybourne, Richard B.

    2000-01-01

    The major pore-forming outer membrane proteins (Omps) of gram-negative bacteria demonstrate numerous immunomodulating properties and are involved in the virulence of pathogenic strains. Because Escherichia coli OmpF is the best-characterized porin in terms of structural and functional characteristics, in vitro B-cell and T-cell responses to this porin in six different strains of mice were analyzed. Mice were immunized with purified OmpF trimers or overlapping synthetic polypeptides (20-mers) spanning the entire 340-amino-acid sequence of the OmpF monomer. T-cell proliferative responses and immunoglobulin G antibody responses to native OmpF and the peptide analogues were determined. For each strain, patterns of T-cell proliferation were similar regardless of whether native OmpF or synthetic peptides were inoculated, although all strains recognized one or more cryptic determinants. Mice exhibited several haplotype-specific responses, but genetically permissive epitopes were also identified. Four peptides (75-94, 265-284, 295-314, and 305-324) elicited strong T-cell proliferative responses from all strains of mice when mice were presensitized with native OmpF or a homologous peptide. In general, 10 or fewer peptides were recognized by sera from mice immunized with native OmpF or synthetic peptides, and most sera from peptide-immunized mice reacted poorly with the native protein. Four peptides spanning amino acids 45 to 64, 95 to 114, 115 to 134, and 275 to 294 were recognized by sera from all strains immunized with native OmpF but not by sera from peptide-immunized mice. Peptides 245-264 and 305-324 were universally recognized by sera from peptide-immunized mice, but these sera reacted weakly or were negative when tested against the native protein. Based on the pattern of cytokine secretion by proliferating T cells, immunization with native OmpF polarizes T helper cells toward development of a TH1 response. T-cell and B-cell responses have been investigated based on

  14. Interactions of Neisseria gonorrhoeae with human neutrophils: studies with purified PII (Opa) outer membrane proteins and synthetic Opa peptides.

    OpenAIRE

    Naids, F L; Belisle, B; Lee, N; Rest, R F

    1991-01-01

    We investigated the role of gonococcal outer membrane protein PII (also called Opa protein) in nonopsonic adherence to human neutrophils. Gonococcal outer membranes, purified Opa in detergent (Opa), purified Opa in liposomes (Opa+ lips), and peptides composing the second hypervariable (HV2) region of OpaB (strain FA1090) in liposomes (pepHV2 lips) were tested for their abilities to inhibit subsequent gonococcal adherence to human neutrophils. Outer membranes from gonococci possessing adherent...

  15. Synthetic oils

    Science.gov (United States)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  16. Protein S-thiolation by Glutathionylspermidine (Gsp): the role of Escherichia coli Gsp synthetASE/amidase in redox regulation.

    Science.gov (United States)

    Chiang, Bing-Yu; Chen, Tzu-Chieh; Pai, Chien-Hua; Chou, Chi-Chi; Chen, Hsuan-He; Ko, Tzu-Ping; Hsu, Wen-Hung; Chang, Chun-Yang; Wu, Whei-Fen; Wang, Andrew H-J; Lin, Chun-Hung

    2010-08-13

    Certain bacteria synthesize glutathionylspermidine (Gsp), from GSH and spermidine. Escherichia coli Gsp synthetase/amidase (GspSA) catalyzes both the synthesis and hydrolysis of Gsp. Prior to the work reported herein, the physiological role(s) of Gsp or how the two opposing GspSA activities are regulated had not been elucidated. We report that Gsp-modified proteins from E. coli contain mixed disulfides of Gsp and protein thiols, representing a new type of post-translational modification formerly undocumented. The level of these proteins is increased by oxidative stress. We attribute the accumulation of such proteins to the selective inactivation of GspSA amidase activity. X-ray crystallography and a chemical modification study indicated that the catalytic cysteine thiol of the GspSA amidase domain is transiently inactivated by H(2)O(2) oxidation to sulfenic acid, which is stabilized by a very short hydrogen bond with a water molecule. We propose a set of reactions that explains how the levels of Gsp and Gsp S-thiolated proteins are modulated in response to oxidative stress. The hypersensitivities of GspSA and GspSA/glutaredoxin null mutants to H(2)O(2) support the idea that GspSA and glutaredoxin act synergistically to regulate the redox environment of E. coli.

  17. Human T-cell recognition of synthetic peptides representing conserved and variant sequences from the merozoite surface protein 2 of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Theander, T G; Hviid, L; Dodoo, D

    1997-01-01

    Merozoite surface protein 2 (MSP2) is a malaria vaccine candidate currently undergoing clinical trials. We analyzed the peripheral blood mononuclear cell (PBMC) response to synthetic peptides corresponding to conserved and variant regions of the FCQ-27 allelic form of MSP2 in Ghanaian individuals...... from an area of hyperendemic malaria transmission and in Danes without exposure to malaria. PBMC from 20-39% of Ghanaians responded to each of the peptides by proliferation and 29-36% had PBMC which produced interferon-gamma (IFN-gamma) in response to peptide stimulation. In Danes......, there was no proliferation to two of the peptides and only PBMC from 5% of the individuals proliferated to the other three peptides. IFN-gamma production was not detected to any peptide. In both Danes and Ghanaians in only a few instances was IL-4 detected in the PBMC cultures. Overall PBMC from 79% of the Ghanaians...

  18. OPEN QUESTIONS IN ORIGIN OF LIFE: EXPERIMENTAL STUDIES ON THE ORIGIN OF NUCLEIC ACIDS AND PROTEINS WITH SPECIFIC AND FUNCTIONAL SEQUENCES BY A CHEMICAL SYNTHETIC BIOLOGY APPROACH

    Directory of Open Access Journals (Sweden)

    Katarzyna Adamala

    2014-02-01

    We have recently addressed these questions by using a chemical synthetic biology approach. In particular, we have tested the catalytic activity of small peptides, like Ser-His, with respect to peptide- and nucleotides-condensation, as a realistic model of primitive organocatalysis. We have also set up a strategy for exploring the sequence space of random proteins and RNAs (the so-called “never born biopolymer” project with respect to the production of folded structures. Being still far from solved, the main aspects of these “open questions” are discussed here, by commenting on recent results obtained in our groups and by providing a unifying view on the problem and possible solutions. In particular, we propose a general scenario for macromolecule formation via fragment-condensation, as a scheme for the emergence of specific sequences based on molecular growth and selection.

  19. Catastrophic inflammatory death of monocytes and macrophages by overtaking of a critical dose of endocytosed synthetic amorphous silica nanoparticles/serum protein complexes.

    Science.gov (United States)

    Fedeli, Chiara; Selvestrel, Francesco; Tavano, Regina; Segat, Daniela; Mancin, Fabrizio; Papini, Emanuele

    2013-07-01

    We tested whether phagocytic monocytes/macrophages are more susceptible than nonphagocytes to nanoparticle (NP) toxicity. We compared in vitro cell death and proinflammatory cytokine production in human monocytes, macrophages, lymphocytes and HeLa cells due to synthetic amorphous silica (SiO2)-NPs in different serum concentrations and correlated them with cellular uptake and distribution. Phagocytes were approximately ten-times more sensitive than nonphagocytes to SiO2-NPs and more effectively endocytosed SiO2-NP-serum protein nanoagglomerates, so determining their accumulation in acidic endocytic compartments well beyond a critical/cytotoxic threshold. Monocyte/macrophage death was paralleled by cytokine secretion. The physiological specialization of monocytes/macrophages to effectively capture NPs may expose them to the risk of catastrophic inflammatory death upon saturation of their maximal storage capacity.

  20. Development, evaluation, and laboratory validation of immunoassays for the diagnosis of equine infectious anemia (EIA) using recombinant protein produced from a synthetic p26 gene of EIA virus.

    Science.gov (United States)

    Singha, Harisankar; Goyal, Sachin K; Malik, Praveen; Khurana, Sandip K; Singh, Raj K

    2013-12-01

    Equine infectious anemia (EIA)-a retroviral disease caused by equine infectious anemia virus (EIAV)-is a chronic, debilitating disease of horses, mules, and donkeys. EIAV infection has been reported worldwide and is recognized as pathogen of significant economic importance to the horse industry. This disease falls under regulatory control program in many countries including India. Control of EIA is based on identification of inapparent carriers by detection of antibodies to EIAV in serologic tests and "Stamping Out" policy. The current internationally accepted test for diagnosis of EIA is the agar gel immune-diffusion test (AGID), which detects antibodies to the major gag gene (p26) product. The objective of this study was to develop recombinant p26 based in-house immunoassays [enzyme linked immunosorbent assays (ELISA), and AGID] for EIA diagnosis. The synthetic p26 gene of EIAV was expressed in Escherichia coli and diagnostic potential of recombinant p26 protein were evaluated in ELISA and AGID on 7,150 and 1,200 equine serum samples, respectively, and compared with commercial standard AGID kit. The relative sensitivity and specificity of the newly developed ELISA were 100 and 98.6 %, respectively. Whereas, relative sensitivity and specificity of the newly developed AGID were in complete agreement in respect to commercial AGID kit. Here, we have reported the validation of an ELISA and AGID on large number of equine serum samples using recombinant p26 protein produced from synthetic gene which does not require handling of pathogenic EIAV. Since the indigenously developed reagents would be economical than commercial diagnostic kit, the rp26 based-immunoassays could be adopted for the sero-diagnosis and control of EIA in India.

  1. PEDOT doped with algal, mammalian and synthetic dopants: polymer properties, protein and cell interactions, and influence of electrical stimulation on neuronal cell differentiation.

    Science.gov (United States)

    Molino, P J; Garcia, L; Stewart, E M; Lamaze, M; Zhang, B; Harris, A R; Winberg, P; Wallace, G G

    2018-03-28

    Poly(3,4-ethylenedioxythiophene) (PEDOT) films were electrochemically polymerised with several synthetic (dodecylbenzosulfonic acid (DBSA)) and biological (dextran sulphate (DS), chondroitin sulphate (CS), alginic acid (ALG) and ulvan (ULV)) dopant anions, and their physical, mechanical and electrochemical properties characterised. PEDOT films incorporating the biological dopants ALG and ULV produced films of the greatest surface roughness (46 ± 5.1 and 31 ± 1.9 nm, respectively), and demonstrated significantly lower shear modulus values relative to all other PEDOT films (2.1 ± 0.1 and 1.2 ± 0.2 MPa, respectively). Quartz crystal microgravimetry was used to study the adsorption of the important extracellular matrix protein fibronectin, revealing protein adsorption to be greatest on PEDOT doped with DS, followed by DBSA, ULV, CS and ALG. Electrical stimulation experiments applying a pulsed current using a biphasic waveform (250 Hz) were undertaken using PEDOT doped with either DBSA or ULV. Electrical stimulation had a significant influence on cell morphology and cell differentiation for PEDOT films with either dopant incorporated, with the degree of branching per cell increased by 10.5× on PEDOT-DBSA and 6.5× on PEDOT-ULV relative to unstimulated cells, and mean neurite length per cell increasing 2.6× and 2.2× on stimulated vs. unstimulated PEDOT-DBSA and PEDOT-ULV, respectively. We demonstrate the cytocompatibility of synthetic and biologically doped PEDOT biomaterials, including the new algal derived polysaccharide dopant ulvan, which, along with DBSA doped PEDOT, is shown to significantly enhance the differentiation of PC12 neuronal cells under electrical stimulation.

  2. Definition of an 18-mer Synthetic Peptide Derived from the GB virus C E1 Protein as a New HIV-1 Entry Inhibitor.

    Science.gov (United States)

    Gómara, M J; Sánchez-Merino, V; Paús, A; Merino-Mansilla, A; Gatell, J M; Yuste, E; Haro, I

    2016-06-01

    A slower progression of AIDS and increased survival in GBV-C positive individuals, compared with GBV-C negative individuals has been demonstrated; while the loss of GBV-C viremia was closely associated with a rise in mortality and increased progression of AIDS. Following on from the previous reported studies that support the thesis that GBV-C E2 interferes with HIV-1 entry, in this work we try to determine the role of the GBV-C E1 protein in HIV-1 inhibition. The present work involves the construction of several overlapping peptide libraries scanning the GBV-C E1 protein and the evaluation of their anti-HIV activity. Specifically, an 18-mer synthetic peptide from the GBV-C E1 protein, E1(139-156), showed similar antiviral activity against HIVs from viruses from clades A, B, C, D and AE. Competitive ELISA using specific gp41-targeting mAbs, fluorescence resonance energy transfer as well as haemolysis assays demonstrated that this E1 peptide sequence interacts with the highly conserved N-terminal region of the HIV-1 gp41 (the fusion peptide) which is essential for viral entry. We have defined a novel peptide lead compound and described the inhibitory role of a highly conserved fragment of the E1 protein. The results together allow us to consider the non-pathogenic E1 GBV-C protein as an attractive source of peptides for the development of novel anti-HIV therapies. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A Synthetic Peptide with the Putative Iron Binding Motif of Amyloid Precursor Protein (APP) Does Not Catalytically Oxidize Iron

    NARCIS (Netherlands)

    Honarmand Ebrahimi, K.; Hagedoorn, P.L.; Hagen, W.R.

    2012-01-01

    The ?-amyloid precursor protein (APP), which is a key player in Alzheimer's disease, was recently reported to possess an Fe(II) binding site within its E2 domain which exhibits ferroxidase activity [Duce et al. 2010, Cell 142: 857]. The putative ligands of this site were compared to those in the

  4. Racemic crystallography of synthetic protein enantiomers used to determine the X-ray structure of plectasin by direct methods

    Energy Technology Data Exchange (ETDEWEB)

    Mandal, Kalyaneswar; Pentelute, Brad L.; Tereshko, Valentina; Thammavongsa, Vilasak; Schneewind, Olaf; Kossiakoff, Anthony A.; Kent, Stephen B.H.; (UC)

    2009-06-30

    We describe the use of racemic crystallography to determine the X-ray structure of the natural product plectasin, a potent antimicrobial protein recently isolated from fungus. The protein enantiomers L-plectasin and D-plectasin were prepared by total chemical synthesis; interestingly, L-plectasin showed the expected antimicrobial activity, while D-plectasin was devoid of such activity. The mirror image proteins were then used for racemic crystallization. Synchrotron X-ray diffraction data were collected to atomic resolution from a racemic plectasin crystal; the racemate crystallized in the achiral centrosymmetric space group P1 with one L-plectasin molecule and one D-plectasin molecule forming the unit cell. Dimer-like intermolecular interactions between the protein enantiomers were observed, which may account for the observed extremely low solvent content (13%-15%) and more highly ordered nature of the racemic crystals. The structure of the plectasin molecule was well defined for all 40 amino acids and was generally similar to the previously determined NMR structure, suggesting minimal impact of the crystal packing on the plectasin conformation.

  5. Humoral and cellular immune responses to synthetic peptides of the Leishmania donovani kinetoplastid membrane protein-11

    DEFF Research Database (Denmark)

    Jensen, A T; Gasim, S; Ismail, A

    1998-01-01

    Native kinetoplastid membrane protein-11 (KMP-11), purified from crude extracts of Leishmania donovani parasites, activates T cells from individuals who have recovered from visceral leishmaniasis. In this work we used three 38-mer peptides spanning the amino acid sequence of the L. donovani KMP-11...

  6. Synthetic environments

    Science.gov (United States)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  7. Modifying the vicinity of the isopeptide bond to reveal differential behavior of ubiquitin chains with interacting proteins: organic chemistry applied to synthetic proteins.

    Science.gov (United States)

    Haj-Yahya, Najat; Haj-Yahya, Mahmood; Castañeda, Carlos A; Spasser, Liat; Hemantha, Hosahalli P; Jbara, Muhammad; Penner, Marlin; Ciechanover, Aaron; Fushman, David; Brik, Ashraf

    2013-10-11

    In every direction: Chemical protein synthesis allows the construction of 14 di-ubiquitin analogues modified in the vicinity of the isopeptide bond to examine their behavior with deubiquitinases and ubiquitin binding domains. The results set the ground for the generation of unique probes for studying the interactions of these chains with various ubiquitin-interacting proteins. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Insulinotropic and muscle protein synthetic effects of branched-chain amino acids: potential therapy for type 2 diabetes and sarcopenia.

    OpenAIRE

    Manders, RJ; Little, JP; Forbes, SC; Candow, DG

    2012-01-01

    The loss of muscle mass and strength with aging (i.e., sarcopenia) has a negative effect on functional independence and overall quality of life. One main contributing factor to sarcopenia is the reduced ability to increase skeletal muscle protein synthesis in response to habitual feeding, possibly due to a reduction in postprandial insulin release and an increase in insulin resistance. Branched-chain amino acids (BCAA), primarily leucine, increases the activation of pathways involved in muscl...

  9. Synthetic peptides from two Pf sporozoite invasion-associated proteins specifically interact with HeLa and HepG2 cells.

    Science.gov (United States)

    Arévalo-Pinzón, Gabriela; Curtidor, Hernando; Muñoz, Marina; Patarroyo, Manuel A; Patarroyo, Manuel E

    2011-09-01

    Two recently described molecules have been associated with sporozoite traversal ability and hepatocyte entry: sporozoite invasion-associated proteins (SIAP)-1 and -2. The HeLa and HepG2 cell binding ability of synthetic peptides spanning the whole SIAP-1 and -2 sequences has been studied in the search for identifying these proteins' functionally active specific regions. Twelve HepG-2 and seventeen HeLa cell high-activity binding peptides (HABPs) have been identified in SIAP-1, 8 of them having high specific binding affinity for both cell lines. Four HepG2 HABPs and two HeLa HABPs have been identified in SIAP-2, one of them interacting with both HeLa and HepG2 cells. SIAP-1 and SIAP-2 HABPs bound specifically and saturably to heparin sulfate and chondroitin sulfate-type membrane receptors on host cells. Circular dichroism assays have shown high α-helix content in SIAP-1 and SIAP-2 HABP secondary structure. Immunofluorescence analysis has revealed that specific peptides against SIAP proteins are highly immunogenic in mice and that anti-SIAP-1 and -2 antibodies recognize the native protein in Plasmodium falciparum sporozoites. Polymorphism studies have shown that a most SIAP-1 and -2 HABPs are conserved among P. falciparum strains. Our results have suggested that SIAP-1 and -2 participate in host-pathogen interactions during cell-traversal and hepatocyte invasion and highlighted the relevance of the ongoing identification and study of potentially new molecules when designing a fully protective antimalarial vaccine. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Activation of Fetal γ-globin Gene Expression via Direct Protein Delivery of Synthetic Zinc-finger DNA-Binding Domains

    Directory of Open Access Journals (Sweden)

    Mir A Hossain

    2016-01-01

    Full Text Available Reactivation of γ-globin expression has been shown to ameliorate disease phenotypes associated with mutations in the adult β-globin gene, including sickle cell disease. Specific mutations in the promoter of the γ-globin genes are known to prevent repression of the genes in the adult and thus lead to hereditary persistence of fetal hemoglobin. One such hereditary persistence of fetal hemoglobin is associated with a sequence located 567 bp upstream of the Gγ-globin gene which assembles a GATA-containing repressor complex. We generated two synthetic zinc-finger DNA-binding domains (ZF-DBDs targeting this sequence. The -567Gγ ZF-DBDs associated with high affinity and specificity with the target site in the γ-globin gene promoter. We delivered the -567Gγ ZF-DBDs directly to primary erythroid cells. Exposure of these cells to the recombinant -567Gγ ZF-DBDs led to increased expression of the γ-globin gene. Direct protein delivery of ZF-DBDs that compete with transcription regulatory proteins will have broad implications for modulating gene expression in analytical or therapeutic settings.

  11. Evaluation of a synthetic peptide from the Taenia saginata 18kDa surface/secreted oncospheral adhesion protein for serological diagnosis of bovine cysticercosis.

    Science.gov (United States)

    Guimarães-Peixoto, Rafaella Paola Meneguete; Pinto, Paulo Sérgio Arruda; Santos, Marcus Rebouças; Polêto, Marcelo Depólo; Silva, Letícia Ferreira; Silva-Júnior, Abelardo

    2016-12-01

    Bovine cysticercosis is a zoonotic infection widely spread throughout Brazil, creating a burden on hygiene maintenance and the economy. Diagnosis of cysticercosis usually relies on post mortem inspection of carcasses in slaughterhouses. This detection method provides only low sensitivity. Recent advancements have improved the performance of serologic tests, such as ELISA, providing greater sensitivity and specificity. The objective of the current study was to identify and evaluate a synthetic peptide derived from the Taenia saginata 18kDa oncospheric surface protein for the diagnosis of bovine cysticercosis in ELISA. Test performance of the identified peptide was compared to an ELISA based on a heterologous crude Taenia crassiceps antigen (Tcra), widely used for the sero-diagnosis of bovine cysticercosis. Based on the primary sequence of an in silico structural model of the 18kDa protein, an epitope region designated EP1 was selected (46-WDTKDMAGYGVKKIEV-61). The peptide derived from this region yielded 91.6% (CI=80-96%) sensitivity and 90% (CI=82-95%) specificity when used in an ELISA, whereas the crude antigen yielded 70% (CI=56-8%) sensitivity and 82% (CI=73-89%) specificity. Thus, we conclude that EP1 has higher diagnostic potential for detecting bovine cysticercosis than the crude antigen Tcra. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Synthetic Rutile

    International Nuclear Information System (INIS)

    Burastero, J.

    1975-01-01

    This work is about the laboratory scale investigation of the conditions in the rutile synthetic production from one me nita in Aguas Dulces reservoir. The iron mineral is chlorinated and volatilized selectively leaving a residue enriched in titanium dioxide which can be used as a substitute of rutile mineral

  13. Determination of low isotopic enrichment of L-[1-C-13]valine by gas chromatography combustion isotope ratio mass spectrometry : a robust method for measuring protein fractional synthetic rates in vivo

    NARCIS (Netherlands)

    Reijngoud, DJ; Hellstern, G; Elzinga, H; de Sain-van der Velden, MG; Okken, A; Stellaard, F

    A method was developed for measuring protein fractional synthetic rates using the N-methoxycarbonylmethyl ester (MCM) derivative of L-[1-C-13]valine and on-line gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). The derivatization procedure can be performed rapidly and GC

  14. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Erica M. [Center for Environmental Security and Security Defense Systems Initiative, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287-5904 (United States); Colquhoun, David R.; Schwab, Kellogg J. [Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205 (United States); Halden, Rolf U., E-mail: halden@asu.edu [Center for Environmental Security and Security Defense Systems Initiative, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287-5904 (United States); Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205 (United States)

    2015-04-09

    Highlights: • Mass spectrometry-based methods for norovirus quantification are developed. • Absolute quantification is achieved using internal heavy isotope-labeled standards. • A single labeled peptide serves in two distinct detection strategies. • These methods are validated for food, water, and soil analysis. • MS-based detection limits are lowered by two orders of magnitude. - Abstract: Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences.

  15. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry

    International Nuclear Information System (INIS)

    Hartmann, Erica M.; Colquhoun, David R.; Schwab, Kellogg J.; Halden, Rolf U.

    2015-01-01

    Highlights: • Mass spectrometry-based methods for norovirus quantification are developed. • Absolute quantification is achieved using internal heavy isotope-labeled standards. • A single labeled peptide serves in two distinct detection strategies. • These methods are validated for food, water, and soil analysis. • MS-based detection limits are lowered by two orders of magnitude. - Abstract: Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences

  16. Identification and characterization of epitopes on Plasmodium knowlesi merozoite surface protein-142 (MSP-142) using synthetic peptide library and phage display library.

    Science.gov (United States)

    Cheong, Fei Wen; Fong, Mun Yik; Lau, Yee Ling

    2016-02-01

    Plasmodium knowlesi can cause potentially life threatening human malaria. The Plasmodium merozoite surface protein-142 (MSP-142) is a potential target for malaria blood stage vaccine, and for diagnosis of malaria. Two epitope mapping techniques were used to identify the potential epitopes within P. knowlesi MSP-142. Nine and 14 potential epitopes were identified using overlapping synthetic peptide library and phage display library, respectively. Two regions on P. knowlesi MSP-142 (amino acid residues 37-95 and residues 240-289) were identified to be the potential dominant epitope regions. Two of the prominent epitopes, P10 (TAKDGMEYYNKMGELYKQ) and P31 (RCLLGFKEVGGKCVPASI), were evaluated using mouse model. P10- and P31-immunized mouse sera reacted with recombinant P. knowlesi MSP-142, with the IgG isotype distribution of IgG2b>IgG1>IgG2a>IgG3. Significant higher level of cytokines interferon-gamma and interleukin-2 was detected in P31-immunized mice. Both P10 and P31 could be the suitable epitope candidates to be used in malaria vaccine designs and immunodiagnostic assays, provided further evaluation is needed to validate the potential uses of these epitopes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Interaction of a synthetic peptide corresponding to the N-terminus of canine distemper virus fusion protein with phospholipid vesicles: a biophysical study.

    Science.gov (United States)

    Aranda, Francisco J; Teruel, José A; Ortiz, Antonio

    2003-12-03

    The F protein of canine distemper virus (CDV) is a classic type I glycoprotein formed by two polypeptides, F1 and F2. The N-terminal regions of the F1 polypeptides of CDV, measles virus and other paramyxoviruses present moderate to high homology, supporting the existence of a high conservation within these structures, which emphasises its role in viral-host cell membrane fusion. This N-terminal polypeptide is usually termed the fusion peptide. The fusion peptides of most viral fusion-mediating glycoproteins contain a high proportion of hydrophobic amino acids, which facilitates its insertion into target membranes during fusion. In this work we report on the interaction of a 31-residue synthetic peptide (FP31) corresponding to the N terminus of CDV F1 protein with phospholipid membranes composed of various phospholipids, as studied by means of various biophysical techniques. FTIR investigation of FP31 secondary structure in aqueous medium and in membranes resulted in a major proportion of alpha-helical structure which increased upon membrane insertion. Differential scanning calorimetry (DSC) showed that the presence of concentrations of FP31 as low as 0.1 mol%, in mixtures with L-alpha-dimyristoylphosphatidylcholine (DMPC), L-alpha-dipalmitoylphosphatidylcholine (DPPC) and L-alpha-distearoylphosphatidylcholine (DSPC), already affected the thermotropic properties of the gel to liquid-crystalline phase transition. In mixtures with the three lipids, increasing the concentration of peptide made the pretransition to disappear, and lowered and broadened the main transition. This effect was slightly stronger as the acyl chain length of the phospholipid grew larger. In the corresponding partial phase diagrams, no immiscibilities or critical points were observed. FTIR showed that incorporation of 1 mol% of peptide in DPPC shifted the antisymmetric and symmetric CH2 stretching bands to higher values, indicating the existence of an additional disordering of the acyl chain

  18. Synthetic Cannabinoids.

    Science.gov (United States)

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  19. Synthetic Development of New 3-(4-Arylmethylaminobutyl-5-arylidene-rhodanines under Microwave Irradiation and Their Effects on Tumor Cell Lines and against Protein Kinases

    Directory of Open Access Journals (Sweden)

    Camille Déliko Dago

    2015-07-01

    Full Text Available A new route to 3-(4-arylmethylaminobutyl-5-arylidene-2-thioxo-1,3-thiazolidine-4-one 9 was developed in six steps from commercial 1,4-diaminobutane 1 as starting material. The key step of this multi-step synthesis involved a solution phase “one-pot two-steps” approach assisted by microwave dielectric from N-(arylmethylbutane-1,4-diamine hydrochloride 6a–f (as source of the first point diversity and commercial bis-(carboxymethyl-trithiocarbonate reagent 7 for construction of the rhodanine platform. This platform was immediately functionalized by Knoevenagel condensation under microwave irradiation with a series of aromatic aldehydes 3 as second point of diversity. These new compounds were prepared in moderate to good yields and the fourteen synthetic products 9a–n have been obtained with a Z-geometry about their exocyclic double bond. These new 5-arylidene rhodanines derivatives 9a–n were tested for their kinase inhibitory potencies against four protein kinases: Human cyclin-dependent kinase 5-p25, HsCDK5-p25; porcine Glycogen Synthase Kinase-3, GSK-3α/β; porcine Casein Kinase 1, SsCK1 and human HsHaspin. They have also been evaluated for their in vitro inhibition of cell proliferation (HuH7 D12, Caco 2, MDA-MB 231, HCT 116, PC3, NCI-H727, HaCat and fibroblasts. Among of all these compounds, 9j presented selective micromolar inhibition activity on SsCK1 and 9i exhibited antitumor activities in the HuH7 D12, MDA-MBD231 cell lines.

  20. Synthetic High-Density Lipoprotein-Like Nanocarrier Improved Cellular Transport of Lysosomal Cholesterol in Human Sterol Carrier Protein-Deficient Fibroblasts.

    Science.gov (United States)

    Nam, Da-Eun; Kim, Ok-Kyung; Park, Yoo Kyoung; Lee, Jeongmin

    2016-01-01

    Sterol carrier protein-2 (SCP-2), which is not found in tissues of people with Zellweger syndrome, facilitates the movement of cholesterol within cells, resulting in abnormal accumulation of cholesterol in SCP-2-deficient cells. This study investigated whether synthetic high-density lipoprotein-like nanocarrier (sHDL-NC) improves the cellular transport of lysosomal cholesterol to plasma membrane in SCP-2-deficient fibroblasts. Human SCP-2-deficient fibroblasts were incubated with [(3)H-cholesterol]LDL as a source of cholesterol and sHDL-NC. The cells were fractionated by centrifugation permit tracking of [(3)H]-cholesterol from lysosome into plasma membrane. Furthermore, cellular content of cholesteryl ester as a storage form and mRNA expression of low-density lipoprotein (LDL) receptor were measured to support the cholesterol transport to plasma membrane. Incubation with sHDL-NC for 8 h significantly increased uptake of [(3)H]-cholesterol to lysosome by 53% and further enhanced the transport of [(3)H]-cholesterol to plasma membrane by 32%. Treatment with sHDL-NC significantly reduced cellular content of cholesteryl ester and increased mRNA expression of LDL receptor (LDL-R). In conclusion, sHDL-NC enables increased transport of lysosomal cholesterol to plasma membrane. In addition, these data were indirectly supported by decreased cellular content of cholesteryl ester and increased gene expression of LDL-R. Therefore, sHDL-NC may be a useful vehicle for transporting cholesterol, which may help to prevent accumulation of cholesterol in SCP-2-deficient fibroblasts.

  1. Synthetic Botany.

    Science.gov (United States)

    Boehm, Christian R; Pollak, Bernardo; Purswani, Nuri; Patron, Nicola; Haseloff, Jim

    2017-07-05

    Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  2. Synthetic Brainbows

    KAUST Repository

    Wan, Y.

    2013-06-01

    Brainbow is a genetic engineering technique that randomly colorizes cells. Biological samples processed with this technique and imaged with confocal microscopy have distinctive colors for individual cells. Complex cellular structures can then be easily visualized. However, the complexity of the Brainbow technique limits its applications. In practice, most confocal microscopy scans use different florescence staining with typically at most three distinct cellular structures. These structures are often packed and obscure each other in rendered images making analysis difficult. In this paper, we leverage a process known as GPU framebuffer feedback loops to synthesize Brainbow-like images. In addition, we incorporate ID shuffing and Monte-Carlo sampling into our technique, so that it can be applied to single-channel confocal microscopy data. The synthesized Brainbow images are presented to domain experts with positive feedback. A user survey demonstrates that our synthetic Brainbow technique improves visualizations of volume data with complex structures for biologists.

  3. Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea) and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein.

    Science.gov (United States)

    Wilkie, Iain C; Fassini, Dario; Cullorà, Emanuele; Barbaglio, Alice; Tricarico, Serena; Sugni, Michela; Del Giacco, Luca; Candia Carnevali, M Daniela

    2015-01-01

    The compass depressors (CDs) of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the baseline (i.e. unmanipulated) static mechanical properties of the CDs of Paracentrotus lividus by means of creep tests and incremental force-extension tests, and to determine the effects on their mechanical behaviour of a range of agents. Under constant load the CDs exhibited a three-phase creep curve, the mean coefficient of viscosity being 561±365 MPa.s. The stress-strain curve showed toe, linear and yield regions; the mean strain at the toe-linear inflection was 0.86±0.61; the mean Young's modulus was 18.62±10.30 MPa; and the mean tensile strength was 8.14±5.73 MPa. Hyaluronidase from Streptomyces hyalurolyticus had no effect on creep behaviour, whilst chondroitinase ABC prolonged primary creep but had no effect on secondary creep or on any force-extension parameters; it thus appears that neither hyaluronic acid nor sulphated glycosaminoglycans have an interfibrillar load transfer function in the CD. Acetylcholine, the muscarinic agonists arecoline and methacholine, and the nicotinic agonists nicotine and 1-[1-(3,4-dimethyl-phenyl)-ethyl]-piperazine produced an abrupt increase in CD viscosity; the CDs were not differentially sensitive to muscarinic or nicotinic agonists. CDs showed either no, or no consistent, response to adrenaline, L-glutamic acid, 5-hydroxytryptamine and γ-aminobutyric acid. Synthetic echinoid tensilin-like protein had a weak and inconsistent stiffening effect, indicating that, in contrast to holothurian tensilins, the echinoid molecule may not be involved in the regulation of collagenous tissue tensility. We compare in detail the mechanical behaviour of the CD with that of mammalian

  4. Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein.

