WorldWideScience

Sample records for synthetic polymeric materials

  1. Laser-optical treatment for toothbrush bristles (nylon, synthetic, and polymeric materials, etc.)

    Science.gov (United States)

    Ma, Yangwu

    1994-08-01

    On the basis of the principle of laser radiation and materials interaction, a laser-optical treatment method for toothbrush bristles (nylon et al., synthetic and polymeric materials) is provided. In this process, laser irradiation is stopped during melting and followed by cooling, so the free end of each bristle of toothbrush is formed for a smooth globe. The toothbrush with laser-optical end-globed bristles have many remarkable functions.

  2. Synthetic Light-Curable Polymeric Materials Provide a Supportive Niche for Dental Pulp Stem Cells.

    Science.gov (United States)

    Vining, Kyle H; Scherba, Jacob C; Bever, Alaina M; Alexander, Morgan R; Celiz, Adam D; Mooney, David J

    2018-01-01

    Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used. Based on these findings, thiol-ene chemistry is employed to achieve rapid light-curing and minimize residual monomer of the lead materials. Several triacrylate bulk polymers support DPSC adhesion, proliferation, and differentiation in vitro, and exhibit stiffness and tensile strength similar to existing dental materials. Conversely, materials composed of a trimethacrylate monomer or bisphenol A glycidyl methacrylate, which is a monomer standard in dental materials, do not support stem cell adhesion and negatively impact matrix and signaling pathways. Furthermore, thiol-ene polymerized triacrylates are used as permanent filling materials at the dentin-pulp interface in direct contact with irreversibly injured pulp tissue. These novel triacrylate-based biomaterials have potential to enable novel regenerative dental therapies in the clinic by both restoring teeth and providing a supportive niche for DPSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  4. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  5. Electroactivity in Polymeric Materials

    CERN Document Server

    2012-01-01

    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  6. Strength of anisotropic wood and synthetic materials. [plywood, laminated wood plastics, glass fiber reinforced plastics, polymeric film, and natural wood

    Science.gov (United States)

    Ashkenazi, Y. K.

    1981-01-01

    The possibility of using general formulas for determining the strength of different anisotropic materials is considered, and theoretical formulas are applied and confirmed by results of tests on various nonmetallic materials. Data are cited on the strength of wood, plywood, laminated wood plastics, fiber glass-reinforced plastics and directed polymer films.

  7. Polymeric materials in medication

    CERN Document Server

    Carraher, Charles

    1985-01-01

    The art of using chemical agents for medication dates back into antiquity, although most of the earliest examples used plants, herbs, and other natural materials. The old Egyptian medical papyri, which date from before 1400 B. C. , contain dozens of examples of such medicinal plants and animal extracts. In the Old Testament of the Bible, we can find references to using oil to soften the skin and sores (Isaiah 1:6), the use of tree leaves for medicine (Ezekiel 47:12) and various medical balms (Jeremiah 8:22). Not all these recipes were effective in curing the ailments for which they were used and sometimes the treatment was worse than the disease. Nevertheless, the art of using chemical derived agents for medicines continued to develop and received great impetus during the present century with the rise of synthetic organic chemistry. One of the most vexing problems has always been to achieve specifici­ ty with the medications. While some medical agents do indeed possess a relatively high degree of specificity...

  8. Diffusive transport in modern polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Doering, C.; Bier, M.; Christodoulou, K. [and others

    1996-10-01

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Polymers, composites, and synthetic modern materials are replacing traditional materials in many older scientific, engineering, commercial, and military applications. This project sought to focus on the new polymeric materials, deriving and analyzing models that predict their seemingly mysterious transport properties. It sought to identify the dominant physical mechanisms and the pertinent dimensionless parameters, produce viable theoretical models, and devise asymptotic and numerical methods for use in specific problems.

  9. Multicomponent polymeric materials

    CERN Document Server

    Thomas, Sabu; Saha, Prosenjit

    2016-01-01

    The book offers an in-depth review of the materials design and manufacturing processes employed in the development of multi-component or multiphase polymer material systems. This field has seen rapid growth in both academic and industrial research, as multiphase materials are increasingly replacing traditional single-component materials in commercial applications. Many obstacles can be overcome by processing and using multiphase materials in automobile, construction, aerospace, food processing, and other chemical industry applications. The comprehensive description of the processing, characterization, and application of multiphase materials presented in this book offers a world of new ideas and potential technological advantages for academics, researchers, students, and industrial manufacturers from diverse fields including rubber engineering, polymer chemistry, materials processing and chemical science. From the commercial point of view it will be of great value to those involved in processing, optimizing an...

  10. Nanostructured conductive polymeric materials

    Science.gov (United States)

    Al-Saleh, Mohammed H.

    Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry

  11. Polymeric materials from renewable resources

    Science.gov (United States)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  12. Polymeric materials from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; Silva, Cristina G. da; Castro, Daniele O.; Ramires, Elaine C.; Oliveira, Fernando de; Santos, Rachel P. O. [Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo, CP 780, 13560-970 São Carlos, São Paulo (Brazil)

    2016-05-18

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called “biopolyethylene” (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  13. Polymeric Materials for Cell Microencapsulation.

    Science.gov (United States)

    Aijaz, A; Perera, D; Olabisi, Ronke M

    2017-01-01

    Mammalian cells have been microencapsulated within both natural and synthetic polymers for over half a century. Specifically, in the last 36 years microencapsulated cells have been used therapeutically to deliver a wide range of drugs, cytokines, growth factors, and hormones while enjoying the immunoisolation provided by the encapsulating material. In addition to preventing immune attack, microencapsulation prevents migration of entrapped cells. Cells can be microencapsulated in a variety of geometries, the most common being solid microspheres and hollow microcapsules. The micrometer scale permits delivery by injection and is within diffusion limits that allow the cells to provide the necessary factors that are missing at a target site, while also permitting the exchange of nutrients and waste products. The majority of cell microencapsulation is performed with alginate/poly-L-lysine microspheres. Since alginate itself can be immunogenic, for cell-based therapy applications various groups are investigating synthetic polymers to microencapsulate cells. We describe a protocol for the formation of microspheres and microcapsules using the synthetic polymer poly(ethylene glycol) diacrylate (PEGDA).

  14. Performance polymeric concrete with synthetic fiber reinforcement against reflective cracking in rigid pavement overlay

    International Nuclear Information System (INIS)

    Khan, N.U.; Khan, B.

    2012-01-01

    Cement concrete pavements are used for heavy traffic loads throughout the world owing to its better and economical performance. Placing of a concrete overlay on the existing pavement is the most prevalent rehabilitating method for such pavements, however, the problem associated with the newly placed overlay is the occurrence of reflective cracking. This paper presents an assessment of the performance of polymeric concrete with synthetic fiber reinforcement against reflective cracking in an overlay system. The performance of polymeric concrete with synthetic fibers as an overlay material is measured in terms of the load-deflection, strain-deflection and load-strain behavior of beams of the polymeric concrete. For this purpose, five types of beams having different number of fiber wires and position are tested for flexure strength. Deflection/strains for each increment of load are recorded. In addition, cubes of plain concrete and of concrete with synthetic fiber needles were tested after 7 and 28 days for compressive strengths. Finite element models in ANSYS software for the beams have also been developed. Beams with greater number of longitudinal fiber wires displayed relatively better performance against deflection whilst beams with synthetic fiber needles showed better performance against strains. Thus, polymeric concrete overlay with fiber reinforcement will serve relatively better against occurrence of reflective cracking. (author)

  15. Cross-linking of polymeric materials

    International Nuclear Information System (INIS)

    Bloom, L.I.; Du Plessis, T.A.; Meij, G.O.

    1991-01-01

    The invention provides a method of producing a cured polymeric artifact from a polymeric thermoplastic starting material, the material of the artifact having reduced thermoplasticity relative to the starting material and exhibiting an enhanced degree of cross-linking relative to the starting material. The method includes subjecting a polymeric thermoplastic starting material, which is capable of being cross-linked by irradiation, to sufficient irradiation partially to cross-linked the starting material to produce a thermoplastic partially cross-linked intermediate material. The thermoplasticity of the intermediate material is then reduced by heating it to raise its melting point. The invention also provides a method of making a partially cross-linked feedstocks and a master batch for use in making such artifacts

  16. Deformation and flow of polymeric materials

    CERN Document Server

    Münstedt, Helmut

    2014-01-01

    This book describes the properties of single polymer molecules and polymeric materials and the methods how to characterize them. Molar masses, molar mass distributions and branching structure are discussed in detail. These properties are decisive for a deeper understanding of structure/properties relationships of polymeric materials. This book therefore describes and discusses them in detail. The mechanical behavior as a function of time and temperature is a key subject of the book. The authors present it on the basis of many original results they have obtained in their long research careers. They present the temperature dependence of mechanical properties of various polymeric materials in a wide temperature range: from cryogenic temperatures to the melt. Besides an extensive data collection on the transitions of various different polymeric materials, they also carefully present the physical explanations of the observed phenomena. Glass transition and melting temperatures are discussed, particularly, with the...

  17. Tunable synthetic control of soft polymeric nanoparticle morphology.

    Science.gov (United States)

    Martin, Halie J; White, B Tyler; Scanlon, Christopher J; Saito, Tomonori; Dadmun, Mark D

    2017-11-29

    With a growing variety of nanoparticles available, research probing the influence of particle deformability, morphology, and topology on the behavior of all polymer nanocomposites is also increasing. In particular, the behavior of soft polymeric nanoparticles in polymer nanocomposites has displayed unique behavior, but their precise performance depends intimately on the internal structure and morphology of the nanoparticle. With the goal of providing guidelines to control the structure and morphology of soft polymeric nanoparticles, we have examined monomer starved semi-batch nano-emulsion polymerizations that form organic, soft nanoparticles, to correlate the precise structure of the nanoparticle to the rate of monomer addition and crosslinking density. The synthesis method produces 5-20 nm radii polystyrene nanoparticles with tunable morphologies. We report small angle neutron scattering (SANS) results that correlate synthetic conditions to the structural characteristics of soft polystyrene nanoparticles. These results show that the measured molecular weight of the nanoparticles is controlled by the monomer addition rate, the total nanoparticle radius is controlled by the excess surfactant concentration, and the crosslinking density has a direct effect on the topology of each nanoparticle. These studies thus provide pathways to control these 3 structural characteristics of the nanoparticle. This research, therefore provides a conduit to thoroughly investigate the effect of structural features of soft nanoparticles on their individual properties and those of their polymer nanocomposites.

  18. Synthetic thermoelectric materials comprising phononic crystals

    Science.gov (United States)

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  19. Polymeric matrix materials for infrared metamaterials

    Science.gov (United States)

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  20. Polymeric Materials - introduction and degradation

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios

    1999-01-01

    These notes support the polymer part of the courses 91742 and 91762 (Materials and Corrosion/degradation of materials) taught in IFAKthey contain a short introduction on group contribution methods for estimating properties of polymers, polymer thermodynamics, viscoelasticity models as well...

  1. Pharmaceutical Applications of Polymeric Nano materials

    International Nuclear Information System (INIS)

    Wu, L.; Sun, L.

    2011-01-01

    With significant attention focused on nano science and nano technology in recent years, nano materials have been used in a wide variety of applications such as automotive, environmental, energy, catalysis, biomedical, drug delivery, and polymeric industries. Among those fields, the application of nano materials with pharmaceutical science is an emerging and rapidly growing field and has drawn increasing attention recently. Research and development in this field is mainly focused on several aspects such as the discoveries of novel functional nano materials, exploration on nanoparticles with controlled and targeted drug delivery characteristics, and investigation of bio functionalized and diagnostic nano materials. In this special issue, we have invited a few papers related to recent advances in pharmaceutical application of polymeric nano materials

  2. Functional Materials from Polymeric Ionic Liquids

    Science.gov (United States)

    Segalman, Rachel; Sanoja, Gabriel; Michenfelder-Schauser, Nicole; Mitragotri, Samir; Seshadri, Ram

    Ionic liquids (IL's) have been suggested for applications as diverse as solubilizing cellulose, antimicrobial treatments, and electrolytes in batteries due to their molten salt properties. A polymeric cation (such as imidazolium) is an excellent host for any associated anion. As a result, polymerized ionic liquids are not just solid counterparts to IL's, but are shown to be vectors for the inclusion of a wide variety of functionalities ranging from multi-valent ions to magnetic anions. Moreover, PIL block copolymers allow orthogonal control over mechanical and morphological properties, ultimately leading to a conceptual framework for processable, tunable, multifunctional materials.

  3. High-Performance Polymeric Materials.

    Science.gov (United States)

    1987-12-07

    Cincinnati. 2. Dr. W. J. Welsh, previously Posidoctora. Fellow and Adjunct Professor, The University of Cincinnati, and Asistant Professor, College...listed in Table IL. It Is seen that t he LIg * i T hntiu~t fuor the attorti’, listed is virtually identical for the two W I~~pecies, inti.e:a:ing thiat...strikingly, there is virtuallY none of the aggregation of particles essentiallY invariablv present in the usual types of filied elastomers These materials

  4. Biodegradable starch-based polymeric materials

    Science.gov (United States)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  5. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  6. Novel distributed strain sensing in polymeric materials

    International Nuclear Information System (INIS)

    Abot, Jandro L; Song, Yi; Medikonda, Sandeep; Rooy, Nathan; Schulz, Mark J

    2010-01-01

    Monitoring the state of strain throughout an entire structure is essential to determine its state of stress, detect potential residual stresses after fabrication, and also to help to establish its integrity. Several sensing technologies are presently available to determine the strain in the surface or inside a structure. Large sensor dimensions, complex signal conditioning equipment, and difficulty in achieving a widely distributed system have however hindered their development into robust structural health monitoring techniques. Recently, carbon nanotube forests were spun into a microscale thread that is electrically conductive, tough, and easily tailorable. The thread was integrated into polymeric materials and used for the first time as a piezoresistive sensor to monitor strain and also to detect damage in the material. It is revealed that the created self-sensing polymeric materials are sensitive to normal strains above 0.07% and that the sensor thread exhibits a perfectly linear delta resistance–strain response above 0.3%. The longitudinal gauge factors were determined to be in the 2–5 range. This low cost and simple built-in sensor thread may provide a new integrated and distributed sensor technology that enables robust real-time health monitoring of structures

  7. Novel hybrid polymeric materials for barrier coatings

    Science.gov (United States)

    Pavlacky, Erin Christine

    Polymer-clay nanocomposites, described as the inclusion of nanometer-sized layered silicates into polymeric materials, have been widely researched due to significant enhancements in material properties with the incorporation of small levels of filler (1--5 wt.%) compared to conventional micro- and macro-composites (20--30 wt.%). One of the most promising applications for polymer-clay nanocomposites is in the field of barrier coatings. The development of UV-curable polymer-clay nanocomposite barrier coatings was explored by employing a novel in situ preparation technique. Unsaturated polyesters were synthesized in the presence of organomodified clays by in situ intercalative polymerization to create highly dispersed clays in a precursor resin. The resulting clay-containing polyesters were crosslinked via UV-irradiation using donor-acceptor chemistry to create polymer-clay nanocomposites which exhibited significantly enhanced barrier properties compared to alternative clay dispersion techniques. The impact of the quaternary alkylammonium organic modifiers, used to increase compatibility between the inorganic clay and organic polymer, was studied to explore influence of the organic modifier structure on the nanocomposite material properties. By incorporating just the organic modifiers, no layered silicates, into the polyester resins, reductions in film mechanical and thermal properties were observed, a strong indicator of film plasticization. An alternative in situ preparation method was explored to further increase the dispersion of organomodified clay within the precursor polyester resins. In stark contrast to traditional in situ polymerization methods, a novel "reverse" in situ preparation method was developed, where unmodified montmorillonite clay was added during polyesterification to a reaction mixture containing the alkylammonium organic modifier. The resulting nanocomposite films exhibited reduced water vapor permeability and increased mechanical properties

  8. Recent Advances in Polymeric Materials Used as Electron Mediators and Immobilizing Matrices in Developing Enzyme Electrodes

    Directory of Open Access Journals (Sweden)

    Mambo Moyo

    2012-01-01

    Full Text Available Different classes of polymeric materials such as nanomaterials, sol-gel materials, conducting polymers, functional polymers and biomaterials have been used in the design of sensors and biosensors. Various methods have been used, for example from direct adsorption, covalent bonding, crossing-linking with glutaraldehyde on composites to mixing the enzymes or use of functionalized beads for the design of sensors and biosensors using these polymeric materials in recent years. It is widely acknowledged that analytical sensing at electrodes modified with polymeric materials results in low detection limits, high sensitivities, lower applied potential, good stability, efficient electron transfer and easier immobilization of enzymes on electrodes such that sensing and biosensing of environmental pollutants is made easier. However, there are a number of challenges to be addressed in order to fulfill the applications of polymeric based polymers such as cost and shortening the long laboratory synthetic pathways involved in sensor preparation. Furthermore, the toxicological effects on flora and fauna of some of these polymeric materials have not been well studied. Given these disadvantages, efforts are now geared towards introducing low cost biomaterials that can serve as alternatives for the development of novel electrochemical sensors and biosensors. This review highlights recent contributions in the development of the electrochemical sensors and biosensors based on different polymeric material. The synergistic action of some of these polymeric materials and nanocomposites imposed when combined on electrode during sensing is discussed.

  9. Degradable polymeric materials for osteosynthesis: Tutorial

    Directory of Open Access Journals (Sweden)

    D Eglin

    2008-12-01

    Full Text Available This report summarizes the state of the art and recent developments and advances in the use of degradable polymers devices for osteosynthesis. The current generation of biodegradable polymeric implants for bone repair utilising designs copied from metal implants, originates from the concept that devices should be supportive and as “inert” substitute to bone tissue. Today degradable polymeric devices for osteosynthesis are successful in low or mild load bearing applications. However, the lack of carefully controlled randomized prospective trials that document their efficacy in treating a particular fracture pattern is still an issue. Then, the choice between degradable and non-degradable devices must be carefully weighed and depends on many factors such as the patient age and condition, the type of fracture, the risk of infection, etc. The improvement of the biodegradable devices mechanical properties and their degradation behaviour will have to be achieved to broaden their use. The next generation of biodegradable implants will probably see the implementation of the recent gained knowledge in cell-material interactions and cells therapy, with a better control of the spatial and temporal interfaces between the material and the surrounding bone tissue.

  10. Kinetic and thermal analysis of polymeric materials

    Science.gov (United States)

    Peterson, Jeffery David

    2002-09-01

    Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) techniques have been used to study the thermal degradation of polymeric materials. These polymers were subjected to a variety of heating programs as well as numerous types of atmospheric conditions. The results from these analyses were then used to determine activation energies as a function of an extent of reaction variable, alpha. This technique, known as the model-free isoconversional method, allows for changes in energies to occur as decomposition pathways change. This produces a more realistic means of observing complex kinetic schemes and is a better representation of kinetic analysis. Chapters 1 and 2 provide introductory backgrounds into both polymer chemistry and the isoconversional analysis technique, respectively. A brief description of the research goals and motivations is also discussed. Thermal analysis of pure polystyrene (PS), polyethylene (PE), and polypropylene (PP) samples are presented in Chapter 3. The obtained activation energy dependencies are interpreted in terms of degradation mechanisms. These mechanisms vary greatly according to the gaseous environment in which they were analyzed. The thermal degradation of poly(methyl methacrylate) (PMMA) in both pure nitrogen and in various oxygen-containing atmospheres is discussed in Chapter 4. It was observed that oxygen exhibits a stabilizing effect on PMMA decomposition. Activation energies for these processes, and their mechanistic interpretations, will also be presented. Chapter 5 builds off the understanding gained in Chapter 4 by investigating the char-forming effects of silica gel and potassium carbonate additives on PMMA. These additives are known for their fire-resistant properties when combined in a 3:1 silica gel to potassium carbonate ratio. The effects of these additives, and their respective ratio amounts, on PMMA char formation are reported. Chapters 6 and 7 conclude the dissertation by looking at the thermal

  11. The relevance of polymeric synthetic membranes in topical formulation assessment and drug diffusion study.

    Science.gov (United States)

    Ng, Shiow-Fern; Rouse, Jennifer J; Sanderson, Francis D; Eccleston, Gillian M

    2012-03-01

    Synthetic membranes are composed of thin sheets of polymeric macromolecules that can control the passage of components through them. Generally, synthetic membranes used in drug diffusion studies have one of two functions: skin simulation or quality control. Synthetic membranes for skin simulation, such as the silicone-based membranes polydimethylsiloxane and Carbosil, are generally hydrophobic and rate limiting, imitating the stratum corneum. In contrast, synthetic membranes for quality control, such as cellulose esters and polysulfone, are required to act as a support rather than a barrier. These synthetic membranes also often contain pores; hence, they are called porous membranes. The significance of Franz diffusion studies and synthetic membranes in quality control studies involves an understanding of the fundamentals of synthetic membranes. This article provides a general overview of synthetic membranes, including a brief background of the history and the common applications of synthetic membranes. This review then explores the types of synthetic membranes, the transport mechanisms across them, and their relevance in choosing a synthetic membrane in Franz diffusion cell studies for formulation assessment purposes.

  12. Development of Nanocomposite Reinforced Polymeric Materials to be Used for Racks for Retorting Polymeric Trays

    National Research Council Canada - National Science Library

    Sue, Hung-Jue

    2003-01-01

    .... This report summarizes activity under Short Term Project 2007. The ultimate goal of this project was to develop a material to improve the performance and cost effectiveness of polymeric trays used for retorting Polytray rations...

  13. Waterproofing with polymeric geo synthetic barriers (GBR-P) in the manual for the design, construction, management and maintenance of reservoirs

    International Nuclear Information System (INIS)

    Blanco, M.; Cea, J. C.; Garcia, F.; Sanchez, F. J.; Castillo, F.; Mora, J.; Crespo, M. A.

    2010-01-01

    This article presents a part of Manual for the Design, Construction, Management and Maintenance of Reservoirs relative to waterproofing with Polymeric Geo synthetic Barriers (GBR-P). the nature materials of geo membranes is studied also theirs characteristics and specifications. (Author) 26 refs.

  14. Survey and research on precision polymerization polymeric materials; Seimitsu jugo kobunshi zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey and research on the precision control of primary structure of polymeric materials and the precision evaluation technology have been conducted to develop advanced polymeric materials. It is proposed that the three basic processes of polymer synthesis, i.e., addition, condensation, and biomimesis, in forming the precision polymerization skeleton are to be covered through a centralized joint research effort with participation of industry, academia, and the government institute and under the leadership of researchers from academic institutions as the team leaders. For the study of technology trends, international conferences held in UK, Germany, and Hawaii are introduced, and domestic meetings, i.e., Annual Polymer Congress and Polymer Conference, are summarized. In addition, Precision Polymerization Forum and International Workshop on Precision Polymerization were held. The basic studies include a quantum-chemical elucidation of the elementary process in polymerization reaction, time-resolved analysis of polymerization process and polymer properties, synthesis of polymers with controlled microstructures by coordination polymerization using metal complexes, synthesis of polymer with controlled microstructures by precision polycondensation, molecular recognition in catalyst-reaction site, and synthesis of imprinting polymers. 246 refs., 117 figs., 14 tabs.

  15. Novel polymeric nanocomposites and porous materials prepared using organogels

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Wei-Chi; Tseng, Shen-Chen, E-mail: wclai@mail.tku.edu.t [Department of Chemical and Materials Engineering, Tamkang University, 151 Ying-chuan Road, Tamsui, Taipei 25137, Taiwan (China)

    2009-11-25

    We propose a new method for preparing polymeric nanocomposites and porous materials using self-assembled templates formed by 1,3:2,4-dibenzylidene sorbitol (DBS) organogels. DBS is capable of self-assembling into a 3D nanofibrillar network at relatively low concentrations in some organic solvents to produce organogels. In this study, we induced the formation of such physical cross-linked networks in styrene. Subsequently, we polymerized the styrene in the presence of chemical cross-linkers, divinyl benzene (DVB), with different amounts of DBS using thermal-initiated polymerization. The resulting materials were transparent, homogeneous polystyrene (PS) nanocomposites with both physical and chemical cross-links. The porous polymeric materials were obtained by solvent extraction of the DBS nanofibrils from the PS. Brunauer-Emmett-Teller (BET) measurements show that the amounts of DBS and DVB influenced the specific surface area after the removal of the DBS fibrils.

  16. Application of Synthetic Polymeric Scaffolds in Breast Cancer 3D Tissue Cultures and Animal Tumor Models

    Directory of Open Access Journals (Sweden)

    Girdhari Rijal

    2017-01-01

    Full Text Available Preparation of three-dimensional (3D porous scaffolds from synthetic polymers is a challenge to most laboratories conducting biomedical research. Here, we present a handy and cost-effective method to fabricate polymeric hydrogel and porous scaffolds using poly(lactic-co-glycolic acid (PLGA or polycaprolactone (PCL. Breast cancer cells grown on 3D polymeric scaffolds exhibited distinct survival, morphology, and proliferation compared to those on 2D polymeric surfaces. Mammary epithelial cells cultured on PLGA- or PCL-coated slides expressed extracellular matrix (ECM proteins and their receptors. Estrogen receptor- (ER- positive T47D breast cancer cells are less sensitive to 4-hydroxytamoxifen (4-HT treatment when cultured on the 3D porous scaffolds than in 2D cultures. Finally, cancer cell-laden polymeric scaffolds support consistent tumor formation in animals and biomarker expression as seen in human native tumors. Our data suggest that the porous synthetic polymer scaffolds satisfy the basic requirements for 3D tissue cultures both in vitro and in vivo. The scaffolding technology has appealing potentials to be applied in anticancer drug screening for a better control of the progression of human cancers.

  17. Biocompatible Polymeric Materials Intended for Drug Delivery and Therapeutic Applications

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Javakhishvili, Irakli; Bednarek, Melania

    2007-01-01

    With the advent of the controlled free radical polymerization techniques and the novel highly efficient coupling technique (“click chemistry”1) a number of new design principles for biomedical polymeric materials emerge. We’ve recently initiated a comprehensive research programme aiming at elucid......With the advent of the controlled free radical polymerization techniques and the novel highly efficient coupling technique (“click chemistry”1) a number of new design principles for biomedical polymeric materials emerge. We’ve recently initiated a comprehensive research programme aiming...... in formulated drugs. Examples of combinations of PMEA with PMMA or PEG will be elaborated. Similarly combinations of PCL with PAA (prepared from a protected precursor polymer) or PEG will be provided....

  18. Synthesizing Smart Polymeric and Composite Materials

    Science.gov (United States)

    Gong, Chaokun

    Smart materials have been widely investigated to explore new functionalities unavailable to traditional materials or to mimic the multifunctionality of biological systems. Synthetic polymers are particularly attractive as they already possess some of the attributes required for smart materials, and there are vast room to further enhance the existing properties or impart new properties by polymer synthesis or composite formulation. In this work, three types of smart polymer and composites have been investigated with important new applications: (1) healable polymer composites for structural application and healable composite conductor for electronic device application; (2) conducting polymer polypyrrole actuator for implantable medical device application; and (3) ferroelectric polymer and ceramic nanoparticles composites for electrocaloric effect based solid state refrigeration application. These application entail highly challenging materials innovation, and my work has led to significant progress in all three areas. For the healable polymer composites, well known intrinsically healable polymer 2MEP4F (a Diels-Alder crosslinked polymer formed from a monomer with four furan groups and another monomer with two maleimide groups) was first chosen as the matrix reinforced with fiber. Glass fibers were successfully functionalized with maleimide functional groups on their surface. Composites from functionalized glass fibers and 2MEP4F healable polymer were made to compare with composites made from commercial carbon fibers and 2MEP4F polymer. Dramatically improved short beam shear strength was obtained from composite of functionalized glass fibers and 2MEP4F polymer. The high cost of 2MEP4F polymer can potentially limit the large-scale application of the developed healable composite, we further developed a new healable polymer with much lower cost. This new polymer was formed through the Diels-Alder crosslinking of poly(furfuryl alcohol) (PFA) and 1,1'-(Methylenedi-4

  19. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  20. Smart polymeric materials in forms of fiber and film

    International Nuclear Information System (INIS)

    Sugo, Takanobu

    1998-01-01

    Chemical grafting: graft polymerization is a powerful technology to append novel functionality to base fibers, clothes, felts, films and others, while maintaining their original properties. As shown in Figure 1, while a gardener may use a pair of shears to cut the branch, to cut the molecular branch of a polymeric material, one can utilize the radiation energy. Effective utilization of the radiation energy can proceed to a novel reaction that is impossible for other conventional methods and develop a new material bearing outstanding functions. This technology is named radiation-induced graft polymerization (RIGP). In this article, the present research and development of novel functional polymeric materials by radiation-induced graft polymerization is described. The felt of intertwined fibers has been widely used as a filter to remove particles from air but not toxic gaseous compounds. However, by RIGP, one can transform the felt into a high functional filter that will absorb the toxic gaseous compounds while removing particles simultaneously. As a result, the RIGP technology, which is impossible by conventional technology, has enabled the development of a novel functional material that produce highly pure air. Commercialization of this filter for applications in a semiconductor manufacturing facility and as an air purifier is under process. Moreover, this filter can also be used to produce highly purified water by removing toxic heavy metals. Commercially available polyethylene films are also been transform into conductive separators by RIGP to increase the lifetime of a battery by more than five-fold. (J.P.N)

  1. Physical Properties of Synthetic Resin Materials

    Science.gov (United States)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  2. Optimization of Microencapsulation Process for Self-Healing Polymeric Material

    International Nuclear Information System (INIS)

    Then, S.; Neon, G.S.; Noor Hayaty Abu Kasim

    2011-01-01

    A series of poly(urea-formaldehyde) (PUF) microcapsules filled with dicyclopentadiene (DCPD) was successfully prepared by in situ polymerization. The effect of diverse process parameters and ingredients on the morphology of the microcapsules was observed by SEM, optical microscopy (OM) and digital microscopy. Different techniques for the characterization of the chemical structure and the core content were considered such as FT-IR and 1 H-NMR as well as the characterization of thermal properties by DSC. High yields of free flowing powder of spherical microcapsules were produced. The synthesized microcapsules can be incorporated into another polymeric host material. In the event the host material cracks due to excessive stress or strong impact, the microcapsules would rupture to release the DCPD, which could polymerize to repair the crack. (author)

  3. Influence of zeolite nanofillers on properties of polymeric materials

    OpenAIRE

    Kopcová, M.; Ondrušová, D.; Krmela, J.; Průša, P.; Pajtášová, M.; Jankurová, Z.

    2012-01-01

    The present work deals with the preparation and study of modified polymeric materials with the replacement of carbon black by nanofillers on the basis of zeolite that is environmentally friendly. Natural zeolites from a group of aluminosilicate nanoporous materials have wide range of possibilities for applications that are environmentally friendly. Zeolites can be used in the role of fillers into the polymer materials too [1]. The given work deals with the preparation and study of modif...

  4. Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies

    Science.gov (United States)

    Mirji, Rajeshwari; Lobo, Blaise

    2017-06-01

    The gamma ray mass attenuation coefficients of ten synthetic polymeric materials, namely, polyethylene (PE), polystyrene (PS), polycarbonate (PC), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), Polyethylene terephthalate (PET), Polyvinyl pyrrolidone (PVP), Polytetrafluoroethylene (PTFE), Polypropylene (PP) and Polymethyl methacrylate (PMMA) have been calculated using second order polynomial equation and logarithmic interpolation formula at selected gamma photon energies, in the energy range starting from 14.4 keV up to 1332 keV. It is important to note that second order polynomial equation fits very well with NIST data for all the polymeric materials considered here, for gamma photon energies ranging from 300 keV up to 2000 keV. Third order polynomial fitting is best suited for lower gamma photon energies (from 10 keV up to 200 keV).

  5. Cryogenic Cycling Behavior of Polymeric Composite Materials

    National Research Council Canada - National Science Library

    Seferis, James

    2002-01-01

    The basis of this research was an exploration of the fundamental phenomena that determine the response of fiber-reinforced composite materials to thermal cycling between cryogenic and ambient temperatures...

  6. Process for impregnating a concrete or cement body with a polymeric material

    Science.gov (United States)

    Mattus, Alfred J.; Spence, Roger D.

    1989-01-01

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  7. Photo stabilization of polymeric materials by photo set acrylate coatings

    Energy Technology Data Exchange (ETDEWEB)

    Decker, C. E-mail: c.decker@uha.fr; Zahouily, K

    2002-01-01

    Different types of polymeric materials have been made more resistant to photodegradation by protecting their surface with a UV-cured coating containing a HALS radical scavenger and a phenyl triazine UV absorber. The tri dimensional polymer network formed by photo polymerization of an aliphatic polyurethane-acrylate telechelic oligomer proved to be very resistant to accelerated weathering in the presence of these light stabilizers. The chemical modifications occurring upon QUV-ageing were monitored by infrared spectroscopy/ a very sensitive technique well suited for quantitative analysis at an early stage of the photodegradation.

  8. Wheat B-starch based polymeric materials

    Czech Academy of Sciences Publication Activity Database

    Kotek, Jiří; Kruliš, Zdeněk; Šárka, E.

    2011-01-01

    Roč. 105, č. 9 (2011), s. 731 ISSN 0009-2770. [International Conference on Polysaccharides-Glycoscience /7./. 02.11.2011-04.11.2011, Prague] R&D Projects: GA ČR GA525/09/0607 Institutional research plan: CEZ:AV0Z40500505 Keywords : biodegradable plastic * polycaprolactone * B- starch Subject RIV: JI - Composite Materials

  9. Imaging mass spectrometry of polymeric materials

    NARCIS (Netherlands)

    Klerk, L.A.

    2009-01-01

    Imaging mass spectrometry (MS) is a technique that makes images of molecular distributions at surfaces based on mass spectral information. At a range (typically a raster) of positions, mass spectra are measured from the surface giving a characteristic fingerprint for the material that is present at

  10. Fabricating Superhydrophobic Polymeric Materials for Biomedical Applications.

    Science.gov (United States)

    Kaplan, Jonah; Grinstaff, Mark

    2015-08-28

    Superhydrophobic materials, with surfaces possessing permanent or metastable non-wetted states, are of interest for a number of biomedical and industrial applications. Here we describe how electrospinning or electrospraying a polymer mixture containing a biodegradable, biocompatible aliphatic polyester (e.g., polycaprolactone and poly(lactide-co-glycolide)), as the major component, doped with a hydrophobic copolymer composed of the polyester and a stearate-modified poly(glycerol carbonate) affords a superhydrophobic biomaterial. The fabrication techniques of electrospinning or electrospraying provide the enhanced surface roughness and porosity on and within the fibers or the particles, respectively. The use of a low surface energy copolymer dopant that blends with the polyester and can be stably electrospun or electrosprayed affords these superhydrophobic materials. Important parameters such as fiber size, copolymer dopant composition and/or concentration, and their effects on wettability are discussed. This combination of polymer chemistry and process engineering affords a versatile approach to develop application-specific materials using scalable techniques, which are likely generalizable to a wider class of polymers for a variety of applications.

  11. Considerations for Electroactive Polymeric Materials and Actuators

    International Nuclear Information System (INIS)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Carl; Bernasek, Stephen L.; Abelev, Esta

    2010-01-01

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  12. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    International Nuclear Information System (INIS)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-01-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20–80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5–25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties. - Highlights: ► Chitosan and starch-based biodegradable films were prepared by casting. ► With the increase of chitosan in starch, the strength of the films improved significantly. ► Monomer, 2-Butane diol-diacrylate was grafted with the films by gamma radiation. ► Mechanical properties of synthetic polymeric films improved by gamma radiation. ► The irradiated polymer films showed better water vapor barrier properties.

  13. Radiation-Induced Graft Polymerization: Gamma Radiation and Electron Beam Technology for Materials Development

    International Nuclear Information System (INIS)

    Madrid, Jordan F.; Cabalar, Patrick Jay; Lopez, Girlie Eunice; Abad, Lucille V.

    2015-01-01

    The formation of functional hybrid materials by attaching polymer chains with advantageous tailored properties to the surface of a base polymer with desirable bulk character is an attractive application of graft copolymerization. Radiation-induced graft polymerization (RIGP) has been a popular approach for surface modification of polymers because of its merits over conventional chemical processes. RIGP, which proceeds primarily via free radical polymerization process, has the advantages such as simplicity, low cost, control over process and adjustment of the materials composition and structure. RIGP can be performed using either electron beam or gamma radiation and it can be applied to both synthetic and natural polymers. These merits make RIGP a popular research topic worldwide. Moreover, the materials synthesized and produced via RIGP has found applications, and were proposed to produce continuous impact, in the fields of medicine, agriculture, pollution remediation, rare earth and valuable metals recovery, fuel cell membrane synthesis and catalysis to name a few. From 2012 our group has performed electron beam and gamma radiation-induced graft polymerization of various monomers onto polymers of natural and synthetic origins (e.g. monomers - glycidyl methacrylate, styrene, acrylonitrile, N,N-dimethylaminoethyl methacrylate; base polymers – polyethylene/polypropylene nonwoven fabric, polypropylene nonwoven fabric pineapple fibers, cellulose nonwoven fabric microcrystalline cellulose). We tested these grafted materials for heavy metals (Pb, Ni, Cu) and organic molecule removal from aqueous solutions and E. coli activity (using reversible addition fragmentation chain transfer RAFT mediated grafting). The results clearly showed the success of materials modified via FIGP in these applications. Currently, we are studying the applications of grafted materials on treatment of waste waters from tanning industry, value addition to abaca nonwoven fabrics cell sheet

  14. Advances in radiation processing of polymeric materials

    International Nuclear Information System (INIS)

    Makuuchi, K.; Sasak, T.; Vikis, A.C.; Singh, A.

    1993-12-01

    In this paper we review recent advances in industrial applications of electron-beam irradiation in the field of polymer processing at the Takasaki Radiation Chemistry Research Establishment (TRCRE) of JAERI (Japan Atomic Energy Research Institute), and the Whiteshell Laboratories of AECL Research, Canada. Irradiation of a substrate with ionizing radiation produces free radicals through ionization and excitation events. The subsequent chemistry of these radicals is used in radiation processing as a substitute for conventional processing techniques based on heating and/or the addition of chemicals. The advantages of radiation processing include the formation of novel products with desirable material properties, favourable overall process economics and, often, environmental benefits

  15. Fluoropolymer materials and architectures prepared by controlled radical polymerizations

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Jankova Atanasova, Katja; Hvilsted, Søren

    2007-01-01

    This review initially summarizes the mechanisms, merits and limitations of the three controlled radical polymerizations: nitroxide mediated polymerization (NMP), atom transfer radical polymerization (ATRP) or metal catalyzed living radical polymerization, and reversible addition–fragmentation chain...

  16. Nanobiotechnology: synthetic biology meets materials science.

    Science.gov (United States)

    Jewett, Michael C; Patolsky, Fernando

    2013-08-01

    Nanotechnology, the area of science focused on the control of matter in the nanometer scale, allows ground-breaking changes of the fundamental properties of matter that are often radically different compared to those exhibited by the bulk counterparts. In view of the fact that dimensionality plays a key role in determining the qualities of matter, the realization of the great potential of nanotechnology has opened the door to other disciplines such as life sciences and medicine, where the merging between them offers exciting new applications, along with basic science research. The application of nanotechnology in life sciences, nanobiotechnology, is now having a profound impact on biological circuit design, bioproduction systems, synthetic biology, medical diagnostics, disease therapy and drug delivery. This special issue is dedicated to the overview of how we are learning to control biopolymers and biological machines at the molecular- and nanoscale. In addition, it covers far-reaching progress in the design and synthesis of nanoscale materials, thus enabling the construction of integrated systems in which the component blocks are comparable in size to the chemical and biological entities under investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Ionic-Functionalized Polymeric Microporous Materials

    Science.gov (United States)

    Rukmani, Shalini J.; Liyana-Arachchi, Thilanga; Hart, Kyle; Colina, Coray

    Ionic-functionalized microporous materials are attractive for gas adsorption and separation applications. In this study, we investigate the effect of changing ions (Li+, Na+, K+, Rb+, and Mg2+) on the porosity, carbon dioxide (CO2) gas adsorption, and selectivity in ionic functionalized polymers of intrinsic microporosity (IonomIMs). Structure generation and gas adsorption are studied using molecular dynamics and Monte Carlo simulations respectively. The IonomIMs show an enhanced performance for CO2 selectivity in CO2 /CH4 and CO2 /N2 gas mixtures at pressure swing adsorption and vacuum swing adsorption conditions. For 100% ionic concentration, ions with the same charge show a decrease in the adsorption capacity with increasing cation size. Mg2+ has the highest pure CO2 adsorption and lowest mixed gas separation performance. The increasing concentration of ions decreases the porosity of the framework and increases the tunability of structural and adsorption properties. Hence, the concentration of ions, size, and charge play a vital role in determining the optimum adsorbent for a targeted industrial application.

  18. Interactions and Assemblies of Polymeric Materials and Colloidal Nanocrystals

    Science.gov (United States)

    Williams, Teresa Elaine

    Our need to reduce global energy use is well known and without question, not just from an economic standpoint but also to decrease human impact on climate change. Emerging advances in this area result from the ability to tailor-make materials and energy-saving devices using solution-phase chemistry and deposition techniques. Colloidally synthesized nanocrystals, with their tunable size, shape, and composition, and unusual optical and electronic properties, are leading candidates in these efforts. Because of recent advances in colloidal chemistries, the inventory of monodisperse nanocrystals has expanded to now include metals, semiconductors, magnetic materials, and dielectric materials. For a variety of applications, an active layer composed of a thin film of randomly close-packed nanocrystals is not ideal for optimized device performance; here, the ability to arrange these nano building units into mesoporous (2 nm design rules that govern the interactions between ligand-stripped nanocrystals and polymeric materials, leading to their hierarchical assembly into colloidal nanocrystal frameworks. I also include the development of quantitative, and novel, characterization techniques, and the application of such frameworks in energy efficiency devices such as electrochromic windows. Understanding the local environment of nanocrystal surfaces and their interaction with surrounding media is vital to their controlled assembly into higher-order structures. Though work has continued in this field for over a decade, researchers have yet to provide a simple and straightforward procedure to scale across nanoscale material systems and applications allowing for synthetic and structural tunability and quantitative characterization. In this dissertation, I have synthesized a new class of amphiphilic block copolymer architecture-directing agents based upon poly(dimethylacrylamide)-b-poly( styrene) (PDMA-b-PS), which are strategically designed to enhance the interaction between the

  19. Research work of radiation induced graft polymerization for synthesis and modification of polymer materials in CRICI

    Energy Technology Data Exchange (ETDEWEB)

    Hu Fumin; Ma Xueming [Chenguan Research Institute of Chemical Industry, Chengdu (China)

    2000-03-01

    The direct and post radiation induced graft polymerization had been studied in CRICI (Chenguan Research Institute of Chemical Industry). The method consists of irradiation of various polymer substrates in the presence (or absence) of monomers in a liquid, saturated vapour or gaseous and non-saturated vapour. 1. Grafting of functional monomers. --- It is possible to divide the grafting into two main approaches for synthesis of functional polymer materials. The first is grafting of monomers attached required functional group such as unsaturated carboxylic acid (acrylic and methacrylic acid), unsaturated nitrogen containing (alkali) base (vinylpyridine), monomers with hydrophilic unionized and polar groups (acrylamide, N-vinylpyrrolidone glycidylmethacrylate) and so on. The second is grafting of monomers capable of continuing chemical modification after graft polymerization. This approach essentially expands synthetic possibility of RGP for preparing functional polymers. 2. The effect of some salts on aqueous solution graft polymerization. The grafting of AA or AAm onto PE by direct or post radiation method in the presence of Mohr's salt or cupric nitrate was studied in detail. 3. Radiation induced graft polymerization by gaseous phase of monomers. This method consists of irradiation or preirradiation of various polymer substrates in the presence (or absence for preirradiation) of monomer in a gaseous of nonsaturated vapour state. (J.P.N.)

  20. DNA meets synthetic polymers—highly versatile hybrid materials

    NARCIS (Netherlands)

    Alemdaroglu, Fikri E.; Herrmann, Andreas

    2007-01-01

    The combination of synthetic polymers and DNA has provided biologists, chemists and materials scientists with a fascinating new hybrid material. The challenges in preparing these molecular chimeras were overcome by different synthetic strategies that rely on coupling the nucleic acid moiety and the

  1. The synthesis and characterisation of mucoadhesive polymeric systems using synthetic and natural polymers

    OpenAIRE

    Sarah, Duggan

    2015-01-01

    Mucoadhesion is the binding of a material to a mucosal surface. The mucosal surface has a rate of absorption of up to four times that of the skin and, therefore, has great potential as a route of drug administration. Mucoadhesive polymeric drug delivery devices have been designed to allow for the slow and controlled release of a drug to a specific site, with fewer side effects and greater bioavailability in comparison to other methods of administration. In this project, mucoadhesive polyme...

  2. Performance of new polymeric materials with high radiation resistance

    International Nuclear Information System (INIS)

    Hill, D.J.T.; O'Donnell, J.H.; Pomery, P.J.

    1994-01-01

    The resistance to radiation of polymeric materials with high modulus and strength, high service temperatures, high resistance to thermal oxidation, and high chemical resistance is evaluated. Different methods of assessment are considered, which require radiation doses from 0.01 to 10 MGy. It is demonstrated that the resistance of high performance polymers to radiation depends on the nature and frequency of occurence of aromatic and non-aromatic components of the molecular structure. 3 refs., 2 figs

  3. Polymeric synthetic geo membranes in reservoirs waterproofing in the Kingdom of Morocco

    International Nuclear Information System (INIS)

    Blanco Fernandez, M.

    2015-01-01

    This essay aims to address some of the aspects related to polymeric synthetic geo membranes that could be used in reservoirs of water located in the Kingdom of Morocco. In this regard, it offers a description of the two basic components geo membranes consist of, that is, resins and additives. It also gives an overview of the key pieces of legislation affecting such an issue. Furthermore, it stresses the paramount importance of implementing monitoring procedures in order to assess the condition of geo membranes over time and, if necessary, to proceed to provide for new waterproofing. Lastly, the characteristics of the process monitoring aforementioned are detailed in terms of tensile strength, elongation, tear resistance, dynamic impact, puncture resistance, low-temperature folding. Shore hardness, stress cracking, oxidation induction times, joint strength shear and peeling test, content and dispersion of carbon black and reflection-optical and scanning-electron microscopy. (Author)

  4. PREFACE: 9th National Symposium on Polymeric Materials (NSPM 2009)

    Science.gov (United States)

    Ali, Aidy; Salit, Sapuan

    2010-07-01

    NSPM 2009 is the formal proceedings of the 9th National Symposium on Polymeric Materials held in Residence Hotel Uniten Bangi on 14-16 December 2009. It is also organised with The Plastics and Rubber Institute Malaysia PRIM. The symposium proceedings consists of 94 papers covering a large number of issues on experimental and analytical studies of polymeric materials. The objectives of the symposium are to review the state-of-the art, present and latest findings and exchange ideas among engineers, researchers and practitioners involved in this field. We strongly hope the outcomes of this symposium will stimulate and enhanced the progress of experimental and analytical studies on polymeric materials as well as contribute to the fundamental understanding in related fields. After careful refereeing of all manuscripts, 15 papers were selected for publications in this issue. Another 20 papers were selected for publication in Pertanika Journal of Science and Technology (PJST). The content of the material and its rapid dissemination was considered to be more important than its form. We are grateful to all the authors for their papers and presentations in this symposium. They are also the ones who help make this symposium possible through their hard work in the preparation of the manuscripts. We would also like to offer our sincere thanks to all the invited speakers who came to share their knowledge with us. We would also like to acknowledge the untiring efforts of the reviewers, research assistants and students in meeting deadlines and for their patience and perseverance. We are indeed honoured to associate this event with Department of Mechanical and Manufacturing, and Faculty of Engineering, Universiti Putra Malaysia. Finally, we appreciate the sponsor support provided by Faculty of Engineering, The Plastics and Rubber Institute Malaysia (PRIM) and PETRONAS Malaysia. Thank you all. Editors: Aidy Ali and S M Sapuan

  5. Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-02-01

    Full Text Available To enhance the thermal stability and permeability resistance, a comb-like polymer with crystallizable side chains was fabricated as solid-solid phase change materials (PCMs inside the cores of microcapsules and nanocapsules prepared via in-situ polymerization. In this study, the effects on the surface morphology and microstructure of micro/nanocapsules caused by microencapsulating different types of core materials (i.e., n-hexadecane, ethyl hexadecanoate, hexadecyl acrylate and poly(hexadecyl acrylate were systematically studied via field emission scanning electron microscope (FE-SEM and transmission electron microscope (TEM. The confined crystallization behavior of comb-like polymer PCMs cores was investigated via differential scanning calorimeter (DSC. Comparing with low molecular organic PCMs cores, the thermal stability of PCMs microencapsulated comb-like polymer enhanced significantly, and the permeability resistance improved obviously as well. Based on these resultant analysis, the microencapsulated comb-like polymeric PCMs with excellent thermal stability and permeability resistance showed promising foreground in the field of organic solution spun, melt processing and organic coating.

  6. New Soft Polymeric Materials Applicable as Elastomeric Transducers

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Skov, Anne Ladegaard

    easy to handle. From a mechanical point of view, the materials for EAPs use have to be soft with sufficient mechanical strength so the rupture of the material can be avoided at high strain actuation. Considering the EAP requirements and the experimental data for the hyperswollen networks based......An elastomer is a material characterized by the capability to regain its original size and shape after being deformed (stretched or distorted). An ideal elastomer for electroactive polymer (EAP) applications is a system characterized by high extensibility, flexibility and a good mechanical fatigue....... Dielectric elastomers (DEs) are part of electronic EAPs presenting a good combination of electromechanical properties such as high achievable strains and stresses, fast response speeds, long lifetime, high reliability and high efficiency1. Subjected to a voltage, a polymeric electroactive material sandwiched...

  7. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    International Nuclear Information System (INIS)

    Käpylä, Elli; Sedlačík, Tomáš; Aydogan, Dogu Baran; Viitanen, Jouko; Rypáček, František; Kellomäki, Minna

    2014-01-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. - Highlights: • Methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s) were synthesized. • Direct laser writing by two-photon polymerization (2PP-DLW) of poly(AA)s is shown. • Poly(AA)s have wider processing windows than poly(ethylene glycol) diacrylates. • 3D poly(AA) structures with 80% water content were fabricated

  8. Polymeric Bicontinuous Microemulsions as Templates for Nanostructured Materials

    Science.gov (United States)

    Jones, Brad Howard

    Ternary blends of two homopolymers and a diblock copolymer can self-assemble into interpenetrating, three dimensionally-continuous networks with a characteristic length scale of ˜ 100 nm. In this thesis, it is shown that these liquid phases, known as polymeric bicontinuous microemulsions (BμE), can be designed as versatile precursors to nanoporous materials having pores with uniform sizes of ˜ 100 nm. The model blends from which the porous materials are derived are composed of polyethylene (PE) and a sacrificial polyolefin. The liquid BμE structure is captured by crystallization of the PE, and a three-dimensionally continuous pore network with a narrow pore size distribution is generated by selective extraction of the sacrificial component. The original BμE structure is retained in the resultant nanoporous PE. This monolithic material is then used as a template in the synthesis of other nanoporous materials for which structural control at the nm scale has traditionally been difficult to achieve. These materials, which include a high-temperature ceramic, polymeric thermosets, and a conducting polymer, are produced by a simple nanocasting process, providing an inverse replica of the PE template. On account of the BμE structure of the template, the product materials also possess three-dimensionally continuous pore networks with narrow size distributions centered at ˜ 100 nm. The PE template is further used as a template for the production of hierarchically structured inorganic and polymeric materials by infiltration of mesostructured compounds into its pore network. In the former case, a hierarchically porous SiO2 material is demonstrated, simultaneously possessing two discrete, bicontinuous pore networks with sizes differing by over an order of magnitude. Finally, the templating procedures are extended to thin films supported on substrates and novel conductive polymer films are synthesized. The work described herein represents an unprecedented suite of

  9. Polymeric Smart Skin Materials: Concepts, Materials, and Devices

    National Research Council Canada - National Science Library

    Dalton, Larry

    2006-01-01

    ... (corrosion, explosive) phenomena. Such materials have been transitions to practical applications such as wind tunnel testing and infrastructure monitoring and have also been adopted for fundamental studies of fluid dynamics and insect flight...

  10. Flavonoids as Natural Stabilizers and Color Indicators of Ageing for Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Anna Masek

    2015-06-01

    Full Text Available Few changes have occurred in the use of various stabilizers over recent years. In the current literature, phosphate derivatives are used as anti-ageing additives in polymers, and the most popular of these are sterically hindering cyclic amines. However, most of these compounds are carcinogenic. Synthetic phenols have been increasingly used as antioxidants in food and in polymers. Ecological standards encourage the elimination of harmful additives in polymeric products that come in contact with food or with the human body. This article presents application of flavonoid (silymarin/flavonoligand for polymer stabilization and use of natural phytocompounds such as color indicators of polymers ageing time. In this research, I propose two ways of application: traditional, during processing; and the new one, by using impregnation method. Based on the change of deformation energy (ageing coefficient K, FTIR, oxidative induction time (OIT evaluated by differential scanning calorimetry (OIT, thermogravimetry analysis (TG, spectrophotometric color measurements in terms of CIE-Lab color space values, I confirmed the high antioxidant activity of flavonoids in EPM. They provide coloration of the polymeric materials that changes cyclically as a function of aging time. Additionally, the use of phytocompounds in polymers provides similar stabilizing effect to those of synthetic antioxidants.

  11. Photo-triggered solvent-free metamorphosis of polymeric materials.

    Science.gov (United States)

    Honda, Satoshi; Toyota, Taro

    2017-09-11

    Liquefaction and solidification of materials are the most fundamental changes observed during thermal phase transitions, yet the design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion remains challenging. Here, we demonstrate that solvent-free repeatable molecular architectural transformation between liquid-star and nonliquid-network polymers that relies on cleavage and reformation of a covalent bond in hexaarylbiimidazole. Liquid four-armed star-shaped poly(n-butyl acrylate) and poly(dimethyl siloxane) with 2,4,5-triphenylimidazole end groups were first synthesized. Subsequent oxidation of the 2,4,5-triphenylimidazoles into 2,4,5-triphenylimidazoryl radicals and their coupling with these liquid star polymers to form hexaarylbiimidazoles afforded the corresponding nonliquid network polymers. The resulting nonliquid network polymers liquefied upon UV irradiation and produced liquid star-shaped polymers with 2,4,5-triphenylimidazoryl radical end groups that reverted to nonliquid network polymers again by recoupling of the generated 2,4,5-triphenylimidazoryl radicals immediately after terminating UV irradiation.The design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion is challenging. Here, the authors show solvent-free repeatable molecular architectural transformation between liquid-star and non-liquid-network polymers by the cleavage and reformation of covalent bonds in the polymer chain.

  12. A phenomenological approach of solidification of polymeric phase change materials

    Science.gov (United States)

    Bahrani, Seyed Amir; Royon, Laurent; Abou, Bérengère; Osipian, Rémy; Azzouz, Kamel; Bontemps, André

    2017-01-01

    Phase Change Materials (PCMs) are widely used in thermal energy storage and thermal management systems due to their small volume for a given stored energy and their capability for maintaining nearly constant temperatures. However, their performance is limited by their low thermal conductivity and possible leaks while in the liquid phase. One solution is to imprison the PCM inside a polymer mesh to create a Polymeric Phase Change Material (PPCM). In this work, we have studied the cooling and solidification of five PPCMs with different PCMs and polymer fractions. To understand the heat transfer mechanisms involved, we have carried out micro- and macrorheological measurements in which Brownian motion of tracers embedded in PPCMs has been depicted and viscoelastic moduli have been measured, respectively. Beyond a given polymer concentration, it was shown that the Brownian motion of the tracers is limited by the polymeric chains and that the material exhibits an elastic behavior. This would suggest that heat transfer essentially occurs by conduction, instead of convection. Experiments were conducted to measure temperature variation during cooling of the five samples, and a semi-empirical model based on a phenomenological approach was proposed as a practical tool to choose and size PPCMs.

  13. Development of deodorizing materials by radiation graft polymerization

    International Nuclear Information System (INIS)

    Sugo, Takanobu; Okamoto, Jiro; Fujiwara, Kunio; Sekiguchi, Hideo.

    1989-01-01

    With the development of society, the countermeasures for service water and sewerage in large cities and the environment preservation in industrial districts become difficult as their scale becomes larger. There are many unsolved problems, for example photochemical smog due to harmful gases, exhaust gas from automobiles, and smell of toilets and home waste water. The deodorizing materials used so far are mainly inorganic substances, and their ability of adsorbing harmful gases is very low. Besides, those are mostly granular, and limited in the formability. Therefore, it is expected to develop the fibrous adsorbent which has large adsorbing surface area and is easy to make filters. The chemical structures of the compounds having smell are shown. Eight legal bad smell substances which exert large influence to environment even in very small amount are designated. In this paper, the method of introducing functional radicals into existing fiber materials by the application of radiation graft polymerization process and the test of removing smelling compositions by using the obtained resin are reported. The experimental method, and the results of radiation graft polymerization, the adsorption of basic gases and acid gases, and gas flow test are described. (K.I.)

  14. Polymeric foam-ferromagnet composites as smart lightweight materials

    International Nuclear Information System (INIS)

    D’Auria, M; Sorrentino, L; Davino, D; Pantani, R

    2016-01-01

    A new class of lightweight smart materials based on a polymeric matrix with embedded magnetic micro-particles was developed. The application of a magnetic field (MF) during the foaming of samples induced, along the MF lines, the alignment of magnetic particles dispersed in the polymer thus forming chain-like reinforcing structures. The aligned micro-particles induced an anisotropic mechanical behaviour, strongly improving the mechanical stiffness and strength along the MF direction compared to unfilled systems. Most notably, the chain-like structures imparted a magneto-sensitive behaviour to the lightweight materials. In fact, foams showed a direct relationship between the foams elastic response and the intensity as well as the shape of the time dependent MF applied during their magneto-elastic characterisation. This magneto-elastic behaviour has been obtained at low MF strength (below 200 kA m −1 ). (paper)

  15. Deformation Behavior of Polymeric Materials by Taylor Impact

    Science.gov (United States)

    Shin, Hyung-Seop; Park, Sung-Taek; Kim, See-Jo; Choi, Joon-Hong; Kim, Jeong-Tae

    The deformation of polymers under high loading-rate conditions will be a governing factor to be considered in their impact-resistant applications such as protective shields and armors. In this study, the deformation and fracture behaviors of polymeric materials such as PE, PC and PEEK have been investigated by Taylor cylinder impact tests with the high speed photography. A 20 mm air gun was used to perform the impact experiments. Cylindrical projectiles have been impacted onto a hardened steel anvil at a velocity ranging from 120 to 320 m/s. After impact experiments, the shape of projectiles was examined and compared with high speed photographic images to distinguish the elastic deformation component from the deformation measured instantaneously. Each adopted material showed different deformation and fracture behaviors. As compared with the quasi-static cases all polymers showed a significant strain rate hardening when the strain rate used was over 6 × 103 s-1. This appeared most significant in PE.