    Directory of Open Access Journals (Sweden)

    Iain C Wilkie

    Full Text Available The compass depressors (CDs of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the baseline (i.e. unmanipulated static mechanical properties of the CDs of Paracentrotus lividus by means of creep tests and incremental force-extension tests, and to determine the effects on their mechanical behaviour of a range of agents. Under constant load the CDs exhibited a three-phase creep curve, the mean coefficient of viscosity being 561±365 MPa.s. The stress-strain curve showed toe, linear and yield regions; the mean strain at the toe-linear inflection was 0.86±0.61; the mean Young's modulus was 18.62±10.30 MPa; and the mean tensile strength was 8.14±5.73 MPa. Hyaluronidase from Streptomyces hyalurolyticus had no effect on creep behaviour, whilst chondroitinase ABC prolonged primary creep but had no effect on secondary creep or on any force-extension parameters; it thus appears that neither hyaluronic acid nor sulphated glycosaminoglycans have an interfibrillar load transfer function in the CD. Acetylcholine, the muscarinic agonists arecoline and methacholine, and the nicotinic agonists nicotine and 1-[1-(3,4-dimethyl-phenyl-ethyl]-piperazine produced an abrupt increase in CD viscosity; the CDs were not differentially sensitive to muscarinic or nicotinic agonists. CDs showed either no, or no consistent, response to adrenaline, L-glutamic acid, 5-hydroxytryptamine and γ-aminobutyric acid. Synthetic echinoid tensilin-like protein had a weak and inconsistent stiffening effect, indicating that, in contrast to holothurian tensilins, the echinoid molecule may not be involved in the regulation of collagenous tissue tensility. We compare in detail the mechanical behaviour of the CD with that

  5. Toxoplasma gondii-Derived Synthetic Peptides Containing B- and T-Cell Epitopes from GRA2 Protein Are Able to Enhance Mice Survival in a Model of Experimental Toxoplasmosis.

    Science.gov (United States)

    Bastos, Luciana M; Macêdo, Arlindo G; Silva, Murilo V; Santiago, Fernanda M; Ramos, Eliezer L P; Santos, Fabiana A A; Pirovani, Carlos P; Goulart, Luiz R; Mineo, Tiago W P; Mineo, José R

    2016-01-01

    Toxoplasmosis is a zoonosis distributed all over the world, which the etiologic agent is an intracellular protozoan parasite, Toxoplasma gondii. This disease may cause abortions and severe diseases in many warm-blood hosts, including humans, particularly the immunocompromised patients. The parasite specialized secretory organelles, as micronemes, rhoptries and dense granules, are critical for the successful parasitism. The dense granule protein 2 (GRA2) is a parasite immunogenic protein secreted during infections and previous studies have been shown that this parasite component is crucial for the formation of intravacuolar membranous nanotubular network (MNN), as well as for secretion into the vacuole and spatial organization of the parasites within the vacuole. In the present study, we produced a monoclonal antibody to GRA2 (C3C5 mAb, isotype IgG2b), mapped the immunodominant epitope of the protein by phage display and built GRA2 synthetic epitopes to evaluate their ability to protect mice in a model of experimental infection. Our results showed that synthetic peptides for B- and T-cell epitopes are able to improve survival of immunized animals. In contrast with non-immunized animals, the immunized mice with both B- and T-cell epitopes had a better balance of cytokines and demonstrated higher levels of IL-10, IL-4 and IL-17 production, though similar levels of TNF-α and IL-6 were observed. The immunization with both B- and T-cell epitopes resulted in survival rate higher than 85% of the challenged mice. Overall, these results demonstrate that immunization with synthetic epitopes for both B- and T-cells from GRA2 protein can be more effective to protect against infection by T. gondii.

  6. Toxoplasma gondii-derived synthetic peptides containing B- and T-cell epitopes from GRA2 protein are able to enhance mice survival in a model of experimental toxoplasmosis

    Directory of Open Access Journals (Sweden)

    Luciana Machado Bastos

    2016-06-01

    Full Text Available Toxoplasmosis is a zoonosis distributed all over the world, which the etiologic agent is an intracellular protozoan parasite, Toxoplasma gondii. This disease may cause abortions and severe diseases in many warm-blood hosts, including humans, particularly the immunocompromised patients. The parasite specialized secretory organelles, as micronemes, rhoptries and dense granules, are critical for the successful parasitism. The dense granule protein 2 (GRA2 is a parasite immunogenic protein secreted during infections and previous studies have been shown that this parasite component is crucial for the formation of intravacuolar membranous nanotubular network (MNN, as well as for secretion into the vacuole and spatial organization of the parasites within the vacuole. In the present study, we produced a monoclonal antibody to GRA2 (C3C5 mAb, isotype IgG2b, mapped the immunodominant epitope of the protein by phage display and built GRA2 synthetic epitopes to evaluate their ability to protect mice in a model of experimental infection. Our results showed that synthetic peptides for B- and T-cell epitopes are able to improve survival of immunized animals. In contrast with non-immunized animals, the immunized mice with both B- and T-cell epitopes had a better balance of cytokines and demonstrated higher levels of IL-10, IL-4 and IL-17 production, though similar levels of TNF-alpha and IL-6 were observed. The immunization with both B- and T-cell epitopes resulted in survival rate higher than 85% of the challenged mice. Overall, these results demonstrate that immunization with synthetic epitopes for both B- and T-cells from GRA2 protein can be more effective to protect against infection by T. gondii.

  7. Open questions in origin of life: experimental studies on the origin of nucleic acids and proteins with specific and functional sequences by a chemical synthetic biology approach

    DEFF Research Database (Denmark)

    Adamala, K.; Anella, F.; Wieczorek, R.

    2014-01-01

    sequences among a vast array of possible ones, the huge "sequence space", leading to the question "why these macromolecules, and not the others?" We have recently addressed these questions by using a chemical synthetic biology approach. In particular, we have tested the catalytic activity of small peptides...

  8. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  9. Multiple reaction monitoring-based determination of bovine α-lactalbumin in infant formulas and whey protein concentrates by ultra-high performance liquid chromatography-tandem mass spectrometry using tryptic signature peptides and synthetic peptide standards.

    Science.gov (United States)

    Zhang, Jingshun; Lai, Shiyun; Zhang, Yu; Huang, Baifen; Li, Duo; Ren, Yiping

    2012-05-21

    The determination of α-lactalbumin in various dairy products attracts wide attention in multidiscipline fields because of its nutritional and biological functions. In the present study, we quantified the bovine α-lactalbumin in various infant formulas and whey protein concentrates using ultra-high performance liquid chromatography coupled to tandem mass spectrometer in multiple reaction monitoring mode. Bovine α-lactalbumin was quantified by employing the synthetic internal standard based on the molar equivalent relationship among the internal standard, bovine α-lactalbumin and their signature peptides. This study especially focused on the recovery rates of the sample preparation procedure and robust quantification of total bovine α-lactalbumin in its native and thermally denatured form with a synthetic internal standard KILDKVGINNYWLAHKALCSE. The observed recovery rates of bovine α-lactalbumin ranged from 95.8 to 100.6% and the reproducibility was excellent (RSDpeptide level proved to be highly suitable for measuring bovine α-lactalbumin in infant formulas and whey protein concentrates, avoiding forgoing the thermally induced denatured α-lactalbumin caused by the technological processing. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Peng, Nan; Deng, Ling; Mei, Yuxia

    2012-01-01

    levels of target gene expression. More strikingly, N-terminal amino acid sequencing of recombinant proteins unraveled that the protein synthesized from pEXA-N-lacS lacked the designed 6×His tag and that translation initiation did not start at the ATG codon of the fusion gene. Instead, it started...

  12. Differential expression of proteins and genes in the lag phase of Lactococcus lactis subsp lactis grown in synthetic medium and reconstituted skim milk

    DEFF Research Database (Denmark)

    Larsen, N.; Boye, Mette; Jakobsen, Marianne

    2006-01-01

    We investigated protein and gene expression in the lag phase of Lactococcus lactis subsp. lactis CNRZ 157 and compared it to the exponential and stationary phases. By means of two-dimensional polyacrylamide gel electrophoresis, 28 highly expressed lag-phase proteins, implicated in nucleotide meta...

  13. Synthetic antifreeze peptide

    OpenAIRE

    1991-01-01

    A synthetic antifreeze peptide and a synthetic gene coding for the antifreeze peptide have been produced. The antifreeze peptide has a greater number of repeating amino acid sequences than is present in the native antifreeze peptides from winter flounder upon which the synthetic antifreeze peptide was modeled. Each repeating amino acid sequence has two polar amino acid residues which are spaced a controlled distance apart so that the antifreeze peptide may inhibit ice formation. The synthetic...

  14. [SYNTHETIC PEPTIDE VACCINES].

    Science.gov (United States)

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  15. Full protection in mink against mink enteritis virus with new generation canine parvovirus vaccines based on synthetic peptide or recombinant protein

    DEFF Research Database (Denmark)

    Langeveld, J. P.; Kamstrup, Søren; Uttenthal, Åse

    1995-01-01

    Two recently developed vaccines—one based on synthetic peptide and one based on recombinant capsid protein—fully protected dogs against heavy experimental canine parvovirus (CPV) infection. The high sequence homology (>98%) and antigenic similarity between CPV and mink enteritis virus (MEV), feline...... on inactivated virus. Surprisingly, this protection was obtained after only a single injection. Furthermore, the vaccinal dose of 150 μg of conjugated peptide or 3 μg of recombinant VP2 particles per animal, are sufficiently low to be cost-effective and applicable on a large scale....... panleukopenia virus, and raccoon parvovirus, suggest that both vaccines could protect mink, cats and raccoons against these respective host range variants. This was tested in mink and turned out to be the case. The two vaccines were fully protective and as effective as a conventional commercial vaccine based...

  16. Full protection in mink against mink enteritis virus with new generation canine parvovirus vaccines based on synthetic peptide or recombinant protein

    DEFF Research Database (Denmark)

    Langeveld, J. P.; Kamstrup, Søren; Uttenthal, Åse

    1995-01-01

    Two recently developed vaccines—one based on synthetic peptide and one based on recombinant capsid protein—fully protected dogs against heavy experimental canine parvovirus (CPV) infection. The high sequence homology (>98%) and antigenic similarity between CPV and mink enteritis virus (MEV), feline...... panleukopenia virus, and raccoon parvovirus, suggest that both vaccines could protect mink, cats and raccoons against these respective host range variants. This was tested in mink and turned out to be the case. The two vaccines were fully protective and as effective as a conventional commercial vaccine based...... on inactivated virus. Surprisingly, this protection was obtained after only a single injection. Furthermore, the vaccinal dose of 150 μg of conjugated peptide or 3 μg of recombinant VP2 particles per animal, are sufficiently low to be cost-effective and applicable on a large scale....

  17. Synergistic Synthetic Biology: Units in Concert

    Science.gov (United States)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications. PMID:25022769

  18. Synergistic Synthetic Biology: Units in Concert

    International Nuclear Information System (INIS)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications.

  19. Repurposing ribosomes for synthetic biology.

    Science.gov (United States)

    Liu, Yi; Kim, Do Soon; Jewett, Michael C

    2017-10-01

    The translation system is the cell's factory for protein biosynthesis, stitching together hundreds to thousands of amino acids into proteins, which are required for the structure, function, and regulation of living systems. The extraordinary synthetic capability of this system, which includes the ribosome and its associated factors required for polymerization, has driven extensive efforts to harness it for societal use in areas as diverse as energy, materials, and medicine. A powerful example is recombinant protein production, which has impacted the lives of patients through the synthesis of biopharmaceuticals such as insulin. In nature, however, only limited sets of monomers are utilized, thereby resulting in limited sets of biopolymers (i.e., proteins). Expanding nature's repertoire of ribosomal monomers could yield new classes of enzymes, therapeutics, materials, and chemicals with diverse, genetically encoded chemistry. Here, we discuss recent progress towards engineering ribosomes both in vivo and in vitro. These fundamental and technical breakthroughs open doors for advanced applications in biotechnology and synthetic biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  1. Synthetic Biomimetic Membranes and Their Sensor Applications

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2012-07-01

    Full Text Available Synthetic biomimetic membranes provide biological environments to membrane proteins. By exploiting the central roles of biological membranes, it is possible to devise biosensors, drug delivery systems, and nanocontainers using a biomimetic membrane system integrated with functional proteins. Biomimetic membranes can be created with synthetic lipids or block copolymers. These amphiphilic lipids and polymers self-assemble in an aqueous solution either into planar membranes or into vesicles. Using various techniques developed to date, both planar membranes and vesicles can provide versatile and robust platforms for a number of applications. In particular, biomimetic membranes with modified lipids or functional proteins are promising platforms for biosensors. We review recent technologies used to create synthetic biomimetic membranes and their engineered sensors applications.

  2. [From synthetic biology to synthetic humankind].

    Science.gov (United States)

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  3. Synthetic Cathinones ("Bath Salts")

    Science.gov (United States)

    ... cathinones? Behavioral therapy can be used to treat addiction to synthetic cathinones. Examples include: cognitive-behavioral therapy contingency management, or motivational incentives—providing rewards to ...

  4. Immobilization by Surface Conjugation of Cyclic Peptides for Effective Mimicry of the HCV-Envelope E2 Protein as a Strategy toward Synthetic Vaccines.

    Science.gov (United States)

    Meuleman, Theodorus J; Dunlop, James I; Owsianka, Anna M; van de Langemheen, Helmus; Patel, Arvind H; Liskamp, Rob M J

    2018-02-19

    Mimicry of the binding interface of antibody-antigen interactions using peptide-based modulators (i.e., epitope mimics) has promising applications for vaccine design. These epitope mimics can be synthesized in a streamlined and straightforward fashion, thereby allowing for high-throughput analysis. The design of epitope mimics is highly influenced by their spatial configuration and structural conformation. It is widely assumed that for proper mimicry sufficient conformational constraints have to be implemented. This paper describes the synthesis of bromide derivatives functionalized with a flexible TEG linker equipped with a thiol-moiety that could be used to support cyclic or linear peptides. The cyclic and linear epitope mimics were covalently conjugated via the free thiol-moiety on maleimide-activated plate surfaces. The resulting covalent, uniform, and oriented coated surface of cyclic or linear epitope mimics were subjected to an ELISA to investigate the effect of peptide cyclization with respect to mimicry of an antigen-antibody interaction of the HCV E2 glycoprotein. To the best of our knowledge, the benefit of cyclized peptides over linear peptides has been clearly demonstrated here for the first time. Cyclic epitope mimics, and not the linear epitope mimics, demonstrated specificity toward their monoclonal antibodies HC84.1 and V3.2, respectively. The described strategy for the construction of epitope mimics shows potential for high-throughput screening of key binding residues by simply changing the amino acid sequences within synthetic peptides. In this way, leucine-438 has been identified as a key binding residue for binding monoclonal antibody V3.2.

  5. Obesity Appears to Be Associated With Altered Muscle Protein Synthetic and Breakdown Responses to Increased Nutrient Delivery in Older Men, but Not Reduced Muscle Mass or Contractile Function.

    Science.gov (United States)

    Murton, Andrew J; Marimuthu, Kanagaraj; Mallinson, Joanne E; Selby, Anna L; Smith, Kenneth; Rennie, Michael J; Greenhaff, Paul L

    2015-09-01

    Obesity is increasing, yet despite the necessity of maintaining muscle mass and function with age, the effect of obesity on muscle protein turnover in older adults remains unknown. Eleven obese (BMI 31.9 ± 1.1 kg · m(-2)) and 15 healthy-weight (BMI 23.4 ± 0.3 kg · m(-2)) older men (55-75 years old) participated in a study that determined muscle protein synthesis (MPS) and leg protein breakdown (LPB) under postabsorptive (hypoinsulinemic-euglycemic clamp) and postprandial (hyperinsulinemic hyperaminoacidemic-euglycemic clamp) conditions. Obesity was associated with systemic inflammation, greater leg fat mass, and patterns of mRNA expression consistent with muscle deconditioning, whereas leg lean mass, strength, and work done during maximal exercise were no different. Under postabsorptive conditions, MPS and LPB were equivalent between groups, whereas insulin and amino acid administration increased MPS in only healthy-weight subjects and was associated with lower leg glucose disposal (LGD) (63%) in obese men. Blunting of MPS in the obese men was offset by an apparent decline in LPB, which was absent in healthy-weight subjects. Lower postprandial LGD in obese subjects and blunting of MPS responses to amino acids suggest that obesity in older adults is associated with diminished muscle metabolic quality. This does not, however, appear to be associated with lower leg lean mass or strength. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Roles of adjuvant and route of vaccination in antibody response and protection engendered by a synthetic matrix protein 2-based influenza A virus vaccine in the mouse

    Directory of Open Access Journals (Sweden)

    Cudic Mare

    2007-10-01

    Full Text Available Abstract Background The M2 ectodomain (M2e of influenza A virus (IAV strains that have circulated in humans during the past 90 years shows remarkably little structural diversity. Since M2e-specific antibodies (Abs are capable of restricting IAV replication in vivo but are present only at minimal concentration in human sera, efforts are being made to develop a M2e-specific vaccine. We are exploring a synthetic multiple antigenic peptide (MAP vaccine and here report on the role of adjuvants (cholera toxin and immunostimulatory oligodeoxynucleotide and route of immunization on Ab response and strength of protection. Results Independent of adjuvants and immunization route, on average 87% of the M2e-MAP-induced Abs were specific for M2e peptide and a variable fraction of these M2e(pep-specific Abs (average 15% cross-reacted with presumably native M2e expressed by M2-transfected cells. The titer of these cross-reactive M2e(pep-nat-specific Abs in sera of parenterally immunized mice displayed a sigmoidal relation to level of protection, with EC50 of ~20 μg Ab/ml serum, though experiments with passive M2e(pep-nat Abs indicated that serum Abs did not fully account for protection in parenterally vaccinated mice, particularly in upper airways. Intranasal vaccination engendered stronger protection and a higher proportion of G2a Abs than parenteral vaccination, and the strength of protection failed to correlate with M2e(pep-nat-specific serum Ab titers, suggesting a role of airway-associated immunity in protection of intranasally vaccinated mice. Intranasal administration of M2e-MAP without adjuvant engendered no response but coadministration with infectious IAV slightly enhanced the M2e(pep-nat Ab response and protection compared to vaccination with IAV or adjuvanted M2e-MAP alone. Conclusion M2e-MAP is an effective immunogen as ~15% of the total M2e-MAP-induced Ab response is of desired specificity. While M2e(pep-nat-specific serum Abs have an important

  7. Quantum synthetic aperture radar

    Science.gov (United States)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.

    2017-05-01

    Synthetic aperture radar (SAR) uses sensor motion to generate finer spatial resolution of a given target area. In this paper we explore the theoretical potential of quantum synthetic aperture quantum radar (QSAR). We provide theoretical analysis and simulation results which suggest that QSAR can provide improved detection performance over classical SAR in the high-noise low-brightness regime.

  8. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  9. Thermostable proteins bioprocesses: The activity of restriction endonuclease-methyltransferase from Thermus thermophilus (RM.TthHB27I cloned in Escherichia coli is critically affected by the codon composition of the synthetic gene.

    Directory of Open Access Journals (Sweden)

    Daria Krefft

    Full Text Available Obtaining thermostable enzymes (thermozymes is an important aspect of biotechnology. As thermophiles have adapted their genomes to high temperatures, their cloned genes' expression in mesophiles is problematic. This is mainly due to their high GC content, which leads to the formation of unfavorable secondary mRNA structures and codon usage in Escherichia coli (E. coli. RM.TthHB27I is a member of a family of bifunctional thermozymes, containing a restriction endonuclease (REase and a methyltransferase (MTase in a single polypeptide. Thermus thermophilus HB27 (T. thermophilus produces low amounts of RM.TthHB27I with a unique DNA cleavage specificity. We have previously cloned the wild type (wt gene into E. coli, which increased the production of RM.TthHB27I over 100-fold. However, its enzymatic activities were extremely low for an ORF expressed under a T7 promoter. We have designed and cloned a fully synthetic tthHB27IRM gene, using a modified 'codon randomization' strategy. Codons with a high GC content and of low occurrence in E. coli were eliminated. We incorporated a stem-loop circuit, devised to negatively control the expression of this highly toxic gene by partially hiding the ribosome-binding site (RBS and START codon in mRNA secondary structures. Despite having optimized 59% of codons, the amount of produced RM.TthHB27I protein was similar for both recombinant tthHB27IRM gene variants. Moreover, the recombinant wt RM.TthHB27I is very unstable, while the RM.TthHB27I resulting from the expression of the synthetic gene exhibited enzymatic activities and stability equal to the native thermozyme isolated from T. thermophilus. Thus, we have developed an efficient purification protocol using the synthetic tthHB27IRM gene variant only. This suggests the effect of co-translational folding kinetics, possibly affected by the frequency of translational errors. The availability of active RM.TthHB27I is of practical importance in molecular biotechnology

  10. Thermostable proteins bioprocesses: The activity of restriction endonuclease-methyltransferase from Thermus thermophilus (RM.TthHB27I) cloned in Escherichia coli is critically affected by the codon composition of the synthetic gene.

    Science.gov (United States)

    Krefft, Daria; Papkov, Aliaksei; Zylicz-Stachula, Agnieszka; Skowron, Piotr M

    2017-01-01

    Obtaining thermostable enzymes (thermozymes) is an important aspect of biotechnology. As thermophiles have adapted their genomes to high temperatures, their cloned genes' expression in mesophiles is problematic. This is mainly due to their high GC content, which leads to the formation of unfavorable secondary mRNA structures and codon usage in Escherichia coli (E. coli). RM.TthHB27I is a member of a family of bifunctional thermozymes, containing a restriction endonuclease (REase) and a methyltransferase (MTase) in a single polypeptide. Thermus thermophilus HB27 (T. thermophilus) produces low amounts of RM.TthHB27I with a unique DNA cleavage specificity. We have previously cloned the wild type (wt) gene into E. coli, which increased the production of RM.TthHB27I over 100-fold. However, its enzymatic activities were extremely low for an ORF expressed under a T7 promoter. We have designed and cloned a fully synthetic tthHB27IRM gene, using a modified 'codon randomization' strategy. Codons with a high GC content and of low occurrence in E. coli were eliminated. We incorporated a stem-loop circuit, devised to negatively control the expression of this highly toxic gene by partially hiding the ribosome-binding site (RBS) and START codon in mRNA secondary structures. Despite having optimized 59% of codons, the amount of produced RM.TthHB27I protein was similar for both recombinant tthHB27IRM gene variants. Moreover, the recombinant wt RM.TthHB27I is very unstable, while the RM.TthHB27I resulting from the expression of the synthetic gene exhibited enzymatic activities and stability equal to the native thermozyme isolated from T. thermophilus. Thus, we have developed an efficient purification protocol using the synthetic tthHB27IRM gene variant only. This suggests the effect of co-translational folding kinetics, possibly affected by the frequency of translational errors. The availability of active RM.TthHB27I is of practical importance in molecular biotechnology, extending

  11. Protease-Sensitive Synthetic Prions

    OpenAIRE

    Colby, David W.; Wain, Rachel; Baskakov, Ilia V.; Legname, Giuseppe; Palmer, Christina G.; Nguyen, Hoang-Oanh B.; Lemus, Azucena; Cohen, Fred E.; DeArmond, Stephen J.; Prusiner, Stanley B.

    2010-01-01

    Prions arise when the cellular prion protein (PrPC) undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrPSc. Frequently, PrPSc is protease-resistant but protease-sensitive (s) prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec) PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but no...

  12. Multisite contacts involved in coupling of the beta-adrenergic receptor with the stimulatory guanine-nucleotide-binding regulatory protein. Structural and functional studies by beta-receptor-site-specific synthetic peptides.

    Science.gov (United States)

    Münch, G; Dees, C; Hekman, M; Palm, D

    1991-06-01

    Synthetic peptides, 12-22 amino acid residues long, comprising the presumed coupling sites of the beta-adrenergic receptor with the stimulatory guanine-nucleotide-binding regulatory protein (Gs), were examined for their ability to modulate Gs activation in turkey erythrocyte membranes. Three peptides corresponding to the second cytoplasmic loop, the N-terminal region of the third cytoplasmic loop, and the N-terminal region of the putative fourth cytoplasmic loop, compete synergistically with the hormone-stimulated receptor for Gs activation with median effector concentrations of 15-35 microM, or 3-4 microM for combinations of two peptides. One peptide, corresponding to the C-terminal region of the third cytoplasmic loop, carries the unique ability to activate the Gs-adenylate-cyclase complex independent of the signalling state of the receptor. These observations are consistent with a dynamic model of receptor-mediated G-protein activation in membranes, where domains composed of the second, third and fourth intracellular loop of the receptor bind to and are interactive with the G-protein heterotrimer, resulting in ligand-induced conformational changes of the receptor. In response to hormone binding, the extent or the number of sites involved in interaction with Gs may be readjusted using a fourth site. Modulation of coupling sites may elicit congruent conformational changes within the Gs heterotrimer, with qualitatively different effects on GTP/GDP exchange in the alpha subunit of Gs and downstream effector regulation. This model corroborates and expands a similar model suggested for activated rhodopsin-transducin interaction [König, B., Arendt, A., McDowell, J. H., Kahlert, M., Hargrave, P. A. & Hofmann, K. P. (1989) Proc. Natl Acad. Sci. USA 86, 6878-6882].

  13. Synthetic spider silk fibers spun from Pyriform Spidroin 2, a glue silk protein discovered in orb-weaving spider attachment discs.

    Science.gov (United States)

    Geurts, Paul; Zhao, Liang; Hsia, Yang; Gnesa, Eric; Tang, Simon; Jeffery, Felicia; La Mattina, Coby; Franz, Andreas; Larkin, Leah; Vierra, Craig

    2010-12-13

    Spider attachment disc silk fibers are spun into a viscous liquid that rapidly solidifies, gluing dragline silk fibers to substrates for locomotion or web construction. Here we report the identification and artificial spinning of a novel attachment disc glue silk fibroin, Pyriform Spidroin 2 (PySp2), from the golden orb weaver Nephila clavipes . MS studies support PySp2 is a constituent of the pyriform gland that is spun into attachment discs. Analysis of the PySp2 protein architecture reveals sequence divergence relative to the other silk family members, including the cob weaver glue silk fibroin PySp1. PySp2 contains internal block repeats that consist of two subrepeat units: one dominated by Ser, Gln, and Ala and the other Pro-rich. Artificial spinning of recombinant PySp2 truncations shows that the Ser-Gln-Ala-rich subrepeat is sufficient for the assembly of polymeric subunits and subsequent fiber formation. These studies support that both orb- and cob-weaving spiders have evolved highly polar block-repeat sequences with the ability to self-assemble into fibers, suggesting a strategy to allow fiber fabrication in the liquid environment of the attachment discs.

  14. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  15. Synthetic Base Fluids

    Science.gov (United States)

    Brown, M.; Fotheringham, J. D.; Hoyes, T. J.; Mortier, R. M.; Orszulik, S. T.; Randles, S. J.; Stroud, P. M.

    The chemical nature and technology of the main synthetic lubricant base fluids is described, covering polyalphaolefins, alkylated aromatics, gas-to-liquid (GTL) base fluids, polybutenes, aliphatic diesters, polyolesters, polyalkylene glycols or PAGs and phosphate esters.Other synthetic lubricant base oils such as the silicones, borate esters, perfluoroethers and polyphenylene ethers are considered to have restricted applications due to either high cost or performance limitations and are not considered here.Each of the main synthetic base fluids is described for their chemical and physical properties, manufacture and production, their chemistry, key properties, applications and their implications when used in the environment.

  16. Defined carriers for synthetic antigens: Hinge Peptides

    Czech Academy of Sciences Publication Activity Database

    Hlaváček, Jan; Niederhafner, Petr; Gut, Vladimír; Hulačová, Hana; Maloň, Petr

    2005-01-01

    Roč. 29, č. 1 (2005), s. 68 ISSN 0939-4451. [International Congress on Amino Acids and Proteins /9./. 08.08.2005-12.08.2005, Gert Lubec] R&D Projects: GA ČR(CZ) GA203/03/1362 Institutional research plan: CEZ:AV0Z40550506 Keywords : synthetic carrier * antigen * hinge peptide Subject RIV: CC - Organic Chemistry

  17. DNA recognition by synthetic constructs.

    Science.gov (United States)

    Pazos, Elena; Mosquera, Jesús; Vázquez, M Eugenio; Mascareñas, José L

    2011-09-05

    The interaction of transcription factors with specific DNA sites is key for the regulation of gene expression. Despite the availability of a large body of structural data on protein-DNA complexes, we are still far from fully understanding the molecular and biophysical bases underlying such interactions. Therefore, the development of non-natural agents that can reproduce the DNA-recognition properties of natural transcription factors remains a major and challenging goal in chemical biology. In this review we summarize the basics of double-stranded DNA recognition by transcription factors, and describe recent developments in the design and preparation of synthetic DNA binders. We mainly focus on synthetic peptides that have been designed by following the DNA interaction of natural proteins, and we discuss how the tools of organic synthesis can be used to make artificial constructs equipped with functionalities that introduce additional properties to the recognition process, such as sensing and controllability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthetic Biological Membrane (SBM)

    Data.gov (United States)

    National Aeronautics and Space Administration — The ultimate goal of the Synthetic Biological Membrane project is to develop a new type of membrane that will enable the wastewater treatment system required on...

  19. Phase 1 testing of detoxified LPS/group B meningococcal outer membrane protein vaccine with and without synthetic CPG 7909 adjuvant for the prevention and treatment of sepsis.

    Science.gov (United States)

    Cross, Alan S; Greenberg, Nancy; Billington, Melissa; Zhang, Lei; DeFilippi, Christopher; May, Ryan C; Bajwa, Kanwaldeep K

    2015-11-27

    Gram-negative bacteria (GNB) are a leading cause of nosocomial infection and sepsis. Increasing multi-antibiotic resistance has left clinicians with fewer therapeutic options. Antibodies to GNB lipopolysaccharide (LPS, or endotoxin) have reduced morbidity and mortality as a result of infection and are not subject to the resistance mechanisms deployed by bacteria against antibiotics. In this phase 1 study, we administered a vaccine that elicits antibodies against a highly conserved portion of LPS with and without a CpG oligodeoxynucleotide (ODN) TLR9 agonist as adjuvant. A vaccine composed of the detoxified LPS (dLPS) from E. coli O111:B4 (J5 mutant) non-covalently complexed to group B meningococcal outer membrane protein (OMP). Twenty healthy adult subjects received three doses at 0, 29 and 59 days of antigen (10 μg dLPS) with or without CPG 7909 (250 or 500 μg). Subjects were evaluated for local and systemic adverse effects and laboratory findings. Anti-J5 LPS IgG and IgM antibody levels were measured by electrochemiluminesence. Due to premature study termination, not all subjects received all three doses. All vaccine formulations were well-tolerated with no local or systemic events of greater than moderate severity. The vaccine alone group achieved a ≥ 4-fold "responder" response in IgG and IgM antibody in only one of 6 subjects. In contrast, the vaccine plus CPG 7909 groups appeared to have earlier and more sustained (to 180 days) responses, greater mean-fold increases, and a higher proportion of "responders" achieving ≥ 4-fold increases over baseline. Although the study was halted before all enrolled subjects received all three doses, the J5dLPS/OMP vaccine, with or without CpG adjuvant, was safe and well-tolerated. The inclusion of CpG increased the number of subjects with a ≥ 4-fold antibody response, evident even after the second of three planned doses. A vaccine comprising J5dLPS/OMP antigen with CpG adjuvant merits further investigation. Clinical

  20. Hybridization with synthetic oligonucleotides

    Energy Technology Data Exchange (ETDEWEB)

    Szostak, J.W.; Stiles, J.I.; Tye, B.K.; Sherman, F.; Wu, R.

    1978-01-01

    Procedures are described for the use of synthetic oligonucleotides for Southern blot experiments and gene bank screening, and the effect of various mismatches on the efficiency of hybridization is demonstrated. The following topics are discussed: sensitivity vs. specificity, hybridization of a 12-mer to the lambda endolysin gene; hybridization of oligonucleotide probes to the E. coli lac operator; hybridization of synthetic probes to the CYC1 gene of yeast; and cloning eucaryotic genes. (HLW)

  1. Long-lasting humoral immune response induced in HIV-1-infected patients by a synthetic peptide (AT20) derived from the HIV-1 matrix protein p17 functional epitope.

    Science.gov (United States)

    Focà, Emanuele; Iaria, Maria Luisa; Caccuri, Francesca; Fiorentini, Simona; Motta, Davide; Giagulli, Cinzia; Castelli, Francesco; Caruso, Arnaldo

    2015-08-01

    A therapeutic vaccination based on a synthetic peptide (AT20) representative of the HIV-1 matrix protein p17 (p17) functional region, coupled to keyhole limpet hemocyanin (KLH) AT20-KLH was capable of inducing the production of high-avidity antibodies (Abs) toward a previous untargeted p17 hotspot of functional activity in highly active antiretroviral therapy (HAART)-treated HIV-1-infected patients. Since avidity of Abs after immunization and the retention of antigens are important in sustaining the long-lasting production of specific humoral responses, we asked whether AT20-KLH vaccination would result in development of a long-lived immune response. The long-term duration of Ab response to AT20-KLH has been evaluated in 10 patients previously enrolled for the AT20-KLH vaccination trial at day 898 post-immunization. Ab titer and their avidity was assessed using specifically designed ELISA assays, whereas their neutralizing capacity was estimated in vitro using a 'wound sealing assay'. Data obtained show that high titers of specific anti-AT20 Abs were maintained at more than 2 years after the last immunization. Furthermore, these Abs were capable to neutralize exogenous p17, as assessed by ability of sera derived from AT20-KLH-immunized patients to block the ability of p17 to promote cell migration in vitro. This finding attests for a successful AT20-KLH vaccine molecule formulation and for an effective HAART-dependent Ab persistence.

  2. Synthetic biology era: Improving antibiotic's world.

    Science.gov (United States)

    Guzmán-Trampe, Silvia; Ceapa, Corina D; Manzo-Ruiz, Monserrat; Sánchez, Sergio

    2017-06-15

    The emergence of antibiotic-resistant pathogen microorganisms is problematic in the context of the current spectrum of available medication. The poor specificity and the high toxicity of some available molecules have made imperative the search for new strategies to improve the specificity and to pursue the discovery of novel compounds with increased bioactivity. Using living cells as platforms, synthetic biology has counteracted this problem by offering novel pathways to create synthetic systems with improved and desired functions. Among many other biotechnological approaches, the advances in synthetic biology have made it possible to design and construct novel biological systems in order to look for new drugs with increased bioactivity. Advancements have also been made in the redesigning of RNA and DNA molecules in order to engineer antibiotic clusters for antibiotic overexpression. As for the production of these antibacterial compounds, yeasts and filamentous fungi as well as gene therapy are utilized to enhance protein solubility. Specific delivery is achieved by creating chimeras using plant genes into bacterial hosts. Some of these synthetic systems are currently in clinical trials, proving the proficiency of synthetic biology in terms of both pharmacological activities as well as an increase in the biosafety of treatments. It is possible that we may just be seeing the tip of the iceberg, and synthetic biology applications will overpass expectations beyond our present knowledge. Copyright © 2017. Published by Elsevier Inc.

  3. A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2).

    Science.gov (United States)

    Tamai, Noriyuki; Myoui, Akira; Hirao, Makoto; Kaito, Takashi; Ochi, Takahiro; Tanaka, Junzo; Takaoka, Kunio; Yoshikawa, Hideki

    2005-05-01

    Articular cartilage repair remains a major obstacle in tissue engineering. We recently developed a novel tool for articular cartilage repair, consisting of a triple composite of an interconnected porous hydroxyapatite (IP-CHA), recombinant human bone morphogenetic protein-2 (rhBMP-2), and a synthetic biodegradable polymer [poly-d,l-lactic acid/polyethylene glycol (PLA-PEG)] as a carrier for rhBMP-2. In the present study, we evaluated the capacity of the triple composite to induce the regeneration of articular cartilage. Full-thickness cartilage defects were created in the trochlear groove of 52 New Zealand White rabbits. Sixteen defects were filled with the bone morphogenetic protein (BMP)/PLA-PEG/IP-CHA composite (group I), 12 with PLA-PEG/IP-CHA (group II), 12 with IP-CHA alone (group III), and 12 were left empty (group IV). The animals were killed 1, 3, and 6 weeks after surgery, and the gross appearance of the defect sites was assessed. The harvested tissues were examined radiographically and histologically. One week after implantation with the BMP/PLA-PEG/IP-CHA composite (group I), vigorous repair had occurred in the subchondral defect. It contained an agglomeration of mesenchymal cells which had migrated from the surrounding bone marrow either directly, or indirectly via the interconnecting pores of the IP-CHA scaffold. At 6 weeks, these defects were completely repaired. The regenerated cartilage manifested a hyaline-like appearance, with a mature matrix and a columnar organization of chondrocytes. The triple composite of rhBMP-2, PLA-PEG, and IP-CHA promotes the repair of full-thickness articular cartilage defects within as short a period as 3 weeks in the rabbit model. Hence, this novel cell-free implant biotechnology could mark a new development in the field of articular cartilage repair.

  4. Development and validation of a UHPLC-UV method for the determination of a prostate secretory protein 94-derived synthetic peptide (PCK3145) in human plasma and assessment of its stability in human plasma.

    Science.gov (United States)

    El Mubarak, Mohamed A; Leontari, Iliana; Danika, Charikleia; Katsila, Theodora; Sivolapenko, Gregory

    2016-09-01

    PCK3145 is a synthetic peptide, derived from the Prostate Secreted Protein 94 (PSP94), with promising in vitro and animal in vivo results in prostate cancer. The aim of the present study was to develop and validate a fast and robust ultra-high-performance liquid chromatography with ultraviolet detection for the determination of PCK3145 in human plasma which would be suitable for the assessment of PCK3145 stability to proteolytic degradation. Following protein precipitation, chromatographic separation was carried out on an Aeris Peptide C18 column with mobile phase consisting of acetonitrile-water at a flow-rate of 0.50 mL/min. The calibration curve was linear over the range 0.50-20.00 μg/mL. Intra- and inter-day percentage relative standard deviation and relative error were ≤10%. The limit of detection and the lower limit of quantification were 0.15 and 0.50 μg/mL, respectively. Recovery of PCK3145 from human plasma was ≥96%. The peptide presented high stability in whole blood and in human plasma (>98% intact peptide after 24 h incubation at 37°C in human plasma), which represents a distinctive advantage in the therapeutic use of the compound. This is the first validated UHPLC method for the determination of PCK3145 reported, and it was successfully applied in the study of the proteolytic stability of PCK3145 in human plasma ex vivo. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Tunable promoters in synthetic and systems biology

    DEFF Research Database (Denmark)

    Dehli, Tore; Solem, Christian; Jensen, Peter Ruhdal

    2012-01-01

    in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available......Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central...

  6. Microorganism Utilization for Synthetic Milk

    Science.gov (United States)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  7. Predicting Translation Initiation Rates for Designing Synthetic Biology

    Energy Technology Data Exchange (ETDEWEB)

    Reeve, Benjamin; Hargest, Thomas [Centre for Synthetic Biology and Innovation, Imperial College London, London (United Kingdom); Department of Bioengineering, Imperial College London, London (United Kingdom); Gilbert, Charlie [Centre for Synthetic Biology and Innovation, Imperial College London, London (United Kingdom); Ellis, Tom, E-mail: t.ellis@imperial.ac.uk [Centre for Synthetic Biology and Innovation, Imperial College London, London (United Kingdom); Department of Bioengineering, Imperial College London, London (United Kingdom)

    2014-01-20

    In synthetic biology, precise control over protein expression is required in order to construct functional biological systems. A core principle of the synthetic biology approach is a model-guided design and based on the biological understanding of the process, models of prokaryotic protein production have been described. Translation initiation rate is a rate-limiting step in protein production from mRNA and is dependent on the sequence of the 5′-untranslated region and the start of the coding sequence. Translation rate calculators are programs that estimate protein translation rates based on the sequence of these regions of an mRNA, and as protein expression is proportional to the rate of translation initiation, such calculators have been shown to give good approximations of protein expression levels. In this review, three currently available translation rate calculators developed for synthetic biology are considered, with limitations and possible future progress discussed.

  8. Synthetic microbial consortia enable rapid assembly of pure translation machinery.

    Science.gov (United States)

    Villarreal, Fernando; Contreras-Llano, Luis E; Chavez, Michael; Ding, Yunfeng; Fan, Jinzhen; Pan, Tingrui; Tan, Cheemeng

    2018-01-01

    Assembly of recombinant multiprotein systems requires multiple culturing and purification steps that scale linearly with the number of constituent proteins. This problem is particularly pronounced in the preparation of the 34 proteins involved in transcription and translation systems, which are fundamental biochemistry tools for reconstitution of cellular pathways ex vivo. Here, we engineer synthetic microbial consortia consisting of between 15 and 34 Escherichia coli strains to assemble the 34 proteins in a single culturing, lysis, and purification procedure. The expression of these proteins is controlled by synthetic genetic modules to produce the proteins at the correct ratios. We show that the pure multiprotein system is functional and reproducible, and has low protein contaminants. We also demonstrate its application in the screening of synthetic promoters and protease inhibitors. Our work establishes a novel strategy for producing pure translation machinery, which may be extended to the production of other multiprotein systems.

  9. Predicting Translation Initiation Rates for Designing Synthetic Biology

    International Nuclear Information System (INIS)

    Reeve, Benjamin; Hargest, Thomas; Gilbert, Charlie; Ellis, Tom

    2014-01-01

    In synthetic biology, precise control over protein expression is required in order to construct functional biological systems. A core principle of the synthetic biology approach is a model-guided design and based on the biological understanding of the process, models of prokaryotic protein production have been described. Translation initiation rate is a rate-limiting step in protein production from mRNA and is dependent on the sequence of the 5′-untranslated region and the start of the coding sequence. Translation rate calculators are programs that estimate protein translation rates based on the sequence of these regions of an mRNA, and as protein expression is proportional to the rate of translation initiation, such calculators have been shown to give good approximations of protein expression levels. In this review, three currently available translation rate calculators developed for synthetic biology are considered, with limitations and possible future progress discussed.

  10. Synthetic prions and other human neurodegenerative proteinopathies.

    Science.gov (United States)

    Le, Nhat Tran Thanh; Narkiewicz, Joanna; Aulić, Suzana; Salzano, Giulia; Tran, Hoa Thanh; Scaini, Denis; Moda, Fabio; Giachin, Gabriele; Legname, Giuseppe

    2015-09-02

    Transmissible spongiform encephalopathies (TSE) are a heterogeneous group of neurodegenerative disorders. The common feature of these diseases is the pathological conversion of the normal cellular prion protein (PrP(C)) into a β-structure-rich conformer-termed PrP(Sc). The latter can induce a self-perpetuating process leading to amplification and spreading of pathological protein assemblies. Much evidence suggests that PrP(Sc) itself is able to recruit and misfold PrP(C) into the pathological conformation. Recent data have shown that recombinant PrP(C) can be misfolded in vitro and the resulting synthetic conformers are able to induce the conversion of PrP(C) into PrP(Sc)in vivo. In this review we describe the state-of-the-art of the body of literature in this field. In addition, we describe a cell-based assay to test synthetic prions in cells, providing further evidence that synthetic amyloids are able to template conversion of PrP into prion inclusions. Studying prions might help to understand the pathological mechanisms governing other neurodegenerative diseases. Aggregation and deposition of misfolded proteins is a common feature of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other disorders. Although the proteins implicated in each of these diseases differ, they share a common prion mechanism. Recombinant proteins are able to aggregate in vitro into β-rich amyloid fibrils, sharing some features of the aggregates found in the brain. Several studies have reported that intracerebral inoculation of synthetic aggregates lead to unique pathology, which spread progressively to distal brain regions and reduced survival time in animals. Here, we review the prion-like features of different proteins involved in neurodegenerative disorders, such as α-synuclein, superoxide dismutase-1, amyloid-β and tau. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Synthetic guide star generation

    Science.gov (United States)

    Payne, Stephen A [Castro Valley, CA; Page, Ralph H [Castro Valley, CA; Ebbers, Christopher A [Livermore, CA; Beach, Raymond J [Livermore, CA

    2008-06-10

    A system for assisting in observing a celestial object and providing synthetic guide star generation. A lasing system provides radiation at a frequency at or near 938 nm and radiation at a frequency at or near 1583 nm. The lasing system includes a fiber laser operating between 880 nm and 960 nm and a fiber laser operating between 1524 nm and 1650 nm. A frequency-conversion system mixes the radiation and generates light at a frequency at or near 589 nm. A system directs the light at a frequency at or near 589 nm toward the celestial object and provides synthetic guide star generation.

  12. Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2008-01-01

    A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective...... is stored. The second stage applies the focused image lines from the first stage as input data. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The performance of SASB with a static image object is compared with DRF...

  13. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the reptation model and discuss in some more detail processes limiting the confinement.

  14. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    mental temperature, on average on each side 220 monomers are released during an observation time of 190 ns. ... In yeast it is at the basis of the fermentation process and converts acetaldehyde into ethanol. In the process ... In our studies we used ADH from yeast which forms a tetramer structure. The crystallographic data ...

  15. From structural proteins to synthetic polymers

    NARCIS (Netherlands)

    Ayres, L.

    2005-01-01

    This thesis describes the preparation, via atom transfer radical polymerisation (ATRP), of a series of peptide-polymer hybrid materials. The first chapter gives an overview of the work done so far in the preparation of peptide-polymer hybrid materials. In the second, third and fourth chapter, the

  16. The pkaB Gene Encoding the Secondary Protein Kinase A Catalytic Subunit Has a Synthetic Lethal Interaction with pkaA and Plays Overlapping and Opposite Roles in Aspergillus nidulans

    Science.gov (United States)

    Ni, Min; Rierson, Sara; Seo, Jeong-Ah; Yu, Jae-Hyuk

    2005-01-01

    Filamentous fungal genomes contain two distantly related cyclic AMP-dependent protein kinase A catalytic subunits (PKAs), but only one PKA is found to play a principal role. In Aspergillus nidulans, PkaA is the primary PKA that positively functions in vegetative growth and spore germination but negatively controls asexual sporulation and production of the mycotoxin sterigmatocystin. In this report, we present the identification and characterization of pkaB, encoding the secondary PKA in A. nidulans. Although deletion of pkaB alone does not cause any apparent phenotypic changes, the absence of both pkaB and pkaA is lethal, indicating that PkaB and PkaA are essential for viability of A. nidulans. Overexpression of pkaB enhances hyphal proliferation and rescues the growth defects caused by ΔpkaA, indicating that PkaB plays a role in vegetative growth signaling. However, unlike ΔpkaA, deletion of pkaB does not suppress the fluffy-autolytic phenotype resulting from ΔflbA. While upregulation of pkaB rescues the defects of spore germination resulting from ΔpkaA in the presence of glucose, overexpression of pkaB delays spore germination. Furthermore, upregulation of pkaB completely abolishes spore germination on medium lacking a carbon source. In addition, upregulation of pkaB enhances the level of submerged sporulation caused by ΔpkaA and reduces hyphal tolerance to oxidative stress. In conclusion, PkaB is the secondary PKA that has a synthetic lethal interaction with PkaA, and it plays an overlapping role in vegetative growth and spore germination in the presence of glucose but an opposite role in regulating asexual sporulation, germination in the absence of a carbon source, and oxidative stress responses in A. nidulans. PMID:16087751

  17. A new approach to the modification of cell membrane glycosphingolipids: Ganglioside composition of JTC-12 P3 cells altered by feeding with galactose as a sole carbohydrate source in protein- and lipid-free synthetic medium

    International Nuclear Information System (INIS)

    Kawaguchi, Tatsuya; Takaoka, Toshiko; Yoshida, Eiko; Iwamori, Masao; Nagai, Yoshitaka; Takatsuki, Kiyoshi

    1988-01-01

    A significant difference in the glycosphingolipid composition of JTC-12 P3 cells established from monkey kidney tissue was observed when cells cultured in a protein- and lipid-free synthetic medium containing glucose (DM-160) as a sole carbohydrate source were transferred and cultured in the same medium containing galactose and pyruvic acid (DM-170) in place of glucose. In particular, the amounts of gangliosides GM3, GM2, and GD3 in the cells cultured in DM-170 were 5.3-, 17.8-, and more than 8-fold those in the cells cultured in DM-160, respectively, indicating that anabolism of gangliosides is greatly enhanced in cells cultured in the presence of galactose and pyruvic acid, as compared with cells cultured in the presence of glucose. In fact, after cultivation of cells in the medium with N-acetyl-D-[ 14 C]mannosamine for 96 h, the radioactivity incorporated into the gangliosides of the cells in DM-170 was 10-fold that of the cells in DM-160. Among the gangliosides of the cells in DM-170, highly sialylated molecules such as GD3, GD1a, GD1b, and GT1b were preferentially labeled, indicating that the sialytransferases responsible for the synthesis of gangliosides are significantly more activated in cells cultured in DM-170 than in DM-160. These observations reveal that the glycosphingolipid composition of the plasma membrane can be modified epigenetically under well-defined conditions and provide important clues for clarifying the roles of glycosphingolipids associated with particular cell functions

  18. Suppression of breast cancer proliferation and induction of apoptosis via AKT and ERK1/2 signal transduction pathways by synthetic polypeptide derived from viral macrophage inflammatory protein II.

    Science.gov (United States)

    Yang, Qingling; Chen, Changjie; Yang, Zhifeng; Gao, Yangjun; Tang, Jie

    2011-08-01

    SDF-1α, a ligand for the chemokine receptor CXCR4, is well known for mediating the migration of breast cancer cells. In a previous study we demonstrated that a synthetic 21-mer peptide antagonist of CXCR4 (NT21MP) derived from the viral macrophage inflammatory protein II could antagonize tumor growth in vivo by inhibiting cellular proliferation and inducing apoptosis in breast cancer cells. However, the role of SDF-1α in the signaling pathways underlying the proliferation of human breast cancer cells and associated signaling pathways and inhibiting signal pathways of NT21MP remained unclear. The present study investigated the mechanism of NT21MP on anti-tumor in breast cancer in vitro. The effect of NT21MP on the viability of cells was determined by the MTT assay. Annexin V-FITC and PI staining was performed to detect early stage apoptosis in SKBR3 cells treated with SDF-1α and AMD3100 or NT21MP. Western blotting techniques were used to assay the composition of phosphoproteomics and total proteins present in the SKBR3 breast cancer cells. RT-PCR and Western blotting technique were used to detect the effect of NT21MP and AMD3100 on Bcl-2 and Bax expression. The results indicated that SDF-1α prevented apoptosis and promoted the proliferation of SKBR3 human breast cancer cells. As compared with untreated SKBR3 cells, Treatment with SDF-1α significantly increased cell viability, and NT21MP abolished the protective effects of SDF-1α dose-dependently (PSKBR3 cells with NT21MP significantly attenuated the antiapoptotic effects of SDF-1α as compared with SKBR3 cells without NT21MP pretreatment. The proliferative and anti-apoptotic effects of SDF-1α in SKBR3 cells were associated with an increase in AKT and ERK1/2 phosphorylation as well as a decrease in Bax expression and an increase in Bcl-2 expression. These changes in intracellular processes were blocked by NT21MP in a dose-dependent manner(PSKBR3 cells by reducing the levels of phosphorylated AKT and ERK1/2, as

  19. What Are Synthetic Cannabinoids?

    Science.gov (United States)

    ... market and are intended to produce the same effects as illegal drugs. Some of these substances may have been around for years but have reentered the market in altered chemical forms, or due to renewed popularity. False Advertising Synthetic cannabinoid products are often labeled "not for ...

  20. Towards a synthetic chloroplast.

    Directory of Open Access Journals (Sweden)

    Christina M Agapakis

    2011-04-01

    Full Text Available The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.

  1. Synthetic Metabolic Pathways

    DEFF Research Database (Denmark)

    topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Synthetic Metabolic Pathways: Methods and Protocols aims to ensure successful results in the further study...

  2. Synthetic growth reference charts

    NARCIS (Netherlands)

    Hermanussen, Michael; Stec, Karol; Aßmann, Christian; Meigen, Christof; Van Buuren, Stef

    2016-01-01

    Objectives: To reanalyze the between-population variance in height, weight, and body mass index (BMI), and to provide a globally applicable technique for generating synthetic growth reference charts. Methods: Using a baseline set of 196 female and 197 male growth studies published since 1831, common

  3. A formidable synthetic challenge

    Indian Academy of Sciences (India)

    Isolation and characterization of maoecrystal V, a C19 terpenoid, having potent and selective cytotoxicity towards HeLa cells was recently reported. Unusually complex pentacyclic molecular structure, presence of spirofused rings and several stereogenic centres posed a great synthetic challenge. In this short review, efforts ...

  4. Synthetic antiferromagnetic spintronics

    Science.gov (United States)

    Duine, R. A.; Lee, Kyung-Jin; Parkin, Stuart S. P.; Stiles, M. D.

    2018-03-01

    Spintronic and nanomagnetic devices often derive their functionality from layers of different materials and the interfaces between them. We discuss the opportunities that arise from synthetic antiferromagnets consisting of two or more ferromagnetic layers that are separated by metallic spacers or tunnel barriers and have antiparallel magnetizations.

  5. Synthetic Plant Defense Elicitors

    Directory of Open Access Journals (Sweden)

    Yasemin eBektas

    2015-01-01

    Full Text Available To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of the some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.

  6. [Exogenous surfactant therapy: new synthetic surfactants].

    Science.gov (United States)

    Lacaze-Masmonteil, Th

    2008-06-01

    There are numerous pulmonary conditions in which qualitative or quantitative anomalies of the surfactant system have been demonstrated. In premature newborns with immature lungs, a functional deficit in surfactant is the main physiopathologic mechanism of the neonatal respiratory distress syndrome (RDS). Since the landmark pilot study of Fujiwara, published more than 20 years ago, the efficacy of exogenous surfactant for the treatment of neonatal RDS has been established by numerous controlled studies and meta-analyses. Enlightened by a growing insight into both the structure and function of the different surfactant components, a new generation of synthetic surfactants has been developed. Various complementary approaches have confirmed the fundamental role of the two hydrophobic proteins, SP-B and SP-C, in the surfactant system, thus opening the way to the design of analogues, either by chemical synthesis or expression in a prokaryotic system. An example of these peptide-containing synthetic surfactant preparations, lucinactant (Surfaxin), has been recently tested in comparison to a synthetic surfactant that does not contain protein as well as to animal derived surfactant preparations. Major clinical outcomes between lucinactant and animal-derived surfactant preparations were fund similar in two randomized controlled trials, opening the way to a new generation of synthetic surfactants in the near future.

  7. Synthetic antifreeze peptide and synthetic gene coding for its production

    OpenAIRE

    1991-01-01

    A synthetic antifreeze peptide and a synthetic gene coding for the antifreeze peptide have been produced. The antifreeze peptide has a greater number of repeating amino acid sequences than is present in the native antifreeze peptides from winter flounder upon which the synthetic antifreeze peptide was modeled. Each repeating amino acid sequence has two polar amino acid residues which are spaced a controlled distance apart so that the antifreeze peptide may inhibit ice formation. The synthetic...

  8. Standardization in synthetic biology.

    Science.gov (United States)

    Müller, Kristian M; Arndt, Katja M

    2012-01-01

    Synthetic Biology is founded on the idea that complex biological systems are built most effectively when the task is divided in abstracted layers and all required components are readily available and well-described. This requires interdisciplinary collaboration at several levels and a common understanding of the functioning of each component. Standardization of the physical composition and the description of each part is required as well as a controlled vocabulary to aid design and ensure interoperability. Here, we describe standardization initiatives from several disciplines, which can contribute to Synthetic Biology. We provide examples of the concerted standardization efforts of the BioBricks Foundation comprising the request for comments (RFC) and the Registry of Standardized Biological parts as well as the international Genetically Engineered Machine (iGEM) competition.

  9. Optical synthetic aperture radar

    Science.gov (United States)

    Ilovitsh, Asaf; Zach, Shlomo; Zalevsky, Zeev

    2013-06-01

    A method is proposed for increasing the resolution of an object and overcoming the diffraction limit of an optical system installed on top of a moving imaging system, such as an airborne platform or satellite. The resolution improvement is obtained via a two-step process. First, three low resolution differently defocused images are captured and the optical phase is retrieved using an improved iterative Gershberg-Saxton based algorithm. The phase retrieval allows numerical back propagation of the field to the aperture plane. Second, the imaging system is shifted and the first step is repeated. The obtained optical fields at the aperture plane are combined and a synthetically increased lens aperture is generated along the direction of movement, yielding higher imaging resolution. The method resembles a well-known approach from the microwave regime called the synthetic aperture radar in which the antenna size is synthetically increased along the platform propagation direction. The proposed method is demonstrated via Matlab simulation as well as through laboratory experiment.

  10. Vaccination with the Recombinant Brucella Outer Membrane Protein 31 or a Derived 27-Amino-Acid Synthetic Peptide Elicits a CD4+ T Helper 1 Response That Protects against Brucella melitensis Infection

    Science.gov (United States)

    Cassataro, Juliana; Estein, Silvia M.; Pasquevich, Karina A.; Velikovsky, Carlos A.; de la Barrera, Silvia; Bowden, Raúl; Fossati, Carlos A.; Giambartolomei, Guillermo H.

    2005-01-01

    The immunogenicity and protective efficacy of the recombinant 31-kDa outer membrane protein from Brucella melitensis (rOmp31), administered with incomplete Freund's adjuvant, were evaluated in mice. Immunization of BALB/c mice with rOmp31 conferred protection against B. ovis and B. melitensis infection. rOmp31 induced a vigorous immunoglobulin G (IgG) response, with higher IgG1 than IgG2 titers. In addition, spleen cells from rOmp31-immunized mice produced interleukin 2 (IL-2) and gamma interferon, but not IL-10 or IL-4, after in vitro stimulation with rOmp31, suggesting the induction of a T helper 1 (Th1) response. Splenocytes from rOmp31-vaccinated animals also induced a specific cytotoxic-T-lymphocyte activity, which led to the in vitro lysis of Brucella-infected macrophages. In vitro T-cell subset depletion indicated that rOmp31 immunization elicited specific CD4+ T cells that secrete IL-2 and gamma interferon, while CD8+ T cells induced cytotoxic-T-lymphocyte activity. In vivo depletion of T-cell subsets showed that the rOmp31-elicited protection against B. melitensis infection is mediated by CD4+ T cells while the contribution of CD8+ T cells may be limited. We then evaluated the immunogenicity and protective efficacy of a known exposed region from Omp31 on the Brucella membrane, a peptide that contains amino acids 48 to 74 of Omp31. Immunization with the synthetic peptide in adjuvant did not elicit a specific humoral response but elicited a Th1 response mediated by CD4+ T cells. The peptide in adjuvant induced levels of protection similar to those induced by rOmp31 against B. melitensis but less protection than was induced by rOmp31 against B. ovis. Our results indicate that rOmp31 could be a useful candidate for the development of subunit vaccines against B. melitensis and B. ovis. PMID:16299302

  11. Synthetic strategies for studying embryonic development.

    Science.gov (United States)

    Ouyang, Xiaohu; Chen, James K

    2010-06-25

    Developmental biology has evolved from a descriptive science to one based on genetic principles and molecular mechanisms. Although molecular biology and genetic technologies have been the primary drivers of this transformation, synthetic strategies have been increasingly utilized to interrogate the mechanisms of embryonic patterning with spatial and temporal precision. In this review, we survey how chemical tools and engineered proteins have been used to perturb developmental processes at the DNA, RNA, protein, and cellular levels. We discuss the design principles, experimental capabilities, and limitations of each method, as well as future challenges for the chemical and developmental biology communities.

  12. Kinase activity and specificity assay using synthetic peptides.

    Science.gov (United States)

    Wu, Xu Na; Schulze, Waltraud X

    2015-01-01

    Phosphorylation of substrate proteins by protein kinases can lead to activation or inactivation of signaling pathways or metabolic processes. Precise understanding of activity and specificity of protein kinases are important questions in characterization of kinase functions. Here, we describe a procedure to study kinase activity and specificity using kinase-GFP complexes purified from plant material and synthetic peptides as substrates. Magnetic GFP beads allow purifying receptor-like kinase-GFP complexes from microsomal fractions. Kinase-GFP complexes are then incubated with ATP and the synthetic peptides for kinase reaction. Phosphorylation of substrate peptides is then identified and quantified by mass spectrometry.

  13. Synthetic cannabis and respiratory depression.

    Science.gov (United States)

    Jinwala, Felecia N; Gupta, Mayank

    2012-12-01

    In recent years, synthetic cannabis use has been increasing in appeal among adolescents, and its use is now at a 30 year peak among high school seniors. The constituents of synthetic cannabis are difficult to monitor, given the drug's easy accessibility. Currently, 40 U.S. states have banned the distribution and use of some known synthetic cannabinoids, and have included these drugs in the Schedule I category. The depressive respiratory effect in humans caused by synthetic cannabis inhalation has not been thoroughly investigated in the medical literature. We are the first to report, to our knowledge, two cases of self-reported synthetic cannabis use leading to respiratory depression and necessary intubation.

  14. Synthetic approaches to uniform polymers.

    Science.gov (United States)

    Ali, Monzur; Brocchini, Steve

    2006-12-30

    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  15. Synthetic cannabinoids revealing adrenoleukodystrophy.

    Science.gov (United States)

    Fellner, Avi; Benninger, Felix; Djaldetti, Ruth

    2016-02-01

    We report a 41-year-old man who presented with a first generalized tonic-clonic seizure after recent consumption of a synthetic cannabinoid. MRI showed extensive bilateral, mainly frontal, white matter lesions. Blood analysis for very long chain fatty acids was compatible with adrenoleukodystrophy, and a missense mutation in the ABCD1 gene confirmed the diagnosis. We hypothesize that cannabinoid use might have contributed to metabolic decompensation with subacute worsening of the underlying condition. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. CASH vs. SYNTHETIC CDOs

    Directory of Open Access Journals (Sweden)

    Silviu Eduard Dinca

    2015-12-01

    Full Text Available During the past few years, in the recent post-crisis aftermath, global asset managers are constantly searching new ways to optimize their investment portfolios while financial and banking institutions around the world are exploring new alternatives to better secure their financing and refinancing demands altogether with the enhancement of their risk management capabilities. We will exhibit herewith a comparison between the true-sale and synthetic CDO securitizations as financial markets-based funding, investment and risks mitigation techniques, highlighting certain key structuring and implementation specifics on each of them.

  17. Challenges and opportunities in synthetic biology for chemical engineers

    Energy Technology Data Exchange (ETDEWEB)

    Luo, YZ; Lee, JK; Zhao, HM

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. (C) 2012 Elsevier Ltd. All rights reserved.

  18. Synthetic collective intelligence.

    Science.gov (United States)

    Solé, Ricard; Amor, Daniel R; Duran-Nebreda, Salva; Conde-Pueyo, Núria; Carbonell-Ballestero, Max; Montañez, Raúl

    2016-10-01

    Intelligent systems have emerged in our biosphere in different contexts and achieving different levels of complexity. The requirement of communication in a social context has been in all cases a determinant. The human brain, probably co-evolving with language, is an exceedingly successful example. Similarly, social insects complex collective decisions emerge from information exchanges between many agents. The difference is that such processing is obtained out of a limited individual cognitive power. Computational models and embodied versions using non-living systems, particularly involving robot swarms, have been used to explore the potentiality of collective intelligence. Here we suggest a novel approach to the problem grounded in the genetic engineering of unicellular systems, which can be modified in order to interact, store memories or adapt to external stimuli in collective ways. What we label as Synthetic Swarm Intelligence defines a parallel approach to the evolution of computation and swarm intelligence and allows to explore potential embodied scenarios for decision making at the microscale. Here, we consider several relevant examples of collective intelligence and their synthetic organism counterparts. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Natural and synthetic peptides with antifungal activity.

    Science.gov (United States)

    Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

    2016-08-01

    In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections.

  20. The Prion Concept and Synthetic Prions.

    Science.gov (United States)

    Legname, Giuseppe; Moda, Fabio

    2017-01-01

    Transmissible spongiform encephalopathies or prion diseases are a group of fatal neurodegenerative diseases caused by unconventional infectious agents, known as prions (PrP Sc ). Prions derive from a conformational conversion of the normally folded prion protein (PrP C ), which acquires pathological and infectious features. Moreover, PrP Sc is able to transmit the pathological conformation to PrP C through a mechanism that is still not well understood. The generation of synthetic prions, which behave like natural prions, is of fundamental importance to study the process of PrP C conversion and to assess the efficacy of therapeutic strategies to interfere with this process. Moreover, the ability of synthetic prions to induce pathology in animals confirms that the pathological properties of the prion strains are all enciphered in abnormal conformations, characterizing these infectious agents. © 2017 Elsevier Inc. All rights reserved.

  1. Space Synthetic Biology Project

    Science.gov (United States)

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  2. Building blocks for protein interaction devices

    OpenAIRE

    Gr?nberg, Raik; Ferrar, Tony S.; van der Sloot, Almer M.; Constante, Marco; Serrano, Luis

    2010-01-01

    Here, we propose a framework for the design of synthetic protein networks from modular protein?protein or protein?peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part?based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors contro...

  3. Life after the synthetic cell

    DEFF Research Database (Denmark)

    Rasmussen, Steen

    2010-01-01

    Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self-replicating ......Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self...

  4. Synthetic biology and occupational risk.

    Science.gov (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  5. Finding Hope in Synthetic Biology.

    Science.gov (United States)

    Takala, Tuija

    2017-04-01

    For some, synthetic biology represents great hope in offering possible solutions to many of the world's biggest problems, from hunger to sustainable development. Others remain fearful of the harmful uses, such as bioweapons, that synthetic biology can lend itself to, and most hold that issues of biosafety are of utmost importance. In this article, I will evaluate these points of view and conclude that although the biggest promises of synthetic biology are unlikely to become reality, and the probability of accidents is fairly substantial, synthetic biology could still be seen to benefit humanity by enhancing our ethical understanding and by offering a boost to world economy.

  6. Mammalian Synthetic Biology: Time for Big MACs.

    Science.gov (United States)

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-10-21

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.

  7. Silica precipitation by synthetic minicollagens.

    Science.gov (United States)

    Weiher, Felix; Schatz, Michaela; Steinem, Claudia; Geyer, Armin

    2013-03-11

    Oligomeric Pro-Hyp-Gly- (POG-) peptides, wherein the collagenous triple helix is supported by C-terminal capping, exhibit silica precipitation properties (O, Hyp = (2S,4R)hydroxyproline). As quantified by a molybdate assay, the length of the covalently tethered triple helix (number of POG units) determines the amount of amorphous silica obtained from silicic acid solution. Although lacking charged side chains, the synthetic collagens precipitate large quantities of silicic acid resulting in micrometer-sized spheres of varying surface morphologies as analyzed by scanning electron microscopy. Similar precipitation efficiencies on a fast time scale of less than 10 min were previously described only for biogenic diatom proteins and sponge collagen, respectively, which have a considerably higher structural complexity and limited accessibility. The minicollagens described here provide an unexpected alternative to the widely used precipitation conditions, which generally depend on (poly-)amines in phosphate buffer. Collagen can form intimate connections with inorganic matter. Hence, silica-enclosed collagens have promising perspectives as composite materials.