  16. Tribology of polymeric nanocomposites friction and wear of bulk materials and coatings

    CERN Document Server

    Friedrich, Klaus

    2013-01-01

    Tribology of Polymeric Nanocomposites provides a comprehensive description of polymeric nanocomposites, both as bulk materials and as thin surface coatings, and provides rare, focused coverage of their tribological behavior and potential use in tribological applications. Providing engineers and designers with the preparation techniques, friction and wear mechanisms, property information and evaluation methodology needed to select the right polymeric nanocomposites for the job, this unique book also includes valuable real-world examples of polymeric nanocomposites in a

  17. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells.

    Science.gov (United States)

    Bacakova, Marketa; Pajorova, Julia; Stranska, Denisa; Hadraba, Daniel; Lopot, Frantisek; Riedel, Tomas; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2017-01-01

    Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide- co -glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.

  18. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    Science.gov (United States)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-08-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20-80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5-25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties.

  19. POLYMERIC MATERIALS FOR SOLAR ENERGY UTILIZATION: A COMPARATIVE EXPERIMENTAL STUDY AND ENVIRONMENTAL ASPECTS

    Directory of Open Access Journals (Sweden)

    Alexander Doroshenko

    2016-08-01

    Full Text Available Full-scale metal solar collectors and solar collectors fabricated from polymeric materials are studied in present research. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. Polymeric collector is 67.8% lighter than metal solar collector. It was experimentally shown that the efficiency of a polymeric collector is 7–14% lower than a traditional collector. An ecologically based Life Cycle Assessment showed the advantages of the application of polymeric materials in the construction of solar collectors.

  20. Study on stimulus-responsive cellulose-based polymeric materials

    Science.gov (United States)

    Luo, Hongsheng

    Stimulus-responsive cellulose-based polymeric materials were developed by physical and chemical approaches. The thermal, structural, mechanical and morphological properties of the samples were comprehensively investigated by multiple tools. Shape memory effect (SME), programming-structure-property relationship and underling mechanisms were emphasized in this study. Some new concepts, such as heterogeneous-twin-switch, path-dependent multi-shape, rapidly switchable water-sensitive SME were established. The samples were divided into two categories. For the first category, cellulose nano-whiskers (CNWs) were incorporated into crystalline shape memory polyurethane (SMPU) and thermal plastic polyurethane (TPU). The CNW-SMPU nano-composites had heterogeneous switches. Triple- and multi-shape effects were achieved for the CNW-SMPU nano-composites by applying into appropriate thermal-aqueous-mechanical programming. Furthermore, the thermally triggered shape recovery of the composites was found to be tuneable, depending on the PCN content. Theoretical prediction along with numerical analysis was conducted, providing evidence on the possible microstructure of the CNW-SMPU nano-composites. Rapidly switchable water-sensitive SME of the CNW-TPU nano-composites was unprecedentedly studied, which originated from the reversible regulation of hydrogen bonding by water. The samples in the second category consisted of cellulose-polyurethane (PU) blends, cellulose-poly(acrylic acid) (PAA) composites and modified cellulose with supramolecular switches, featuring the requirement of homogeneous cellulose solution in the synthesis process. The reversible behaviours of the cellulose-PU blends in wet-dry cycles as well as the underlying shape memory mechanism were characterized and disclosed. The micro-patterns of the blends were found to be self-similar in fractal dimensions. Cellulose-PAA semi-interpenetrating networks exhibited mechanical adaptability in wet-dry cycles. A type of

  1. Designing materials for advanced microelectronic patterning applications using controlled polymerization RAFT technology

    Science.gov (United States)

    Sheehan, Michael T.; Farnham, William B.; Chambers, Charles R.; Tran, Hoang V.; Okazaki, Hiroshi; Brun, Yefim; Romberger, Matthew L.; Sounik, James R.

    2011-04-01

    Reversible Addition Fragmentation Chain Transfer (RAFT) polymerization technology enables the production of polymers possessing low polydispersity (PD) in high yield for many applications. RAFT technology also enables control over polymer architecture. With synthetic control over these polymer characteristics, a variety of polymers can be designed and manufactured for use in advanced electronic applications. By matching the specific RAFT reagent and monomer combinations, we can accommodate monomer reactivity and optimize acrylate or methacrylate polymerizations (193 and 193i photoresist polymers) or optimize styrenic monomer systems (248 nm photoresist polymers) to yield polymers with PD as low as 1.05. For 193i lithography, we have used RAFT technology to produce block copolymers comprising of a random "resist" block with composition and size based on conventional dry photoresist materials and a "low surface energy" block The relative block lengths and compositions may be varied to tune solution migration behavior, surface energy, contact angles, and solubility in developer. Directed self assembly is proving to be an interesting and innovative method to make 2- and even 3-dimensional periodic, uniform patterns. Two keys to acceptable performance of directed self assembly from block copolymers are the uniformity and the purity of the materials will be discussed.

  2. Synthesis of Conductive Polymeric Nanocomposites for Applications in Responsive Materials

    Science.gov (United States)

    Chavez, Jessica

    The development of next generation "smart" textiles has emerged with significant interest due to the immense demand for high-performance wearable technology. The economic market for wearable technologies is predicted to increase significantly in both volume and value. In the next four years, the wearable technology market will be valued at $34 billion. This large demand has opened up a new research area involving smart wearable devices and conductive fabrics. Many research groups have taken various paths to study and ultimately fabricate wearable devices. Due to the limiting capabilities of conventional conductors, researchers have centered their research on the integration of conductive polymers into textile materials for applications involving responsive material. Conducive polymers are very unique organic molecules that have the ability to transfer electrons across their molecular structure due to the excess presence of pi-electrons. Conductive polymers are favored over conventional conductors because they can be easily manipulated and integrated into flexible material. Two very common conductive polymers are polyaniline (PANI) and polypyrrole (PPY) because of their large favorability in literature, high conductance values, and environmental stability. Common commercial fibers were coated via the chemical polymerization of PANI or PPY. A series of reactions were done to study the polymerization process of each polymer. The conductive efficiency of each conducting polymer is highly dependent on the type of reactants used, the acidic nature of the reaction, and the temperature of the reaction. The coated commercial fiber nanocomposites produced higher conductivity values when the polymerization reaction was run using ammonium peroxydisulfate (APS) as the oxidizing agent, run in an acidic environment, and run at very low temperatures. Other factors that improved the overall efficiency of the coated commercial fiber nanocomposites was the increase in polymer

  3. Polymeric Materials Reinforced with Multiwall Carbon Nanotubes: A Constitutive Material Model

    Directory of Open Access Journals (Sweden)

    Wendy Ortega

    2013-07-01

    Full Text Available In this paper we have modified an existing material model introduced by Cantournet and co-workers to take into account softening and residual strain effects observed in polymeric materials reinforced with carbon nanotubes when subjected to loading and unloading cycles. In order to assess the accuracy of the modified material model, we have compared theoretical predictions with uniaxial extension experimental data obtained from reinforced polymeric material samples. It is shown that the proposed model follows experimental data well as its maximum errors attained are lower than 2.67%, 3.66%, 7.11% and 6.20% for brominated isobutylene and paramethylstyrene copolymer reinforced with multiwall carbon nanotubes (BIMSM-MWCNT, reinforced natural rubber (NR-MWCNT, polybutadiene-carbon black (PB-CB, and PC/ABS reinforced with single-wall carbon nanotubes (SWCNT, respectively.

  4. Clean synthesis of molecular recognition polymeric materials with chiral sensing capability using supercritical fluid technology. Application as HPLC stationary phases.

    Science.gov (United States)

    da Silva, Mara Soares; Vão, Eva R; Temtem, Márcio; Mafra, Luís; Caldeira, Jorge; Aguiar-Ricardo, Ana; Casimiro, Teresa

    2010-03-15

    Molecularly imprinted polymers (MIPs) of poly(ethylene glycol dimethacrylate) and poly(N-isopropylacrylamide-co-ethylene glycol dimethacrylate) were synthesized for the first time in supercritical carbon dioxide (scCO(2)), using Boc-L-tryptophan as template. Supercritical fluid technology provides a clean and one-step synthetic route for the preparation of affinity polymeric materials with sensing capability for specific molecules. The polymeric materials were tested as stationary HPLC phases for the enantiomeric separation of L- and D-tryptophan. HPLC results prove that the synthesized MIPs are able to recognize the template molecule towards its enantiomer which opens up potential applications in chromatographic chiral separation. (c) 2009 Elsevier B.V. All rights reserved.

  5. Green polymerization methods: renewable starting materials, catalysis and waste reduction

    National Research Council Canada - National Science Library

    Mathers, Robert T; Meier, Michael A. R

    2011-01-01

    ... Introduction 29 First Generation Furans and their Conversion into Monomers 30 Furfural and Derivatives 30 Monomers from Furfural 31 Hydroxymethylfurfural 35 Green Polymerization Methods : Renewable...

  6. A Survey on Synthesis Processes of Structured Materials for Biomedical Applications: Iron-based Magnetic Nanoparticles, Polymeric Materials and Polymerization Processes.

    Science.gov (United States)

    Neto, Weslany Silvério; Jensen, Alan Thyago; Ferreira, Gabriella Ribeiro; Valadares, Leonardo Fonseca; Gambetta, Rossano; Gonçalves, Sílvia Belém; Machado, Fabricio

    2015-01-01

    Magnetic materials based on iron oxides are extensively designed for several biomedical applications. Heterogeneous polymerization processes are powerful tools for the production of tailored micro-sized and nanosized magneto-polymeric particles. Although several polymerization processes have been adopted along the years, suspension, emulsion and miniemulsion systems deserve special attention due to its ability to produce spherical polymer particles containing magnetic nanoparticles homogeneously dispersed into the polymer thermoplastic matrices. The main objective of this paper is to review the main methods of synthesis of iron-based magnetic nanoparticles and to illustrate how typical polymerization processes in different dispersion medium can be successfully used to produce engineered magnetic core-shell structures. It is exemplified the use of suspension, emulsion and miniemulsion polymerization processes in order to support experimental methodologies required for the production of magnetic polymer particles intended for biomedical applications such as intravascular embolization treatments, drug delivery systems and hyperthermia treatment.

  7. UV laser engraving of high temperature polymeric materials

    International Nuclear Information System (INIS)

    Martinez, D.; Laude, L.D.; Kolev, K.; Hanus, F.

    1999-01-01

    Among emerging technologies, those associated with laser sources as surface processing tools are quite promising. In the present work, a UV pulsed (excimer) laser source is experimented for engraving (or ablating) polymeric materials based on three high temperature polymers: polyethylene terephtalate (PET), polyethersulfone (PES) and polyphenylene sulfide (PPS). The ablation phenomenon is demonstrated on all these polymers and evaluated by stylus profilometry upon varying the laser fluence at impact. For each polymer, results give evidence for three characteristic quantities: an ablation threshold E sub 0, a maximum ablation depth per pulse z sub 0 and an initial rate of ablation α, just above threshold. A simple ablation model is presented which describes correctly the observed behaviours and associates closely the above quantities to the polymer formulation, thus providing for the first time a rational basis to polymer ablation. The model may be extended to parent plastic materials whenever containing the same polymers. It may also be used to predict the behaviours of other polymers when subjected to excimer laser irradiation

  8. Machine guides restoration by using a polymeric material

    Directory of Open Access Journals (Sweden)

    В. Б. Струтинський

    2015-11-01

    Full Text Available The restoration of slide rest guides of the automatic lathe PUB 130 was made by using a polymeric material in the laboratory, and the measurements of the rest displacement strength were made on a specially created experimental stand with the ADC and the PC and subsequent determination of the coefficient of friction. The performed experiments revealed that in the speed range of saddle feed from 0,0228 to 0,075 m/s, the coefficient of friction is within 0,047-0,055. At the same time, the transition to the low-feed (0,0005-0,0022 m/s results in to marked increase of the friction coefficient and the rest hopping movement. However, this phenomenon is likely due to the fact that elastic tie in the form of steel beam with tensometers was put into the feeder of the rest. This explanation let us hope that, with rigid connection of the drive and the rest such a phenomenon will not take place and the value of friction will not differ substantially from the friction obtained at high speeds. The obtained results make it possible to consider the use of a polymer material to be the optimal way to restore worn-out machines

  9. Wind erosion control of soils using polymeric materials

    Directory of Open Access Journals (Sweden)

    Mohammad Movahedan

    2012-07-01

    Full Text Available Wind erosion of soils is one of the most important problems in environment and agriculture which could affects several fields. Agricultural lands, water reservoires, irrigation canals, drains and etc. may be affected by wind erosion and suspended particles. As a result wind erosion control needs attention in arid and semi-arid regions. In recent years, some polymeric materials have been used for improvement of structural stability, increasing aggregate stability and soil stabilization, though kind of polymer, quantity of polymer, field efficiency and durability and environmental impacts are some important parameters which should be taken into consideration. In this study, a Polyvinil Acetate-based polymer was used to treat different soils. Then polymer-added soil samples were investigated experimentally in a wind tunnel to verify the effecte of polymer on wind erosion control of the soils and the results were compared with water treated soil samples. The results of wind tunnel experiments with a maximum 26 m/s wind velocity showed that there was a significat difference between the erosion of polymer treated and water treated soil samples. Application of 25g/m2 polymer to Aeolian sands reduced the erosion of Aeolian sands samples to zero related to water treated samples. For silty and calyey soils treated by polymer, the wind erosion reduced minimum 90% in relation to water treated samples.

  10. Natural minerals and synthetic materials for sorption of radioactive anions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mun Ja; Chun, Kwan Sik; Kim, Seung Soo

    1998-07-01

    Technetium-99 and iodine-129 are fission products with long half-lives, and exist as highly soluble anionic species. Studies on natural and synthetic materials sorbing TcO{sub 4} and/or I have been performed by several researchers. The application of these materials as an additive in the high-level waste disposal has been considered. The iron- or sulfide-containing minerals such as metal iron, iron powder, stibnite and pyrrhotite show a high capacity for TcO{sub 4} sorption. And the small amounts of activated carbon are reported to have high distribution coefficients recently. In the iodine sorption studies, sulfide-, copper-, lead- or mercury-containing minerals can be a candidate. Pyrite, chalcopyrite, galena, Cu{sub 2}S and CuS reveal a high capacity for I sorption. The synthetic materials were found to have high sorption capacity and compensate the defects of natural minerals, which contain hydrous oxides such as zirconium oxide, aluminium oxide and mercarbide. The mercarbide has the high distribution coefficients for the sorption of TcO{sub 4} and I. Recently it was proposed that the synthetic clay, hydrotalcite, could be useful for the fixation of anion. However, to determine the applicability of those natural and synthetic materials as an additive to a buffer or backfill material for sorption of TcO{sub 4} and/or I, the sorption behavior of the anions on those materials under the repository conditions should be identified. (author). 32 refs., 21 tabs., 10 figs

  11. Nonlinear Inelastic Mechanical Behavior Of Epoxy Resin Polymeric Materials

    Science.gov (United States)

    Yekani Fard, Masoud

    compression plastic flow has negligible influence on flexural behavior in epoxy resins, which are stronger in pre-peak and post-peak softening in compression than in tension. The second model was a piecewise-linear stress strain curve simplified in the post-peak response. Beams and plates with different boundary conditions were tested and analytically studied. The flexural over-strength factor for epoxy resin polymeric materials were also evaluated.

  12. Optically stimulated luminescence dosimetry using natural and synthetic materials

    DEFF Research Database (Denmark)

    Bøtter-Jensen, L.; McKeever, S.W.S.

    1996-01-01

    The application of optically stimulated luminescence (OSL) for use in radiation dosimetry is reviewed. A broad description is given of OSL techniques developed at Riso National Laboratory and at Oklahoma State University, and recent collaborative investigations on the properties of a variety...... of natural and synthetic materials are reported. A phenomenological description of OSL is presented, and examples of recent applications are discussed. Some basic studies of OSL are described, from a variety of materials, including Al2O3:C, natural quartz and feldspars extracted from building materials...

  13. Organic Semiconducting Materials in Film and Powder Forms from a Co-polymeric Elastomer-Styrene Butadiene Rubber

    Science.gov (United States)

    Santhamma, G.; Predeep, P.

    2008-04-01

    Semiconducting materials in both film and powder forms are prepared by Antimony Pentachloride (SBCl5) doping in Styrene Butadiene Rubber (SBR). SBR is a synthetic co-polymeric elastomer, insulating in undoped state, is mainly used for manufacturing tires, tubes etc. Synthesized conducting materials are proposed to have tremendous application potentials in optoelectronic, electronic and electrical industries. For example conducting films can be used as active elements for fabrication of organic light emitting diodes, photovoltaic cells etc. Electrical and optical properties of prepared samples are studied by measuring electrical conductivity and analyzing spectroscopic data. Electrical conductivity of samples lies in the range of that of semi-conducting materials. Presence of conjugated sequences in the back bone of prepared conducting materials, which is regarded as pre-requisite condition for a polymer to conductive, is confirmed by studying UV/Vis spectra.

  14. Synthetic

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2010-06-01

    Full Text Available Traditionally materials have been associated with a series of physical properties that can be used as inputs to production and manufacturing. Recently we witnessed an interest in materials considered not only as ‘true matter’, but also as new breeds where geometry, texture, tooling and finish are able to provoke new sensations when they are applied to a substance. These artificial materials can be described as synthetic because they are the outcome of various qualities that are not necessarily true to the original matter, but they are the combination of two or more parts, whether by design or by natural processes. The aim of this paper is to investigate the potential of architectural surfaces to produce effects through the invention of new breeds of artificial matter, using micro-scale details derived from Nature as an inspiration.

  15. Synthetic approaches towards new polymer systems by the combination of living carbocationic and anionic polymerizations

    DEFF Research Database (Denmark)

    Feldthusen, Jesper; Ivan, Bela; Muller, Axel. H.E.

    1996-01-01

    Recent efforts to obtain block copolymers by combination of living carbocationic and anionic polymerizations are presented.When tolyl-ended polyisobutylene was used as macroinitiator of anionic polymerization of methacrylate derivatives mixtures of homopolymers and block copolymers were formed due...... to incomplete lithiation of this chain end.In another approach a new functionalization method was developed by end-quenching living polyisobutylene with 1,1-diphenylethylene. After transformation of the groups into 2,2-diphenylvinyl end groups and lithiation polymers were synthesized from protected acrylate...

  16. Surface Hardness of Resin Cement Polymerized under Different Ceramic Materials

    OpenAIRE

    Kesrak, Pimmada; Leevailoj, Chalermpol

    2012-01-01

    Objectives. To evaluate the surface hardness of two light-cured resin cements polymerized under different ceramic discs. Methods. 40 experimental groups of 2 light-cured resin cement specimens (Variolink Veneer and NX3) were prepared and polymerized under 5 different ceramic discs (IPS e.max Press HT, LT, MO, HO, and Cercon) of 4 thicknesses (0.5, 1.0, 1.5, and 2.0 mm), Those directly activated of both resin cements were used as control. After light activation and 3 7 ∘ C storage in an incuba...

  17. Study of chemical and physical properties of synthetic carbonaceous materials

    Energy Technology Data Exchange (ETDEWEB)

    Kaloc, M.; Lesko, J.; Martineg, P.; Rojak, A.; Roubicek, V.; Weiss, Z.

    1980-01-01

    Results are presented of studying the chemical and physical properties of 17 samples of synthetic carbonaceous materials (''carbons'') of different origin and with different degree of thermal treatment, and for comparison two samples of natural graphite were tested. For all the samples an analysis was made of the element composition and they were studied by the methods DTA, TGA, IR-spectrometry, x-ray analysis and electron screen microscopy. The studies indicated that proper combination of these methods can provide a high quality evaluation of the initial materials and the processes of their processing, and also the attained carbonaceous materials from the viewpoint of using them in the modern sectors of technology: electrical metallurgy, electrical chemistry and electrothermal production, nuclear technology, production of semiconductor materials, etc.

  18. Application of radiation-induced graft polymerization to preparation of functional materials

    International Nuclear Information System (INIS)

    Sugo, Takanobu

    2010-01-01

    Radiation-induced graft polymerization is a powerful method for appending various functionalities onto existing fabrics, nonwoven fabrics, fibers, membranes, and beads while maintaining the shape and mechanical strength. By using this method, the author has developed and commercialized functional polymeric materials over 45 years. The materials produced by the fruits of radiation chemistry contributed to the improvement of our lives and environments and the collection of rare metal resources. (author)

  19. Development of a impact limiter for radioactive material transport packages - characterization of the polymeric material used

    International Nuclear Information System (INIS)

    Mourao, Rogerio Pimenta; Mattar Neto, Miguel

    2000-01-01

    Impact limiters are sacrificial components widely used to protect radioactive waste packages against damages arising from falls, fires and collisions with protruding objects. Several materials have been used as impact limiter filling: wood, aluminum honeycomb, and metallic or polymeric foams. Besides, hollow structures are also used as shock absorbers, either as a single shell or as a tube array. One of the most popular materials among package designers is rigid polyurethane foam, owing to its toughness, workability, low specific weight, low costs and commercial availability. In Brazil, a foam developed using the polymer extracted from the castor oil plant (Ricinus communis) is being studied as a potential impact limiter filling. For a better performance of this material, it is necessary to minimize the impact limiter dimensions without compromising the package safety. For this, a detailed knowledge of the foam physical and mechanical properties is essential. A relatively vast amount of data about regular polymeric foams can be found in the literature and in foreign manufacturers brochures, but no data has been published about the properties of the castor oil foam. This paper presents data gathered in an ongoing research program aiming at the development of a Type-B packaging. Foam samples were submitted to uniaxial static compression tests and to hydrostatic tests. The results obtained reveal that the castor oil foam has a mechanical behavior similar to that of regular foams, with good property reproducibility and homogeneity. (author)

  20. Focused ion beam structuring of low melting polymeric materials

    International Nuclear Information System (INIS)

    Schmied, R.

    2014-01-01

    This thesis focuses on heating effects during focused ion beam (FIB) processing of low melting polymers. The combined approach using experiments and simulations identifies the in part massive local temperatures as a convolution between intrinsic ion-matter effects and a considerable, technically-induced heating component. While the former is invariable, the latter has been minimized by an alternative process strategy which massively improves the morphological stability and minimizes chemical damage during FIB processing, thus opening new possibilities for application on sensitive, low melting materials. The study starts with systematic experimental investigations which strongly suggested the existence of a technically-induced heating component as a consequence of classically-used serpentine or raster-like patterning strategies. Based on these results, a combined simulation approach of ion trajectories and thermal spike model calculations have been employed to get a deeper insight into spatial and temporal temperature evolution. The results were then combined with the thermodynamic behavior of polymers by means of melting and volatizing temperatures. The comparison of these simulationbased predictions with real FIB experiments revealed very good agreement, proving the applicability of the approach used to describe the temperature evolution from a fundamental point of view. As a next step, these simulations were then applied to the dierent scanning strategies which further con rmed the existence of a technically-induced heating component via classically-used patterning approaches. Due to the deep insight gained via simulations, an alternative patterning strategy was developed, which was expected to minimize these avoidable influences. This new strategy was then evaluated using a multi-technique approach, which revealed strongly reduced chemical damage together with increasing morphological stabilities even for temperature-sensitive polymers. Finally, this alternative

  1. Materials Manufactured from 3D Printed Synthetic Biology Arrays

    Science.gov (United States)

    Gentry, Diana; Micks, Ashley

    2013-01-01

    Many complex, biologically-derived materials have extremely useful properties (think wood or silk), but are unsuitable for space-related applications due to production, manufacturing, or processing limitations. Large-scale ecosystem-based production, such as raising and harvesting trees for wood, is impractical in a self-contained habitat such as a space station or potential Mars colony. Manufacturing requirements, such as the specialized equipment needed to harvest and process cotton, add too much upmass for current launch technology. Cells in nature are already highly specialized for making complex biological materials on a micro scale. We envision combining these strengths with the recently emergent technologies of synthetic biology and 3D printing to create 3D-structured arrays of cells that are bioengineered to secrete different materials in a specified three-dimensional pattern.

  2. Studies in reactive extrusion processing of biodegradable polymeric materials

    Science.gov (United States)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  3. Elastic properties of synthetic materials for soft tissue modeling

    International Nuclear Information System (INIS)

    Mansy, H A; Grahe, J R; Sandler, R H

    2008-01-01

    Mechanical models of soft tissue are useful for studying vibro-acoustic phenomena. They may be used for validating mathematical models and for testing new equipment and techniques. The objective of this study was to measure density and visco-elastic properties of synthetic materials that can be used to build such models. Samples of nine different materials were tested under dynamic (0.5 Hz) compressive loading conditions. The modulus of elasticity of the materials was varied, whenever possible, by adding a softener during manufacturing. The modulus was measured over a nine month period to quantify the effect of ageing and softener loss on material properties. Results showed that a wide range of the compression elasticity modulus (10 to 1400 kPa) and phase (3.5 0 -16.7 0 ) between stress and strain were possible. Some materials tended to exude softener over time, resulting in a weight loss and elastic properties change. While the weight loss under normal conditions was minimal in all materials (<3% over nine months), loss under accelerated weight-loss conditions can reach 59%. In the latter case an elasticity modulus increase of up to 500% was measured. Key advantages and limitations of candidate materials were identified and discussed

  4. Micromechanical exfoliation of two-dimensional materials by a polymeric stamp

    International Nuclear Information System (INIS)

    Costa, M C Ferraz da; Ribeiro, H B; Kessler, F; Souza, E A T de; Fechine, G J M

    2016-01-01

    In this work, an alternative technique to the traditional micromechanical exfoliation of two-dimensional materials is proposed, consisting of isolated flakes of graphite and molybdenum disulphide onto polymeric surfaces films. The set made up of polymer and flakes is fabricated by using a hot-press machine called polymeric stamp. The polymeric stamp was used to allocate flakes and also to allow the exfoliation process to take place just in one face of isolated flake. Optical microscopy, Raman spectroscopy and photoluminescence spectroscopy results showed that multilayers, bilayers and single layers of graphene and MoS 2 were obtained by using a polymeric stamp as tool for micromechanical exfoliation. These crystals were more easily found because the exfoliation process concentrates them in well-defined locations. The results prove the effectiveness of the method by embedding two-dimensional materials into polymers to fabricate fewer layers crystals in a fast, economic and clean way. (paper)

  5. Micromechanical exfoliation of two-dimensional materials by a polymeric stamp

    Science.gov (United States)

    Ferraz da Costa, M. C.; Ribeiro, H. B.; Kessler, F.; de Souza, E. A. T.; Fechine, G. J. M.

    2016-02-01

    In this work, an alternative technique to the traditional micromechanical exfoliation of two-dimensional materials is proposed, consisting of isolated flakes of graphite and molybdenum disulphide onto polymeric surfaces films. The set made up of polymer and flakes is fabricated by using a hot-press machine called polymeric stamp. The polymeric stamp was used to allocate flakes and also to allow the exfoliation process to take place just in one face of isolated flake. Optical microscopy, Raman spectroscopy and photoluminescence spectroscopy results showed that multilayers, bilayers and single layers of graphene and MoS2 were obtained by using a polymeric stamp as tool for micromechanical exfoliation. These crystals were more easily found because the exfoliation process concentrates them in well-defined locations. The results prove the effectiveness of the method by embedding two-dimensional materials into polymers to fabricate fewer layers crystals in a fast, economic and clean way.

  6. Toward Hybrid Materials: Group Transfer Polymerization of 3-(Trimethoxysilyl)propyl Methacrylate.

    Science.gov (United States)

    Chung, Justin J; Jones, Julian R; Georgiou, Theoni K

    2015-10-01

    In this study, the group transfer polymerization (GTP) of the functional monomer 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) is reported to produce polymers of different architectures and topologies. TMSPMA is successfully polymerized and copolymerized with GTP to produce well-defined (co)polymers that can be used to fabricate functional hybrid materials like hydrogels and films. © 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 21 CFR 874.3620 - Ear, nose, and throat synthetic polymer material.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear, nose, and throat synthetic polymer material. 874.3620 Section 874.3620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN..., and throat synthetic polymer material. (a) Identification. Ear, nose, and throat synthetic polymer...

  8. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  9. Synthetic niche substrates engineered via two‐photon laser polymerization for the expansion of human mesenchymal stromal cells

    Science.gov (United States)

    Di Maggio, Nunzia; Zandrini, Tommaso; Cerullo, Giulio; Osellame, Roberto; Martin, Ivan; Raimondi, Manuela T.

    2016-01-01

    Abstract The present study reports on the development of an innovative culture substrate, micro‐fabricated by two‐photon laser polymerization (2PP) in a hybrid organic–inorganic photoresin. It was previously demonstrated that this substrate is able to guide spontaneous homing and colonization of mesenchymal stromal cells by the presence of synthetic microniches. Here, the number of niches covering the culture substrate was increased up to 10% of the total surface. Human bone marrow‐derived mesenchymal stromal cells were expanded for 3 weeks and then their proliferation, clonogenic capacity and bilineage differentiation potential towards the osteogenic and adipogenic lineage were evaluated, both by colorimetric assays and by real‐time polymerase chain reaction. Compared with cells cultured on glass substrates, cells expanded on 2PP substrates showed a greater colony diameter, which is an index of clonogenic potential. Following medium conditioning on 2PP‐cultured cells, the expression of RUNX2 and BSP genes, as well as PPAR‐gamma, was significantly greater than that measured on glass controls. Thus, human cells expanded on the synthetic niche substrate maintained their proliferative potential, clonogenic capacity and bilineage differentiation potential more effectively than cells expanded on glass substrates and in some aspects were comparable to non‐expanded cells. © 2016 The Authors Journal of Tissue Engineering and Regenerative Medicine Published by John Wiley & Sons Ltd. PMID:27296669

  10. Polymeric Materials For Scale Inhibition In Cooling Water Systems

    Directory of Open Access Journals (Sweden)

    Najwa S.Majeed

    2013-04-01

    Full Text Available Calcium carbonate deposition is generally predominant in cooling water-circulating system. For the control of calcium carbonate scale formation two types of polymeric scale inhibitors were used Polyamino polyether methylene phosphonate  (PAPEMPand polyacrylaminde(PAA.Model of cooling tower system have been built up in laboratory scale. Experiments were carried out using different inhibitor concentrations(0.5,1,1.5,2,3ppm ,at water temperature of  40oC and flow rate of 150 l/hr. It was found that Polyamino polyether methylene phosphonate    more effective than polyacryle amide'  as scale inhibitor in all used concentrations and the best inhibition efficiency (95% was at (2.5ppm of Polyamino polyether methylene phosphonate  and (85% with poly acryle amide at concentrations of (3 ppm. The performance of the polymeric scale inhibitors was compared with a method used to control heavy calcium carbonate scale forming by the deposition of sufficiently thin protective calcium carbonate scale using sulfuric acid and depending on Ryznar stability index controlling method. 

  11. EFFECT OF ORIENTATIONAL STRENGTHENING OF POLYMERIC MATERIAL ON MECHANICAL PROPERTIES OF PRODUCTS

    Directory of Open Access Journals (Sweden)

    Kulik T.

    2017-04-01

    Full Text Available The research deals with the problem of mathematical modeling of bending of polymeric beams. Polymeric materials today play a leading role in the manufacture of various parts in all industries. In this connection it is important to determine the characteristics of such products and predict their behavior in various conditions. Mechanical properties of the strengthened polymeric parts do not meet Hooke's law; therefore, the problem of the determination of their stress and strain state cannot be solved by classical methods of strength of materials and theory of elasticity. It is difficult to predict behavior of strengthened polymeric parts under loading, so it is important to evolve the method for calculation stress and deformation in most frequently occurring situation such as bending. Aim: The purpose of the research is to obtain a mathematical model that describes stress and strain in bending doubly-supported beams made of polymeric materials. Materials and Methods: Experimental research of bending doubly-supported beams was performed using samples of hardened high-density polyethylene according to the standard method of static bending test for plastics. Originality: The mathematical model of bending of polymeric beam under load force applied to its middle section is evolved. The mathematical model describes the dependence of stress and strain on the loading force at bending of solid and hollow polymeric beams. The expressions for calculating stress occurring in the material of the beam and its deformation are obtained. Results: Experimental studies have confirmed the correctness of the developed mathematical model which allows offering the obtained analytical expressions for calculation plastic parts for strength and rigidity. The results can be used in the design of structural elements of machines and appliances, products of light industry.

  12. Microstructural study of synthetic spinel from natural raw materials

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Y.; Hagni, R.D. (Univ. of Missouri, Rolla, MO (United States). Dept. of Geology and Geophysics); Caballero, A. (Inst. de Ceramica y Vidrio, Madrid (Spain)); Moore, R.E. (Univ. of Missouri, Rolla, MO (United States). Dept. of Ceramic Engineering)

    1993-03-01

    Alumina-magnesia spinel is being used increasingly as a high quality refractory in furnace and cement rotary kiln applications, but the costs of synthetic powders and grains limit its application. Different sources of bauxite from Guyana and China and diaspore from Missouri have been utilized to synthesize spinel for refractories in order to reduce the cost. The purpose of this research is to examine extent and character or spinel formation under different firing conditions and varying Al[sub 2]O[sub 3]:MgO ratios. Finely ground raw materials were mixed with hardburned magnesia in certain ratios to form spinel. X-ray analysis has been completed and shows that spinel readily occurs, after heating at 1,550 C, together with some impurity minerals such as mullite, rutile, corundum and some glassy phases. In order to study the microstructure, quantitative analysis, reflected light microscopy, scanning electron microscopy (SEM) and automatic image analysis are currently being utilized to determine the amount and distribution of each phase present in 39 samples prepared at different firing temperatures and with different chemical compositions. The results of this investigation provide a better understanding of the character of the microstructures of synthetic spinels.

  13. Waterproofing with polymeric geo synthetic barriers (GBR-P) in the manual for the design, construction, management and maintenance of reservoirs; La impermeabilizacion con barreras geosinteticas polimericas (GBR-P) en el manual para el diseno, construccion, explotacion y mantenimiento de balsas

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, M.; Cea, J. C.; Garcia, F.; Sanchez, F. J.; Castillo, F.; Mora, J.; Crespo, M. A.

    2010-07-01

    This article presents a part of Manual for the Design, Construction, Management and Maintenance of Reservoirs relative to waterproofing with Polymeric Geo synthetic Barriers (GBR-P). the nature materials of geo membranes is studied also theirs characteristics and specifications. (Author) 26 refs.

  14. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch

    Energy Technology Data Exchange (ETDEWEB)

    Say, R. [Anadolu University, Faculty of Science, Chemistry Department, Yunus Emre Campus, Eskişehir (Turkey); Şenay, R. Hilal [Ege University, Faculty of Science, Biochemistry Department, 35100 Bornova-Izmir (Turkey); Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz [Anadolu University, Faculty of Science, Chemistry Department, Yunus Emre Campus, Eskişehir (Turkey); Akgöl, Sinan, E-mail: sinanakgol@yahoo.co.uk [Ege University, Faculty of Science, Biochemistry Department, 35100 Bornova-Izmir (Turkey); Denizli, Adil [Hacettepe University, Faculty of Science, Chemistry Department, 06532 Ankara (Turkey)

    2013-05-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. K{sub m} values were 0.26 and 0.87 mM and V{sub max} values were 0.36 IU mg{sup −1} and 22.32 IU mg{sup −1} for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70–80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. - Highlights: ► Developing to prepare nanoprotein particles carrying α-amylase ► Characterization of nanostructured α-amylase ► Usability of α-amylase nanoparticles in hydrolysis of starch.

  15. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch

    International Nuclear Information System (INIS)

    Say, R.; Şenay, R. Hilal; Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz; Akgöl, Sinan; Denizli, Adil

    2013-01-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. K m values were 0.26 and 0.87 mM and V max values were 0.36 IU mg −1 and 22.32 IU mg −1 for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70–80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. - Highlights: ► Developing to prepare nanoprotein particles carrying α-amylase ► Characterization of nanostructured α-amylase ► Usability of α-amylase nanoparticles in hydrolysis of starch

  16. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch.

    Science.gov (United States)

    Say, R; Şenay, R Hilal; Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz; Akgöl, Sinan; Denizli, Adil

    2013-05-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. Km values were 0.26 and 0.87 mM and Vmax values were 0.36 IU mg(-1) and 22.32 IU mg(-1) for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70-80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. New methodology developed for the differential scanning calorimetry analysis of polymeric matrixes incorporating phase change materials

    International Nuclear Information System (INIS)

    Barreneche, Camila; Solé, Aran; Miró, Laia; Martorell, Ingrid; Cabeza, Luisa F; Fernández, A Inés

    2012-01-01

    Nowadays, thermal comfort needs in buildings have led to an increase in energy consumption of the residential and service sectors. For this reason, thermal energy storage is shown as an alternative to achieve reduction of this high consumption. Phase change materials (PCM) have been studied to store energy due to their high storage capacity. A polymeric material capable of macroencapsulating PCM was developed by the authors of this paper. However, difficulties were found while measuring the thermal properties of these materials by differential scanning calorimetry (DSC). The polymeric matrix interferes in the detection of PCM properties by DSC. To remove this interfering effect, a new methodology which replaces the conventional empty crucible used as a reference in the DSC analysis by crucibles composed of the polymeric matrix was developed. Thus, a clear signal from the PCM is obtained by subtracting the new full crucible signal from the sample signal. (paper)

  18. Polymeric nanoporous materials fabricated with supercritical CO2 and CO2-expanded liquids.

    Science.gov (United States)

    Zhang, Aijuan; Zhang, Qingkun; Bai, Hua; Li, Lei; Li, Jun

    2014-01-01

    Both academia and industries have put great efforts into developing non-destructive technologies for the fabrication of polymeric nanoporous materials. Such non-destructive technologies developed with supercritical CO2 (scCO2) and CO2-expanded liquids (CXLs) have been attracting more and more attention because they have been demonstrated to be green and effective media for porous polymer preparation and processing. In this tutorial review, we present several such new technologies with scCO2 and CXLs, which have the capacity to prepare polymeric nanoporous materials with unique morphologies. The fabricated nanoporous polymers have significantly improved the performance of polymeric monoliths and films, and have found wide applications as templates, antireflection coatings, low-k materials, tissue engineering scaffolds and filtration membranes. This tutorial review also introduces the associated characterization methods, including the imaging, scattering and physisorption techniques.

  19. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    Science.gov (United States)

    Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.

    1997-09-09

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate.

  20. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles.

    Science.gov (United States)

    Beck-Broichsitter, Moritz; Ruppert, Clemens; Schmehl, Thomas; Günther, Andreas; Seeger, Werner

    2014-01-01

    Reasonable suspicion has accumulated that inhaled nano-scale particulate matter influences the biophysical function of the pulmonary surfactant system. Hence, it is evident to provide novel insights into the extent and mechanisms of nanoparticle-surfactant interactions in order to facilitate the fabrication of safe nanomedicines suitable for pulmonary applications. Negatively- and positively-charged poly(styrene) nanoparticles (diameters of ~100nm) served as model carriers. Nanoparticles were incubated with several synthetic and naturally-derived pulmonary surfactants to characterize the sensitivity of each preparation to biophysical inactivation. Changes in surface properties (i.e. adsorption and dynamic surface tension behavior) were monitored in a pulsating bubble surfactometer. Both nanoparticle formulations revealed a dose-dependent influence on the biophysical behavior of all investigated pulmonary surfactants. However, the surfactant sensitivity towards inhibition depended on both the carrier type, where negatively-charged nanoparticles showed increased inactivation potency compared to their positively-charged counterparts, and surfactant composition. Among the surfactants tested, synthetic mixtures (i.e. phospholipids, phospholipids supplemented with surfactant protein B, and Venticute®) were more susceptible to surface-activity inhibition as the more complex naturally-derived preparations (i.e. Alveofact® and large surfactant aggregates isolated from rabbit bronchoalveolar lavage fluid). Overall, nanoparticle characteristics and surfactant constitution both influence the extent of biophysical inhibition of pulmonary surfactants. © 2013.

  1. Design considerations for multi component molecular-polymeric nonlinear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Singer, K.D. (Case Western Reserve Univ., Cleveland, OH (USA). Dept. of Physics); Kuzyk, M.G. (Washington State Univ., Pullman, WA (USA). Dept. of Physics); Fang, T.; Holland, W.R. (AT and T Bell Labs., Princeton, NJ (USA)); Cahill, P.A. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01

    We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85{degree} and posses an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to posses a large third order nonlinearity, and may display two-level behavior. 24 refs., 11 figs.

  2. Influence of the material for preformed moulds on the polymerization temperature of resin materials for temporary FPDs.

    Science.gov (United States)

    Pott, Philipp-Cornelius; Schmitz-Wätjen, Hans; Stiesch, Meike; Eisenburger, Michael

    2017-08-01

    Temperature increase of 5.5 ℃ can cause damage or necrosis of the pulp. Increasing temperature can be caused not only by mechanical factors, e.g. grinding, but also by exothermic polymerization reactions of resin materials. The aim of this study was to evaluate influences of the form material on the intrapulpal temperature during the polymerization of different self-curing resin materials for temporary restorations. 30 provisonal bridges were made of 5 resin materials: Prevision Temp (Pre), Protemp 4 (Pro), Luxatemp Star (Lux), Structure 3 (Str) and an experimental material (Exp). Moulds made of alginate (A) and of silicone (S) and vacuum formed moulds (V) were used to build 10 bridges each on a special experimental setup. The intrapulpal temperatures of three abutment teeth (a canine, a premolar, and a molar,) were measured during the polymerization every second under isothermal conditions. Comparisons of the maximum temperature (T Max ) and the time until the maximum temperature (t TMax ) were performed using ANOVA and Tukey Test. Using alginate as the mould material resulted in a cooling effect for every resin material. Using the vacuum formed mould, T Max increased significantly compared to alginate ( P material on t TMax . All of the mould materials are suitable for clinical use if the intraoral application time does not exceed the manufacturer's instructions for the resin materials.

  3. Handbook - Status assessment of polymeric materials in flue gas cleaning systems; Handbok - Statusbedoemning av polymera material i roekgassystem

    Energy Technology Data Exchange (ETDEWEB)

    Roemhild, Stefanie

    2011-01-15

    In today's flue gas cleaning systems with advanced energy recovery systems and improved flue gas cleaning, the use of polymeric materials has continuously increased in applications where the flue gas environment is to corrosive to be handled with metallic materials. Typical polymeric materials used are fibre reinforced plastics (FRP), glassflake-filled linings, polypropylene (PP) and fluoropolymers. Demands on increased profitability and efficiency at incineration plants involve that also polymeric materials have to face more demanding environments with increased temperature, temperature changes, changes in fuel composition and therewith fluegas composition and longer service intervals. The knowledge on how polymeric materials perform in general and how these service conditions influence them, is, however, poor and continuous status assessment is therefore necessary. The overall aim of this project has been to assess simple techniques for status assessment of polymeric materials in flue gas cleaning equipment and to perform an inventory of present experience and knowledge on the use of polymeric materials. The project consisted of an inventory of present experience, analysis of material from shut-down plants and plants still in service, field testing in a plant adding sulphur during combustion and the assessment of different non-destructive testing (NDT) methods by laboratory experiments. The results of the project are summarised in the form of a handbook which in the first place addresses plant owners and maintenance staff at incineration plants and within the pulp and paper industry. In the introductory chapter typical polymeric materials (FRP, flake linings, PP and fluoropolymers) used in flue gas cleaning equipment are described as well as the occurring corrosion mechanisms. The inventory of process equipment is divided into sections about scrubbers, flue gas ducts, stacks, internals and other equipment such as storage tanks. Typical damages are

  4. Renewable and functional wood materials by grafting polymerization within cell walls.

    Science.gov (United States)

    Cabane, Etienne; Keplinger, Tobias; Merk, Vivian; Hass, Philipp; Burgert, Ingo

    2014-04-01

    A "grafting-from" polymerization approach within and at the complex and heterogeneous macromolecular assembly of wood cell walls is shown. The approach allows for the implementation of novel functionalities in renewable and functional wood-based materials. The native wood structure is retained and used as a hierarchical multiscale framework for a modular two-step polymerization process. The versatility and potential of the approach is shown by a polymerization of either hydrophobic or hydrophilic and pH-responsive monomers in the wood structure. Characterization of the modified wood reveals the presence of polymer in the cell wall, and the new properties of these wood materials are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Romp as a versatile method for the obtention of differentiated polymeric materials

    Directory of Open Access Journals (Sweden)

    Valdemiro P. Carvalho Jr.

    2012-01-01

    Full Text Available Ring Opening Metathesis Polymerization (ROMP of cyclic olefins is a powerful transition metal-catalyzed reaction for syntheses of polymers and copolymers. The key feature of this reaction is the [2+2]-cycloaddition mechanism, with retention of the olefinic unsaturation in the polymer chain and occurrence of living polymerization. With the development of metal-carbene type catalysts for this process, many addressed polymeric materials have been successfully prepared to be employed in several fields of the science and technology. This review summarizes recent examples of syntheses of polymers with amphiphilic features such as block, graft, brush or star copolymers; as well syntheses of biomaterials, dendronized architectures, photoactive polymers, cross-linked or self-healing materials, and polymers from renewed supplies.

  6. The compatibility of various polymeric liner and pipe materials with simulated double-shell slurry feed at 90 degree C

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Hymas, C.R.

    1989-08-01

    The purpose of this study was to evaluate the compatibility of various polymeric liner and pipe materials with a low-level radioactive waste slurry called double-shell slurry feed (DSSF). The evaluation was necessary as part of the permitting process authorized by the Resource Conservation and Recovery Act (RCRA), PL-94-580. Materials that were examined included five flexible membrane liners (Hytrel reg sign polyester, polyurethane, 8130 XR5 reg sign, polypropylene, and high-density polyethylene) and high-density polyethylene (HDPE) pipe. The liner and pipe samples were immersed for 120 days in the synthetic DSSE at 90 degree C, the maximum expected temperature in the waste disposal scenario. Physical properties of the liner and pipe samples were measured before immersion and every 30 days after immersion, in accordance with EPA Method 9090. In addition, some of the materials were exposed to four different radiation doses after 30 days of immersion. Physical properties of these materials were measured immediately after exposure and after an additional 90 days of immersion to determine each material's response to radiation, and whether radiation exposure affected the chemical compatibility of the material. 20 refs., 41 figs., 13 tabs

  7. Mechanical and Electrical Properties of Sulfur-Containing Polymeric Materials Prepared via Inverse Vulcanization

    Directory of Open Access Journals (Sweden)

    Sergej Diez

    2017-02-01

    Full Text Available Recently, new methods have been developed for the utilization of elemental sulfur as a feedstock for novel polymeric materials. One promising method is the inverse vulcanization, which is used to prepare polymeric structures derived from sulfur and divinyl comonomers. However, the mechanical and electrical properties of the products are virtually unexplored. Hence, in the present study, we synthesized a 200 g scale of amorphous, hydrophobic as well as translucent, hyperbranched polymeric sulfur networks that provide a high thermal resistance (>220 °C. The polymeric material properties of these sulfur copolymers can be controlled significantly by varying the monomers as well as the feed content. The investigated comonomers are divinylbenzene (DVB and 1,3-diisopropenylbenzene (DIB. Plastomers with low elastic content and high shape retention containing 12.5%–30% DVB as well as low viscose waxy plastomers with a high flow behavior containing a high DVB content of 30%–35% were obtained. Copolymers with 15%–30% DIB act, on the one hand, as thermoplastics and, on the other hand, as vitreous thermosets with a DIB of 30%–35%. Results of the thermogravimetric analysis (TGA, the dynamic scanning calorimetry (DSC and mechanical characterization, such as stress–strain experiments and dynamic mechanical thermal analysis, are discussed with the outcome that they support the assumption of a polymeric cross-linked network structure in the form of hyper-branched polymers.

  8. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    Science.gov (United States)

    Frazier, Donald 0; Penn, Benjamin G.; Smith, David; Witherow, William K.; Paley, M. S.; Abdeldayem, Hossin A.

    1998-01-01

    In recent years, a great deal of interest has been directed toward the use of organic materials in the development of high-efficiency optoelectronic and photonic devices. There is a myriad of possibilities among organic which allow flexibility in the design of unique structures with a variety of functional groups. The use of nonlinear optical (NLO) organic materials such as thin-film waveguides allows full exploitation of their desirable qualities by permitting long interaction lengths and large susceptibilities allowing modest power input. There are several methods in use to prepare thin films, such as Langmuir-Blodgett (LB) and self-assembly techniques, vapor deposition, growth from sheared solution or melt, and melt growth between glass plates. Organics have many features that make Abstract: them desirable for use in optical devices such as high second- and third-order nonlinearities, flexibility of molecular design, and damage resistance to optical radiation. However, their use in devices has been hindered by processing difficulties for crystals and thin films. In this chapter, we discuss photonic and optoelectronic applications of a few organic materials and the potential role of microgravity on processing these materials. It is of interest to note how materials with second- and third-order nonlinear optical behavior may be improved in a diffusion-limited environment and ways in which convection may be detrimental to these materials. We focus our discussion on third-order materials for all-optical switching, and second-order materials for all-optical switching, and second-order materials for frequency conversion and electrooptics.

  9. Rapid Biogas Production by Compact Multi-Layer Membrane Bioreactor: Efficiency of Synthetic Polymeric Membranes

    Directory of Open Access Journals (Sweden)

    Supansa Youngsukkasem

    2013-11-01

    Full Text Available Entrapment of methane-producing microorganisms between semi-permeable synthetic membranes in a multi-layer membrane bioreactor (MMBR was studied and compared to the digestion capacity of a free-cell digester, using a hydraulic retention time of one day and organic loading rates (OLR of 3.08, 6.16, and 8.16 g COD/L·day. The reactor was designed to retain bacterial cells with uprising plug flow through a narrow tunnel between membrane layers, in order to acquire maximal mass transfer in a compact bioreactor. Membranes of hydrophobic polyamide 46 (PA and hydroxyethylated polyamide 46 (HPA as well as a commercial membrane of polyvinylidene fluoride (PVDF were examined. While the bacteria in the free-cell digester were washed out, the membrane bioreactor succeeded in retaining them. Cross-flow of the liquid through the membrane surface and diffusion of the substrate through the membranes, using no extra driving force, allowed the bacteria to receive nutrients and to produce biogas. However, the choice of membrane type was crucial. Synthesized hydrophobic PA membrane was not effective for this purpose, producing 50–121 mL biogas/day, while developed HPA membrane and the reference PVDF were able to transfer the nutrients and metabolites while retaining the cells, producing 1102–1633 and 1016–1960 mL biogas/day, respectively.

  10. Study of an anisotropic polymeric cellular material under compression loading

    Directory of Open Access Journals (Sweden)

    Mauricio Francisco Caliri Júnior

    2012-06-01

    Full Text Available This paper emphasizes the influence of micro mechanisms of failure of a cellular material on its phenomenological response. Most of the applications of cellular materials comprise a compression loading. Thus, the study focuses on the influence of the anisotropy in the mechanical behavior of cellular material under cyclic compression loadings. For this study, a Digital Image Correlation (DIC technique (named Correli was applied, as well as SEM (Scanning Electron Microscopy images were analyzed. The experimental results are discussed in detail for a closed-cell rigid poly (vinyl chloride (PVC foam, showing stress-strain curves in different directions and why the material can be assumed as transversely isotropic. Besides, the present paper shows elastic and plastic Poisson's ratios measured in different planes, explaining why the plastic Poisson's ratios approach to zero. Yield fronts created by the compression loadings in different directions and the influence of spring-back phenomenon on hardening curves are commented, also.

  11. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials

    Science.gov (United States)

    Herman, Katarzyna; Fita, Katarzyna; Dudek, Krzysztof; Kowalczyk-Zając, Małgorzata; Czajczyńska-Waszkiewicz, Agnieszka; Piesiak-Pańczyszyn, Dagmara; Kosior, Piotr

    2016-01-01

    Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved four composite restorative materials, one lining material and a dentine bonding agent. The polymerization was conducted with the use of a diode light-curing unit. The measurements of the external surface temperature of the samples were carried out using the Thermovision®550 thermal camera. Results. The examined materials significantly differed in terms of the maximum temperatures values they reached, as well as the time required for reaching the temperatures. A statistically significant positive correlation of the maximum temperature and the sample weight was observed. Conclusions. In clinical practice, it is crucial to bear in mind the risk of thermal damage involved in the application of light-cured materials. It can be reduced by using thin increments of composite materials. PMID:27840825

  12. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials

    Directory of Open Access Journals (Sweden)

    Maciej Janeczek

    2016-01-01

    Full Text Available Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved four composite restorative materials, one lining material and a dentine bonding agent. The polymerization was conducted with the use of a diode light-curing unit. The measurements of the external surface temperature of the samples were carried out using the Thermovision®550 thermal camera. Results. The examined materials significantly differed in terms of the maximum temperatures values they reached, as well as the time required for reaching the temperatures. A statistically significant positive correlation of the maximum temperature and the sample weight was observed. Conclusions. In clinical practice, it is crucial to bear in mind the risk of thermal damage involved in the application of light-cured materials. It can be reduced by using thin increments of composite materials.

  13. Making and Using a Sensing Polymeric Material for Cu[superscript 2+

    Science.gov (United States)

    Paddock, Jean R.; Maghasi, Anne T.; Heineman, William R.; Seliskar, Carl J.

    2005-01-01

    A simple chemical sensor-related experiment rooted in the synthesis of polymeric materials for use in either an advanced high-school or undergraduate college laboratory is presented. Students are introduced to and combine to the concepts of the chemical sensor, polymer chemistry, spectroscopy, metal chelates, and quantitative analytical methods.

  14. Self-healing polymeric composite material design, failure analysis and future outlook: A review

    CSIR Research Space (South Africa)

    Mphahlele, Keletso

    2017-10-01

    Full Text Available reduces the lifespan and brings about a catastrophic failure of the materials. Novel scientific research on polymeric self-healing is emphasised in a number of publications, which consist of contributions from many of the prominent researchers in this area...

  15. Studies on Development of Polymeric Materials Using Gamma Irradiation for Contact and Intraocular Lenses

    Directory of Open Access Journals (Sweden)

    Pranshu Chhabra

    2009-01-01

    Full Text Available For the development of materials for contact lenses and intraocular lenses, the selection criteria is based on the (i capacity to absorb and retain water, (ii hydrophilicity and hydrophobicity, (iii refractive index and (iv hardness besides the other essential properties. Various monomers are being studied to develop suitable materials for such applications. Selection of suitable monomers that can be converted into optical materials of desired characteristics is the most essential step. In the present paper, an attempt has been made to develop suitable optical polymers based on 2-hydroxy ethyl methacrylate (HEMA, N-vinyl pyrrolidone (NVP, methyl methacrylate (MMA, methacrylic acid (MAA, and styrene. Compositions were prepared in such a way that polymers of varying hydrophilicity or hydrophobicity could be obtained keeping HEMA as the base (main monomer. For polymerization, gamma irradiation (Co-60 as a source was used. The results of the study showed that: (i an increase in NVP and MAA content brought in an increase in hydrophilicity of polymerized HEMA (pHEMA, while the addition of styrene and MMA decreased hydrophilicity of polymerized HEMA (pHEMA, (ii polymers for contact lenses with water retention capacity as high as >50 wt.% and as low as <10 wt% with varying content of suitable comonomers can be designed, (iii polymeric materials for contact lenses can be made by using radiation processing such as Co-60 and (iv a dose of 40 kGy was found to be ideal for purpose.

  16. Thermally Self-Healing Polymeric Materials : The Next Step to Recycling Thermoset Polymers?

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, Antonius A.; Picchioni, Francesco

    2009-01-01

    We developed thermally self-healing polymeric materials on the basis of furan-functionalized, alternating thermosetting polyketones (PK-furan) and bis-maleimide by using the Diels-Alder (DA) and Retro-Diels-Alder (RDA) reaction sequence. PK-furan can be easily obtained under mild conditions by the

  17. Modeling of Slot Waveguide Sensors Based on Polymeric Materials

    Science.gov (United States)

    Bettotti, Paolo; Pitanti, Alessandro; Rigo, Eveline; De Leonardis, Francesco; Passaro, Vittorio M. N.; Pavesi, Lorenzo

    2011-01-01

    Slot waveguides are very promising for optical sensing applications because of their peculiar spatial mode profile. In this paper we have carried out a detailed analysis of mode confinement properties in slot waveguides realized in very low refractive index materials. We show that the sensitivity of a slot waveguide is not directly related to the refractive index contrast of high and low materials forming the waveguide. Thus, a careful design of the structures allows the realization of high sensitivity devices even in very low refractive index materials (e.g., polymers) to be achieved. Advantages of low index dielectrics in terms of cost, functionalization and ease of fabrication are discussed while keeping both CMOS compatibility and integrable design schemes. Finally, applications of low index slot waveguides as substitute of bulky fiber capillary sensors or in ring resonator architectures are addressed. Theoretical results of this work are relevant to well established polymer technologies. PMID:22164020

  18. Shelf life prediction of radiation sterilized polymeric materials

    International Nuclear Information System (INIS)

    Sandford, Craig; Woo, Lecon

    1988-01-01

    The functional properties of many polymers employed in medical disposables are unaffected by sterilizing doses of ionizing radiation. However, some materials (PVC, polypropylene, cellulosics, etc.) undergo undesirable changes which continue to occur for the shelf life of the product. In many cases, conventional accelerated aging techniques do not accurately predict the real time properties of the materials. As real time aging is not generally practical, it has become necessary to develop accelerated aging techniques which can predict the functional properties of a material for the shelf life of the product. This presentation will address issues involved in developing these tests. Real time physical property data is compared to data generated by various acceleration methods. (author)

  19. Surfactant-free miniemulsion polymerization as a simple synthetic route to a successful encapsulation of magnetite nanoparticles.

    Science.gov (United States)

    Ramos, Jose; Forcada, Jacqueline

    2011-06-07

    Due to the existing interest in new hybrid particles in the colloidal range based on both magnetic and polymeric materials for applications in biotechnological fields, this work is focused on the preparation of magnetic polymer nanoparticles (MPNPs) by a single-step miniemulsion process developed to achieve better control of the morphology of the magnetic nanocomposite particles. MPNPs are prepared by surfactant-free miniemulsion polymerization using styrene (St) as a monomer, hexadecane (HD) as a hydrophobe, and potassium persulfate (KPS) as an initiator in the presence of oleic acid (OA)-modified magnetite nanoparticles. The effect of the type of cross-linker used [divinylbenzene (DVB) and bis[2-(methacryloyloxy)ethyl] phosphate (BMEP)] together with the effect of the amount of an aid stabilizer (dextran) on size, particle size distribution (PSD), and morphology of the hybrid nanoparticles synthesized is analyzed in detail. The mixture of different surface modifiers produces hybrid nanocolloids with various morphologies: from a typical core-shell composed by a magnetite core surrounded by a polymer shell to a homogeneously distributed morphology where the magnetite is uniformly distributed throughout the entire nanocomposite.