  8. Synthetic sustained gene delivery systems.

    Science.gov (United States)

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  9. Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk

    Medical ultrasound imaging is used for many purposes, e.g. for localizing and classifying cysts, lesions, and other processes. Almost any mass is first observed using B-mode imaging and later classified using e.g. color flow, strain, or attenuation imaging. It is therefore important that the B......, it is demonstrated through theoretical considerations that the compound effect achieved is close to a theoretical maximum for the amount of compounding attainable and using a -pitch convex array transducer, the first in-vivo images are created. The computational demands for an implementation are massive...... and the limiting factor is the amount of memory IO resources available. An equally high demand for memory throughput is found in the computer gaming industry, where a large part of the processing takes place on the graphics processing unit (GPU). Using the GPU, a framework for synthetic aperture imaging...

  10. Transionospheric synthetic aperture imaging

    CERN Document Server

    Gilman, Mikhail; Tsynkov, Semyon

    2017-01-01

    This landmark monograph presents the most recent mathematical developments in the analysis of ionospheric distortions of SAR images and offers innovative new strategies for their mitigation. As a prerequisite to addressing these topics, the book also discusses the radar ambiguity theory as it applies to synthetic aperture imaging and the propagation of radio waves through the ionospheric plasma, including the anisotropic and turbulent cases. In addition, it covers a host of related subjects, such as the mathematical modeling of extended radar targets (as opposed to point-wise targets) and the scattering of radio waves off those targets, as well as the theoretical analysis of the start-stop approximation, which is used routinely in SAR signal processing but often without proper justification. The mathematics in this volume is clean and rigorous – no assumptions are hidden or ambiguously stated. The resulting work is truly interdisciplinary, providing both a comprehensive and thorough exposition of the field,...

  11. Synthetic antibiofilm peptides.

    Science.gov (United States)

    de la Fuente-Núñez, César; Cardoso, Marlon Henrique; de Souza Cândido, Elizabete; Franco, Octavio Luiz; Hancock, Robert E W

    2016-05-01

    Bacteria predominantly exist as multicellular aggregates known as biofilms that are associated with at least two thirds of all infections and exhibit increased adaptive resistance to conventional antibiotic therapies. Therefore, biofilms are major contributors to the global health problem of antibiotic resistance, and novel approaches to counter them are urgently needed. Small molecules of the innate immune system called host defense peptides (HDPs) have emerged as promising templates for the design of potent, broad-spectrum antibiofilm agents. Here, we review recent developments in the new field of synthetic antibiofilm peptides, including mechanistic insights, synergistic interactions with available antibiotics, and their potential as novel antimicrobials against persistent infections caused by biofilms. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Controlling Signal Transduction with Synthetic Ligands

    Science.gov (United States)

    Spencer, David M.; Wandless, Thomas J.; Schreiber, Stuart L.; Crabtree, Gerald R.

    1993-11-01

    Dimerization and oligomerization are general biological control mechanisms contributing to the activation of cell membrane receptors, transcription factors, vesicle fusion proteins, and other classes of intra- and extracellular proteins. Cell permeable, synthetic ligands were devised that can be used to control the intracellular oligomerization of specific proteins. To demonstrate their utility, these ligands were used to reduce intracellular oligomerization of cell surface receptors that lacked their transmembrane and extracellular regions but contained intracellular signaling domains. Addition of these ligands to cells in culture resulted in signal transmission and specific target gene activation. Monomeric forms of the ligands blocked the pathway. This method of ligandregulated activation and termination of signaling pathways has the potential to be applied wherever precise control of a signal transduction pathway is desired.

  13. Using Synthetic Nanopores for Single-Molecule Analyses: Detecting SNPs, Trapping DNA Molecules, and the Prospects for Sequencing DNA

    Science.gov (United States)

    Dimitrov, Valentin V.

    2009-01-01

    This work focuses on studying properties of DNA molecules and DNA-protein interactions using synthetic nanopores, and it examines the prospects of sequencing DNA using synthetic nanopores. We have developed a method for discriminating between alleles that uses a synthetic nanopore to measure the binding of a restriction enzyme to DNA. There exists…

  14. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  15. Synthetic cannabinoids: new matrix addiction

    Directory of Open Access Journals (Sweden)

    Antsyborov A.V.

    2017-04-01

    Full Text Available the majority of synthetic cannabinoids (SC, belongs to the group of so-called designer drugs distributed through illegal online shopping. The first reports of this group of psychoactive substances appeared in the 70s of the last century. Today, according to various estimates, there are over 160 varieties of synthetic cannabinoids, and this figure is increasing annually due to the synthesis of new substances in the group. This group of substances is designed to «copy» the psychoactive effects of cannabis. Initially, these substances were created solely for research purposes, to study the endocannabinoid system of the person. Natural THC is a partial agonist of cannabinoid receptors. Synthetic cannabinoids are full agonists CB1R and CB2R types of cannabinoid receptors. Most countries in the world, including Russia, at the legislative level have taken restrictive measures for preventing the spread of this group of substances. In order to circumvent the legislative measures, the producers of synthetic cannabinoids regularly changing the chemical formula. Each year, an increasing number of emergency hospital admissions associated with the use of synthetic cannabinoids in the peer-reviewed literature describes the deaths directly attributable to medical complications after taking synthetic cannabinoids. Numerous studies have proven the possibility of developing psychological dependence due to the use of synthetic cannabinoids. The proposed review of the literature is presented for the purpose of organizing data in the field of synthetic cannabinoids.

  16. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  17. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  18. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  19. Synthetic biology of polyketide synthases

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Backman, Tyler W.H.; Keasling, Jay D.

    2018-01-01

    ). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we...... realize the potential that synthetic biology approaches bring to this class of molecules....

  20. Computing with synthetic protocells.

    Science.gov (United States)

    Courbet, Alexis; Molina, Franck; Amar, Patrick

    2015-09-01

    In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane electron transfer. In the paradigm of computation we propose, protoputing, a machine can solve only one problem and therefore has to be built specifically. Thus, the programming phase in the standard computing paradigm is represented in our approach by the set of assembly instructions (specific attachments) that directs the wiring of the protocells that constitute the machine itself. To demonstrate the computing power of protocellular machines, we apply it to solve a NP-complete problem, known to be very demanding in computing power, the 3-SAT problem. We show how to program the assembly of a machine that can verify the satisfiability of a given boolean formula. Then we show how to use the massive parallelism of these machines to verify in less than 20 min all the valuations of the input variables and output a fluorescent signal when the formula is satisfiable or no signal at all otherwise.

  1. Synthetic biology: Novel approaches for microbiology.

    Science.gov (United States)

    Padilla-Vaca, Felipe; Anaya-Velázquez, Fernando; Franco, Bernardo

    2015-06-01

    In the past twenty years, molecular genetics has created powerful tools for genetic manipulation of living organisms. Whole genome sequencing has provided necessary information to assess knowledge on gene function and protein networks. In addition, new tools permit to modify organisms to perform desired tasks. Gene function analysis is speed up by novel approaches that couple both high throughput data generation and mining. Synthetic biology is an emerging field that uses tools for generating novel gene networks, whole genome synthesis and engineering. New applications in biotechnological, pharmaceutical and biomedical research are envisioned for synthetic biology. In recent years these new strategies have opened up the possibilities to study gene and genome editing, creation of novel tools for functional studies in virus, parasites and pathogenic bacteria. There is also the possibility to re-design organisms to generate vaccine subunits or produce new pharmaceuticals to combat multi-drug resistant pathogens. In this review we provide our opinion on the applicability of synthetic biology strategies for functional studies of pathogenic organisms and some applications such as genome editing and gene network studies to further comprehend virulence factors and determinants in pathogenic organisms. We also discuss what we consider important ethical issues for this field of molecular biology, especially for potential misuse of the new technologies. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  2. Synthetic biology for pharmaceutical drug discovery

    Science.gov (United States)

    Trosset, Jean-Yves; Carbonell, Pablo

    2015-01-01

    Synthetic biology (SB) is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell–cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity. PMID:26673570

  3. Synthetic biology: lessons from the history of synthetic organic chemistry.

    Science.gov (United States)

    Yeh, Brian J; Lim, Wendell A

    2007-09-01

    The mid-nineteenth century saw the development of a radical new direction in chemistry: instead of simply analyzing existing molecules, chemists began to synthesize them--including molecules that did not exist in nature. The combination of this new synthetic approach with more traditional analytical approaches revolutionized chemistry, leading to a deep understanding of the fundamental principles of chemical structure and reactivity and to the emergence of the modern pharmaceutical and chemical industries. The history of synthetic chemistry offers a possible roadmap for the development and impact of synthetic biology, a nascent field in which the goal is to build novel biological systems.

  4. Spicing things up: synthetic cannabinoids.

    Science.gov (United States)

    Spaderna, Max; Addy, Peter H; D'Souza, Deepak Cyril

    2013-08-01

    Recently, products containing synthetic cannabinoids, collectively referred to as Spice, are increasingly being used recreationally. The availability, acute subjective effects-including self-reports posted on Erowid-laboratory detection, addictive potential, and regulatory challenges of the Spice phenomenon are reviewed. Spice is sold under the guise of potpourri or incense. Unlike delta-9-tetrahydrocannabinol, the synthetic cannabinoids present in Spice are high-potency, high-efficacy, cannabinoid receptor full agonists. Since standard urine toxicology does not test for the synthetic cannabinoids in Spice, it is often used by those who want to avoid detection of drug use. These compounds have not yet been subjected to rigorous testing in humans. Acute psychoactive effects include changes in mood, anxiety, perception, thinking, memory, and attention. Adverse effects include anxiety, agitation, panic, dysphoria, psychosis, and bizarre behavior. Psychosis outcomes associated with Spice provide additional data linking cannabinoids and psychosis. Adverse events necessitating intervention by Poison Control Centers, law enforcement, emergency responders, and hospitals are increasing. Despite statutes prohibiting the manufacture, distribution, and sale of Spice products, manufacturers are replacing banned compounds with newer synthetic cannabinoids that are not banned. There is an urgent need for better research on the effects of synthetic cannabinoids to help clinicians manage adverse events and to better understand cannabinoid pharmacology in humans. The reported psychosis outcomes associated with synthetic cannabinoids contribute to the ongoing debate on the association between cannabinoids and psychosis. Finally, drug detection tests for synthetic cannabinoids need to become clinically available.

  5. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  6. Cell-Free Synthetic Biology: Engineering Beyond the Cell.

    Science.gov (United States)

    Perez, Jessica G; Stark, Jessica C; Jewett, Michael C

    2016-12-01

    Cell-free protein synthesis (CFPS) technologies have enabled inexpensive and rapid recombinant protein expression. Numerous highly active CFPS platforms are now available and have recently been used for synthetic biology applications. In this review, we focus on the ability of CFPS to expand our understanding of biological systems and its applications in the synthetic biology field. First, we outline a variety of CFPS platforms that provide alternative and complementary methods for expressing proteins from different organisms, compared with in vivo approaches. Next, we review the types of proteins, protein complexes, and protein modifications that have been achieved using CFPS systems. Finally, we introduce recent work on genetic networks in cell-free systems and the use of cell-free systems for rapid prototyping of in vivo networks. Given the flexibility of cell-free systems, CFPS holds promise to be a powerful tool for synthetic biology as well as a protein production technology in years to come. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Bistatic synthetic aperture radar

    Science.gov (United States)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  8. Synthetic biology for therapeutic applications.

    Science.gov (United States)

    Abil, Zhanar; Xiong, Xiong; Zhao, Huimin

    2015-02-02

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders.

  9. The Ethics of Synthetic Biology

    DEFF Research Database (Denmark)

    Christiansen, Andreas

    The dissertation analyses and discusses a number of ethical issues that have been raised in connection with the development of synthetic biology. Synthetic biology is a set of new techniques for DNA-level design and construction of living beings with useful properties. The dissertation especially......) popular responsesto them succeed, and whether the objections are ultimately persuasive.2. Given that synthetic biology is a new technology, there is a certain degree of uncertainty about its ultimate effects, and many perceive the technology as risky. I discuss two common approaches in risk regulation...

  10. Synthetic Electric Microbial Biosensors

    Science.gov (United States)

    2017-06-10

    inductively coupled plasma/mass spectrometry, ultraviolet-visible spectroscopy amongst others [2]. Due to the continued industrial activity...monovalent responsive proteins found responded to different metal ions with the same charge and chemistry, such as ZntR binding of zinc (Zn(II)), cadmium...Zn(II) or Hg (II) by reducing the induction coefficient for these metals by up to 95% [25]. A Fluorescent based biosensors in E. coli also reported

  11. Utilisation of synthetic amino acids by broiler breeder hens | Nonis ...

    African Journals Online (AJOL)

    This study was conducted to examine the response of broiler breeder hens to feeds supplemented with synthetic lysine and methionine when fed once or twice daily during peak production. Replacing intact protein with increasing amounts of free lysine and methionine, up to 2.3 g/kg feed, had no effect on feed intake, ...

  12. Predatory behaviour in synthetic protocell communities

    Science.gov (United States)

    Qiao, Yan; Li, Mei; Booth, Richard; Mann, Stephen

    2017-02-01

    Recent progress in the chemical construction of colloidal objects comprising integrated biomimetic functions is paving the way towards rudimentary forms of artificial cell-like entities (protocells). Although several new types of protocells are currently available, the design of synthetic protocell communities and investigation of their collective behaviour has received little attention. Here we demonstrate an artificial form of predatory behaviour in a community of protease-containing coacervate microdroplets and protein-polymer microcapsules (proteinosomes) that interact via electrostatic binding. The coacervate microdroplets act as killer protocells for the obliteration of the target proteinosome population by protease-induced lysis of the protein-polymer membrane. As a consequence, the proteinosome payload (dextran, single-stranded DNA, platinum nanoparticles) is trafficked into the attached coacervate microdroplets, which are then released as functionally modified killer protocells capable of rekilling. Our results highlight opportunities for the development of interacting artificial protocell communities, and provide a strategy for inducing collective behaviour in soft matter microcompartmentalized systems and synthetic protocell consortia.

  13. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB....... The first part of the scientific contribution investigates an implementation of pulse inversion for THI on the experimental ultrasound system SARUS. The technique is initially implemented for linear array transducers and then expanded for convex array transducers. The technique is evaluated based on spatial...

  14. Adaptive Synthetic Forces: Situation Awareness

    National Research Council Canada - National Science Library

    Hill, Randall

    2001-01-01

    ...: perception, comprehension, and prediction. Building on these ideas, we developed techniques for improving the situation awareness in synthetic helicopter pilots for the ModSAF military simulation by giving them more human-like perception...

  15. Designing synthetic networks in silico

    NARCIS (Netherlands)

    Smith, Robert W.; Sluijs, van Bob; Fleck, Christian

    2017-01-01

    Background: Evolution has led to the development of biological networks that are shaped by environmental signals. Elucidating, understanding and then reconstructing important network motifs is one of the principal aims of Systems & Synthetic Biology. Consequently, previous research has focused

  16. Synthetic Biology for Specialty Chemicals.

    Science.gov (United States)

    Markham, Kelly A; Alper, Hal S

    2015-01-01

    In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

  17. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  18. Programming languages for synthetic biology.

    Science.gov (United States)

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  19. Generating realistic synthetic meteoroid orbits

    Science.gov (United States)

    Vida, Denis; Brown, Peter G.; Campbell-Brown, Margaret

    2017-11-01

    Context. Generating a synthetic dataset of meteoroid orbits is a crucial step in analysing the probabilities of random grouping of meteoroid orbits in automated meteor shower surveys. Recent works have shown the importance of choosing a low similarity threshold value of meteoroid orbits, some pointing out that the recent meteor shower surveys produced false positives due to similarity thresholds which were too high. On the other hand, the methods of synthetic meteoroid orbit generation introduce additional biases into the data, thus making the final decision on an appropriate threshold value uncertain. Aims. As a part of the ongoing effort to determine the nature of meteor showers and improve automated methods, it was decided to tackle the problem of synthetic meteoroid orbit generation, the main goal being to reproduce the underlying structure and the statistics of the observed data in the synthetic orbits. Methods. A new method of generating synthetic meteoroid orbits using the Kernel Density Estimation method is presented. Several types of approaches are recommended, depending on whether one strives to preserve the data structure, the data statistics or to have a compromise between the two. Results. The improvements over the existing methods of synthetic orbit generation are demonstrated. The comparison between the previous and newly developed methods are given, as well as the visualization tools one can use to estimate the influence of different input parameters on the final data.

  20. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    Science.gov (United States)

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  1. Anti-Cancer Drug Discovery Using Synthetic Lethal Chemogenetic (SLC) Analysis

    National Research Council Canada - National Science Library

    Bellows, David S

    2004-01-01

    I am developing a novel cell-based small-molecule screening approach that can identify inhibitors of any non-essential protein function through a surrogate synthetic lethal phenotype in the baker's...

  2. Anti-Cancer Drug Discovery Using Synthetic Lethal Chemogenetic (SLC) Analysis

    National Research Council Canada - National Science Library

    Bellows, David S

    2006-01-01

    I am developing a novel cell-based small-molecule screening approach that can identify inhibitors of any non-essential protein function through a surrogate synthetic lethal phenotype in the baker's...

  3. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    Science.gov (United States)

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  4. Highly immunogenic and fully synthetic peptide-carrier constructs targetting GnRH

    NARCIS (Netherlands)

    Beekman, N.J.C.M.; Schaaper, W.M.M.; Turkstra, J.A.; Meloen, R.H.

    1999-01-01

    To use peptides as synthetic vaccines, they have to be coupled to a carrier protein to make them more immunogenic. Coupling efficiency between a carrier protein and a peptide, however, is difficult to control with respect to loading density of the peptide. This makes these carrier proteins poorly

  5. Control theory meets synthetic biology.

    Science.gov (United States)

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. © 2016 The Author(s).

  6. Synthetic biology, metaphors and responsibility.

    Science.gov (United States)

    McLeod, Carmen; Nerlich, Brigitte

    2017-08-29

    Metaphors are not just decorative rhetorical devices that make speech pretty. They are fundamental tools for thinking about the world and acting on the world. The language we use to make a better world matters; words matter; metaphors matter. Words have consequences - ethical, social and legal ones, as well as political and economic ones. They need to be used 'responsibly'. They also need to be studied carefully - this is what we want to do through this editorial and the related thematic collection. In the context of synthetic biology, natural and social scientists have become increasingly interested in metaphors, a wave of interest that we want to exploit and amplify. We want to build on emerging articles and books on synthetic biology, metaphors of life and the ethical and moral implications of such metaphors. This editorial provides a brief introduction to synthetic biology and responsible innovation, as well as a comprehensive review of literature on the social, cultural and ethical impacts of metaphor use in genomics and synthetic biology. Our aim is to stimulate an interdisciplinary and international discussion on the impact that metaphors can have on science, policy and publics in the context of synthetic biology.

  7. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  8. US Competitiveness in Synthetic Biology.

    Science.gov (United States)

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized.

  9. Synthetic biology as red herring.

    Science.gov (United States)

    Preston, Beth

    2013-12-01

    It has become commonplace to say that with the advent of technologies like synthetic biology the line between artifacts and living organisms, policed by metaphysicians since antiquity, is beginning to blur. But that line began to blur 10,000 years ago when plants and animals were first domesticated; and has been thoroughly blurred at least since agriculture became the dominant human subsistence pattern many millennia ago. Synthetic biology is ultimately only a late and unexceptional offshoot of this prehistoric development. From this perspective, then, synthetic biology is a red herring, distracting us from more thorough philosophical consideration of the most truly revolutionary human practice-agriculture. In the first section of this paper I will make this case with regard to ontology, arguing that synthetic biology crosses no ontological lines that were not crossed already in the Neolithic. In the second section I will construct a parallel case with regard to cognition, arguing that synthetic biology as biological engineering represents no cognitive advance over what was required for domestication and the new agricultural subsistence pattern it grounds. In the final section I will make the case with regard to human existence, arguing that synthetic biology, even if wildly successful, is not in a position to cause significant existential change in what it is to be human over and above the massive existential change caused by the transition to agriculture. I conclude that a longer historical perspective casts new light on some important issues in philosophy of technology and environmental philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Advances in Protein Precipitation

    NARCIS (Netherlands)

    Golubovic, M.

    2009-01-01

    Proteins are biological macromolecules, which are among the key components of all living organisms. Proteins are nowadays present in all fields of biotech industry, such as food and feed, synthetic and pharmaceutical industry. They are isolated from their natural sources or produced in different

  11. Synthetic biology and its promises

    Directory of Open Access Journals (Sweden)

    José Manuel De Cózar Escalante

    2016-12-01

    Full Text Available Synthetic biology is a new science and emerging technology, or rather a technoscience, which converges with others such as nanotechnology, information technology, robotics, artificial intelligence and neuroscience. All have common features that could have highly concerning social and environmental impacts. With its ambitious goals of controlling complexity, redesigning and creating new living entities, synthetic biology perfectly exemplifies the new bioeconomic reality. This requires expanding the focus of the discussion beyond the limited comparative analysis of risks and benefits, to address uncertainties, reassign responsibilities and initiate a thorough social assessment of what is at stake.

  12. Synthetic methodologies for carbon nanomaterials.

    Science.gov (United States)

    Liu, Zhaoping; Zhou, Xufeng; Qian, Yitai

    2010-05-04

    Carbon nanomaterials have advanced rapidly over the last two decades and are among the most promising materials that have already changed and will keep on changing human life. Development of synthetic methodologies for these materials, therefore, has been one of the most important subjects of carbon nanoscience and nanotechnology, and forms the basis for investigating the physicochemical properties and applications of carbon nanomaterials. In this Research News article, several synthetic strategies, including solvothermal reduction, solvothermal pyrolysis, hydrothermal carbonization, and soft-chemical exfoliation are specifically discussed and highlighted, which have been developed for the synthesis of novel carbon nanomaterials over the last decade.

  13. Cell-free synthetic biology for environmental sensing and remediation.

    Science.gov (United States)

    Karig, David K

    2017-06-01

    The fields of biosensing and bioremediation leverage the phenomenal array of sensing and metabolic capabilities offered by natural microbes. Synthetic biology provides tools for transforming these fields through complex integration of natural and novel biological components to achieve sophisticated sensing, regulation, and metabolic function. However, the majority of synthetic biology efforts are conducted in living cells, and concerns over releasing genetically modified organisms constitute a key barrier to environmental applications. Cell-free protein expression systems offer a path towards leveraging synthetic biology, while preventing the spread of engineered organisms in nature. Recent efforts in the areas of cell-free approaches for sensing, regulation, and metabolic pathway implementation, as well as for preserving and deploying cell-free expression components, embody key steps towards realizing the potential of cell-free systems for environmental sensing and remediation. Copyright © 2017 The Author. Published by Elsevier Ltd.. All rights reserved.

  14. Synthetic polyester-hydrolyzing enzymes from thermophilic actinomycetes.

    Science.gov (United States)

    Wei, Ren; Oeser, Thorsten; Zimmermann, Wolfgang

    2014-01-01

    Thermophilic actinomycetes produce enzymes capable of hydrolyzing synthetic polyesters such as polyethylene terephthalate (PET). In addition to carboxylesterases, which have hydrolytic activity predominantly against PET oligomers, esterases related to cutinases also hydrolyze synthetic polymers. The production of these enzymes by actinomycetes as well as their recombinant expression in heterologous hosts is described and their catalytic activity against polyester substrates is compared. Assays to analyze the enzymatic hydrolysis of synthetic polyesters are evaluated, and a kinetic model describing the enzymatic heterogeneous hydrolysis process is discussed. Structure-function and structure-stability relationships of actinomycete polyester hydrolases are compared based on molecular dynamics simulations and recently solved protein structures. In addition, recent progress in enhancing their activity and thermal stability by random or site-directed mutagenesis is presented. © 2014 Elsevier Inc. All rights reserved.

  15. Synthetic Genetic Arrays: Automation of Yeast Genetics.

    Science.gov (United States)

    Kuzmin, Elena; Costanzo, Michael; Andrews, Brenda; Boone, Charles

    2016-04-01

    Genome-sequencing efforts have led to great strides in the annotation of protein-coding genes and other genomic elements. The current challenge is to understand the functional role of each gene and how genes work together to modulate cellular processes. Genetic interactions define phenotypic relationships between genes and reveal the functional organization of a cell. Synthetic genetic array (SGA) methodology automates yeast genetics and enables large-scale and systematic mapping of genetic interaction networks in the budding yeast,Saccharomyces cerevisiae SGA facilitates construction of an output array of double mutants from an input array of single mutants through a series of replica pinning steps. Subsequent analysis of genetic interactions from SGA-derived mutants relies on accurate quantification of colony size, which serves as a proxy for fitness. Since its development, SGA has given rise to a variety of other experimental approaches for functional profiling of the yeast genome and has been applied in a multitude of other contexts, such as genome-wide screens for synthetic dosage lethality and integration with high-content screening for systematic assessment of morphology defects. SGA-like strategies can also be implemented similarly in a number of other cell types and organisms, includingSchizosaccharomyces pombe,Escherichia coli, Caenorhabditis elegans, and human cancer cell lines. The genetic networks emerging from these studies not only generate functional wiring diagrams but may also play a key role in our understanding of the complex relationship between genotype and phenotype. © 2016 Cold Spring Harbor Laboratory Press.

  16. Synthetic Biology: A Unifying View and Review Using Analog Circuits.

    Science.gov (United States)

    Teo, Jonathan J Y; Woo, Sung Sik; Sarpeshkar, Rahul

    2015-08-01

    We review the field of synthetic biology from an analog circuits and analog computation perspective, focusing on circuits that have been built in living cells. This perspective is well suited to pictorially, symbolically, and quantitatively representing the nonlinear, dynamic, and stochastic (noisy) ordinary and partial differential equations that rigorously describe the molecular circuits of synthetic biology. This perspective enables us to construct a canonical analog circuit schematic that helps unify and review the operation of many fundamental circuits that have been built in synthetic biology at the DNA, RNA, protein, and small-molecule levels over nearly two decades. We review 17 circuits in the literature as particular examples of feedforward and feedback analog circuits that arise from special topological cases of the canonical analog circuit schematic. Digital circuit operation of these circuits represents a special case of saturated analog circuit behavior and is automatically incorporated as well. Many issues that have prevented synthetic biology from scaling are naturally represented in analog circuit schematics. Furthermore, the deep similarity between the Boltzmann thermodynamic equations that describe noisy electronic current flow in subthreshold transistors and noisy molecular flux in biochemical reactions has helped map analog circuit motifs in electronics to analog circuit motifs in cells and vice versa via a `cytomorphic' approach. Thus, a body of knowledge in analog electronic circuit design, analysis, simulation, and implementation may also be useful in the robust and efficient design of molecular circuits in synthetic biology, helping it to scale to more complex circuits in the future.

  17. Exploring the potential of metallic nanoparticles within synthetic biology.

    Science.gov (United States)

    Edmundson, Matthew C; Capeness, Michael; Horsfall, Louise

    2014-12-25

    The fields of metallic nanoparticle study and synthetic biology have a great deal to offer one another. Metallic nanoparticles as a class of material have many useful properties. Their small size allows for more points of contact than would be the case with a similar bulk compound, making nanoparticles excellent candidates for catalysts or for when increased levels of binding are required. Some nanoparticles have unique optical qualities, making them well suited as sensors, while others display para-magnetism, useful in medical imaging, especially by magnetic resonance imaging (MRI). Many of these metallic nanoparticles could be used in creating tools for synthetic biology, and conversely the use of synthetic biology could itself be utilised to create nanoparticle tools. Examples given here include the potential use of quantum dots (QDs) and gold nanoparticles as sensing mechanisms in synthetic biology, and the use of synthetic biology to create nanoparticle-sensing devices based on current methods of detecting metals and metalloids such as arsenate. There are a number of organisms which are able to produce a range of metallic nanoparticles naturally, such as species of the fungus Phoma which produces anti-microbial silver nanoparticles. The biological synthesis of nanoparticles may have many advantages over their more traditional industrial synthesis. If the proteins involved in biological nanoparticle synthesis can be put into a suitable bacterial chassis then they might be manipulated and the pathways engineered in order to produce more valuable nanoparticles. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Where Synthetic Biology Meets ET

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  19. Future of synthetic aperture radar

    Science.gov (United States)

    Barath, F. T.

    1978-01-01

    The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.

  20. Digital 'faces' of synthetic biology.

    Science.gov (United States)

    Friedrich, Kathrin

    2013-06-01

    In silicio design plays a fundamental role in the endeavour to synthesise biological systems. In particular, computer-aided design software enables users to manage the complexity of biological entities that is connected to their construction and reconfiguration. The software's graphical user interface bridges the gap between the machine-readable data on the algorithmic subface of the computer and its human-amenable surface represented by standardised diagrammatic elements. Notations like the Systems Biology Graphical Notation (SBGN), together with interactive operations such as drag & drop, allow the user to visually design and simulate synthetic systems as 'bio-algorithmic signs'. Finally, the digital programming process should be extended to the wet lab to manufacture the designed synthetic biological systems. By exploring the different 'faces' of synthetic biology, I argue that in particular computer-aided design (CAD) is pushing the idea to automatically produce de novo objects. Multifaceted software processes serve mutually aesthetic, epistemic and performative purposes by simultaneously black-boxing and bridging different data sources, experimental operations and community-wide standards. So far, synthetic biology is mainly a product of digital media technologies that structurally mimic the epistemological challenge to take both qualitative as well as quantitative aspects of biological systems into account in order to understand and produce new and functional entities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Synthetic peptides for diagnostic use

    NARCIS (Netherlands)

    Meloen, R.H.; Langedijk, J.P.M.; Langeveld, J.P.M.

    1997-01-01

    Synthetic peptides representing relevant B-cell epitopes are, potentially, ideal antigens to be used in diagnostic assays because of their superior properties with respect to quality control as compared to those of biologically derived molecules and the much higher specificity that sometimes can be

  2. Analysis of the Synthetic Jet

    Czech Academy of Sciences Publication Activity Database

    Dančová, Petra; Vít, Tomáš

    2009-01-01

    Roč. 2, č. 1 (2009), s. 11-17 ISSN 1803-0203 R&D Projects: GA AV ČR(CZ) IAA200760801 Institutional research plan: CEZ:AV0Z20760514 Keywords : synthetic jet * actuator * nominal frequency Subject RIV: BJ - Thermodynamics

  3. Methods for preparing synthetic freshwaters.

    Science.gov (United States)

    Smith, E J; Davison, W; Hamilton-Taylor, J

    2002-03-01

    Synthetic solutions that emulate the major ion compositions of natural waters are useful in experiments aimed at understanding biogeochemical processes. Standard recipes exist for preparing synthetic analogues of seawater, with its relatively constant composition, but, due to the diversity of freshwaters, a range of compositions and recipes is required. Generic protocols are developed for preparing synthetic freshwaters of any desired composition. The major problems encountered in preparing hard and soft waters include dissolving sparingly soluble calcium carbonate, ensuring that the ionic components of each concentrated stock solution cannot form an insoluble salt and dealing with the supersaturation of calcium carbonate in many hard waters. For acidic waters the poor solubility of aluminium salts requires attention. These problems are overcome by preparing concentrated stock solutions according to carefully designed reaction paths that were tested using a combination of experiment and equilibrium modeling. These stock solutions must then be added in a prescribed order to prepare a final solution that is brought into equilibrium with the atmosphere. The example calculations for preparing hard, soft and acidic freshwater surrogates with major ion compositions the same as published analyses, are presented in a generalized fashion that should allow preparation of any synthetic freshwater according to its known analysis.

  4. 01-ERD-111 - The Development of Synthetic High Affinity Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, J; Balhorn, R; Cosman, M; Lightstone, F; Zeller, L

    2004-02-05

    The aim of this project was to develop Synthetic High-Affinity Ligands (SHALs), which bind with high affinity and specificity to proteins of interest for national security and cancer therapy applications. The aim of producing synthetic ligands for sensory devices as an alternative to antibody-based detection assays and therapeutic agents is to overcome the drawbacks associated with antibody-based in next-generation sensors and systems. The focus area of the project was the chemical synthesis of the SHALs. The project concentrated on two different protein targets. (a) The C fragment of tetanus and botulinum toxin, potential biowarfare agents. A SHAL for tetanus or botulinum toxin would be incorporated into a sensory device for the toxins. (b) HLA-DR10, a protein found in high abundance on the surface of Non-Hodgkins Lymphoma. A SHAL specific to a tumor marker, labeled with a radionuclide, would enable the targeted delivery of radiation therapy to metastatic disease. The technical approach used to develop a SHAL for each protein target will be described in more detail below. However, in general, the development of a SHAL requires a combination of computational modeling techniques, modern nuclear magnetic resonance spectroscopy (NMR) and synthetic chemistry.

  5. TATA is a modular component of synthetic promoters.

    Science.gov (United States)

    Mogno, Ilaria; Vallania, Francesco; Mitra, Robi D; Cohen, Barak A

    2010-10-01

    The expression of most genes is regulated by multiple transcription factors. The interactions between transcription factors produce complex patterns of gene expression that are not always obvious from the arrangement of cis-regulatory elements in a promoter. One critical element of promoters is the TATA box, the docking site for the RNA polymerase holoenzyme. Using a synthetic promoter system coupled to a thermodynamic model of combinatorial regulation, we analyze the effects of different strength TATA boxes on various aspects of combinatorial cis-regulation. The thermodynamic model explains 75% of the variance in gene expression in synthetic promoter libraries with different strength TATA boxes, suggesting that many of the salient aspects of cis-regulation are captured by the model. Our results demonstrate that the effect of changing the TATA box on gene expression is the same for all synthetic promoters regardless of the arrangement of cis-regulatory sites we studied. Our analysis also showed that in our synthetic system the strength of the RNA polymerase-TATA interaction does not alter the combinatorial interactions between transcription factors, or between transcription factors and RNA polymerase. Finally, we show that although stronger TATA boxes increase expression in a predictable fashion, stronger TATA boxes have very little effect on noise in our synthetic promoters, regardless of the arrangement of cis-regulatory sites. Our results support a modular model of promoter function, where cis-regulatory elements can be mixed and matched (programmed) with outcomes on expression that are predictable based on the rules of simple protein-protein and protein-DNA interactions.

  6. Building synthetic sterols computationally – unlocking the secrets of evolution?

    Directory of Open Access Journals (Sweden)

    Tomasz eRog

    2015-08-01

    Full Text Available Cholesterol is vital in regulating the physical properties of animal cell membranes. While it remains unclear what renders cholesterol so unique, it is known that other sterols are less capable in modulating membrane properties, and there are membrane proteins whose function is dependent on cholesterol. Practical applications of cholesterol include e.g. its use in liposomes in drug delivery and cosmetics, cholesterol-based detergents in membrane protein crystallography, and its fluorescent analogs in studies of cholesterol transport in cells and tissues. Clearly, in spite of their difficult synthesis, producing the synthetic analogs of cholesterol is of great commercial and scientific interest. In this article, we discuss how synthetic sterols nonexistent in nature can be used to elucidate the roles of cholesterol's structural elements. To this end, we discuss recent atomistic molecular dynamics simulation studies that have predicted new synthetic sterols with properties comparable to those of cholesterol. We also discuss more recent experimental studies that have vindicated these predictions. The paper highlights the strength of computational simulations in making predictions for synthetic biology, thereby guiding experiments.

  7. Butyrate production in engineered Escherichia coli with synthetic scaffolds.

    Science.gov (United States)

    Baek, Jang-Mi; Mazumdar, Suman; Lee, Sang-Woo; Jung, Moo-Young; Lim, Jae-Hyung; Seo, Sang-Woo; Jung, Gyoo-Yeol; Oh, Min-Kyu

    2013-10-01

    Butyrate pathway was constructed in recombinant Escherichia coli using the genes from Clostridium acetobutylicum and Treponema denticola. However, the pathway constructed from exogenous enzymes did not efficiently convert carbon flux to butyrate. Three steps of the productivity enhancement were attempted in this study. First, pathway engineering to delete metabolic pathways to by-products successfully improved the butyrate production. Second, synthetic scaffold protein that spatially co-localizes enzymes was introduced to improve the efficiency of the heterologous pathway enzymes, resulting in threefold improvement in butyrate production. Finally, further optimizations of inducer concentrations and pH adjustment were tried. The final titer of butyrate was 4.3 and 7.2 g/L under batch and fed-batch cultivation, respectively. This study demonstrated the importance of synthetic scaffold protein as a useful tool for optimization of heterologous butyrate pathway in E. coli. Copyright © 2013 Wiley Periodicals, Inc.

  8. Recent advances in the molecular design of synthetic vaccines

    Science.gov (United States)

    Jones, Lyn H.

    2015-12-01

    Vaccines have typically been prepared using whole organisms. These are normally either attenuated bacteria or viruses that are live but have been altered to reduce their virulence, or pathogens that have been inactivated and effectively killed through exposure to heat or formaldehyde. However, using whole organisms to elicit an immune response introduces the potential for infections arising from a reversion to a virulent form in live pathogens, unproductive reactions to vaccine components or batch-to-batch variability. Synthetic vaccines, in which a molecular antigen is conjugated to a carrier protein, offer the opportunity to circumvent these problems. This Perspective will highlight the progress that has been achieved in developing synthetic vaccines using a variety of molecular antigens. In particular, the different approaches used to develop conjugate vaccines using peptide/proteins, carbohydrates and other small molecule haptens as antigens are compared.

  9. Construction of synthetic dermis and skin based on a self-assembled peptide hydrogel scaffold.

    Science.gov (United States)

    Kao, Bunsho; Kadomatsu, Koichi; Hosaka, Yoshiaki

    2009-09-01

    Using biocompatible peptide hydrogel as a scaffold, we prepared three-dimensional synthetic skin that does not contain animal-derived materials or pathogens. The present study investigated preparation methods, proliferation, and functional expression of fibroblasts in the synthetic dermis and differentiation of keratinocytes in the epidermis. Synthetic dermis was prepared by mixing fibroblasts with peptide hydrogel, and synthetic skin was prepared by forming an epidermal layer using keratinocytes on the synthetic dermis. A fibroblast-rich foamy layer consisting of homogeneous peptide hydrogel subsequently formed in the synthetic dermis, with fibroblasts aggregating in clusters within the septum. The epidermis consisted of three to five keratinocyte layers. Immunohistochemical staining showed human type I collagen, indicating functional expression around fibroblasts in the synthetic dermis, keratinocyte differentiation in the epidermis, and expression of basement membrane proteins. The number of fibroblasts tended to increase until the second week and was maintained until the fourth week, but rapidly decreased in the fifth week. In the synthetic dermis medium, the human type I collagen concentration increased after the second week to the fifth week. These findings suggest that peptide hydrogel acts as a synthetic skin scaffold that offers a platform for the proliferation and functional expression of fibroblasts and keratinocytes.

  10. Synthetic LDL as targeted drug delivery vehicle

    Science.gov (United States)

    Forte, Trudy M [Berkeley, CA; Nikanjam, Mina [Richmond, CA

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  11. Synthetic biology character and impact

    CERN Document Server

    Pade, Christian; Wigger, Henning; Gleich, Arnim

    2015-01-01

    Synthetic Biology is already an object of intensive debate. However, to a great extent the discussion to date has been concerned with fundamental ethical, religious and philosophical questions. By contrast, based on an investigation of the field’s scientific and technological character, this book focuses on new functionalities provided by synthetic biology and explores the associated opportunities and risks. Following an introduction to the subject and a discussion of the most central paradigms and methodologies, the book provides an overview of the structure of this field of science and technology. It informs the reader about the current stage of development, as well as topical problems and potential opportunities in important fields of application. But not only the science itself is in focus. In order to investigate its broader impact, ecological as well as ethical implications will be considered, paving the way for a discussion of responsibilities in the context of a field at a transitional crossroads be...

  12. Design Automation in Synthetic Biology.

    Science.gov (United States)

    Appleton, Evan; Madsen, Curtis; Roehner, Nicholas; Densmore, Douglas

    2017-04-03

    Design automation refers to a category of software tools for designing systems that work together in a workflow for designing, building, testing, and analyzing systems with a target behavior. In synthetic biology, these tools are called bio-design automation (BDA) tools. In this review, we discuss the BDA tools areas-specify, design, build, test, and learn-and introduce the existing software tools designed to solve problems in these areas. We then detail the functionality of some of these tools and show how they can be used together to create the desired behavior of two types of modern synthetic genetic regulatory networks. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  13. Engineering Ecosystems and Synthetic Ecologies#

    Science.gov (United States)

    Mee, Michael T; Wang, Harris H

    2012-01-01

    Microbial ecosystems play an important role in nature. Engineering these systems for industrial, medical, or biotechnological purposes are important pursuits for synthetic biologists and biological engineers moving forward. Here, we provide a review of recent progress in engineering natural and synthetic microbial ecosystems. We highlight important forward engineering design principles, theoretical and quantitative models, new experimental and manipulation tools, and possible applications of microbial ecosystem engineering. We argue that simply engineering individual microbes will lead to fragile homogenous populations that are difficult to sustain, especially in highly heterogeneous and unpredictable environments. Instead, engineered microbial ecosystems are likely to be more robust and able to achieve complex tasks at the spatial and temporal resolution needed for truly programmable biology. PMID:22722235

  14. Synthetic greenhouse gases under control

    International Nuclear Information System (INIS)

    Horisberger, B.; Karlaganis, G.

    2003-01-01

    This article discusses new Swiss regulations on the use of synthetic materials that posses a considerable greenhouse-warming potential. Synthetic materials such as hydro-chlorofluorocarbons HCFCs, perfluoride-hydrocarbons and sulphur hexafluoride have, in recent years, replaced chlorofluorocarbons CFCs, which were banned on account of their ozone depletion characteristics. The use of these persistent substances is now being limited to applications where more environment-friendly alternatives are not available. The measures decreed in the legislation, which include a general ban on HCFCs as of 2004 and a ban on the export of installations and equipment that use ozone-depleting refrigerants are described. Details on the legislation's effects on the Swiss refrigeration industry are listed and discussed

  15. Compounding in synthetic aperture imaging

    DEFF Research Database (Denmark)

    Hansen, J. M.; Jensen, J. A.

    2012-01-01

    from multiple spherical emissions to synthesize multiple transmit and receive apertures, corresponding to imaging the tissue from multiple directions. The many images are added incoherently, to produce a single compound image. Using a 192-element, 3.5-MHz, λ-pitch transducer, it is demonstrated from...... tissue-phantom measurements that the speckle is reduced and the contrast resolution improved when applying synthetic aperture compound imaging. At a depth of 4 cm, the size of the synthesized apertures is optimized for lesion detection based on the speckle information density. This is a performance...... measure for tissue contrast resolution which quantifies the tradeoff between resolution loss and speckle reduction. The speckle information density is improved by 25% when comparing synthetic aperture compounding to a similar setup for compounding using dynamic receive focusing. The cystic resolution...

  16. Characterization of Synthetic Peptides by Mass Spectrometry.

    Science.gov (United States)

    Prabhala, Bala K; Mirza, Osman; Højrup, Peter; Hansen, Paul R

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI-TOF-MS and LC-MS of synthetic peptides.

  17. Synthetic thermoelectric materials comprising phononic crystals

    Science.gov (United States)

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  18. Steel desulphurization with synthetic slag

    Energy Technology Data Exchange (ETDEWEB)

    Heput, T.; Ardelean, E.; Socalici, A.; Maksay, S.; Gavanescu, A.

    2007-07-01

    Generally speaking, sulfur is considered a harmful element for steel quality, reason why all the technological steps are being taken in order to eliminate it from the metal bath. This paper deals with the influence of the chemical composition, on the slag quantity and of the batch stirring condition upon the desulfurization process in the casting ladle by treatment with synthetic slag. The experiments were made at an open-hearth plant with the steel tapping in two ladles (the desulfurization was made with synthetic slag at one ladle while the other one was considered standard) and at the electric steel plant and for the synthetic slag formation a mix was used, made, according to several receipts, of : lime (50-75%), fluorine (0-17%); bauxite (0-32%) and aluminous slag (8-22%). The data were processed in the calculation programs EXCEL and MATLAB, which resulted in a series of correlations between the desulfurization degree and the chemical composition of the slag, respectively the slag quantity both for the charges bubbled with Argon and the un bubbled ones. (Author) 5 refs.

  19. Hydrogen speciation in synthetic quartz

    Science.gov (United States)

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  20. Development of a Synthetic Synovial Fluid for Tribological Testing

    Directory of Open Access Journals (Sweden)

    Emely Lea Bortel

    2015-12-01

    Full Text Available Wear tests of joint prostheses are usually performed using bovine calf serum. The results from different laboratories are hardly ever comparable as, for example, the protein concentration and the protein composition of the serum-based test liquids vary. In addition, the viscosity of these test liquids is similar to that of water and does not match the more viscous synovial fluid. The present work was aimed at developing a synthetic synovial fluid as an alternative to the existing test liquids. Improved consistency and reproducibility of results at a similar price were required. Hyaluronic acid (HA, the lyophilized proteins bovine serum albumin (BSA and immunoglobulin G (IgG, the phospholipid lecithin (PL and salts were applied in a stepwise approach to replace the actually used test liquid based on newborn calf serum. The in vitro results obtained with ultra-high-molecular-weight polyethylene (UHMWPE pins sliding against CoCrMo discs revealed that the developed synthetic synovial fluid fulfils the set requirements: increase of viscosity, reasonable cost, improved consistency and wear particles which resemble the ones found in vivo. The developed synthetic synovial fluid with 3 g/L HA, 19 g/L BSA, 11 g/L IgG, 0.1 g/L PL and Ringer solution is a more realistic alternative to the used serum-based test liquid.

  1. Landauer in the Age of Synthetic Biology: Energy Consumption and Information Processing in Biochemical Networks

    Science.gov (United States)

    Mehta, Pankaj; Lang, Alex H.; Schwab, David J.

    2016-03-01

    A central goal of synthetic biology is to design sophisticated synthetic cellular circuits that can perform complex computations and information processing tasks in response to specific inputs. The tremendous advances in our ability to understand and manipulate cellular information processing networks raises several fundamental physics questions: How do the molecular components of cellular circuits exploit energy consumption to improve information processing? Can one utilize ideas from thermodynamics to improve the design of synthetic cellular circuits and modules? Here, we summarize recent theoretical work addressing these questions. Energy consumption in cellular circuits serves five basic purposes: (1) increasing specificity, (2) manipulating dynamics, (3) reducing variability, (4) amplifying signal, and (5) erasing memory. We demonstrate these ideas using several simple examples and discuss the implications of these theoretical ideas for the emerging field of synthetic biology. We conclude by discussing how it may be possible to overcome these limitations using "post-translational" synthetic biology that exploits reversible protein modification.

  2. Printability of Synthetic Papers by Electrophotography

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2010-04-01

    Full Text Available This paper deals with the printability of synthetic papers by the electrophotography technique. Prints of cmyk colour fields from 20% to 100% raster tone values were printed on three types of synthetic papers (one film synthetic paper and two fiber synthetic papers. The investigation of the appearance included densitometric measurement of the cmyk prints. The results have shown differences in the optical density and optical tone value between cmyk prints made on various synthetic papers. The highest optical density and the increase of the optical tone value were observed on the film synthetic paper, where cmyk prints were more saturated. The highest abrasion resistance of cmyk prints was obtained from the fibre synthetic paper.

  3. Synthetic biology: Emerging bioengineering in Indonesia

    Science.gov (United States)

    Suhandono, Sony

    2017-05-01

    The development of synthetic biology will shape the new era of science and technology. It is an emerging bioengineering technique involving genetic engineering which can alter the phenotype and behavior of the cell or the new product. Synthetic biology may produce biomaterials, drugs, vaccines, biosensors, and even a recombinant secondary metabolite used in herbal and complementary medicine, such as artemisinin, a malaria drug which is usually extracted from the plant Artemisia annua. The power of synthetic biology has encouraged scientists in Indonesia, and is still in early development. This paper also covers some research from an Indonesian research institute in synthetic biology such as observing the production of bio surfactants and the enhanced production of artemisinin using a transient expression system. Synthetic biology development in Indonesia may also be related to the iGEM competition, a large synthetic biology research competition which was attended by several universities in Indonesia. The application of synthetic biology for drug discovery will be discussed.

  4. Co-Compartmentation of Terpene Biosynthesis and Storage via Synthetic Droplet

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Cheng [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States; Kim, YongKyoung [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States; Zeng, Yining [Biosciences; Li, Man [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States; Wang, Xin [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States; Hu, Cheng [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States; Gorman, Connor [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States; Dai, Susie Y. [State; Ding, Shi-You [Department; Yuan, Joshua S. [Texas; amp,M Agrilife Synthetic and Systems Biology Innovation Hub, Texas A& amp,M University, College Station, Texas 77843, United States; Department; amp,M University, College Station, Texas 77843, United States; Institute; amp,M University, College Station, Texas 77843, United States

    2018-02-16

    Traditional bioproduct engineering focuses on pathway optimization, yet is often complicated by product inhibition, downstream consumption, and the toxicity of certain products. Here, we present the co-compartmentation of biosynthesis and storage via a synthetic droplet as an effective new strategy to improve the bioproduct yield, with squalene as a model compound. A hydrophobic protein was designed and introduced into the tobacco chloroplast to generate a synthetic droplet for terpene storage. Simultaneously, squalene biosynthesis enzymes were introduced to chloroplasts together with the droplet-forming protein to co-compartmentalize the biosynthesis and storage of squalene. The strategy has enabled a record yield of squalene at 2.6 mg/g fresh weight without compromising plant growth. Confocal fluorescent microscopy imaging, stimulated Raman scattering microscopy, and droplet composition analysis confirmed the formation of synthetic storage droplet in chloroplast. The co-compartmentation of synthetic storage droplet with a targeted metabolic pathway engineering represents a new strategy for enhancing bioproduct yield.

  5. A combinatorial approach to synthetic transcription factor-promoter combinations for yeast strain engineering

    DEFF Research Database (Denmark)

    Dossani, Zain Y.; Apel, Amanda Reider; Szmidt-Middleton, Heather

    2018-01-01

    . Correspondingly, the synthetic transcription factor (TF) consists of the DNA binding domain of the LexA protein, fused with the human estrogen binding domain and the viral activator domain, VP16. The resulting system with a bacterial DNA binding domain avoids the transcription of native S. cerevisiae genes...... regions, we have built a library of hybrid promoters that are regulated by a synthetic transcription factor. The hybrid promoters consist of native S. cerevisiae promoters, in which the operator regions have been replaced with sequences that are recognized by the bacterial LexA DNA binding protein...... levels, using the same synthetic TF and a given estradiol. This set of promoters, in combination with our synthetic TF, has the potential to regulate numerous genes or pathways simultaneously, to multiple desired levels, in a single strain....

  6. Safety, efficacy, and immunogenicity of VGX-3100, a therapeutic synthetic DNA vaccine targeting human papillomavirus 16 and 18 E6 and E7 proteins for cervical intraepithelial neoplasia 2/3: a randomised, double-blind, placebo-controlled phase 2b trial.

    Science.gov (United States)

    Trimble, Cornelia L; Morrow, Matthew P; Kraynyak, Kimberly A; Shen, Xuefei; Dallas, Michael; Yan, Jian; Edwards, Lance; Parker, R Lamar; Denny, Lynette; Giffear, Mary; Brown, Ami Shah; Marcozzi-Pierce, Kathleen; Shah, Divya; Slager, Anna M; Sylvester, Albert J; Khan, Amir; Broderick, Kate E; Juba, Robert J; Herring, Timothy A; Boyer, Jean; Lee, Jessica; Sardesai, Niranjan Y; Weiner, David B; Bagarazzi, Mark L

    2015-11-21

    Despite preventive vaccines for oncogenic human papillomaviruses (HPVs), cervical intraepithelial neoplasia (CIN) is common, and current treatments are ablative and can lead to long-term reproductive morbidity. We assessed whether VGX-3100, synthetic plasmids targeting HPV-16 and HPV-18 E6 and E7 proteins, delivered by electroporation, would cause histopathological regression in women with CIN2/3. Efficacy, safety, and immunogenicity of VGX-3100 were assessed in CIN2/3 associated with HPV-16 and HPV-18, in a randomised, double-blind, placebo-controlled phase 2b study. Patients from 36 academic and private gynaecology practices in seven countries were randomised (3:1) to receive 6 mg VGX-3100 or placebo (1 mL), given intramuscularly at 0, 4, and 12 weeks. Randomisation was stratified by age (reactions occurred in most patients, but only erythema was significantly more common in the VGX-3100 group (98/125, 78·4%) than in the placebo group (24/42, 57·1%; percentage point difference 21·3 [95% CI 5·3-37·8]; p=0·007). VGX-3100 is the first therapeutic vaccine to show efficacy against CIN2/3 associated with HPV-16 and HPV-18. VGX-3100 could present a non-surgical therapeutic option for CIN2/3, changing the treatment outlook for this common disease. Inovio Pharmaceuticals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Microcosm and Experimental Pond Evaluation of Microbial Community Response to Synthetic Oil Contamination in Freshwater Sediments

    OpenAIRE

    Sayler, G. S.; Perkins, R. E.; Sherrill, T. W.; Perkins, B. K.; Reid, M. C.; Shields, M. S.; Kong, H. L.; Davis, J. W.

    1983-01-01

    A multivariate approach was used to evaluate the significance of synthetic oil-induced perturbations in the functional activity of sediment microbial communities. Total viable cell densities, ATP-biomass, alkaline phosphatase and dehydrogenase activity, and mineralization rates of glucose, protein, oleic acid, starch, naphthalene, and phenanthrene were monitored on a periodic basis in microcosms and experimental ponds for 11 months, both before and after exposure to synthetic oil. All variabl...

  8. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  9. Synthetic Fourier transform light scattering.

    Science.gov (United States)

    Lee, Kyeoreh; Kim, Hyeon-Don; Kim, Kyoohyun; Kim, Youngchan; Hillman, Timothy R; Min, Bumki; Park, Yongkeun

    2013-09-23

    We present synthetic Fourier transform light scattering, a method for measuring extended angle-resolved light scattering (ARLS) from individual microscopic samples. By measuring the light fields scattered from the sample plane and numerically synthesizing them in Fourier space, the angle range of the ARLS patterns is extended up to twice the numerical aperture of the imaging system with unprecedented sensitivity and precision. Extended ARLS patterns of individual microscopic polystyrene beads, healthy human red blood cells (RBCs), and Plasmodium falciparum-parasitized RBCs are presented.

  10. Synthetic carbonaceous fuels and feedstocks

    Science.gov (United States)

    Steinberg, Meyer

    1980-01-01

    This invention relates to the use of a three compartment electrolytic cell in the production of synthetic carbonaceous fuels and chemical feedstocks such as gasoline, methane and methanol by electrolyzing an aqueous sodium carbonate/bicarbonate solution, obtained from scrubbing atmospheric carbon dioxide with an aqueous sodium hydroxide solution, whereby the hydrogen generated at the cathode and the carbon dioxide liberated in the center compartment are combined thermocatalytically into methanol and gasoline blends. The oxygen generated at the anode is preferably vented into the atmosphere, and the regenerated sodium hydroxide produced at the cathode is reused for scrubbing the CO.sub.2 from the atmosphere.

  11. Synthetic Biology Guides Biofuel Production

    Science.gov (United States)

    Connor, Michael R.; Atsumi, Shota

    2010-01-01

    The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges. PMID:20827393

  12. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando

    The main objective of this project was to continue the development of a synthetic aperture vector flow estimator. This type of estimator is capable of overcoming two of the major limitations in conventional ultrasound systems: 1) the inability to scan large region of interest with high temporal......, this thesis showed that novel information can be obtained with vector velocity methods providing quantitative estimates of blood flow and insight into the complexity of the hemodynamics dynamics. This could give the clinician a new tool in assessment and treatment of a broad range of diseases....

  13. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Oddershede, Niels

    2008-01-01

    of the thesis considers a method for estimating the two-dimensional velocity vector within the image plane. This method, called synthetic aperture vector flow imaging, is first shortly reviewed. The main contribution of this work is partly an analysis of the method with respect to focusing effects, motion...... estimation. The method can be used for increasing the frame rate of color flow maps or alternatively for a new imaging modality entitled quadroplex imaging, featuring a color flow map and two independent spectrograms at a high frame rate. The second is an alternative method for ultrasonic vector velocity...

  14. Tracking the emergence of synthetic biology.

    Science.gov (United States)

    Shapira, Philip; Kwon, Seokbeom; Youtie, Jan

    2017-01-01

    Synthetic biology is an emerging domain that combines biological and engineering concepts and which has seen rapid growth in research, innovation, and policy interest in recent years. This paper contributes to efforts to delineate this emerging domain by presenting a newly constructed bibliometric definition of synthetic biology. Our approach is dimensioned from a core set of papers in synthetic biology, using procedures to obtain benchmark synthetic biology publication records, extract keywords from these benchmark records, and refine the keywords, supplemented with articles published in dedicated synthetic biology journals. We compare our search strategy with other recent bibliometric approaches to define synthetic biology, using a common source of publication data for the period from 2000 to 2015. The paper details the rapid growth and international spread of research in synthetic biology in recent years, demonstrates that diverse research disciplines are contributing to the multidisciplinary development of synthetic biology research, and visualizes this by profiling synthetic biology research on the map of science. We further show the roles of a relatively concentrated set of research sponsors in funding the growth and trajectories of synthetic biology. In addition to discussing these analyses, the paper notes limitations and suggests lines for further work.

  15. Towards developing algal synthetic biology.

    Science.gov (United States)

    Scaife, Mark Aden; Smith, Alison Gail

    2016-06-15

    The genetic, physiological and metabolic diversity of microalgae has driven fundamental research into photosynthesis, flagella structure and function, and eukaryotic evolution. Within the last 10 years these organisms have also been investigated as potential biotechnology platforms, for example to produce high value compounds such as long chain polyunsaturated fatty acids, pigments and antioxidants, and for biodiesel precursors, in particular triacylglycerols (TAGs). Transformation protocols, molecular tools and genome sequences are available for a number of model species including the green alga Chlamydomonas reinhardtii and the diatom Phaeodactylum tricornutum, although for both species there are bottlenecks to be overcome to allow rapid and predictable genetic manipulation. One approach to do this would be to apply the principles of synthetic biology to microalgae, namely the cycle of Design-Build-Test, which requires more robust, predictable and high throughput methods. In this mini-review we highlight recent progress in the areas of improving transgene expression, genome editing, identification and design of standard genetic elements (parts), and the use of microfluidics to increase throughput. We suggest that combining these approaches will provide the means to establish algal synthetic biology, and that application of standard parts and workflows will avoid parallel development and capitalize on lessons learned from other systems. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  16. Shape analysis of synthetic diamond

    CERN Document Server

    Mullan, C

    1997-01-01

    Two-dimensional images of synthetic industrial diamond particles were obtained using a camera, framegrabber and PC-based image analysis software. Various methods for shape quantification were applied, including two-dimensional shape factors, Fourier series expansion of radius as a function of angle, boundary fractal analysis, polygonal harmonics, and comer counting methods. The shape parameter found to be the most relevant was axis ratio, defined as the ratio of the minor axis to the major axis of the ellipse with the same second moments of area as the particle. Axis ratio was used in an analysis of the sorting of synthetic diamonds on a vibrating table. A model was derived based on the probability that a particle of a given axis ratio would travel to a certain bin. The model described the sorting of bulk material accurately but it was found not to be applicable if the shape mix of the feed material changed dramatically. This was attributed to the fact that the particle-particle interference was not taken int...

  17. Mapping receptor-ligand interactions with synthetic peptide arrays: exploring the structure and function of membrane receptors.

    Science.gov (United States)

    Volkmer, Rudolf; Kretzschmar, Ines; Tapia, Victor

    2012-04-01

    Development of synthetic peptide array technology started in the early 1990s. The technique originally developed by Ronald Frank has become a powerful tool for high throughput approaches in biology and chemistry mapping protein interaction sites. In this review we focus on peptide arrays applied to investigate receptor-ligand interactions, such as peroxisomal membrane receptor proteins, the maltose importer machinery and receptor proteins recognizing short linear motifs of their partners. We present several systematic sets of peptide arrays useful for mapping protein-protein- or receptor-ligand binding sites. Besides a more technical description of the peptide array preparation we discuss in detail the reliability and improvement of mapping protein-protein interactions by synthetic peptide arrays. At least proteomic approaches for mapping protein-protein interactions by peptide arrays are shown especially for the case of protein interaction domains. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  19. Word selection affects perceptions of synthetic biology

    Directory of Open Access Journals (Sweden)

    Tonidandel Scott

    2011-07-01

    Full Text Available Abstract Members of the synthetic biology community have discussed the significance of word selection when describing synthetic biology to the general public. In particular, many leaders proposed the word "create" was laden with negative connotations. We found that word choice and framing does affect public perception of synthetic biology. In a controlled experiment, participants perceived synthetic biology more negatively when "create" was used to describe the field compared to "construct" (p = 0.008. Contrary to popular opinion among synthetic biologists, however, low religiosity individuals were more influenced negatively by the framing manipulation than high religiosity people. Our results suggest that synthetic biologists directly influence public perception of their field through avoidance of the word "create".

  20. Synthetic biology - the state of play.

    Science.gov (United States)

    Kitney, Richard; Freemont, Paul

    2012-07-16

    Just over two years ago there was an article in Nature entitled "Five Hard Truths for Synthetic Biology". Since then, the field has moved on considerably. A number of economic commentators have shown that synthetic biology very significant industrial potential. This paper addresses key issues in relation to the state of play regarding synthetic biology. It first considers the current background to synthetic biology, whether it is a legitimate field and how it relates to foundational biological sciences. The fact that synthetic biology is a translational field is discussed and placed in the context of the industrial translation process. An important aspect of synthetic biology is platform technology, this topic is also discussed in some detail. Finally, examples of application areas are described. Copyright © 2012. Published by Elsevier B.V.

  1. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  2. A synthetic zero air standard

    Science.gov (United States)

    Pearce, Ruth

    2016-04-01

    A Synthetic Zero Air Standard R. E. Hill-Pearce, K. V. Resner, D. R. Worton, P. J. Brewer The National Physical Laboratory Teddington, Middlesex TW11 0LW UK We present work towards providing traceability for measurements of high impact greenhouse gases identified by the World Meteorological Organisation (WMO) as critical for global monitoring. Standards for these components are required with challengingly low uncertainties to improve the quality assurance and control processes used for the global networks to better assess climate trends. Currently the WMO compatibility goals require reference standards with uncertainties of < 100 nmolmol-1 for CO2 (northern hemisphere) and < 2 nmolmol-1 for CH4 and CO. High purity zero gas is required for both the balance gas in the preparation of reference standards and for baseline calibrations of instrumentation. Quantification of the amount fraction of the target components in the zero gas is a significant contributor to the uncertainty and is challenging due to limited availability of reference standard at the amount fraction of the measurand and limited analytical techniques with sufficient detection limits. A novel dilutor was used to blend NPL Primary Reference Gas Mixtures containing CO2, CH4 and CO at atmospheric amount fractions with a zero gas under test. Several mixtures were generated with nominal dilution ratios ranging from 2000:1 to 350:1. The baseline of two cavity ring down spectrometers was calibrated using the zero gas under test after purification by oxidative removal of CO and hydrocarbons to < 1 nmolmol-1 (SAES PS15-GC50) followed by the removal of CO2 and water vapour to < 100 pmolmol-1 (SAES MC190). Using the standard addition method.[1] we have quantified the amount fraction of CO, CO2, and CH4 in scrubbed whole air (Scott Marrin) and NPL synthetic zero air. This is the first synthetic zero air standard with a matrix of N2, O2 and Ar closely matching ambient composition with gravimetrically assigned

  3. Geo synthetic-reinforced Pavement systems

    International Nuclear Information System (INIS)

    Zornberg, J. G.

    2014-01-01

    Geo synthetics have been used as reinforcement inclusions to improve pavement performance. while there are clear field evidence of the benefit of using geo synthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geo synthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geo synthetics. (Author)

  4. Veterans Affairs Suicide Prevention Synthetic Dataset

    Data.gov (United States)

    Department of Veterans Affairs — The VA's Veteran Health Administration, in support of the Open Data Initiative, is providing the Veterans Affairs Suicide Prevention Synthetic Dataset (VASPSD). The...

  5. Characterization of Synthetic Peptides by Mass Spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala K; Mirza, Osman; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI-TOF-MS an......Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI...

  6. Synthetic biology assemblies for sustainable space exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The work utilized synthetic biology to create sustainable food production processes by developing technology to efficiently convert inedible crop waste to...

  7. Synthetic Self-Adjuvanting Glycopeptide Cancer Vaccines

    Science.gov (United States)

    Payne, Richard; McDonald, David; Byrne, Scott

    2015-10-01

    Due to changes in glycosyltransferase expression during tumorigenesis, the glycoproteins of cancer cells often carry highly truncated carbohydrate chains compared to those on healthy cells. These glycans are known as tumor-associated carbohydrate antigens, and are prime targets for use in vaccines for the prevention and treatment of cancer. Herein, we review the state-of-the-art in targeting the immune system towards tumor-associated glycopeptide antigens via synthetic self adjuvanting vaccines, in which the antigenic and adjuvanting moieties of the vaccines are present in the same molecule. The majority of the self-adjuvanting glycopeptide cancer vaccines reported to date employ antigens from mucin 1, a protein which is highly over-expressed and aberrantly glycosylated in many forms of cancer. The adjuvants used in these vaccines predominantly include lipopeptide- or lipoamino acid-based TLR2 agonists, although studies investigating stimulation of TLR9 and TLR4 are also discussed. Most of these adjuvants are highly lipophilic, and, upon conjugation to antigenic peptides, provide amphiphilic vaccine molecules. The amphiphilic nature of these vaccine constructs can lead to the formation of higher-order structures by vaccines in solution, which are likely to be important for their efficacy in vivo.

  8. Synthetic biology: engineering molecular computers

    CERN Document Server

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  9. Preparation of synthetic standard minerals

    International Nuclear Information System (INIS)

    Herrick, C.C.; Bustamante, S.J.; Charls, R.W.; Cowan, R.E.; Hakkila, E.A.; Hull, D.E.; Olinger, B.W.; Roof, R.B.; Sheinberg, H.; Herrick, G.C.

    1978-01-01

    A number of techniques for synthetic mineral preparations have been examined. These techniques include hot-pressing in graphite dies at moderate pressures, high-pressure, high-temperature synthesis in a piston and cylinder apparatus, isostatic pressing under helium gas pressures, hydrous mineral preparations using water as the pressure medium, explosion-generated shock waves, and radiofrequency heating. Minerals suitable for equation-of-state studies (three-inch, high-density discs), for thermodynamic property determinations (low-density powders) and for microprobe standards (fusion-cast microbeads) have been prepared. Mechanical stress-strain calculations in the piston-cylinder apparatus have been initiated and their integration with thermal stress calculations is currently under investigation

  10. Synthetic biology of antimicrobial discovery

    Science.gov (United States)

    Zakeri, Bijan; Lu, Timothy K.