  20. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bercaw, John E. [California Institute of Technology

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  1. Thiol-containing polymeric embedding materials for nanoskiving

    NARCIS (Netherlands)

    Mays, Robin L.; Pourhossein, Parisa; Savithri, Dhanalekshmi; Genzer, Jan; Chiechi, Ryan C.; Dickey, Michael D.

    2013-01-01

    This paper describes the characterization of new embedding resins for nanoskiving (ultramicrotomy) that contain thiols. Nanoskiving is a technique to produce nanoscale structures using an ultramicrotome to section thin films of materials (e. g., gold) embedded in polymer. Epoxies are used typically

  2. Apparatus and test method for characterizing the temperature regulating properties of thermal functional porous polymeric materials.

    Science.gov (United States)

    Yao, Bao-Guo; Zhang, Shan; Zhang, De-Pin

    2017-05-01

    In order to evaluate the temperature regulating properties of thermal functional porous polymeric materials such as fabrics treated with phase change material microcapsules, a new apparatus was developed. The apparatus and the test method can measure the heat flux, temperature, and displacement signals during the dynamic contact and then quickly give an evaluation for the temperature regulating properties by simulating the dynamic heat transfer and temperature regulating process when the materials contact the body skin. A series of indices including the psychosensory intensity, regulating capability index, and relative regulating index were defined to characterize the temperature regulating properties. The measurement principle, the evaluation criteria and grading method, the experimental setup and the test results discussion, and the gage capability analysis of the apparatus are presented. The new apparatus provides a method for the objective measurement and evaluation of the temperature regulating properties of thermal functional porous polymeric materials.

  3. Novel Nanostructured Electrodes Obtained by Pyrolysis of Composite Polymeric Materials

    DEFF Research Database (Denmark)

    Amato, Letizia; Schulte, Lars; Heiskanen, Arto

    2015-01-01

    In this work, we compare pyrolyzed carbon derived from the photoresist SU‐8 alone or in combination with polystyrene and poly(styrene)‐block‐poly(dimethylsiloxane) copolymer (PS‐b‐PDMS), to be used as novel materials for micro‐ and nanoelectrodes. The pyrolyzed carbon films are evaluated...... films. This may be related to the lower carbon content of PS‐b‐PDMS, as well as to its higher microstructural disorder....

  4. Strengthening Techniques of RC Columns Using Fibre Reinforced Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Ciprian Cozmanciuc

    2009-01-01

    Full Text Available Fibre reinforced composite materials are becoming more frequently used in civil engineering structures. One of the most practical applications of these new materials concerns the strengthening of reinforced concrete columns by means of confinement with fibre composite sheets. In the literature, various theoretical models have been proposed to describe the behaviour of confined concrete columns. The principal advantages of this technique are the high strength-to-weight ratio, good fatigue properties, non-corroding characteristics of the fibre reinforced polymers (FRP, and the facility of its application. The maximum efficiency of confining systems using FRP materials is reached in case of columns with circular cross-section and is explained by the fact that the entire section of the column is involved into the confinement effect. Rectangular confining reinforcement is less efficient as the confinement action is mostly located at the corners This paper reveals the most utilized techniques of performing composite confining systems for reinforced concrete columns, with their advantages and also disadvantages.

  5. Considerations for Contractile Electroactive Polymeric Materials and Actuators

    International Nuclear Information System (INIS)

    Rasmussen, L.; Erickson, Carl J.; Meixler, Lewis D.; Ascione, G.; Gentile, Charles A.; Tilson, C.; Bernasek, Stephen L.; Abelev, E.

    2009-01-01

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface

  6. Considerations for Contractile Electroactive Polymeric Materials and Actuators

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Lenore; Erickson, Carl J.; Meixler, Lewis D.; Ascione, George; Gentile, Charles A.; Tilson, Charles; Bernasek, Stephen L.; Abelev, Esta

    2009-06-16

    Ras Labs produces electroactive polymer (EAP) based materials and actuators that bend, swell, ripple and now contract (new development) with low electric input. This is an important attribute because of the ability of contraction to produce life-like motion. The mechanism of contraction is not well understood. Radionuclide-labeled experiments were conducted to follow the movement of electrolytes and water in these EAPs when activated. Extreme temperature experiments were performed on the contractile EAPs with very favorable results. One of the biggest challenges in developing these actuators, however, is the electrode-EAP interface because of the pronounced movement of the EAP. Plasma treatments of metallic electrodes were investigated in order to improve the attachment of the embedded electrodes to the EAP material. Surface analysis, adhesive testing, and mechanical testing were conducted to test metal surfaces and metal-polymer interfaces. The nitrogen plasma treatment of titanium produced a strong metal-polymer interface; however, oxygen plasma treatment of both stainless steel and titanium produced even stronger metal-polymer interfaces. Plasma treatment of the electrodes allows for the embedded electrodes and the EAP material of the actuator to work and move as a unit, with no detachment, by significantly improving the metal-polymer interface.

  7. Structure, Morphology and Properties of Carbon Nanotube Containing Polymeric Materials

    Science.gov (United States)

    Li, Lingyu; Kodjie, Steve; Li, Christopher

    2006-03-01

    Carbon nanotubes (CNTs) are considered an ideal reinforcing fillers in polymer nanocomposites because of their high aspect ratio, nanosize diameter, very low density and excellent physical properties (such as extremely high mechanical strength, high electrical and thermal conductivity),. However, in order to achieve homogeneous dispersion of CNTs without damaging their extraordinary properties, non-covalent functionalization is an essential step. Our study of functionalization of CNTs via controlled polymer crystallization method has resulted in the formation of ``nano hybrid shish-kebab'' (NHSK), which is CNT periodically decorated with polymer lamellar crystals. By tuning the experimental parameters such as concentration of polymer and crystallization temperature, hybrid polymer spherulite with CNT inside was achieved. This can be considered as CNT reinforced composite with ideally controlled CNT dispersion. Both Nylon 6, 6 and PE were used as the matrix materials. Excellent dispersion of CNTs in polymer matrix was achieved and the nanocomposites showed improved thermal stability.

  8. Surface Modification of Polymeric Materials by Plasma Treatment

    Directory of Open Access Journals (Sweden)

    E.F. Castro Vidaurre

    2002-03-01

    Full Text Available Low-temperature plasma treatment has been used in the last years as a useful tool to modify the surface properties of different materials, in special of polymers. In the present work low temperature plasma was used to treat the surface of asymmetric porous substrates of polysulfone (PSf membranes. The main purpose of this work was to study the influence of the exposure time and the power supplied to argon plasma on the permeability properties of the membranes. Three rf power levels, respectively 5, 10 and 15 W were used. Treatment time ranged from 1 to 50 min. Reduction of single gas permeability was observed with Ar plasma treatments at low energy bombardment (5 W and short exposure time (20 min. Higher power and/or higher plasma exposition time causes a degradation process begins. The chemical and structural characterization of the membranes before and after the surface modification was done by AFM, SEM and XPS.

  9. Modeling induction heater temperature distribution in polymeric material

    Science.gov (United States)

    Sorokin, A. G.; Filimonova, O. V.

    2017-10-01

    An induction heating system has a number of inherent benefits compared to traditional heating systems due to a non-contact heating process. The main interesting area of the induction heating process is the efficiency of the usage of energy, choice of the plate material and different coil configurations based on application. Correctly designed, manufactured and maintained induction coils are critical to the overall efficiency of induction heating solutions. The paper describes how the induction heating system in plastic injection molding is designed. The use of numerical simulation in order to get the optimum design of the induction coil is shown. The purpose of this work is to consider various coil configurations used in the induction heating process, which is widely used in plastic molding. Correctly designed, manufactured and maintained induction coils are critical to the overall efficiency of induction heating solutions. The results of calculation are in the numerical model.

  10. The radiation chemistry of advanced polymeric materials containing fluorine

    International Nuclear Information System (INIS)

    Forsythe, J.S.; Hill, D.J.T.; Whittaker, A.K.

    1996-01-01

    Full text: TFE/PMVE (tetrafluoroethylene/perfluoromethylvinyl ether) is a commercial perfluoroelastomer marketed by the Du Pont Company under the trade-name Kalrez. Very little is known about the radiation chemistry of this fluoropolymer which in general is consistent with all fluoropolymers. In 1984, Uschold, while attempting to graft vinyl monomers onto irradiated TFE/PMVE, found that the fluoroelastomer crosslinked forming and insoluble network. Unfortunately, Uschold found that the mechanical properties of irradiated TFE/PMVE were inferior when compared to the chemically crosslinked analogues because of the simultaneous radiation scissioning of the polymer chain. This chemical curing is described elsewhere. The radiation crosslinking of TFE/PMVE was also briefly studied by Luo et al. and later by Sun et al. but they exclusively looked at the sol/gel behaviour. Recently Lyons reviewed the radiation chemistry of fluoropolymers and showed that most research solely focused on the physical properties of the cured material and little attention placed on the development of mechanisms of radiation chemistry. In this study, we have employed both physical and chemical techniques such as tensile tests and 19 F NMR to formulate a radiation mechanism describing both chain scission and crosslinking processes. 19 F NMR identified and quantified new functionalities such as carboxylic acid and saturated chain ends. The crosslinking reaction has been tentatively postulated for the first time. Factors affecting the radiation chemistry such as the presence of oxygen and irradiation temperature will be briefly discussed

  11. Liquid crystals. Oligomeric and polymeric materials for soft photonic technologies

    International Nuclear Information System (INIS)

    Coles, Marcus James

    2002-01-01

    The current pace of today's information technologies might lead the casual observer to believe that this is all new. However the reality is that, as with most things, this is really a long evolution of processes based on tried, tested and re-adapted techniques. This thesis represents 12 years of predominantly technology driven research and covers a whole range of characterising, evaluating and fabricating devices based on liquid crystalline systems. Firstly polymer liquid crystals are discussed with respect to the fabrication of a flexible substrate display based on standard printing techniques and this is shown to have improved display viewing properties over a standard polymer dispersed liquid crystal (PDLC) device. Following on from this work is presented that involves the production of regular grid arrays in isotropic polymers that are used as control structures in nematic liquid crystal systems. This progresses onto a now patented device that allows the production of robust ferroelectric devices based on PDLC technology. Whilst the development of production techniques is important for the advancement of devices it would not be possible to keep up the pace without continued research into the basic liquid crystalline systems. The final chapter reviews work currently under supervision of the author based on flexoelectric effects in symmetric bimesogens. These materials possess responses times of the order of ∼100μs with an effective optic axis switching angle that is linear with the applied field and can be in well in excess of 90 deg. (author)

  12. Development of eco-friendly polymeric materials by radiation

    International Nuclear Information System (INIS)

    Choi, Jae-hak; Shim, Kihyung; Kim, Jaeyoung

    2012-12-01

    In this project, the core technologies such as fabrication of eco-friendly and high-performance bioplastics, anionic exchange membranes for the energy generation, and anisotropic conductive films (ACF) for the electronic devices were developed by using an eco-friendly and low-energy consumption radiation. In the 1 st project group, the fabrication technologies of biodegradable polymer-based blends, biocompoistes, and foam were developed using a radiation crosslinking technology, and the possibility of their commercialization was evaluated through the fabrication of prototype products (fruits packaging material and adhesive) in the practical production lines. In the 2 nd project group, the fabrication technology of the anion exchange membranes for alkaline fuel cell were prepared by utilizing the inherent property of radiation such as high ionizing energy and penetrating depth. The ion exchange capacity, ion conductivity, high ionizing energy and penetrating depth. The ion exchange capacity, ion conductivity, high ionizing energy and penetrating depth. The ion exchange capacity, ion conductivity, mechanical property, and chemical stability of the prepared membranes were measured. The results of the MEA performance test, the maximum power density of 115 mW and operation for 200 hours, indicates the possibility of the use of anion exchange membranes for alkaline fuel cell. In the 3rd project group, the electron beam-induced room temperature and fast curable epoxy was developed and the mechanism of electron beam-induced curing was investigated using various analytical methods. On the basis of the physical and electrical characterization, the prepared ACF exhibited lower resistance and higher tensile strength compared to that of the commercialized one

  13. Solar thermal collectors in polymeric materials: A novel approach towards higher operating temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Joao Farinha; Horta, Pedro; Carvalho, Maria Joao [INETI - Inst. Nacional de Engenharia Tecnologia e Inovacao, IP, Lisboa (Portugal); Silva, Paulo [PLASDAN - Maquinas para Plasticos, Marinha Grande (Portugal)

    2008-07-01

    The increasing demand for low temperature solar thermal collectors, especially for hot water production purposes in dwellings, swimming pools, hotels or industry, has lead to the possibility of high scale production, with leading manufacturers presenting yearly productions of hundreds of thousands of square meters. In such conditions, the use of polymeric materials in the manufacturing of solar collectors acquires particular interest, opening a full scope of opportunities for lower production costs, by means of cheaper materials or simpler manufacturing operations. Yet, the use of low cost materials limits the maximum operating temperatures estimated for the collectors (stagnation) to values around 120 C, easily attainable by any simple glazed solar collector. Higher performances, leading to higher stagnation temperatures as those observed for regular metal-based solar thermal collectors, would require high temperature polymers, at a much higher cost. The present paper addresses the manufacturing of a high performance solar thermal collector based in polymeric materials and includes a base thermal study, highlighting the different possibilities to be followed in the production of a polymeric collector, as well as a description of different temperature control strategies. (orig.)

  14. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David

    2015-09-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization mechanisms using conventional (various amines) as well as some recently developed initiators (hexamethyldisilazane, N-heterocyclic persistent carbenes, etc.) is presented, and their benefits and drawbacks for preparation of polypeptides with well-defined chain lengths and chain-end functionality are discussed. Recent examples from literature are used to illustrate different possibilities for synthesis of pure polypeptide materials with different molecular architectures bearing various functional groups, which are introduced either by modification of amino acids, before they are transformed into corresponding Ncarboxyanhydrides, or by post-polymerization modifications using protective groups and/or orthogonal functional groups. Different approaches for preparation of polypeptide-based hybrid materials are discussed as well using examples from recent literature. Syntheses of simple block copolymers or copolymers with more complex molecular architectures (graft and star copolymers) as well as modifications of nanoparticles and other surfaces with polypeptides are described.

  15. Extrusion of xylans extracted from corn cobs into biodegradable polymeric materials.

    Science.gov (United States)

    Bahcegul, Erinc; Akinalan, Busra; Toraman, Hilal E; Erdemir, Duygu; Ozkan, Necati; Bakir, Ufuk

    2013-12-01

    Solvent casting technique, which comprises multiple energy demanding steps including the dissolution of a polymer in a solvent followed by the evaporation of the solvent from the polymer solution, is currently the main technique for the production of xylan based polymeric materials. The present study shows that sufficient water content renders arabinoglucuronoxylan (AGX) polymers extrudable, enabling the production of AGX based polymeric materials in a single step via extrusion, which is economically advantageous to solvent casting process for mass production. AGX polymers with water content of 27% were found to yield extrudates at an extrusion temperature of 90°C. The extruded strips showed very good mechanical properties with an ultimate tensile strength of 76 ± 6 MPa and elongation at break value of 35 ± 8%, which were superior to the mechanical properties of the strips obtained from polylactic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Characteristics of low polymerization shrinkage flowable resin composites in newly-developed cavity base materials for bulk filling technique.

    Science.gov (United States)

    Nitta, Keiko; Nomoto, Rie; Tsubota, Yuji; Tsuchikawa, Masuji; Hayakawa, Tohru

    2017-11-29

    The purpose of this study was to evaluate polymerization shrinkage and other physical properties of newly-developed cavity base materials for bulk filling technique, with the brand name BULK BASE (BBS). Polymerization shrinkage was measured according to ISO/FDIS 17304. BBS showed the significantly lowest polymerization shrinkage and significantly higher depth of cure than conventional flowable resin composites (p<0.05). The Knoop hardness, flexural strength and elastic modulus of that were significantly lower than conventional flowable resin composites (p<0.05). BBS had the significantly greatest filler content (p<0.05). SEM images of the surface showed failure of fillers. The lowest polymerization shrinkage was due to the incorporation of a new type of low shrinkage monomer, which has urethane moieties. There were no clear correlations between inorganic filler contents and polymerization shrinkage, flexural strength and elastic modulus. In conclusion, the low polymerization shrinkage of BBS will be useful for cavity treatment in dental clinics.

  17. In Vitro Investigation of Wear of CAD/CAM Polymeric Materials Against Primary Teeth

    Directory of Open Access Journals (Sweden)

    Jae-Won Choi

    2017-12-01

    Full Text Available The aim of the study was to evaluate the effects of polymeric computer-aided design/computer-aided manufacturing CAD/CAM materials on antagonistic primary tooth wear. Five CAD/CAM polymeric materials were examined: Vipi Block Monocolor (VBM, Yamahachi polymethylmethacrylate (PMMA (YAP, Mazic Duro (MZD, Vita Enamic (ENA, and Pekkton (PEK. All of the specimens were tested in a thermomechanical loading machine with the primary canine as the antagonist (50 N, 1.2 × 105 cycles, 1.7 Hz, 5/55 °C. The wear losses of the antagonist tooth and the restorative materials were calculated using reverse modelling software and an electronic scale. VBM and ENA showed significantly higher antagonist tooth wear than PEK (p < 0.05, but there was no significant difference observed among VBM, YAP, MZD, and ENA (p > 0.05. PEK showed the largest value in both material volumetric and weight losses. In terms of material volumetric losses, there was no significant difference between all of the groups (p > 0.05. In terms of material weight losses, PEK was significantly larger than ENA (p < 0.05, but there was no significant difference between VBM, YAP, MZD, and ENA (p > 0.05. Volumetric and weight losses of materials showed similar wear behaviour. However, the wear patterns of antagonists and materials were different, especially in PEK.

  18. A finite element method for the thermochemical decomposition of polymeric materials. I - Theory

    Science.gov (United States)

    Sullivan, R. M.; Salamon, N. J.

    1992-01-01

    The governing differential equations are developed to model the thermomechanical behavior of chemically decomposing, polymeric materials. These equations account for thermal and gaseous diffusion through a poroelastic, transversely isotropic solid. The Bubnov-Galerkin finite element method is applied to the governing equations to cast the coupled set into a single matrix equation. A method for solving these equations simultaneously at each time step is discussed.

  19. Testing of Candidate Polymeric Materials for Compatibility with Pure Alternate Pretreat as Part of the Universal Waste Management System (UWMS)

    Science.gov (United States)

    Wingard, C. D.

    2018-01-01

    The Universal Waste Management System (UWMS) is an improved Waste Collection System for astronauts living and working in low Earth orbit spacecraft. Polymeric materials used in water recovery on International Space Station are regularly exposed to phosphoric acid-treated 'pretreated' urine. Polymeric materials used in UWMS are not only exposed to pretreated urine, but also to concentrated phosphoric acid with oxidizer before dilution known as 'pure pretreat.' Samples of five different polymeric materials immersed in pure pretreat for 1 year were tested for liquid compatibility by measuring changes in storage modulus with a dynamic mechanical analyzer.

  20. Sensor calibration of polymeric Hopkinson bars for dynamic testing of soft materials

    Science.gov (United States)

    Martarelli, Milena; Mancini, Edoardo; Lonzi, Barbara; Sasso, Marco

    2018-02-01

    Split Hopkinson pressure bar (SHPB) testing is one of the most common techniques for the estimation of the constitutive behaviour of metallic materials. In this paper, the characterisation of soft rubber-like materials has been addressed by means of polymeric bars thanks to their reduced mechanical impedance. Due to their visco-elastic nature, polymeric bars are more sensitive to temperature changes than metallic bars, and due to their low conductance, the strain gauges used to measure the propagating wave in an SHPB may be exposed to significant heating. Consequently, a calibration procedure has been proposed to estimate quantitatively the temperature influence on strain gauge output. Furthermore, the calibration is used to determine the elastic modulus of the polymeric bars, which is an important parameter for the synchronisation of the propagation waves measured in the input and output bar strain gate stations, and for the correct determination of stress and strain evolution within the specimen. An example of the application has been reported in order to demonstrate the effectiveness of the technique. Different tests at different strain rates have been carried out on samples made of nytrile butadyene rubber (NBR) from the same injection moulding batch. Thanks to the correct synchronisation of the measured propagation waves measured by the strain gauges and applying the calibrated coefficients, the mechanical behaviour of the NBR material is obtained in terms of strain-rate–strain and stress–strain engineering curves.

  1. Radiation durability of polymeric materials in solid polymer electrolyzer for fusion tritium plant

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Yamanishi, Toshihiko; Hiroki, Akihiro; Tamada, Masao

    2009-02-01

    This document presents the radiation durability of various polymeric materials applicable to a solid-polymer-electrolyte (SPE) water electrolyzer to be used in the tritium facility of fusion reactor. The SPE water electrolyzers are applied to the water detritiation system (WDS) of the ITER. In the ITER, an electrolyzer should keep its performance during two years operation in the tritiated water of 9TBq/kg, the design tritium concentration of the ITER. The tritium exposure of 9TBq/kg for two years is corresponding to the irradiation of no less than 530 kGy. In this study, the polymeric materials were irradiated with γ-rays or with electron beams at various conditions up to 1600 kGy at room temperature or at 343 K. The change in mechanical and functional properties were investigated by stress-strain measurement, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray photoelectron spectra (XPS), and so on. Our selection of polymeric materials for a SPE water electrolyzer used in a radiation environment was Pt + Ir applied Nafion N117 ion exchange membrane, VITON O-ring seal and polyimide insulator. (author)

  2. Polymeric Materials

    Science.gov (United States)

    2009-06-01

    external thermal field. The program is jointly executed with Prof. Edwin Thomas at MIT. In addition, the program leverages an AOARD grant to Prof...films". Polymer, 45, 8451-8457 (2004). J. E. Rogers, J. E. Slagle, D. G. McLean, R. L. Sutherland , B. Sankaran, R. Kannan, L.-S. Tan, and P. A...Polym. Mater. Eng. Sci. 91, 59-60 (2004). R. L. Sutherland , M. E. Brant, D. G. McLean, J. E. Rogers, B. Sankaran, S. E. Kirkpatrick and P. A

  3. Materials chemistry: A synthetic enamel for rapid tooth repair

    Science.gov (United States)

    Yamagishi, Kazue; Onuma, Kazuo; Suzuki, Takashi; Okada, Fumio; Tagami, Junji; Otsuki, Masayuki; Senawangse, Pisol

    2005-02-01

    The conventional treatment of dental caries involves mechanical removal of the affected part and filling of the hole with a resin or metal alloy. But this method is not ideal for tiny early lesions because a disproportionate amount of healthy tooth must be removed to make the alloy or resin stick. Here we describe a dental paste of synthetic enamel that rapidly and seamlessly repairs early caries lesions by nanocrystalline growth, with minimal wastage of the natural enamel.

  4. Phospholipid Adsorption Polymeric Materials for Detection of Xylazine and Metabolite in Blood and Urine

    Directory of Open Access Journals (Sweden)

    Xue Gao

    2016-01-01

    Full Text Available Polymers have been used in different areas. Recently, polymeric material is favored in analytical area due to its high performance and high consistency, which was used in sample pretreatment in this study. Xylazine poisoning is often seen in body fluid samples obtained from various accidents or suicides. However, the content of xylazine is difficult to detect precisely due to matrix effect in testing practices. In this paper, a method application for phospholipid adsorption polymeric materials to determine xylazine in blood and urine samples was proposed, developed, and validated. Compared with existing method, this method using polymeric pretreatment has a wider linear range of 2.0–2000.0 ng/mL for xylazine and its metabolite 2,6-dimethylaniline in both blood and urine and lower detection limits of 0.3 ng/mL for 2,6-dimethylaniline and xylazine in blood and 0.2 ng/mL for 2,6-dimethylaniline and xylazine in urine. Therefore, this method is suggested to be applied in testing practices by academic groups and commercial organizations.

  5. On a possible methodology for identifying the initiation of damage of a class of polymeric materials

    Science.gov (United States)

    Alagappan, P.; Kannan, K.; Rajagopal, K. R.

    2016-08-01

    In this paper, we provide a possible methodology for identifying the initiation of damage in a class of polymeric solids. Unlike most approaches to damage that introduce a damage parameter, which might be a scalar, vector or tensor, that depends on the stress or strain (that requires knowledge of an appropriate reference configuration in which the body was stress free and/or without any strain), we exploit knowledge of the fact that damage is invariably a consequence of the inhomogeneity of the body that makes the body locally `weak' and the fact that the material properties of a body invariably depend on the density, among other variables that can be defined in the current configuration, of the body. This allows us to use density, for a class of polymeric materials, as a means to identify incipient damage in the body. The calculations that are carried out for the biaxial stretch of an inhomogeneous multi-network polymeric solid bears out the appropriateness of the thesis that the density of the body can be used to forecast the occurrence of damage, with the predictions of the theory agreeing well with experimental results. The study also suggests a meaningful damage criterion for the class of bodies being considered.

  6. Fire Safety Aspects of Polymeric Materials. Volume 8. Land Transportation Vehicles

    Science.gov (United States)

    1979-01-01

    roof where it made an 18-inch hole through the roof metal and ignited sound - deadening material in the ceiling. Because of confusion, there was a...Rigid Polyurethane Foams 4.9 Fire Retardant Coatings 4.9.1 Introduction 4.9.2 Paints and Coatings 4.9.2.1 Alkyd Coatings 4.9.2.2 Miscellaneous...polymeric materials to the evolution of smoke and toxic gas formation. Recommendation: Develop a sound education program for all age levels to

  7. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons

    NARCIS (Netherlands)

    Atashgahi, S.; Maphosa, F.; Vrieze, de J.; Haest, P.J.; Boon, N.; Smidt, H.; Springael, D.; Dejonghe, W.

    2014-01-01

    In situ bioreactive capping is a promising technology for mitigation of surface water contamination by discharging polluted groundwater. Organohalide respiration (OHR) of chlorinated ethenes in bioreactive caps can be stimulated through incorporation of solid polymeric organic materials (SPOMs) that

  8. Amino Acid Bound Surfactants: A New Synthetic Family of Polymeric Monoliths Open Up Possibilities for Chiral Separations in Capillary Electrochromatography

    Science.gov (United States)

    He, Jun; Wang, Xiaochun; Morrill, Mike; Shamsi, Shahab A.

    2012-01-01

    By combining a novel chiral amino-acid surfactant containing acryloyl amide tail, carbamate linker and leucine head group of different chain lengths with a conventional cross linker and a polymerization technique, a new “one-pot”, synthesis for the generation of amino-acid based polymeric monolith is realized. The method promises to open up the discovery of amino-acid based polymeric monolith for chiral separations in capillary electrochromatography (CEC). Possibility of enhanced chemoselectivity for simultaneous separation of ephedrine and pseudoephedrine containing multiple chiral centers, and the potential use of this amino-acid surfactant bound column for CEC and CEC coupled to mass spectrometric detection is demonstrated. PMID:22607448

  9. The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review

    Directory of Open Access Journals (Sweden)

    Ilaria Armentano

    2014-01-01

    Full Text Available Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections.

  10. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the “one-pot” synthetic approach of single-electron-transfer living radical polymerization

    International Nuclear Information System (INIS)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie; Wang, Ke; Xu, Dazhuang; Liu, Liangji; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Graphical abstract: The PEGylated graphene oxides with high water dispersibility, good biocompatibility as well as high drug loading capability were fabricated via “one-pot” SET-LRP. - Highlights: • Surface modification of graphene oxide with polymers. • One-pot single-electron-transfer living radical polymerization. • Improving drug delivery characteristics. • The synthetic approach is rather simple, universal and effective. - Abstract: Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient “one-pot” strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as 1 H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  11. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the “one-pot” synthetic approach of single-electron-transfer living radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Xu, Dazhuang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Liu, Liangji [Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Graphical abstract: The PEGylated graphene oxides with high water dispersibility, good biocompatibility as well as high drug loading capability were fabricated via “one-pot” SET-LRP. - Highlights: • Surface modification of graphene oxide with polymers. • One-pot single-electron-transfer living radical polymerization. • Improving drug delivery characteristics. • The synthetic approach is rather simple, universal and effective. - Abstract: Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient “one-pot” strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  12. Luminescent properties of hybrid materials prepared by the polymeric precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Larissa H., E-mail: larissahelena2009@gmail.com [LIEC-UNESP, Institute of Chemistry, Caixa Postal 355, 14800-900 Araraquara, SP (Brazil); Moura, Ana Paula de; Longo, Elson; Varela, José A. [LIEC-UNESP, Institute of Chemistry, Caixa Postal 355, 14800-900 Araraquara, SP (Brazil); Rosa, Ieda L.V. [LIEC-UFSCar, Department of Chemistry, Caixa Postal 676, 13560-905 São Carlos, SP (Brazil)

    2013-12-05

    Highlights: •The Eu{sup 3+} ions are chelating to the 2-hydroxynicotinic acid via O,O-coordination. •A Class II hybrid material was formed by increasing the temperature to 300 °C. •The 2-hydroxynicotinic acid insert in a silica matrix became thermally stable. •PL emission showed a charge transference from 2-hydroxynicotinic to Eu{sup 3+} ions. -- Abstract: Rare earth complexes (RE) can be incorporated in silica matrixes, originating organic/inorganic hybrid materials with good thermal stability and high rare earth emission lines. In this work, the hybrid material was obtained by the polymeric precursor method and ultrasonic dispersed with spherical silica particles prepared by the Stöber Method. The Raman spectra indicated that the Eu{sup 3+} ions are involved in a polymeric structure formed as consequence of the chelation and polyesterification reactions of this ion with citric acid and ethylene glycol. After the ultrasonic stirring, 2-hydroxynicotinic ligand will also compose this polymeric rigid structure. The TGA/DTA analysis showed that this polymeric material was thermal decomposed at 300 °C. Moreover, this process allows the chelating process of the 2-hydroxynicotinic acid ligand to the Eu{sup 3+} ions. The {sup 29}Si NMR showed that the ultrasonic dispersion of the reactants was not able to promote the functionalization of the silica particles with the 2-hydroxynicotinic acid ligand. Moreover, heat treatment promotes the [Eu(HnicO{sub 2}){sub 3}] complex particles incorporation into silica pores. At this temperature, the TGA curve showed that only the thermal degradation of ethylene glycol and citric acid used during the experimental procedure occurs. The silica and hybrid materials are composed by spherical and aggregated particles with particle size of approximately 450 nm, which can be influenced by the heat treatment. These materials also present an absorption band located at 337 nm. The photoluminescent study showed that when the hybrid

  13. Short-term organic carbon migration from polymeric materials in contact with chlorinated drinking water.

    Science.gov (United States)

    Mao, Guannan; Wang, Yingying; Hammes, Frederik

    2018-02-01

    Polymeric materials are widely used in drinking water distribution systems. These materials could release organic carbon that supports bacterial growth. To date, the available migration assays for polymeric materials have not included the potential influence of chlorination on organic carbon migration behavior. Hence, we established a migration and growth potential protocol specifically for analysis of carbon migration from materials in contact with chlorinated drinking water. Four different materials were tested, including ethylene propylene dienemethylene (EPDM), poly-ethylene (PEX b and PEX c) and poly-butylene (PB). Chlorine consumption rates decreased gradually over time for EPDM, PEXc and PB. In contrast, no free chlorine was detected for PEXb at any time during the 7 migration cycles. Total organic carbon (TOC) and assimilable organic carbon (AOC) was evaluated in both chlorinated and non-chlorinated migrations. TOC concentrations for EPDM and PEXb in chlorinated migrations were significantly higher than non-chlorinated migrations. The AOC results showed pronounced differences among tested materials. AOC concentrations from chlorinated migration waters of EPDM and PB were higher compared to non-chlorinated migrations, whereas the opposite trend was observed for PEXb and PEXc. There was also a considerable difference between tested materials with regards to bacterial growth potential. The results revealed that the materials exposed to chlorine-influenced migration still exhibited a strong biofilm formation potential. The overall results suggested that the choice in material would make a considerable difference in chlorine consumption and carbon migration behavior in drinking water distribution systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Accelerated Aging Effect on Epoxy-polysiloxane Polymeric Insulator Material with Rice Husk Ash Filler

    Directory of Open Access Journals (Sweden)

    Rochmadi .

    2012-12-01

    Full Text Available The performances of outdoor polymeric insulators are influenced by environmental conditions. This paper presents the effect of artificial tropical climate on the hydrophobicity, equivalent salt deposit density (ESDD, surface leakage current, flashover voltage, and surface degradation on epoxy-polysiloxane polymeric insulator materials with rice husk ash (RHA. Test samples are made at room temperature vulcanized (RTV of various composition of epoxy-polysiloxane with rice husk ash as filler. The aging was carried out in test chamber at temperature from 50oC to 62oC, relative humidity of 60% to 80%, and ultraviolet (UV  radiation 21.28 w/cm2 in daylight conditions for 96 hours. The experiment results showed that the flashover voltage fluctuates from 34.13 kV up to 40.92 kV and tends to decrease on each variation of material composition. The surface leakage current fluctuates and tends to increase. Test samples with higher filler content result greater hydrophobicity, smaller equivalent salt deposit density, and smaller critical leakage current, which caused the increase of the flashover voltage. Insulator material (RTVEP3 showed the best performance in tropical climate environment. Artificial tropical aging for short duration gives less effect to the surface degradation of epoxy-polysiloxane insulator material.

  15. Two-photon polymerization of an epoxy-acrylate resin material system

    International Nuclear Information System (INIS)

    Winfield, R.J.; O'Brien, S.

    2011-01-01

    Improved material systems are of great interest in the development of two-photon polymerization techniques for the fabrication of three dimensional micro- and nano-structures. The properties of the photosensitive resin are important in the realisation of structures with submicron dimensions. In this study investigation of a custom organic resin, cross-linked by a two-photon induced process, using a femtosecond Ti:sapphire laser, is described. A structural, optical and mechanical analysis of the optimised material is presented. The influence of both material system and laser processing parameters on achievable micro-structure and size is presented as are representative structures. Parameters include: laser power, photo-initiator concentration and material composition.

  16. Influences of air pollutants on polymeric materials. Natural weathering of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, T.F.R. [Fraunhofer-Institut fuer Chemische Technologie, Pfinztal-Berghausen (Germany)

    1995-12-31

    Polymeric materials are affected during their entire service life by a number of environmental influences. These originate from both man made and natural sources. Such environmental influences include solar radiation, temperature, humidity and air pollutant effects. They all act together, some independently and some synergistically, to influence material properties, as well as functionality, service life, quality and reliability of the poly materials and systems. The main degradation process is chain scission with loss of molecular weight and oxidation, followed by fading of colours and loss of gloss and mechanical strength. Due to the large number of different types of polymers there are many types of degradation processes and it is difficult to generalise about the effects of the environment on organic materials. Materials, as opposed to organisms, have no self-repair mechanism which allows them to tolerate a certain level of stress. In principle, therefore, it is not possible to define critical levels for the effects of pollutants on materials below which no deterioration occurs. Material deterioration by weathering is normally a very slow process lasting some or more years. Therefore attempts have been made to produce deterioration in short-term experiments by using high stress levels. The limits for the high stress levels are given by the comparability of the obtained damage from artificially accelerated weathering with these from real natural weathering. To investigate the damage caused by air pollutants on polymeric materials, samples were natural weathered with some light exposed and some dark stored samples in different climatic and polluted areas of Germany. The weathering stations are closed to the continuously measuring stations for air quality

  17. Curing efficiency of various resin-based materials polymerized through different ceramic thicknesses and curing time

    Science.gov (United States)

    Lee, Jung-Won; Cha, Hyun-Suk

    2011-01-01

    PURPOSE The aim of this in vitro study was to examine the curing efficiency of various resin-based materials polymerized through ceramic restorations with 3 different thicknesses. Curing efficiency was evaluated by determining the surface microhardness (VHN) of the resin specimens. MATERIALS AND METHODS Four kinds of resin materials were used. Z350 (3M ESPE Filtek™ Z350: A2 Shade), Z250 (3M ESPE Filtek™ Z250: A2 Shade) and Variolink® II (VL: Ivoclar vivadent, base: transparent) either with or without a self-curing catalyst (VLC: Ivoclar vivadent, catalyst: low viscosity/transparent) were filled into the silicone mold (10 mm diameter, 1 mm thick). They were cured through ceramic discs (IPS e.max Press MO-0 ingot ivoclar vivadent, 10 mm diameter, 0.5, 1 and 2 mm thicknesses) by LED light-curing units for 20 and 40 seconds. Vicker's microhardness numbers (VHNs) were measured on the bottom surfaces by a microhardness tester. Data were analyzed using a 3- way analysis of variance (ANOVA) at a significance level of 0.05. RESULTS The thickness of ceramic disc increased, the VHNs of all four resin types were decreased (Plight cured for 40 seconds were significantly higher than that of LED for 20 seconds in all four resin materials (Pcuring time resulted higher VHN values of all resin materials. The use of a catalyst produced a greater hardness with all polymerization methods. Restorative resin materials (Z350, Z250) showed higher VHN values than resin cement materials (VL, VLC). PMID:22053242

  18. Process for introducing electrical conductivity into high-temperature polymeric materials

    Science.gov (United States)

    Liepins, R.; Jorgensen, B.S.; Liepins, L.Z.

    1987-08-27

    High-temperature electrically conducting polymers. The in situ reactions: AgNO/sub 3/ + RCHO ..-->.. Ag/sup 0/ + RCOOH and R/sub 3/M ..-->.. M/sup 0/ + 3R, where M = Au or Pt have been found to introduce either substantial bulk or surface conductivity in high- temperature polymers. The reactions involving the R/sub 3/M were caused to proceed thermally suggesting the possibility of using laser means for initiating such reactions in selected areas or volumes of the polymeric materials. The polymers successfully investigated to date are polyphenylquinoxaline, polytolylquinoxaline, polyquinoline, polythiazole, and pyrrone. 3 tabs.

  19. Hybrid Lattice Particle Modelling Approach for Polymeric Materials Subject to High Strain Rate Loads

    Directory of Open Access Journals (Sweden)

    Peter Radziszewski

    2010-03-01

    Full Text Available Hybrid Lattice Particle modelling (HLPM is an innovative particular dynamics approach that is established based on a combination of the particle modelling (PM technique together with the conventional lattice modelling (LM theory. It is developed for the purpose of simulating the dynamic fragmentation of solids under high strain rate loadings at macroscales with a varying Poisson's ratio. HLPM is conceptually illustrated by fully dynamic particles (or “quasi-particles” placed at the nodes of a lattice network without explicitly considering their geometric size. The interaction potentials among the particles can employ either linear (quadratic or nonlinear (Leonard-Jones or strain rate dependent polynomial type as the axial/angular linkage. The defined spring constants are then mapped into lattice system, which are in turn matched with the material’s continuum-level elastic moduli, strength, Poisson's ratio and mass density. As an accurate dynamic fracture solver of materials, HLPM has its unique advantages over the other numerical techniques which are mainly characterized as easy preparation of inputs, high computation efficiency, ability of post-fracture simulation and a multiscale model, etc., This paper is to review the successful HLPM studies of dynamic fragmentation of polymeric materials with good accuracy. Polymeric materials, including nylon 6-6, vinyl ester and epoxy, are accounted for under the loading conditions of tension, indentation and punctuation. In addition, HLPM of wave propagation and wave induced fracture study is also reviewed.

  20. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the "one-pot" synthetic approach of single-electron-transfer living radical polymerization

    Science.gov (United States)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie; Wang, Ke; Xu, Dazhuang; Liu, Liangji; Zhang, Xiaoyong; Wei, Yen

    2016-08-01

    Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient ;one-pot; strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  1. Simultaneous analysis of synthetic cannabinoids in the materials seized during drug trafficking using GC-MS.

    Science.gov (United States)

    Choi, Hyeyoung; Heo, Sewoong; Choe, Sanggil; Yang, Wonkyung; Park, Yuran; Kim, Eunmi; Chung, Heesun; Lee, Jaesin

    2013-05-01

    A rapid and simple gas chromatography-mass spectrometry (GC-MS) method was developed and validated to identify and quantify synthetic cannabinoids in the materials seized during drug trafficking. Accuracy and reproducibility of the method were improved by using deuterated JWH-018 and JWH-073 as internal standards. Validation results of the GC-MS method showed that it was suitable for simultaneous qualitative and quantitative analyses of synthetic cannabinoids, and we analyzed synthetic cannabinoids in seized materials using the validated GC-MS method. As a result of the analysis, ten species of synthetic cannabinoids were identified in dried leaves (n = 40), bulk powders (n = 6), and tablets (n = 14) seized in Korea during 2009-2012, as a single ingredient or as a mixture with other active co-ingredients. JWH-018 and JWH-073 were the most frequently identified compounds in the seized materials. Synthetic cannabinoids in the dried leaves showed broad concentration ranges, which may cause unexpected toxicity to abusers. The bulk powders were considered as raw materials used to prepare legal highs, and they contained single ingredient of JWH-073, JWH-019, or JWH-250 with the purity over 70 %. In contrast, JWH-018 and JWH-073 contents in the tablets were 7.1-13.8 and 3.0-10.2 mg/g, respectively. Relatively low contents in the tablets suggest that the synthetic cannabinoids may have been added to the tablets as supplements to other active co-ingredients.

  2. Chemical vapour deposition synthetic diamond: materials, technology and applications

    International Nuclear Information System (INIS)

    Balmer, R S; Brandon, J R; Clewes, S L; Dhillon, H K; Dodson, J M; Friel, I; Inglis, P N; Madgwick, T D; Markham, M L; Mollart, T P; Perkins, N; Scarsbrook, G A; Twitchen, D J; Whitehead, A J; Wilman, J J; Woollard, S M

    2009-01-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  3. Synthetic building materials for transport buildings and structures

    Science.gov (United States)

    Gerasimova, Vera

    2017-10-01

    The most effective building materials account for the highest growth not only in construction of residential and public buildings, but also other capital projects including roadways, bridges, drainage, communications and other engineering projects. Advancement in the technology of more efficient and ecologically responsible insulation materials have been a priority for safety, minimal maintenance and longevity of finished construction projects. The practical use of modern building materials such as insulation, sound reduction and low energy consumption are a benefit in cost and application compared to the use of outdated heavier and labor-intensive materials. The most efficient way for maximizing insolation and sound proofing should be done during the design stages of the project according to existing codes and regulations that are required by Western Government. All methods and materials that are used need to be optimized in order to reach a high durability and low operational and maintenance cost exceeding more than 50 years of the life of the building, whether it is for public, industrial or residential use. Western construction techniques and technologies need to be applied and adapted by the Russian Federation to insure the most productive successful methods are being implemented. The issues of efficient insulation materials are outlined in this article.

  4. Functional materials in amperometric sensing polymeric, inorganic, and nanocomposite materials for modified electrodes

    CERN Document Server

    Seeber, Renato; Zanardi, Chiara

    2014-01-01

    Amperometric sensors, biosensors included, particularly rely on suitable electrode materials. Progress in material science has led to a wide variety of options that are available today. For the first time, these novel functional electrode coating materials are reviewed in this monograph, written by and for electroanalytical chemists. This includes intrinsically conducting, redox and ion-exchange polymers, metal and carbon nanostructures, silica based materials. Monolayers and relatively thick films are considered. The authors critically discuss preparation methods, in addition to chemical and

  5. Surface modification of polymeric materials using ultra low energy electron beam irradiation

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Shiraki, Fumiya; Fujita, Hajime; Washio, Masakazu

    2011-01-01

    An ultra low energy electron beam (UL-EB) was used to irradiate various polymeric materials such as fluorinated polymers and a polyimide under an oxygen-free atmosphere. After the irradiation of the polyimide, the change in the thermal properties was measured by DSC and TGA. The surface modification of fluorinated polymers was demonstrated by use of styrene grafting by the preirradiation grafting method. By the use of UL-EB irradiation it was possible to facilitate styrene monomer grafting onto the surface of fluorinated polymers without losing their material characteristics. Moreover, in the case of the polyimide (Kapton TM ), which has excellent radiation resistance, the glass transition temperature was improved by about 20 o C by irradiation up to 40 MGy within 1 h.

  6. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    Yun Jeong Woo

    2013-01-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  7. The Polymerization of MMA and ST to Prepare Material with Gradient Refractive Index in Electric Field

    Directory of Open Access Journals (Sweden)

    Yao Huang

    2015-01-01

    Full Text Available Light scattering material with gradient refractive index was prepared under the electrical field by taking methyl methacrylate (MMA monomer as the matrix with the addition of a little preheated styrene (ST and peroxidation benzoin formyl (BPO. The material obtained under electrical field presented different transmittance and molecular weight at different parts of the cylindrical sample along the axis of the direction of electric field which led to the layering phenomenon and gradient refractive index. The disparity of molecular weight between different layers can be as much as 230 thousand. There were several peaks in the figure of GPC test of the sample under electric field. This proved that there were polymers with different molecular weights in the sample. Therefore, it can be concluded that electrical field has a significant effect on polymerization.

  8. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  9. Optical characterization of synthetic faceted gem materials grown from hydrothermal solutions

    Science.gov (United States)

    Lu, Taijin; Shigley, James E.

    1998-10-01

    Various non-destructive optical characterization techniques have been used to characterize and identify synthetic gem materials grown from hydrothermal solutions, to include ruby, sapphire, emerald, amethyst and ametrine (amethyst-citrine), from their natural counterparts. The ability to observe internal features, such as inclusions, dislocations, twins, color bands, and growth zoning in gem materials is strongly dependent on the observation techniques and conditions, since faceted gemstones have many polished surfaces which can reflect and scatter light in various directions which can make observation difficult. However, diagnostic gemological properties of these faceted synthetic gem materials can be obtained by choosing effective optical characterization methods, and by modifying optical instruments. Examples of some of the distinctive features of synthetic amethyst, ametrine, pink quartz, ruby and emerald are presented to illustrate means of optical characterization of gemstones. The ability to observe defects by light scattering techniques is discussed.

  10. Synthesis and testing of a conducting polymeric composite material for lightning strike protection applications

    Science.gov (United States)

    Katunin, A.; Krukiewicz, K.; Turczyn, R.; Sul, P.; Łasica, A.; Catalanotti, G.; Bilewicz, M.

    2017-02-01

    Lightning strike protection is one of the important issues in the modern maintenance problems of aircraft. This is due to a fact that the most of exterior elements of modern aircraft is manufactured from polymeric composites which are characterized by isolating electrical properties, and thus cannot carry the giant electrical charge when the lightning strikes. This causes serious damage of an aircraft structure and necessity of repairs and tests before returning a vehicle to operation. In order to overcome this problem, usually metallic meshes are immersed in the polymeric elements. This approach is quite effective, but increases a mass of an aircraft and significantly complicates the manufacturing process. The approach proposed by the authors is based on a mixture of conducting and dielectric polymers. Numerous modeling studies which are based on percolation clustering using kinetic Monte Carlo methods, finite element modeling of electrical and mechanical properties, and preliminary experimental studies, allow achieving an optimal content of conducting particles in a dielectric matrix in order to achieve possibly the best electrical conductivity and mechanical properties, simultaneously. After manufacturing the samples with optimal content of a conducting polymer, mechanical and electrical characterization as well as high-voltage testing was performed. The application of such a material simplifies manufacturing process and ensures unique properties of aircraft structures, which allows for minimizing damage after lightning strike, as well as provide electrical bounding and grounding, interference shielding, etc. The proposed solution can minimize costs of repair, testing and certification of aircraft structures damaged by lightning strikes.

  11. [The inhibition of Mycoplasma pneumoniae adhesion in a fetuin test system by synthetic analogs and polymeric forms of neuraminic acid].

    Science.gov (United States)

    Tokovenko, I P; Skripal', I G; Malinovskaia, L P; Baĭramova, N E; Mochalova, L V; Tuzikov, A B; Bovin, N V

    1994-01-01

    Eight glycosides and structural analogues of neuraminic acid as well as eight polymeric forms of N-acetyl neuraminic acid have been studied for their inhibitory effect on adhesion of Mycoplasma pneumoniae. Maximum inhibiting effect among low-molecular compounds was manifested by 2-->3 sialyllactose which, being used in concentrations 5.0 and 10.0 micrograms/ml, inhibited adhesion of mycoplasmas by 76 and 87%, respectively. These indices for other derivatives in the above mentioned concentrations were as follows (%): 2-->6 sialyllactose, 31 and 74%; alpha-Me-glycoside NeuAc, 75 and 85%; alpha-Bn-glycoside-N-trifluoruracetyl NeuAc, 30 and 63%; alpha-Bn-glycoside NeuAc, 32 and 59%; alpha-Bn-glycoside-4-epi-NeuAc, 20 and 27%; beta-Bn-glycoside NeuAc, 2-4%; beta-me-glycoside NeuAc, 4-5%. The maximum inhibiting effect (50% inhibition at concentration 2.5 mumol) among polymeric forms was exerted by the conjugate alpha-benzeneglycoside with polyacrylic acid containing 12 mol% of NeuAc. Conjugates with 8, 16 and 20 mol% of NeuAc possessed a bit less activity. The 50% concentration for them was 5.3, 3.1 and 8.3 mumol, respectively. Polymeric forms on the basis of polyacrylamide proved less active.

  12. How accelerated biological aging can affect solar reflective polymeric based building materials

    Science.gov (United States)

    Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.

    2017-11-01

    Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.

  13. Evaluation of ceramic and polymeric materials for use in engineered barrier systems

    International Nuclear Information System (INIS)

    Fullam, H.T.; Skiens, W.E.

    1980-01-01

    Ceramic materials evaluated in the screening studies were Al 2 O 3 (99.8%), mullite, vitreous silica, BaTiO 3 , CaTiO 3 , CaZrO 3 , CaTiSiO 5 , TiO 2 , ZrSiO 4 , basalt, Pyroceram 9617, and Marcor code 9658 machinable glass ceramic. One grade of graphite (Toyotanso IB-11) was also evaluated. Demineralized water, a synthetic Hanford groundwater, and a synthetic NaCl brine solution were used in the screening tests. Demineralized water was used in all five of the leach tests, but the other solutions were only used in the static leach tests at 150 and 250 0 C. Based on the results obtained, graphite appears to be the most leach resistant of the materials tested with the two grades of alumina being the best of the ceramic materials. Titanium dioxide and ZrO 2 are the most leach resistant of the remaining materials. Candidate materials from all three general classes of polymers (thermoplastics, thermosets, and elastomers) were considered in the selection of materials. Selected groups of polymers were tested in the flowing autoclave at 150, 200, and 250 0 C with some polymers being further tested at the next higher temperature. Next, selected samples were exposed to gamma radiation. These samples were then submitted for tensile and elongation measurements. Selected samples which appeared promising from both autoclave and radiation testing were further evaluated by impact tests. The materials that appeared most promising after autoclave testing were the EPDM rubbers, polyphenylene sulfide, poly(ethylene-tetrafluoroethylene) copolymer, and polyfurfuryl alcohol. The radiation dose had little effect on polyfurfuryl alcohol and polyphenylene sulfide samples; very significant decreases in elongation were observed for the fluorocarbon copolymer and the EPDM rubbers. While the polyphenylene sulfide and polyfurfuryl alcohol showed little change in impact strength, poly(ethylene-tetrafluoroethylene) decreased in impact strength

  14. Polymeric Microspheres for Medical Applications

    Directory of Open Access Journals (Sweden)

    Ketie Saralidze

    2010-06-01

    Full Text Available Synthetic polymeric microspheres find application in a wide range of medical applications. Among other applications, microspheres are being used as bulking agents, embolic- or drug-delivery particles. The exact composition of the spheres varies with the application and therefore a large array of materials has been used to produce microspheres. In this review, the relation between microsphere synthesis and application is discussed for a number of microspheres that are used for different treatment strategies.

  15. Polymeric synthetic geo membranes in reservoirs waterproofing in the Kingdom of Morocco; Las geomembranas sinteticas polimericas en la impermeabilizacion de balsas en el Reino de Marruecos

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Fernandez, M.

    2015-07-01

    This essay aims to address some of the aspects related to polymeric synthetic geo membranes that could be used in reservoirs of water located in the Kingdom of Morocco. In this regard, it offers a description of the two basic components geo membranes consist of, that is, resins and additives. It also gives an overview of the key pieces of legislation affecting such an issue. Furthermore, it stresses the paramount importance of implementing monitoring procedures in order to assess the condition of geo membranes over time and, if necessary, to proceed to provide for new waterproofing. Lastly, the characteristics of the process monitoring aforementioned are detailed in terms of tensile strength, elongation, tear resistance, dynamic impact, puncture resistance, low-temperature folding. Shore hardness, stress cracking, oxidation induction times, joint strength shear and peeling test, content and dispersion of carbon black and reflection-optical and scanning-electron microscopy. (Author)

  16. Fluorescence and Fourier-transform infrared spectroscopy for the analysis of iconic Italian design lamps made of polymeric materials.

    Science.gov (United States)

    Toja, Francesca; Nevin, Austin; Comelli, Daniela; Levi, Marinella; Cubeddu, Rinaldo; Toniolo, Lucia

    2011-03-01

    The preservation of design object collections requires an understanding of their constituent materials which are often polymeric blends. Challenges associated with aging of complex polymers from objects with an unknown physical history may compromise the interpretation of data from analytical techniques, and therefore complicate the assessment of the condition of polymers in indoor museum environments. This study focuses on the analysis of polymeric materials from three well-known Italian design lamps from the 1960s. To assess the degree of chemical modifications in the polymers, non-destructive molecular spectroscopic techniques, Fourier-transform infrared (FTIR) and fluorescence spectroscopy, have been applied directly on the object surfaces using an optical fiber probe and through examination of micro samples. FTIR spectra of the different polymers, polyvinylacetate (PVAc) for the lamps Taraxacum and Fantasma, and both acrylonitrile-butadiene-styrene polymer (ABS) and cellulose acetate (CA) for the lamp Nesso, allowed the detection of ongoing deterioration processes. Fluorescence spectroscopy proved particularly sensitive for the detection of molecular changes in the polymeric objects, as the spectra obtained from the examined lamps differ significantly from those of the unaged reference materials. Differences in fluorescence spectra are also detected between different points on the same object further indicating the presence of different chemical species on the surfaces. With the aid of complementary data from FTIR spectroscopy, an interpretation of the emission spectra of the studied polymeric objects is here proposed, further suggesting that fluorescence spectroscopy may be useful for following the degradation of historical polymeric objects.

  17. Device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor

    International Nuclear Information System (INIS)

    Jaeger, W.

    1984-01-01

    This invention concerns a device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor, where part of the carbon is gasified with hydration and the remaining carbon is converted to synthetic gas by adding steam. This synthetic gas consists mainly of H 2 , CO, CO 2 and CH 4 and can be converted to methane in so-called methanising using a nickel catalyst. The hydrogen gasifier is situated in the first of two helium circuits of a high temperature reactor, and the splitting furnace is situated in the second helium circuit, where part of the methane produced is split into hydrogen at high temperature, which is used for the hydrating splitting of another part of the material containing carbon. (orig./RB) [de

  18. National Nanotechnology Laboratory (LNNano) open facilities for scientific community: new methods for polymeric materials characterization

    International Nuclear Information System (INIS)

    Silva, Cristiane A.; Santos, Ramon H.Z. dos; Bernardes, Juliana S.; Gouveia, Rubia F.

    2015-01-01

    National Nanotechnology Laboratory (LNNano) at the National Center for Energy and Materials (CNPEM) presents open facilities for scientific public in some areas. In this work will be discussed the facilities for mainly the polymeric community, as well as new methods for the characterization. Low density polyethylene (LDPE) surfaces were characterized by X-ray microtomography and X-ray photoelectron spectroscopy (XPS). The results obtained by microtomography have shown that these surfaces present different contrasts when compared with the bulk. These differences are correlated with the formation of an oxidized layer at the polymer surface, which consequently have a greater X-ray attenuation. This hypothesis is confirmed by XPS, which shows LDPE surface layers are richer in carbonyl, carboxyl and vinyl groups than the bulk. This work presents that microtomography can be used as a new method for detection and characterization of polymer surface oxidation. (author)

  19. Process, Design and Materials for Unidirectionally Tilted Polymeric Micro/Nanohairs and Their Adhesion Characteristics

    Directory of Open Access Journals (Sweden)

    Hyeon Seong Im

    2016-09-01

    Full Text Available Recent research in the field of gecko-inspired dry adhesive has focused on modifying the material and structural properties of polymer-based nanohairs. Polymers such as polystyrene (PS, high-density polyethylene (HDPE, ultraviolet curable epoxy (SU-8, polyurethane acrylate (PUA, polycarbonate (PC, and polydimethyl siloxane (PDMS can fulfill many mechanical property requirements, are easily tunable, and can be produced via large-scale fabrication. However, the fabrication process for tilted structure remains challenging. The tilted structure is a crucial factor in high-degree conformal contact, which facilitates high adhesion, low effective modulus, and directional adhesion properties. Recent studies have attempted to create a tilted structure by applying beam irradiation, mechanical and thermal stress, and magnetic fields. This review provides a comprehensive investigation into advanced strategies for producing tilted polymeric nanostructures and their potential applications in the near future.

  20. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    International Nuclear Information System (INIS)

    Westerman, R.E.

    1980-10-01

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives

  1. Broadband Terahertz Refraction Index Dispersion and Loss of Polymeric Dielectric Substrate and Packaging Materials

    Science.gov (United States)

    Motaharifar, E.; Pierce, R. G.; Islam, R.; Henderson, R.; Hsu, J. W. P.; Lee, Mark

    2018-01-01

    In the effort to push the high-frequency performance of electronic circuits and signal interconnects from millimeter waves to beyond 1 THz, a quantitative knowledge of complex refraction index values and dispersion in potential dielectric substrate, encapsulation, waveguide, and packaging materials becomes critical. Here we present very broadband measurements of the real and imaginary index spectra of four polymeric dielectric materials considered for use in high-frequency electronics: benzocyclobutene (BCB), polyethylene naphthalate (PEN), the photoresist SU-8, and polydimethylsiloxane (PDMS). Reflectance and transmittance spectra from 3 to 75 THz were made using a Fourier transform spectrometer on freestanding material samples. These data were quantitatively analyzed, taking into account multiple partial reflections from front and back surfaces and molecular bond resonances, where applicable, to generate real and imaginary parts of the refraction index as a function of frequency. All materials showed signatures of infrared active organic molecular bond resonances between 10 and 50 THz. Low-loss transmission windows as well as anti-window bands of high dispersion and loss can be readily identified and incorporated into high-frequency design models.

  2. Method of polymerizing ethylenically unsaturated materials by irradiation and composition for use therein

    International Nuclear Information System (INIS)

    Nemcek, J.; Heap, N.