    2012-01-01

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore, used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery. PMID:23654251

  11. Synthetic aperture interferometry: error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Amiya; Coupland, Jeremy

    2010-07-10

    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  12. Synthetic aperture interferometry: error analysis

    International Nuclear Information System (INIS)

    Biswas, Amiya; Coupland, Jeremy

    2010-01-01

    Synthetic aperture interferometry (SAI) is a novel way of testing aspherics and has a potential for in-process measurement of aspherics [Appl. Opt.42, 701 (2003)].APOPAI0003-693510.1364/AO.42.000701 A method to measure steep aspherics using the SAI technique has been previously reported [Appl. Opt.47, 1705 (2008)].APOPAI0003-693510.1364/AO.47.001705 Here we investigate the computation of surface form using the SAI technique in different configurations and discuss the computational errors. A two-pass measurement strategy is proposed to reduce the computational errors, and a detailed investigation is carried out to determine the effect of alignment errors on the measurement process.

  13. Computational optimization of synthetic water channels.

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, David Michael; Rempe, Susan L. B.

    2012-12-01

    Membranes for liquid and gas separations and ion transport are critical to water purification, osmotic energy generation, fuel cells, batteries, supercapacitors, and catalysis. Often these membranes lack pore uniformity and robustness under operating conditions, which can lead to a decrease in performance. The lack of uniformity means that many pores are non-functional. Traditional membranes overcome these limitations by using thick membrane materials that impede transport and selectivity, which results in decreased performance and increased operating costs. For example, limitations in membrane performance demand high applied pressures to deionize water using reverse osmosis. In contrast, cellular membranes combine high flux and selective transport using membrane-bound protein channels operating at small pressure differences. Pore size and chemistry in the cellular channels is defined uniformly and with sub-nanometer precision through protein folding. The thickness of these cellular membranes is limited to that of the cellular membrane bilayer, about 4 nm thick, which enhances transport. Pores in the cellular membranes are robust under operating conditions in the body. Recent efforts to mimic cellular water channels for efficient water deionization produced a significant advance in membrane function. The novel biomimetic design achieved a 10-fold increase in membrane permeability to water flow compared to commercial membranes and still maintained high salt rejection. Despite this success, there is a lack of understanding about why this membrane performs so well. To address this lack of knowledge, we used highperformance computing to interrogate the structural and chemical environments experienced by water and electrolytes in the newly created biomimetic membranes. We also compared the solvation environments between the biomimetic membrane and cellular water channels. These results will help inform future efforts to optimize and tune the performance of synthetic

  14. Synthetic vaccines: Immunity without harm

    Science.gov (United States)

    Acharya, Abhinav P.; Murthy, Niren

    2011-03-01

    Multilamellar lipid vesicles with crosslinked walls carrying protein antigens in the vesicle core and immunostimulatory drugs in the vesicle walls generate immune responses comparable to the strongest live vector vaccines.

  15. Protein-like proton exchange in a synthetic host cavity.

    Science.gov (United States)

    Hart-Cooper, William M; Sgarlata, Carmelo; Perrin, Charles L; Toste, F Dean; Bergman, Robert G; Raymond, Kenneth N

    2015-12-15

    The mechanism of proton exchange in a metal-ligand enzyme active site mimic (compound 1) is described through amide hydrogen-deuterium exchange kinetics. The type and ratio of cationic guest to host in solution affect the rate of isotope exchange, suggesting that the rate of exchange is driven by a host whose cavity is occupied by water. Rate constants for acid-, base-, and water-mediated proton exchange vary by orders of magnitude depending on the guest, and differ by up to 200 million-fold relative to an alanine polypeptide. These results suggest that the unusual microenvironment of the cavity of 1 can dramatically alter the reactivity of associated water by magnitudes comparable to that of enzymes.

  16. Racemic protein crystallography.

    Science.gov (United States)

    Yeates, Todd O; Kent, Stephen B H

    2012-01-01

    Although natural proteins are chiral and are all of one "handedness," their mirror image forms can be prepared by chemical synthesis. This opens up new opportunities for protein crystallography. A racemic mixture of the enantiomeric forms of a protein molecule can crystallize in ways that natural proteins cannot. Recent experimental data support a theoretical prediction that this should make racemic protein mixtures highly amenable to crystallization. Crystals obtained from racemic mixtures also offer advantages in structure determination strategies. The relevance of these potential advantages is heightened by advances in synthetic methods, which are extending the size limit for proteins that can be prepared by chemical synthesis. Recent ideas and results in the area of racemic protein crystallography are reviewed.

  17. Automated Change Detection for Synthetic Aperture Sonar

    Science.gov (United States)

    2014-01-01

    2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Automated Change Detection for Synthetic Aperture Sonar...R. Azimi-Sadjadi and S. Srinivasan, “Coherent Change Detection and Classification in Synthetic Aper - ture Radar Imagery Using Canonical Correlation

  18. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    Khan, N.A.; Yahya, K.M.

    2003-01-01

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  19. Synthetic Biology in Health and Disease

    NARCIS (Netherlands)

    Passel, van M.W.J.; Lam, C.M.C.; Martins dos Santos, V.A.P.; Suarez Diez, M.

    2014-01-01

    Synthetic biology draws on the understanding from genetics, biology, chemistry, physics, engineering, and computational sciences to (re-)design and (re-)engineer biological functions. Here we address how synthetic biology can be possibly deployed to promote health and tackle disease. We discuss how

  20. Metal immobilization in soils using synthetic zeolites

    NARCIS (Netherlands)

    Osté, L.A.; Lexmond, T.M.; Riemsdijk, van W.H.

    2002-01-01

    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type,

  1. Synthetic biology: from mainstream to counterculture.

    Science.gov (United States)

    Sleator, Roy D

    2016-09-01

    Existing at the interface of science and engineering, synthetic biology represents a new and emerging field of mainstream biology. However, there also exists a counterculture of Do-It-Yourself biologists, citizen scientists, who have made significant inroads, particularly in the design and development of new tools and techniques. Herein, I review the development and convergence of synthetic biology's mainstream and countercultures.

  2. 2nd Congress on applied synthetic biology in Europe (Málaga, Spain, November 2013).

    Science.gov (United States)

    Vetter, Beatrice V; Pantidos, Nikolaos; Edmundson, Matthew

    2014-05-25

    The second meeting organised by the EFB on the advances of applied synthetic biology in Europe was held in Málaga, Spain in November 2013. The potential for the broad application of synthetic biology was reflected in the five sessions of this meeting: synthetic biology for healthcare applications, tools and technologies for synthetic biology, production of recombinant proteins, synthetic plant biology, and biofuels and other small molecules. Outcomes from the meeting were that synthetic biology offers methods for rapid development of new strains that will result in decreased production costs, sustainable chemical production and new medical applications. Additionally, it also introduced novel ways to produce sustainable energy and biofuels, to find new alternatives for bioremediation and resource recovery, and environmentally friendly foodstuff production. All the above-mentioned advances could enable biotechnology to solve some of the major problems of Society. However, while there are still limitations in terms of lacking tools, standardisation and suitable host organisms, this meeting has laid a foundation providing cutting-edge concepts and techniques to ultimately convert the potential of synthetic biology into practice. Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  3. Targeted genome regulation via synthetic programmable transcriptional regulators.

    Science.gov (United States)

    Piatek, Agnieszka; Mahfouz, Magdy M

    2017-06-01

    Regulation of gene transcription controls cellular functions and coordinates responses to developmental, physiological and environmental cues. Precise and efficient molecular tools are needed to characterize the functions of single and multiple genes in linear and interacting pathways in a native context. Modular DNA-binding domains from zinc fingers (ZFs) and transcriptional activator-like proteins (TALE) are amenable to bioengineering to bind DNA target sequences of interest. As a result, ZF and TALE proteins were used to develop synthetic programmable transcription factors. However, these systems are limited by the requirement to re-engineer proteins for each new target sequence. The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR associated 9 (Cas9) genome editing tool was recently repurposed for targeted transcriptional regulation by inactivation of the nuclease activity of Cas9. Due to the facile engineering, simplicity, precision and amenability to library construction, the CRISPR/Cas9 system is poised to revolutionize the functional genomics field across diverse eukaryotic species. In this review, we discuss the development of synthetic customizable transcriptional regulators and provide insights into their current and potential applications, with special emphasis on plant systems, in characterization of gene functions, elucidation of molecular mechanisms and their biotechnological applications.

  4. A Synthetic Biology Approach to Engineering Living Photovoltaics.

    Science.gov (United States)

    Schuergers, N; Werlang, C; Ajo-Franklin, C M; Boghossian, A A

    2017-05-01

    The ability to electronically interface living cells with electron accepting scaffolds is crucial for the development of next-generation biophotovoltaic technologies. Although recent studies have focused on engineering synthetic interfaces that can maximize electronic communication between the cell and scaffold, the efficiency of such devices is limited by the low conductivity of the cell membrane. This review provides a materials science perspective on applying a complementary, synthetic biology approach to engineering membrane-electrode interfaces. It focuses on the technical challenges behind the introduction of foreign extracellular electron transfer pathways in bacterial host cells and the past and future efforts to engineer photosynthetic organisms with artificial electron-export capabilities for biophotovoltaic applications. The article highlights advances in engineering protein-based, electron-exporting conduits in a model host organism, E. coli, before reviewing state-of-the-art biophotovoltaic technologies that use both unmodified and bioengineered photosynthetic bacteria with improved electron transport capabilities. A thermodynamic analysis is used to propose an energetically feasible pathway for extracellular electron transport in engineered cyanobacteria and identify metabolic bottlenecks amenable to protein engineering techniques. Based on this analysis, an engineered photosynthetic organism expressing a foreign, protein-based electron conduit yields a maximum theoretical solar conversion efficiency of 6-10% without accounting for additional bioengineering optimizations for light-harvesting.

  5. Targeted genome regulation via synthetic programmable transcriptional regulators

    KAUST Repository

    Piatek, Agnieszka Anna

    2016-04-19

    Regulation of gene transcription controls cellular functions and coordinates responses to developmental, physiological and environmental cues. Precise and efficient molecular tools are needed to characterize the functions of single and multiple genes in linear and interacting pathways in a native context. Modular DNA-binding domains from zinc fingers (ZFs) and transcriptional activator-like proteins (TALE) are amenable to bioengineering to bind DNA target sequences of interest. As a result, ZF and TALE proteins were used to develop synthetic programmable transcription factors. However, these systems are limited by the requirement to re-engineer proteins for each new target sequence. The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR associated 9 (Cas9) genome editing tool was recently repurposed for targeted transcriptional regulation by inactivation of the nuclease activity of Cas9. Due to the facile engineering, simplicity, precision and amenability to library construction, the CRISPR/Cas9 system is poised to revolutionize the functional genomics field across diverse eukaryotic species. In this review, we discuss the development of synthetic customizable transcriptional regulators and provide insights into their current and potential applications, with special emphasis on plant systems, in characterization of gene functions, elucidation of molecular mechanisms and their biotechnological applications. © 2016 Informa UK Limited, trading as Taylor & Francis Group

  6. Steel desulphurization with synthetic slag

    Directory of Open Access Journals (Sweden)

    Heput, T.

    2007-02-01

    Full Text Available Generally speaking, sulphur is considered a harmful element for steel quality, reason why all the technological steps are being taken in order to eliminate it from the metal bath. This paper deals with the influence of the chemical composition, on the slag quantity and of the bath stirring condition upon the desulphurization process in the casting ladle by treatment with synthetic slag. The experiments were made at an open-hearth plant with the steel tapping in two ladles (the desulphurization was made with synthetic slag at one ladle while the other one was considered standard and at the electric steel plant and for the synthetic slag formation a mix was used, made, according to several receipts, of: lime (50-75%, fluorine (0-17%, bauxite (0-32% and aluminous slag (8-22%. The data were processed in the calculation programs EXCEL and MATLAB, which resulted in a series of correlations between the desulphurization degree and the chemical composition of the slag, respectively the slag quantity both for the charges bubbled with Argon and the unbubbled ones.

    En general, el azufre es considerado un elemento nocivo para la calidad del acero y, por eso, en la práctica, se toman todas las medidas de orden tecnológico para su eliminación del baño metálico. En este trabajo se analiza la influencia de la composición química, de la cantidad de escoria y del estado de agitación del baño sobre el proceso de desulfuración en la cuchara para fundir por tratamiento con escoria sintética. Los experimentos se han realizado en una acería evacuando el acero en dos ollas (en una cuchara se efectuó la desulfuración con escoria sintética y a la otra se consideró como patrón y en un acería eléctrica y para la formación de la escoria sintética se utilizó una mezcla producida según muchas recetas, formada por: cal (50-75%, fluorina (0-17%, bauxita (0-32% y escoria aluminosa (8-22%. Los datos han sido procesados en los programas de c

  7. Philosophy of Systems and Synthetic Biology

    DEFF Research Database (Denmark)

    Green, Sara

    2017-01-01

    This entry aims to clarify how systems and synthetic biology contribute to and extend discussions within philosophy of science. Unlike fields such as developmental biology or molecular biology, systems and synthetic biology are not easily demarcated by a focus on a specific subject area or level...... computational approaches, about the relation between living and artificial systems, and about the implications of interdisciplinary research for science and society. The entry can be openly accessed at the webpage of the Stanford Encyclopaedia of Philosophy: https://plato.stanford.edu/entries/systems-synthetic-biology/...... of organization. Rather, they are characterized by the development and application of mathematical, computational, and synthetic modeling strategies in response to complex problems and challenges within the life sciences. Proponents of systems and synthetic biology often stress the necessity of a perspective...

  8. Mammalian synthetic biology: emerging medical applications

    Science.gov (United States)

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  9. Synthetic biology: an emerging engineering discipline.

    Science.gov (United States)

    Cheng, Allen A; Lu, Timothy K

    2012-01-01

    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  10. EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology.

    Science.gov (United States)

    Moore, Simon J; Lai, Hung-En; Kelwick, Richard J R; Chee, Soo Mei; Bell, David J; Polizzi, Karen Marie; Freemont, Paul S

    2016-10-21

    Golden Gate cloning is a prominent DNA assembly tool in synthetic biology for the assembly of plasmid constructs often used in combinatorial pathway optimization, with a number of assembly kits developed specifically for yeast and plant-based expression. However, its use for synthetic biology in commonly used bacterial systems such as Escherichia coli has surprisingly been overlooked. Here, we introduce EcoFlex a simplified modular package of DNA parts for a variety of applications in E. coli, cell-free protein synthesis, protein purification and hierarchical assembly of transcription units based on the MoClo assembly standard. The kit features a library of constitutive promoters, T7 expression, RBS strength variants, synthetic terminators, protein purification tags and fluorescence proteins. We validate EcoFlex by assembling a 68-part containing (20 genes) plasmid (31 kb), characterize in vivo and in vitro library parts, and perform combinatorial pathway assembly, using pooled libraries of either fluorescent proteins or the biosynthetic genes for the antimicrobial pigment violacein as a proof-of-concept. To minimize pathway screening, we also introduce a secondary module design site to simplify MoClo pathway optimization. In summary, EcoFlex provides a standardized and multifunctional kit for a variety of applications in E. coli synthetic biology.

  11. RNA and RNP as Building Blocks for Nanotechnology and Synthetic Biology.

    Science.gov (United States)

    Ohno, Hirohisa; Saito, Hirohide

    2016-01-01

    Recent technologies that aimed to elucidate cellular function have revealed essential roles for RNA molecules in living systems. Our knowledge concerning functional and structural information of naturally occurring RNA and RNA-protein (RNP) complexes is increasing rapidly. RNA and RNP interaction motifs are structural units that function as building blocks to constitute variety of complex structures. RNA-central synthetic biology and nanotechnology are constructive approaches that employ the accumulated information and build synthetic RNA (RNP)-based circuits and nanostructures. Here, we describe how to design and construct synthetic RNA (RNP)-based devices and structures at the nanometer-scale for biological and future therapeutic applications. RNA/RNP nanostructures can also be utilized as the molecular scaffold to control the localization or interactions of target molecule(s). Moreover, RNA motifs recognized by RNA-binding proteins can be applied to make protein-responsive translational "switches" that can turn gene expression "on" or "off" depending on the intracellular environment. This "synthetic RNA and RNP world" will expand tools for nanotechnology and synthetic biology. In addition, these reconstructive approaches would lead to a greater understanding of building principle in naturally occurring RNA/RNP molecules and systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Science with Synthetic Stellar Surveys

    Science.gov (United States)

    Sanderson, Robyn Ellyn

    2018-04-01

    A new generation of observational projects is poised to revolutionize our understanding of the resolved stellar populations of Milky-Way-like galaxies at an unprecedented level of detail, ushering in an era of precision studies of galaxy formation. In the Milky Way itself, astrometric, spectroscopic and photometric surveys will measure three-dimensional positions and velocities and numerous chemical abundances for stars from the disk to the halo, as well as for many satellite dwarf galaxies. In the Local Group and beyond, HST, JWST and eventually WFIRST will deliver pristine views of resolved stars. The groundbreaking scale and dimensionality of this new view of resolved stellar populations in galaxies challenge us to develop new theoretical tools to robustly compare these surveys to simulated galaxies, in order to take full advantage of our new ability to make detailed predictions for stellar populations within a cosmological context. I will describe a framework for generating realistic synthetic star catalogs and mock surveys from state-of-the-art cosmological-hydrodynamical simulations, and present several early scientific results from, and predictions for, resolved stellar surveys of our Galaxy and its neighbors.

  13. Synthetic mimics of antimicrobial peptides.

    Science.gov (United States)

    Som, Abhigyan; Vemparala, Satyavani; Ivanov, Ivaylo; Tew, Gregory N

    2008-01-01

    Infectious diseases and antibiotic resistance are now considered the most imperative global healthcare problem. In the search for new treatments, host defense, or antimicrobial, peptides have attracted considerable attention due to their various unique properties; however, attempts to develop in vivo therapies have been severely limited. Efforts to develop synthetic mimics of antimicrobial peptides (SMAMPs) have increased significantly in the last decade, and this review will focus primarily on the structural evolution of SMAMPs and their membrane activity. This review will attempt to make a bridge between the design of SMAMPs and the fundamentals of SMAMP-membrane interactions. In discussions regarding the membrane interaction of SMAMPs, close attention will be paid to the lipid composition of the bilayer. Despite many years of study, the exact conformational aspects responsible for the high selectivity of these AMPs and SMAMPs toward bacterial cells over mammalian cells are still not fully understood. The ability to design SMAMPs that are potently antimicrobial, yet nontoxic to mammalian cells has been demonstrated with a variety of molecular scaffolds. Initial animal studies show very good tissue distribution along with more than a 4-log reduction in bacterial counts. The results on SMAMPs are not only extremely promising for novel antibiotics, but also provide an optimistic picture for the greater challenge of general proteomimetics.

  14. Online professionalism: A synthetic review.

    Science.gov (United States)

    Chretien, Katherine C; Tuck, Matthew G

    2015-04-01

    The rise of social media has increased connectivity and blurred personal and professional boundaries, bringing new challenges for medical professionalism. Whether traditional professionalism principles apply to the online social media space remains unknown. The purpose of this synthetic literature review was to characterize the original peer-reviewed research studies published between 1 January 2000-1 November 2014 on online professionalism, to assess methodologies and approaches used, and to provide insights to guide future studies in this area. The investigators searched three databases and performed manual searches of bibliographies to identify the 32 studies included. Most studies originated in the USA. Cross-sectional surveys and analyses of publicly available online content were the most common methodologies employed. Studies covered the general areas of use and privacy, assessment of unprofessional online behaviours, consensus-gathering of what constitutes unprofessional or inappropriate online behaviours, and education and policies. Studies were of variable quality; only around half of survey studies had response rates of 50% or greater. Medical trainees were the most common population studied. Future directions for research include public perspectives of online professionalism, impact on patient trust, and how to use social media productively as medical professionals.

  15. Modeling magnetically driven synthetic microcapsules

    Science.gov (United States)

    Masoud, Hassan; Alexeev, Alexander

    2009-11-01

    Using computer simulations and theory, we examine how to design magnetically-responsive synthetic microcapsules that able to move in a steady manner in microfluidic channels. These compliant fluid-filled capsules encompass superparamagnetic nanoparticles in their solid shells and, thereby, can be manipulated by alternating magnetic forces. To model the magnetic capsules propelled in fluid-filled microchannels, we employ a hybrid computational method for fluid-structure interactions. This method integrates the lattice Boltzmann model for the fluid dynamics and the lattice spring model for the micromechanics of solids. We show that in circulating magnetic field the capsules propel along sticky microchannel walls. The direction of capsule motion depends on the relative location of the solid surface, whereas the propulsion speed can be regulated through the wall adhesiveness, amplitude and frequency of magnetic forces, and elasticity of capsule's shell. The results indicate that such mobile fluid-filled containers could find application in lab-on-chip systems for controlled delivery of minute amounts of fluidic samples.

  16. Synthetic and Natural Lipase Inhibitors.

    Science.gov (United States)

    Białecka-Florjańczyk, Ewa; Fabiszewska, Agata Urszula; Krzyczkowska, Jolanta; Kuryłowicz, Alina

    2016-06-30

    Lipases are enzymes that catalyse the hydrolysis of ester bonds of triglycerides ranging among biocatalysts of considerable physiological significance and industrial potential. Better understanding of the catalytic functions and achieving the possibility to control the biocatalysis process, in particular exploring some activators and inhibitors of lipases, seems to be crucial in the context of novel applications. The lipase activity is a function of interfacial composition: the enzyme can be there activated as well as denaturated or deactivated and the interface is an appropriate site for modulating lipolysis. Lipase inhibitor, interacts directly with the enzyme and inhibits lipase action. Alternatively, some compounds can postpone the lipolytic reaction via adsorption to the interphase or to the substrate molecules. The aim of this review is to summarise the current knowledge concerning human, animal and microbial lipase inhibitors, which were grouped into two categories: synthetic lipase inhibitors (including phosphonates, boronic acids and fats analogues) and natural compounds (including β-lactones and some botanical foodstuffs - plant extracts and plant metabolites, mainly polyphenols and saponins as well as peptides and some dietary fibers). The topics discussed include also inhibition issues from the viewpoint of obesity treatment. Among natural compounds able to inhibit lipase activity are β-lactones including orlistat. Orlistat is the only registered drug for obesity treatment in many countries, especially pancreatic lipase which is responsible for the hydrolysis of over 80% of total dietary fats. Its effectiveness in obesity treatment was also described.

  17. Synthetic properties of starburst galaxies

    Science.gov (United States)

    Leitherer, Claus; Heckman, Timothy M.

    1995-01-01

    We present the results of an extensive grid of evolutionary synthesis models for populations of massive stars. The parameter space has been chosen to correspond to conditions typically found in objects like giant H II regions, H II galaxies, blue compact dwarf galaxies, nuclear starbursts, and infrared luminous starburst galaxies. The models are based on the most up-to-date input physics for the theory of stellar atmospheres, stellar winds, and stellar evolution. A population of massive stars is not only important in terms of its output of radiation but also via its deposition of mechanical energy. The output of radiative and mechanical luminosity is compared at various starburst epochs. In a supernova dominated instantaneous starburst, the mechanical luminosity can be as large as almost 10% of the total radiative luminosity. This occurs when most massive O stars have disappeared, and the synthetic spectrum in the optical and near-ultraviolet is dominated by B and A stars. During this epoch, the output of ionizing radiation below 912 A becomes very small, as indicated by a very large Lyman discontinuity and a very small ratio of ionizing over mechanical luminosity. We discuss the relevance of these results for the interpretation of starburst galaxies, active galactic nuclei, and the energetics of the interstellar medium.

  18. Antibody Production with Synthetic Peptides.

    Science.gov (United States)

    Lee, Bao-Shiang; Huang, Jin-Sheng; Jayathilaka, Lasanthi P; Lee, Jenny; Gupta, Shalini

    2016-01-01

    Peptides (usually 10-20 amino acid residues in length) can be used as effectively as proteins in raising antibodies producing both polyclonal and monoclonal antibodies routinely with titers higher than 20,000. Peptide antigens do not function as immunogens unless they are conjugated to proteins. Production of high quality antipeptide antibodies is dependent upon peptide sequence selection, the success of peptide synthesis, peptide-carrier protein conjugation, the humoral immune response in the host animal, the adjuvant used, the peptide dose administered, the injection method, and the purification of the antibody. Peptide sequence selection is probably the most critical step in the production of antipeptide antibodies. Although the process for designing peptide antigens is not exact, several guidelines and computational B-cell epitope prediction methods can help maximize the likelihood of producing antipeptide antibodies that recognize the protein. Antibodies raised by peptides have become essential tools in life science research. Virtually all phospho-specific antibodies are now produced using phosphopeptides as antigens. Typically, 5-20 mg of peptide is enough for antipeptide antibody production. It takes 3 months to produce a polyclonal antipeptide antibody in rabbits that yields ~100 mL of serum which corresponds to ~8-10 mg of the specific antibody after affinity purification using a peptide column.

  19. Synthetic Biology: Mapping the Scientific Landscape

    Science.gov (United States)

    Oldham, Paul; Hall, Stephen; Burton, Geoff

    2012-01-01

    This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves. PMID:22539946

  20. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  1. Defining the Synthetic Biology Supply Chain

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Hund, Gretchen E.; Bonheyo, George T.; Diggans, James; Bartholomew, Rachel A.; Gehrig, Lindsey; Greaves, Mark

    2017-08-01

    In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology. The team analyzes selected interactions within that network to better understand the risks raised by synthetic biology and identifies opportunities for risk mitigation. To introduce the concept, the article will briefly describe how an understanding of supply chains has been important in promoting nuclear nonproliferation objectives. The article concludes by assessing the structure and networks identified in the supply chains to reveal potential opportunities for future biodefense research and development; options for additional information exchange; and means to interdict, detect, or deter suspicious activity.

  2. Synthetic Biology: game changer in intelectual property

    Directory of Open Access Journals (Sweden)

    Laurens Landeweerd

    2016-12-01

    Full Text Available Synthetic biology can be considered a game changer that plays an important role in the current NBIC, or BINC convergence of nano-, bio-, info and cognitive sciences. Although most synthetic biology experts are unaware of it, the field appeals to the imagination in its adherence to targets that were usually associated with premodern alchemist science. This paper elaborates several aspects of synthetic biology as well as its consequences for long held notions of intellectual property and the ontological categories of scientific discovery on the one hand and engineering on the other, the distinction between natural and artificial, the grown and the made.

  3. Risky recreation: synthetic cannabinoids have dangerous effects.

    Science.gov (United States)

    McGuinness, Teena M; Newell, Donna

    2012-08-01

    Use of synthetic marijuana (also known as spice, K2, aroma, and eclipse) is often viewed by young people as harmless recreation. Until recently, the substance was freely available in U.S. convenience stores and head shops, and it is still available via the Internet. Emerging evidence shows a wide range of responses to the drug, including paranoia, aggressive behavior, anxiety, and short-term memory deficits. Synthetic cannabinoids are not currently detectable via standard toxicology tests. Recognition and management of synthetic cannabinoid use are discussed. Copyright 2012, SLACK Incorporated.

  4. Fast Parametric Beamformer for Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev

    2008-01-01

    This paper describes the design and implementation of a real-time delay-and-sum synthetic aperture beamformer. The beamforming delays and apodization coefficients are described parametrically. The image is viewed as a set of independent lines that are defined in 3-D by their origin, direction....... The implementation of the beamformer is optimized with respect to the architecture of a novel synthetic aperture real-time ultrasound scanner (SARUS), in which 4 channels are processed by the same set of field-programmable gate arrays (FPGA). In synthetic transmit aperture imaging, low-resolution images are formed...

  5. Grand challenges in space synthetic biology.

    Science.gov (United States)

    Menezes, Amor A; Montague, Michael G; Cumbers, John; Hogan, John A; Arkin, Adam P

    2015-12-06

    Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. © 2015 The Authors.

  6. Synthetic Peptide-Based Antibody Detection for Diagnosis of Chikungunya Infection with and without Neurological Complications.

    Science.gov (United States)

    Kashyap, Rajpal S; Bhullar, Shradha S; Chandak, Nitin H; Taori, Girdhar M

    2016-01-01

    Synthetic peptide-based diagnosis of Chikungunya can be an efficient and more accessible approach in immunodiagnostics. Here, we describe the identification of Chikungunya-specific 40 kD protein for development of synthetic peptide-based enzyme-linked immunosorbent assay for the detection of Chikungunya virus-specific antibodies in the patient's sample. The total sodium dodecyl sulfate-polyacrylamide gel electrophoresis protein profile of the patient's sample can be done to identify specific protein bands. The identified proteins can be subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS) for characterization. After characterization, immunogenic peptides can be designed using softwares and subsequently synthesized chemically. The peptides can be used to develop more specific, sensitive, and simpler diagnostic assay.

  7. [Progress in synthetic biology of "973 Funding Program" in China].

    Science.gov (United States)

    Chen, Guoqiang; Wang, Ying

    2015-06-01

    This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.

  8. Approaches to hybrid synthetic devices

    Science.gov (United States)

    Verma, Vivek

    All living creatures are made up of cells that have the ability to replicate themselves in a repetitive process called cell division. As these cells mature and divide into two there is an extensive movement of cellular components. In order to perform this essential task that sustains life, cells have evolved machines composed of proteins. Biological motors, such as kinesin, transport intracellular cargo and position organelles in eukaryotic cells via unidirectional movement on cytoskeletal tracts called microtubules. Biomolecular motor proteins have the potential to be used as 'nano-engines' for switchable devices, directed self assembly, controlled bioseparations and powering nano- and microelectromechanical systems. However, engineering such systems requires fabrication processes that are compatible with biological materials such as kinesin motor proteins and microtubules. The first objective of the research was to establish biocompatibility between protein systems and nanofabrication. The second objective was to use current micro- and nanofabrication techniques for patterning proteins at specific locations and to study role of casein in supporting the operation of surface bound kinesin. The third objective was to link kinesin and microtubule system to cellulose nanowhiskers. The effects of micro- and nanofabrication processing chemicals and resists on the functionality of casein, kinesin, and microtubule proteins are systematically examined to address the important missing link of the biocompatibility of micro- and nanofabrication processes needed to realize hybrid system fabrication. It was found that both casein, which is used to prevent motor denaturation on surfaces, and kinesin motors are surprisingly tolerant of most of the processing chemicals examined. Microtubules, however, are much more sensitive. Exposure to the processing chemicals leads to depolymerization, which is partially attributed to the pH of the solutions examined. When the chemicals were

  9. Transport of Proteins through Nanopores

    Science.gov (United States)

    Luan, Binquan

    In biological cells, a malfunctioned protein (such as misfolded or damaged) is degraded by a protease in which an unfoldase actively drags the protein into a nanopore-like structure and then a peptidase cuts the linearized protein into small fragments (i.e. a recycling process). Mimicking this biological process, many experimental studies have focused on the transport of proteins through a biological protein pore or a synthetic solid-state nanopore. Potentially, the nanopore-based sensors can provide a platform for interrogating proteins that might be disease-related or be targeted by a new drug molecule. The single-profile of a protein chain inside an extremely small nanopore might even permit the sequencing of the protein. Here, through all-atom molecular dynamics simulations, I will show various types of protein transport through a nanopore and reveal the nanoscale mechanics/energetics that plays an important role governing the protein transport.

  10. Quality of synthetic hexaploid wheat containing null alleles at Glu-A1 ...

    Indian Academy of Sciences (India)

    2013-08-02

    Aug 2, 2013 ... lower compared to Chuannong 16. However, the protein con- tent in synthetic wheat lines and T. turgidum ssp. dicoccon parents were significantly higher than Chuannong 16. Discussion. Dough elasticity and viscosity are critical properties of wheat flours for the food industry and the balance between these.

  11. Comparison of Glycomacropeptide with Phenylalanine Free-Synthetic Amino Acids in Test Meals to PKU Patients

    DEFF Research Database (Denmark)

    Ahring, Kirsten K; Lund, Allan M; Jensen, Erik

    2018-01-01

    Introduction: Management of phenylketonuria (PKU) is achieved through low-phenylalanine (Phe) diet, supplemented with low-protein food and mixture of free-synthetic (FS) amino acid (AA). Casein glycomacropeptide (CGMP) is a natural peptide released in whey during cheese-making and does not contain...

  12. Functional mimicry of a discontinuous antigenic site by a designed synthetic peptide

    NARCIS (Netherlands)

    Villen, J.; Borras, E.; Schaaper, W.M.M.; Meloen, R.H.; Davila, M.; Domingo, E.; Giralt, E.; Andreu, D.

    2002-01-01

    Functional reproduction of the discontinuous antigenic site D of foot-and-mouth disease virus (FMDV) has been achieved by means of synthetic peptide constructions that integrate each of the three protein loops that define the antigenic site into a single molecule. The site D mimics were designed on

  13. A comparative study of the defluoridation efficiency of synthetic ...

    African Journals Online (AJOL)

    A comparative study of the defluoridation efficiency of synthetic dicalcium phosphate dihydrate (DCPD) and lacunar hydroxyapatite (L-HAp): An application of synthetic solution and Koundoumawa field water.

  14. Transcription control engineering and applications in synthetic biology

    Directory of Open Access Journals (Sweden)

    Michael D. Engstrom

    2017-09-01

    Full Text Available In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein, a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors, giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  15. Transcription control engineering and applications in synthetic biology.

    Science.gov (United States)

    Engstrom, Michael D; Pfleger, Brian F

    2017-09-01

    In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators ( cis -factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators ( trans- factors), giving examples of how cis- and trans -acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli , we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  16. Evaluation of Synthetic Hydrocarbon Instrument Bearing Oils

    National Research Council Canada - National Science Library

    Rebuck, Neal

    1982-01-01

    The work reported herein resulted from the testing of three viscosity grade synthetic hydrocarbon oils to determine their suitability as replacements for Specification MIL-L-83176 superrefined mineral oils...

  17. CRISPR and the Rebirth of Synthetic Biology

    NARCIS (Netherlands)

    Heidari, Raheleh; Shaw, David Martin; Elger, Bernice Simone

    Emergence of novel genome engineering technologies such as clustered regularly interspaced short palindromic repeat (CRISPR) has refocused attention on unresolved ethical complications of synthetic biology. Biosecurity concerns, deontological issues and human right aspects of genome editing have

  18. Synthetic biology platform technologies for antimicrobial applications.

    Science.gov (United States)

    Braff, Dana; Shis, David; Collins, James J

    2016-10-01

    The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Synthetic biology of fungal natural products

    Science.gov (United States)

    Mattern, Derek J.; Valiante, Vito; Unkles, Shiela E.; Brakhage, Axel A.

    2015-01-01

    Synthetic biology is an ever-expanding field in science, also encompassing the research area of fungal natural product (NP) discovery and production. Until now, different aspects of synthetic biology have been covered in fungal NP studies from the manipulation of different regulatory elements and heterologous expression of biosynthetic pathways to the engineering of different multidomain biosynthetic enzymes such as polyketide synthases or non-ribosomal peptide synthetases. The following review will cover some of the exemplary studies of synthetic biology in filamentous fungi showing the capacity of these eukaryotes to be used as model organisms in the field. From the vast array of different NPs produced to the ease for genetic manipulation, filamentous fungi have proven to be an invaluable source for the further development of synthetic biology tools. PMID:26284053

  20. Synthetic Imaging Maneuver Optimization (SIMO) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora Flight Sciences (AFS), in collaboration with the MIT Space Systems Laboratory (MIT-SSL), proposed the Synthetic Imaging Maneuver Optimization (SIMO) program...

  1. Synthetic analogs of bacterial quorum sensors

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Rashi [Los Alamos, NM; Ganguly, Kumkum [Los Alamos, NM; Silks, Louis A [Los Alamos, NM

    2011-12-06

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  2. Synthetic analogs of bacterial quorum sensors

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Rashi S.; Ganguly, Kumkum; Silks, Louis A.

    2013-01-08

    Bacterial quorum-sensing molecule analogs having the following structures: ##STR00001## and methods of reducing bacterial pathogenicity, comprising providing a biological system comprising pathogenic bacteria which produce natural quorum-sensing molecule; providing a synthetic bacterial quorum-sensing molecule having the above structures and introducing the synthetic quorum-sensing molecule into the biological system comprising pathogenic bacteria. Further is provided a method of targeted delivery of an antibiotic, comprising providing a synthetic quorum-sensing molecule; chemically linking the synthetic quorum-sensing molecule to an antibiotic to produce a quorum-sensing molecule-antibiotic conjugate; and introducing the conjugate into a biological system comprising pathogenic bacteria susceptible to the antibiotic.

  3. Defining the Synthetic Biology Supply Chain.

    Science.gov (United States)

    Frazar, Sarah L; Hund, Gretchen E; Bonheyo, George T; Diggans, James; Bartholomew, Rachel A; Gehrig, Lindsey; Greaves, Mark

    Several recent articles have described risks posed by synthetic biology and spurred vigorous discussion in the scientific, commercial, and government communities about how to best detect, prevent, regulate, and respond to these risks. The Pacific Northwest National Laboratory's (PNNL) deep experience working with dual-use technologies for the nuclear industry has shown that analysis of supply chains can reveal security vulnerabilities and ways to mitigate security risk without hindering beneficial research and commerce. In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology to illustrate new insights about the effectiveness of current regulations, the possible need for different screening approaches, and new technical solutions that could help identify or mitigate risks in the synthetic biology supply chain.

  4. Visualizing Chemical Bonds in Synthetic Molecules

    Science.gov (United States)

    Collins, Laura C.; Ruth, Anthony; Green, David B.; Janko, Boldizsar; Gomes, Kenjiro K.

    The use of synthetic quantum systems makes it possible to study phenomena that cannot be probed by conventional experiments. We created synthetic molecules using atomic manipulation and directly imaged the chemical bonds using tunneling spectroscopy. These synthetic systems allow us to probe the structure and electronic properties of chemical bonds in molecules, including those that would be unstable in nature, with unprecedented detail. The experimental images of electronic states in our synthetic molecules show a remarkable match to the charge distribution predicted by density functional theory calculations. The statistical analysis of the spectroscopy of these molecules can be adapted in the future to quantify aromaticity, which has been difficult to quantify universally thus far due to vague definitions. We can also study anti-aromatic molecules which are unstable naturally, to illuminate the electronic consequences of antiaromaticity.

  5. Building blocks for protein interaction devices.

    Science.gov (United States)

    Grünberg, Raik; Ferrar, Tony S; van der Sloot, Almer M; Constante, Marco; Serrano, Luis

    2010-05-01

    Here, we propose a framework for the design of synthetic protein networks from modular protein-protein or protein-peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part-based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general-purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them.

  6. 14C-labeling of synthetic peptides

    International Nuclear Information System (INIS)

    Chersi, A.; Trinca, M.L.; Camera, M.

    1988-01-01

    Two methods are described for the labelling of synthetic peptides using iodo[ 14 C]acetic acid. The first procedure may be employed when the synthetic fragment contains a cysteine with a free sulfhydryl group. Alternatively, a commercial amino-protected cysteine may be carboxymethylated using radioactive iodoacetic acid. This derivative can be added to the growing peptide chain in the manual or automatic solid-phase synthesis of the fragment. 9 refs.; 1 figure; 1 table

  7. 14C-labeling of synthetic peptides.

    Science.gov (United States)

    Chersi, A; Trinca, M L; Camera, M

    1988-06-13

    Two methods are described for the labeling of synthetic peptides using iodo[14C]acetic acid. The first procedure may be employed when the synthetic fragment contains a cysteine with a free sulfhydryl group. Alternatively, a commercial amino-protected cysteine may be carboxymethylated using radioactive iodoacetic acid. This derivative can be added to the growing peptide chain in the manual or automatic solid-phase synthesis of the fragment.

  8. Design and construction of "synthetic species".

    OpenAIRE

    Moreno Eduardo

    2012-01-01

    Synthetic biology is an area of biological research that combines science and engineering. Here, I merge the principles of synthetic biology and regulatory evolution to create a new species with a minimal set of known elements. Using preexisting transgenes and recessive mutations of Drosophila melanogaster, a transgenic population arises with small eyes and a different venation pattern that fulfils the criteria of a new species according to Mayr’s Biological Species Concept. The population de...

  9. Synthetic antiferromagnetic nanoparticles with tunable susceptibilities

    Science.gov (United States)

    Hu, Wei; Wilson, Robert J.; Earhart, Christopher M.; Koh, Ai Leen; Sinclair, Robert; Wang, Shan X.

    2009-01-01

    High-moment monodisperse disk-shaped Co–Fe magnetic nanoparticles, stable in aqueous solution, were physically fabricated by using nanoimprinted templates and vacuum deposition techniques. These multilayer synthetic antiferromagnetic nanoparticles exhibit nearly zero magnetic remanence and coercivity, and susceptibilities which can be tuned by exploiting interlayer magnetic interactions. In addition, a low cost method of scaling up the production of sub-100 nm synthetic antiferromagnetic nanoparticles is demonstrated. PMID:19529797

  10. Synthetic Sling Failure - Evaluations and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. S. [Washington River Protection Solutions, Richland, WA (United States); Mackey, Thomas C. [Washington River Protection Solutions, Richland, WA (United States)

    2009-10-26

    The information and evaluations provided in this report were compiled to address the recurring problem of synthetic sling failure. As safety is the number one priority in all work aspects, a solution must be devised to prevent accidents from occurring. A total of thirteen cases regarding synthetic sling failure were evaluated in order to determine their causes, effects, and preventative measures. From the collected data, it was found that all cases in which the synthetic sling contacted the edge of its load resulted in sling failure. It is required that adequate synthetic sling protection devices be used to protect slings in any lift where the sling comes in direct contact with the edge or corner of its load. However, there are no consensus codes or standards stating the type, material, or purpose of the type of protective device used to protect the sling from being cut. Numerous industry standards and codes provide vague descriptions on how to protect synthetic slings. Without a clear, concise statement of how to protect synthetic slings, it is common for inadequate materials and sling protection devices to be used in an attempt to meet the intent of these requirements. The use of an inadequate sling protection device is the main cause of synthetic sling failure in all researched cases. Commercial sling protection devices come in many shapes and sizes, and have a variety of names, as well as advertised uses. 'Abrasion pads' and 'wear protectors' are two different names for products with the same intended purpose. There is no distinguishable way to determine the extent of sling protection which these devices will provide, or what specific scenarios they are made for. This creates room for error in a field where error is unacceptable. This report provides a recommended action for hoisting and rigging activities which require synthetic slings to contact a load, as well as recommended changes to industry standards which will benefit overall

  11. Speculative synthetic chemistry and the nitrogenase problem

    Science.gov (United States)

    Lee, Sonny C.; Holm, Richard H.

    2003-01-01

    There exist a limited but growing number of biological metal centers whose properties lie conspicuously outside the realm of known inorganic chemistry. The synthetic analogue approach, broadly directed, offers a powerful exploratory tool that can define intrinsic chemical possibilities for these sites while simultaneously expanding the frontiers of fundamental inorganic chemistry. This speculative application of analogue study is exemplified here in the evolution of synthetic efforts inspired by the cluster chemistry of biological nitrogen fixation. PMID:12642670

  12. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology.

    Science.gov (United States)

    Galdzicki, Michal; Clancy, Kevin P; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline Y; Rodriguez, Cesar A; Roehner, Nicholas; Wilson, Mandy L; Adam, Laura; Anderson, J Christopher; Bartley, Bryan A; Beal, Jacob; Chandran, Deepak; Chen, Joanna; Densmore, Douglas; Endy, Drew; Grünberg, Raik; Hallinan, Jennifer; Hillson, Nathan J; Johnson, Jeffrey D; Kuchinsky, Allan; Lux, Matthew; Misirli, Goksel; Peccoud, Jean; Plahar, Hector A; Sirin, Evren; Stan, Guy-Bart; Villalobos, Alan; Wipat, Anil; Gennari, John H; Myers, Chris J; Sauro, Herbert M

    2014-06-01

    The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a community-driven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.

  13. Cell-free biology: exploiting the interface between synthetic biology and synthetic chemistry.

    Science.gov (United States)

    Harris, D Calvin; Jewett, Michael C

    2012-10-01

    Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology for synthetic chemistry and using synthetic chemistry to reprogram or mimic biology. In the coming years, the impact of advances inspired by these approaches will make possible the synthesis of nonbiological polymers having new backbone compositions, new chemical properties, new structures, and new functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Synthetic Cannabinoids: Psychopharmacology, Clinical Aspects, Psychotic Onset.

    Science.gov (United States)

    Martinotti, Giovanni; Santacroce, Rita; Papanti, Duccio; Elgharably, Yasmine; Prilutskaya, Mariya; Corazza, Ornella

    2017-01-01

    Synthetic Cannabinoids (SC) are the widest and most diffused class of Novel Psychoactive Substances. The short- and long- term health risks associated with the consumption of SC are often unknown to both users and health professionals. This review aims to provide a synthesis of the most recent and relevant insights on the pharmacology, clinical and psychopathological aspects of SC. A structured search of two bibliographic databases (PubMed and Scopus) was undertaken according to inclusion/exclusion criteria. The following terms "synthetic cannabinoid*", "synthetic cannabimimetic*", "synthetic cannabis", "synthetic marijuana" and "Spice AND cannabinoid*" were used as search strings. 162 relevant results, mainly published in the past two years were revealed. Most results emerged for the keyword "synthetic cannabinoid*", followed by the combination "Spice* AND "cannabinoid*". Most papers were epidemiological, forensic, toxicologic, or analytical. The results of studies were systematized according their contribution to the comprehension of pharmacological, clinical and psychopathological effects of SC. Fifteen SC-related fatality cases were reviewed according to their histories, pathology and toxicology findings. The findings of this review confirm the importance of prompt and reliable information available for health professionals More specific analytic techniques and designed preventive strategies are required to face unprecedented SC challenge. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Synthetic PreImplantation Factor (PIF prevents fetal loss by modulating LPS induced inflammatory response.

    Directory of Open Access Journals (Sweden)

    Nicoletta Di Simone

    Full Text Available Maternal control of inflammation is essential during pregnancy and an exaggerated response is one of the underlying causes of fetal loss. Inflammatory response is mediated by multiple factors and Toll-like receptors (TLRs are central. Activation of TLRs results in NALP-3 mediated assembly of apoptosis-associated speck-like protein containing a CARD (ASC and caspase-1 into the inflammasome and production of pro-inflammatory cytokines IL-1β and IL-18. Given that preventing measures are lacking, we investigated PreImplantation Factor (PIF as therapeutic option as PIF modulates Inflammation in pregnancy. Additionally, synthetic PIF (PIF analog protects against multiple immune disorders. We used a LPS induced murine model of fetal loss and synthetic PIF reduced this fetal loss and increased the embryo weight significantly. We detected increased PIF expression in the placentae after LPS insult. The LPS induced serum and placenta cytokines were abolished by synthetic PIF treatment and importantly synthetic PIF modulated key members of inflammasome complex NALP-3, ASC, and caspase-1 as well. In conclusion our results indicate that synthetic PIF protects against LPS induced fetal loss, likely through modulation of inflammatory response especially the inflammasome complex. Given that synthetic PIF is currently tested in autoimmune diseases of non-pregnant subjects (clinicaltrials.gov, NCT02239562, therapeutic approach during pregnancy can be envisioned.

  16. The effects of newly formed synthetic peptide on bone regeneration in rat calvarial defects.

    Science.gov (United States)

    Choi, Jung-Yoo; Jung, Ui-Won; Kim, Chang-Sung; Eom, Tae-Kwan; Kang, Eun-Jung; Cho, Kyoo-Sung; Kim, Chong-Kwan; Choi, Seong-Ho

    2010-02-01

    Significant interest has emerged in the design of cell scaffolds that incorporate peptide sequences that correspond to known signaling domains in extracellular matrix and bone morphogenetic protein. The purpose of this study was to evaluate the bone regenerative effects of the synthetic peptide in a critical-size rat calvarial defect model. Eight millimeter diameter standardized, circular, transosseus defects created on the cranium of forty rats were implanted with synthetic peptide, collagen, or both synthetic peptide and collagen. No material was was implanted the control group. The healing of each group was evaluated histologically and histomorphometrically after 2- and 8-week healing intervals. Surgical implantation of the synthetic peptide and collagen resulted in enhanced local bone formation at both 2 and 8 weeks compared to the control group. When the experimental groups were compared to each other, they showed a similar pattern of bone formation. The defect closure and new bone area were significantly different in synthetic peptide and collagen group at 8 weeks. Concerning the advantages of biomaterials, synthetic peptide can be an effective biomaterial for damaged periodontal regeneration.

  17. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    Science.gov (United States)

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Biomimetic affinity ligands for protein purification.

    Science.gov (United States)

    Sousa, Isabel T; Taipa, M Angela

    2014-01-01

    The development of sophisticated molecular modeling software and new bioinformatic tools, as well as the emergence of data banks containing detailed information about a huge number of proteins, enabled the de novo intelligent design of synthetic affinity ligands. Such synthetic compounds can be tailored to mimic natural biological recognition motifs or to interact with key surface-exposed residues on target proteins and are designated as "biomimetic ligands." A well-established methodology for generating biomimetic or synthetic affinity ligands integrates rational design with combinatorial solid-phase synthesis and screening, using the triazine scaffold and analogues of amino acids side chains to create molecular diversity.Triazine-based synthetic ligands are nontoxic, low-cost, highly stable compounds that can replace advantageously natural biological ligands in the purification of proteins by affinity-based methodologies.

  19. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications.

    Science.gov (United States)

    Kang, Zhen; Huang, Hao; Zhang, Yunfeng; Du, Guocheng; Chen, Jian

    2017-01-01

    Pichia pastoris: (reclassified as Komagataella phaffii), a methylotrophic yeast strain has been widely used for heterologous protein production because of its unique advantages, such as readily achievable high-density fermentation, tractable genetic modifications and typical eukaryotic post-translational modifications. More recently, P. pastoris as a metabolic pathway engineering platform has also gained much attention. In this mini-review, we addressed recent advances of molecular toolboxes, including synthetic promoters, signal peptides, and genome engineering tools that established for P. pastoris. Furthermore, the applications of P. pastoris towards synthetic biology were also discussed and prospected especially in the context of genome-scale metabolic pathway analysis.

  20. Synthetic peptides that cause F-actin bundling and block actin depolymerization

    Science.gov (United States)

    Sederoff, Heike [Raleigh, NC; Huber, Steven C [Savoy, IL; Larabell, Carolyn A [Berkeley, CA

    2011-10-18

    Synthetic peptides derived from sucrose synthase, and having homology to actin and actin-related proteins, sharing a common motif, useful for causing acting bundling and preventing actin depolymerization. Peptides exhibiting the common motif are described, as well as specific synthetic peptides which caused bundled actin and inhibit actin depolymerization. These peptides can be useful for treating a subject suffering from a disease characterized by cells having neoplastic growth, for anti-cancer therapeutics, delivered to subjects solely, or concomitantly or sequentially with other known cancer therapeutics. These peptides can also be used for stabilizing microfilaments in living cells and inhibiting growth of cells.

  1. 21 CFR 172.888 - Synthetic petroleum wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a...

  2. Synthetic biology and the technicity of biofuels.

    Science.gov (United States)

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  3. WISB: Warwick Integrative Synthetic Biology Centre.

    Science.gov (United States)

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. © 2016 The Author(s).

  4. Cfd modeling of a synthetic jet actuator

    International Nuclear Information System (INIS)

    Dghim, Marouane; Ben Chiekh, Maher; Ben Nasrallah, Sassi

    2009-01-01

    Synthetic jet actuators show good promise as an enabling technology for innovative boundary layer flow control applied to external surfaces, like airplane wings, and to internal flows, like those occurring in a curved engine inlet. The appealing characteristics of a synthetic jet are zero-net-mass flux operation and an efficient control effect that takes advantages of unsteady fluid phenomena. The formation of a synthetic jet in a quiescent external air flow is only beginning to be understood and a rational understanding of these devices is necessary before they can be applied to the control of flows outside of the laboratory. The synthetic jet flow generated by a planar orifice is investigated here using computational approach. Computations of the 2D synthetic jet are performed with unsteady RANS modeled with the Realizable κ - ε turbulence model available in FLUENT environment. In this present work, the ability of the first order turbulence model, employed in our computations, to model the formation of the counter-rotating-vortex pair (CVP) that appears in the flow-field was investigated. Computational results were in good agreement with experimental measurements. The effectiveness of such control actuator was tested on separated boundary layer. Preliminary investigation were presented and discussed

  5. Constraining cyclic peptides to mimic protein structure motifs

    DEFF Research Database (Denmark)

    Hill, Timothy A.; Shepherd, Nicholas E.; Diness, Frederik

    2014-01-01

    Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well-defined three-dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable...... and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic pepti-domimetics that refine peptide structure and confer biological properties....

  6. Does Prescribed Randomness Hold the Key to Interface Synthetic and Natural Systems?

    Science.gov (United States)

    Xu, Ting

    The bottlenecks to engineering biomimetic functional materials are not only to duplicate hierarchical structures, but also to manipulate the system dynamics. Bio-inspired responsive materials have been investigated extensively within the past few decades with much success. Yet, the level of control of these complex systems is still rather simplistic. More importantly, we have yet to uncover the design rules to synergize natural and synthetic building blocks that allows us to go beyond just a few specific families of natural building blocks. I am going to discuss our recent studies that demonstrated the feasibility to develop synthetic protein-like polymers that can interface with natural proteins and biomachinaries. Rational design of these protein-like polymers thus opens a viable approach toward functional materials based on natural components. The work is supported by DOD-ARO W911NF-16-1-0405.

  7. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture......, on the other hand, can create a Bmode image with as little as 2 emissions, thus significantly speeding-up the scan procedure. The first part of the dissertation describes the synthetic aperture tissue imaging. It starts with an overview of the efforts previously made by other research groups. A classification...

  8. Engineering emergent multicellular behavior through synthetic adhesion

    Science.gov (United States)

    Glass, David; Riedel-Kruse, Ingmar

    In over a decade, synthetic biology has developed increasingly robust gene networks within single cells, but constructed very few systems that demonstrate multicellular spatio-temporal dynamics. We are filling this gap in synthetic biology's toolbox by developing an E. coli self-assembly platform based on modular cell-cell adhesion. We developed a system in which adhesive selectivity is provided by a library of outer membrane-displayed peptides with intra-library specificities, while affinity is provided by consistent expression across the entire library. We further provide a biophysical model to help understand the parameter regimes in which this tool can be used to self-assemble into cellular clusters, filaments, or meshes. The combined platform will enable future development of synthetic multicellular systems for use in consortia-based metabolic engineering, in living materials, and in controlled study of minimal multicellular systems. Stanford Bio-X Bowes Fellowship.

  9. Bioinspired Chemical Communication between Synthetic Nanomotors.

    Science.gov (United States)

    Chen, Chuanrui; Chang, Xiaocong; Teymourian, Hazhir; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Lu, Xiaolong; Li, Jinxing; He, Sha; Fang, Chengcheng; Liang, Yuyan; Mou, Fangzhi; Guan, Jianguo; Wang, Joseph

    2018-01-02

    While chemical communication plays a key role in diverse natural processes, the intelligent chemical communication between synthetic nanomotors remains unexplored. The design and operation of bioinspired synthetic nanomotors is presented. Chemical communication between nanomotors is possible and has an influence on propulsion behavior. A chemical "message" is sent from a moving activator motor to a nearby activated (receiver) motor by release of Ag + ions from a Janus polystyrene/Ni/Au/Ag activator motor to the activated Janus SiO 2 /Pt nanomotor. The transmitted silver signal is translated rapidly into a dramatic speed change associated with the enhanced catalytic activity of activated motors. Selective and successive activation of multiple nanomotors is achieved by sequential localized chemical communications. The concept of establishing chemical communication between different synthetic nanomotors paves the way to intelligent nanoscale robotic systems that are capable of cooperating with each other. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Genome modularity and synthetic biology: Engineering systems.

    Science.gov (United States)

    Mol, Milsee; Kabra, Ritika; Singh, Shailza

    2018-01-01

    Whole genome sequencing projects running in various laboratories around the world has generated immense data. A systematic phylogenetic analysis of this data shows that genome complexity goes on decreasing as it evolves, due to its modular nature. This modularity can be harnessed to minimize the genome further to reduce it with the bare minimum essential genes. A reduced modular genome, can fuel progress in the area of synthetic biology by providing a ready to use plug and play chassis. Advances in gene editing technology such as the use of tailor made synthetic transcription factors will further enhance the availability of synthetic devices to be applied in the fields of environment, agriculture and health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. CSBB: synthetic biology research at Newcastle University

    Science.gov (United States)

    Wipat, Anil; Krasnogor, Natalio

    2017-01-01

    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties — Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. PMID:28620039

  12. Structural Antitumoral Activity Relationships of Synthetic Chalcones

    Directory of Open Access Journals (Sweden)

    Cesar Echeverria

    2009-01-01

    Full Text Available Relationships between the structural characteristic of synthetic chalcones and their antitumoral activity were studied. Treatment of HepG2 cells for 24 h with synthetic 2’-hydroxychalcones resulted in apoptosis induction and dose-dependent inhibition of cell proliferation. The calculated reactivity indexes and the adiabatic electron affinities using the DFT method including solvent effects, suggest a structure-activity relationship between the Chalcones structure and the apoptosis in HepG2 cells. The absence of methoxy substituents in the B ring of synthetic 2’-hydroxychalcones, showed the mayor structure-activity pattern along the series.

  13. Is It Time for Synthetic Biodiversity Conservation?

    Science.gov (United States)

    Piaggio, Antoinette J; Segelbacher, Gernot; Seddon, Philip J; Alphey, Luke; Bennett, Elizabeth L; Carlson, Robert H; Friedman, Robert M; Kanavy, Dona; Phelan, Ryan; Redford, Kent H; Rosales, Marina; Slobodian, Lydia; Wheeler, Keith

    2017-02-01

    Evidence indicates that, despite some critical successes, current conservation approaches are not slowing the overall rate of biodiversity loss. The field of synthetic biology, which is capable of altering natural genomes with extremely precise editing, might offer the potential to resolve some intractable conservation problems (e.g., invasive species or pathogens). However, it is our opinion that there has been insufficient engagement by the conservation community with practitioners of synthetic biology. We contend that rapid, large-scale engagement of these two communities is urgently needed to avoid unintended and deleterious ecological consequences. To this point we describe case studies where synthetic biology is currently being applied to conservation, and we highlight the benefits to conservation biologists from engaging with this emerging technology. Published by Elsevier Ltd.

  14. Enabling plant synthetic biology through genome engineering.

    Science.gov (United States)

    Baltes, Nicholas J; Voytas, Daniel F

    2015-02-01

    Synthetic biology seeks to create new biological systems, including user-designed plants and plant cells. These systems can be employed for a variety of purposes, ranging from producing compounds of industrial or therapeutic value, to reducing crop losses by altering cellular responses to pathogens or climate change. To realize the full potential of plant synthetic biology, techniques are required that provide control over the genetic code - enabling targeted modifications to DNA sequences within living plant cells. Such control is now within reach owing to recent advances in the use of sequence-specific nucleases to precisely engineer genomes. We discuss here the enormous potential provided by genome engineering for plant synthetic biology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Mammalian synthetic biology for studying the cell.

    Science.gov (United States)

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  16. Tuning the dials of Synthetic Biology

    Science.gov (United States)

    Arpino, James A. J.; Hancock, Edward J.; Anderson, James; Barahona, Mauricio; Stan, Guy-Bart V.; Polizzi, Karen

    2013-01-01

    Synthetic Biology is the ‘Engineering of Biology’ – it aims to use a forward-engineering design cycle based on specifications, modelling, analysis, experimental implementation, testing and validation to modify natural or design new, synthetic biology systems so that they behave in a predictable fashion. Motivated by the need for truly plug-and-play synthetic biological components, we present a comprehensive review of ways in which the various parts of a biological system can be modified systematically. In particular, we review the list of ‘dials’ that are available to the designer and discuss how they can be modelled, tuned and implemented. The dials are categorized according to whether they operate at the global, transcriptional, translational or post-translational level and the resolution that they operate at. We end this review with a discussion on the relative advantages and disadvantages of some dials over others. PMID:23704788

  17. CSBB: synthetic biology research at Newcastle University.

    Science.gov (United States)

    Goñi-Moreno, Angel; Wipat, Anil; Krasnogor, Natalio

    2017-06-15

    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties - Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. © 2017 The Author(s).

  18. Novel domain wall dynamics in synthetic antiferromagnets

    Science.gov (United States)

    Yang, See-Hun; Parkin, Stuart

    2017-08-01

    In this article, we review fascinating new mechanisms on recently observed remarkable current driven domain wall motion in nanowires formed from perpendicularly magnetized synthetic antiferromagnets interfaced with heavy metallic layers, sources of spin-orbit torques. All the associated torques such as volumetric adiabatic and non-adiabatic spin-transfer-torque, spin-orbit torques, shape anisotropy field torques, Dzyaloshinkii-Moriya interaction torques and most importantly a new powerful torque, exchange coupling torque, will be discussed based on an analytical model that provides an intuitive description of domain wall dynamics in synthetic ferromagnets as well as synthetic antiferromagnets. In addition, the current driven DW motion in the presence of in-plane fields will be investigated, thus deepening our knowledge about the role of the exchange coupling torque, which will be of potential use for application to various novel spintronic devices.

  19. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  20. Synthetic biology approaches to engineer T cells.

    Science.gov (United States)

    Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A

    2015-08-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Parity-Time Synthetic Phononic Media

    DEFF Research Database (Denmark)

    Christensen, Johan; Willatzen, Morten; Velasco, V. R.

    2016-01-01

    media, have been devised in many optical systems with the ground breaking potential to create nonreciprocal structures and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where the most important ingredients within synthetic materials, loss and gain......, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection....

  2. New Synthetic Methods for Hypericum Natural Products

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Insik [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Organic chemistry has served as a solid foundation for interdisciplinary research areas, such as molecular biology and medicinal chemistry. An understanding of the biological activities and structural elucidations of natural products can lead to the development of clinically valuable therapeutic options. The advancements of modern synthetic methodologies allow for more elaborate and concise natural product syntheses. The theme of this study centers on the synthesis of natural products with particularly challenging structures and interesting biological activities. The synthetic expertise developed here will be applicable to analog syntheses and to other research problems.

  3. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  4. Synthetic Aperture Ladar Imaging and Atmospheric Turbulence

    Science.gov (United States)

    2016-06-09

    coherence factor for every retro-pair Ladar Heater Target 0 200 400 600 800 1000 1200 1400 0 50 100 150 200 250 Time [sec] In te n s it y Heater On...c) 0 200 400 600 800 1000 1200 1400 10 -13 10 -12 10 -11 C n 2 time [sec] 0.5 m 2 m 4 m 6 m 7.5 m DISTRIBUTION A: Distribution approved for...optical synthetic aperture radar,” US6879279 B2, 12- Apr - 2005. [10] Z. W. Barber and J. R. Dahl, “Synthetic aperture ladar imaging demonstrations and

  5. Update on complications of synthetic suburethral slings

    Science.gov (United States)

    Gomes, Cristiano Mendes; Carvalho, Fabrício Leite; Bellucci, Carlos Henrique Suzuki; Hemerly, Thiago Souto; Baracat, Fábio; de Bessa, Jose; Srougi, Miguel; Bruschini, Homero

    2017-01-01

    ABSTRACT Synthetic suburethral slings have become the most widely used technique for the surgical treatment of stress urinary incontinence. Despite its high success rates, significant complications have been reported including bleeding, urethral or bladder injury, urethral or bladder mesh erosion, intestinal perforation, vaginal extrusion of mesh, urinary tract infection, pain, urinary urgency and bladder outlet obstruction. Recent warnings from important regulatory agencies worldwide concerning safety issues of the use of mesh for urogynecological reconstruction have had a strong impact on patients as well as surgeons and manufacturers. In this paper, we reviewed the literature regarding surgical morbidity associated with synthetic suburethral slings. PMID:28266818

  6. [Salem witches, flying brooms, and synthetic drugs].

    Science.gov (United States)

    Castellanos Tejero, Manuel; Castellanos Tejero, M de los Angeles

    2002-10-01

    As supplementary material to Health Education programs about synthetic drugs, the authors present a historical summary on LSD, stramonium and khat. "Tripis", Special K and other synthetic pills contain these substances and are being widely used by youths. The history of these main hallucinogenic active ingredients has a strong tie to the mythology of witchcraft and witches: a historically interesting time period bearing a large amount of religious intolerance. The objective of this review is to end the belief today's youth have that they are taking new substances which have no risks.

  7. Development of a formaldehyde biosensor with application to synthetic methylotrophy.

    Science.gov (United States)

    Woolston, Benjamin M; Roth, Timothy; Kohale, Ishwar; Liu, David R; Stephanopoulos, Gregory

    2018-01-01

    Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD-dependent methanol dehydrogenase (Mdh) variants, the rate-limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross-talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build-up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy. © 2017 Wiley Periodicals, Inc.

  8. Natural and synthetic polymers for wounds and burns dressing.

    Science.gov (United States)

    Mogoşanu, George Dan; Grumezescu, Alexandru Mihai

    2014-03-25

    In the last years, health care professionals faced with an increasing number of patients suffering from wounds and burns difficult to treat and heal. During the wound healing process, the dressing protects the injury and contributes to the recovery of dermal and epidermal tissues. Because their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body, some natural polymers such as polysaccharides (alginates, chitin, chitosan, heparin, chondroitin), proteoglycans and proteins (collagen, gelatin, fibrin, keratin, silk fibroin, eggshell membrane) are extensively used in wounds and burns management. Obtained by electrospinning technique, some synthetic polymers like biomimetic extracellular matrix micro/nanoscale fibers based on polyglycolic acid, polylactic acid, polyacrylic acid, poly-ɛ-caprolactone, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, exhibit in vivo and in vitro wound healing properties and enhance re-epithelialization. They provide an optimal microenvironment for cell proliferation, migration and differentiation, due to their biocompatibility, biodegradability, peculiar structure and good mechanical properties. Thus, synthetic polymers are used also in regenerative medicine for cartilage, bone, vascular, nerve and ligament repair and restoration. Biocompatible with fibroblasts and keratinocytes, tissue engineered skin is indicated for regeneration and remodeling of human epidermis and wound healing improving the treatment of severe skin defects or partial-thickness burn injuries. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Computational Tools and Algorithms for Designing Customized Synthetic Genes

    Directory of Open Access Journals (Sweden)

    Nathan eGould

    2014-10-01

    Full Text Available Advances in DNA synthesis have enabled the construction of artificial genes, gene circuits, and genomes of bacterial scale. Freedom in de-novo design of synthetic constructs provides significant power in studying the impact of mutations in sequence features, and verifying hypotheses on the functional information that is encoded in nucleic and amino acids. To aid this goal, a large number of software tools of variable sophistication have been implemented, enabling the design of synthetic genes for sequence optimization based on rationally defined properties. The first generation of tools dealt predominantly with singular objectives such as codon usage optimization and unique restriction site incorporation. Recent years have seen the emergence of sequence design tools that aim to evolve sequences toward combinations of objectives. The design of optimal protein coding sequences adhering to multiple objectives is computationally hard, and most tools rely on heuristics to sample the vast sequence design space. In this review we study some of the algorithmic issues behind gene optimization and the approaches that different tools have adopted to redesign genes and optimize desired coding features. We utilize test cases to demonstrate the efficiency of each approach, as well as identify their strengths and limitations.