    1976-01-01

    This patent concerns photopolymerizable compositions consisting essentially of at least one polymerizable ethylenically unsaturated material and a photosensitive catalyst comprising (a) from 0.5 to 5 percent based on the ethylenically unsaturated material of at least one photosensitizer having the structure Ph(CO)C 2 A(CO)Ph, where Ph is phenyl, halogen-substituted phenyl, phenylene or halogen-substituted phenylene and A is a cyclic hydrocarbyl group, a halogen-substituted cyclic hydrocarbyl group, or a group of the formula X(NR)COCONRY, where X and Y each is hydrogen, a hydrocarbyl, or a halogen-substituted hydrocarbyl group, and (b) from 1 to 5 percent by weight based on the ethylenically unsaturated material of a reducing agent capable of reducing the photosensitizer when the photosensitizer is in an excited state. Also described is a process of preparing polymeric materials by irradiating the foregoing polymerizable composition at a wavelength capable of exciting the photosensitizer to an excited state

  3. Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation

    NARCIS (Netherlands)

    Rahimian, Sima; Fransen, Marieke F.; Kleinovink, Jan Willem; Christensen, Jonatan Riis; Amidi, Maryam|info:eu-repo/dai/nl/304834912; Hennink, Wim E.|info:eu-repo/dai/nl/070880409; Ossendorp, Ferry

    2015-01-01

    The aim of the current study was to develop a cancer vaccine formulation for treatment of human papillomavirus (HPV)-induced malignancies. Synthetic long peptides (SLPs) derived from HPV16 E6 and E7 oncoproteins have been used for therapeutic vaccination in clinical trials with promising results. In

  4. Uncompleted polymerization and cytotoxicity of dental restorative materials as potential health risk factors.

    Science.gov (United States)

    Małkiewicz, Konrad; Wychowański, Piotr; Olkowska-Truchanowicz, Joanna; Tykarska, Marzena; Czerwiński, Michał; Wilczko, Marcin; Owoc, Alfred

    2017-12-23

    Composite materials used in dentistry indicate adverse biological effects in laboratory conditions. One reason for this activity is incomplete conversion of their polymer matrix, favoring chemical instability and release of biologically harmful components to the external environment. The aim of the study was to assess the degree of conversion of restorative materials commonly available on the European market and to examine the cytotoxic effects of their eluates in vitro. Using the Fournier transform infrared spectroscopy (FTIR) technique of analysis, the degree of polymer matrix conversion of 6 restorative materials was examined: Gradia Direct, Arkon, Filtek Z550, Herculite XRV, Tetric Evo Ceram, Charisma, polymerized with LED light. In order to assess the cytotoxicity of eluates of the studied materials obtained after 1 hour , 24 hours and 7 days, the MTT assay was used in cultured 3T3 cells. The results were statistically analyzed at significance level of p=0.05. The conversion degree of the assessed polymers ranged from 31.56% for Tetric Evo Ceram to 75.84% for Arcon. The strongest (p=0.05) cytotoxic effect was demonstrated after 7-day observation of Tetric Evo Ceram eluates, reducing the metabolic activity of cells down to 56%. A positive correlation (r(x, y) = 0.62) between the degree of conversion of composite materials and cytotoxic effects of their eluates on cell cultures was confirmed. 1. Restorative dental materials are chemically unstable in the conditions of the present study. 2. Polymer-based restorative dental materials available on the European market demonstrate cytotoxic properties constituting a potential threat to the patients' health.

  5. Affects of Microgravity on the Polymerization and Material Properties of Biomedical Grade Polymers

    Science.gov (United States)

    Crane, Deborah J.

    2002-01-01

    the material of choice in the production of acetabular cups for hip and tibial cradles for knee orthopeadic implant components for over 30 years. Although UHMWPE is used for more than 1.5 million implants a year in the United States alone and more than 3 million implant surgeries a year worldwide, problems with debris particle formation, pitting and fracture continue to induce premature failure of implant components. chains produced during polymerization are capable of packing into crystalline structures called lamellae, which are embedded within randomly oriented amorphous regions. Crosslinks, or tie molecules bridge the crystalline structures, which contribute to the materials' toughness and strength as a biomedical material. Research has been conducted providing evidence that a crosslinked gradient at the articulating surface of the polymer component provides resistance to surface degradation and subsequent debris formation. Recently, the introduction of highly crosslinked UHMWPE had proven to reduce some of the problems associated with the applications of this polymer as a biomedical material and was seen as the answer to solving the continuing problems associated with UHMWPE implant components. Yet current research into the fatigue characteristics of highly crosslinked UHMWPE has shown that subsurface crack propagation and subsequent delamination continues to produce problematic debris generation. Studies have shown that various sterilization and accelerated aging (to emulate natural oxidation rates) protocols adversely effects the material properties. Additional research has shown that alignment of the lamellae, caused by processing technique, fabrication or surface articulation may be the precursor to debris particle formation. Processing techniques performed under high pressure has proven to effect the width of the crystalline lamellae and therefore, the material's response to wear and fracture. UHMWP due to a microgravity environment, which could be

  6. Evaluation of polymeric materials packed in fixed bed column for oil water remediation; Avaliacao de materiais polimericos empacotados em colunas de leito fixo para a remediacao de aguas oleosas

    Energy Technology Data Exchange (ETDEWEB)

    Queiros, Yure G.C.; Barros, Cintia Chagas; Oliveira, Roberta S.; Marques, Luiz R.S.; Cunha, Luciana; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano], e-mail: yuregomes@ima.ufrj.br, e-mail: elucas@ima.ufrj.br

    2007-07-01

    Polymeric resins are being tried as an alternative material for treating oily waters from the petroleum industry, which have already been treated by conventional methods. The objective of this work has been to evaluate the purification degree of synthetic oily waters when treated in fixed bed columns packed with polymeric resins made up of hydrophilic and lipophilic moieties. The analysis used for characterizing the total grease and oil content (TOG) was fluorimetry. Starting oily waters of average TOG 50 ppm were prepared. Data obtained from eluted waters did not outweigh 10% of the TOG values of starting solutions in some blends of resins with a pretty good mechanical stability under the increase of pressure. Organoclay material showed a good retention performance, but has presented a mechanical instability too, compromising its use for larger amounts of wastewater. (author)

  7. Evaluation of the in vitro biocompatibility of polymeric materials for the regeneration of cutaneous tissue

    International Nuclear Information System (INIS)

    Escudero Castellanos, A.

    2016-01-01

    The problems associated with medical cases of functional tissue loss or organ failure are destructive and expensive, even more frequent than could be perceived, sometime if not properly treated, even deathly. Tissue engineering is an interdisciplinary field that emerged to address these clinical problems, it is based on researching and development of biomaterials that have evolved along with areas such as cell biology, molecular and materials science and engineering. Today, the technique is based on seeding cells onto prefabricated scaffold biomaterials, like the hydrogels, that are three-dimensional networks with hydrophilic properties. These materials are characterized as being porous and sticky, favoring the support for the proliferation of certain cells in order to lead the regeneration of injured tissue. As a prerequisite for the use of materials in tissue engineering is testing biocompatibility which is the ability of the bio material to allow contact with any tissue, existing a favorable host response, accepting it as their own and restoring previously lost function. The first step for evaluating biocompatibility is to perform the in vitro assays. These assays have been demonstrated more reproducibility and predictability than in vivo assays, therefore the in vitro assays are used to produce high quality scaffolds and testing on animals as less as possible. This test is essential to establish the benefits and limitations of biomaterials tested in order to improve the scaffolds. This work will focus on assessing the biocompatibility of three polymeric materials with potential use in tissue engineering by means of cytological compatibility tests and hemo compatibility tests. Furthermore, disinfection techniques and gamma sterilization were evaluated to produce sterile materials that can be used in tissue engineering. (Author)

  8. Application of Synthetic Mineral Alloys as Materials for Bulletproof Vests and Products for Different Objects Protection

    Directory of Open Access Journals (Sweden)

    Anna Ignatova.

    2015-11-01

    Full Text Available Authors study ballistic properties of the material which has never been used for impact protection and the presented results prove that synthetic mineral alloys belong to the field of bulletproof ballistic protection and particularly to the means of objects’ protection from kinetic threats. Although the material has been described in connection with such specific embodiments as SVD and a cumulative jet, it is evident that many alternatives and modifications of their application for various protective articles are possible.

  9. Durability of Polymeric Encapsulation Materials for a PMMA/glass Concentrator Photovoltaic System

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T; Gray, Matthew H.; Araki, Kenji; Kurtz, Sarah R.

    2014-04-08

    The durability of polymeric encapsulation materials was examined using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36 months cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/ polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging, and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. The results of the study including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.

  10. Micromechanical Properties of a New Polymeric Microcapsule for Self-Healing Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Leyang Lv

    2016-12-01

    Full Text Available Self-healing cementitious materials containing a microencapsulated healing agent are appealing due to their great application potential in improving the serviceability and durability of concrete structures. In this study, poly(phenol–formaldehyde (PF microcapsules that aim to provide a self-healing function for cementitious materials were prepared by an in situ polymerization reaction. Size gradation of the synthesized microcapsules was achieved through a series of sieving processes. The shell thickness and the diameter of single microcapsules was accurately measured under environmental scanning electron microscopy (ESEM. The relationship between the physical properties of the synthesized microcapsules and their micromechanical properties were investigated using nanoindentation. The results of the mechanical tests show that, with the increase of the mean size of microcapsules and the decrease of shell thickness, the mechanical force required to trigger the self-healing function of microcapsules increased correspondingly from 68.5 ± 41.6 mN to 198.5 ± 31.6 mN, featuring a multi-sensitive trigger function. Finally, the rupture behavior and crack surface of cement paste with embedded microcapsules were observed and analyzed using X-ray computed tomography (XCT. The synthesized PF microcapsules may find potential application in self-healing cementitious materials.

  11. DNA-nanoparticle assemblies go organic: Macroscopic polymeric materials with nanosized features

    Directory of Open Access Journals (Sweden)

    Mentovich Elad D

    2012-05-01

    Full Text Available Abstract Background One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Method Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. Results and conclusions One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC, which creates an all-organic engineered network.

  12. 3D printing processes for photocurable polymeric materials: technologies, materials, and future trends.

    Science.gov (United States)

    Taormina, Gabriele; Sciancalepore, Corrado; Messori, Massimo; Bondioli, Federica

    2018-04-01

    The aim of this review is a faithful report of the panorama of solutions adopted to fabricate a component using vat photopolymerization (VP) processes. A general overview on additive manufacturing and on the different technologies available for polymers is given. A comparison between stereolithography and digital light processing is also presented, with attention to different aspects and to the advantages and limitations of both technologies. Afterward, a quick overview of the process parameters is given, with an emphasis on the necessities and the issues associated with the VP process. The materials are then explored, starting from base matrix materials to composites and nanocomposites, with attention to examples of applications and explanations of the main factors involved.

  13. An evaluation of the effect of various gloves on polymerization inhibition of elastomeric impression materials: An In vitro study

    Directory of Open Access Journals (Sweden)

    Vinuta Hiremath

    2017-01-01

    Full Text Available Background: Latex protective barriers such as gloves and rubber dam material have been used widely in restorative procedures for crown and bridge. However, the chemical used during latex glove fabrication is thought to inhibit the polymerization of elastomeric impression materials used for impression making which has a detrimental effect on the dimensional accuracy and surface definition of resultant casts used for restorative procedures. The objectives of the study were to examine the surface of different elastomeric impressions on contact with various gloves. Materials and Methods: This clinical study included a total of eighty specimens of two types of the putty elastomeric impression material were hand manipulated by wearing three different gloves materials and is placed on a marked area of a clean and alcohol-treated glass slab at room temperature. The specimens examined for any signs of polymerization inhibition. The specimen will be rated as being “inhibited” if any residue remains on the glass slab and absence of the above will result as “no inhibition.” Results: The results showed no interference with the polymerization inhibition of the selected elastomers followed by the nitrile glove. The latex gloves showed inhibited set of the elastomeric impression material but set after sometime confirming time-dependent inhibition of the impression material. Conclusion: This study shows that the use of latex and sometime nitrile gloves during crown and bridge procedures should be contraindicated and the use of vinyl gloves should be stressed when working with elastomeric impression materials.

  14. Dynamic testing of horseshoe designs at impact on synthetic and dirt Thoroughbred racetrack materials.

    Science.gov (United States)

    Mahaffey, C A; Peterson, M L; Thomason, J J; McIlwraith, C W

    2016-01-01

    Different horseshoe designs have been developed in an attempt to optimise footing for equine athletes. Horseshoe performance is assumed to be dependent on the surface and gait, but there are limited data on horseshoe performance on different surfaces, independent of gait variation. To quantify the dynamic loading for 3 aluminium racing shoe designs on Thoroughbred racetrack surface materials, using a biomechanical surface tester. A flat racing plate, a serrated V-Grip and a shoe with a 6 mm toe grab and 10 mm heel calks were tested on synthetic and dirt surfaces under typical operating conditions of temperature and moisture content for the respective material samples. Samples were tested under laboratory conditions, replicating a track surface by compacting material into a latex-lined mould surrounded by silica sand for representative boundary conditions. Peak loading and loading rates were measured vertically and horizontally (craniocaudal), simulating aspects of primary and secondary impacts of the hoof in a galloping horse. Maximum vertical and shear loads and loading rates were not significantly different between shoe types, with the exception of a reduced craniocaudal loading rate for the V-Grip shoe on the synthetic surface. All other statistical significance was related to the surface material. These 3 different Thoroughbred racing shoes do not have a significant impact on loading and loading rate, with the exception of the V-Grip shoe on a synthetic surface. Although the V-Grip may reduce craniocaudal peak load rates in a synthetic material with relatively high wax and/or low oil content, the reduction in load rate is less than the difference found between materials. This study indicates that shoeing has little effect, and that a track's surface material and its preparation have a significant effect on the dynamic loading during the impact phase of the stance. © 2015 EVJ Ltd.

  15. Hazardous chemicals in synthetic turf materials and their bioaccessibility in digestive fluids.

    Science.gov (United States)

    Zhang, Junfeng Jim; Han, In-Kyu; Zhang, Lin; Crain, William

    2008-11-01

    Many synthetic turf fields consist of not only artificial grass but also rubber granules that are used as infill. The public concerns about toxic chemicals possibly contained in either artificial (polyethylene) grass fibers or rubber granules have been escalating but are based on very limited information available to date. The aim of this research was to obtain data that will help assess potential health risks associated with chemical exposure. In this small-scale study, we collected seven samples of rubber granules and one sample of artificial grass fiber from synthetic turf fields at different ages of the fields. We analyzed these samples to determine the contents (maximum concentrations) of polycyclic aromatic hydrocarbons (PAHs) and several metals (Zn, Cr, As, Cd, and Pb). We also analyzed these samples to determine their bioaccessible fractions of PAHs and metals in synthetic digestive fluids including saliva, gastric fluid, and intestinal fluid through a laboratory simulation technique. Our findings include: (1) rubber granules often, especially when the synthetic turf fields were newer, contained PAHs at levels above health-based soil standards. The levels of PAHs generally appear to decline as the field ages. However, the decay trend may be complicated by adding new rubber granules to compensate for the loss of the material. (2) PAHs contained in rubber granules had zero or near-zero bioaccessibility in the synthetic digestive fluids. (3) The zinc contents were found to far exceed the soil limit. (4) Except one sample with a moderate lead content of 53 p.p.m., the other samples had relatively low concentrations of lead (3.12-5.76 p.p.m.), according to soil standards. However, 24.7-44.2% of the lead in the rubber granules was bioaccessible in the synthetic gastric fluid. (5) The artificial grass fiber sample showed a chromium content of 3.93 p.p.m., and 34.6% and 54.0% bioaccessibility of lead in the synthetic gastric and intestinal fluids, respectively.

  16. Synthetic Reference Materials Based on Polymer Films for the Control of Welding Fumes Composition

    Science.gov (United States)

    Kuznetsova, O. V.; Kuznetsova, A. N.; Begunova, L. A.

    2017-04-01

    Analysis of the current hygienic situation in the welding production showed that the intensification of welding processes involves the deterioration of air quality, which negatively affects the welders health. Welders are exposed to a variety of metal fumes, including manganese that may elevate the risk for neurological diseases. The control of metals concentration in the air of the working area is difficult due to the lack of reference materials. The creation of reference materials of welding fumes composition is a challenge due to chemical characteristics of their physical properties. Synthetic samples in a form of the polymer film containing powder particles of welding fumes were create. Studies on the selection of the polymer were done. Experiments proved that the qualitative materials of synthetic welding fumes are obtained by using polyvinyl alcohol. The metals concentration in the samples was determined by X-ray fluorescence analysis. The obtained data demonstrates indirectly the uniform distribution of welding fumes powder particles on the polymer film.

  17. An Evaluation of the Effect of Various Gloves on Polymerization Inhibition of Elastomeric Impression Materials: An In vitro Study.

    Science.gov (United States)

    Hiremath, Vinuta; Vinayakumar, G; Ragher, Mallikarjuna; Rayannavar, Sounyala; Bembalagi, Mahantesh; Ashwini, B L

    2017-11-01

    Latex protective barriers such as gloves and rubber dam material have been used widely in restorative procedures for crown and bridge. However, the chemical used during latex glove fabrication is thought to inhibit the polymerization of elastomeric impression materials used for impression making which has a detrimental effect on the dimensional accuracy and surface definition of resultant casts used for restorative procedures. The objectives of the study were to examine the surface of different elastomeric impressions on contact with various gloves. This clinical study included a total of eighty specimens of two types of the putty elastomeric impression material were hand manipulated by wearing three different gloves materials and is placed on a marked area of a clean and alcohol-treated glass slab at room temperature. The specimens examined for any signs of polymerization inhibition. The specimen will be rated as being "inhibited" if any residue remains on the glass slab and absence of the above will result as "no inhibition." The results showed no interference with the polymerization inhibition of the selected elastomers followed by the nitrile glove. The latex gloves showed inhibited set of the elastomeric impression material but set after sometime confirming time-dependent inhibition of the impression material. This study shows that the use of latex and sometime nitrile gloves during crown and bridge procedures should be contraindicated and the use of vinyl gloves should be stressed when working with elastomeric impression materials.

  18. Flexible Polymeric Materials Prepared by Radiation Copolymerization of MMA/ Pyridene in the Presence of Acrylic Acid

    International Nuclear Information System (INIS)

    Hegazy, D.E.

    2014-01-01

    Gamma-irradiation initiated copolymerization of methyl methacrylate (MMA) and pyridine (Py) was carried out at room temperature.To improve the obtained copolymer functionality and molecular weight, acrylic acid (AA) was incorporated into the mixture during irradiation. The samples were characterized by thermal analysis techniques (DSC and TGA), Fourier transform infrared spectroscopy (FTIR) and UV-VIS spectrometry. Molecular weight of the obtained copolymers was determined using gel permeation chromatography (GPC). The variation of refractive index and surface hardness with the molecular weight were also investigated. The results obtained show a decrease in glass transition temperature and the hardness (shore D) of the supporting matrix for P(MMA/Py) copolymers with a pronounced increase of the molecular weight. The addition of PAA into the matrix enhanced the hardness and shifts the glass transition temperature to a little higher temperature with a pronounced decrease in the melting temperature. The obtained materials maintain good structural order and flexibility resulting from the softening effect of pyridine onto MMA matrix. The studies performed made possible the selection of experimental conditions to be adequate for the production of new co polymeric materials with high molecular weight that having good flexibility and transparent properties.

  19. Crack initiation and propagation on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing

    Directory of Open Access Journals (Sweden)

    G. M. Domínguez Almaraz

    2015-10-01

    Full Text Available Crack initiation and propagation have been investigated on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing. Three controlled actions were implemented in order to carry out fatigue tests at very high frequency on this material of low thermal conductivity, they are: a The applying load was low to limit heat dissipation at the specimen neck section, b The dimensions of testing specimen were small (but fitting the resonance condition, in order to restraint the temperature gradient at the specimen narrow section, c Temperature at the specimen neck section was restrained by immersion in water or oil during ultrasonic fatigue testing. Experimental results are discussed on the basis of thermo-mechanical behaviour: the tail phenomenon at the initial stage of fatigue, initial shear yielding deformation, crazed development on the later stage, plastic strain on the fracture surface and the transition from low to high crack growth rate. In addition, a numerical analysis is developed to evaluate the J integral of energy dissipation and the stress intensity factor K, with the crack length

  20. Advances in synthetic optically active condensation polymers - A review

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available The study of optically active polymers is a very active research field, and these materials have exhibited a number of interesting properties. Much of the attention in chiral polymers results from the potential of these materials for several specialized utilizations that are chiral matrices for asymmetric synthesis, chiral stationary phases for the separation of racemic mixtures, synthetic molecular receptors and chiral liquid crystals for ferroelectric and nonlinear optical applications. Recently, highly efficient methodologies and catalysts have been developed to synthesize various kinds of optically active compounds. Some of them can be applied to chiral polymer synthesis. In a few synthetic approaches for optically active polymers, chiral monomer polymerization has essential advantages in applicability of monomer, apart from both asymmetric polymerization of achiral or prochiral monomers and enantioselective polymerization of a racemic monomer mixture. The following are the up to date successful approaches to the chiral synthetic polymers by condensation polymerization reaction of chiral monomers.

  1. Multiscale simulation of heterophase polymerization : application to the synthesis of multicomponent colloidal polymer particles

    OpenAIRE

    Hernandez Garcia, Hugo Fernando

    2008-01-01

    Heterophase polymerization is a technique widely used for the synthesis of high performance polymeric materials with applications including paints, inks, adhesives, synthetic rubber, biomedical applications and many others. Due to the heterogeneous nature of the process, many different relevant length and time scales can be identified. Each of these scales has a direct influence on the kinetics of polymerization and on the physicochemical and performance properties of the final product. There...

  2. Improving the binding capacities of protein A chromatographic materials by means of ligand polymerization.

    Science.gov (United States)

    Freiherr von Roman, Matthias; Berensmeier, Sonja

    2014-06-20

    Protein A chromatography is one of the most important techniques used in the purification of monoclonal antibodies. Due to the low dynamic binding capacity of protein A chromatographic materials compared to other stationary phases, protein A chromatography is often discussed to be the bottleneck among current purification processes. Several approaches were tested within this study in order to maximize IgG binding capacities of current acrylamido-based based resins. Genetic engineering techniques were used in order to polymerize one of the IgG binding domains (B-domain) of protein A from Staphylococcus aureus (SpA) to achieve ligands with an increased length. The solution-binding ratio and the total size of ligand-antibody complexes were used to characterize the interaction potential of novel ligands, revealing a relatively linear dependency between the number of binding domains upon the amount of bound antibody molecules. This relationship was also valid up to a ligand which was comprised of 8 B-domains after attaching them onto acrylamido-based based stationary phases using epoxy coupling techniques. Equilibrium binding capacities of more than 80mghIgGmL(-1) were achieved using the B8 ligand. Furthermore, static binding capacities, especially for smaller ligands comprised of fewer B-domains, were improved up to 87mghIgGmL(-1) using site-specific coupling chemistry, which is an improvement of more than 20% compared to commercially available materials. In order to evaluate pore exclusion effects due to the use of prolonged affinity ligands, prepared materials were characterized regarding their effective intraparticle porosity and breakthrough capacity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Design and fabrication hazard stakes golf course polymeric foam material empty bunch (EFB) fiber reinforced

    Science.gov (United States)

    Zulfahmi; Syam, B.; Wirjosentono, B.

    2018-02-01

    A golf course with obstacles in the forms of water obstacle and lateral water obstacle marked with the stakes which are called golf course obstacle stake in this study. This study focused on the design and fabrication of the golf course obstacle stake with a solid cylindrical geometry using EFB fiber-reinforced polimeric foam composite materials. To obtain the EFB fiber which is free from fat content and other elements, EFB is soaked in the water with 1% (of the watre total volume) NaOH. The model of the mould designed is permanent mould that can be used for the further refabrication process. The mould was designed based on resin-compound paste materials with talc powder plus E-glass fiber to make the mould strong. The composition of polimeric foam materials comprised unsaturated resin Bqtn-Ex 157 (70%), blowing agent (10%), fiber (10%), and catalyst (10%). The process of casting the polimeric foam composit materials into the mould cavity should be at vertical casting position, accurate interval time of material stirring, and periodical casting. To find out the strength value of the golf course obstacle stake product, a model was made and simulated by using the software of Ansys workbench 14.0, an impact loading was given at the height of 400 mm and 460 mm with the variation of golf ball speed (USGA standard) v = 18 m/s, v = 35 m/s, v = 66.2 m/s, v = 70 m/s, and v = 78.2 m/s. The clarification showed that the biggest dynamic explicit loading impact of Fmax = 142.5 N at the height of 460 mm with the maximum golf ball speed of 78.2 m/s did not experience the hysteresis effect and inertia effect. The largest deformation area occurred at the golf ball speed v = 66.2 mm/s, that is 18.029 mm (time: 2.5514e-004) was only concentrated around the sectional area of contact point of impact, meaning that the golf course obstacle stakes made of EFB fiber-reinforced polymeric foam materials have the geometric functional strength that are able to absorb the energy of golf ball

  4. Determining the molecular origin of radiation damage/enhancement in electro-optic polymeric materials through polarized light microscopy

    Science.gov (United States)

    Perez-Moreno, Javier

    2014-09-01

    Previous studies on the radiation effects upon polymer and polymer-based photonic materials suggest that the radiation resistance of the material is heavily dependent on the choice of polymer-host and guest-chromophore. The best results to date have been achieved with electro optic polymeric materials based on CLD1 doped in APC, which has resulted in improved performance at the device level upon gamma-ray irradiation at moderate doses. Still, our understanding of the physical mechanisms behind the enhancement of the performance is unclear. In this paper, we discuss how polarized light microscopy could be used as a means to quantify the effect of the different physical parameters that influence the optical response of electro-optic polymeric thin film samples.

  5. Determination of tin and germanium with nonylfluorone and polymeric flocculants in plant materials

    Directory of Open Access Journals (Sweden)

    Lidiya A. Ivanitsa

    2016-08-01

    Full Text Available New analytical systems «polymeric flocculant (PF−nonylfluorone (NF−metal ion» were proposed for spectrophotometric determination of germanium and tin in plant materials. It is shown the higher efficiency of the modifying action of PF nonionic nature (polyvinylpyrrolidone, PVP compared with the cationic PF polyhexamethyleneguanidine chloride. The presence of PVP increases absorbance complex solutions of both metals on 3.5 times. It is found that the compositions of binary complex Ge(IV and Sn(IV being equal to 1:2 in the presence of PF. The interval of optimum values of acidity is pH 1−4, concentration of modifier (PVP is 0.16 g/L. The difference in absorption of solutions PF–NF–metal and reference solution depends linearly on the concentration of metal in the range of 0.01−0.06 μg Ge(IV/mL (ε=1.35∙105, λ=515 nm and 0.18-0.90 μg Sn(IV/mL (ε=4.2∙104, λ=520 nm. The developed method was tested in the determination of germanium in garlic and aloe and tin in pomegranate. The correctness of the results were confirmed by independent spectrophotometric methods which used phenylfluorone and quercetin as reagents.

  6. Polymeric compositional materials based on polycarbonate for units of devices for transform solar into thermal energy

    Directory of Open Access Journals (Sweden)

    V. I. Sytar

    2017-06-01

    Full Text Available Modern development of the industry is complicated without introduction of energy-saving technologies based on renewable natural energy sources. Solar and wind power plants, heat generators, solar collectors are wide spread in developed countries. One of it is device for transform solar into thermal energy. It is costly devices with low level of reliability and durability. Therefore actual tasks of this work are reduction cost of device for transform solar into thermal energy and increase it level of reliability and durability. These tasks are carried out by the way of substitution the main elements of device for transform solar into thermal energy by development polymeric compositional materials (PCM. As the polymer matrix is selected polycarbonate. This matrix is modified by silicon rubber and filled by graphite. The silicon rubber increase technological effectiveness by procedure of obtaining PCM. Graphite significantly increase tribotechnical properties of PCM in friction units with steel. Developed PCM can be recommended for application in main elements of device for transform solar into thermal energy, that lead to increasing of it level of reliability and durability.

  7. Vapor phase polymerization deposition of conducting polymer/graphene nanocomposites as high performance electrode materials.

    Science.gov (United States)

    Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong

    2013-05-22

    In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.

  8. Determination of phthalates in food packing materials by electrokinetic chromatography with polymeric pseudostationary phase.

    Science.gov (United States)

    Ni, Xinjiong; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2016-01-01

    Polymeric pseudostationary phase (PSP), formed by random copolymer poly (stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)), was used in electrokinetic chromatography (EKC) to separate 15 kinds of phthalates (PAEs). The organic solvent modifier is a key factor for the separation of PAEs. Without organic solvents, only four kinds of PAEs with smaller molecular weight could be separated in the running buffer containing 1% P(SMA-co-MAA). The other eleven kinds of PAEs with larger molecular weight could be separated within 25 min by adding 40% (v/v) methanol and 2% (v/v) 1-butanol in the running buffer. The linear ranges of 15 kinds of PAEs were between 2 and 200mg/L, and the limit of detection based on the ratio of signal to noise of 3 were between 1 and 3mg/L. The method was applied to determination of PAEs in 6 kinds of food packing materials. The recoveries were between 81% and 118% with the RSD less than 4%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Barrier Properties of Polymeric Packaging Materials to Major Aroma Volatiles in Herbs

    Directory of Open Access Journals (Sweden)

    Leelaphiwat Pattarin

    2016-01-01

    Full Text Available This study determined the main transport coefficients (diffusion, solubility and permeability of key aroma compounds present in tropical herbs (eucalyptol and estragol through low‒density polyethylene (LDPE, polypropylene (PP, nylon (Nylon, polyethylene terephthalate (PET, metalized‒polyethylene terephthalate (MPET and poly(lactic acid (PLA films at 15 and 25 °C. The concentration of aroma compounds permeating through the films were evaluated at various time intervals using a gas chromatograph flame ionization detector (GC–FID. Results showed that the diffusion coefficients of aroma compounds were highest in LDPE whereas the solubility coefficients were highest in PLA at both temperatures. PLA had the highest permeability coefficients for estragol at both temperatures. PP and LDPE had the highest permeability coefficients for eucalyptol at 15 and 25 °C, respectively. MPET had the lowest permeability for both aroma compounds studied. Aroma barrier properties can be used when selecting polymeric packaging materials to prevent aroma loss in various food and consumer products.

  10. Novel Polymeric Dielectric Materials for the Additive Manufacturing of Microwave Devices

    Science.gov (United States)

    O'Keefe, Shamus E.

    The past decade has seen a rapid increase in the deployment of additive manufacturing (AM) due to the perceived benefits of lower cost, higher quality, and a smaller environmental footprint. And while the hardware behind most of AM processes is mature, the study and development of material feedstock(s) are in their infancy, particularly so for niche areas. In this dissertation, we look at novel polymeric materials to support AM for microwave devices. Chapter 1 provides an overview of the benefits of AM, followed by the specific motivation for this work, and finally a scope defining the core objectives. Chapter 2 delves into a higher-level background of dielectric theory and includes a brief overview of the two common dielectric spectroscopy techniques used in this work. The remaining chapters, summarized below, describe experiments in which novel polymeric materials were developed and their microwave dielectric properties measured. Chapter 3 describes the successful synthesis of polytetrafluroethylene (PTFE)/polyacrylate (PA) core-shell nanoparticles and their measured microwave dielectric properties. PTFE/PA core-shell nanoparticles with spherical morphology were successfully made by aerosol deposition followed by a brief annealing. The annealing temperature is closely controlled to exceed the glass transition (Tg) of the PA shell yet not exceed the Tg of the PTFE core. Furthermore, the annealing promotes coalescence amongst the PA shells of neighboring nanoparticles and results in the formation of a contiguous PA matrix that has excellent dispersion of PTFE cores. The measured dielectric properties agree well with theoretical predictions and suggest the potential of this material as a feedstock for AM microwave devices. Chapter 4 delves into the exploration of various polyimide systems with the aim of replacing the PA in the previously studied PTFE/PA core-shell nanoparticles. Fundamental relationships between polymer attributes (flexibility/rigidity and

  11. High Performance Polymeric Materials for Sport Equipment, Functional Clothing and Footwear: Interactions of Materials, Human Body and Environment in Terms of Mechanical, Thermal and Ergonomic Properties

    OpenAIRE

    Moncalero, Matteo

    2017-01-01

    The study of the influence on mechanical, thermal and ergonomic properties of advanced polymeric materials used to produce outdoors gear and footwear has been the topic of the present PhD thesis. The study has addressed several aspects of ergonomics, safety and mechanical properties of sport equipment: - The evaluation of thermo-physiological comfort of soft-shell back protectors, investigating how design and materials can affect moisture management and heat loss. Heat retention has been ...

  12. Polymeric Luminescent Compositions Doped with Beta-Diketonates Boron Difluoride as Material for Luminescent Solar Concentrator

    Science.gov (United States)

    Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.

    2017-11-01

    In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.

  13. Electrochromism for organic materials in polymeric all-solid-state systems

    Science.gov (United States)

    Hirai, Yoshihiko; Tani, Chizuka

    1983-10-01

    This letter reports a new electrochromic polymeric film system consisting of a polymer, an electrochromic (EC) dye which is pyrazoline or tetrathiafulvalene (TTF), and lithium perchlorate (LiClO4). The electrochromic cell structure is glass/ITO/polymeric EC film/Au film. The cell using pyrazoline as an EC dye exhibited yellow coloration at 1.0 V and the cell with TTF exhibited red coloration at 3.5 V. These cells exhibited memory.

  14. Polar, Functional Diene-Based Materials: Free Radical Polymerization of 2-Cyanomethyl-1,3-Butadiene

    Energy Technology Data Exchange (ETDEWEB)

    Jing, Y [Iowa State Univ., Ames, IA (United States)

    2000-09-12

    This thesis presented here focuses on the synthesis of 2-cyanomethyl-l ,3-butadiene and the free-radical polymerization of this monomer. In addition to the bulk, solution and emulsion polymerizations,, copolymerization with styrene and acrylonitrile will also be discussed. The comonomers were chosen due to the potential applications mentioned above. Furthermore, the thermal properties and rnicrostructures of the homopolymers and the copolymers are examined.

  15. Oxygen diffusivity of biologic and synthetic scaffold materials for tissue engineering.

    Science.gov (United States)

    Valentin, Jolene E; Freytes, Donald O; Grasman, Jonathan M; Pesyna, Colin; Freund, John; Gilbert, Thomas W; Badylak, Stephen F

    2009-12-15

    Scaffolds for tissue engineering and regenerative medicine applications are commonly manufactured from synthetic materials, intact or isolated components of extracellular matrix (ECM), or a combination of such materials. After surgical implantation, the metabolic requirements of cells that populate the scaffold depend upon adequate gas and nutrient exchange with the surrounding microenvironment. The present study measured the oxygen transfer through three biologic scaffold materials composed of ECM including small intestinal submucosa (SIS), urinary bladder submucosa (UBS), and urinary bladder matrix (UBM), and one synthetic biomaterial, Dacron. The oxygen diffusivity was calculated from Fick's first law of diffusion. Each material permitted measurable oxygen diffusion. The diffusivity of SIS was found to be dependent on the direction of oxygen transfer; the oxygen transfer in the abluminal-to-luminal direction was significantly greater than the luminal-to-abluminal direction. The oxygen diffusivity of UBM and UBS were similar despite the presence of an intact basement membrane on the luminal surface of UBM. Dacron showed oxygen diffusivity values seven times greater than the ECM biomaterials. The current study showed that each material has unique oxygen diffusivity values, and these values may be dependent on the scaffold's ultrastructure.

  16. Mechanosensing of cells in 3D gel matrices based on natural and synthetic materials.

    Science.gov (United States)

    Shan, Jieling; Chi, Qingjia; Wang, Hongbing; Huang, Qiping; Yang, Li; Yu, Guanglei; Zou, Xiaobing

    2014-11-01

    Cells in vivo typically are found in 3D matrices, the mechanical stiffness of which is important to the cell and tissue-scale biological processes. Although it is well characterized that as to how cells sense matrix stiffness in 2D substrates, the scenario in 3D matrices needs to be explored. Thus, materials that can mimic native 3D environments and possess wide, physiologically relevant elasticity are highly desirable. Natural polymer-based materials and synthetic hydrogels could provide an better 3D platforms to investigate the mechano-response of cells with stiffness comparable to their native environments. However, the limited stiffness range together with interdependence of matrix stiffness and adhesive ligand density are inherent in many kinds of materials, and hinder efforts to demonstrate the true effects contributed by matrix stiffness. These problems have been addressed by the recently emerging exquisitely designed materials based on native matrix components, designer matrices, and synthetic polymers. In this review, a variety of materials with a wide stiffness range that mimic the mechanical environment of native 3D matrices and the independent affection of stiffness for cellular behavior and tissue-level processes are discussed. © 2014 International Federation for Cell Biology.

  17. Academy of Dental Materials guidance-Resin composites: Part II-Technique sensitivity (handling, polymerization, dimensional changes).

    Science.gov (United States)

    Ferracane, J L; Hilton, T J; Stansbury, J W; Watts, D C; Silikas, N; Ilie, N; Heintze, S; Cadenaro, M; Hickel, R

    2017-11-01

    The objective of this work, commissioned by the Academy of Dental Materials, was to review and critically appraise test methods to characterize properties related to critical issues for dental resin composites, including technique sensitivity and handling, polymerization, and dimensional stability, in order to provide specific guidance to investigators planning studies of these properties. The properties that relate to each of the main clinical issues identified were ranked in terms of their priority for testing, and the specific test methods within each property were ranked. An attempt was made to focus on the tests and methods likely to be the most useful, applicable, and supported by the literature, and where possible, those showing a correlation with clinical outcomes. Certain methods are only briefly mentioned to be all-inclusive. When a standard test method exists, whether from dentistry or another field, this test has been identified. Specific examples from the literature are included for each test method. The properties for evaluating resin composites were ranked in the priority of measurement as follows: (1) porosity, radiopacity, sensitivity to ambient light, degree of conversion, polymerization kinetics, depth of cure, polymerization shrinkage and rate, polymerization stress, and hygroscopic expansion; (2) stickiness, slump resistance, and viscosity; and (3) thermal expansion. The following guidance is meant to aid the researcher in choosing the most appropriate test methods when planning studies designed to assess certain key properties and characteristics of dental resin composites, specifically technique sensitivity and handling during placement, polymerization, and dimensional stability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Vinylation of a Secondary Amine Core with Calcium Carbide for Efficient Post-Modification and Access to Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Konstantin S. Rodygin

    2018-03-01

    Full Text Available We developed a simple and efficient strategy to access N-vinyl secondary amines of various naturally occurring materials using readily available solid acetylene reagents (calcium carbide, KF, and KOH. Pyrrole, pyrazole, indoles, carbazoles, and diarylamines were successfully vinylated in good yields. Cross-linked and linear polymers were synthesized from N-vinyl carbazoles through free radical and cationic polymerization. Post-modification of olanzapine (an antipsychotic drug substance was successfully performed.

  19. Effect of membrane polymeric materials on relationship between surface pore size and membrane fouling in membrane bioreactors

    Science.gov (United States)

    Miyoshi, Taro; Yuasa, Kotaku; Ishigami, Toru; Rajabzadeh, Saeid; Kamio, Eiji; Ohmukai, Yoshikage; Saeki, Daisuke; Ni, Jinren; Matsuyama, Hideto

    2015-03-01

    We investigated the effect of different membrane polymeric materials on the relationship between membrane pore size and development of membrane fouling in a membrane bioreactor (MBR). Membranes with different pore sizes were prepared using three different polymeric materials, cellulose acetate butyrate (CAB), polyvinyl butyral (PVB), and polyvinylidene fluoride (PVDF), and the development of membrane fouling in each membrane was evaluated by batch filtration tests using a mixed liquor suspension obtained from a laboratory-scale MBR. The results revealed that the optimal membrane pore size to mitigate membrane fouling differed depending on membrane polymeric material. For PVDF membranes, the degree of membrane fouling decreased as membrane pore size increased. In contrast, CAB membranes with smaller pores had less fouling propensity than those with larger ones. Such difference can be attributed to the difference in major membrane foulants in each membrane; in PVDF, they were small colloids or dissolved organics in which proteins are abundant, and in CAB, microbial flocs. The results obtained in this study strongly suggested that optimum operating conditions of MBRs differ depending on the characteristics of the used membrane.

  20. Functionalization of Pyrene To Prepare Luminescent Materials-Typical Examples of Synthetic Methodology.

    Science.gov (United States)

    Feng, Xing; Hu, Jian-Yong; Redshaw, Carl; Yamato, Takehiko

    2016-08-16

    Pyrene-based π-conjugated materials are considered to be an ideal organic electro-luminescence material for application in semiconductor devices, such as organic light-emitting diodes (OLEDs), organic field-effect transistors (OFETs) and organic photovoltaics (OPVs), and so forth. However, the great drawback of employing pyrene as an organic luminescence material is the formation of excimer emission, which quenches the efficiency at high concentration or in the solid-state. Thus, in order to obtain highly efficient optical devices, scientists have devoted much effort to tuning the structure of pyrene derivatives in order to realize exploitable properties by employing two strategies, 1) introducing a variety of moieties at the pyrene core, and 2) exploring effective and convenient synthetic strategies to functionalize the pyrene core. Over the past decades, our group has mainly focused on synthetic methodologies for functionalization of the pyrene core; we have found that formylation/acetylation or bromination of pyrene can selectly lead to functionalization at K-region by Lewis acid catalysis. Herein, this Minireview highlights the direct synthetic approaches (such as formylation, bromination, oxidation, and de-tert-butylation reactions, etc.) to functionalize the pyrene in order to advance research on luminescent materials for organic electronic applications. Further, this article demonstrates that the future direction of pyrene chemistry is asymmetric functionalization of pyrene for organic semiconductor applications and highlights some of the classical asymmetric pyrenes, as well as the latest breakthroughs. In addition, the photophysical properties of pyrene-based molecules are briefly reviewed. To give a current overview of the development of pyrene chemistry, the review selectively covers some of the latest reports and concepts from the period covering late 2011 to the present day. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Laparoscopic sleeve gastrectomy using a synthetic bioabsorbable staple line reinforcement material: Post-operative complications and 6 year outcomes

    Directory of Open Access Journals (Sweden)

    Mahdi Saleh

    2016-09-01

    Conclusion: The synthetic bioabsorbable reinforcement material shows no staple line leaks making it safe to use. LSG as a procedure had a high resolution of obesity-related comorbidities as well as sustainable long-term weight loss.

  2. Nanoparticles and nonlinear thermal radiation properties in the rheology of polymeric material

    Directory of Open Access Journals (Sweden)

    M. Awais

    2018-03-01

    Full Text Available The present analysis is related to the dynamics of polymeric liquids (Oldroyd-B model with the presence of nanoparticles. The rheological system is considered under the application of nonlinear thermal radiations. Energy and concentration equations are presented when thermophoresis and Brownian motion effects are present. Bidirectional form of stretching is considered to interpret the three-dimensional flow dynamics of polymeric liquid. Making use of the similarity transformations, problem is reduced into ordinary differential system which is approximated by using HAM. Influence of physical parameters including Deborah number, thermophoresis and Brownian motion on velocity, temperature and mass fraction expressions are plotted and analyzed. Numerical values for local Sherwood and Nusselt numbers are presented and discussed. Keywords: Nanoparticles, Polymeric liquid, Oldroyd-B model, Nonlinear thermal radiation

  3. Effect of conventional and experimental gingival retraction solutions on the tensile strength and inhibition of polymerization of four types of impression materials

    Directory of Open Access Journals (Sweden)

    Sérgio Sábio

    2008-08-01

    Full Text Available In the present study, two types of tests (tensile strength test and polymerization inhibition test were performed to evaluate the physical and chemical properties of four impression materials [a polysulfide (Permlastic, a polyether (Impregum, a condensation silicone (Xantopren and a polyvinylsiloxane (Aquasil ,3; when polymerized in contact with of one conventional (Hemostop and two experimental (Vislin and Afrin gingival retraction solutions. For the tensile strength test, the impression materials were mixed and packed into a steel plate with perforations that had residues of the gingival retraction solutions. After polymerization, the specimens were tested in tensile strength in a universal testing machine. For the polymerization inhibition test, specimens were obtained after taking impressions from a matrix with perforations that contained 1 drop of the gingival retraction solutions. Two independent examiners decided on whether or not impression material remnants remained unpolymerized, indicating interference of the chemical solutions. Based on the analysis of the results of both tests, the following conclusions were reached: 1. The tensile strength of the polysulfide decreased after contact with Hemostop and Afrin. 2. None of the chemical solutions inhibited the polymerization of the polysulfide; 3. The polyether presented lower tensile strength after polymerization in contact with the three gingival retraction agents; 4. The polyether had its polymerization inhibited only by Hemostop; 5. None of the chemical solutions affected the tensile strength of the condensation silicone; 6. Only Hemostop inhibited the polymerization of the condensation silicone; 7. The polyvinylsiloxane specimens polymerized in contact with Hemostop had significantly lower tensile strength; 8. Neither of the chemical solutions (Afrin and Vislin affected the tensile strength of the polyvinylsiloxane and the condensation silicone; 9. Results of the tensile strength

  4. Effect of conventional and experimental gingival retraction solutions on the tensile strength and inhibition of polymerization of four types of impression materials.

    Science.gov (United States)

    Sábio, Sérgio; Franciscone, Paulo Afonso; Mondelli, José

    2008-01-01

    In the present study, two types of tests (tensile strength test and polymerization inhibition test) were performed to evaluate the physical and chemical properties of four impression materials [a polysulfide (Permlastic), a polyether (Impregum), a condensation silicone (Xantopren) and a polyvinylsiloxane (Aquasil)] when polymerized in contact with of one conventional (Hemostop) and two experimental (Vislin and Afrin) gingival retraction solutions. For the tensile strength test, the impression materials were mixed and packed into a steel plate with perforations that had residues of the gingival retraction solutions. After polymerization, the specimens were tested in tensile strength in a universal testing machine. For the polymerization inhibition test, specimens were obtained after taking impressions from a matrix with perforations that contained 1 drop of the gingival retraction solutions. Two independent examiners decided on whether or not impression material remnants remained unpolymerized, indicating interference of the chemical solutions. Based on the analysis of the results of both tests, the following conclusions were reached: 1. The tensile strength of the polysulfide decreased after contact with Hemostop and Afrin. 2. None of the chemical solutions inhibited the polymerization of the polysulfide; 3. The polyether presented lower tensile strength after polymerization in contact with the three gingival retraction agents; 4. The polyether had its polymerization inhibited only by Hemostop; 5. None of the chemical solutions affected the tensile strength of the condensation silicone; 6. Only Hemostop inhibited the polymerization of the condensation silicone; 7. The polyvinylsiloxane specimens polymerized in contact with Hemostop had significantly lower tensile strength; 8. Neither of the chemical solutions (Afrin and Vislin) affected the tensile strength of the polyvinylsiloxane and the condensation silicone; 9. Results of the tensile strength and polymerization

  5. Volatile metabolites from microorganisms grown on humid building materials and synthetic media.

    Science.gov (United States)

    Claeson, Anna-Sara; Levin, Jan-Olof; Blomquist, Göran; Sunesson, Anna-Lena

    2002-10-01

    Growth of different microorganisms is often related to dampness in buildings. Both fungi and bacteria produce complicated mixtures of volatile organic compounds that include hydrocarbons, alcohols, ketones, sulfur- and nitrogen-containing compounds etc. Microbially produced substances are one possible explanation of odour problems and negative health effects in buildings affected by microbial growth. A mixture of five fungi, Aspergillus versicolor, Fusarium culmorum, Penicillium chrysogenum, Ulocladium botrytis and Wallemia sebi were grown on three different humid building materials (pinewood, particle board and gypsum board) and on one synthetic medium. Six different sampling methods were used, to be able to collect both non-reactive volatile organic compounds and reactive compounds such as volatile amines, aldehydes and carboxylic acids. Analysis was performed using gas chromatography, high-performance liquid chromatography and ion chromatography, mass spectrometry was used for identification of compounds. The main microbially produced metabolites found on pinewood were ketones (e.g. 2-heptanone) and alcohols (e.g. 2-methyl-1-propanol). Some of these compounds were also found on particle board, gypsum board and the synthetic medium, but there were more differences than similarities between the materials. For example, dimethoxymethane and 1,3,5-trioxepane and some nitrogen containing compounds were found only on particle board. The metabolite production on gypsum board was very low, although some terpenes (e.g. 3-carene) could be identified as fungal metabolites. On all materials, except gypsum board, the emission of aldehydes decreased during microbial growth. No low molecular weight carboxylic acids were identified.

  6. Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials

    International Nuclear Information System (INIS)

    Rezzonico, Daniele; Kwon, Seong-Ji; Figi, Harry; Kwon, O-Pil; Jazbinsek, Mojca; Guenter, Peter

    2008-01-01

    We compare the photochemical stability of the nonlinear optical chromophore configurationally locked polyene 2-(3-[2-(4-dimethylaminophenyl)vinyl]-5,5-dimethylcyclohex-2-enylidene) malononitrile (DAT2) embedded in a polymeric matrix and in a single-crystalline configuration. The results show that, under resonant light excitations, the polymeric compound degrades through an indirect process, while the DAT2 crystal follows a slow direct process. We show that chromophores in a crystalline environment exhibit three orders of magnitude better photostability as compared to guest-host polymer composites

  7. Weatherability Evaluation of Nanocomposite Polymeric Treatments for Surface Protection of Construction Materials

    Science.gov (United States)

    Scarfato, Paola; Letizia Fariello, Maria; Di Maio, Luciano; Incarnato, Loredana

    2010-06-01

    In this work the protective efficacy and stability against UV weathering of polymeric nanocomposites for concrete (CLS) surface protection have been evaluated. In particular, nanocomposite hybrids were prepared dispersing a commercial organomodified montmorillonite (Cloisite 30B) in two different polymeric matrices, one based on fluoroelastomers (Fluoline CP), the other on silane and siloxane (Antipluviol S). The obtained systems were characterized by several techniques (SAXD, DSC, TGA, FT-IR, contact angle measurements, colorimetry), before and after accelerated aging due to UV exposure, in order to evaluate the effect of the nanoscale dispersion of the organoclay on the properties and the UV stability of the treatments.

  8. Weatherability Evaluation of Nanocomposite Polymeric Treatments for Surface Protection of Construction Materials

    International Nuclear Information System (INIS)

    Scarfato, Paola; Letizia Fariello, Maria; Di Maio, Luciano; Incarnato, Loredana

    2010-01-01

    In this work the protective efficacy and stability against UV weathering of polymeric nanocomposites for concrete (CLS) surface protection have been evaluated. In particular, nanocomposite hybrids were prepared dispersing a commercial organomodified montmorillonite (Cloisite 30B) in two different polymeric matrices, one based on fluoroelastomers (Fluoline CP), the other on silane and siloxane (Antipluviol S). The obtained systems were characterized by several techniques (SAXD, DSC, TGA, FT-IR, contact angle measurements, colorimetry), before and after accelerated aging due to UV exposure, in order to evaluate the effect of the nanoscale dispersion of the organoclay on the properties and the UV stability of the treatments.

  9. Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials.

    Science.gov (United States)

    Rezzonico, Daniele; Kwon, Seong-Ji; Figi, Harry; Kwon, O-Pil; Jazbinsek, Mojca; Günter, Peter

    2008-03-28

    We compare the photochemical stability of the nonlinear optical chromophore configurationally locked polyene 2-{3-[2-(4-dimethylaminophenyl)vinyl]-5,5-dimethylcyclohex-2-enylidene} malononitrile (DAT2) embedded in a polymeric matrix and in a single-crystalline configuration. The results show that, under resonant light excitations, the polymeric compound degrades through an indirect process, while the DAT2 crystal follows a slow direct process. We show that chromophores in a crystalline environment exhibit three orders of magnitude better photostability as compared to guest-host polymer composites.

  10. Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials.

    Science.gov (United States)

    Funk, Natasha; Vera, Marc; Szewciw, Lawrence J; Barthelat, Francois; Stoykovich, Mark P; Vernerey, Franck J

    2015-03-18

    The scaled skin of fish is a high-performance natural armor that represents a source of inspiration for novel engineering designs. In this paper, we present a biomimetic fish skin material, fabricated with a design and components that are simple, that achieves many of the advantageous attributes of natural materials, including the unique combination of flexibility and mechanical robustness. The bioinspired fish skin material is designed to replicate the structural, mechanical, and functional aspects of a natural teleost fish skin comprised of leptoid-like scales, similar to that of the striped red mullet Mullus surmuletus. The man-made fish skin material consists of a low-modulus elastic mesh or "dermis" layer that holds rigid, plastic scales. The mechanics of the synthetic material is characterized under in-plane, bending, and indentation modes of deformation and is successfully described by theoretical deformation models that have been developed. This combined experimental and modeling approach elucidates the critical mechanisms by which the composite material achieves its unique properties and provides design rules that allow for the engineering of scaled skins. Such artificial scaled skins that are flexible, lightweight, transparent, and robust under mechanical deformation may thus have potential as thin protective coatings for soft materials.

  11. A study on synthetic method and material characteristics of magnesium ammine chloride as ammonia transport materials for solid SCR

    International Nuclear Information System (INIS)

    Shin, Jong Kook; Yoon, Cheon Seog; Kim, Hong Suk

    2015-01-01

    Among various ammonium salts and metal ammine chlorides used as solid materials for the sources of ammonia with solid SCR for lean NOx reduction, magnesium ammine chloride was taken up for study in this paper because of its ease of handling and safety. Lab-scale synthetic method of magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%). To understand material characteristics for lab-made magnesium ammine chloride, DA, IC, FT-IR, XRD and SDT analyses were performed using the published data available in literature. From the analytical results, the water content in the lab-made magnesium ammine chloride can be determined. A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%

  12. Effect of chemical disinfectants and repair materials on the transverse strength of repaired heat-polymerized acrylic resin.

    Science.gov (United States)

    Ellakwa, Ayman E; El-Sheikh, Ali M

    2006-01-01

    The purpose of this study was to evaluate both the effects of immersion in different chemical disinfectant solutions and the type of repair material on the transverse strength of repaired heat-polymerized acrylic resin. A total of 110 rectangular specimens (65 x 10 x 3 mm) of heat-polymerized acrylic resin (Triplex) were fabricated. After polymerization, the specimens were polished, then stored in distilled water at 37 degrees C for 1 week. The specimens were divided into 11 groups (n = 10) coded A to K. Specimens of Group A remained intact (control). The specimens of Groups C to F and Groups H to K were immersed in the following chemical disinfectant solutions (1%, 2.5%, and 5.25% sodium hypochlorite and 2% glutaraldehyde, respectively) for 10 minutes. The specimens of all groups except those of Group A were sectioned in the middle to create 10 mm gaps and repaired with the same resin (Groups B to F) and autopolymerizing acrylic resin (Groups G to K). The specimens of Groups C to F and Groups H to K were again immersed in the disinfectant solutions in the same sequence. The transverse strength (N/mm(2)) was tested for failure in a universal testing machine, at a crosshead speed of 5 mm/min. Two-way analysis of variance (ANOVA) was performed to evaluate the effects of both the disinfectant solutions and repair materials on the transverse strength of repaired specimens. All data were statistically analyzed using one-way analysis of variance followed by Tukey's test at 95% confidence level. The repaired specimens treated with/without disinfectant solutions showed similar (p > 0.05) transverse strength values. No differences (p > 0.05) were detected among the repaired specimens either with heat-polymerized or autopolymerizing acrylic resins. The intact specimens showed transverse strength values (86.9 +/- 11.8) significantly higher (p disinfectants for the immersion period tested (10 min). The repair material, either heat-polymerized or autopolymerizing acrylic resin

  13. Origins and Development of Initiation of Free Radical Polymerization Processes

    Directory of Open Access Journals (Sweden)

    Dietrich Braun

    2009-01-01

    Full Text Available At present worldwide about 45% of the manufactured plastic materials and 40% of synthetic rubber are obtained by free radical polymerization processes. The first free radically synthesized polymers were produced between 1910 and 1930 by initiation with peroxy compounds. In the 1940s the polymerization by redox processes was found independently and simultaneously at IG Farben in Germany and ICI in Great Britain. In the 1950s the systematic investigation of azo compounds as free radical initiators followed. Compounds with labile C–C-bonds were investigated as initiators only in the period from the end of the 1960s until the early 1980s. At about the same time, iniferters with cleavable S–S-bonds were studied in detail. Both these initiator classes can be designated as predecessors for “living” or controlled free radical polymerizations with nitroxyl-mediated polymerizations, reversible addition fragmentation chain transfer processes (RAFT, and atom transfer radical polymerizations (ATRP.

  14. Laser assisted removal of synthetic painting-conservation materials using UV radiation of ns and fs pulse duration: Morphological studies on model samples

    Science.gov (United States)

    Pouli, P.; Nevin, A.; Andreotti, A.; Colombini, P.; Georgiou, S.; Fotakis, C.

    2009-02-01

    In an effort to establish the optimal parameters for the cleaning of complex layers of polymers (mainly based on acrylics, vinyls, epoxys known as Elvacite, Laropal, Paraloid B72, among others) applied during past conservation treatments on the surface of wall paintings, laser cleaning tests were performed with particular emphasis on the plausible morphological modifications induced in the remaining polymeric material. Pulse duration effects were studied using laser systems of different pulse durations ( ns and fs) at 248 nm. Prior to tests on real fragments from the Monumental Cemetery in Pisa (Italy) which were coated with different polymers, attention was focused on the study of model samples consisting of analogous polymer films cast on quartz disks. Ultraviolet irradiation is strongly absorbed by the studied materials both in ns and fs irradiation regimes. However, it is demonstrated that ultrashort laser pulses result in reduced morphological alterations in comparison to ns irradiation. In addition, the dependence of the observed alterations on the chemical composition of the consolidation materials in both regimes was examined. Most importantly, it was shown that in this specific conservation problem, an optimum cleaning process may rely not only on the minimization of laser-induced morphological changes but also on the exploitation of the conditions that favour the disruption of the adhesion between the synthetic material and the painting.

  15. A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit

    International Nuclear Information System (INIS)

    Koyuncu, Fatma Baycan; Koyuncu, Sermet; Ozdemir, Eyup

    2010-01-01

    We report here the synthesis of a novel polymeric electrochromic material containing carbazole (Cbz)-donor and 1,8-napthalimide-acceptor as subunit. The band gap E g was measured using UV-vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Due to intramolecular electron transfer from Cbz-donor to 1,8-napthalimide-acceptor, the fluorescence quenching was observed. When the spectro-electrochemical and electrochromic properties of polymer film were investigated, various tones of green color were obtained on the polymeric film. In the positive regime, the polymer film obtained thereby is dark green resulting from the association of carbazolylium cation radicals at oxidized state and then it can be bleached by electrochemical reduction. Besides, in the negative regime, yellowish green color of film converted to blue attributed to reduction of the 1,8-napthalimide moiety. Finally, the polymeric electrochromic exhibits multi-electrochromic behavior, high redox stability, high coloration efficiency and reasonable response time.

  16. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    International Nuclear Information System (INIS)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.; Garcia, Ben J.; Sweet, Lucas E.; Carman, April J.; Eiden, Gregory C.