  10. Synthetic Biology: A Bridge between Artificial and Natural Cells

    Science.gov (United States)

    Ding, Yunfeng; Wu, Fan; Tan, Cheemeng

    2014-01-01

    Artificial cells are simple cell-like entities that possess certain properties of natural cells. In general, artificial cells are constructed using three parts: (1) biological membranes that serve as protective barriers, while allowing communication between the cells and the environment; (2) transcription and translation machinery that synthesize proteins based on genetic sequences; and (3) genetic modules that control the dynamics of the whole cell. Artificial cells are minimal and well-defined systems that can be more easily engineered and controlled when compared to natural cells. Artificial cells can be used as biomimetic systems to study and understand natural dynamics of cells with minimal interference from cellular complexity. However, there remain significant gaps between artificial and natural cells. How much information can we encode into artificial cells? What is the minimal number of factors that are necessary to achieve robust functioning of artificial cells? Can artificial cells communicate with their environments efficiently? Can artificial cells replicate, divide or even evolve? Here, we review synthetic biological methods that could shrink the gaps between artificial and natural cells. The closure of these gaps will lead to advancement in synthetic biology, cellular biology and biomedical applications. PMID:25532531

  11. Bacterial microcompartments as metabolic modules for plant synthetic biology.

    Science.gov (United States)

    Gonzalez-Esquer, C Raul; Newnham, Sarah E; Kerfeld, Cheryl A

    2016-07-01

    Bacterial microcompartments (BMCs) are megadalton-sized protein assemblies that enclose segments of metabolic pathways within cells. They increase the catalytic efficiency of the encapsulated enzymes while sequestering volatile or toxic intermediates from the bulk cytosol. The first BMCs discovered were the carboxysomes of cyanobacteria. Carboxysomes compartmentalize the enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) with carbonic anhydrase. They enhance the carboxylase activity of RuBisCO by increasing the local concentration of CO2 in the vicinity of the enzyme's active site. As a metabolic module for carbon fixation, carboxysomes could be transferred to eukaryotic organisms (e.g. plants) to increase photosynthetic efficiency. Within the scope of synthetic biology, carboxysomes and other BMCs hold even greater potential when considered a source of building blocks for the development of nanoreactors or three-dimensional scaffolds to increase the efficiency of either native or heterologously expressed enzymes. The carboxysome serves as an ideal model system for testing approaches to engineering BMCs because their expression in cyanobacteria provides a sensitive screen for form (appearance of polyhedral bodies) and function (ability to grow on air). We recount recent progress in the re-engineering of the carboxysome shell and core to offer a conceptual framework for the development of BMC-based architectures for applications in plant synthetic biology. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  12. Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species.

    Science.gov (United States)

    Portela, Rui M C; Vogl, Thomas; Kniely, Claudia; Fischer, Jasmin E; Oliveira, Rui; Glieder, Anton

    2017-03-17

    Synthetic biology and metabolic engineering experiments frequently require the fine-tuning of gene expression to balance and optimize protein levels of regulators or metabolic enzymes. A key concept of synthetic biology is the development of modular parts that can be used in different contexts. Here, we have applied a computational multifactor design approach to generate de novo synthetic core promoters and 5' untranslated regions (UTRs) for yeast cells. In contrast to upstream cis-regulatory modules (CRMs), core promoters are typically not subject to specific regulation, making them ideal engineering targets for gene expression fine-tuning. 112 synthetic core promoter sequences were designed on the basis of the sequence/function relationship of natural core promoters, nucleosome occupancy and the presence of short motifs. The synthetic core promoters were fused to the Pichia pastoris AOX1 CRM, and the resulting activity spanned more than a 200-fold range (0.3% to 70.6% of the wild type AOX1 level). The top-ten synthetic core promoters with highest activity were fused to six additional CRMs (three in P. pastoris and three in Saccharomyces cerevisiae). Inducible CRM constructs showed significantly higher activity than constitutive CRMs, reaching up to 176% of natural core promoters. Comparing the activity of the same synthetic core promoters fused to different CRMs revealed high correlations only for CRMs within the same organism. These data suggest that modularity is maintained to some extent but only within the same organism. Due to the conserved role of eukaryotic core promoters, this rational design concept may be transferred to other organisms as a generic engineering tool.

  13. Polymers for Protein Conjugation

    Directory of Open Access Journals (Sweden)

    Gianfranco Pasut

    2014-01-01

    Full Text Available Polyethylene glycol (PEG at the moment is considered the leading polymer for protein conjugation in view of its unique properties, as well as to its low toxicity in humans, qualities which have been confirmed by its extensive use in clinical practice. Other polymers that are safe, biodegradable and custom-designed have, nevertheless, also been investigated as potential candidates for protein conjugation. This review will focus on natural polymers and synthetic linear polymers that have been used for protein delivery and the results associated with their use. Genetic fusion approaches for the preparation of protein-polypeptide conjugates will be also reviewed and compared with the best known chemical conjugation ones.

  14. Synergistic Antipseudomonal Effects of Synthetic Peptide AMP38 and Carbapenems.

    Science.gov (United States)

    Rudilla, Héctor; Fusté, Ester; Cajal, Yolanda; Rabanal, Francesc; Vinuesa, Teresa; Viñas, Miguel

    2016-09-12

    The aim was to explore the antimicrobial activity of a synthetic peptide (AMP38) and its synergy with imipenem against imipenem-resistant Pseudomonas aeruginosa. The main mechanism of imipenem resistance is the loss or alteration of protein OprD. Time-kill and minimal biofilm eradication concentration (MBEC) determinations were carried out by using clinical imipenem-resistant strains. AMP38 was markedly synergistic with imipenem when determined in imipenem-resistant P. aeruginosa. MBEC obtained for the combination of AMP38 and imipenem was of 62.5 μg/mL, whereas the MBEC of each antimicrobial separately was 500 μg/mL. AMP38 should be regarded as a promising antimicrobial to fight MDR P. aeruginosa infections. Moreover, killing effect and antibiofilm activity of AMP38 plus imipenem was much higher than that of colistin plus imipenem.

  15. Effect of organic synthetic food colours on mitochondrial respiration.

    Science.gov (United States)

    Reyes, F G; Valim, M F; Vercesi, A E

    1996-01-01

    Eleven organic synthetic dyes, currently or formerly used as food colours in Brazil, were tested to determine their effect on mitochondrial respiration in mitochondria isolated from rat liver and kidney. The compounds tested were: Erythrosine, Ponceau 4R, Allura Red, Sunset yellow, Tartrazine, Amaranth, Brilliant Blue, Blue, Fast Red E, Orange GGN and Scarlet GN. All food colours tested inhibited mitochondrial respiration (State III respiration, uncoupled) supported either by alpha-ketoglutarate or succinate. This inhibition varied largely, e.g. from 100% to 16% for Erythrosine and Tartrazine respectively, at a concentration of 0.1 mg food colour per mitochondrial protein. Both rat liver and kidney mitochondria showed similar patterns of inhibition among the food colours tested. This effect was dose related and the concentration to give 50% inhibition was determined for some of the dyes. The xanthene dye Erythrosine, which showed the strongest effect, was selected for further investigation on mitochondria in vivo.

  16. Synthetic drugs with anti-ageing effects.

    Science.gov (United States)

    Kapoor, Vijay K; Dureja, Janhvi; Chadha, Renu

    2009-09-01

    Although ageing is a natural wear and tear phenomenon, it can at least be postponed or prevented by certain approaches. Some chemicals that are present in the diet or in dietary supplements have been documented to have anti-ageing effects. Recently, a number of synthetic drugs used for other therapeutic indications have been shown to have anti-ageing potential.

  17. Optimization of Synthetic Aperture Image Quality

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameter...

  18. Design and construction of "synthetic species".

    Directory of Open Access Journals (Sweden)

    Eduardo Moreno

    Full Text Available Synthetic biology is an area of biological research that combines science and engineering. Here, I merge the principles of synthetic biology and regulatory evolution to create a new species with a minimal set of known elements. Using preexisting transgenes and recessive mutations of Drosophila melanogaster, a transgenic population arises with small eyes and a different venation pattern that fulfils the criteria of a new species according to Mayr's Biological Species Concept. The population described here is the first transgenic organism that cannot hybridize with the original wild type population but remains fertile when crossed with other identical transgenic animals. I therefore propose the term "synthetic species" to distinguish it from "natural species", not only because it has been created by genetic manipulation, but also because it may never be able to survive outside the laboratory environment. The use of genetic engineering to design artificial species barriers could help us understand natural speciation and may have practical applications. For instance, the transition from transgenic organisms towards synthetic species could constitute a safety mechanism to avoid the hybridization of genetically modified animals with wild type populations, preserving biodiversity.

  19. Preparation of Natural and Synthetic Porous Biodegradable ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Preparation of Natural and Synthetic Porous Biodegradable Scaffolds for Infected Wounds. Characterised for their physical properties, pore size and release kinetics. Release kinetics of bioactive molecules (antibiotics) in a controlled fashion. Release pattern of the ...

  20. Super-Resolution for Synthetic Zooming

    Directory of Open Access Journals (Sweden)

    Li Xin

    2006-01-01

    Full Text Available Optical zooming is an important feature of imaging systems. In this paper, we investigate a low-cost signal processing alternative to optical zooming—synthetic zooming by super-resolution (SR techniques. Synthetic zooming is achieved by registering a sequence of low-resolution (LR images acquired at varying focal lengths and reconstructing the SR image at a larger focal length or increased spatial resolution. Under the assumptions of constant scene depth and zooming speed, we argue that the motion trajectories of all physical points are related to each other by a unique vanishing point and present a robust technique for estimating its D coordinate. Such a line-geometry-based registration is the foundation of SR for synthetic zooming. We address the issue of data inconsistency arising from the varying focal length of optical lens during the zooming process. To overcome the difficulty of data inconsistency, we propose a two-stage Delaunay-triangulation-based interpolation for fusing the LR image data. We also present a PDE-based nonlinear deblurring to accommodate the blindness and variation of sensor point spread functions. Simulation results with real-world images have verified the effectiveness of the proposed SR techniques for synthetic zooming.

  1. Immunization with a synthetic robustoxin derivative lacking ...

    Indian Academy of Sciences (India)

    Prakash

    has 42 amino acid residues and four disulphide bridges. If these bridges are broken, the resulting polypeptide is non- toxic. Robustoxin was chemically synthesized with all of its eight cysteine residues protected with acetamidomethyl groups in ...... G L, Moss B, Miller L H and Berzofsky J A 1987 Construction of synthetic ...

  2. A NEW SYNTHETIC FUNCTIONALIZED ANTIGEN CARRIER

    NARCIS (Netherlands)

    DRIJFHOUT, JW; BLOEMHOFF, W

    A new synthetic functionalized antigen carrier is described. It consists of a core of seven branched lysine residues, of which each of the four N-terminal lysine residues contains two N-(S-acetylmercaptoacetyl)-glutamyl residues. After removal of the protecting S-acetyl groups affording eight thiol

  3. [Pharmacodynamics of synthetic estrogens. A review].

    Science.gov (United States)

    Sojo-Aranda, I; Cortés-Gallegos, V

    1990-10-01

    Some details about the function of natural and synthetical hormonas are reviewed, particularly estrogens as ethynyl estradiol and its 3, Methyl ether (mestranol); its peripheral concentration vs tissular hormonal contents, a relationship of biological importance as the first step in its hormonal action and the cumulative local effects that could explain some intra and extracellular phenomena.

  4. [Pharmacodynamics of synthetic estrogens. Review article].

    Science.gov (United States)

    Sojo-Aranda, I; Cortés-Gallegos, V

    1990-10-01

    Some details about the function of natural and synthetical hormonas are reviewed, particularly estrogens as ethynyl estradiol and its 3, Methyl ether (mestranol); its peripheral concentration vs tissular hormonal contents, a relationship of biological importance as the first step in its hormonal action and the cummulative local effects that could explain some intra and extracellular phenomena.

  5. Standardization for natural product synthetic biology

    NARCIS (Netherlands)

    Zhao, Huimin; Medema, Marnix H.

    2016-01-01

    Standardization is one of the foundational features of modern-day engineering, and the use of standardized parts and processes is a key element that distinguishes bona fide synthetic biology from traditional genetic engineering. Here, we discuss the role of standardization in natural product

  6. Tunable promoters in synthetic and systems biology

    DEFF Research Database (Denmark)

    Dehli, Tore; Solem, Christian; Jensen, Peter Ruhdal

    2012-01-01

    for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression...

  7. 21 CFR 175.250 - Paraffin (synthetic).

    Science.gov (United States)

    2010-04-01

    ... hydrocarbons. Lower molecular-weight fractions are removed by distillation. The residue is hydrogenated and may... its components by a solvent separation method, using synthetic isoparaffinic petroleum hydrocarbons... method E131-81a, “Standard Definitions of Terms and Symbols Relating to Molecular-Spectroscopy,” which is...

  8. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy...

  9. SYNTHETIC JET APPLIED TO DETECT POTENTIAL TERRORISTS

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Peszyński, K.

    2010-01-01

    Roč. 5, č. 3 (2010), s. 229-234 ISSN 1231-3998 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : synthetic jets * annular jets * terrorism Subject RIV: BK - Fluid Dynamics

  10. Immobilization of radioiodine in synthetic boracite

    Science.gov (United States)

    Babad, H.; Strachan, D.M.

    1982-09-23

    A nuclear waste storage product is disclosed in which radioiodine is incorporated in a synthetic boracite. The boracite may be prepared by reacting a transition metal iodide with an alkali horate under mild hydrothermal conditions, drying the reaction product, and then hot pressing.

  11. Synthetic observations of protostellar multiple systems

    Science.gov (United States)

    Lomax, O.; Whitworth, A. P.

    2018-04-01

    Observations of protostars are often compared with synthetic observations of models in order to infer the underlying physical properties of the protostars. The majority of these models have a single protostar, attended by a disc and an envelope. However, observational and numerical evidence suggests that a large fraction of protostars form as multiple systems. This means that fitting models of single protostars to observations may be inappropriate. We produce synthetic observations of protostellar multiple systems undergoing realistic, non-continuous accretion. These systems consist of multiple protostars with episodic luminosities, embedded self-consistently in discs and envelopes. We model the gas dynamics of these systems using smoothed particle hydrodynamics and we generate synthetic observations by post-processing the snapshots using the SPAMCART Monte Carlo radiative transfer code. We present simulation results of three model protostellar multiple systems. For each of these, we generate 4 × 104 synthetic spectra at different points in time and from different viewing angles. We propose a Bayesian method, using similar calculations to those presented here, but in greater numbers, to infer the physical properties of protostellar multiple systems from observations.

  12. Synthetic biology for microbial heavy metal biosensors.

    Science.gov (United States)

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  13. SUPPLEMENTARY INFORMATION Green synthetic route for ...

    Indian Academy of Sciences (India)

    GDY13

    Green synthetic route for perfumery compound (2-methoxyethyl) benzene using. Li/MgO catalyst. POOJA R TAMBE and ... A mixture containing fuel and oxidizer was taken in a silica crucible and heated to form highly .... Fogler H 1995 Elements of Chemical Reaction Engineering 2nd edn. Prentice-Hall,. New Delhi, India. (3).

  14. News: Synthetic biology leading to specialty chemicals

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate productio...

  15. Once more on Analytic vs. Synthetic

    Czech Academy of Sciences Publication Activity Database

    Materna, Pavel

    2007-01-01

    Roč. 16, č. 1 (2007), s. 3-43 ISSN 1425-3305 R&D Projects: GA ČR(CZ) GA401/07/0451 Institutional research plan: CEZ:AV0Z90090514 Keywords : analytic * synthetic * intensions * constructions * concepts * pragmatics Subject RIV: AA - Philosophy ; Religion

  16. Synthetic tsunamis along the Israeli coast.

    Science.gov (United States)

    Tobias, Joshua; Stiassnie, Michael

    2012-04-13

    The new mathematical model for tsunami evolution by Tobias & Stiassnie (Tobias & Stiassnie 2011 J. Geophys. Res. Oceans 116, C06026) is used to derive a synthetic tsunami database for the southern part of the Eastern Mediterranean coast. Information about coastal tsunami amplitudes, half-periods, currents and inundation levels is presented.

  17. Synthetic biology advances for pharmaceutical production

    Science.gov (United States)

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems. PMID:25744872

  18. Synthetic Biology: Applications in the Food Sector.

    Science.gov (United States)

    Tyagi, Ashish; Kumar, Ashwani; Aparna, S V; Mallappa, Rashmi H; Grover, Sunita; Batish, Virender Kumar

    2016-08-17

    Synthetic biology also termed as "genomic alchemy" represents a powerful area of science that is based on the convergence of biological sciences with systems engineering. It has been fittingly described as "moving from reading the genetic code to writing it" as it focuses on building, modeling, designing and fabricating novel biological systems using customized gene components that result in artificially created genetic circuitry. The scientifically compelling idea of the technological manipulation of life has been advocated since long time. Realization of this idea has gained momentum with development of high speed automation and the falling cost of gene sequencing and synthesis following the completion of the human genome project. Synthetic biology will certainly be instrumental in shaping the development of varying areas ranging from biomedicine, biopharmaceuticals, chemical production, food and dairy quality monitoring, packaging, and storage of food and dairy products, bioremediation and bioenergy production, etc. However, potential dangers of using synthetic life forms have to be acknowledged and adoption of policies by the scientific community to ensure safe practice while making important advancements in the ever expanding field of synthetic biology is to be fully supported and implemented.

  19. Using Synthetic Kerosene in Civil Jet Aircraft

    NARCIS (Netherlands)

    Snijders, T.A.; Melkert, J.A.

    2008-01-01

    TU Delft in the Netherlands is performing research into the effects of the use of synthetic kerosene in aircraft. The research program consists of both desk research and tests. In the desk research gas turbine simulations will be combined with payload range performance calculations to show engine

  20. Simultaneous adsorption and biodegradation of synthetic melanoidin

    African Journals Online (AJOL)

    Being an antioxidant, melanoidin removal through purely biodegradation has been inadequate. Consequently, in the current study, simultaneous adsorption and biodegradation (SAB) was employed in a stirred tank system to remove melanoidin from synthetic wastewater. Mixed microbial consortium was immobilized onto ...

  1. Rationally engineered synthetic coculture for improved biomass and product formation.

    Directory of Open Access Journals (Sweden)

    Suvi Santala

    Full Text Available In microbial ecosystems, bacteria are dependent on dynamic interspecific interactions related to carbon and energy flow. Substrates and end-metabolites are rapidly converted to other compounds, which protects the community from high concentrations of inhibitory molecules. In biotechnological applications, pure cultures are preferred because of the more straight-forward metabolic engineering and bioprocess control. However, the accumulation of unwanted side products can limit the cell growth and process efficiency. In this study, a rationally engineered coculture with a carbon channeling system was constructed using two well-characterized model strains Escherichia coli K12 and Acinetobacter baylyi ADP1. The directed carbon flow resulted in efficient acetate removal, and the coculture showed symbiotic nature in terms of substrate utilization and growth. Recombinant protein production was used as a proof-of-principle example to demonstrate the coculture utility and the effects on product formation. As a result, the biomass and recombinant protein titers of E. coli were enhanced in both minimal and rich medium simple batch cocultures. Finally, harnessing both the strains to the production resulted in enhanced recombinant protein titers. The study demonstrates the potential of rationally engineered cocultures for synthetic biology applications.

  2. Synthetic Spider Silk Production on a Laboratory Scale

    Science.gov (United States)

    Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig

    2012-01-01

    As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks. PMID:22847722

  3. Caffeine in your drink: natural or synthetic?

    Science.gov (United States)

    Zhang, Lijun; Kujawinski, Dorothea M; Federherr, Eugen; Schmidt, Torsten C; Jochmann, Maik A

    2012-03-20

    Owing to possible adulteration and health concerns, it is important to discriminate between natural and synthetic food ingredients. A new method for compound-specific isotope analysis (CSIA) by coupling high-temperature reversed-phase liquid chromatography to isotope ratio mass spectrometry (HT-RPLC/IRMS) was developed for discrimination of natural and synthetic caffeine contained in all types of drinks. The analytical parameters such as stationary phase, column inner diameter, and column temperature were optimized for the separation of caffeine directly from drinks (without extraction). On the basis of the carbon isotope analysis of 42 natural caffeine samples including coffee beans, tea leaves, guaraná powder, and maté leaves, and 20 synthetic caffeine samples from different sources by high-temperature reversed-phase liquid chromatography coupled to isotope ratio mass spectrometry, it is concluded that there are two distinguishable groups of caffeine δ(13)C-values: one between -25 and -32‰ for natural caffeine, and the other between -33 and -38‰ for synthetic caffeine. Isotope analysis by HT-RPLC/IRMS has been applied to identify the caffeine source in 38 drinks. Four mislabeled products were detected due to added but nonlabeled synthetic caffeine with δ(13)C-values lower than -33‰. This work is the first application of HT-RPLC/IRMS to real-world food samples, which showed several advantages: simple sample preparation (only dilution), high throughput, long-term column stability, and high precision of δ(13)C-value. Thus, HT-RPLC/IRMS can be a very promising tool in stable isotope analysis of nonvolatile compounds.

  4. Protein Foods

    Science.gov (United States)

    ... Text Size: A A A Listen En Español Protein Foods Foods high in protein such as fish, ... for the vegetarian proteins, whether they have carbohydrate. Protein Choices Plant-Based Proteins Plant-based protein foods ...

  5. From noise to synthetic nucleoli: can synthetic biology achieve new insights?

    Science.gov (United States)

    Ciechonska, Marta; Grob, Alice; Isalan, Mark

    2016-04-18

    Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."

  6. Exploratory comparative study on the diffusion of synthetic cannabinoids and synthetic cathinones.

    Science.gov (United States)

    Arfken, Cynthia L; Owens, Darlene; Madeja, Cheryl; DeAngelis, Christina

    2014-01-01

    The use of synthetic cannabinoids and cathinones in southeastern Michigan was explored using Roger's Diffusion of Innovation theory. A mixed methods approach after specific synthetic cannabinoids and cathinone compounds were scheduled was used that included analysis of treatment admissions for two years, surveys of 15 substance abuse treatment providers, and qualitative interviews with a purposive sample of 24 participants. The participant system norm supported trying new drugs, and both drugs were confirmed to have been easier to access than traditional drugs. The participants had negative views of synthetic cathinones due to one sensational news story without counterbalancing positive experiences in their social environment. Although synthetic cannabinoids were also linked to a sensational news story, it was counterbalanced by positive personal experiences. These differences contributed to greater use of synthetic cannabinoids compared to synthetic cathinones as evidenced by admissions, providers' reports, and participants' reports. All participants expressed a preference for traditional drugs, indicating that novel drugs had no relative advantage over other drugs of abuse. Diffusion of Innovation theory can provide a framework for understanding the differential use of novel drugs.

  7. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils

    Directory of Open Access Journals (Sweden)

    Anand Kumar Tripathi

    2015-03-01

    Full Text Available Engine oils undergo oxidative degradation and wears out during service. Hence it is important to characterize ageing of engine oils at different simulated conditions to evaluate the performance of existing oils and also design new formulations. This work focuses on characterizing the thermo-oxidative degradation of synthetic and semi-synthetic engine oils aged at 120, 149 and 200 °C. Apparent activation energy of decomposition of aged oils evaluated using the isoconversional Kissinger-Akahira-Sunose technique was used as a thermal stability marker. The temporal variation of stability at different ageing temperatures was corroborated with kinematic viscosity, oxidation, sulfation and nitration indices, total base number, antiwear additive content and molecular structure of the organic species present in the oils. At the lowest temperature employed, synthetic oil underwent higher rate of oxidation, while semi-synthetic oil was stable for longer time periods. At higher temperatures, the initial rate of change of average apparent activation energy of synthetic oil correlated well with a similar variation in oxidation number. A mixture of long chain linear, branched, and cyclic hydrocarbons were observed when semi-synthetic oil was degraded at higher temperatures.

  8. Mineralization of Synthetic Polymer Scaffolds: A Bottom-upApproach for the Development of Artificial Bone

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jie; Viengkham, Malathong; Bertozzi, Carolyn R.

    2004-09-27

    The controlled integration of organic and inorganic components confers natural bone with superior mechanical properties. Bone biogenesis is thought to occur by templated mineralization of hard apatite crystals by an elastic protein scaffold, a process we sought to emulate with synthetic biomimetic hydrogel polymers. Crosslinked polymethacrylamide and polymethacrylate hydrogels were functionalized with mineral-binding ligands and used to template the formation of hydroxyapatite. Strong adhesion between the organic and inorganic materials was achieved for hydrogels functionalized with either carboxylate or hydroxy ligands. The mineral-nucleating potential of hydroxyl groups identified here broadens the design parameters for synthetic bone-like composites and suggests a potential role for hydroxylated collagen proteins in bone mineralization.

  9. Inorganic chemistry. A synthetic Mn₄Ca-cluster mimicking the oxygen-evolving center of photosynthesis.

    Science.gov (United States)

    Zhang, Chunxi; Chen, Changhui; Dong, Hongxing; Shen, Jian-Ren; Dau, Holger; Zhao, Jingquan

    2015-05-08

    Photosynthetic splitting of water into oxygen by plants, algae, and cyanobacteria is catalyzed by the oxygen-evolving center (OEC). Synthetic mimics of the OEC, which is composed of an asymmetric manganese-calcium-oxygen cluster bound to protein groups, may promote insight into the structural and chemical determinants of biological water oxidation and lead to development of superior catalysts for artificial photosynthesis. We synthesized a Mn4Ca-cluster similar to the native OEC in both the metal-oxygen core and the binding protein groups. Like the native OEC, the synthetic cluster can undergo four redox transitions and shows two magnetic resonance signals assignable to redox and structural isomerism. Comparison with previously synthesized Mn3CaO4-cubane clusters suggests that the fourth Mn ion determines redox potentials and magnetic properties of the native OEC. Copyright © 2015, American Association for the Advancement of Science.

  10. From essential to persistent genes: a functional approach to constructing synthetic life

    DEFF Research Database (Denmark)

    Acevedo-Rocha, Carlos G.; Fang, Gang; Schmidt, Markus

    2013-01-01

    A central undertaking in synthetic biology (SB) is the quest for the ‘minimal genome’. However, ‘minimal sets’ of essential genes are strongly context-dependent and, in all prokaryotic genomes sequenced to date, not a single protein-coding gene is entirely conserved. Furthermore, a lack of consen......A central undertaking in synthetic biology (SB) is the quest for the ‘minimal genome’. However, ‘minimal sets’ of essential genes are strongly context-dependent and, in all prokaryotic genomes sequenced to date, not a single protein-coding gene is entirely conserved. Furthermore, a lack...... for engineering cells and for creating cellular life-like forms in SB....

  11. Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions

    Science.gov (United States)

    Nakamura, Hideki; Lee, Albert A.; Afshar, Ali Sobhi; Watanabe, Shigeki; Rho, Elmer; Razavi, Shiva; Suarez, Allister; Lin, Yu-Chun; Tanigawa, Makoto; Huang, Brian; Derose, Robert; Bobb, Diana; Hong, William; Gabelli, Sandra B.; Goutsias, John; Inoue, Takanari

    2018-01-01

    Some protein components of intracellular non-membrane-bound entities, such as RNA granules, are known to form hydrogels in vitro. The physico-chemical properties and functional role of these intracellular hydrogels are difficult to study, primarily due to technical challenges in probing these materials in situ. Here, we present iPOLYMER, a strategy for a rapid induction of protein-based hydrogels inside living cells that explores the chemically inducible dimerization paradigm. Biochemical and biophysical characterizations aided by computational modelling show that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that acts as a size-dependent molecular sieve. We functionalize these polymers with RNA-binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. These results show that iPOLYMER can be used to synthetically reconstitute the nucleation of biologically functional entities, including RNA granules in intact cells.

  12. GC X GCTOFMS OF SYNTHETIC PYRETHROIDS IN FOODS SAMPLES

    Science.gov (United States)

    Pyrethrins are natural insecticides in the extract of chrysanthemum flowers1. Pyrethroids are synthetic forms of pyrethrins, and many are halogenated (F, Cl, Br). Synthetic pyrethroids have become popular replacements for organophosphorus pesticides, which have become increasin...

  13. Synthetic differential geometry within homotopy type theory I

    OpenAIRE

    Nishimura, Hirokazu

    2016-01-01

    Both syntheticc differential geometry and homotopy type theory pre-fer synthetic arguments to analytical ones. This paper gives a first steptowards developing synthetic differential geometry within homotopy typetheory. Model theory of this approach will be discussed in a subsequentpaper.

  14. Engineering of synthetic, stress-responsive yeast promoters

    DEFF Research Database (Denmark)

    Rajkumar, Arun Stephen; Liu, Guodong; Bergenholm, David

    2016-01-01

    Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducibleby specific endogenous or environmental conditions...

  15. Luminescent lanthanide complexes as analytical tools in anion sensing, pH indication and protein recognition.

    Science.gov (United States)

    Shinoda, Satoshi; Tsukube, Hiroshi

    2011-02-07

    Although lanthanide complexes are recently used in luminescence labeling of bio-targets, this review focuses on sensing profiles of synthetic and biological lanthanide complexes. Rational design and combinatorial screening approaches toward synthetic lanthanide complexes applicable as luminescent sensing materials are described. Iron-carrying transferrin and ferritin proteins further form lanthanide complexes working as pH indicators and protein recognition reagents.

  16. Optimizing a Synthetic Signaling System, Using Mathematical Modeling to Direct Experimental Work

    Science.gov (United States)

    2014-09-05

    function across kingdoms . Mizuno et al demonstrated conservation of function of HK proteins by expressing the plant hormone receptor AHK4 in E. coli...signaling system in planta , it will advance the current state of plant synthetic biology by providing a new tool to the community: prokaryotic testing...endogenous clock. Planta 216, 1-16, doi:10.1007/s00425- 002-0831-4 (2002). 49 Aoyama, T. & Chua, N.-H. A glucocorticoid-mediated transcriptional induction

  17. Methanol regulated yeast promoters: production vehicles and toolbox for synthetic biology.

    Science.gov (United States)

    Gasser, Brigitte; Steiger, Matthias G; Mattanovich, Diethard

    2015-12-02

    Promoters are indispensable elements of a standardized parts collection for synthetic biology. Regulated promoters of a wide variety of well-defined induction ratios and expression strengths are highly interesting for many applications. Exemplarily, we discuss the application of published genome scale transcriptomics data for the primary selection of methanol inducible promoters of the yeast Pichia pastoris (Komagataella sp.). Such a promoter collection can serve as an excellent toolbox for cell and metabolic engineering, and for gene expression to produce heterologous proteins.

  18. Synthetic Biology and the Imperative of Enhancement

    Directory of Open Access Journals (Sweden)

    Antonio Diéguez

    2016-12-01

    Full Text Available Synthetic Biology has a huge capacity for the transformation of living beings, including for the transformation of the human genome in a future perhaps not too distant. There are, thus, clear connections between this potential to biological transformation and the aspirations of the supporters of human bioenhancement. The construction of completely synthetic genomes could eventually change in a definitive and irreversible way the central aspects of the human life, and it could give risen even to a new organism as different of our species as we are different of big apes. This paper discusses the main arguments offered in this debate, and points out some of the most problematic assumptions in recent proposals concerning human bioenhancement.

  19. Miniature synthetic-aperture radar system

    Science.gov (United States)

    Stockton, Wayne; Stromfors, Richard D.

    1990-11-01

    Loral Defense Systems-Arizona has developed a high-performance synthetic-aperture radar (SAR) for small aircraft and unmanned aerial vehicle (UAV) reconnaissance applications. This miniature radar, called Miniature Synthetic-Aperture Radar (MSAR), is packaged in a small volume and has low weight. It retains key features of large SAR systems, including high-resolution imaging and all-weather operation. The operating frequency of MSAR can optionally be selected to provide foliage penetration capability. Many imaging radar configurations can be derived using this baseline system. MSAR with a data link provides an attractive UAV sensor. MSAR with a real-time image formation processor is well suited to installations where onboard processing and immediate image analysis are required. The MSAR system provides high-resolution imaging for short-to-medium range reconnaissance applications.

  20. Health safety issues of synthetic food colorants.

    Science.gov (United States)

    Amchova, Petra; Kotolova, Hana; Ruda-Kucerova, Jana

    2015-12-01

    Increasing attention has been recently paid to the toxicity of additives used in food. The European Parliament and the Council published the REGULATION (EC) No. 1333/2008 on food additives establishing that the toxicity of food additives evaluated before 20th January 2009 must be re-evaluated by European Food Safety Authority (EFSA). The aim of this review is to survey current knowledge specifically on the toxicity issues of synthetic food colorants using official reports published by the EFSA and other available studies published since the respective report. Synthetic colorants described are Tartrazine, Quinoline Yellow, Sunset Yellow, Azorubine, Ponceau 4R, Erythrosine, Allura Red, Patent Blue, Indigo Carmine, Brilliant Blue FCF, Green S, Brilliant Black and Brown HT. Moreover, a summary of evidence on possible detrimental effects of colorant mixes on children's behaviour is provided and future research directions are outlined. Copyright © 2015 Elsevier Inc. All rights reserved.