    2013-01-01

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in

  17. Push-out bond strength of bioceramic materials in a synthetic tissue fluid.

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2013-12-01

    Full Text Available This study compared the push-out bond strength of EndoSequence Root Repair Material (ERRM and Bioaggregate (BA, new bioceramic materials, to that of mineral trioxide aggregate (MTA after incubation in phosphate-buffered saline (PBS, a synthetic tissue fluid, for either 1 week or 2 months.One-hundred and twenty root sections were filled with ProRoot MTA, BA, or ERRM. Each tested material was then randomly divided into two subgroups (n = 20: root sections were immersed in PBS for 1 week or 2 months. The bond strengths were measured using a universal testing machine. After that, the failure modes were examined with stereomicroscopy and scanning electron microscopy (SEM. The push-out data and failure mode categories were analyzed by two-way ANOVA and chi-square tests, respectively.The bond strength of ERRM was significantly higher than that of BA and MTA at both incubation periods. No significant difference was found between the bond strength of MTA and BA at either 1 week or 2 months. Increasing the incubation time to 2 months resulted in a significant increase in bond strength of all the materials. The failure mode was mainly mixed for MTA and BA, but cohesive for ERRM at both incubation periods.ERRM had significantly higher bond strength to root canal walls compared to MTA and BA. Increasing the incubation time significantly improved the bond strength and bioactive reaction products of all materials.

  18. Nanoparticles and nonlinear thermal radiation properties in the rheology of polymeric material

    Science.gov (United States)

    Awais, M.; Hayat, T.; Muqaddass, N.; Ali, A.; Aqsa; Awan, Saeed Ehsan

    2018-03-01

    The present analysis is related to the dynamics of polymeric liquids (Oldroyd-B model) with the presence of nanoparticles. The rheological system is considered under the application of nonlinear thermal radiations. Energy and concentration equations are presented when thermophoresis and Brownian motion effects are present. Bidirectional form of stretching is considered to interpret the three-dimensional flow dynamics of polymeric liquid. Making use of the similarity transformations, problem is reduced into ordinary differential system which is approximated by using HAM. Influence of physical parameters including Deborah number, thermophoresis and Brownian motion on velocity, temperature and mass fraction expressions are plotted and analyzed. Numerical values for local Sherwood and Nusselt numbers are presented and discussed.

  19. Living Polycondensation: Synthesis of Well-Defined Aromatic Polyamide-Based Polymeric Materials

    KAUST Repository

    Alyami, Mram Z.

    2016-11-01

    Chain growth condensation polymerization is a powerful tool towards the synthesis of well-defined polyamides. This thesis focuses on one hand, on the synthesis of well-defined aromatic polyamides with different aminoalkyl pendant groups with low polydispersity and controlled molecular weights, and on the other hand, on studying their thermal properties. In the first project, well-defined poly (N-octyl-p-aminobenzoate) and poly (N-butyl-p-aminobenzoate) were synthesized, and for the first time, their thermal properties were studied. In the second project, ethyl4-aminobenzoate, ethyl 4-octyl aminobenzoate and 4-(hydroxymethyl) benzoic acid were used as novel efficient initiators of ε-caprolactone with t-BuP2 as a catalyst. Macroinitiator and Macromonomer of poly (ε-caprolactone) were synthesized with ethyl 4-octyl aminobenzoate and ethyl 4-aminobenzoate as initiators to afford polyamide-block-poly (ε-caprolactone) and polyamide-graft-poly (ε-caprolactone) by chain growth condensation polymerization (CGCP). In the third project, a new study has been done on chain growth condensation polymerization to discover the probability to synthesize new polymers and studied their thermal properties. For this purpose, poly (N-cyclohexyl-p-aminobenzoate) and poly (N-hexyl-p-aminobenzoate) were synthesized with low polydispersity and controlled molecular weights.

  20. Compostability of Co-Extruded Starch/Poly(Lactic Acid) Polymeric Material Degradation in an Activated Inert Solid Medium

    Science.gov (United States)

    Copinet, Alain; Legin-Copinet, Estelle; Erre, Damien

    2009-01-01

    The aim of this work was to estimate the biodegradation of a co-extruded starch/poly(lactic acid) polymeric material using a vermiculite based inert solid medium which could simulate compost medium and enable us to achieve complete carbon balances. At the end of the test the mineralisation rate was compared to those obtained for co-extruded starch/poly(lactic acid) polymeric material degradation in compost. It was shown that the mineralisation rate after 45 days of degradation was similar in activated vermiculite medium to the one in compost. A protocol for both extraction and quantification of the carbon included in the different degradation by-products was proposed and the carbon balance of the polymer degradation was followed during the test with a satisfactory accuracy. As the non-degraded PLA and starch material had been retrieved during the test, the evolution of the glass transition temperature and the molecular weight of PLA could be followed. A two-step degradation mechanism was highlighted in inert solid medium, showing the fundamental role of abiotic reactions for PLA degradation in compost.

  1. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites

    Directory of Open Access Journals (Sweden)

    Udeni Gunathilake T.M. Sampath

    2016-12-01

    Full Text Available Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen, synthetic biopolymers (poly(lactic acid, poly(lactic-co-glycolic acid and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  2. ROMP-Derived cyclooctene-based monolithic polymeric materials reinforced with inorganic nanoparticles for applications in tissue engineering

    Directory of Open Access Journals (Sweden)

    Franziska Weichelt

    2010-12-01

    Full Text Available Porous monolithic inorganic/polymeric hybrid materials have been prepared via ring-opening metathesis copolymerization starting from a highly polar monomer, i.e., cis-5-cyclooctene-trans-1,2-diol and a 7-oxanorborn-2-ene-derived cross-linker in the presence of porogenic solvents and two types of inorganic nanoparticles (i.e., CaCO3 and calcium hydroxyapatite, respectively using the third-generation Grubbs initiator RuCl2(Py2(IMesH2(CHPh. The physico-chemical properties of the monolithic materials, such as pore size distribution and microhardness were studied with regard to the nanoparticle type and content. Moreover, the reinforced monoliths were tested for the possible use as scaffold materials in tissue engineering, by carrying out cell cultivation experiments with human adipose tissue-derived stromal cells.

  3. ROMP-Derived cyclooctene-based monolithic polymeric materials reinforced with inorganic nanoparticles for applications in tissue engineering.

    Science.gov (United States)

    Weichelt, Franziska; Lenz, Solvig; Tiede, Stefanie; Reinhardt, Ingrid; Frerich, Bernhard; Buchmeiser, Michael R

    2010-12-17

    Porous monolithic inorganic/polymeric hybrid materials have been prepared via ring-opening metathesis copolymerization starting from a highly polar monomer, i.e., cis-5-cyclooctene-trans-1,2-diol and a 7-oxanorborn-2-ene-derived cross-linker in the presence of porogenic solvents and two types of inorganic nanoparticles (i.e., CaCO₃ and calcium hydroxyapatite, respectively) using the third-generation Grubbs initiator RuCl₂(Py)₂(IMesH₂)(CHPh). The physico-chemical properties of the monolithic materials, such as pore size distribution and microhardness were studied with regard to the nanoparticle type and content. Moreover, the reinforced monoliths were tested for the possible use as scaffold materials in tissue engineering, by carrying out cell cultivation experiments with human adipose tissue-derived stromal cells.

  4. Preparation and characterization of Phase change material microcapsules by a core-shell-like emulsion polymerization method

    Science.gov (United States)

    Ding, Li-ming; Pei, Guang-ling

    2015-07-01

    Phase change material microcapsules (MicroPCMs) were synthesized by a coreshell-like emulsion polymerization method. Styrene and methylacrylic acid copolymer (PS- MAA) was used as a wall material, and paraffin was used as a core material in order to prepare spherical, high resistance and high enthalpy MicroPCMs. Scanning Electron Microscope (SEM), laser particle size analyzer, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetry (TG) and Differential Scanning Calorimeter (DSC) were employed to characterize the MicroPCMs. The results indicated that the average particle size of MicroPCMs was 42.29 μm, and the content of paraffin within microcapsules was 57.6%. The melting temperature and crystallization temperature were 30.7°C and 25.2°C.The melting enthalpy and crystallization enthalpy were -84.1 J/g and 91.3 J/g, respectively.

  5. Evaluation of the physicochemical properties of structured materials: metallic, polymeric and ceramic, for the treatment of sour gases

    International Nuclear Information System (INIS)

    Salazar, A.; Chavez, R. H.; Olea, O.; Solis, D.

    2013-01-01

    in this work the physicochemical properties of three structured materials: metallic, polymeric and ceramic, from Sulzer Brothers Limited brand, are studied in order to removal sour gases, by absorption process, in aqueous solution of Monoethanolamine (Mea), at 30% weight. Mechanical properties, chemical composition, morphology and corrosion resistance were determined, using different characterization techniques, such as: 1) mechanically, according to standard procedures Astm E-384-1990, 2) chemically, by the corrosion resistance in the presence of an electrochemical cell, in aqueous solution of H 2 SO 4 , 1 N by Astm G-5-1999, 3) morphologically by scanning electron microscopy technique, and 4) efficiency of separation, by the gas chromatography technique in order to determine the chemical absorption of CO 2 by Mea. The ceramic material was the hardest with 700 Hk value and tensile strength of 90 MPa, likewise showed resistance to corrosion of 10.28 m py, separation efficiency of 74% CO 2 , at 10 minutes. The metallic material had a hardness of 190 Hk and it was the most resistant of tension, with 831 MPa, and corrosion resistance of 780.4 x 10 -6 m py, likewise promoted CO 2 separation efficiency of 90% during the evaluation. The polymeric material presented hardness of 20 Hk and 35 MPa and it was not suffered surface change with electrochemical attack, with 282.4 x 10 -6 m py, and separation efficiency of 88%. Therefore the polymer was the most ductile, with smooth surface and greater resistance with H 2 SO 4 . The metal material was more resistant to plastic deformation and more corrugated surface and the second resistance in the presence of acid medium in aqueous solutions. For all the above, the metallic material is recommended by its greater separation in the reduction of acid gases and the polymer due to its greater chemical resistance. (Author)

  6. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  7. Effectiveness of Synthetic Polyurethane Foam as a Nasal Packing Material in Endoscopic Endonasal Dacryocystorhinostomy.

    Science.gov (United States)

    Lee, Joonsik; Lee, Hwa; Lee, Hyun Kyu; Chang, Minwook; Park, Minsoo; Baek, Sehyun

    2015-10-01

    To compare the effects of 2 nasal packing materials, synthetic polyurethane foam (absorbable) and expandable polyvinyl acetate (nonabsorbable), on the surgical success rate and postoperative complications after endoscopic endonasal dacryocystorhinostomy (EDCR). A retrospective medical review of 459 patients (580 eyes) who underwent EDCR for primary acquired nasolacrimal duct obstruction at Korea University Guro Hospitals from January 2009 to February 2014. Surgical success rate (anatomical, functional), postoperative complications (granuloma, synechia, bleeding, and infection) were compared between the 2 groups, absorbable (318 eyes) and nonabsorbable (262 eyes). The absorbable group showed better results in surgical success rate regarding anatomical (90.5% versus 76.3%, P = 0.00) and functional (89.3% versus 75.9%, P = 0.00). Granulomas developed less frequently in the absorbable group (24.5% versus 38.9%, P = 0.00). Also, bleeding and crust were less frequent in the absorbable group (P = 0.00). Infections were less frequent in the nonabsorbable group (1.52%) compared with the absorbable group (7.86%, P = 0.00). The rate of revision surgery was lower in the absorbable group (7.86% versus 20.9%, P = 0.00). As for the influence of secondary outcomes to the surgical success by multiple logistic regression, granulomas had the largest effect on surgical success either anatomical or functional (odds ratio = 82.393 to anatomical and 44.058 to functional). Synechia had the second largest effect on surgical success (odds ratio = 11.897 to anatomical and 9.605 to functional). The authors suggest that using a synthetic polyurethane foam as a nasal packing material is not only a surgical option, but also a crucial and essential procedure in EDCR.

  8. Physical chemistry research for engineering and applied sciences, v.2 polymeric materials and processing

    CERN Document Server

    Pearce, Eli M; Pethrick, Richard A

    2015-01-01

    PrefaceInvestigation on the Influence of a Strong Electric Field on the Electrical, Transport and Diffusion Properties of Carbon Nanostructures; S. A. Sudorgin and N. G. LebedevA Study Thermal Stability of Polyurethane Elastomers; I. A. Novakov, M. A. Vaniev, D. V. Medvedev, N. V. Sidorenko, G. V. Medvedev, and D. O. GusevTrends in Aromatic Polyesters; Z. S. Khasbulatova and G. E. ZaikovMicroheterogeneous Titanium Ziegler-Natta Catalysts: 1,3-Diene Polymerization Under Ultrasound Irradiations; V. P. Zakharov, V. Z. Mingaleev, I. D. Zakirov

  9. The use of synthetic materials in the treatment of stress urinary incontinence

    Directory of Open Access Journals (Sweden)

    Robert Stanek

    2016-07-01

    Full Text Available Stress urinary incontinence is a very serious problem which has been noticed by the WHO. This difficult medical condition poses a serious problem as it affects c.a. 20% of the female population and it increases up to 35% in the group of females over 60 years of age. Since there is no single standard surgical procedure which could solve this problem, numerous synthetic materials are used for the operations. It seems that the materials are effective as they improve the condition of women suffering from stress urinary incontinence. Unfortunately these materials have their shortcomings which might lead to certain post-operative complications. Stress urinary incontinence is a disease which affects the social life of the patients. It has a high percentage of recurrence and causes the patient substantial difficulties with keeping high standards of personal hygiene which is consequence makes it impossible to fulfill their social roles. The etiology of this disease is complex and calls for a cross-disciplinary approach to the problem. As there are no standardized or unanimous treatment methods of stress urinary incontinence, numerous sources based on the clinical experience of many medical centers suggest performing TVT and TOT procedures as the most effective treatment methods. The efficacy of the TOT procedure is about 90.8%.

  10. Diamond coated dental bur machining of natural and synthetic dental materials.

    Science.gov (United States)

    Jackson, M J; Sein, H; Ahmed, W

    2004-12-01

    Diamond coatings are attractive for cutting processes due to their high hardness, low friction coefficient, excellent wear resistance and chemical inertness. The application of diamond coatings on cemented tungsten carbide (WC-Co) burs has been the subject of much attention in recent years in order to improve cutting performance and tool life. WC-Co burs containing 6% Co and 94% WC with an average grain size 1-3 micron were used in this study. In order to improve the adhesion between diamond and the bur it is necessary to etch away the surface Co to prepare it for subsequent diamond growth. Hot filament chemical vapour deposition (H.F.C.V.D.) with a modified vertical filament arrangement has been employed for the deposition of diamond films. Diamond film quality and purity has been characterised using scanning electron microscopy (S.E.M.) and micro-Raman spectroscopy. The performance of diamond coated WC-Co burs, uncoated WC-Co burs, and diamond embedded (sintered) burs have been compared by drilling a series of holes into various materials such as human teeth, and model tooth materials such as borosilicate glass and acrylic. Flank wear has been used to assess the wear rates of the burs when machining natural and synthetic dental materials such as those described above.

  11. [Plants' materials and synthetic agonists of cannabinoid receptors use as a substitute of Marihuana, appearing in a current forensic toxicology practice of evidence materials].

    Science.gov (United States)

    Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.

  12. "Click chemistry" in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material.

    Science.gov (United States)

    Kavitha, A Amalin; Singha, Nikhil K

    2009-07-01

    This investigation reports the effective use of the Diels-Alder (DA) reaction, a "click reaction" in the preparation of thermally amendable and self-healing polymeric materials having reactive furfuryl functionality. In this case, the DA and retro-DA (rDA) reactions were carried out between the tailor-made homo- and copolymer of furfuryl methacrylate prepared by atom-transfer radical polymerization and a bismaleimide (BM). The kinetic studies of DA and rDA reactions were carried out using Fourier transform infrared spectroscopy. The DA polymers were insoluble in toluene at room temperature. When the DA polymers were heated at 100 degrees C in toluene, it was soluble. This is because of the cleavage between furfuryl functionality and BM. The chemical cross-link density was determined by the Flory-Rehner equation. The cross-linked polymer showed much greater adhesive strength at room temperature, but the adhesive strength was quite low at higher temperature. The self-healing capability was studied by using scanning electron microscopy analysis. The thermal and dynamic mechanical properties of the thermally amendable cross-linked materials were investigated by thermogravimetric analysis and dynamic mechanical analysis.

  13. The influence of tailored nano/micro polymeric aggregates on material properties of cement-based systems

    International Nuclear Information System (INIS)

    Koleva, D. A.; Hu, Jie; Breugel, K. van; Milkova, V.; Petrov, P.

    2011-01-01

    Durability and service life in civil engineering are largely related to the corrosion-related phenomena affecting the steel reinforcement. Damage initiation and/or the development of structural properties start on nano/micro level. Therefore, modification of the material structure on these levels is more likely to effectively deal with the aforementioned durability issues. This work is part of a comprehensive study on novel approaches for corrosion control in reinforced concrete and includes investigation on the influence of tailored nano/micro range polymeric aggregates on material properties of both steel and concrete. The mechanisms related to corrosion and corrosion control are hereby discussed in terms of the possibility for establishing a durable and sustainable solution i.e. self-healing mechanisms in reinforced concrete by using polymeric micelles, vesicles or hybrid aggregates. The feasibility of self-healing is briefly presented via preliminary tests in model liquid environment. Additionally, the significant impact of minimal concentrations of nano-aggregates on global properties of the cementitious bulk matrix is also discussed. Key words: corrosion; micelles; hybrid aggregates; mortar; EIS; PDP; SEM

  14. Porous chromatographic materials as substrates for preparing synthetic nuclear explosion debris particles

    International Nuclear Information System (INIS)

    Harvey, S.D.; Carman, A.J.; Martin Liezers; Antolick, K.C.; Garcia, B.J.; Eiden, G.C.; Sweet, L.E.

    2013-01-01

    Several porous chromatographic materials were investigated as synthetic substrates for preparing surrogate nuclear explosion debris particles. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110 deg C) to drive off water, and then treating them at high temperatures (up to 800 deg C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies characterized material balance and the formation of recalcitrant species. Metal loading was 1.5-3 times higher than expected from the pore volume alone, a result attributed to surface coating. Most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating selective loading. High-temperature treatments caused reduced solubility of several metals, and the loss of some volatile species (rhenium and tellurium). Sample preparation reproducibility was high (the inter- and intra-batch relative standard deviations were 7.8 and 0.84 %, respectively) indicating suitability for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in radioanalytical methods development and/or serve as a starting material for the synthesis of more complex nuclear explosion debris forms (e.g., Trinitite). (author)

  15. Polymeric materials and formulation technologies for modified-release tablet development.

    Science.gov (United States)

    Zarate, J; Igartua, M; Hernández, R M; Pedraz, J L

    2009-11-01

    Over the last years significant advances have been made in the area of drug delivery with the development of modified-release (MR) dosage forms. The present review is divided into two parts, one dealing with technologies for the design of modified-release drug delivery tablets and the other with the use of synthetic and natural polymers that are capable of controlling drug release.

  16. High-resolution nondestructive testing of multilayer dielectric materials using wideband microwave synthetic aperture radar imaging

    Science.gov (United States)

    Kim, Tae Hee; James, Robin; Narayanan, Ram M.

    2017-04-01

    Fiber Reinforced Polymer or Plastic (FRP) composites have been rapidly increasing in the aerospace, automotive and marine industry, and civil engineering, because these composites show superior characteristics such as outstanding strength and stiffness, low weight, as well as anti-corrosion and easy production. Generally, the advancement of materials calls for correspondingly advanced methods and technologies for inspection and failure detection during production or maintenance, especially in the area of nondestructive testing (NDT). Among numerous inspection techniques, microwave sensing methods can be effectively used for NDT of FRP composites. FRP composite materials can be produced using various structures and materials, and various defects or flaws occur due to environmental conditions encountered during operation. However, reliable, low-cost, and easy-to-operate NDT methods have not been developed and tested. FRP composites are usually produced as multilayered structures consisting of fiber plate, matrix and core. Therefore, typical defects appearing in FRP composites are disbondings, delaminations, object inclusions, and certain kinds of barely visible impact damages. In this paper, we propose a microwave NDT method, based on synthetic aperture radar (SAR) imaging algorithms, for stand-off imaging of internal delaminations. When a microwave signal is incident on a multilayer dielectric material, the reflected signal provides a good response to interfaces and transverse cracks. An electromagnetic wave model is introduced to delineate interface widths or defect depths from the reflected waves. For the purpose of numerical analysis and simulation, multilayered composite samples with various artificial defects are assumed, and their SAR images are obtained and analyzed using a variety of high-resolution wideband waveforms.

  17. The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve.

    Science.gov (United States)

    Ghanbari, Hossein; Kidane, Asmeret G; Burriesci, Gaetano; Ramesh, Bala; Darbyshire, Arnold; Seifalian, Alexander M

    2010-11-01

    Calcification currently represents a major cause of failure of biological tissue heart valves. It is a complex phenomenon influenced by a number of biochemical and mechanical factors. Recent advances in material science offer new polymers with improved properties, potentially suitable for synthetic leaflets heart valves manufacturing. In this study, the calcification-resistance efficacy and mechanical and surface properties of a new nanocomposite polymeric material (polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane; POSS-PCU) which has been developed by our group are assessed by means of in vitro testing. In particular, thin sheets of nanocomposite, glutaraldehyde-fixed bovine pericardium (BP) and polyurethane (PU) were exposed to a calcium solution into a specially designed in vitro accelerated physiological pulsatile pressure system for a period of 31days and a total of 4×10(7) cycles. The samples were investigated for signs of calcification after exposure to calcium solution by means of X-ray, microscopic and chemical inspections. Mechanical and surface properties were also studied using stress-strain behaviour and surface morphology and hydrophobicity. Comparison shows that, in the experimental conditions, the level of calcification for the nanocomposite is considerably lower than for the fixed BP (p=0.008) and PU samples (p=0.015). Also, mechanical properties were unchanged in POSS-PCU, while there was a significant deterioration in PU samples (pnanocomposite remained more hydrophobic than the PU sample (pnanocomposite in synthetic leaflets heart valves may lead to potential advantages in terms of long-term performances and durability. Copyright © 2010. Published by Elsevier Ltd.

  18. Electron beam irradiation to the allogeneic, xenogenic and synthetic bone materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soung Min; Park, Min Woo; Jeong, Hyun Oh [School of Dentistry Seoul National University, Seoul (Korea, Republic of); and others

    2013-07-01

    For the development of the biocompatible bony regeneration materials, allogenic, xenogenic and synthetic bone were irradiated by electron beam to change the basic components and structures. For the efficient electron beam irradiating condition of these allogenic, xenogenic and artificial bone substitutes, the optimal electron beam energy and their individual dose were established, to maximize the bony regeneration capacity. Commercial products of four allogenic bones, such as Accell (ISOTIS OrthogBiologics Co., USA), Allotis (Korea Bone Bank Co., Korea), Oragraft (LifeNet Co., USA), and Orthoblast (Integra Orthobiologics Inc., USA), six xenogenic bones, such as BBP (OscoTec Co., Korea), Bio-cera (OscoTec Co., Korea), Bio-oss (Geistlich Pharma AG, Switzerland), Indu-cera (OscoTec Co., Korea), OCS-B (Nibec Co., Korea), and OCS-H (Nibec Co., Korea), and six synthetic bones, such as BMP (Couellmedi Co., Korea), BoneMedik (Meta Biomed Co., Korea), Bone plus (Megagen Co., Korea), MBCP (Biomatlante Co., France), Osteon (Genoss Co., Korea), and Osteogen (Impladent LTD., USA), were used. We used 1.0 and 2.0 MeV superconduction accelerator, and/or microtrone with different individual 60, 120 kGy irradiation dose. Different dose irradiated specimens were divided 6 portions each, so total 360 groups were prepared. 4 portions were analyzed each by elementary analysis using FE-SEM (Field Emission Scanning Microscopy) and another 2 portions were grafted to the calvarial defect of Sprague-Dawley rat, following histologic, immunohistochemical analysis and TEM study were processed at the 8th and 16th weeks, in vivo. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)

  19. Synthetic clay as an alternative backing material for passive temperature control of photovoltaic cells

    International Nuclear Information System (INIS)

    Alami, Abdul Hai

    2016-01-01

    This paper evaluates the operational advantages of using a backing material for photovoltaic modules different than the industry-standard Tedlar. Synthetic clay, composed mostly of gypsum, is investigated to be part of cells backing and has been found to provide passive cooling properties, successfully reducing the operating temperatures of tested cells from 28 °C to 10 °C. The XRD (X-Ray diffraction) and SEM (Scanning Electron Microscopy) microstructural examination, as well as porosity tests have revealed the random pore distribution of the clay and their volumetric stability at high operating temperatures, which is essential in enhancing evaporation. The characterization of IV performance of bare cells compared with ones backed by clay and aluminum revealed the structural and thermal advantages of using clay, while Nyquist plots revealed the independence of cell impedance from the mist of cooling water provided to clay medium, adding an extra 34.6% of power output when the former is compared to reference cells. - Highlights: • Characterizing clay as a porous media for evaporative cooling. • Microstructural (SEM and XRD) of the clay material. • Enhancing the efficiency and power of PV modules.

  20. Synthetically engineered chitosan-based materials and their sorption properties with methylene blue in aqueous solution.

    Science.gov (United States)

    Guo, Rui; Wilson, Lee D

    2012-12-15

    Chitosan (CS) and poly(acrylic acid) (PAA) were crosslinked by an ionic gelation method to form super absorbent polymers (SAPs). CS and PAA form amide bonds between the amino and carboxyl groups. The CS-PAA copolymers were synthetically engineered by varying the feed ratios of the prepolymer units. The copolymer materials possess tunable sorption and mucoadhesive properties with a backbone structure resembling proteinaceous materials. The sorption properties of the copolymers toward methylene blue (MB) in aqueous solution were studied using UV-Vis spectrophotometry at ambient pH and 295 K. The copolymers showed markedly varied interactions with MB, from physisorption- to chemisorption-like behavior, in accordance with their composition, surface area, and pore structure characteristics. The sorption isotherms were evaluated with the Sips model to provide estimates of the sorption properties. The sorbent surface area (271 and 943 m(2)/g) and the sorption capacity (Q(m)=1.03 and 3.59 mmol/g) were estimated for the CS-PAA copolymer/MB systems in aqueous solution. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Definitions of Terms Related to Polymer Blends, Composites, and Multiphase Polymeric Materials, VII.1

    Directory of Open Access Journals (Sweden)

    Vuković, R.

    2009-09-01

    Full Text Available The document defines the terms most commonly encountered in the field of polymer blends and composites. The scope has been limited to mixtures in which the components differ in chemical composition or molar mass and in which the continuous phase is polymeric. Incidental thermodynamic descriptions are mainly limited to binary mixtures although, in principle, they could be generalized to multicomponent mixtures. The document is organized into three sections. The first defines terms basic to the description of polymer mixtures. The second defines terms commonly encountered in descriptions of phase domain behavior of polymer mixtures. The third defines terms commonly encountered in the descriptions of the morphologies of phase-separated polymer mixtures.

  2. Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units

    Directory of Open Access Journals (Sweden)

    Sayed-Mostafa Mousavinasab

    2014-08-01

    Full Text Available Objectives Light-curing of resin-based materials (RBMs increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs of three different RBMs using quartz tungsten halogen (QTH and light-emitting diode (LED units (LCUs. Materials and Methods Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12 during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey, a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE, and a giomer (Beautifil II, Shofu GmbH, was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. Results The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p 0.05. Conclusions Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

  3. Adhesive and Stress-Strain Properties of the Polymeric Layered Materials Reinforced by the Knitted Net

    Directory of Open Access Journals (Sweden)

    Rakhimov Farhod Hushbakovich

    2012-10-01

    Full Text Available It is known that the textile materials (woven fabric and mesh used for reinforcing of various polymer films and coatings. This paper discusses reinforcement of thermoplastic polymers based on PE (Polyethylene and PVC (Polyvinyl Chloride with a knitted mesh weave loin. According by the research identified adhesion, strength and deformation properties of new polymer laminates. The production of such materials has been discussed in detail and performance of resultant composites material is analyzed and compared with other materials.

  4. Cyclic stress-strain behavior of polymeric nonwoven structures for the use as artificial leaflet material for transcatheter heart valve prostheses

    Directory of Open Access Journals (Sweden)

    Arbeiter Daniela

    2017-09-01

    Full Text Available Xenogenic leaflet material, bovine and porcine pericardium, is widely used for the fabrication of surgically implanted and transcatheter heart valve prostheses. As a biological material, long term durability of pericardium is limited due to calcification, degeneration and homogeneity. Therefore, polymeric materials represent a promising approach for a next generation of artificial heart valve leaflets with improved durability. Within the current study we analyzed the mechanical performance of polymeric structures based on elastomeric materials. Polymeric cast films were prepared and nonwovens were manufactured in an electrospinning process. Analysis of cyclic stress-strain behavior was performed, using a universal testing machine. The uniaxial cyclic tensile experiments of the elastomeric samples yielded a non-linear elastic response due to viscoelastic behavior with hysteresis. Equilibrium of stress-strain curves was found after a specific number of cycles, for cast films and nonwovens, respectively. In conclusion, preconditioning was found obligatory for the evaluation of the mechanical performance of polymeric materials for the use as artificial leaflet material for heart valve prostheses.

  5. The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material.

    Science.gov (United States)

    Fruijtier-Pölloth, Claudia

    2012-04-11

    Synthetic amorphous silica (SAS), in the form of pyrogenic (fumed), precipitated, gel or colloidal SAS, has been used in a wide variety of industrial and consumer applications including food, cosmetics and pharmaceutical products for many decades. Based on extensive physico-chemical, ecotoxicology, toxicology, safety and epidemiology data, no environmental or health risks have been associated with these materials if produced and used under current hygiene standards and use recommendations. With internal structures in the nanoscale size range, pyrogenic, precipitated and gel SAS are typical examples of nanostructured materials as recently defined by the International Organisation for Standardisation (ISO). The manufacturing process of these SAS materials leads to aggregates of strongly (covalently) bonded or fused primary particles. Weak interaction forces (van der Waals interactions, hydrogen bonding, physical adhesion) between aggregates lead to the formation of micrometre (μm)-sized agglomerates. Typically, isolated nanoparticles do not occur. In contrast, colloidal SAS dispersions may contain isolated primary particles in the nano-size range which can be considered nano-objects. The size of the primary particle resulted in the materials often being considered as "nanosilica" and in the inclusion of SAS in research programmes on nanomaterials. The biological activity of SAS can be related to the particle shape and surface characteristics interfacing with the biological milieu rather than to particle size. SAS adsorbs to cellular surfaces and can affect membrane structures and integrity. Toxicity is linked to mechanisms of interactions with outer and inner cell membranes, signalling responses, and vesicle trafficking pathways. Interaction with membranes may induce the release of endosomal substances, reactive oxygen species, cytokines and chemokines and thus induce inflammatory responses. None of the SAS forms, including colloidal nano-sized particles, were shown

  6. New screening methodology for selection of polymeric materials for transdermal drug delivery devices

    Science.gov (United States)

    Falcone, Roberto P.

    As medical advances extend the human lifespan, the level of chronic illnesses will increase and thus straining the needs of the health care system that, as a result, governments will need to balance expenses without upsetting national budgets. Therefore, the selection of a precise and affordable drug delivery technology is seen as the most practical solution for governments, health care professionals, and consumers. Transdermal drug delivery patches (TDDP) are one of the best economical technologies that are favored by pharmaceutical companies and physicians alike because it offers fewer complications when compared to other delivery technologies. TDDP provides increased efficiency, safety and convenience for the patient. The TDDP segment within the US and Global drug delivery markets were valued at 5.6 and 12.7 billion respectively in 2009. TDDP is forecasted to reach $31.5 billion in 2015. The present TDDP technology involves the fabrication of a patch that consists of a drug embedded in a polymeric matrix. The diffusion coefficient is determined from the slope of the cumulative drug release versus time. It is a trial and error method that is time and labor consuming. With all the advantages that TDDPs can offer, the methodology used to achieve the so-called optimum design has resulted in several incidents where the safety and design have been put to question in recent times (e.g. Fentanyl). A more logical screening methodology is needed. This work shows the use of a modified Duda Zielinsky equation (DZE). Experimental release curves from commercial are evaluated. The experimental and theoretical Diffusion Coefficient values are found to be within the limits specified in the patent literature. One interesting finding is that the accuracy of the DZE is closer to experimental values when the type of Molecular Shape and Radius are used. This work shows that the modified DZE could be used as an excellent screening tool to determine the optimal polymeric matrices that

  7. Durable and Washable Antibacterial Copper Nanoparticles Bridged by Surface Grafting Polymer Brushes on Cotton and Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Chufeng Sun

    2018-01-01

    Full Text Available To increase the durability of antibacterial coating on cotton and polymeric substrates, surface initiated grafting polymer brushes are introduced onto the substrates surface to bridge copper nanoparticles coatings and substrate. The morphologies of the composites consisting of the copper nanoparticles and polymer brushes were characterized with scanning electron microscopy (SEM. It was found that copper nanoparticles were uniformly and firmly distributed on the surfaces of the substrates by the polymer brushes; meanwhile, the reinforced concrete-like structures were formed in the composite materials. The substrates coated by the copper nanoparticles showed the efficient antibacterial activity against Staphylococcus aureus (S. aureus and Escherichia coli (E. coli even after washing by 30 cycles. The copper nanoparticles were tethered on the substrates by the strong chemical bonds, which led to the excellent washable fitness and durability. The change of the phase structure of the copper was analyzed to investigate the release mechanism of copper ions.

  8. Dependence of the mechanical fracture energy of the polymeric composite material from the mixture of filler fractions

    Directory of Open Access Journals (Sweden)

    E. M. Nurullaev

    2015-01-01

    Full Text Available This paper for the first time presents an equation for calculating the mechanical fracture energy of the polymeric composite material (PCM with regard to the basic formulation parameters. By means of the developed computer program the authors calculated the mechanical fracture energy of the polymer binder of the 3D cross-linked plasticized elastomer filled with multifractional silica. The solution of the integral equation was implemented using the corresponding dependence of stress on relative elongation at uniaxial tension. Engineering application of the theory was considered with respect to asphalt road covering. The authors proposed a generalized dependence of ruptural deformation of the polymer binder from the effective concentration of chemical and physical (intermolecular bonds for calculating the mechanical fracture energy of available and advanced PCMs as filled elastomers.

  9. Standard Test Method for Testing Polymeric Seal Materials for Geothermal and/or High Temperature Service Under Sealing Stress

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1985-01-01

    1.1 This test method covers the initial evaluation of (screening) polymeric materials for seals under static sealing stress and at elevated temperatures. 1.2 This test method applies to geothermal service only if used in conjunction with Test Method E 1068. 1.3 The test fluid is distilled water. 1.4 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units.

    Science.gov (United States)

    Mousavinasab, Sayed-Mostafa; Khoroushi, Maryam; Moharreri, Mohammadreza; Atai, Mohammad

    2014-08-01

    Light-curing of resin-based materials (RBMs) increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs) of three different RBMs using quartz tungsten halogen (QTH) and light-emitting diode (LED) units (LCUs). Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12) during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey), a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE), and a giomer (Beautifil II, Shofu GmbH), was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p 0.05). Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

  11. A smelling trip into the past: the influence of synthetic materials on the history of perfumery.

    Science.gov (United States)

    de Nicolaï, Patricia

    2008-06-01

    Contemporary perfumery has its roots in the work of the past, and many of the perfumes from this time have long since disappeared. What follows is a short account of some of the most famous perfumes from the past which have been inspired by the novel synthetic materials of the time. These important creations include, 'Fougère Royale' by Houbigant (1884) containing coumarin (1), 'Jicky' by Guerlain (1889) containing vanillin (2) and linalool (3), 'Vera Violetta' by Roger & Gallet (1892) containing alpha- and beta-ionone (4 and 5, resp.), 'Trèfle Incarnat' by Piver (1898) containing isoamyl salicylate (6), 'La Rose Jacqueminot' of Coty (1904) containing Rhodinol (7), 'Après l'Ondée' by Guerlain (1906) containing para-anisaldehyde (8), 'Quelques Fleurs' by Houbigant (1912) containing hydroxycitronellal (9), 'N degrees 5' by Chanel (1921) containing the aldehydes C-10 (10), C-110 (11), and C-12 (12), 'Nuit De Noël' by Caron (1922) containing 6-isobutylquinoline (14), and 'Femme' by Rochas (1944) containing the so-called 'aldehyde C-14' (15, gamma-undecalactone). The Osmotheque, the International Conservatory of Perfumes, was launched in 1990 and is regarded as a primary source of knowledge for the history of perfumery. Its vocation is to compile an amazing collection of 1700 perfumes (400 of them almost forgotten fragrances)--jewels of perfumery.

  12. Synthetic Transient Crosslinks Program the Mechanics of Soft, Biopolymer-Based Materials.

    Science.gov (United States)

    Lorenz, Jessica S; Schnauß, Jörg; Glaser, Martin; Sajfutdinow, Martin; Schuldt, Carsten; Käs, Josef A; Smith, David M

    2018-02-15

    Actin networks are adaptive materials enabling dynamic and static functions of living cells. A central element for tuning their underlying structural and mechanical properties is the ability to reversibly connect, i.e., transiently crosslink, filaments within the networks. Natural crosslinkers, however, vary across many parameters. Therefore, systematically studying the impact of their fundamental properties like size and binding strength is unfeasible since their structural parameters cannot be independently tuned. Herein, this problem is circumvented by employing a modular strategy to construct purely synthetic actin crosslinkers from DNA and peptides. These crosslinkers mimic both intuitive and noncanonical mechanical properties of their natural counterparts. By isolating binding affinity as the primary control parameter, effects on structural and dynamic behaviors of actin networks are characterized. A concentration-dependent triphasic behavior arises from both strong and weak crosslinkers due to emergent structural polymorphism. Beyond a certain threshold, strong binding leads to a nonmonotonic elastic pulse, which is a consequence of self-destruction of the mechanical structure of the underlying network. The modular design also facilitates an orthogonal regulatory mechanism based on enzymatic cleaving. This approach can be used to guide the rational design of further biomimetic components for programmable modulation of the properties of biomaterials and cells. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Polyurethane/organo clay nano composite materials via in-situ polymerization

    International Nuclear Information System (INIS)

    Rehab, A.; Agag, T; Akelah, A.; Shalaby, N.

    2005-01-01

    Polyurethane/organo clay nano composites have been synthesized via in situ polymerization. The organo clay firstly prepared by intercalation of lyamine or amino lauric acid into montmorillonite-clay (MMT) through ion exchange process. The syntheses of polyurethane/organo clay hybrid films containing different ratio of clay were carried out by swelling the organo clay, into diol and diamine or into different kinds of diols, followed by addition of diisocyanate. The nano composites with dispersed structure of MMT was obtained as evidence by scanning electron microscope and x-ray diffraction. X-ray analysis showed that the d-spacing increased to more than 44A since there is no peaks corresponding to do spacing in organo clay with all the ratios (1, 5, 10, 20%). Also, SEM results confirm the dispersion of nanometer silicate layers in the polyurethane matrix. This indicated that the clay was completely exfoliated and homogeneous dispersion in the polyurethane matrix. Also, it was found that the presence of organo clay leads to improvement the mechanical properties. Since, the tensile strength increased with increasing the organo clay contents to 20% by the ratio 194% in compared to the 1H: with 0% organo clay. Also, the elongation is a decreases with increasing the organo clay contents. The results shown the tensile strength of PU/SMA/ALA-MMT nano composites is high by 6-7 times than the corresponding to PU/Tvr-MMT

  14. Polymeric-Calcium Phosphate Cement Composites-Material Properties: In Vitro and In Vivo Investigations

    Directory of Open Access Journals (Sweden)

    Rania M. Khashaba

    2010-01-01

    Full Text Available New polymeric calcium phosphate cement composites (CPCs were developed. Cement powder consisting of 60 wt% tetracalcium phosphate, 30 wt% dicalcium phosphate dihydrate, and 10 wt% tricalcium phosphate was combined with either 35% w/w poly methyl vinyl ether maleic acid or polyacrylic acid to obtain CPC-1 and CPC-2. The setting time and compressive and diametral tensile strength of the CPCs were evaluated and compared with that of a commercial hydroxyapatite cement. In vitro cytotoxicity and in vivo biocompatibility of the two CPCs and hydroxyapatite cement were assessed. The setting time of the cements was 5–15 min. CPC-1 and CPC-2 showed significantly higher compressive and diametral strength values compared to hydroxyapatite cement. CPC-1 and CPC-2 were equivalent to Teflon controls after 1 week. CPC-1, CPC-2, and hydroxyapatite cement elicited a moderate to intense inflammatory reaction at 7 days which decreased over time. CPC-1 and CPC-2 show promise for orthopedic applications.

  15. Development of Novel Polymeric Materials for Gene Therapy and pH-Sensitive Drug Delivery: Modeling, Synthesis, Characterization, and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian Curtis [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    The underlying theme of this thesis is the use of polymeric materials in bioapplications. Chapters 2-5 either develop a fundamental understanding of current materials used for bioapplications or establish protocols and procedures used in characterizing and synthesizing novel materials. In chapters 6 and 7 these principles and procedures are applied to the development of materials to be used for gene therapy and drug delivery. Chapter one is an introduction to the ideas that will be necessary to understand the subsequent chapters, as well as a literature review of these topics. Chapter two is a paper that has been published in the ''Journal of Controlled Release'' that examines the mechanism of drug release from a polymer gel, as well as experimental design suggestions for the evaluation of water soluble drug delivery systems. Chapter three is a paper that has been published in the ''Journal of Pharmaceutical Sciences'' that discusses the effect ionic salts have on properties of the polymer systems examined in chapter two. Chapter four is a paper published in the Materials Research Society Fall 2000 Symposium Series dealing with the design and synthesis of a pH-sensitive polymeric drug delivery device. Chapter five is a paper that has been published in the journal ''Biomaterials'' proposing a novel polymer/metal composite for use as a biomaterial in hip arthroplasty surgery. Chapter six is a paper that will appear in an upcoming volume of the Journal ''Biomaterials'' dealing with the synthesis of a novel water soluble cationic polymer with possible applications in non-viral gene therapy. Chapter seven is a paper that has been submitted to ''Macromolecules'' discussing several novel block copolymers based on poly(ethylene glycol) and poly(diethylamino ethyl methacrylate) that possess both pH-sensitive and temperature sensitive properties. Chapter eight contains a

  16. Distinction of synthetic dl-α-tocopherol from natural vitamin E (d-α-tocopherol) by reversed-phase liquid chromatography. Enhanced selectivity of a polymeric C18 stationary phase at low temperature and/or at high pressure.

    Science.gov (United States)

    Yui, Yuko; Miyazaki, Shota; Ma, Yan; Ohira, Masayoshi; Fiehn, Oliver; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2016-06-10

    Separation of diastereomers of dl-α-tocopherol was studied by reversed-phase liquid chromatography using three types of stationary phases, polymeric ODS, polymeric C30, and monomeric ODS. Polymeric ODS stationary phase (Inertsil ODS-P, 3mmID, 20cm) was effective for the separation of the isomers created by the presence of three chiral centers on the alkyl chain of synthetic dl-α-tocopherol. Considerable improvement of the separation of isomers was observed on ODS-P phase at high pressure and at low temperature. Complete separation of four pairs of diastereomers was achieved at 12.0°C, 536bar, while three peaks were observed when the separation was carried out either at 12.0°C at low pressure or at 20°C at 488bar. Higher temperature (30.0°C) with the ODS-P phase resulted in only partial separation of the diastereomers even at high pressure. Only slight resolution was observed for the mixture of diastereomers with the C30 stationary phase (Inertsil C30) at 12.0°C and 441bar, although the stationary phase afforded greater resolution for β- and γ-tocopherol than ODS-P. A monomeric C18 stationary phase did not show any separation at 12.0°C and 463bar. The results suggest that the binding site of the polymeric ODS-P phase is selective for flexible alkyl chains that provided the longest retention for the natural form, (R,R,R) form, and the enantiomer, (S,S,S) form, of dl-α-tocopherol. Copyright © 2016. Published by Elsevier B.V.

  17. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    Czech Academy of Sciences Publication Activity Database

    Käpylä, E.; Sedlačík, Tomáš; Aydogan, D. B.; Viitanen, J.; Rypáček, František; Kellomäki, M.

    2014-01-01

    Roč. 43, 1 October (2014), s. 280-289 ISSN 0928-4931 R&D Projects: GA ČR(CZ) GAP108/11/1857 Institutional support: RVO:61389013 Keywords : direct laser writing * two-photon polymerization * microfabrication Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.088, year: 2014

  18. Polymeric Biomaterials: Diverse Functions Enabled by Advances in Macromolecular Chemistry.

    Science.gov (United States)

    Liang, Yingkai; Li, Linqing; Scott, Rebecca A; Kiick, Kristi L

    2017-01-24

    Biomaterials have been extensively used to leverage beneficial outcomes in various therapeutic applications, such as providing spatial and temporal control over the release of therapeutic agents in drug delivery as well as engineering functional tissues and promoting the healing process in tissue engineering and regenerative medicine. This perspective presents important milestones in the development of polymeric biomaterials with defined structures and properties. Contemporary studies of biomaterial design have been reviewed with focus on constructing materials with controlled structure, dynamic functionality, and biological complexity. Examples of these polymeric biomaterials enabled by advanced synthetic methodologies, dynamic chemistry/assembly strategies, and modulated cell-material interactions have been highlighted. As the field of polymeric biomaterials continues to evolve with increased sophistication, current challenges and future directions for the design and translation of these materials are also summarized.

  19. Relationship between Surface Properties and In Vitro Drug Release from Compressed Matrix Containing Polymeric Materials with Different Hydrophobicity Degrees

    Directory of Open Access Journals (Sweden)

    Cristhian J. Yarce

    2017-01-01

    Full Text Available This work is the continuation of a study focused on establishing relations between surface thermodynamic properties and in vitro release mechanisms using a model drug (ampicillin trihydrate, besides analyzing the granulometric properties of new polymeric materials and thus establishing the potential to be used in the pharmaceutical field as modified delivery excipients. To do this, we used copolymeric materials derived from maleic anhydride with decreasing polarity corresponding to poly(isobutylene-alt-maleic acid (hydrophilic, sodium salt of poly(maleic acid-alt-octadecene (amphiphilic, poly(maleic anhydride-alt-octadecene (hydrophobic and the reference polymer hydroxyl-propyl-methyl-cellulose (HPMC. Each material alone and in blends underwent spectroscopic characterization by FTIR, thermal characterization by DSC and granulometric characterization using flow and compaction tests. Each tablet was prepared at different polymer ratios of 0%, 10%, 20%, 30% and 40%, and the surface properties were determined, including the roughness by micro-visualization, contact angle and water absorption rate by the sessile drop method and obtaining Wadh and surface free energy (SFE using the semi-empirical models of Young–Dupré and  Owens-Wendt-Rabel-Käelbe (OWRK, respectively. Dissolution profiles were determined simulating physiological conditions in vitro, where the kinetic models of order-zero, order-one, Higuchi and Korsmeyer–Peppas were evaluated. The results showed a strong relationship between the proportion and nature of the polymer to the surface thermodynamic properties and kinetic release mechanism.

  20. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at National Taipei University of Technology)

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at National Taipei University of Technology. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  1. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at National Sun Yat-sen University) 

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at National Sun Yat-sen University. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  2. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at Center for Condensed Matter Sciences)

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at Center for Condensed Matter Sciences. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  3. Novel functionalized polymeric fabric and fiber material as solid support for solid-phase synthesis and biomedical applications

    Science.gov (United States)

    Xiang, Bei

    The aim of the research is to develop novel polymer solid support by modifying or fabricating polymeric fibrous materials for peptide synthesis and biomedical applications. Originally chemical inert isotactic polypropylene (iPP) fabric was utilized and modified to serve as a functional flexible planar solid support for solid phase peptide synthesis. The modification was achieved through thermal initiated radical grafting polymerization using acrylic acid, poly (ethylene glycol) diacrylate as monomers, and benzoyl peroxide as radical initiator. The iPP fabric was successfully functionalized and possessing as high as 0.7mmol/g carboxylic acid groups. Peptide ligand LHPQF was successfully synthesized on the new functional planar support. Specific enzyme immobilization was fulfilled on the functional iPP fabric support. A commercially available ethylene-acrylic acid copolymer was made into ultrafine copolymer fiber bundles which are composed of nanofibers with diameters ranging from 200nm to 800nm. Various mixing ratios of copolymer/matrix materials were utilized to explore the effect on the final nanofiber physical properties including morphology and stability in solvents. The surface carboxylic acid groups were further converted to amino groups before the functional nanofibers can be applied in solid phase peptide synthesis. Two peptide ligands, LHPQF and HWRGWV, were also successfully synthesized on the nanofiber bundles. Streptavidin and human immunoglobulin G specific binding with the corresponding ligand which was anchored on the nanofibers was conducted successfully to illustrate the potential applications of the nanofiber materials in biomedical field. Further study on the dispersion of the ethylene-acrylic acid nanofiber bundles was pursued to take advantage of the super high active surface area of functional nanofibers. To manipulate the polymer nanofibers during synthesis and bio-assays, a technique was developed to controllably assemble and disperse the

  4. Biodegradability of biobased polymeric materials in natural environments: Structures and Chemistry

    CSIR Research Space (South Africa)

    Muniyasamy, S

    2017-03-01

    Full Text Available The development of biobased polymer materials from renewable resources meets the concept of sustainability, offering the potential of renewability, biodegradation, and a path away from the problems associated with plastic derived from nonrenewable...

  5. Space Station Validation of Advanced Radiation-Shielding Polymeric Materials, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In Subtopic X11.01, NASA has identified the need to develop advanced radiation-shielding materials and systems to protect humans from the hazards of space radiation...

  6. Space Station Validation of Advanced Radiation-Shielding Polymeric Materials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In Subtopic X11.01, NASA has identified the need to develop advanced radiation-shielding materials and systems to protect humans from the hazards of space radiation...

  7. Space Station Validation of Advanced Radiation-Shielding Polymeric Materials, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In Subtopic X11-01, NASA has identified the need to develop advanced radiation-shielding materials and systems to protect humans from the hazards of space radiation...

  8. Method of forming a continuous polymeric skin on a cellular foam material

    Science.gov (United States)

    Duchane, David V.; Barthell, Barry L.

    1985-01-01

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the outer surface of the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tensin of the polymer solution used to coat are all very important to the coating.

  9. Aspects Concerning Modelling Contact Pressure of Polymeric Materials Used in Robotic Soft Elements

    Directory of Open Access Journals (Sweden)

    Florina-Carmen Ciornei

    2015-06-01

    Full Text Available Compliant materials are used in applications of robotics for final elements of robotic systems. Contact pressure between a spherical indenter and a linear viscoelastic halfspace is modeled for a cosine normal load. The Maxwell viscoelastic halfspace is described by relaxation function and creep function. For the working frequency domain, the material does not present obvious relaxation. Only for very low frequencies, the pressure variation presents a maximum during approaching delayed with respect to maximum force

  10. Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier

    International Nuclear Information System (INIS)

    Chen, Zhong-Hua; Yu, Fei; Zeng, Xing-Rong; Zhang, Zheng-Guo

    2012-01-01

    Highlights: ► We prepare nanocapsules containing n-dodecanol via miniemulsion polymerization. ► Polymerizable emulsifier plays important role in the preparation of nanocapsules. ► Adding co-emulsifier into water phase is helpful to encapsulate n-dodecanol. ► The phase change latent heat of nanocapsule is 98.8 J/g with temperature of 18.2 °C. -- Abstract: Nanocapsules containing phase change material (PCM) n-dodecanol as core and polymethyl methacrylate (PMMA) as shell were synthesized by miniemulsion polymerization with polymerizable emulsifier DNS-86 and co-emulsifier hexadecane (HD). The nanocapsules were characterized by using Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and laser particle diameter analyzer. The effects of polymerizable emulsifier and co-emulsifier on the properties of nanocapsules were studied. The results show that thermal properties of nanocapsules are affected greatly by the addition methods of HD and the amounts of DNS-86 and HD. Adding HD into water phase is helpful for the encapsulation of n-dodecanol. When the mass ratios of DNS-86 to n-dodecanol and the mass ratios of HD to n-dodecanol were 3% and 2%, the phase change latent heat and the encapsulation efficiency of nanocapsules reached to the maximum value of 98.8 J/g and 82.2%, respectively. Spherical nanocapsules with mean diameter of 150 nm and phase change temperature of 18.2 °C are obtained, which are sure to have a good potential for energy storage.

  11. Characterization of physio-chemical properties of polymeric and electrochemical materials for aerospace flight

    Science.gov (United States)

    Rock, M.; Kunigahalli, V.; Khan, S.; Mcnair, A.

    1984-01-01

    Sealed nickel cadmium cells having undergone a large number of cycles were discharged using the Hg/HgO reference electrode. The negative electrode exhibited the second plateau. SEM of negative plates of such cells show clusters of large crystals of cadmium hydroxide. These large crystals on the negative plates disappear after continuous overcharging in flooded cells. Atomic Absorption Spectroscopy and standard wet chemical methods are being used to determine the cell materials viz: nickel, cadmium, cobalt, potassum and carbonate. The anodes and cathodes are analyzed after careful examination and the condition of the separator material is evaluated.

  12. Investigate the Possibility of Tekcast Methods Used for Casting Polymeric Resin Materials

    Directory of Open Access Journals (Sweden)

    Mäsiar H.

    2014-06-01

    Full Text Available Contribution gives an overview of knowledge about the method of centrifugal casting with orientate on Tekcast system. Company Tekcast Industries has developed a device for centrifugal casting, extending the area of production of castings or prototyping of metal or plastic. Materials suitable for the centrifugal casting with flexible operating parameters may include non-ferrous metal alloy based on zinc or aluminum or non-metallic materials such as polyester resins, polyurethane resins, epoxy resins, waxes and the like. The casting process is particularly suitable for a wide range of commercial castings and decorative objects.

  13. Test methods for the dynamic mechanical properties of polymeric materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baker, G.K.

    1980-06-01

    Various test geometries and procedures for the dynamic mechanical analysis of polymers employing a mechanical spectrometer have been evaluated. The methods and materials included in this work are forced torsional pendulum testing of Kevlar/epoxy laminates and rigid urethane foams, oscillatory parallel plate testing to determine the kinetics of the cure of VCE with Hylene MP, oscillatory compressive testing of B-3223 cellular silicone, and oscillatory tensile testing of Silastic E and single Kevlar filaments. Fundamental dynamic mechanical properties, including the storage and loss moduli and loss tangent of the materials tested, were determined as a function of temperature and sometimes of frequency.

  14. Effect of time-dependent material properties on the crack behavior in the interface of two polymeric materials

    Czech Academy of Sciences Publication Activity Database

    Zouhar, Michal; Hutař, Pavel; Náhlík, Luboš; Knésl, Zdeněk

    2011-01-01

    Roč. 47, č. 2 (2011), s. 203-210 ISSN 0191-5665 R&D Projects: GA ČR GC101/09/J027; GA ČR GD106/09/H035; GA ČR GA106/09/0279 Institutional research plan: CEZ:AV0Z20410507 Keywords : multilayer plastic pipes * bimaterial interface * stability criteria * critical stress * time-depended material properties Subject RIV: JL - Material s Fatigue, Friction Mechanics Impact factor: 0.409, year: 2011

  15. (TMTSF)2X materials and structural implications for low-dimensional polymeric and disordered molecular semiconductors

    DEFF Research Database (Denmark)

    Bechgaard, Klaus; Nielsen, Martin Meedom; Krebs, Frederik C

    2000-01-01

    The structural characteristics and the relation to the electronic properties of three types of molecular materials are discussed. In TMTSF2X salts a triclinic unit cell it suggested to be important in avoiding a 2k(F) Peierls distortion. In polythiophenes appropriate ordering of microcrystallites...

  16. Optimization of continuous triboelectrification process for polymeric materials in dry contact

    Science.gov (United States)

    Prawatya, Y. E.; Neagoe, M. B.; Zeghloul, T.; Dascalescu, L.

    2017-02-01

    Triboelectrification (i.e., generation of electric charge by friction between two materials) is a complex process. Besides the nature and condition of the surfaces in contact, several factors can have an influence on charge generation: pressure load and relative velocity between the two bodies, number of friction cycles, ambient temperature and humidity, condition and type of material surface. This paper aims at demonstrating that associating the experimental response surface methodology and genetic algorithms is an effective technique for the optimisation of triboelectrification process. The quadratic model derived from the experiments is used in a genetic algorithm program to find the optimal combination of factor values (10 sliding cycles; normal force: 10 N; sliding speed: 55 mm/s) that maximize the average potential at the surface of the tribocharged materials: -1633 V. A final experiment confirmed the prediction of the genetic algorithm. The conclusions of this experimental study can be applied to the optimisation of industrial triboelectrification processes, and contribute to the reduction of the related maintenance, energy and raw-material costs.

  17. Solvent or thermal extraction of ethylene oxide from polymeric materials: Medical device considerations.

    Science.gov (United States)

    Lucas, Anne D; Forrey, Christopher; Saylor, David M; Vorvolakos, Katherine

    2017-12-11

    Ethylene oxide (EO) gas is commonly used to sterilize medical devices. Bioavailable residual EO, however, presents a significant toxicity risk to patients. Residual EO is assessed using international standards describing extraction conditions for different medical device applications. We examine a series of polymers and explore different extraction conditions to determine residual EO. Materials were sterilized with EO and exhaustively extracted in water, in one of three organic solvents, or in air using thermal desorption. The EO exhaustively extracted varies significantly and is dictated by two factors: the EO that permeates the material during sterilization; and the effectiveness of the extraction protocol in flushing residual EO from the material. Extracted EO is maximized by a close matches between Hildebrand solubility parameters δ polymer , δ EO , and δ solvent . There remain complexities to resolve, however, because maximized EO uptake and detection are accompanied by great variability. These observations may inform protocols for material selection, sterilization, and EO extraction. 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017. © 2017 Wiley Periodicals, Inc.

  18. Damage detection on polymeric matrix composite materials by using acoustic emission technique

    Directory of Open Access Journals (Sweden)

    J. Cauich–Cupul

    2008-04-01

    Full Text Available In order to predict the mechanical behaviour of a composite during its service life, it is important to study the initiation and development of cracks and its effects induced by degradation. The onset of damage is related to the structural integrity of the component and its fatigue life. For this, among other reasons, non–destructive techniques have been widely used nowadays in composite materials characterization such as acoustic emission (AE. This method has demonstrated excellent results on detecting and identifying initiations sites, cracking propagation and fracture mechanisms of polymer matrix composite materials. At the same time, mechanical behaviour has been related intimately to the reinforcement architecture. The goal of this paper is to remark the importance of acoustic emission technique as a unique tool for characterising mechanical parameters in response to external stresses and degradation processes. Some results obtained from different analysis are discussed to support the significance of using AE, technique that will be increased continuously in the composite materials field due to its several alternatives for understanding the mechanical behaviour, therefore the objective of this manuscript is to involve the benefits and advantages of AE in the materials characterization.

  19. Micromechanical properties of a new polymeric microcapsule for self-healing cementitious materials

    NARCIS (Netherlands)

    Lv, Leyang; Schlangen, H.E.J.G.; Yang, Z.; Xing, Feng

    2016-01-01

    Self-healing cementitious materials containing a microencapsulated healing agent are appealing due to their great application potential in improving the serviceability and durability of concrete structures. In this study, poly(phenol-formaldehyde) (PF) microcapsules that aim to provide a

  20. Modification of polymeric materials for 3D printing of external panels of nanosatellites

    OpenAIRE

    Isaeva Dariya; Simankin Fedor; Doncov Yuriy; Simankin Arkadiy

    2017-01-01

    The results of mechanical testing of plastic samples, produced by injection molding and 3D printing are shown. Strength properties of filled and non-filled polymers are compared. The applicability of 3D printing technology with filled polymer materials of external panels is evaluated.

  1. Modification of polymeric materials for 3D printing of external panels of nanosatellites

    Directory of Open Access Journals (Sweden)

    Isaeva Dariya

    2017-01-01

    Full Text Available The results of mechanical testing of plastic samples, produced by injection molding and 3D printing are shown. Strength properties of filled and non-filled polymers are compared. The applicability of 3D printing technology with filled polymer materials of external panels is evaluated.

  2. A Robust Damage Reporting Strategy for Polymeric Materials Enabled by Aggregation Induced Emission

    Science.gov (United States)

    2016-08-17

    Spearing, S. M.; Soutis, C. Damage Detection in Composite Materials Using Lamb Wave Methods. Smart Mater. Struct. 2002, 11, 269. (2) Bruns, N.; Pustelny... Transporting Property. J. Mater. Chem. 2012, 22, 4527−4534. (22) Banal, J. L.; White, J. M.; Lam, T. W.; Blakers, A. W.; Ghiggino, K. P.; Wong, W. W. H. A

  3. Applications of New Synthetic Uranium Reference Materials for Geochemistry Research (Invited)

    Science.gov (United States)

    Richter, S.; Weyer, S.; Alonso, A.; Aregbe, Y.; Kuehn, H.; Eykens, R.; Verbruggen, A.; Wellum, R.

    2009-12-01

    For many applications in geochemistry research isotope ratio measurements play a significant role. In geochronology isotope abundances of uranium and its daughter products thorium and lead are being used to determine the age and history of various samples of geological interest. For measuring the isotopic compositions of these elements by mass spectrometry, suitable isotope reference materials are needed to validate measurement procedures and to calibrate multi-collector and ion counting detector systems. IRMM is a recognized provider for nuclear isotope reference materials to the nuclear industry and nuclear safeguards authorities, which are also being applied widely for geochemical applications. The preparation of several new synthetic uranium reference materials at IRMM during the recent five years has provided significant impacts on geochemical research. As an example, the IRMM-074 series of gravimetrically prepared uranium mixtures for linearity testing of secondary electron multipliers (SEMs) has been applied for the redetermination of the secular equilibrium 234U/238U value and the 234U half-life by Cheng et al (2009). Due to the use of IRMM-074, results with smaller uncertainties were obtained, which are shifted by about 0.04% compared to the commonly used values published earlier by Cheng et al. in 2000. This has a significant impact for U isotope measurements in geochemistry.. As a further example, the new double spike IRMM-3636 with a 233U/236U ratio of 1:1 and an expanded uncertainty as low as 0.016% (coverage factor k=2, 95% confidence level) was prepared gravimetrically. This double spike allows internal mass fractionation correction for high precision 235U/238U ratio measurements of close to natural samples. Using the new double spike IRMM-3636, the 235U/238U ratios for several commonly used natural U standard materials from NIST/NBL and IRMM, such as e.g. NBS960 (=NBL CRM-112a), NBS950a,b and IRMM-184, have been re-measured with improved precision

  4. Influence of Curing Light Attenuation Caused by Aesthetic Indirect Restorative Materials on Resin Cement Polymerization

    Science.gov (United States)

    Pick, Bárbara; Gonzaga, Carla Castiglia; Junior, Washington Steagall; Kawano, Yoshio; Braga, Roberto Ruggiero; Cardoso, Paulo Eduardo Capel

    2010-01-01

    Objectives: To verify the effect of interposing different indirect restorative materials on degree of conversion (DC), hardness, and flexural strength of a dual-cure resin cement. Methods: Discs (2 mm-thick, n=5) of four indirect restorative materials were manufactured: a layered glass-ceramic (GC); a heat-pressed lithium disilicate-based glass-ceramic veneered with the layered glass-ceramic (LD); a micro-hybrid (MH); and a micro-filled (MF) indirect composite resin. The light transmittance of these materials was determined using a double-beam spectrophotometer with an integrating sphere. Bar-shaped specimens of a dual-cure resin cement (Nexus 2/SDS Kerr), with (dual-cure mode) and without the catalyst paste (light-cure mode), were photoactivated through the discs using either a quartz-tungsten-halogen (QTH) or a light-emitting diode (LED) unit. As a control, specimens were photoactivated without the interposed discs. Specimens were stored at 37ºC for 24h before being submitted to FT-Raman spectrometry (n=3), Knoop microhardness (n=6) and three-point bending (n=6) tests. Data were analyzed by ANOVA/Tukey’s test (α=0.05). Results: MH presented the highest transmittance. The DC was lower in light-cure mode than in dual-cure mode. All restorative materials reduced the cement microhardness in light-cure mode. GC and LD with QTH and GC with LED decreased the strength of the cement for both activation modes compared to the controls. Curing units did not affect DC or microhardness, except when the dual-cure cement was photoactivated through LD (LED>QTH). Flexural strength was higher with QTH compared to LED. Conclusions: Differences in transmittance among the restorative materials significantly influenced cement DC and flexural strength, regardless of the activation mode, as well as the microhardness of the resin cement tested in light-cure mode. Microhardness was not impaired by the interposed materials when the resin cement was used in dual-cure mode. PMID:20613921

  5. Cationic metallocene polymerization catalysts based on tetrakis(pentafluorophenyl)borate and its derivatives. Probing the limits of anion `noncoordination` via a synthetic, solution dynamic, structural, and catalytic olefin polymerization study

    Energy Technology Data Exchange (ETDEWEB)

    Jia, L.; Yang, X.; Stern, C.L.; Marks, T.J. [Northwestern Univ., Evanston, IL (United States)

    1997-03-04

    The silyl-functionalized/protected derivatives of the tetrakis(perfluoroaryl)borate anions, B(C{sub 6}F{sub 4}TBS){sub 4}{sup -} and B(C{sub 6}F{sub 4}TIPS){sub 4}{sup -} (TBS = tert-butyldimethylsilyl and TIPS = triisopropylsilyl) have been synthesized, and a series of stable, highly reactive Zr and Th ion-paired methyl and hydride catalysts have been isolated using these anions. In contrast, the analogous B(C{sub 6}F{sub 5}){sub 4}{sup -}-based zirconocene methyl complexes are not stable at room temperature; however, B(C{sub 6}F{sub 5}){sub 4}{sup -}-based zirconocene hydride complexes can be isolated. The relative coordinative ability of the series of fluoroarylborates with respect to metallocene cations has been evaluated on the basis of spectroscopic and reactivity data. The polymerization activity of the zirconocene catalysts reaches a maximum when B(C{sub 6}F{sub 4}TBS){sub 4}{sup -} and B(C{sub 6}F{sub 4}TIPS){sub 4}{sup -} are counteranions, and the polymerization activity of the Zr constrained geometry catalyst reaches a maximum in aromatic solvents due to arene coordination when B(C{sub 6}F{sub 5}){sub 4}{sup -} is the counteranion. 37 refs., 5 figs., 7 tabs.

  6. Using complementary tools to characterize the effects of radiation in electro-optic polymeric materials

    Science.gov (United States)

    Perez-Moreno, Javier

    2015-09-01

    Understanding the fundamental mechanisms behind the radiation resistance of polymers and molecules would allow us to tailor new materials with enhanced performance in space and adverse environments. Previous studies of the radiation effects on polymer-based photonic materials indicate that they are very dependent on the choice of polymer-host and guest-chromophores. The best results have been reported from the combination of CLD1 as a guest-chromophore doped in APC as host polymer, where improvement of the performance was observed upon gamma-irradiation at moderate doses. In this paper, we report on the different complementary tools that have been tried to characterize the origin of such enhancement: characterization of the linear and nonlinear response, characterization of chemical properties, and application of an all-optical protocol. We derive some general conclusions by contrasting the results of each characterization, and propose complementary experiments based on microscopy techniques.

  7. Compatibility of polymeric materials with the radiosterilization of disposable medical products

    International Nuclear Information System (INIS)

    Gonzalez, M.E.

    1990-01-01

    The semiindustrial plant of irradiation located at the Atomic Center of Ezeiza entered into operation 20 years ago. This plant has a nominal activity of 3.7 x 10 16 Bq (10 6 Ci) and is presently operating with 1.78 x 10 16 Bq (4.8 x 10 5 Ci). The facility allows working in pilot plant scale for the study of industrial applications and also performs commercial services, the most important of which considering its volume, economic significance and social function is the radiosterilization of disposable medical products. Approximately 29,000 m 3 have been processed in this period, most of the materials being polymers, as component parts of the products as well as packaging. To validate the process of radiosterilization the materials compatibility with ionizing radiation must be known. In the department that operates the irradiation plant, the polymer laboratory is involved in the development of industrial applications and also in the subject of compatibility of polymers with radiosterilization. The laboratory gives advice on request about selection of materials as well as relevant information for the evaluation of radiation resistance and stability, including exposition doses for the samples and mechanical, physical or chemical tests according to the kind of product. In many occasions this laboratory has had to undertake these tests because local manufacturers of medical products not always have adequate facilities for quality control. Among mechanical tests the area under the stress-strain curve as a measure of the strain the material can undergo without fracture is perhaps the best for the evaluation of degradation. Among physical properties it is important to evaluate discoloration, usual in plastics irradiation, and concerning chemical tests the detection of migration of components from the polymer proves important in some cases. Although the irradiator cannot assume any responsibility concerning compatibility, local experience has shown the importance of having a

  8. Fire Safety Aspects of Polymeric Materials. Volume 6. Aircraft. Civil and Military

    Science.gov (United States)

    1977-01-01

    oxygen from the polymer surface. 2. Degradation of the retardant into radicals or molecules that react endo- thermically with flame species or...polysulfone, and polyethylene, flowed to the bot- tom or dripped off the sample holder in varying degrees, resulting in less smoke. Some materials evaporated ...to 280°C. Same gases as in Zone A are produced along with greatly reduced quantities of water vapor and CO. Reactions are endo- thermic and products

  9. Finite element analysis of the high strain rate testing of polymeric materials

    International Nuclear Information System (INIS)

    Gorwade, C V; Ashcroft, I A; Silberschmidt, V V; Alghamdi, A S; Song, M

    2012-01-01

    Advanced polymer materials are finding an increasing range of industrial and defence applications. Ultra-high molecular weight polymers (UHMWPE) are already used in lightweight body armour because of their good impact resistance with light weight. However, a broader use of such materials is limited by the complexity of the manufacturing processes and the lack of experimental data on their behaviour and failure evolution under high-strain rate loading conditions. The current study deals with an investigation of the internal heat generation during tensile of UHMWPE. A 3D finite element (FE) model of the tensile test is developed and validated the with experimental work. An elastic-plastic material model is used with adiabatic heat generation. The temperature and stresses obtained with FE analysis are found to be in a good agreement with the experimental results. The model can be used as a simple and cost effective tool to predict the thermo-mechanical behaviour of UHMWPE part under various loading conditions.

  10. STUDY STRUCTURE OF THREE-COMPONENT POLYMERIC MATERIAL UNDER INFLUENCE OF γ-IRRADIATION

    Directory of Open Access Journals (Sweden)

    V. T. Tarasyuk

    2017-01-01

    Full Text Available The polymer material (РА/РЕ/Eva with a width of 55 μm was studied. Sterilization was carried out on the unit GU–200 at doses from 3 to 18 kGy in the Research Institute of Technical Physics and Automation, Rosatom, Moscow, Russia. The structure of the polymermaterial samples was studied by IR spectroscopy before and after irradiation in a range of 400–5000 сm–1. According to the results of the analysis of the IR spectrum structure, the changes in the structure were insignificant upon irradiation at doses up to 6 kGy. Upon irradiation at doses from 9 kGy and higher, an increase in quantity of ester groups (2340 сm–1 and insignificant increase in other functional groups were observed, which can suggest a simultaneous process of intra-molecular cross-linking with the intermediatestage of cross-linking occurring with formation of vinylene groups. This causes destruction of a polymer material and radiation oxidation. These disorders can lead to changes in physico-mechanical and barrier parameters of a polymer material, which can be notably reflected in the shelf life of agricultural products.

  11. Finite element analysis of the high strain rate testing of polymeric materials

    Science.gov (United States)

    Gorwade, C. V.; Alghamdi, A. S.; Ashcroft, I. A.; Silberschmidt, V. V.; Song, M.

    2012-08-01

    Advanced polymer materials are finding an increasing range of industrial and defence applications. Ultra-high molecular weight polymers (UHMWPE) are already used in lightweight body armour because of their good impact resistance with light weight. However, a broader use of such materials is limited by the complexity of the manufacturing processes and the lack of experimental data on their behaviour and failure evolution under high-strain rate loading conditions. The current study deals with an investigation of the internal heat generation during tensile of UHMWPE. A 3D finite element (FE) model of the tensile test is developed and validated the with experimental work. An elastic-plastic material model is used with adiabatic heat generation. The temperature and stresses obtained with FE analysis are found to be in a good agreement with the experimental results. The model can be used as a simple and cost effective tool to predict the thermo-mechanical behaviour of UHMWPE part under various loading conditions.

  12. Sialic Acid-Responsive Polymeric Interface Material: From Molecular Recognition to Macroscopic Property Switching

    Science.gov (United States)

    Xiong, Yuting; Jiang, Ge; Li, Minmin; Qing, Guangyan; Li, Xiuling; Liang, Xinmiao; Sun, Taolei

    2017-01-01

    Biological systems that utilize multiple weak non-covalent interactions and hierarchical assemblies to achieve various bio-functions bring much inspiration for the design of artificial biomaterials. However, it remains a big challenge to correlate underlying biomolecule interactions with macroscopic level of materials, for example, recognizing such weak interaction, further transforming it into regulating material’s macroscopic property and contributing to some new bio-applications. Here we designed a novel smart polymer based on polyacrylamide (PAM) grafted with lactose units (PAM-g-lactose0.11), and reported carbohydrate-carbohydrate interaction (CCI)-promoted macroscopic properties switching on this smart polymer surface. Detailed investigations indicated that the binding of sialic acid molecules with the grafted lactose units via the CCIs induced conformational transformation of the polymer chains, further resulted in remarkable and reversible switching in surface topography, wettability and stiffness. With these excellent recognition and response capacities towards sialic acid, the PAM-g-lactose0.11 further facilitated good selectivity, strong anti-interference and high adsorption capacity in the capture of sialylated glycopeptides (important biomarkers for cancers). This work provides some enlightenment for the development of biointerface materials with tunable property, as well as high-performance glycopeptide enrichment materials.

  13. Durability of polymeric materials used in zinc/bromine flow batteries

    Science.gov (United States)

    Arnold, C., Jr.

    The lifetimes of zinc/bromine flow batteries may be limited by the durability of components which are fabricated from thermoplastic materials and exposed to the bromine-containing electrolyte. Examples of such components are flowframes and carbon-filled plastic electrodes. In early versions of the zinc/bromine battery, flowframes and electrodes were made from polypropylene and copolymers of propylene and ethylene. In later versions of the zinc/bromine battery, polyvinyl chloride (PVC) was used as the material to fabricate flowframes and polyethylene was used as the material used to fabricate both flowframes and electrodes. We found that carbon-plastic electrodes made from polypropylene or polypropylene rich copolymers were swelled and chemically attacked by the bromine-containing electrolytes. As a result, warpage occurred and the battery failed. On the basis of accelerated aging studies we estimated the lifetimes of the electrode and its polypropylene based component to be 96 and 10 months, respectively. The enhanced stability of the electrode was attributed to the presence of carbon which is known to be an antioxidant for thermoxidation. In accelerated exposure tests, bromine-containing electrolytes were also found to attack and leach out the additives used in PVC flowframes. PVC itself was only slightly degraded by the electrolyte. A commercial fluorocarbon, Tefzel, which contains no additives, was determined to be stable in bromine-containing electrolytes and is recommended as a replacement for PVC. Currently, aging studies on carbon-filled polyethylene electrodes are in progress.

  14. The utilize of gamma radiation on the examination of mechanical properties of polymeric materials

    Directory of Open Access Journals (Sweden)

    F. Greškovič

    2012-04-01

    Full Text Available The article deals about the application area of radiation crosslinking of plastics, which follows after the injection moulding. The main objective of the presented article is the research of influence irradiation dosage on mechanical properties of materials: PP filled by 15 % of mineral filler – talc. Mechanical properties - tensile strength and impact strength by Charpy were examined in dependence on absorbed dose of the gamma rays on various conditions and were compared with non-irradiated samples. Radiation processing involves mainly the use of either electron beams from electron accelerators or gamma radiation from Cobalt-60 sources.

  15. Urban Biomining: Biological Extraction of Metals and Materials from Electronics Waste Using a Synthetic Biology Approach

    Science.gov (United States)

    Urbina-Navarrete, J.; Rothschild, L.

    2016-12-01

    End-of-life electronics waste (e-waste) containing toxic and valuable materials is a rapidly progressing human health and environmental issue. Using synthetic biology tools, we have developed a recycling method for e-waste. Our innovation is to use a recombinant version of a naturally-occurring silica-degrading enzyme to depolymerize the silica in metal- and glass- containing e-waste components, and subsequently, to use engineered bacterial surfaces to bind and separate metals from a solution. The bacteria with bound metals can then be used as "bio-ink" to print new circuits using a novel plasma jet electronics printing technology. Here, we present the results from our initial studies that focus on the specificity of metal-binding motifs for a cognate metal. The candidate motifs that show high affinity and specificity will be engineered into bacterial surfaces for downstream applications in biologically-mediated metal recycling. Since the chemistry and role of Cu in metalloproteins is relatively well-characterized, we are using Cu as a proxy to elucidate metal and biological ligand interactions with various metals in e-waste. We assess the binding parameters of 3 representative classes of Cu-binding motifs using isothermal titration calorimetry; 1) natural motifs found in metalloproteins, 2) consensus motifs, and 3) rationally designed peptides that are predicted, in silico, to bind Cu. Our results indicate that naturally-occurring motifs have relative high affinity and specificity for Cu (association constant for Cu Ka 104 M-1, Zn Ka 103 M-1) when competing ions are present in the aqueous milieu. However, motifs developed through rational design by applying quantum mechanical methods that take into account complexation energies of the elemental binding partners and molecular geometry of the cognate metal, not only show high affinity for the cognate metal (Cu Ka 106 M-1), but they show specificity and discrimination against other metal ions that would be

  16. Applications of New Synthetic Uranium Reference Materials for Research in Geochemistry

    Science.gov (United States)

    Richter, Stephan; Alonso, Adolfo; Aregbe, Yetunde; Eykens, Roger; Jacobsson, Ulf; Kuehn, Heinz; Verbruggen, Andre; Weyer, Stefan

    2010-05-01

    For many applications in geochemistry research isotope ratio measurements play a significant role. In geochronology isotope abundances of uranium and its daughter products thorium and lead are being used to determine the age and history of various samples of geological interest. For measuring the isotopic compositions of these elements by mass spectrometry, suitable isotope reference materials are needed to validate measurement procedures and to calibrate multi-collector and ion counting detector systems. IRMM is a recognized provider for nuclear isotope reference materials to the nuclear industry and nuclear safeguards authorities, which are also being applied widely for geochemical applications. Firstly, the double spike IRMM-3636 with a 233U/236U ratio of 1:1 was prepared which allows internal mass fractionation correction for high precision 235U/238U ratio measurements. The 234U abundance of this double spike material is low enough to allow an accurate and precise correction of 234U/238U ratios, even for measurements of close to equilibrium uranium samples. The double spike IRMM-3636 is offered in 3 concentrations: 1mg/g, 0.1mg/g and 0.005mg/g. Secondly, the 236U single spike IRMM-3660 was prepared and is offered in 3 concentrations: 1mg/g, 0.1mg/g and 0.01mg/g. Thirdly, a "Quad"-isotope reference material, IRMM-3101, has been prepared which is characterized by 233U/235U/236U/238U=1/1/1/1. This material is useful for checking Faraday cup efficiencies and inter-calibration of MIC (multiple ion counting) detectors. The quad-IRM is offered in 3 concentrations: 1mg/g, 0.1mg/g and 0.01mg/g. As one example for the significant influence of synthetic reference materials for geochemical research, the IRMM-074 series of gravimetrically prepared uranium mixtures for linearity testing of secondary electron multipliers (SEMs) has been applied for the redetermination of the secular equilibrium 234U/238U value and the 234U half-life by Cheng et al (2009). Due to the use of

  17. Tailored cationic palladium(II) compounds as catalysts for highly selective dimerization and polymerization of vinylic monomers: Synthetic and mechanistic aspects

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Z.; Sen, A. (Pennsylvania State Univ., University Park (United States))

    1993-04-01

    The electrophilic palladium(II)compounds Pd(2,6-di-tert-butylpyridine)[sub 2](CH[sub 3]NO[sub 2])[sub 2](BF[sub 4])[sub 2] (1), Pd(PPh[sub 3])[sub 2](BF[sub 4])[sub 2] (2), and Pd(Ph[sub 2]PCH[sub 2]CH[sub 2]PPh[sub 2])(BF[sub 4])[sub 2] (3) were found to be highly selective catalysts for the acyclic dimerization of vinyl monomers (styrene, ethylene, and propylene) and the linear polymerization of p-divinylbenzene, the reactions proceeding through a carbocationic mechanism. One manifestation of the high selectivity was the ability to catalyze the dimerization of ethylene in the presence of propylene and styrene in the presence of [alpha]-methylstyrene even though the second member of each pair was normally significantly more reactive in reactions involving carbocationic intermediates. The linear polymerization of p-divinylbenzene involved in step-growth mechanism. The synthesis of a telechelic polymer through cross-coupling between the terminal vinyl groups of linear poly(p-divinylbenzene) and the vinyl group of a functionalized styrene derivative was also achieved. The reaction rates for the linear dimerization of styrene and the linear polymerization of p-divinylbenzene were found to be first order in the monomer concentration and fractional order in the catalyst concentration. Mathematical modeling indicated that the fractional order in the catalyst concentration was due to preequilibria involving anion dissociation from the metal center, and actually, the catalytic species in the case of 2 was found to be the dication, Pd(PPh[sub 3])[sub 2][sup 2+]. 17 refs., 6 figs., 4 tabs.

  18. Investigation of space radiation effects in polymeric film-forming materials

    Science.gov (United States)

    Giori, C.; Yamauchi, T.; Jarke, F.

    1975-01-01

    The literature search in the field of ultraviolet radiation effects that was conducted during the previous program, Contract No. NAS1-12549, has been expanded to include the effects of charged particle radiation and high energy electromagnetic radiation. The literature from 1958 to 1969 was searched manually, while the literature from 1969 to present was searched by using a computerized keyword system. The information generated from this search was utilized for the design of an experimental program aimed at the development of materials with improved resistance to the vacuum-radiation environment of space. Preliminary irradiation experiments were performed which indicate that the approaches and criteria employed are very promising and may provide a solution to the challenging problem of polymer stability to combined ultraviolet/high energy radiation.

  19. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications.

    Science.gov (United States)

    Prakash, Jai; Pivin, J C; Swart, H C

    2015-12-01

    This review covers some key concepts related to embedding of the noble metal nanoparticles in polymer surfaces. The metal nanoparticles embedded into the polymer matrix can provide high-performance novel materials that find applications in modern nanotechnology. In particular, the origin of various processes that drive the embedding phenomenon, growth of the nanostructure at the surface, factors affecting the embedding including role of surface, interface energies and thermodynamic driving forces with emphasis on the fundamental and technological applications, under different conditions (annealing and ion beams) have been discussed. In addition to the conventional thermal process for embedding which includes the measure of fundamental polymer surface properties with relevant probing techniques, this review discusses the recent advances carried out in the understanding of embedding phenomenon starting from thin metal films to growth of the nanoparticles and embedded nanostructures using novel ion beam techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Medical devices regulatory aspects: a special focus on polymeric material based devices.

    Science.gov (United States)

    Sridhar, Radhakrishnan; Pliszka, Damian; Luo, He-Kuan; Chin Lim, Keith Hsiu; Ramakrishna, Seeram

    2015-01-01

    Medical devices form a broad range of appliances from a basic nanoparticle coating or surgical gloves to a complicated laser therapy device. These devices are designed to support patients, surgeons and healthcare personnel in meeting patients' healthcare needs. Regulatory authorities of each country regulate the process of approval, manufacturing and sales of these medical devices so as to ensure safety and quality to patients or users. Recent recalls of medical devices has increased importance of safety, awareness and regulation of the devices. Singapore and India have strong presence and national priorities in medical devices development and use. Herein we capture the rationale of each of these national regulatory bodies and compare them with the medical devices regulatory practices of USA and European nations. Apart from the comparison of various regulatory aspects, this review will specifically throw light on the polymer material based medical devices and their safety.

  1. Excitonic singlet-triplet ratios in molecular and polymeric organic materials

    Science.gov (United States)

    Baldo, Marc; Agashe, Shashank; Forrest, Stephen

    2002-03-01

    A simple technique is described for the determination of the internal efficiency and excitonic singlet-triplet formation statistics of electroluminescent organic thin films. The internal efficiency is measured by optically exciting a luminescent film within an electroluminescent device under reverse bias. This gives minimum singlet fractions of (0.20+/-0.03) and (0.19+/-0.04) for tris(8-hydroxyquinoline) aluminum (Alq3) and poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV), respectively. These results are discussed in terms of the current understanding of exciton formation within organic materials. We also present measurements of the out-coupling fraction, or the fraction of photons emitted in the forward direction, as a function of the position of the emitting layer within a microcavity.

  2. DNA polymeric films as a support for cell growth as a new material for regenerative medicine: Compatibility and applicability.

    Science.gov (United States)

    Jayme, Cristiano Ceron; de Paula, Leonardo Barcelos; Rezende, Nayara; Calori, Italo Rodrigo; Franchi, Leonardo Pereira; Tedesco, Antonio Claudio

    2017-11-15

    DNA polymeric films (DNA-PFs) are a promising drug delivery system (DDS) in modern medicine. In this study, we evaluated the growth behavior of oral squamous cell carcinoma (OSCC) cells on DNA-PFs. The morphological, biochemical, and cytometric features of OSCC cell adhesion on DNA-PFs were also assessed. An initial, temporary alteration in cell morphology was observed at early time points owing to the inhibition of cell attachment to the film, which then returned to a normal morphological state at later time points. MTT and resazurin assays showed a moderate reduction in cell viability related to increased DNA concentration in the DNA-PFs. Flow cytometry studies showed low cytotoxicity of DNA-PFs, with cell viabilities higher than 90% in all the DNA-PFs tested. Flow cytometric cell cycle analysis also showed average cell cycle phase distributions at later time points, indicating that OSCC cell growth is maintained in the presence of DNA-PFs. These results show high biocompatibility of DNA-PFs and suggest their use in designing "dressing material," where the DNA film acts as a support for cell growth, or with incorporation of active or photoactive compounds, which can induce tissue regeneration and are useful to treat many diseases, especially oral cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Strategy for Fabricating Multiple-Shape-Memory Polymeric Materials via the Multilayer Assembly of Co-Continuous Blends.

    Science.gov (United States)

    Zheng, Yu; Ji, Xiaoying; Yin, Min; Shen, Jiabin; Guo, Shaoyun

    2017-09-20

    Shape-memory polymeric materials containing alternating layers of thermoplastic polyurethane (TPU) and co-continuous poly(butylene succinate) (PBS)/polycaprolactone (PCL) blends (denoted SLBs) were fabricated through layer-multiplying coextrusion. Because there were two well-separated phase transitions caused by the melt of PCL and PBS, both the dual- and triple-shape-memory effects were discussed. Compared with the blending specimen with the same components, the TPU/SLB multilayer system with a multicontinuous structure and a plenty of layer interfaces was demonstrated to have higher shape fixity and recovery ability. When the number of layers reached 128, both the shape fixity and recovery ratios were beyond 95 and 85% in dual- and triple-shape-memory processes, respectively, which were difficult to be achieved through conventional melt-processing methods. On the basis of the classic viscoelastic theory, the parallel-assembled TPU and SLB layers capable of maintaining the same strain along the deforming direction were regarded to possess the maximum ability to fix temporary shapes and trigger them to recover back to original ones through the interfacial shearing effect. Accordingly, the present approach provided an efficient strategy for fabricating outstanding multiple-shape-memory polymers, which may exhibit a promising application in the fields of biomedical devices, sensors and actuators, and so forth.

  4. METAL OXIDE DOPED ANTIBACTERIAL POLYMERIC COATED TEXTILE MATERIALS AND ASSESSEMENT OF ANTIBACTERIAL ACTIVITY WITH ELECTRON SPIN RESONANCE

    Directory of Open Access Journals (Sweden)

    GEDIK Gorkem

    2017-05-01

    Full Text Available Antibacterial activity of a food conveyor belt is an essential property in some cases. However, every antibacterial chemical is not suitable to contact with food materials. Many metal oxides are suitable option for this purpose. The aim of this study was to investigate antibacterial properties of zinc oxide doped PVC polymer coated with electron spin resonance technique. Therefore, optimum zinc oxide containing PVC paste was prepared and applied to textile surface. Coating construction was designed as double layered, first layer did not contain antibacterial agent, thin second layer contained zinc oxide at 10-35% concentration. Oxygen radicals released from zinc oxide containing polymeric coated surface were spin trapped with DMPO (dimethylpyrroline-N-oxide spin trap and measured with Electron Spin Resonance (ESR. Besides conveyor belt samples, oxygen radical release from zinc oxide surface was measured with ESR under UV light and dark conditions. Oxygen radical release was determined even at dark conditions. Antibacterial properties were tested with ISO 22196 standard using Listeria innocua species. Measured antibacterial properties were related with ESR results. Higher concentration of zinc oxide resulted in higher antibacterial efficiency. DCFH-DA flourometric assay was carried out to determine oxidative stress insidebacteria. It is tought that, this technique will lead to decrease on the labour and time needed for conventional antibacterial tests.

  5. Polymeric microspheres

    Science.gov (United States)

    Walt, David R.; Mandal, Tarun K.; Fleming, Michael S.

    2004-04-13

    The invention features core-shell microsphere compositions, hollow polymeric microspheres, and methods for making the microspheres. The microspheres are characterized as having a polymeric shell with consistent shell thickness.

  6. In vitro photosensitization initiated by camphorquinone and phenyl propanedione in dental polymeric materials.

    Science.gov (United States)

    Christensen, Terje; Morisbak, Else; Tønnesen, Hanne Hjorth; Bruzell, Ellen M

    2010-09-02

    Documentation is scarce on the photobiological effects of photoinitiators present in dental light curable materials. The aim of this study was to determine cellular effects of the photoinitiators camphorquinone (CQ) and phenyl propanedione (PPD) and to investigate whether these substances produced reactive oxygen species after low and high doses of optical radiation (between 0 and 17J/cm(2)). Rat salivary gland cells in vitro were exposed to visible blue light and/or UVA. Hematoporphyrin (HP), a photosensitizer used in medicine, and the UVA-filter 2-methoxy-4-hydroxy-benzophenone (B-3) were used as reference substances. It was found that PPD produced hydrogen peroxide, but not singlet oxygen, upon light irradiation. CQ produced neither hydrogen peroxide nor singlet oxygen. Cell death by necrosis and apoptosis was induced by irradiation in the presence of CQ, PPD and HP. Doses higher than 6J/cm(2) UVA and blue visible light from a source similar to clinically applied sources, induced apoptosis even in the absence of photosensitizers added. A reciprocity relationship was found between radiant exposure (at constant irradiance) and concentration of photoinitiators. In conclusion, the oral cells under investigation were light sensitive, and the sensitivity increased in presence of photoinitiators. PPD acted by mechanisms that included reactive oxygen species and CQ probably by formation of free radicals. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Sinus Floor Elevation and Augmentation Using Synthetic Nanocrystalline and Nanoporous Hydroxyapatite Bone Substitute Materials: Preliminary Histologic Results.

    Science.gov (United States)

    Belouka, Sofia-Maria; Strietzel, Frank Peter

    To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and

  8. Influence of Pichia pastoris cellular material on polymerase chain reaction performance as a synthetic biology standard for genome monitoring.

    Science.gov (United States)

    Templar, Alexander; Woodhouse, Stefan; Keshavarz-Moore, Eli; Nesbeth, Darren N

    2016-08-01

    Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures.

    Science.gov (United States)

    DeCost, Brian L; Holm, Elizabeth A

    2016-12-01

    This data article presents a data set comprised of 2048 synthetic scanning electron microscope (SEM) images of powder materials and descriptions of the corresponding 3D structures that they represent. These images were created using open source rendering software, and the generating scripts are included with the data set. Eight particle size distributions are represented with 256 independent images from each. The particle size distributions are relatively similar to each other, so that the dataset offers a useful benchmark to assess the fidelity of image analysis techniques. The characteristics of the PSDs and the resulting images are described and analyzed in more detail in the research article "Characterizing powder materials using keypoint-based computer vision methods" (B.L. DeCost, E.A. Holm, 2016) [1]. These data are freely available in a Mendeley Data archive "A large dataset of synthetic SEM images of powder materials and their ground truth 3D structures" (B.L. DeCost, E.A. Holm, 2016) located at http://dx.doi.org/10.17632/tj4syyj9mr.1[2] for any academic, educational, or research purposes.

  10. The production of synthetic material gas (SNG) from pit coal by a combined auto-allothermic steam gasification

    International Nuclear Information System (INIS)

    Buch, A.

    1975-01-01

    The steam gasification of pit coal requires temperatures which cannot yet be reached with the present state of HTGR technology for material technical reasons. The use of nuclear heat thus remains limited to some fields of application outside the gasifier, which are specified. The production costs of synthetic natural gas from autothermal gasification on the one hand, and from combined auto-allothermal gasification on the other hand are calculated considering the heat price of pit coal and of the selling price of electrical energy and are compared. (GG/LH) [de

  11. Semiconducting polymeric materials

    NARCIS (Netherlands)

    de Boer, Bert; Facchetti, Antonio

    2008-01-01

    (Semi)conducting polymers with a pi-conjugated (hetero)aromatic backbone are capable of transporting charge and interact efficiently with light enabling their utilization in a variety of opto-electronic devices. In this report and in the additional papers of this special issue, several classes of

  12. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    are the charge transfer elements are intrinsically conducting polymers, where the electrical conductivity is a result of delocalized electrons along the polymer backbone, with polyaniline, polypyrrole, and PEDOT as prominent examples. Already in 2000 Alan Heeger, Alan MacDiarmid, and Hideki Shirakawa were...

  13. Relationship between the Polymeric Ionization Degree and Powder and Surface Properties in Materials Derived from Poly(maleic anhydride-alt-octadecene

    Directory of Open Access Journals (Sweden)

    Constain H. Salamanca

    2018-02-01

    Full Text Available Polymeric materials derived from poly(maleic anhydride-alt-octadecene—here referred as PAM-18—have shown interesting properties that make them potential pharmaceutical excipients. In this work, eight polymers derived from PAM-18 were obtained using NaOH and KOH at 1:1; 1:0.75, 1:0.5, and 1:0.25 molar ratios. The resulting products were labeled as PAM-18Na and PAM-18K, respectively. Each polymer was purified by ultrafiltration/lyophilization, and the ionization degree was determined by potentiometric studies, which was related to the zeta potential. The structural characterization was performed using the Fourier transform infrared (FT-IR espectroscopy, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA, and X-ray diffraction (XRD techniques. The physical characterization was carried out by SEM, particle analysis, and humidity loss and gain studies; the surface studies were performed by the sessile drop method. PAM-18Na had ionization degrees of 95%, 63%, 39% and 22%, whereas those for PAM-18K were 99%, 52%, 35% and 20%, respectively. The results also showed that for higher inorganic base amounts used, the polymeric materials obtained possess high ionization degrees, which could form polymeric solutions or hetero-dispersed systems. Likewise, it was observed that for higher proportions of carboxylate groups in the polymeric structure, the capability to retain water is increased and, only can be eliminated by drying at temperatures greater than 160 °C. On the other hand, the modification of PAM-18 to its ionized forms led to the formation of powder materials with low flowability and surfaces that ranged from very hydrophobic to slightly wettable.

  14. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  15. Polymerization shrinkage stress of resin-based dental materials: A systematic review and meta-analyses of technique protocol and photo-activation strategies.

    Science.gov (United States)

    Münchow, Eliseu Aldrighi; Meereis, Carine Tais Welter; de Oliveira da Rosa, Wellington Luiz; da Silva, Adriana Fernandes; Piva, Evandro

    2018-03-08

    A systematic review was conducted to determine whether there were any alternative technique or additional step strategies available to reduce and control polymerization shrinkage stress development in dental resin-based restorative materials. This report followed the PRISMA Statement. A total of 36 studies were included in this review. Two reviewers performed a literature search up to December 2016, without restriction of the year of publication, in seven databases: PubMed, Web of Science, Scopus, SciELO, LILACS, IBECS, and BBO. Only in vitro studies that evaluated polymerization shrinkage stress by direct testing were included. Pilot studies, reviews and in vitro studies that evaluated polymerization shrinkage stress by indirect methods (e.g., microleakage or cuspal deflection measurements), finite elemental analysis or mathematical models were excluded. Of the 6.113 eligible articles, 36 studies were included in the qualitative analysis, and the meta-analysis was performed with 25 studies. A global comparison was performed with random-effects models (α = 0.05). The strategies were subdivided as follows: the use of an alternative technique protocol of placing the material inside the tooth cavity; the modification of the irradiation intensity or total energy delivered to the material; the use of an alternative light-curing source; or the use of an alternative photo-activation mode. All alternative strategies showed statistically significant differences when compared with their respective controls (p material by means of an alternative technique protocol or by modifying the irradiant intensity or total energy delivered to the material during photo-activation. Moreover, the use of an alternative photo-activation mode (intermittent light, exponential, soft-start or pulse delay modes) was shown to be an effective strategy for reducing and controlling stress development in resin-based dental materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Expanded corn starch as a versatile material in atom transfer radical polymerization (ATRP) of styrene and methyl methacrylate.

    Science.gov (United States)

    Bansal, Ankushi; Kumar, Arvind; Latha, Patnam Padma; Ray, Siddharth Sankar; Chatterjee, Alok Kumar

    2015-10-05

    Polymerization of styrene (St) and methyl methacrylate (MMA) was performed by surface initiated (SI) and activator generated by electron transfer (AGET) systems of atom transfer radical polymerization (ATRP) using renewable expanded corn starch (ECS) as a support. This prepared ECS is found to have V type crystallinity with 50 m(2)g(-1) surface area (<1m(2)g(-1) for corn starch (CS)) and average pore volume of 0.43 cm(3)g(-1) (<0.1cm(3)g(-1) for CS). In SI-ATRP, hydroxyl groups on ECS were converted into macro-initiator by replacing with 2-bromoisobutyryl bromide (BIBB) with a 0.06 degree of substitution determined from NMR. In AGET-ATRP, CuBr2/ligand complex get adsorbed on ECS (Cu(II)/ECS=10 wt.%) to catalyze the polymerization. Synthesized PS/PMMA was characterized by SEM, FT-IR, (1)H NMR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Improvements in or relating to method of preparing porous material/synthetic polymer composites

    International Nuclear Information System (INIS)

    Hills, P.R.; McGahan, D.J.

    1976-01-01

    A method for preparing a composite material is described comprising polymerising a monoethylenically unsaturated monomer of a mixture of copolymerisable monoethylenically unsaturated monomers in a porous material, excluding a porous natural cellulosic fibre material, the polymerisable liquid being admixed in the porous material with a saturated aliphatic hydrocarbon or a halogen derivative thereof. It is preferable that the polymerisable liquid and the hydrocarbon or halogen derivative are present in the porous material. Impregnation may be carried out by a vacuum technique or by simple immersion. The monomers that may be used are listed, but a mixture of styrene and acrylonitrile is preferred in the proportions 60 : 40 by volume. Polymerisation may be effected by irradiation, preferably with 60 Co γ-radiation. Suitable porous materials include concrete, stone, and fibreboard. If concrete is used the composite material may be used for pressure pipes and other articles normally made of steel. Examples of the application of the process are given. (U.K.)

  18. Influence of CdSe/ZnS quantum dots in the polymerization process and in the grating recording in acrylate materials.

    Science.gov (United States)

    Barichard, Anne; Galstian, Tigran; Israëli, Yaël

    2010-11-25

    The initiation step of the polymerization of acrylate materials is first studied in detail by UV-visible spectroscopy, showing the involvement of each species of the three-component photosensitizer. Then, the implementation of a combined holographic and physicochemical investigation approach is used to determine the influence of photoluminescent CdSe/ZnS quantum dots (QDs) in the photopolymerization and grating recording process in composites containing those QD nanoparticles. The fluorescence microscopy evidences the dynamic distribution profile of QDs due to their diffusion from the irradiated zones to the interface between the bright and the dark zones and, finally, their accumulation in nonirradiated zones. At the same time, the infrared spectroscopy shows that the presence of QDs provides a noticeable decrease of the polymerization rate, which favors the diffusion of the monomer and QDs. These two phenomena contribute to the enhancement of the refractive index modulation depth.

  19. Exploring Fingerprints of the Extreme Thermoacidophile Metallosphaera sedula Grown on Synthetic Martian Regolith Materials as the Sole Energy Sources

    Directory of Open Access Journals (Sweden)

    Denise Kölbl

    2017-10-01

    Full Text Available The biology of metal transforming microorganisms is of a fundamental and applied importance for our understanding of past and present biogeochemical processes on Earth and in the Universe. The extreme thermoacidophile Metallosphaera sedula is a metal mobilizing archaeon, which thrives in hot acid environments (optimal growth at 74°C and pH 2.0 and utilizes energy from the oxidation of reduced metal inorganic sources. These characteristics of M. sedula make it an ideal organism to further our knowledge of the biogeochemical processes of possible life on extraterrestrial planetary bodies. Exploring the viability and metal extraction capacity of M. sedula living on and interacting with synthetic extraterrestrial minerals, we show that M. sedula utilizes metals trapped in the Martian regolith simulants (JSC Mars 1A; P-MRS; S-MRS; MRS07/52 as the sole energy sources. The obtained set of microbiological and mineralogical data suggests that M. sedula actively colonizes synthetic Martian regolith materials and releases free soluble metals. The surface of bioprocessed Martian regolith simulants is analyzed for specific mineralogical fingerprints left upon M. sedula growth. The obtained results provide insights of biomining of extraterrestrial material as well as of the detection of biosignatures implementing in life search missions.

  20. Synthetic routes contaminate graphene materials with a whole spectrum of unanticipated metallic elements.

    Science.gov (United States)

    Wong, Colin Hong An; Sofer, Zdeněk; Kubešová, Marie; Kučera, Jan; Matějková, Stanislava; Pumera, Martin

    2014-09-23

    The synthesis of graphene materials is typically carried out by oxidizing graphite to graphite oxide followed by a reduction process. Numerous methods exist for both the oxidation and reduction steps, which causes unpredictable contamination from metallic impurities into the final material. These impurities are known to have considerable impact on the properties of graphene materials. We synthesized several reduced graphene oxides from extremely pure graphite using several popular oxidation and reduction methods and tracked the concentrations of metallic impurities at each stage of synthesis. We show that different combinations of oxidation and reduction introduce varying types as well as amounts of metallic elements into the graphene materials, and their origin can be traced to impurities within the chemical reagents used during synthesis. These metallic impurities are able to alter the graphene materials' electrochemical properties significantly and have wide-reaching implications on the potential applications of graphene materials.

  1. CHARACTERIZATION OF BIOFILMS FROM SELECTED SYNTHETIC MATERIALS USED IN WATER DISTRIBUTION SYSTEM

    Directory of Open Access Journals (Sweden)

    Izabela Biedroń

    2017-01-01

    Full Text Available Materials like polyvinyl chloride (PVC, polypropylene (PP, ultra high molecular weight polyethylene (UHMW-PE are used for the construction of drinking water supply systems. It was found that regardless of the type of material the distribution network is built of, microorganisms formed biofilms on every available surface. The pipes material plays a key role in terms of biofilm formation. Important factors are the surface roughness, adhesives, plasticizers, stabilizers, which can be a source of nutrients for bacteria. The metabolic activity of microorganisms on polymer materials, induces migration of compounds from the material into water. The aim of this study was to present the differences in the structure and the metabolic profile of biofilm formed on the technical materials.

  2. Neutron cross sections of cryogenic materials: a synthetic kernel for molecular solids

    International Nuclear Information System (INIS)

    Granada, J.R.; Gillette, V.H.; Petriw, S.; Cantargi, F.; Pepe, M.E.; Sbaffoni, M.M.

    2004-01-01

    A new synthetic scattering function aimed at the description of the interaction of thermal neutrons with molecular solids has been developed. At low incident neutron energies, both lattice modes and molecular rotations are specifically accounted for, through an expansion of the scattering law in few phonon terms. Simple representations of the molecular dynamical modes are used, in order to produce a fairly accurate description of neutron scattering kernels and cross sections with a minimum set of input data. As the neutron energies become much larger than that corresponding to the characteristic Debye temperature and to the rotational energies of the molecular solid, the 'phonon formulation' transforms into the traditional description for molecular gases. (orig.)

  3. Cordierite production with natural and synthetic raw materials, and evaluation of resistance to thermal shock

    International Nuclear Information System (INIS)

    Buoso, Alberto; Bergmann, Carlos Perez

    1997-01-01

    This work presents a study on the formation of cordierite from raw materials and pure oxides. For this proposal, different formulations and sintering curves were developed. The formation of cordierite was analysed by means of both linear thermal expansion and X-ray diffraction. The performance of these materials under thermal shock was also evaluated. (author)

  4. Novel bio-synthetic hybrid materials and coculture systems for musculoskeletal tissue engineering

    Science.gov (United States)

    Lee, Hyeseung Janice

    Tissue Engineering is a truly exciting field of this age, trying to regenerate and repair impaired tissues. Unlike the old artificial implants, tissue engineering aims at making a long-term functional biological replacement. One strategy for such tissue engineering requires the following three components: cells, scaffolds, and soluble factors. Cells are cultured in a three-dimensional (3D) scaffold with medium containing various soluble factors. Once a tissue is developed in vitro, then it is implanted in vivo. The overall goal of this thesis was to develop novel bio-synthetic hybrid scaffolds and coculture system for musculoskeletal tissue engineering. The most abundant cartilage extracellular matrix (ECM) components are collagen and glycosaminoglycan (GAG), which are the natural scaffold for chondrocytes. As two different peptides, collagen mimetic peptide (CMP) and hyaluronic acid binding peptide (HABPep) were previously shown to bind to collagen and hyaluronic acid (HA) of GAG, respectively, it was hypothesized that immobilizing CMP and HABP on 3D scaffold would results in an interaction between ECM components and synthetic scaffolds via peptide-ECM bindings. CMP or HABPep-conjugated photopolymerizable poly(ethylene oxide) diacrylate (PEODA) hydrogels were synthesized and shown to retain encapsulated collagen or HA, respectively. This result supported that conjugated CMP and HABPep can interact with collagen and HA, respectively, and can serve as biological linkers in 3D synthetic hydrogels. When chondrocytes or mesenchymal stem cells (MSCs) were seeded, cells in CMP-conjugated scaffolds produced significantly more amount of type II collagen and GAG, compared to those in control scaffolds. Moreover, MSCs cultured in CMP-conjugated scaffolds exhibited lower level of hypertrophic markers, cbfa-1 and type X collagen. These results demonstrated that enhanced interaction between collagen and scaffold via CMP improves chondrogenesis of chondrocytes and MSCs and

  5. Effects of sulfur-based hemostatic agents and gingival retraction cords handled with latex gloves on the polymerization of polyvinyl siloxane impression materials

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Palhares Machado

    2011-12-01

    Full Text Available OBJECTIVES: This study investigated the possible interactions between three addition silicone materials (Express®, Aquasil Ultra® and Adsil®, three hemostatic agents (ferric sulfate, StatGel FS®; aluminum sulfate, GelCord®; and aluminum chloride, Hemostop® and gingival retraction cords previously handled with latex gloves to determine whether direct contact with medicaments or indirect contamination by latex in conditions similar to those found in clinical practice inhibit or affect the setting of the impression materials. MATERIAL AND METHODS: A portable device for the simultaneous test of several specimens was specifically developed for this study. Polymerization inhibition was analyzed by examination of the impressions and the molded surface. Ten trials were performed for each addition silicone material used in the study, at a total of 240 study samples. RESULTS: All the samples tested (N=240 were nonreactive regardless of the type of combination used. CONCLUSIONS: Aluminum sulfate, ferric sulfate and aluminum chloride hemostatic solutions did not show any inhibitory potential on the addition silicone samples under study, and there were no changes in polymerization as a result of contact between addition silicone and retraction cords handled with latex gloves.

  6. Sol-gel/Ag coating and oxygen plasma treatment effect on synthetic wound fluid sorption by non-woven cellulose material

    Directory of Open Access Journals (Sweden)

    Peršin Zdenka

    2017-01-01

    Full Text Available Non-woven cellulose material was functionalized using two techniques, i.e. the coating with AgCl via solgel and oxygen plasma. The treatment eff ects were studied regarding the wound fl uid adsorption potential using physiological saline, synthetic exudate and synthetic blood. Plasma treatment was most effi cient since a signifi cant improvement by absorbency rate and capacity was evident, less pronounced in case of synthetic blood. The combination of both treatments showed a similar trend, while the eff ects were less prominent, but still suffi cient by managing fl uid-associated as well as infected wounds.

  7. Synthetic Aperture Focusing Technique in Ultrasonic Inspection of Coarse Grained Materials

    Energy Technology Data Exchange (ETDEWEB)

    Stepinski, Tadeusz (Uppsala Univ., Signals and Systems, Box 528, SE-751 20 Uppsala (Sweden))

    2007-12-15

    Experience from the ultrasonic inspection of nuclear power plants has shown that large focused transducers are relatively effective in suppressing grain (structure) noise. Operation of a large focused transducer can be thought of as an integration (coherent summation) of individual beams reflected from the target and received by individual points at the transducer surface. Synthetic aperture focusing technique (SAFT), in its simplest version mimics an acoustic lens used for focusing beams at a desired point in the region of interest. Thus, SAFT should be able to suppress the grain noise in the similar way as the focused transducer does. This report presents the results of investigation of SAFT algorithms applied for post-processing of ultrasonic data acquired in inspection of coarse grained metals. The performance of SAFT in terms of its spatial (cross-range) resolution and grain noise suppression is studied. The evaluation is made based on the experimental data obtained from the ultrasonic inspection of test specimens with artificial defects (side drilled holes). SAFT algorithms for both contact and immersion mode are introduced and experimentally verified

  8. Report for fiscal 1998 on results of research and development of silicon-based polymeric material. Material research for the liquid methane fueled aircraft engine; 1998 nendo keisokei kobunshi zairyo no kenkyu kaihatsu seika hokokusho. Methane nenryo kokukiyo engine kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research was conducted for the purpose of establishing basic technology concerning molecular design, synthesis, material formation, and evaluation of silicon-based polymers which are expected to provide superior electronic/optical functions, high heat/combustion resistance and dynamic properties. The research subjects were such as following: research and development of silicon-based polymeric materials with sea-island microstructures; research and development of silicon-based polymeric materials with sea-island microstructures; research and development on IPN formation with silicon-based polymers; research and development of hybrid silicon polymers with organometallic compounds; research and development of silicon containing polymer materials with ring structures; general committee for investigation and research; the optimized low-temperature Wurtz synthesis and modification of polysilanes; study of unsaturated and hypercoordinate organosilicon compounds; basic studies on the synthesis and properties of silicon-based high polymers; studies of new monomer-synthesis and their polymerization reaction; studies on new method of preparation and functionalization of polysilanes; novel applications of silicon-based polymers in imaging devices for information display, memory, and recordings; and molecular design of silicon-containing {pi}-conjugated and {sigma}-conjugated compounds. (NEDO)

  9. Polymeric scaffolds as stem cell carriers in bone repair.

    Science.gov (United States)

    Rossi, Filippo; Santoro, Marco; Perale, Giuseppe

    2015-10-01

    Although bone has a high potential to regenerate itself after damage and injury, the efficacious repair of large bone defects resulting from resection, trauma or non-union fractures still requires the implantation of bone grafts. Materials science, in conjunction with biotechnology, can satisfy these needs by developing artificial bones, synthetic substitutes and organ implants. In particular, recent advances in polymer science have provided several innovations, underlying the increasing importance of macromolecules in this field. To address the increasing need for improved bone substitutes, tissue engineering seeks to create synthetic, three-dimensional scaffolds made from polymeric materials, incorporating stem cells and growth factors, to induce new bone tissue formation. Polymeric materials have shown a great affinity for cell transplantation and differentiation and, moreover, their structure can be tuned in order to maintain an adequate mechanical resistance and contemporarily be fully bioresorbable. This review emphasizes recent progress in polymer science that allows relaible polymeric scaffolds to be synthesized for stem cell growth in bone regeneration. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Alveolar Ridge Preservation Using a Novel Synthetic Grafting Material: A Case with Two-Year Follow-Up

    Directory of Open Access Journals (Sweden)

    Peter Fairbairn

    2018-01-01

    Full Text Available This case report highlights the use of a novel in situ hardening synthetic (alloplastic, resorbable, bone grafting material composed of beta tricalcium phosphate and calcium sulfate, for alveolar ridge preservation. A 35-year-old female patient was referred by her general dentist for extraction of the mandibular right first molar and rehabilitation of the site with a dental implant. The nonrestorable tooth was “atraumatically” extracted without raising a flap, and the socket was immediately grafted with the synthetic biomaterial and covered with a hemostatic fleece. No membrane was used, and the site was left uncovered without obtaining primary closure, in order to heal by secondary intention. After 12 weeks, the architecture of the ridge was preserved, and clinical observation revealed excellent soft tissue healing without loss of attached gingiva. At reentry for placement of the implant, a bone core biopsy was obtained, and primary implant stability was measured by final seating torque and resonance frequency analysis. Histological analysis revealed pronounced bone regeneration while high levels of primary implant stability were recorded. The implant was successfully loaded 12 weeks after placement. Clinical and radiological follow-up examination at two years revealed stable and successful results regarding biological, functional, and esthetic parameters.

  11. Alveolar Ridge Preservation Using a Novel Synthetic Grafting Material: A Case with Two-Year Follow-Up.

    Science.gov (United States)

    Fairbairn, Peter; Leventis, Minas; Mangham, Chas; Horowitz, Robert

    2018-01-01

    This case report highlights the use of a novel in situ hardening synthetic (alloplastic), resorbable, bone grafting material composed of beta tricalcium phosphate and calcium sulfate, for alveolar ridge preservation. A 35-year-old female patient was referred by her general dentist for extraction of the mandibular right first molar and rehabilitation of the site with a dental implant. The nonrestorable tooth was "atraumatically" extracted without raising a flap, and the socket was immediately grafted with the synthetic biomaterial and covered with a hemostatic fleece. No membrane was used, and the site was left uncovered without obtaining primary closure, in order to heal by secondary intention. After 12 weeks, the architecture of the ridge was preserved, and clinical observation revealed excellent soft tissue healing without loss of attached gingiva. At reentry for placement of the implant, a bone core biopsy was obtained, and primary implant stability was measured by final seating torque and resonance frequency analysis. Histological analysis revealed pronounced bone regeneration while high levels of primary implant stability were recorded. The implant was successfully loaded 12 weeks after placement. Clinical and radiological follow-up examination at two years revealed stable and successful results regarding biological, functional, and esthetic parameters.

  12. Synthetic vs Natural: Diatoms Bioderived Porous Materials for the Next Generation of Healthcare Nanodevices.

    Science.gov (United States)

    Rea, Ilaria; Terracciano, Monica; De Stefano, Luca

    2017-02-01

    Nanostructured porous materials promise a next generation of innovative devices for healthcare and biomedical applications. The fabrication of such materials generally requires complex synthesis procedures, not always available in laboratories or sustainable in industries, and has adverse environmental impact. Nanosized porous materials can also be obtained from natural resources, which are an attractive alternative approach to man-made fabrication. Biogenic nanoporous silica from diatoms, and diatomaceous earths, constitutes largely available, low-cost reservoir of mesoporous nanodevices that can be engineered for theranostic applications, ranging from subcellular imaging to drug delivery. In this progress report, main experiences on nature-derived nanoparticles with healthcare and biomedical functionalities are reviewed and critically analyzed in search of a new collection of biocompatible porous nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Study and selection of structured packing material: metallic, polymeric or ceramic to operate a column of absorption polluting gases coming from brick kilns efficiently

    International Nuclear Information System (INIS)

    Salazar P, A.

    2012-01-01

    In this research three structured packing materials were characterized: a metallic, polymeric and ceramic. The study of the physical properties of structured packing materials, and their behavior within the absorption column allowed to suggest a gas-liquid contactor material with higher mechanical and chemical resistance, which is more efficient for the treatment of sour gases from brick kilns. To study the mechanical properties (hardness, tension and elastic modulus) were used procedures of the American Society for Testing Materials, as well as resistance to corrosion. The geometric characteristics, the density, the melting temperature and the weight were tested with procedures of the measuring equipment. The structure was evaluated by X-ray diffraction, morphology was observed by scanning electron microscopy coupled to a sound of dispersive energy of X-ray, to quantify elemental chemical composition. The interaction of gas-liquid contactors materials in presence of CO 2 , was evaluated in three absorption columns built of Pyrex glass, with a diameter of 0.1016 m, of 1.5 m in height, 0.0081m 2 cross-sectional area, packed with every kind of material: metallic, polymeric and ceramic, processing a gas flow of 20m 3 / h at 9% CO 2 , in air and a liquid flow to 30% of Mea 5 L/min. The results of the properties studied were by the metallic material: more density, higher roughness, the greater tensile strength, greater resistance to corrosion in the presence of an aqueous solution of monoethanolamine (Mea) to 30% by weight, improvement more efficient absorption of CO 2 , and higher modulus of elasticity. The polymeric material was characterized to have lower hardness, lower roughness, lower density, lower melting temperature, greater resistance to corrosion in the presence of 1 N H 2 SO 4 aqueous solution, and allowed an absorption efficiency of CO 2 , 2% lower than that presented by the material metallic. The ceramic material found to be the hardest of the three

  14. Localization of self-generated synthetic footstep sounds on different walked-upon materials through headphones

    DEFF Research Database (Denmark)

    Turchet, Luca; Spagnol, Simone; Geronazzo, Michele

    2016-01-01

    This paper focuses on the localization of footstep sounds interactively generated during walking and provided through headphones. Three distinct experiments were conducted in a laboratory involving a pair of sandals enhanced with pressure sensors and a footstep synthesizer capable of simulating t...... of continuous multimodal feedback in virtual reality applications....... typologies of surface materials: solid (e.g., wood) and aggregate (e.g., gravel). Different sound delivery methods (mono, stereo, binaural) as well as several surface materials, in presence or absence of concurrent contextual auditory information provided as soundscapes, were evaluated in a vertical...

  15. Biomimetic poly(amidoamine hydrogels as synthetic materials for cell culture

    Directory of Open Access Journals (Sweden)

    Lenardi Cristina

    2008-11-01

    Full Text Available Abstract Background Poly(amidoamines (PAAs are synthetic polymers endowed with many biologically interesting properties, being highly biocompatible, non toxic and biodegradable. Hydrogels based on PAAs can be easily modified during the synthesis by the introduction of functional co-monomers. Aim of this work is the development and testing of novel amphoteric nanosized poly(amidoamine hydrogel film incorporating 4-aminobutylguanidine (agmatine moieties to create RGD-mimicking repeating units for promoting cell adhesion. Results A systematic comparative study of the response of an epithelial cell line was performed on hydrogels with agmatine and on non-functionalized amphoteric poly(amidoamine hydrogels and tissue culture plastic substrates. The cell adhesion on the agmatine containing substrates was comparable to that on plastic substrates and significantly enhanced with respect to the non-functionalized controls. Interestingly, spreading and proliferation on the functionalized supports are slower than on plastic exhibiting the possibility of an easier control of the cell growth kinetics. In order to favor the handling of the samples, a procedure for the production of bi-layered constructs was also developed by means the deposition via spin coating of a thin layer of hydrogel on a pre-treated cover slip. Conclusion The obtained results reveal that PAAs hydrogels can be profitably functionalized and, in general, undergo physical and chemical modifications to meet specific requirements. In particular the incorporation of agmatine warrants good potential in the field of cell culturing and the development of supported functionalized hydrogels on cover glass are very promising substrates for applications in cell screening devices.

  16. Influence of synthetic packing materials on the gas dispersion and biodegradation kinetics in fungal air biofilters

    NARCIS (Netherlands)

    Prenafeta-Boldú, F.X.; Illa, J.; Groenestijn, J.W. van; Flotats, X.

    2008-01-01

    The biodegradation of toluene was studied in two lab-scale air biofilters operated in parallel, packed respectively with perlite granules (PEG) and polyurethane foam cubes (PUC) and inoculated with the same toluene-degrading fungus. Differences on the material pore size, from micrometres in PEG to

  17. Electro-Synthetic Optimization of Host Material Based on MIL-100(Fe

    Directory of Open Access Journals (Sweden)

    Witri Wahyu Lestari

    2016-05-01

    Full Text Available Electro-synthesis of Metal-Organic Frameworks types of MIL-100(Fe (MIL = Material Institute of Lavoisier in ethanol: water (1: 1 with electrolyte TBATFB 0.1 M has been optimized by varying voltage (12, 13, 14 and 15 Volt and temperature (room temperature, 40, 60 and 80 °C. The product showed light brown powder which upon activation becomes dark brown. Optimum condition achieved during use voltage of 15 Volts and at a temperature of 40 °C with 33% yield. The obtained material was characterized by XRD and compared to CCDC 640536 simulated patterns to confirm the phase purity of the product. As comparison hydrothermal and reflux method have been carried out. Characterization by FTIR has also undertaken to ensure the coordination between the metal cation (Fe3+ and the BTC ligand (BTC = 1,3,5-Benzene Tri Carboxylate. Meanwhile pore analysis using SAA confirmed that MIL-100(Fe obtained by electrolysis method has a BET surface area reached till 569.191 m²/g with a total pore volume of 0.4540 cc/g and an average pore diameter reached 16 Å. Based on SEM analysis, morphology material show particle size between 0.4-8.6 μm and has a thermal stability up to 350 °C according thermo-gravimetric analysis. Due to the presence of Lewis acid sites on Fe-trimeric unit, porosity features on MIL-100(Fe and a fairly high thermal stability, this material is potentially used as the host material for the catalyst in the conversion reactions model for green diesel production.

  18. Effects of sulfur-based hemostatic agents and gingival retraction cords handled with latex gloves on the polymerization of polyvinyl siloxane impression materials.

    Science.gov (United States)

    Machado, Carlos Eduardo Palhares; Guedes, Carlos Gramani

    2011-01-01

    This study investigated the possible interactions between three addition silicone materials (Express®, Aquasil Ultra® and Adsil®), three hemostatic agents (ferric sulfate, StatGel FS®; aluminum sulfate, GelCord®; and aluminum chloride, Hemostop®) and gingival retraction cords previously handled with latex gloves to determine whether direct contact with medicaments or indirect contamination by latex in conditions similar to those found in clinical practice inhibit or affect the setting of the impression materials. A portable device for the simultaneous test of several specimens was specifically developed for this study. Polymerization inhibition was analyzed by examination of the impressions and the molded surface. Ten trials were performed for each addition silicone material used in the study, at a total of 240 study samples. All the samples tested (N=240) were nonreactive regardless of the type of combination used. Aluminum sulfate, ferric sulfate and aluminum chloride hemostatic solutions did not show any inhibitory potential on the addition silicone samples under study, and there were no changes in polymerization as a result of contact between addition silicone and retraction cords handled with latex gloves.

  19. Correlation between native bonds in a polymeric material and molecular emissions from the laser-induced plasma observed with space and time resolved imaging

    Science.gov (United States)

    Grégoire, S.; Motto-Ros, V.; Ma, Q. L.; Lei, W. Q.; Wang, X. C.; Pelascini, F.; Surma, F.; Detalle, V.; Yu, J.

    2012-08-01

    Emissions from C2 molecules and CN radicals in laser-induced plasmas on polymeric materials were observed with time-resolved spectroscopic imaging. More precisely, differential imaging with a pair of narrowband filters (one centered on the emission line and another out of the line) was used to extract emission images of interested molecules or radicals. The correlation between the molecular emission image of the plasma and the molecular structure of the polymer to be analyzed was studied for four different types of materials: polyamide (PA) with native CN bonds, polyethylene (PE) with simple CC bonds, polystyrene (PS) with delocalized double CC bonds, and polyoxymethylene (POM) which neither contains CC nor CN bonds. A clear correlation is demonstrated between emission and molecular structure of the material, allowing the identification of several organic compounds by differential spectroscopic imaging.

  20. Influence of chloride ions on the pitting corrosion of candidate HLW overpack materials in synthetic oxidized boom clay water

    International Nuclear Information System (INIS)

    Druyts, F.; Kursten, B.

    1999-01-01

    The corrosion behavior under repository conditions is an important issue in the selection of a container material for the deep-geological disposal of high-level nuclear waste. In considering corrosion resistant materials for the containers, attention has to be focused on localized corrosion. Therefore, cyclic potentiodynamic polarization measurements were used to investigate the pitting behavior of a number of candidate materials, including stainless steels AISI 316L, AISI 316L hMo, AISI 316Ti, higher alloyed stainless steels UNS N08904 and UNS N08926, nickel alloy UNS N96455, and titanium alloy UNS R52400. The environment considered was synthetic oxidized Boom clay water at a temperature of 90 C and with varying chloride content. UNS N96455 and UNS R52400 did not show any pitting corrosion at chloride concentrations up to 10,000 ppm. UNS N08926 was resistant to pitting at 100 and 1,000 ppm Cl - . The other alloys suffered minor or no pitting attack in the reference solution containing 100 ppm chloride, but were attacked at elevated chloride concentrations. A SEM study of the pit morphology on AISI 316L hMo and UHB 904 revealed large central pits surrounded by minor satellite pits, resulting in a rose shape. This morphology probably resulted from subsurface pit growth, where the pit was covered by a thin layer of metal

  1. Foreign Body Giant Cell-Related Encapsulation of a Synthetic Material Three Years After Augmentation.

    Science.gov (United States)

    Lorenz, Jonas; Barbeck, Mike; Sader, Robert A; Kirkpatrick, Charles J; Russe, Philippe; Choukroun, Joseph; Ghanaati, Shahram

    2016-06-01

    Bone substitute materials of different origin and chemical compositions are frequently used in augmentation procedures to enlarge the local bone amount. However, relatively little data exist on the long-term tissue reactions. The presented case reports for the first time histological and histomorphometrical analyses of a nanocrystaline hydroxyapatite-based bone substitute material implanted in the human sinus cavity after an integration period of 3 years. The extracted biopsy was analyzed histologically and histomorphometrically with focus on the tissue reactions, vascularization, new bone formation, and the induction of a foreign body reaction. A comparably high rate of connective tissue (48.25%) surrounding the remaining bone substitute granules (42.13%) was observed. Accordingly, the amount of bone tissue (9.62%) built the smallest fraction within the biopsy. Further, tartrate-resistant acid phosphatase-positive and -negative multinucleated giant cells (4.35 and 3.93 cells/mm(2), respectively) were detected on the material-tissue interfaces. The implantation bed showed a mild vascularization of 10.03 vessels/mm(2) and 0.78%. The present case report shows that after 3 years, a comparable small amount of bone tissue was observable. Thus, the foreign body response to the bone substitute seems to be folded without further degradation or regeneration.

  2. Evaluation of bone response to synthetic bone grafting material treated with argon-based atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Beutel, Bryan G., E-mail: bryanbeutel@gmail.com; Danna, Natalie R.; Gangolli, Riddhi; Granato, Rodrigo; Manne, Lakshmiprada; Tovar, Nick; Coelho, Paulo G.

    2014-12-01

    Bone graft materials are utilized to stimulate healing of bone defects or enhance osseointegration of implants. In order to augment these capabilities, various surface modification techniques, including atmospheric pressure plasma (APP) surface treatment, have been developed. This in vivo study sought to assess the effect of APP surface treatment on degradation and osseointegration of Synthograft™, a beta-tricalcium phosphate (β-TCP) synthetic bone graft. The experimental (APP-treated) grafts were subjected to APP treatment with argon for a period of 60 s. Physicochemical characterization was performed by environmental scanning electron microscopy, surface energy (SE), and x-ray photoelectron spectroscopy analyses both before and after APP treatment. Two APP-treated and two untreated grafts were surgically implanted into four critical-size calvarial defects in each of ten New Zealand white rabbits. The defect samples were explanted after four weeks, underwent histological analysis, and the percentages of bone, soft tissue, and remaining graft material were quantified by image thresholding. Material characterization showed no differences in particle surface morphology and that the APP-treated group presented significantly higher SE along with higher amounts of the base material chemical elements on it surface. Review of defect composition showed that APP treatment did not increase bone formation or reduce the amount of soft tissue filling the defect when compared to untreated material. Histologic cross-sections demonstrated osteoblastic cell lines, osteoid deposition, and neovascularization in both groups. Ultimately, argon-based APP treatment did not enhance the osseointegration or degradation of the β-TCP graft. Future investigations should evaluate the utility of gases other than argon to enhance osseointegration through APP treatment. - Highlights: • Degradation/osseointegration of bone graft treated with argon-based APP is studied. • APP treatment did

  3. Evaluation of bone response to synthetic bone grafting material treated with argon-based atmospheric pressure plasma.

    Science.gov (United States)

    Beutel, Bryan G; Danna, Natalie R; Gangolli, Riddhi; Granato, Rodrigo; Manne, Lakshmiprada; Tovar, Nick; Coelho, Paulo G

    2014-12-01

    Bone graft materials are utilized to stimulate healing of bone defects or enhance osseointegration of implants. In order to augment these capabilities, various surface modification techniques, including atmospheric pressure plasma (APP) surface treatment, have been developed. This in vivo study sought to assess the effect of APP surface treatment on degradation and osseointegration of Synthograft™, a beta-tricalcium phosphate (β-TCP) synthetic bone graft. The experimental (APP-treated) grafts were subjected to APP treatment with argon for a period of 60s. Physicochemical characterization was performed by environmental scanning electron microscopy, surface energy (SE), and x-ray photoelectron spectroscopy analyses both before and after APP treatment. Two APP-treated and two untreated grafts were surgically implanted into four critical-size calvarial defects in each of ten New Zealand white rabbits. The defect samples were explanted after four weeks, underwent histological analysis, and the percentages of bone, soft tissue, and remaining graft material were quantified by image thresholding. Material characterization showed no differences in particle surface morphology and that the APP-treated group presented significantly higher SE along with higher amounts of the base material chemical elements on it surface. Review of defect composition showed that APP treatment did not increase bone formation or reduce the amount of soft tissue filling the defect when compared to untreated material. Histologic cross-sections demonstrated osteoblastic cell lines, osteoid deposition, and neovascularization in both groups. Ultimately, argon-based APP treatment did not enhance the osseointegration or degradation of the β-TCP graft. Future investigations should evaluate the utility of gases other than argon to enhance osseointegration through APP treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  5. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  6. The effect of patient age on bone formation using a fully synthetic nanocrystalline bone augmentation material in maxillary sinus grafting.

    Science.gov (United States)

    Wolf, Michael; Wurm, Alexander; Heinemann, Friedhelm; Gerber, Thomas; Reichert, Christoph; Jäger, Andreas; Götz, Werner

    2014-01-01

    Maxillary sinus floor augmentation is a treatment that has been proposed for patients in whom the alveolar bone height is insufficient. This procedure is commonly used in patients aged 40 to 70 years and older. However, little information exists whether the factor of age might influence the outcome of augmentation procedures. The aim of this study was to investigate whether the patient's age has an effect on bone formation and incorporation in maxillary sinus floor augmentation procedures. A fully synthetic nanocrystalline bone augmentation material (NanoBone, Artoss) was used for sinus floor augmentation in patients with a subantral vertical bone height of at least 3 mm and maximum of 7 mm. After 7 months healing time, biopsy specimens were taken and were divided into two groups according to the patient's age. Exclusion criteria were poor general health (eg, severe renal/and or liver disease), history of a radiotherapy in the head region, chemotherapy at the time of surgical procedure, noncompensated diabetes mellitus, symptoms of a maxillary sinus disease, active periodontal or systemic diseases, smoking, and poor oral hygiene. Histologic analyses with hematoxylin-eosin stain were performed. Multinucleated osteoclast-like cells were identified by histochemical staining (tartrate-resistant acid phosphatase [TRAP]). Quantitative and age-dependent assessment of bone formation, residual bone grafting material, and soft tissue formation following sinus augmentation was performed using histomorphometric analysis and the Bonferroni adjustment of the Student t test. Twenty biopsy specimens from 17 patients were taken and divided into two groups according to age (group 1: 41 to 52 years; group 2: 66 to 71 years) containing 10 specimens each, which were analyzed in triplicate resulting in a total of 30 specimens per group. A regeneration process with varying amounts of newly formed bone surrounded by marrow-like tissue was present in all augmented regions. No signs of

  7. Adhesion of resin materials to S2-glass unidirectional and E-glass multidirectional fiber reinforced composites: effect of polymerization sequence protocols.

    Science.gov (United States)

    Polacek, Petr; Pavelka, Vladimir; Ozcan, Mutlu

    2013-12-01

    To evaluate the effect of different polymerization sequences employed during application of bis-GMAbased particulate filler composites (PFC) or a flowable resin (FR) on fiber-reinforced composite (FRC). Unidirectional, pre-impregnated S2-glass fibers (Dentapreg) and multidirectional preimpregnated E-glass fibers (Dentapreg) (length: 40 mm; thickness: 0.5 mm) were obtained (N = 144, n = 12 per group) and embedded in translucent silicone material with the adhesion surface exposed. The resulting specimens were randomly divided into 12 groups for the following application sequences: a) FRC+PFC (photopolymerized in one step), b) FRC+FR (photopolymerized in one step), c) FRC+PFC (photopolymerized individually), d) FRC+FR (photopolymerized individually), e) FRC (photopolymerized)+intermediate adhesive resin and PFC (photopolymerized in one step), f) FRC (photopolymerized)+intermediate adhesive resin and FR (photopolymerized in one step). The sequences of unidirectional (groups a to f) were repeated for multidirectional (groups g to l) FRCs. PFCs were debonded from the FRC surfaces using the shear bond test in a universal testing machine (1 mm/min). On additional specimens from each FRC type, thermogravimetric analysis (TGA) was performed to characterize the fiber weight content (Wf) (N = 6, n = 3 per group). After debonding, all specimens were analyzed using SEM to categorize the failure modes. The data were statistically analyzed using 3-way ANOVA and Tukey's tests (α = 0.05). Significant effects of the FRC type (S2 or E-glass) (p resin type (PFC or FR) (p TGA revealed 55 ± 3 wt% fiber content for multidirectional and 60 ± 3 wt% for unidirectional FRCs tested. Multidirectional pre-impregnated E-glass fibers cannot be recommended in combination with the PFC and FR materials tested in this study. Application of an intermediate adhesive resin layer increases the adhesion of both PFC and FR to unidirectional FRC. FRC and FR can be polymerized in one step, but FRC and PFC

  8. Ultimate evaluation report on research and development of basic technologies for next-generation industry. Conductive polymeric materials; Jisedai sangyo kiban gijutsu kenkyu kaihatsu saishu kenkyu kaihatsu hyoka. Dodensei kobunshi zairyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-05-01

    Basic technologies are established that equip polymeric materials (insulators in general) with conductivity similar to that of metals for the realization of novel conducting materials characterized by light weight, high resistance to corrosion, and ease of machining, and for the manufacture of novel electrical/electronic materials having new functions different from those of conventionally used metals. The aims are to realize a conductivity of 10{sup 5}S/cm or more, to manufacture materials sufficiently stable when left in the ordinary or inert atmosphere, and to manufacture materials which may be machined into proper shapes as required in the industry. The results of the 10-year-long development endeavor greatly contribute to the creation of high-level materials, the systematization of technologies, and the elucidation of the conducting mechanism. In relation to polymeric materials, in particular, a new technology is developed that equips, with high reproducibility, polymeric materials with conductivity similar to that of silver or copper; a graphitic material is created for the first time provided with conductivity superior to that of metals; and conducting polymeric materials are equipped with an easy-to-machine feature. A great contribution is accomplished to the production of superconductivity in organic charge-transfer complex crystals and to the elucidation of the conducting mechanism. (NEDO)

  9. Polymeric ionic liquid based on magnetic materials fabricated through layer-by-layer assembly as adsorbents for extraction of pesticides.

    Science.gov (United States)

    He, Lijun; Cui, Wenhang; Wang, Yali; Zhao, Wenjie; Xiang, Guoqiang; Jiang, Xiuming; Mao, Pu; He, Juan; Zhang, Shusheng

    2017-11-03

    In this study, layer-by-layer assembly of polyelectrolyte multilayer films on magnetic silica provided a convenient and controllable way to prepare polymeric ionic liquid-based magnetic adsorbents. The resulting particles were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and magnetic measurements. The data showed that the magnetic particles had more homogeneous spherical shapes with higher saturation magnetization when compared to those obtained by free radical polymerization method. This facilitated the convenient collection of magnetic particles, with higher extraction repeatability. The extraction performance of the multilayer polymeric ionic liquid-based adsorbents was evaluated by magnetic solid-phase extraction of four pesticides including quinalphos, fenthion, phoxim, and chlorpropham. The data suggested that the extraction efficiency depended on the number of layers in the film. The parameters affecting the extraction efficiency were optimized, and good linearity ranging from 2 to 250μgL -1 was obtained with correlation coefficients of 0.9994-0.9998. Moreover, the proposed method presented low limit of detection (0.5μgL -1 , S/N=3) and limit of quantification (1.5μgL -1 , S/N=10), and good repeatability expressed by the relative standard deviation (2.0%-4.6%, n=5). The extraction recoveries of four pesticides were found to range from 58.9% to 85.8%. The reliability of the proposed method was demonstrated by analyzing environmental water samples, and the results revealed satisfactory spiked recovery, relative standard deviation, and selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Impact of Material Shade and Distance from Light Curing Unit Tip on the Depth of Polymerization of Composites.

    Science.gov (United States)

    Faria-E-Silva, André L; Fanger, Christopher; Nguyen, Lillian; Howerton, Demetri; Pfeifer, Carmem S

    2017-01-01

    This study aimed to evaluate the effect of the composite shade and distance from the light-curing unit (LCU) tip on the irradiance reaching the bottom of composite disks and on the depth of polymerization. Composites of three shades (opaque - OXDC, bleach - BXL, and A2) were inserted into molds with 3-mm of thickness positioned over a spectrometer and photo-activated with the LCU (Bluephase) tip placed at 0 or 1 cm from the composite surface. The mean irradiance reaching the bottom of composite was recorded during the entire photo-activation (30 s). Specimens (2 x 2 x 4 mm) were polymerized and used to map the degree of conversion achieved in different depths from irradiated surface. Specimens were sectioned into slices that were positioned over the platform of the infra-red microscope connected to the spectrometer to map the conversion. The conversion was measured in eight different depths every 500-µm. Increasing the distance of LCU tip reduced the irradiance only for A2. Interposing OXDC disks resulted in lowest values of irradiance and A2 the highest one. A tendency to decrease the conversion was observed towards the bottom of specimens for all experimental conditions, and the slope was more accentuated for OXDC. Differences among shades and distances from LCU tip were evident only beyond 1.5-2.0 mm of depth. In conclusion, both composite shade and distance from LCU tip might affect the light-transmission and depth of polymerization, while the effect of last was more pronounced.

  11. Pure zeolite exchange to synthetic zeolite characterized by XRD to produce cation exchange materials

    International Nuclear Information System (INIS)

    Zainab Ramli; Dewi Jamaliah Kamsiar; Hasidah Mohd Arsat

    2008-01-01

    In this study, natural mordenite was modified to other zeolites phases having low Si/ Al in order to increase the cation exchange capacity of the material. Modification was carried out hydrothermally at 100 degree Celsius in time range between 0 to 24 hours. The samples obtained were characterized by XRD and infrared spectroscopy. Results showed that a mixture of zeolite X and P were formed zeolite X was the dominant zeolite at 6 hrs heating time while zeolite P were dominant after 6 hrs. Ion Exchange capacity of natural mordenite, samples at 6 hr and 24 hrs heating, performed using Ca 2+ cation gave cation exchange in the decreasing order of 83.57 % , 72.50 %, 69.45 % for sample 24 hrs, 6 hrs and natural mordenite respectively. It indicates that sample having zeolite P phase is the best cation exchange capacity with 21 mg Ca 2+ / g zeolite with an increased of 23 % capacity compared to natural zeolite. (author)

  12. Ferrocyanide safety program: Final report on adiabatic calorimetry and tube propagation tests with synthetic ferrocyanide materials

    International Nuclear Information System (INIS)

    Fauske, H.F.; Meacham, J.E.; Cash, R.J.

    1995-01-01

    Based on Fauske and Associates, Inc. Reactive System Screening Tool tests, the onset or initiation temperature for a ferrocyanide-nitrate propagating reaction is about 250 degrees Celcius. This is at about 200 degrees Celcius higher than current waste temperatures in the highest temperature ferrocyanide tanks. Furthermore, for current ambient waste temperatures, the tube propagation tests show that a ferrocyanide concentration of 15.5 wt% or more is required to sustain a propagation reaction in the complete absence of free water. Ignoring the presence of free water, this finding rules out propagating reactions for all the Hanford flowsheet materials with the exception of the ferrocyanide waste produced by the original In Farm flowsheet

  13. THE DEVELOPMENT OF SYNTHETIC SOIL MATERIALS FOR THE SUCCESSFUL RECLAMATION OF ABANDONED MINED LAND SITES

    Energy Technology Data Exchange (ETDEWEB)

    Song Jin

    2006-03-01

    Abandoned mine sites associated with coal and metal mining across the western United States have been left as unproductive wastelands. The availability of soil materials or other materials to support the restoration of the vegetative cover and enhance the recovery of such areas is limited. The restoration of these areas often requires the use of available amendments such as organic waste products or to help stabilize the soil. Many of the organic waste products, including sewage sludge, clarifier sludge, fly ash sludge, and other by-products from the agricultural industries such as compost can be employed for beneficial uses. This study looked at the feasibility of applying organic waste products to a mine soil in Montana to increase soil fertility and enhance plant productivity. Waste rock samples were tested for acid forming potential via acid base accounting. Samples cores were constructed and leached with simulated rainwater to determine amendment affect on metal leaching. A greenhouse study was completed to determine the most suitable amendment(s) for the field mine land site. Results from the acid base accounting indicate that acid formed from the waste rock would be neutralized with the alkalinity in the system. Results also show that metals in solution are easily held by organics from the amendments and not allowed to leach in to the surrounding water system. Data from the greenhouse study indicated that the amendment of sewage sludge was most promising. Application of 2% sewage sludge along with 1% sewage sludge plus 1% clarifier sludge, 2% compost, and no treatment were used for mine land application. Initial results were encouraging and it appears that sewage sludge may be a good reclamation option for mine lands.

  14. Analysis of synthetic profile of CZTS as photovoltaic material obtained with variations of titanium and TiN

    Science.gov (United States)

    Muñoz, M.; Vera, E.; Gómez, J.; Pineda, Y.

    2017-12-01

    Semiconductor type Cu2ZnTiS4 (CZTiS) and Cu2ZnSnS4 (CZTS),were synthetized starting from a hydrothermal route from precursor powders such as copper, zinc, tin, titanium isopropoxide and tiocarbammide metal nitrates dissolved in deionized water in concentrations of 1molL-1. Dosed and placed in a steel autoclave equipped with a Teflon jacket under magnetic stirring (150rpm) and at a temperature of 300°C for 24 hours in order to promote the formation of the respective ceramic phases. Segregates have been repeatedly washed with ethanol at all times until obtaining crystalline-looking solids. Subsequently, in order to promote the production of pure crystalline phases, the materials were subjected to a second reaction stage in a tubular furnace at 400°C in flow (50mLmin-1) for the purpose of Reduce the concentration of secondary phases of sulphides. The characterization of the CZTiS and CZTS materials was performed by X-ray Diffraction (XRD) and Raman spectroscopy where the presence of Kesterite type crystalline structures was confirmed in the two materials revealing that the effect of titanium with a higher ionic radius than tin produces a distortion in the cell of the CZTiS material compared to the report for the CZTS system. The results of Scanning Electron Microscopy (SEM), confirm the regular aggregates obtained with composition consistent with the proposal theoretically and validated by Energy-Dispersion X-ray Spectroscopy (EDX) techniques and comparison between secondary emission spectra and Retro-dispersed.

  15. Synthesis of HNTs@PEDOT composites via in situ chemical oxidative polymerization and their application in electrode materials

    Science.gov (United States)

    Wang, Fang; Zhang, Xianhong; Ma, Yuhong; Yang, Wantai

    2018-01-01

    The hybrid composite of poly(3,4-ethylenedioxythiophene) (PEDOT) and halloysite nanotubes (HNTs) was synthesized by a two-step process. First, poly(sodium styrene sulfonate) (PSSNa) was grafted onto HNTs via surface initiated atom transfer radical polymerization. Then with the HNTs-g-PSS as a template and the grafted PSS chains as the counterion dopant, PEDOT was precipitated onto the template via in situ oxidization polymerization of EDOT to form HNTs@PEDOT hybrid composites. The conductivity of HNTs@PEDOT can reach up to 9.35 S/cm with the content of 40% HNTs-g-PSS, which increased almost 78 times than that of pure PEDOT (about 0.12 S/cm) prepared at the similar condition. Further treated with p-toluenesulfonic acid (TsOH) as external dopant, the conductivity of HNTs@PEDOT increased to 24.3 S/cm. The electrochemical properties of the composites were investigated with cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy with three-electrode cell configuration. The results showed that the capacitance of HNTs@PEDOT composite increased 55% than that of pure PEDOT.

  16. Polymeric coordination compounds

    Indian Academy of Sciences (India)

    Administrator

    Metal coordination polymers with one- and two-dimensional structures are of current interest due to their possible relevance to material science 1. In continuation of our previous studies 2,3, several new polymeric compounds are reported here. Among the complexes of silver with aminomethyl pyridine (amp) ...

  17. Polymerized and functionalized triglycerides

    Science.gov (United States)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  18. Tissue Reaction of the Rat Urinary Bladder to Synthetic Mesh Materials

    Directory of Open Access Journals (Sweden)

    Gokhan Atis

    2009-01-01

    Full Text Available The aim of this study was to assess urinary bladder histopathology induced by the sling materials tension-free vaginal tape (TVT, vypro mesh, and intravaginal slingplasty (IVS. Thirty rats were studied: sham-operated controls, TVT, vypro, and IVS groups. After laparotomy, a 0.5- x 1-cm piece of mesh was implanted on the anterior bladder wall. The bladder was examined histopathologically after 12 weeks. Inflammation, foreign-body reaction, subserosal fibrosis, necrosis, and collagen deposition were graded. The Kruskal-Wallis and posthoc Dunn tests were used. The sham-operated rats showed no tissue reactions. The TVT, vypro, and IVS groups showed increased inflammation (p = 0.006, p = 0.031, p = 0.001, subserosal fibrosis (p = 0.0001, foreign-body reaction (p = 0.0001, and collagen deposition (p = 0.0001 as compared to sham. Inflammation was more intense in the IVS group as compared to the TVT and vypro groups (p = 0.041, p = 0.028. The bladder presented more increased inflammatory response to IVS than the other meshs. This may play a role in the ultimate outcomes or complications from slings.

  19. Achievement report for fiscal 1990 on research and development of electrically conductive polymeric materials; 1990 nendo dodensei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    It is intended to realize new electrically conductive materials characterized by light weight, corrosion resistance and easy-to-process performance, and electrical and electronic materials having functions different from those of metallic conduction mechanism. Therefore, activities were performed to seek technologies for polymeric materials having conductivity greater than 10{sup 5} S/cm and being stable and easy to process. Activities were taken in the following six fields: (1) new hydrocarbon conjugate polymers, (2) excipient conjugate conductive materials, (3) technologies to form thin films of graphite synthesized at low temperatures, (4) conductive polymers of hetero aromatic system, (5) research and development of conductive materials of the hetero containing system and the {pi} conjugate system, and (6) comprehensive investigative research. In (1), thin films of polyacetylene and polyacene systems were formed, in (2), excipient hydrocarbon conjugate polymers and excipient graphite materials were developed, in (3), a high-accuracy process controlled graphite thin film forming technology was developed, in (4), the conductivity was enhanced by using high-order structural control and molecular design, and stability of the conductive polymers of complex annular conjugate system was enhanced, and in (5), conductive polymers of the hetero containing system and the {pi} conjugate system, and flexible graphite fibers were developed. (NEDO)

  20. Fiscal 1992 R and D project for next generation infrastructure technology. Report on results of R and D on silicon-based polymeric material; 1992 nendo keisokei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    R and D was conducted with the purpose of establishing fundamental technologies for molecular design, synthesis, material formation and evaluation method concerning silicon-based polymer. with the fiscal 1992 results summarized. In the studies on synthesis technology of electrically conductive silicon-based polymeric materials, silicon-based compounds were synthesized including in particular -Si-Si- bond and carbon multiple bond like -C-C-, with acquisition/analysis of material data started. In the studies on new silicon-based polymeric materials capable of circuit plotting, syntheses were performed for network polysilanes through the disproportionation reaction of alkoxydisilanes. In the studies on new silicon-based polymeric materials having a light emitting function, evaluation of oxidation-reduction potential and search for synthesizing conditions were performed for halosilanes and hydrosilanes. In the studies on silicon-based photoelectric conversion materials, molecular design progressed using a crystal orbital method. Furthermore, researches were implemented on such subjects as silicon-based polymeric materials having a sea-island structure, interpenetrating polymer network forming technologies, and composite structural materials composed of organic metallic complex and silicon-based polymers. (NEDO)

  1. Comparison of temperature increase in the pulp chamber during the polymerization of materials used for the direct fabrication of provisional restorations.

    Science.gov (United States)

    Michalakis, Konstantinos; Pissiotis, Argiris; Hirayama, Hiroshi; Kang, Kiho; Kafantaris, Nikolaos

    2006-12-01

    Polymerization of resin materials used for the fabrication of provisional restorations is associated with an exothermic reaction. This temperature rise may present a serious biological problem, since it can cause iatrogenic thermal trauma to the pulp. This in vitro study compared the temperature increase in the pulp chamber of a molar placed in contact with different resins used for the direct fabrication of provisional restorations. Polymethyl methacrylate (Jet), polyethyl methacrylate (Snap), polyvinylethyl methacrylate (Trim), Bis-acrylic composite (Protemp II), and a VLP urethane dimethacrylate (Revotec LC) were compared with respect to their exothermic reaction properties during polymerization. A mandibular molar prepared for a complete coverage restoration was placed in an acrylic resin block. A thermal probe connected to a digital thermometer was placed into the pulp chamber. Specimens were submerged in a water bath to simulate intraoral conditions. The provisional resin materials tested were measured and mixed according to manufacturer's instructions. The resin mixture was placed into a vacuum-formed acetate template and was then positioned on the prepared molar tooth. The temperature was recorded during polymerization at 30-second intervals until it was evident that the peak temperature had been reached. Temperature increase was measured ( degrees C) for both the initial crown fabrication and the reline procedures. Data were analyzed with descriptive statistics, 1-way analysis of variance, and Tukey Honestly Significant Difference tests (alpha=.05). One-way ANOVA revealed significant differences (F=57.010, Pprovisional resin materials. Mean temperature increase for the provisional crown fabrication ranged from 37.76 degrees C for the polyvinylethyl methacrylate to 39.40 degrees C for the polymethyl methacrylate. Mean temperature rise for the reline procedures ranged from 36.80 degrees C for the polyvinylethyl methacrylate to 37.69 degrees C for the

  2. Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization

    Science.gov (United States)

    Kermagoret, Anthony; Debuigne, Antoine; Jérôme, Christine; Detrembleur, Christophe

    2014-03-01

    The copolymerization of ethylene with polar monomers is a major challenge when it comes to the manufacture of materials with potential for a wide range of commercial applications. In the chemical industry, free-radical polymerization is used to make a large proportion of such copolymers, but the forcing conditions result in a lack of fine control over the architecture of the products. Herein we introduce a synthetic tool, effective under mild experimental conditions, for the precision design of unprecedented ethylene- and polar-monomer-based copolymers. We demonstrate how an organocobalt species can control the growth of the copolymer chains, their composition and the monomer distribution throughout the chain. By fine tuning the ethylene pressure during polymerization and by exploiting a unique reactive mode of the end of the organometallic chain, novel block-like copolymer structures can be prepared. This highly versatile synthetic platform provides access to a diverse range of polymer materials.

  3. Repurposing ribosomes for synthetic biology.

    Science.gov (United States)

    Liu, Yi; Kim, Do Soon; Jewett, Michael C

    2017-10-01

    The translation system is the cell's factory for protein biosynthesis, stitching together hundreds to thousands of amino acids into proteins, which are required for the structure, function, and regulation of living systems. The extraordinary synthetic capability of this system, which includes the ribosome and its associated factors required for polymerization, has driven extensive efforts to harness it for societal use in areas as diverse as energy, materials, and medicine. A powerful example is recombinant protein production, which has impacted the lives of patients through the synthesis of biopharmaceuticals such as insulin. In nature, however, only limited sets of monomers are utilized, thereby resulting in limited sets of biopolymers (i.e., proteins). Expanding nature's repertoire of ribosomal monomers could yield new classes of enzymes, therapeutics, materials, and chemicals with diverse, genetically encoded chemistry. Here, we discuss recent progress towards engineering ribosomes both in vivo and in vitro. These fundamental and technical breakthroughs open doors for advanced applications in biotechnology and synthetic biology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Decreased material-activation of the complement system using low-energy plasma polymerized poly(vinyl pyrrolidone) coatings

    DEFF Research Database (Denmark)

    Andersen, Thomas E; Palarasah, Yaseelan; Skjødt, Mikkel-Ole

    2011-01-01

    In the current study we investigate the activation of blood complement on medical device silicone rubber and present a plasma polymerized vinyl pyrrolidone (ppVP) coating which strongly decreases surface-activation of the blood complement system. We show that uncoated silicone and polystyrene...... are both potent activators of the complement system, measured both as activated, deposited C3b and quantifying fluid-phase release of the cleavage fragment C3c. The ppVP coated silicone exhibits approximately 90% reduced complement activation compared to untreated silicone. Quartz crystal microbalance...... of differences in the adsorbed protein layer composition. The alternative and classical complement pathways are barely detectable on ppVP while the lectin pathway through MBL/ficolin-2 deposition remains active on ppVP suggesting this pathway is responsible for the remaining subtle activation on the ppVP coated...

  5. Long-term 2007-2013 monitoring of reproductive disturbance in the dun sentinel Assiminea grayana with regard to polymeric materials pollution at the coast of Lower Saxony, North Sea, Germany.

    Science.gov (United States)

    Watermann, B T; Löder, M; Herlyn, M; Daehne, B; Thomsen, A; Gall, K

    2017-02-01

    During biological effect monitoring studies of endocrine active compounds with the snail Assiminea grayana in 2007-2013, reproductive disorders including atresia, transformation of capsule/albumen glands into prostates in females and ovotestis, transformation of prostates to capsule/albumen glands, disruption of spermatogenesis, and calcification of tubules in males, were encountered in several years. The search of sources of endocrine active substances was first directed to antifouling biocides from paint particles and extended to leaching compounds from polymeric materials. In contrast to the reference sites, most of the observed disorders occurred at a station near harbors and dockyards polluted with residues from antifouling paints and polymeric materials. Beside of investigations about the potential ingestion of polymer particles by the snails, further investigations of compounds of polymeric materials with endocrine potential should follow.

  6. Patenteamento em nanotecnologia: estudo do setor de materiais poliméricos nanoestruturados Patenting in nanotechnology: study of nanostructurated polymeric materials sector

    Directory of Open Access Journals (Sweden)

    Suzana Borschiver

    2005-11-01

    Full Text Available Neste trabalho foi feito um estudo de tendências tecnológicas em nanotecnologia aplicado ao setor de materiais poliméricos, com base em informações extraídas de documentos de patentes. Foi usada como fonte de dados o banco de patentes da USPTO (United States Patent Trademark Office. Os dados foram obtidos via web, utilizando-se diversas palavras-chaves Foram mapeados os principais países depositantes, tipo de depositante e ano de aplicação, setores de aplicação, tipos de polímeros utilizados e principais aditivos e cargas incorporados às matrizes poliméricas.In this work a study of technological tendencies in nanotechnology applied to polymeric materials sector was carried out, based on information extracted of paten documents. The patent office of USPTO (United States Patent Trademark Office was used as a data source. The data were supplied via web, using several keywords. A mapping was made of the major countries contributing, types and year of patent deposition, application sectors, polymer types used, main additives and fillers incorporated to the polymeric matrices.

  7. Effect of different palatal vault shapes on the dimensional stability of glass fiber-reinforced heat-polymerized acrylic resin denture base material.

    Science.gov (United States)

    Dalkiz, Mehmet; Arslan, Demet; Tuncdemir, Ali Riza; Bilgin, M Selim; Aykul, Halil

    2012-01-01

    The aim of this study was to determine the effect of different palatal vault shapes on the dimensional stability of a glass fiber reinforced heat polymerized acrylic resin denture base material. Three edentulous maxilla with shallow, deep and medium shaped palatal vaults were selected and elastomeric impressions were obtained. A maxillary cast with four reference points (A, B, C, and D) was prepared to serve as control. Point (A) was marked in the anterior midline of the edentulous ridge in the incisive papillary region, points (B) and (C) were marked in the right and left posterior midlines of the edentulous ridge in the second molar regions, and point (D) was marked in the posterior palatal midline near the fovea palatina media (Figure 2). To determine linear dimensional changes, distances between four reference points (A-B, A-C, A-D and B-C) were initially measured with a metal gauge accurate within 0.1 mm under a binocular stereo light microscope and data (mm) were recorded. No significant difference of interfacial distance was found in sagittal and frontal sections measured 24 h after polymerization and after 30 days of water storage in any of experimental groups (P>.05). Significant difference of linear dimension were found in all experimental groups (Pbases did not affect the magnitude of interfacial gaps between the bases and the stone cast surfaces.

  8. Forensic engineering of advanced polymeric materials Part IV: Case study of oxo-biodegradable polyethylene commercial bag - Aging in biotic and abiotic environment.

    Science.gov (United States)

    Musioł, Marta; Rydz, Joanna; Janeczek, Henryk; Radecka, Iza; Jiang, Guozhan; Kowalczuk, Marek

    2017-06-01

    The public awareness of the quality of environment stimulates the endeavor to safe polymeric materials and their degradation products. The aim of the forensic engineering case study presented in this paper is to evaluate the aging process of commercial oxo-degradable polyethylene bag under real industrial composting conditions and in distilled water at 70°C, for comparison. Partial degradation of the investigated material was monitored by changes in molecular weight, thermal properties and Keto Carbonyl Bond Index and Vinyl Bond Index, which were calculated from the FTIR spectra. The results indicate that such an oxo-degradable product offered in markets degrades slowly under industrial composting conditions. Even fragmentation is slow, and it is dubious that biological mineralization of this material would occur within a year under industrial composting conditions. The slow degradation and fragmentation is most likely due to partially crosslinking after long time of degradation, which results in the limitation of low molecular weight residues for assimilation. The work suggests that these materials should not be labeled as biodegradable, and should be further analyzed in order to avoid the spread of persistent artificial materials in nature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of Synthetic Tissue Fluid on Microleakage of Grey and White Mineral Trioxide Aggregate as Root-End Filling Materials

    Science.gov (United States)

    Lotfi, Mehrdad; Vosoughhosseini, Sepideh; Saghiri, Mohammad Ali; Rahimi, Saeed; Zand, Vahid; Reyhani, Mohammad Forough; Samiei, Mohammad; Ghasemi, Negin; Mehrvarzfar, Payman; Azimi, Shahram; Shokohinejad, Noushin

    2012-01-01

    Objectives: The success of endodontic surgery has been shown to depend partly on the apical seal. Grey mineral trioxide aggregate (GMTA) produces hydroxyapatite twice as often as white mineral trioxide aggregate (WMTA) when suspended in a phosphate buffered saline (PBS) solution. The aim of this in vitro study was to compare the microleakage phenomenon of gray and white mineral trioxide aggregates as root-end filling materials after immersion in synthetic tissue fluid (STF). Methods: 55 single-rooted extracted maxillary anterior human teeth were divided into two experimental groups of 20 teeth each, plus 3 groups of 5 teeth each as two negative and one positive control groups. The root canals were cleaned, shaped, and laterally compacted with gutta-percha. The root ends were resected and 3 mm deep cavities were prepared. The root-end preparations were filled with GMTA or WMTA in the experimental groups. Leakage was determined using a dye penetration method. Data were analysed using analysis of variance (ANOVA) at the 0.05 level of significance. Results: The mean dye leakage was 0.40 ± 0.1 mm for GMTA and 0.50±0.1 mm for WMTA groups, respectively. There was no significant difference between the two experimental groups (P = 0.14). Conclusion: Despite the different properties and behaviours of GMTA and WMTA in STF, there were no significant differences in microleakage when using GMTA or WMTA. PMID:22912925

  10. A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods

    Czech Academy of Sciences Publication Activity Database

    Strečková, M.; Füzer, J.; Kobera, Libor; Brus, Jiří; Fáberová, M.; Bureš, R.; Kollár, P.; Lauda, M.; Medvecký, L.; Girman, V.; Hadraba, Hynek; Baťková, M.; Baťko, I.

    2014-01-01

    Roč. 147, č. 3 (2014), s. 649-660 ISSN 0254-0584 Institutional support: RVO:61389013 ; RVO:68081723 Keywords : composite materials * magnetic materials * chemical synthesis Subject RIV: CD - Macromolecular Chemistry; JH - Ceramics, Fire-Resistant Materials and Glass (UFM-A) Impact factor: 2.259, year: 2014

  11. Effect of Immersion Time in Artificial Saliva on Flexural Strength of Provisional Crown and Bridge Material: Light zPolymerization versus Autopolymerization system

    Directory of Open Access Journals (Sweden)

    Marzia Magdalena Tetelepta

    2013-07-01

    Full Text Available Objective: The aim of this study was to investigate the effect of immersion time in artificial salive on the flexural strength of provisional crown and bridge (p-c&b materials. Materials and Methods: Two types of p-c&b materials were used in this study: Light polymerized p-c&b material (Revotek LC and autopolymerized p-c&b material (PerfecTemp II. A total of 100 specimens were fabricated and measured according to ISO 4049/2000. A stainless steel mould was used to prepare 2mmx2mmx25mm bar shaped specimens. All materials were dispensed and manipulated according to the manufacturers' instructions. The specimens were divided into 5 groups (n=10. Each specimen of the first group was measured immediately after preparation. The second, third, fourth and fifth groups were immersed in artificial saliva at 37ºC in an incubator for 1 hour, 1 day, 7 days, and 14 days, respectively. Flexural strength was tested by Universal Mechanical Testing Machine Shimadzu in a 3-point bending test. The repeated ANOVA and Post-Hoc Bonferroni test were used to compare the continuous variables between the groups. Results: The results showed flexural strength of Revotek LC were higher than PerfecTemp II at first and second group. However, flexural strength of PerfecTemp II was higher than Revotek LC at third, fourth, and fifth group. The highest flexural strength of Revotek LC was achieved in 1 hour immersion, whereas PerfecTemp II achieved the highest value in 7 days. Conclusion: Flexural strength of p-c&b materials were influenced by immersion time in artifical saliva and the type of p-c&b materials.DOI: 10.14693/jdi.v17i1.108

  12. New hydrophilic polyesters and related polymers as bioerodible polymeric matrices.

    Science.gov (United States)

    Chiellini, E; Solaro, R; Bemporad, L; D'Antone, S; Giannasi, D; Leonardi, G

    1995-01-01

    A survey is reported on our activity performed in the last few years on the preparation of new synthetic and semisynthetic polymeric materials endowed with bioerodible-biodegradable characteristics and designed for applications in the practice of controlled release of active principles of pharmaceutical and agrochemical significance. The presentation of the results will be arranged into the following sections: (1) hydroxyl containing polyesters, that comprise polymerization products based on racemic and optically active glyceric acid, or attained by polyaddition reactions among cyclic anhydrides, including also carbon dioxide, with monoglycidyl ethers of reversibly protected polyols. In this class are also presented the related polyhydroxylated systems obtained by selective grafting functional epoxides on cyclodextrins. (2) Bioerodible carboxyl containing polymeric systems as derived from the alternating copolymerization of maleic anhydride with alkyl vinyl ethers followed by partial esterification of maleic anhydride groups. (3) Linear and cross-linked functional polymers of synthetic and semisynthetic origin with hydrogel forming capability. Typical examples of their applications in the release of drugs and phytodrugs are also presented.

  13. Condensation Polymerization

    Indian Academy of Sciences (India)

    building blocks, is essentially the process of polycondensation or step-growth polymerization. Before we leave this LEGO-style discussion, I would leave you with two alternate scenarios; one is to use building blocks bearing two sockets and two balls, as de- picted in the figure, and the other is to use blocks that contain two.

  14. Condensation Polymerization

    Indian Academy of Sciences (India)

    At first, let us begin by treating molecules as LEGO-type building blocks with certain strict rules for linking them; a ball can readily fit with a socket, ... is essentially the process of polycondensation or step-growth polymerization. Before we leave this LEGO-style discussion, I would leave you with two alternate scenarios; one is.

  15. Evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer techniques.

    Science.gov (United States)

    Schöne, Anne-Christin; Roch, Toralf; Schulz, Burkhard; Lendlein, Andreas

    2017-05-01

    Polymeric biomaterials are of specific relevance in medical and pharmaceutical applications due to their wide range of tailorable properties and functionalities. The knowledge about interactions of biomaterials with their biological environment is of crucial importance for developing highly sophisticated medical devices. To achieve optimal in vivo performance, a description at the molecular level is required to gain better understanding about the surface of synthetic materials for tailoring their properties. This is still challenging and requires the comprehensive characterization of morphological structures, polymer chain arrangements and degradation behaviour. The review discusses selected aspects for evaluating polymeric biomaterial-environment interfaces by Langmuir monolayer methods as powerful techniques for studying interfacial properties, such as morphological and degradation processes. The combination of spectroscopic, microscopic and scattering methods with the Langmuir techniques adapted to polymers can substantially improve the understanding of their in vivo behaviour. © 2017 The Author(s).

  16. Radical polymerization of capillary bridges between micron-sized particles in liquid bulk phase as a low temperature route to produce porous solid materials.

    Science.gov (United States)

    Hauf, Katharina; Riazi, Kamran; Willenbacher, Norbert; Koos, Erin

    2017-10-01

    We present a generic and versatile low temperature route to produce macro-porous bodies with porosity and pore size distribution that are adjustable in a wide range. Capillary suspensions, where the minor fluid is a monomer, are used as pre-cursors. The monomer is preferentially located between the particles, creating capillary bridges, resulting in a strong, percolating network. Thermally induced polymerization of these bridges at temperatures below 100 °C for less than 5 hours and subsequent removal of the bulk fluid yields macroscopic, self-supporting solid bodies with high porosity. This process is demonstrated using methylmethacrylate and hydroxyethylmethacrlyate with glass particles as a model system. The produced PMMA had a molecular weight of about 500.000 g/mol and dispersity about three. Application specific porous bodies, including PMMA particles connected by PMMA bridges, micron-sized capsules containing phase change material with high inner surface, and porous graphite membranes with high electrical conductivity, are also shown.

  17. Synthesis and characterization polymer composites prepared by low-temperature post-irradiation polymerization of C2F4 in the presence of graphene-like material

    International Nuclear Information System (INIS)

    Shulga, Y.M.; Kiryukhin, D.P.; Vasilets, V.N.

    2015-01-01

    Polymer polytetrafluoroethylene (Ptfe)-microwave exfoliated graphene oxide (MEGO) composites containing up to 80 wt.% PTFE were prepared by low-temperature post-irradiation polymerization of C 2 F 4 in the presence of the graphene-like material. Composites were characterized by elemental analysis, XPS, NMR, and DSC techniques. The melting point of PTFE in the composite (332.5°C) was higher than that of pure PTFE by 8.8°C. The measured values of the melting enthalpy (ΔHm=51.5 and 45.4 J/g) were used to calculate the extent of crystallinity in the PTFE and PTFE-MEGO composite (0.63 and 0.55, respectively). No - CF 3 end groups typical of commercial PTFE have been detected in the PTFE-MEGO composites. (authors)

  18. Achievement report for fiscal 1990 on research and development of highly crystalline polymeric materials; 1990 nendo kokesshosei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-03-01

    Activities were performed to seek polymeric materials having mechanical strength comparable to metallic materials as a result of giving contrivance on the composition and processing method, and bending strength of 100 GPa or more. The activities were taken in the following five fields: (1) a one-dimensional system material, (2) special melting and forming of a multi-dimensional system, (3) compound forming of multi-dimensional molecules, (4) hybrid cross-linking of cross-linking systems, and (5) high-density cross linking of cross-linking systems. In Item (1), researches were made on optimization of the structures, and elongation and fluid processing of thermotropic liquid crystal polyacrylate, wherein the objective was achieved. In Item (2), the objective was achieved on poly (imide-benzobisthiazole) by monoaxial drawing and lamination thereof. Discussions were given on the liquid crystal polymer as to its correlation between the structure and the magnetic field orientation. In Item (3) discussions were given on the composition and processing method for molecule compounded materials reinforced by aromatic polyamide matrix-polyphenylenebenzothiazole. In Item (4), ionomers were discussed. In Item (5), discussions were given on multi-functional diacetylene system and diacetylene group containing polyimide. (NEDO)

  19. What Makes the Optimal Wound Healing Material? A Review of Current Science and Introduction of a Synthetic Nanofabricated Wound Care Scaffold.

    Science.gov (United States)

    MacEwan, Matthew R; MacEwan, Sarah; Kovacs, Tamas R; Batts, Joel

    2017-10-02

    Wound matrix materials are used to improve the regeneration of dermal and epidermal layers in both acute and chronic wounds. Contemporary wound matrices are primarily composed of biologic materials such as processed xenogeneic and allogeneic tissues. Unfortunately, existing biologic wound matrices possess multiple limitations including poor longevity, durability, strength, and enzymatic resistance required for persistent support for new tissue formation. A fully-synthetic, resorbable electrospun material (Restrata Wound Matrix, Acera, St.Louis, Missouri ) that exhibits structural similarities to the native extracellular matrix offers a new approach to the treatment of acute and chronic wounds. This novel matrix is the first product to combine the advantages of synthetic construction (e.g. resistance to enzymatic degradation, excellent biocompatibility, strength/durability and controlled degradation) with the positive attributes of biologic materials (e.g. biomimetic architecture similar to human extracellular matrix (ECM), fibrous architecture optimized to support cellular migration and proliferation, engineered porosity to encourage tissue ingrowth and vascularization). These features allow RWM to achieve rapid and complete healing of full-thickness wounds that, in preclinical studies, is comparable to Integra Bilayer Wound Matrix (Integra LifeSciences, Plainsboro, New Jersey), a gold standard biologic material with diverse clinical indications in the wound care. Together, this review suggests that the RWM offers a unique fully-synthetic alternative to existing biologic matrices that is effective, widely available, easy to store, simple to apply and low cost.

  20. Colloids and composite materials Au/Pvp and Ag/Pvp generated by laser ablation in polymeric liquid environment

    Energy Technology Data Exchange (ETDEWEB)

    Larez, J.; Rojas, C. [Universidad Central de Venezuela, Faculty of Science, Center of Experimental Solid State Physics, Paseo Los Ilustres, Los Chaguaramos, Apdo. Postal 20513, Caracas 1020-A (Venezuela, Bolivarian Republic of); Castell, R., E-mail: jlarez@fisica.ciens.ucv.ve [Universidad Simon Bolivar, Department of Physics, Plasma and Laser Spectroscopy Laboratory, Valle de Sartenejas, Baruta, Apdo. Postal 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of)

    2016-11-01

    Pulsed laser ablation of silver and gold targets, immersed in a polymeric solution of Polyvinylpyrrolidone (Pvp), is used to generate colloids and composite metal-polymer. Solutions of Pvp in deionized water at different concentrations are employed. Two Pvp number average molecular weights were considered, 10000 g/mol and 55000 g/mol. The high purity targets are irradiated between 20 min and 40 min with the third harmonic (Thg) (λ = 335 nm) of a Nd:YAG laser operating at a rate of 10 Hz with pulses of 8 ns. Optical spectroscopy in UV and vis regions, scanning electron microscopy, high resolution scanning electron microscopy and X-ray are used to identify and determine the shape and size of the produced particles. Very stable sub-micrometric spherical particles for Au/Pvp and Ag/Pvp samples are obtained with diameters of 0.72 μm and 0.40 μm, respectively. The preparation of colloids is performed in one step and no surfactant or dispersing agent is used in this process. (Author)

  1. The use of gamma radiation and polymeric materials in the removal of some toxic pollutants from polluted water

    International Nuclear Information System (INIS)

    Mohamed, M. E.M.

    2002-01-01

    Gamma radiation degradation of polluted water containing different anionic detergents (Texapon, Acyl Sarcoside, Diethanol Amide of Coconut Fatty Acid, Alkyl Sulfonate and Leonil UN-ET) and non-ionic detergents (Alkyl Polyglycol Ether, Hostapal SF-ET, Hostapal CV-ET and Tween-60) were studied as a function of the detergent Concentration, Ph, dose and dose rate. The synergistic effects resulting from adding different additives such as nitrogen, oxygen and hydrogen peroxide on the degradation process were investigated and showed that radiation degradation resulted in degrading the pollutants to a high extent (Between 80-95%). The ability of using Granular Activated Carbon, Agricultural By Products (Sugar Cane Bagasse and Rice Straw), Ion Exchange Resins (Merck II, III and IV) and the grafted polymeric membranes from Low Density Polyethylene were carried out. From the results, It can be concluded that, the gamma radiation coupled with adsorption was the best method for removing these pollutants and down their concentrations below the maximum permissible value according to the FAO regulations than the adsorption process alone and it was the most economic one

  2. Use of Polymeric and Natural Materials for the Removal of Irradiated Direct and acid Dyes from Effluents

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Abdel-Aal, S.E.; Gad, Y.H.

    2000-01-01

    Wastewater effluents from textile plants typically contain appreciable quantities of organic dyes that are resistant to degrade by ordinary treatment processes and constitute a highly visible form of pollution in the receiving waters. Carbon absorption as well as ionizing radiation are used as treatment processes. However, each method alone did not achieve the complete removal of these pollutants. A combined treatment is more effective. The two direct dyes(Direct orange S, Isma fast yellow Rl) were degraded by radiation 76% and 70% ,respectively. Also, the acid dye Sandolane Rubanole E-3 GSL (Acid red 37) was degraded almost to the same extent. Addition of O 2 or H 2 O-2 resulted in a remarkable enhancement in the degradation process. The effect of ph, gamma-dose and dye concentration was studied. Polymeric ion exchangers proved to be more effective in the removal process than clays. However, granular activated carbon (GAC) was the best adsorbent for the direct dyes. Clays proved to be very good adsorbents for two basic dyes than their weak adsorption behavior of the direct ones

  3. Assessment of thermal damage to polymeric materials by hydrogen deflagration in the Three Mile Island Unit 2 Reactor Building

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1985-05-01

    Thermal damage to susceptible material in accessible regions of the reactor building was distributed in non-uniform patterns. No clear explanation for non-uniformity was found in examined evidence, e.g., burned materials were adjacent to materials that appear similar but were not burned. Because these items were in proximity to vertical openings that extend the height of the reactor building, we assume the unburned materials preferentially absorbed water vapor during periods of high, local steam concentration. Simple hydrogen-fire-exposure tests and heat transfer calculations duplicate the degree of damage found on inspected materials from the containment building. These data support estimated 8% pre-fire hydrogen concentration predictions based on various hydrogen production mechanisms

  4. Assessment of Extent and Degree of Thermal Damage to Polymeric Materials in the Three Mile Island Unit 2 Reactor Building

    International Nuclear Information System (INIS)

    Alvares, N. J.

    1984-02-01

    Thermal damage to susceptible materials in accessible regions of the TMI-2 reactor building shows damage-distribution patterns that indicate non-uniform intensity of exposure. No clear explanation for non-uniformity is found in existing evidence; e.g., in some regions a lack of thermally susceptible materials frustrates analysis. Elsewhere, burned materials are present next to materials that seem similar but appear unscathed-leading to conjecture that the latter materials preferentially absorb water vapor during periods of high local steam concentration. Most of the polar crane pendant shows heavy burns on one half of its circumferential surface. This evidence suggests that the polar crane pendant side that experienced heaviest burn damage was exposed to intense radiant energy from a transient fire plume in the reactor containment volume. Tests and simple heat-transfer calculations based on pressure and temperature records from the accident show that the atmosphere inside the reactor building was probably 8% hydrogen in air, a value not inconsistent with the extent of burn damage. Burn-pattern geography indicates uniform thermal exposure in the dome volume to the 406-ft level (about 6 ft below the polar crane girder), partial thermal exposure in the volume between the 406- and 347-ft levels as indicated by the polar crane cable, and lack of damage to most thermally susceptible materials in the west quadrant of the reactor building; some evidence of thermal exposure Is seen in the free volume between the 305- and 347-ft levels. (author)

  5. Influence of oxygen and long term storage on the profile of volatile compounds released from polymeric multilayer food contact materials sterilized by gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Salafranca, Jesús, E-mail: fjsl@unizar.es [Aragón Institute of Engineering Research (I3A), EINA, Department of Analytical Chemistry, University of Zaragoza, María de Luna 3 (Torres Quevedo Bldg.), 50018 Zaragoza (Spain); Clemente, Isabel, E-mail: isabelclemente1984@gmail.com [Aragón Institute of Engineering Research (I3A), EINA, Department of Analytical Chemistry, University of Zaragoza, María de Luna 3 (Torres Quevedo Bldg.), 50018 Zaragoza (Spain); Isella, Francesca, E-mail: Francesca.Isella@goglio.it [Goglio S.p.A. Packaging Division, Via dell' Industria 7, 21020 Daverio (Italy); Nerín, Cristina, E-mail: cnerin@unizar.es [Aragón Institute of Engineering Research (I3A), EINA, Department of Analytical Chemistry, University of Zaragoza, María de Luna 3 (Torres Quevedo Bldg.), 50018 Zaragoza (Spain); Bosetti, Osvaldo, E-mail: Osvaldo.Bosetti@goglio.it [Goglio S.p.A. Packaging Division, Via dell' Industria 7, 21020 Daverio (Italy)

    2015-06-09

    Highlights: • 13 different food-use multilayers unirradiated and gamma-irradiated were studied. • 60–80 compounds/sample were identified by SPME–GC–MS even after 8-month storage. • Volatile profile of air- and N{sub 2}-filled bags greatly differed after irradiation. • Principal component analysis classified the samples into 4 groups. • Migration from irradiated materials to vapor phase was much lower than EU limits. - Abstract: The profile of volatile compounds released from 13 different multilayer polymeric materials for food use, before and after their exposure to gamma radiation, has been assessed by solid-phase microextraction–gas chromatography–mass spectrometry. Thermosealed bags of different materials were filled with either air or nitrogen to evaluate the oxygen influence. One-third of the samples were analyzed without irradiation, whereas the rest were irradiated at 15 and 25 kGy. Half of the samples were processed just after preparation and the other half was stored for 8 months at room temperature prior to analysis. Very significant differences between unirradiated and irradiated bags were found. About 60–80 compounds were released and identified per sample. A huge peak of 1,3-ditertbutylbenzene was present in most of the irradiated samples. An outstanding reproducibility in all the variables evaluated (chromatograms, oxygen percentage, volume of bags) was noticed. Independently of filling gas, the results of unirradiated materials were almost identical. In contrast, the chromatographic profile and the odor of irradiated bags filled with nitrogen were completely different to those filled with air. Principal component analysis was performed and 86.9% of the accumulated variance was explained with the first two components. The migration of compounds from irradiated materials to the vapor phase was much lower than the limits established in the Commission Regulation (EU) No 10/2011.

  6. Assessment of extent and degree of thermal damage to polymeric materials in the Three Mile Island Unit 2 reactor building

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1986-01-01

    This paper describes assumptions and procedures used to perform thermal damage analysis caused by post loss-of-coolant-accident (LOCA) hydrogen deflagration at Three Mile Island Unit 2 Reactor. Examination of available photographic evidence yields data on the extent and range of thermal and burn damage. Thermal damage to susceptible material in accessible regions of the reactor building was distributed in non-uniform patterns. No clear explanation for non-uniformity was found in examined evidence, e.g., burned materials were adjacent to materials that appear similar but were not burned. Because these items were in proximity to vertical openings that extend the height of the reactor building, the authors assume the unburned materials preferentially absorbed water vapor during periods of high, local steam concentration. A control pendant from the polar crane located in the top of the reactor building sustained asymmetric burn damage of decreasing degree from top to bottom. Evidence suggests the polar-crane pendant side that experienced heaviest damage was exposed to intense radiant energy from a transient fire plume in the reactor containment volume. Simple hydrogen-fire-exposure tests and heat transfer calculations approximate the degree of damage found on inspected materials from the containment building and support for an estimated 8% pre-fire hydrogen

  7. Assessment of extent and degree of thermal damage to polymeric materials in the Three Mile Island Unit 2 Reactor building

    International Nuclear Information System (INIS)

    Alvares, N.J.

    1985-06-01

    This paper describes assumptions and procedures used to perform thermal damage analysis caused by post loss-of-coolant-accident (LOCA) hydrogen deflagration at Three Mile Island Unit 2 Reactor. Examination of available photographic evidence yields data on the extent and range of thermal and burn damage. Thermal damage to susceptible material in accessible regions of the reactor building was distributed in non-uniform patterns. No clear explanation for non-uniformity was found in examined evidence, e.g., burned materials were adjacent to materials that appear similar but were not burned. Because these items were in proximity to vertical openings that extend the height of the reactor building, we assume the unburned materials preferentially absorbed water vapor during periods of high, local steam concentration. A control pendant from the polar crane located in the top of the reactor building sustained asymmetric burn damage of decreasing degree from top to bottom. Evidence suggests the polar-crane pendant side that experienced heaviest damage was exposed to intense radiant energy from a transient fire plume in the reactor containment volume. Simple hydrogen-fire-exposure tests and heat transfer calculations approximate the degree of damage found on inspected materials from the containment building and support for an estimated 8% pre-fire hydrogen

  8. Reformulating polycaprolactone fumarate to eliminate toxic diethylene glycol: effects of polymeric branching and autoclave sterilization on material properties.

    Science.gov (United States)

    Runge, M Brett; Wang, Huan; Spinner, Robert J; Windebank, Anthony J; Yaszemski, Michael J

    2012-01-01

    Polycaprolactone fumarate (PCLF) is a cross-linkable derivative of polycaprolactone diol that has been shown to be an effective nerve conduit material that supports regeneration across segmental nerve defects and has warranted future clinical trials. Degradation of PCLF (PCLF(DEG)) releases toxic small molecules of diethylene glycol used as the initiator for the synthesis of polycaprolactone diol. In an effort to eliminate this toxic degradation product we present a strategy for the synthesis of PCLF from either propylene glycol (PCLF(PPD)) or glycerol (PCLF(GLY)). PCLF(PPD) is linear and resembles the previously studied PCLF(DEG), while PCLF(GLY) is branched and exhibits dramatically different material properties. The synthesis and characterization of their thermal, rheological, and mechanical properties are reported. The results show that the linear PCLF(PPD) has material properties similar to the previously studied PCLF(DEG). The branched PCLF(GLY) exhibits dramatically lower crystalline properties resulting in lower rheological and mechanical moduli, and is therefore a more compliant material. In addition, the question of an appropriate Food and Drug Administration approvable sterilization method is addressed. This study shows that autoclave sterilization of PCLF materials is an acceptable sterilization method for cross-linked PCLF and has minimal effect on the PCLF thermal and mechanical properties. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Research into material behaviour of the polymeric samples obtained after 3D-printing and subjected to compression test

    Science.gov (United States)

    Petrov, Mikhail A.; Kosatchyov, Nikolay V.; Petrov, Pavel A.

    2016-10-01

    The paper represents the results of the study concerning the investigation of the influence of the filling grade (material density) on the force characteristic during the uniaxial compression test of the cylindrical polymer probes produced by additive technology based on FDM. The authors have shown that increasing of the filling grate follows to the increase of the deformation forces. However, the dependency is not a linear function and characterized by soft-elastic model of material behaviour, which is typical for polymers partly crystallized structure.

  10. Radiation induced crosslinking of poly(L-lactic acid) for making the polymeric materials having high thermal stability and improved mechanical properties

    International Nuclear Information System (INIS)

    Tran Minh Quynh; Tran Bang Diep; Nguyen Van Binh; Nguyen Quang Long; Pham Duy Duong; Hoang Phuong Thao; Hoang Dang Sang; Pham Ngoc Lan

    2013-01-01

    Different poly(L-lactic acid) (PLLA) have been synthesized from L-lactic acid as well as L-lactide by direct polycondensation and ring opening polymerization. Depending on reaction time, the resulting products having viscosity average molecular weight ranging from 5 to 25,000 g.mol -1 . Plasticization effects of some popular plasticizer, especially is polyethylene glycols (PEG) for the synthesized PLLA were determined. The results suggested that PEG 1000 is a good plasticizer with relative high plasticization effect. The crosslinking plasticized materials were prepared form the plasticized PLLA by irradiation with various radiation doses. The crosslinking structures were introduced in different formulation of PLLA/PEG/TAIC, the crosslinking density increased with radiation dose and seemed to be saturated at 50 kGy. The stable crosslinking structure inhibited the mobility for crystallization of PLLA chains, thermal stability of plasticized PLLA crosslinked with TAIC at 50 kGy become higher than that of initial PLLA with very small endothermic peak at its melting temperature. The stress-strain curves of the crosslinking plasticized PLLA showed that the toughness of the materials reduced but still higher than that of initial PLLA, whereas its tensile strength was much improved by radiation crosslinking. The results also revealed that the crosslinking plasticized PLLA can be completely degraded by proteinase K as well as microorganisms existing in compost. (author)

  11. Synthesis of Thermally Switchable Chromatographic Materials with Immobilized Ti4+ for Enrichment of Phosphopeptides by Reversible Addition Fragmentation Chain Transfer Polymerization

    Science.gov (United States)

    Wang, Di; Cao, Zhihan; Pang, Xinzhu; Deng, Yulin; Li, Bo; Dai, Rongji

    2018-01-01

    Reversible phosphorylation of proteins is one of the most crucial types of post-translational modifications (PTMs). And it shows significant work in diversified biological processes. However, the separation technology of phosphorylated peptides is still an analytical challenge in phosphoproteomics, because phosphopeptides are alway in low stoichiometry. Thus, enrichment of phosphopeptides before detection is indispensable. In this study, a novel temperature regulated separation protocol was developed. Silica@p (NIPAAm-co-IPPA)-Ti4+, a new Ti(IV)-IMAC (Immobilized Metal Affinity chromatography) materials was synthesized by reversible addition fragmentation chain transfer polymerization (RAFT). By the unique thermally responsive properties of poly(N-isopropylacrylamide) (PNIPAAm), the captured phosphorylated peptides could be released by changing temperature only without applying any other eluant which could damage the phosphopeptides. We employed isopropanol phosphonic acid (IPPA) as an IMAC ligand for the immobilization of Ti(IV) which could increase the specific adsorption of phosphopeptides. The enrichment and release properties were examined by treatment with pyridoxal 5’-phosphate (PLP) and casein phosphopeptides (CPP). Two phosphorylated compounds above have temperature-stimulated binding to Ti4+. Finally, silica@p (NIPAAm-co-IPPA)-Ti4+ was successfully employed in pretreatment of phosphopeptides in a tryptic digest of a-casein and human serum albumin (HSA). The results indicated a great potential of this new temperature-responsive material in phosphoproteomics study.

  12. Evaluation of temperature changes in the pulp chamber during polymerization of light-cured pulp-capping materials by using a VALO LED light curing unit at different curing distances.

    Science.gov (United States)

    Savas, Selcuk; Botsali, Murat S; Kucukyilmaz, Ebru; Sari, Tugrul

    2014-01-01

    The aim of this study was to evaluate temperature changes in the pulp chamber during polymerization of four different pulp-capping materials using a LED-light-curing-unit in the contact and noncontact positions. A pulpal circulation mechanism was simulated to measure increases in temperature in four pulp-capping materials that were applied to the occlusal dentin surface. Two different distances were used between the tip of the unit and the material surface during polymerization; 0 and 2 mm. The data were statistically analyzed using factorial-ANOVA, one-way-ANOVA, and Tukey's HSD test. There were statistically differences between contact and noncontact groups (plight curing units from restorations should not be overlooked as well as the types of the materials.

  13. A new method to assess the influence of migration from polymeric materials on the biostability of drinking water.

    Science.gov (United States)

    Bucheli-Witschel, Margarete; Kötzsch, Stefan; Darr, Stephan; Widler, Roland; Egli, Thomas

    2012-09-01

    After having produced drinking water of high quality it is of vital interest to distribute the water without compromising its quality neither by recontamination nor by microbial regrowth. To minimize regrowth, the strategy of distributing biostable water is followed in several European countries. This implies on one hand the production of water that has a low level of growth-supporting nutrients, in particular organic carbon compounds, and, on the other hand, using materials for storage/distribution that have a low biofilm formation potential and from which only low amounts of total organic carbon (TOC) leach into the water phase. Currently, the approval of materials in contact with drinking water relies on two tests, a migration test and a biofilm formation test. Here we describe an extended migration testing procedure that allows to obtain information not only on the amount of chemical compounds but also on the amount of growth-supporting compounds leaching into the water. In short, the test developed combines several migration cycles and subsequent measurement of the TOC with a novel, fast and reliable test method for determining the assimilable organic carbon (AOC) in the migration waters. AOC gives an indication on the growth-supporting properties of the material. Thus, an initial characterisation of a material with respect to its suitability for usage in contact with drinking water can be performed in a single assay. Results obtained with the new assay for a number of materials typically used in drinking water and sanitary installations are reported. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Environmentally degradable bio-based polymeric blends and composites.

    Science.gov (United States)

    Chiellini, Emo; Cinelli, Patrizia; Chiellini, Federica; Imam, Syed H

    2004-03-15

    Blends and composites based on environmentally degradable-ecocompatible synthetic and natural polymeric materials and fillers of natural origin have been prepared and processed under different conditions. Poly(vinyl alcohol) (PVA) was used as the synthetic polymer of choice by virtue of its capability to be processed from water solution or suspension as well as from the melt by blow extrusion and injection molding. Starch and gelatin were taken as the polymeric materials from renewable resources. The fillers were all of natural origin, as waste from food and agro-industry consisted of sugar cane bagasse (SCB), wheat flour (WF), orange peels (OR), apple peels (AP), corn fibres (CF), saw dust (SD) and wheat straw (WS). All the natural or hybrid formulations were intended to be utilized for the production of: a) Environmentally degradable mulching films (hydro-biomulching) displaying, in some cases, self-fertilizing characteristics by in situ spraying of water solutions or suspensions; b) Laminates and containers to be used in agriculture and food packaging by compression and injection molding followed by baking. Some typical prototype items have been prepared and characterized in relation to their morphological and mechanical properties and tested with different methodology for their propensity to environmental degradation and biodegradation as ultimate stage of their service life. A relationship between chemical composition and mechanical properties and propensity to biodegradation has been discussed in a few representative cases.

  15. Novel Dental Restorative Materials having Low Polymerization Shrinkage Stress via Stress Relaxation by Addition-Fragmentation Chain Transfer

    Science.gov (United States)

    Park, Hee Young; Kloxin, Christopher J.; Abuelyaman, Ahmed S.; Oxman, Joe D.; Bowman, Christopher N.

    2012-01-01

    Objectives To produce a reduced stress dental restorative material while simultaneously maintaining excellent mechanical properties, we have incorporated an allyl sulfide functional group into norbornene-methacrylate comonomer resins. We hypothesize that the addition-fragmentation chain transfer (AFCT) enabled by the presence of the allyl sulfide relieves stress in these methacrylate-based systems while retaining excellent mechanical properties owing to the high glass transition temperature of norbornene-containing resins. Methods An allyl sulfide-containing dinorbornene was stoichiometrically formulated with a ring-containing allyl sulfide-possessing methacrylate. To evaluate the stress relaxation effect as a function of the allyl sulfide concentration, a propyl sulfide-based dinorbornene, not capable of addition-fragmentation, was also formulated with the methacrylate monomer. Shrinkage stress, the glass transition temperature and the elastic modulus were all measured. The composite flexural strength and modulus were also measured. ANOVA (CI 95%) was conducted to determine differences between the means. Results Increasing the allyl sulfide content in the resin dramatically reduces the final stress in the norbornene-methacrylate systems. Both norbornene-methacrylate resins demonstrated almost zero stress (more than 96% stress reduction) compared with the conventional BisGMA/TEGDMA 70/30 wt% control. Mechanical properties of the allyl sulfide-based dental composites were improved to the point of being statistically indistinguishable from the control BisGMA-TEGDMA by changing the molar ratio between the methacrylate and norbornene functionalities. Significance The allyl sulfide-containing norbornene-methacrylate networks possessed super-ambient Tg, and demonstrated significantly lower shrinkage stress when compared with the control (BisGMA/TEGDMA 70 to 30 wt%). Although additional development remains, these low stress materials exhibit excellent mechanical

  16. High temperature structural, polymeric foams from high internal emulsion polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Hoisington, M.A.; Duke, J.R.; Apen, P.G.

    1996-02-01

    In 1982, a high internal phase emulsion (HIPE) polymerization process to manufacture microcellular, polymeric foam systems was patented by Unilever. This patent discloses a polymerization process that occurs in a water-in-oil emulsion in which the water represents at least 76% of the emulsion by volume. The oil phase consists of vinyl monomers such as styrene and acrylates that are crosslinked by divinyl monomers during polymerization. After polymerization and drying to remove the water phase, the result is a crosslinked polymer foam with an open cell microstructure that is homogeneous throughout in terms of morphology, density, and mechanical properties. Since 1982, numerous patents have examined various HIPE polymerized foam processing techniques and applications that include absorbents for body fluids, cleaning materials, and ion exchange systems. All the published HIPE polymerized foams have concentrated on materials for low temperature applications. Copolymerization of styrene with maleic anhydride and N-substituted maleimides to produce heat resistant thermoplastics has been studied extensively. These investigations have shown that styrene will free radically copolymerize with N-substituted maleimides to create an alternating thermoplastic copolymer with a Tg of approximately 200{degrees}C. However, there are many difficulties in attempting the maleimide styrene copolymerization in a HIPE such as lower polymerization temperatures, maleimide solubility difficulties in both styrene and water, and difficulty obtaining a stable HIPE with a styrene/maleimide oil phase. This work describes the preparation of copolymer foams from N-ethylmaleimide and Bis(3-ethyl-5-methyl-4-maleimide-phenyl)methane with styrene based monomers and crosslinking agents.

  17. Potential of polymeric materials for packaging; L'impiego dei materiali polimerici nell'imballaggio

    Energy Technology Data Exchange (ETDEWEB)

    Lanchi, M. [ENEA, Divisione Nuovi Materiali, Centro Ricerche Casaccia, Rome (Italy)

    2001-07-01

    Packaging preserves different kind of materials, from raw materials, and it plays an important role in the presentation of the products to the market, too. That's why packaging should be in charge of responding to marketing requirements by means of a proper design, effective colour choice and material, etc. Nowadays packaging is becoming more and more important in different fields. In Italy, it is a rapid growth of the packaging market and the companies involved are very competitive and efficient, in particular in some market segments. Concerning the application fields it can be asserted that packaging is mostly exploited in the food market which represents the 65% of the whole packaging market. Nearly all types of packaging use plastics as a part of their construction: lightness, chemical inertness, corrosion resistance, molding attitude, the good transparency to light, sound and mechanical insulation, etc. Focusing the attention to the horticultural market, growth in South of Italy in particular, examples of promising research fields to date are: developing of good barrier performance films; developing of suitable modified atmosphere packaging; developing of active plastic films, such as antimicrobic films or antioxidant films. The large amount of plastic films used for packaging create a large waste problem. This can be reduced by: optimising packaging design, avoiding the excessive use of plastics; improvising strength, moisture and heat stability per unit weight in order to reduce plastic waste volume; developing blend of plastics and bio-based polymer in order to increase the biodegradability of packaging after use. [Italian] L'imballaggio e' un prodotto adibito a contenere e a proteggere determinate merci, dalle materie prime ai prodotti finiti, a consentire la loro manipolazione e ad assicurare la loro presentazione. E' una realta' importante del mondo della produzione, delle strutture distributive e della vita quotidiana. Nell

  18. A Highly Sensitive Assay Using Synthetic Blood Containing Test Microbes for Evaluation of the Penetration Resistance of Protective Clothing Material under Applied Pressure.

    Science.gov (United States)

    Shimasaki, Noriko; Hara, Masayuki; Kikuno, Ritsuko; Shinohara, Katsuaki

    2016-01-01

    To prevent nosocomial infections caused by even either Ebola virus or methicillin-resistant Staphylococcus aureus (MRSA), healthcare workers must wear the appropriate protective clothing which can inhibit contact transmission of these pathogens. Therefore, it is necessary to evaluate the performance of protective clothing for penetration resistance against infectious agents. In Japan, some standard methods were established to evaluate the penetration resistance of protective clothing fabric materials under applied pressure. However, these methods only roughly classified the penetration resistance of fabrics, and the detection sensitivity of the methods and the penetration amount with respect to the relationship between blood and the pathogen have not been studied in detail. Moreover, no standard method using bacteria for evaluation is known. Here, to evaluate penetration resistance of protective clothing materials under applied pressure, the detection sensitivity and the leak amount were investigated by using synthetic blood containing bacteriophage phi-X174 or S. aureus. And the volume of leaked synthetic blood and the amount of test microbe penetration were simultaneously quantified. Our results showed that the penetration detection sensitivity achieved using a test microbial culture was higher than that achieved using synthetic blood at invisible leak level pressures. This finding suggested that there is a potential risk of pathogen penetration even when visual leak of contaminated blood through the protective clothing was not observed. Moreover, at visible leak level pressures, it was found that the amount of test microbe penetration varied at least ten-fold among protective clothing materials classified into the same class of penetration resistance. Analysis of the penetration amount revealed a significant correlation between the volume of penetrated synthetic blood and the amount of test microbe penetration, indicating that the leaked volume of synthetic

  19. Study of polymeric hydrogels with inorganic nanoparticles of clay

    International Nuclear Information System (INIS)

    Oliveira, Maria Jose A. de; Parra, Duclerc F.; Lugao, Ademar B.; Amato, Valdir S.

    2011-01-01

    Nanoscience has been applied in research of intelligent systems for drug delivery. The use of biodegradable synthetic polymers and in diagnostics and therapy has stimulated the application of nanotechnology in polymeric systems with new structures and new materials composing among these materials are hydrogels. Hydrogel with dispersed clay is a new class of materials that combine flexible and permeability of the hydrogels with the high efficiency of the clay to adsorb different substances. We evaluated the behaviour of swelling, gel fraction and thermal stability among the hydrogels obtained by poly (vinyl alcohol) (PVAl) with clay and poly (N-2-vinyl-pyrrolidone) (PVP) with clay. While, observed that the hydrogels showed swelling clay PVAl meaningful, the clay PVP hydrogels showed swelling more consistent after four hours of testing

  20. preparation of spherical polymeric particles from tanzanian cashew

    African Journals Online (AJOL)

    on suspension polymerization of the same, to produce surface reactive materials. In this work, suspension polymerization of CNSL and its distillate product cardanol to produce spherical polymeric particles (SPP) and surface characterization of the latter is reported. EXPERIMENTAL. Materials. Technical CNSL was supplied ...

  1. Study of anaerobic treatment in a system UASB of a rich industrial waste in polymeric organic material

    International Nuclear Information System (INIS)

    Marulanda Orozco, Elizabeth; Rozonzew Mira, William A; Gil Victoria, Luis Hernando

    1997-01-01

    An agroindustrial company dedicated to the transformation of the waste, generated in the municipalities slaughterhouse, butcher shops and chicken farms such as: grease, bones, heads, feathers, skins, blood and other waste, that are used as principal ingredients for the production of bone flour, meat flour an grease. During this transformation residual waters are generated with a high demand chemical y biological have oxygenate, with a high concentration of proteins and grease. Those are dump in the creek in the city of the same name, with drastic consequences to the aquatic life and the generation of bad odours along the riverbank. For this reason a pilot studies took place in a reactor UASB with the purpose of establishing the conditions of operations and design of treatment plant. The high concentration of organic material of the residual waters (150 000 mg COD /L) makes it necessary the dilution of substrata. In helps to avoid the toxicity for NH3 for the characteristics of the substrata there is not necessary to add N.S.P (macro nutrients). During these studies various organic volumetric load were used (VOL) between 1.9 and 25 g COD/ day. The hydraulic retention time (HRT) between 6.5 and 25 hr. and the concentration of organic material in the influent of the reactor (Si) between 1500 and 7000 mg COD/L. obtaining the following results: the buffer capacity of the system permits to keep the ph between 6.7 -7.6. For a concentration of volatile fatty acids (VFA) higher then 12 meq/L and an index of alkalinity higher then 0.3 the system is unstable. It came to the conclusion that to keep stable conditions in the system the maxim VOL is 6 g COD/L day and the minimum HRT to obtain efficiencies of 79 % is 16 hr

  2. Optical and Scanning electron Microscopy as advanced analysis methods to determine the condition of synthetic geo membranes

    International Nuclear Information System (INIS)

    Soriano Carrillo, J.; Blanco Fernandez, M.; Garcia Calleja, M. A.; Leiro Lopez, A.; Mateo Sanz, B.; Aguilar Gonzalez, E.; Rubin de Celix, M.

    2014-01-01

    Microscopic techniques have been widely used for years in the study of inorganic materials however their use in organic materials and specifically, in synthetic geo membranes, is very limited. In this study, this innovative technology has been used with the different geo synthetic polymeric barriers with which this research team is experienced: plasticized polyvinyl chloride, polyethylenes, rubbers such as ethenyltriphenyl-diene monomer terpolymer and butyl, polyolefins, ethylene-vinyl acetate copolymer, chlorosulfonated polyethylene and polypropylene. the influence of the extraction area and the time since their application is tested. (Author)

  3. A New Polyoxometalate (POM)-Based Composite: Fabrication through POM-Assisted Polymerization of Dopamine and Properties as Anode Materials for High-Performance Lithium-Ion Batteries.

    Science.gov (United States)

    Ding, Yan-Hong; Peng, Jun; Khan, Shifa-Ullah; Yuan, Yue

    2017-08-01

    Organic substrates are indispensable in the fabrication of multifunctional polyoxometalate (POM)-based composites for various applications. A new molybdovanadophosphoric heteropolyacid (PMo 10 V 2 )-based polydopamine (PDA) composite (PMo 10 V 2 /PDA) is first synthesized through a facile, in situ polymerization method under hydrothermal conditions, without the addition of extra buffer solution. The obtained PMo 10 V 2 /PDA composite shows homogeneous microsphere morphology. Through utilization of the adhesive ability of PDA, the composite can be used as an anode material without additional binder for rechargeable lithium-ion batteries. Excellent electrochemical performances are obtained, with a high, stable specific capacity of 915.3 mA h g -1 at a current density of 100 mA g -1 , remarkable rate capability, and good cycling stability (≈93 % capacity retention after 300 cycles at a high current density of 1000 mA g -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydrogen sulphate-based ionic liquid-assisted electro-polymerization of PEDOT catalyst material for high-efficiency photoelectrochemical solar cells.

    Science.gov (United States)

    Carbas, Buket Bezgin; Gulen, Mahir; Tolu, Merve Celik; Sonmezoglu, Savas

    2017-09-15

    This work reports the facile, one-step electro-polymerization synthesis of poly (3,4-ethylenedioxythiophene) (PEDOT) using a 1-ethyl-3-methylimidazolium hydrogen sulphate (EMIMHSO 4 ) ionic liquid (IL) and, for the first time its utilization as a counter electrode (CE) in dye-sensitized solar cells (DSSCs). Using the IL doped PEDOT as CE, we effectively improve the solar cell efficiency to as high as 8.52%, the highest efficiency reported in 150 mC/cm 2 charge capacity, an improvement of ~52% over the control device using the bare PEDOT CE (5.63%). Besides exhibiting good electrocatalytic stability, the highest efficiency reported for the PEDOT CE-based DSSCs using hydrogen sulphate [HSO 4 ] - anion based ILs is also higher than platinum-(Pt)-based reference cells (7.87%). This outstanding performance is attributed to the enhanced charge mobility, reduced contact resistance, improved catalytic stability, smoother surface and well-adhesion. Our experimental analyses reveal that the [HSO 4 ] - anion group of the IL bonds to the PEDOT, leading to higher electron mobility to balance the charge transport at the cathode, a better adhesion for high quality growth PEDOT CE on the substrates and superior catalytic stability. Consequently, the EMIMHSO 4 -doped PEDOT can successfully act as an excellent alternative green catalyst material, replacing expensive Pt catalysts, to improve performance of DSSCs.

  5. Development of a polymeric matrix for composite material produced by the filament winding technique; Desenvolvimento de matriz polimerica visando a producao de material composito atraves da tecnica de enrolamento filamentar

    Energy Technology Data Exchange (ETDEWEB)

    Sobrinho, Ledjane Lima; Ferreira, Marisilvia; Bastian, Fernando Luiz [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia

    2005-07-01

    The study of the resin for composite materials to be produced by the filament winding technique is very important, since the good applicability of the technique is in part function of the characteristics of the resin. The objective of this work is the development of a polymeric matrix using vinyl ester resin for composite to be produced by the filament winding technique. Therefore, vinyl ester resin systems developed from Derakane 411-350 by varying the percentage of cure agent and activator. The system which presented the best behavior in tension (Yong's modulus 2,42 GPa, tensile strength = 47,67 MPa, elongation = 7,31 % and fracture toughness 2,67 J), adequate gel time and exothermic peak for the manufacture process was submitted to hygrothermal aging by immersion in water at 60 deg C for a maximum period of 64 days. (author)

  6. Molecular and polymeric uranyl and thorium hybrid materials featuring methyl substituted pyrazole dicarboxylates and heterocyclic 1,3-diketones

    Science.gov (United States)

    Carter, Korey P.; Kerr, Andrew T.; Taydakov, Ilya V.; Cahill, Christopher L.

    2018-02-01

    A series of seven novel f-element bearing hybrid materials have been prepared from either methyl substituted 3,4 and 4,5-pyrazoledicarboxylic acids, or heterocyclic 1,3- diketonate ligands using hydrothermal conditions. Compounds 1, [UO2(C6H4N2O4)2(H2O)], and 3, [Th(C6H4N2O4)4(H2O)5]·H2O feature 1-Methyl-1H-pyrazole-3,4-dicarboxylate ligands (SVI-COOH 3,4), whereas 2, [UO2(C6H4N2O4)2(H2O)], and 4, [Th(C6H5N2O4)(OH)(H2O)6]2·2(C6H5N2O4)·3H2O feature 1-Methyl-1H-pyrazole-4,5-dicarboxylate moieties (SVI-COOH 4,5). Compounds 5, [UO2(C13H15N4O2)2(H2O)]·2H2O and 6, [UO2(C11H11N4O2)2(H2O)]·4.5H2O feature 1,3-bis(4-N1-methyl-pyrazolyl)propane-1,3-dione and 1,3-bis(4-N1,3-dimethyl-pyrazolyl)propane-1,3-dione respectively, whereas the heterometallic 7, [UO2(C11H11N4O2)2(CuCl2)(H2O)]·2H2O is formed by using 6 as a metalloligand starting material. Single crystal X-ray diffraction indicates that all coordination to either [UO2]2+ or Th(IV) metal centers is through O-donation as anticipated. Room temperature, solid-state luminescence studies indicate characteristic uranyl emissive behavior for 1 and 2, whereas those for 5 and 6 are weak and poorly resolved.

  7. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    Science.gov (United States)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  8. Optical Properties Of Polymeric Films Of Bacteriorhodopsin And Its Functional Variants: New Materials For Optical Information Processing

    Science.gov (United States)

    Hampp, Norbert; Braeuchle, Christoph R.; Oesterhelt, Dieter

    1990-01-01

    Purple membrane (PM) from Halobacterium halobium consists of a two-dimensional crystal of the photochromic retinal protein bacteriorhodopsin (BR). Purple membrane embedded in inert polymer matrices can be used as reversible recording medium in holography. The thermal and photochemical stability (at least 100.000 recording cycles at room temperature), the high quantum yield (70%), the high resolution (~ 5000 lines/mm) and the wide spectral range (400-680 nm) of these films are promising features for any possible technical application. The variability of this material was restricted to chemical modifications of the chromophoric group for a long time. new class of BR based recording media is introduced by the availability of variants of BR with a modified amino acid sequence. After generation of a mutant strain PM variants can be easily produced by the same cultivation and purification procedures as the PM of the wildtype and therefore are available in virtually unlimited amounts, too. As an example the properties of PM-films containing the variant BR-326, which differs from the wildtype by a single amino acid, are reported here. The improved diffraction efficiency (~ 2-fold) and increased sensitivity (~ 50%) of films containing BR-326 give an impression of the new possibilities for optimizing reversible recording media by biochemical and gentechnological methods as an alternative or an addition to conventional chemical methods.

  9. Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction.

    Science.gov (United States)

    Moreira, Felismina T C; Dutra, Rosa A F; Noronha, Joao P C; Sales, M Goreti F

    2011-08-15

    Myoglobin (Mb) is among the cardiac biomarkers playing a major role in urgent diagnosis of cardiovascular diseases. Its monitoring in point-of-care is therefore fundamental. Pursuing this goal, a novel biomimetic ionophore for the potentiometric transduction of Mb is presented. It was synthesized by surface molecular imprinting (SMI) with the purpose of developing highly efficient sensor layers for near-stereochemical recognition of Mb. The template (Mb) was imprinted on a silane surface that was covalently attached to silica beads by means of self-assembled monolayers. First the silica was modified with an external layer of aldehyde groups. Then, Mb was attached by reaction with its amine groups (on the external surface) and subsequent formation of imine bonds. The vacant places surrounding Mb were filled by polymerization of the silane monomers 3-aminopropyltrimethoxysilane (APTMS) and propyltrimethoxysilane (PTMS). Finally, the template was removed by imine cleavage after treatment with oxalic acid. The results materials were finely dispersed in plasticized PVC selective membranes and used as ionophores in potentiometric transduction. The best analytical features were found in HEPES buffer of pH 4. Under this condition, the limits of detection were of 1.3 × 10(-6)mol/L for a linear response after 8.0 × 10(-7) mol/L with an anionic slope of -65.9 mV/decade. The imprinting effect was tested by preparing non-imprinted (NI) particles and employing these materials as ionophores. The resulting membranes showed no ability to detect Mb. Good selectivity was observed towards creatinine, sacarose, fructose, galactose, sodium glutamate, and alanine. The analytical application was conducted successfully and showed accurate and precise results. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Neutron is a marvelous probe to see the living things as it is alive. Real time and in-situ observation on living polymerization

    International Nuclear Information System (INIS)

    Koizumi, Satoshi

    2011-01-01

    Small-angle neutron scattering was employed in order to perform a real time and in-situ observation on a polymerization-induced self-assembly process in in-vivo or in-vitro systems; precise living anionic polymerization of poly-styrene-b-polyisoprene, pre-irradiation radical polymerization of polystyrene onto a polytetrafluoroethylene film, and microbial or enzymatic polymerization of cellulose. The aim of these studies is to clarify self-organizations of macro-molecular assemblies appeared in open non-equilibrium systems, which are exposed to external energy and mass flows induced by chemical reactions. The open non-equilibrium systems are believed to be important for understanding pattern formations not only in materials processing in industry but also in living things. Small-angle scattering observed for the systems was investigated according to the methods established for condensed matter physics (fractal and computational analyses), bridging with synthetic chemistry and molecular biology. (author)

  11. Efficiency of dual-cured resin cement polymerization induced by high-intensity LED curing units through ceramic material.

    Science.gov (United States)

    Watanabe, H; Kazama, Re; Asai, T; Kanaya, F; Ishizaki, H; Fukushima, M; Okiji, T

    2015-01-01

    This study aimed to evaluate the ability of high-intensity light-emitting diode (LED) and other curing units to cure dual-cured resin cement through ceramic material. A halogen curing unit (Jetlite 3000, Morita), a second-generation LED curing unit (Demi, Kerr), and two high-intensity LED curing units (PenCure 2000, Morita; Valo, Ultradent) were tested. Feldspathic ceramic plates (VITABLOCS Mark II, A3; Vita Zahnfabrik) with thicknesses of 1.0, 2.0, and 3.0 mm were prepared. Dual-cured resin cement samples (Clearfil Esthetic Cement, Kuraray Noritake Dental) were irradiated directly or through one of the ceramic plates for different periods (5, 10, 15, or 20 seconds for the high-intensity LED units and 20, 40, 60, or 80 seconds for the others). The Knoop hardness test was used to determine the level of photopolymerization that had been induced in the resin cement. Data were analyzed by one-way analysis of variance and Dunnett's post-hoc test to identify test-control (maximum irradiation without a ceramic plate) differences for each curing unit (presin cement through a ceramic plate resulted in decreased KHN values compared with direct irradiation. When the irradiation period was extended, only the LED units were able to achieve similar KHN values to those observed under direct irradiation in the presence of plates ≥2.0-mm thick. High-intensity LED units require a shorter irradiation period than halogen and second-generation LED curing units to obtain KHN values similar to those observed during direct irradiation.

  12. On-demand photoinitiated polymerization

    Science.gov (United States)

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  13. A Review on Tribological Behaviour of Polymeric Composites and Future Reinforcements

    Directory of Open Access Journals (Sweden)

    B. Aldousiri

    2013-01-01

    Full Text Available Many different families of polymers are used in industries and engineering applications. The demands for studying the tribological behaviour of polymers and their composites are recently increased. This article briefs the most recent studies on the tribological behaviour of polymeric materials based on synthetic fibres. It reviews several factors which control the wear and frictional characteristics of such materials, that is, additives, fibres, interfacial adhesion, tribology environment, operating parameters, and composite geometry. In addition to that, new bioreinforcement (fibre is introduced associated with preliminary results. The results showed that there is high potential of replacing the conventional reinforcement with the bioones.

  14. Development of Polymeric Coatings for Antifouling Applications

    Science.gov (United States)

    Toumayan, Edward Philip

    Fouling, or the deposition of unwanted material onto a surface, is a serious problem that can impair the function of submerged structures, such as marine-going vessels and underwater equipment. Water filtration membranes are particularly susceptible to fouling due to their microstructure and high water pressure operating conditions. For this reason, there has been considerable interest in developing fouling-resistant, or "antifouling" coatings for membranes, specifically coatings that mitigate fouling propensity while maintain high water flux. Polymer coatings have garnered significant interest in antifouling literature, due to their synthetic versatility and variety, and their promising resistance to a wide range of foulants. However, antifouling research has yet to establish a consistent framework for polymer coating synthesis and fouling evaluation, making it difficult or impossible to compare previously established methodologies. To this end, this work establishes a standardized methodology for synthesizing and evaluating polymer antifouling coatings. Specifically, antifouling coatings are synthesized using a grafting-from polymerization and fouling propensity is evaluated by quartz crystal microbalance with dissipation (QCM-D). Using this framework, a number of different surface functionalization strategies are compared, including grafting-to and grafting-from polymerization. A number of different surface functionalization strategies, including grafting-to and grafting-from, were investigated and the fouling performance of these films was evaluated. Primarily, sulfobetaine methacrylate, and poly(ethylene oxide) methacrylate monomers were investigated, among others. Grafting-to, while advantageous from a characterization standpoint, was ultimately limited to low grafting densities, which did not afford a significant improvement in fouling resistance. However, the higher grafting densities achievable by grafting-from did indicate improved fouling resistance. A

  15. Rearrangement of micelle structures during polymerization

    International Nuclear Information System (INIS)

    Chatjaroenporn, K.; Baker, R.; FitzGerald, P.; Warr, G.

    2009-01-01

    Full text: Using small angle neutron scattering (SANS), we studied the shape transition of micelles of 11(methacryloyloxy)undecyltrimethylammonium bromide (MUTAB) as this tail-polymerisable cationic surfactant polymerized. Previous studies of such systems have suggested kinetic 'locking' of the micelle structure during polymerization. However, we found a transition from spheres (unpolymerised) to rods (at intermediate conversions) back to spheres (fully polymerized), see Figure 1. By comparing these results to the micelle shapes formed by the mixtures of 100% polymerized and unpolymerised MUTAB, we show that the shape transitions observed during polymerization are due to equilibrium structures that undergo rearrangement as the composition changes. In addition, atomic force microscopy (AFM) reveals that besides the monolayer of unpolymerised MUTAB, the rearranged structures of this surfmer in bulk, when polymerization proceeded, retained their shapes after adsorbing at mica/solution interface, providing potential for the manipulating of thin film structures. This understanding assists design of templating or encapsulating nanostructured materials.

  16. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates

    Science.gov (United States)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M.; Zhu, Xiang; Dai, Sheng

    2014-04-01

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energyand environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to ‘classical’ methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  17. Materiais poliméricos para tratamento de água oleosa: utilização, saturação e regeneração Oily water treatment using polymeric material: use, saturation and regeneration

    Directory of Open Access Journals (Sweden)

    Yure G. C. Queiros

    2006-01-01

    Full Text Available Resinas poliméricas vêm sendo usadas como materiais alternativos para tratamento de águas oleosas, provenientes da indústria de petróleo, as quais já tenham sido tratadas por métodos convencionais. O objetivo deste trabalho é avaliar o grau de purificação de águas oleosas sintéticas, quando tratadas em colunas de leito fixo empacotadas com resinas poliméricas constituídas por segmentos hidrofílicos e lipofílicos. Foram preparadas águas oleosas sintéticas e a fluorimetria foi utilizada para determinar o teor total de óleos e graxas (TOG nas amostras de água recém-preparada e após eluição pela coluna. Os resultados mostraram que amostras de água tratadas com a coluna apresentaram valor de TOG não superior a 1% do valor de TOG da água oleosa preparada. Um estudo cinético mostrou que a eficiência de remoção dos contaminantes depende ligeiramente da vazão de eluição do sistema, sendo que valores de desempenho ótimos foram alcançados a uma vazão de 7,0 mL/min. A passagem de um volume de água oleosa de 11.087 vezes o volume do leito da coluna não foi suficiente para atingir a completa saturação do sistema. Ensaios preliminares de regeneração e reutilização da coluna mostraram seu potencial de uso em mais de 1 ciclo de tratamento de água oleosa.Polymeric resins have been used as alternative materials for treating oily waters from the petroleum industry, which have already been treated by conventional methods. The objective of this work was to evaluate the purification degree of synthetic oily waters when treated in fixed bed columns packed with hydrophilic/lipophilic resins. Synthetic oily waters were prepared and fluorimetry was used to determine the total grease and oil content (TGOC of the fresh oily water and the oily water eluted by the column. The results showed that the treated oily water presented a TGOC close to zero ppm. The kinetic study showed that the contaminant removal efficiency slightly

  18. Electroactive Polymeric Materials for Supercapacitors

    Science.gov (United States)

    2017-06-16

    electrodes consisting of densely spaced multi-walled CNTs grown orthogonally on a silicon substrate surface; a schematic representation of these substrates...100 % compared to the unmodified CNT electrodes , the charge/discharge rate was limited and the substrates were not compatible with roll-to-roll...comparison. Also produced through a vapor deposition process, non-woven CNT textile (CNT-T) substrates feature a reasonably high surface area

  19. Microwave Processing of Polymeric Materials

    Science.gov (United States)

    1992-04-01

    1355 (1983). 112. R. P. Kambour, J. Polym. Sci.: Macromol. Rev., 7, 1 (1973). 113. R. N. Haward , The Physics of Glassy Polymers, John Wiley and Sons...Polymer Science and Engneering, Ed. J. I. Kroschwitz, John Wiley and Sons, Vol. 5, pp. 1-23, 1986. 66. S. Matsuoka, in Encyclopedia of Polymer Science...and Engineering, Ed. J. I. Kroschwitz, John Wiley and Sons, Vol. 5, pp. 23-36, 1986. 67. N. G. McCrum, B. E. Read and G. Williams, Anelastic and

  20. New Tribotester For Polymeric Materials

    DEFF Research Database (Denmark)

    Ruby, Torben; Herslund, Torben Jørgensen; Sivebæk, Ion Marius

    2006-01-01

    Polymer friction and wear play an increasing role in manufacturing of machine parts. The friction between plastic parts cannot be characterised by one single coefficient as almost all internal and external parameters have significant impact on the frictional properties. To be able to predict....... The monitored outputs from the tribotester are the coefficient of friction and the wear rate. A friction and wear test on this tribotester is a selected period of time where the polymer specimens are subjected to variations of several of the above mentioned parameters. How the test period is set up depends...... the friction between polymers a tribotester has been developed capable of handling polymer contacts and polymer-metal combinations. The apparatus can be set to measure friction and wear between test specimens described in the ASTM standard D3702 and as a pin-on-disk tester. The novelty of the tribotester...

  1. Electrokinetic devices from polymeric materials

    OpenAIRE

    Bengtsson, Katarina

    2017-01-01

    There are multiple applications for polymers: our bodies are built of them, plastic bags and boxes used for storage are composed of them, as are the shells for electronics, TVs, computers, clothes etc. Many polymers are cheap, and easy to manufacture and process which make them suitable for disposable systems. The choice of polymer to construct an object will therefore highly influence the properties of the object itself. The focus of this thesis is the application of commonly used polymers t...

  2. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  3. Fabrication and properties of poly(polyethylene glycol n-alkyl ether vinyl ether)s as polymeric phase change materials

    International Nuclear Information System (INIS)

    Pei, Dong-fang; Chen, Sai; Li, Shu-qin; Shi, Hai-feng; Li, Wei; Li, Xuan; Zhang, Xing-xiang

    2016-01-01

    A series of poly(polyethylene glycol n-alkyl ether vinyl ether)s (PC m E n VEs) with various lengths of alkyl chains and polyethylene glycol spacers as side chain (m = 16,18; n = 1,2) were synthesized via two steps. First, monomers-ethylene glycol hexadecyl ether vinyl ether (C 16 E 1 VE), ethylene glycol octadecyl ether vinyl ether (C 18 E 1 VE), diethylene glycol hexadecyl ether vinyl ether (C 16 E 2 VE) and diethylene glycol octadecyl ether vinyl ether (C 18 E 2 VE) were synthesized by a modified Williamson etherification. Then, four new types of phase change materials were successfully fabricated by a living cationic polymerization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) were employed to characterize their composition, thermal properties and crystallization behavior. The results show that, the side chains of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are in a hexagonal lattice, and the onset temperatures for melting of PC 16 E 1 VE, PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are 39.8 °C, 37.4 °C, 51.0 °C and 48.9 °C, the onset temperatures for crystallization are 36.7 °C, 35.2 °C, 47.4 °C and 46.3 °C, respectively. The enthalpy changes of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 100 J/g; on the contrary, it is 96 J/g for PC 16 E 1 VE. The enthalpy decrease is no more than 11% after 10 heating and cooling cycles. The 5 wt% mass loss temperatures of PC 18 E 1 VE, PC 16 E 2 VE and PC 18 E 2 VE are higher than 300 °C; on the contrary, it’s 283 °C for PC 16 E 1 VE. Using a weak polarity, flexible alkyl ether chain (-OCH 2 CH 2 O-) as a spacer to link the main chain and side chain is conducive to the crystallization of the alkyl side chain. These new phase change materials can be applied in heat storage, energy conservation, and environmental protection.

  4. Antifungal activity of a β-peptide in synthetic urine media: Toward materials-based approaches to reducing catheter-associated urinary tract fungal infections.

    Science.gov (United States)

    Raman, Namrata; Lee, Myung-Ryul; Rodríguez López, Angélica de L; Palecek, Sean P; Lynn, David M

    2016-10-01

    Catheter-associated urinary tract infections (CAUTI) are the most common type of hospital-acquired infection, with more than 30 million catheters placed annually in the US and a 10-30% incidence of infection. Candida albicans forms fungal biofilms on the surfaces of urinary catheters and is the leading cause of fungal urinary tract infections. As a step toward new strategies that could prevent or reduce the occurrence of C. albicans-based CAUTI, we investigated the ability of antifungal β-peptide-based mimetics of antimicrobial peptides (AMPs) to kill C. albicans and prevent biofilm formation in synthetic urine. Many α-peptide-based AMPs exhibit antifungal activities, but are unstable in high ionic strength media and are easily degraded by proteases-features that limit their use in urinary catheter applications. Here, we demonstrate that β-peptides designed to mimic the amphiphilic helical structures of AMPs retain 100% of their structural stability and exhibit antifungal and anti-biofilm activity against C. albicans in a synthetic medium that mimics the composition of urine. We demonstrate further that these agents can be loaded into and released from polymer-based multilayer coatings applied to polyurethane, polyethylene, and silicone tubing commonly used as urinary catheters. Our results reveal catheters coated with β-peptide-loaded multilayers to kill planktonic fungal cells for up to 21days of intermittent challenges with C. albicans and prevent biofilm formation on catheter walls for at least 48h. These new materials and approaches could lead to advances that reduce the occurrence of fungal CAUTI. Catheter-associated urinary tract infections are the most common type of hospital-acquired infection. The human pathogen Candida albicans is the leading cause of fungal urinary tract infections, and forms difficult to remove 'biofilms' on the surfaces of urinary catheters. We investigated synthetic β-peptide mimics of natural antimicrobial peptides as an

  5. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  6. Cytocompatibility and biologic characteristics of synthetic scaffold materials of rabbit acellular vascular matrix combining with human-like collagen I.

    Science.gov (United States)

    Liu, Xuqian; Wang, Jie; Dong, Fusheng; Song, Peng; Tian, Songbo; Li, Hexiang; Hou, Yali

    2017-10-01

    Scaffold material provides a three-dimensional growing environment for seed cells in the research field of tissue engineering. In the present study, rabbit arterial blood vessel cells were chemically removed with trypsin and Triton X-100 to prepare rabbit acellular vascular matrix scaffold material. Observation by He&Masson staining revealed that no cellular components or nuclei existed in the vascular intima and media after decellularization. Human-like collagen I was combined with acellular vascular matrix by freeze-drying to prepare an acellular vascular matrix-0.25% human-like collagen I scaffold to compensate for the extracellular matrix loss during the decellularization process. We next performed a series of experiments to test the water absorbing quality, biomechanics, pressure resistance, cytotoxicity, and ultra-micro structure of the acellular vascular matrix composite material and natural rabbit artery and found that the acellular vascular matrix-0.25% human-like collagen I material behaved similarly to natural rabbit artery. In conclusion, the acellular vascular matrix-0.25% human-like collagen I composite material provides a new approach and lays the foundation for novel scaffold material research into tissue engineering of blood vessels.

  7. Thermal polymerization of Moringa oleifera oil

    International Nuclear Information System (INIS)

    Melo, Tania M.S.; Novack, Katia M.; Leandro, Cristiano

    2011-01-01

    It is increasingly clear both for society and the scientific community, that is necessary to find alternatives to reduce the use of polymeric materials because of their damage to the environment. One way to minimize the environmental problems related to the use of polymers is try to make them quickly degradable. In this study it was obtained a material with polymeric appearance derived from heating of the vegetable oil extracted from seeds of Moringa oleifera. The resulting product is an interesting alternative to obtain polymeric materials that may have biodegradable characteristics, coming from a renewable source and low cost. Moringa oil can be used since it has a high content of unsaturated fatty acids, and its main constituent oleic acid. All samples were characterized by FTIR, NMR and GPC. It was obtained a polymeric material, malleable, high viscosity, with some elasticity, low crystallinity and no unpleasant odor. (author)

  8. Physicochemically functional ultrathin films by interfacial polymerization

    Science.gov (United States)

    Lonsdale, Harold K.; Babcock, Walter C.; Friensen, Dwayne T.; Smith, Kelly L.; Johnson, Bruce M.; Wamser, Carl C.

    1990-01-01

    Interfacially-polymerized ultrathin films containing physicochemically functional groups are disclosed, both with and without supports. Various applications are disclsoed, including membrane electrodes, selective membranes and sorbents, biocompatible materials, targeted drug delivery, and narrow band optical absorbers.

  9. Bleeding evaluation of the stationary phase from a few novel macroporous silica-substrate polymeric materials used for radionuclide partitioning from HLLW in MAREC process

    International Nuclear Information System (INIS)

    Zhang, A.; Wei, Y.; Kumagai, M.

    2005-01-01

    To separate minor actinides from HLLW by extraction chromatography, a few novel silica-based di(2-ethylhexyl)phosphoric acid (HDEHP), 4,4',(5')-di(tert-butylcyclohexano)-18-crown-6 (DtBuCH18C6), octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO), and N,N,N',N'-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) polymeric adsorption materials (HDEHP/SiO 2 -P, DtBuCH18C6/SiO 2 -P, CMPO/SiO 2 -P, and TODGA/SiO 2 -P) were synthesized by impregnating HDEHP, DtBuCH18C6, CMPO, and TODGA into the pores of porous SiO 2 -P particles, which were the new kind of inorganic/organic composites consisted of macroporous SiO 2 and copolymer. The bleeding behavior of these composites was investigated by examining the effect of contact time and HNO 3 concentration. It was found that in the tested HNO 3 concentration range, a noticeable quantity of DtBuCH18C6, at least 600 ppm, leaked out from DtBuCH18C6/SiO 2 -P because of the protonation of DtBuCH18C6 with hydrogen ion, while the others were lower and basically equivalent to the solubility of HDEHP, CMPO, or TODGA in corresponding acidities solutions. Based on the batch experiment, the bleeding of CMPO/SiO 2 -P and TODGA/SiO 2 -P, the main adsorbents used in MAREC process for HLLW partitioning, was evaluated by column operation in 0.01M HNO 3 and 3M HNO 3 . The quantity of CMPO leaked was ∼48 ppm in 0.01M HNO 3 and ∼37 ppm in 3.0M HNO 3 . The bleeding of TODGA decreased from 23.2 ppm to 7.27 ppm at the initial stage and then basically kept constant. An actual bleeding of TODGA was evaluated by the separation of Sr(II) from a 2.0M HNO 3 solution containing 5.0 x 10 -3 M of 6 typically simulated elements. (author)

  10. [Development and study of spring bread wheat variety Pamyati Maystrenko with introgression of genetic material from synthetic hexaploid Triticum timopheevii zhuk. x Aegilops tauschii Coss].

    Science.gov (United States)

    Laikova, L I; Belan, I A; Badaeva, E D; Posseeva, L P; Shepelev, S S; Shumny, V K; Pershina, L A

    2013-01-01

    Synthetic hexaploids are bridges for transferring new genes that determine resistance to stress factors from wild-type species to bread wheat. In the present work, the method of developing the spring bread wheat variety Pamyati Maystrenko and the results of its study are described. This variety was obtained using one of the immune lines produced earlier via the hybridization of the spring bread wheat variety Saratovskaya 29 with the synthetic hexaploid T. timopheevii Zhuk. x Ae. tauschii Coss. The C-staining of chromosomes in the Pamyati Maystrenko variety revealed substitutions of 2B and 6B chromosomes by the homeologous chromosomes of the G genome of T. timopheevii and the substitution of chromosome 1D by an orthologous chromosome ofAe. tauschii. It was found that this variety is characterized by resistance to leaf and stem rust, powdery mildew, and loose smut as well as by high grain and bread-making qualities. The role of the alien genetic material introgressed into the bread-wheat genome in the expression of adaptive and economically valuable traits in the Pamyati Maystrenko variety is discussed.

  11. Development and characterization of a synthetic PVC/DEHP myocardial tissue analogue material for CT imaging applications.

    Science.gov (United States)

    Ramadan, Sherif; Paul, Narinder; Naguib, Hani E

    2018-04-01

    A simple myocardial analogue material has great potential to help researchers in the creation of medical CT Imaging phantoms. This work aims to outline a Bis(2-ethylhexyl) phthalate (DEHP) plasticizer/PVC material to achieve this. DEHP-PVC was manufactured in three ratios, 75, 80, and 85% DEHP by heating at 110 °C for 10 min to promote DEHP-PVC binding followed by heating at 150 °C to melt the blend. The material was then tested utilizing FTIR, tensile testing, dynamic mechanical analysis and imaged with computed tomography. The FTIR testing finds the presence of C-CL and carbonyl bonds that demonstrate the binding required in this plasticized material. The tensile testing finds a modulus of 180-20 kPa that increases with the proportion of plasticizer. The dynamic mechanical analysis finds a linear increase in viscoelastic properties with a storage/loss modulus of 6/.5-120/18 kPa. Finally, the CT number of the material increases with higher PVC content from 55 to 144HU. The 80% DEHP-PVC ratio meets the mechanical and CT properties necessary to function as a myocardial tissue analogue.

  12. Sixtieth Anniversary of Ziegler-Natta Catalysts and Stereospecific Polymerization

    Directory of Open Access Journals (Sweden)

    Janović Z.

    2015-07-01

    Full Text Available This review article highlights the history of the discoveries of organometallic catalysts and stereospecific polymerization of α-olefins, dienes and a number of vinyl monomers by Karl Ziegler and Giulio Natta sixty years ago, their developments and recent progress. As one of the most important achievements in the field of catalysis, macromolecular science and polymer materials, their inventors were awarded the Nobel Prize in Chemistry in 1963 “for their discoveries in the field of chemistry and technology of high polymers”. These discoveries have stimulated an intensive, both basic and applied research all over the world, up to the present times, leading to great development of the polymer industry. The important biographical data and scientific advancements of K. Ziegler and G. Natta are presented as well. Karl Ziegler, a German scientist, Director of Max Planck Institute for Coal Research in Mülheim, besides many scientific achievements, in 1953 discovered a new process for the polymerization of ethylene into linear polyethylene under mild conditions by using titanium chloride and alkyl aluminium catalytic system that was superior to all existing polymerization. Giulio Natta, an Italian scientist, Director of the Department of Industrial Chemistry at Polytechnic, University of Milan, besides many achievements in petrochemical processes, in 1954 obtained for the first time isotactic polypropylene and Montecatini Co. started its production already in 1958. He conducted pioneering studies on the chain microstructure of synthetic organic polymers and postulated the mechanisms of stereospecific polymerizations. Since the discovery of the Zeigler-Natta catalyst, stereospecific polymerization and processes, significant developments have occurred. The breakthrough in polymerization processes such as fluid bed, liquid phase loop reactor and reactor granule technology led to significant development and growth of polyolefin production. In the 1980s

  13. Research and development project in fiscal 1989 for fundamental technologies for next generation industries. Achievement report on research and development on electrically conductive polymeric materials; 1989 nendo dodensei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    With an objective to develop electric and electronic materials characterized by light weight, high corrosion resistance, and easy-to-process performance, and by having functions different from electricity conduction mechanism of metals, researches have been performed on fundamental technologies for electrically conductive polymeric materials. This paper summarizes the achievements in fiscal 1989. In new hydrocarbon conjugate polymers, researches were performed for the purpose of fabricating the conjugate system polymer and dopant complex system conductive thin films, and polyacene system polymer thin films. In developing the vehicular conjugate conductive materials, discussions were given on enhancing the molecular weight dependence and the conductivity by cross-linking the conjugate system, with regard to hydrocarbon system polymers that go through vehicular polymeric intermediates. In the research of vehicular graphite materials, it was discovered that mono-axial mono-plane PPV films and PTV films are graphitized. In developing the hetero aromatic system polymers, researches were advanced on the correlation among the gegen ions, high-order structures, and electric conductivity, mainly on polypyrrole. (NEDO)

  14. Histological evaluation of tissue reactions to newly synthetized calcium silicate- and hydroxyapatite-based bioactive materials: in vivo study

    Directory of Open Access Journals (Sweden)

    Opačić-Galić Vanja

    2017-01-01

    Full Text Available Introduction/Objective. Development of materials which could be used as biological bone substitutes is one of the most valuable and active fields of biomaterial research. The goal of the study was to research the reaction of tissue on calcium silicate- (CS and hydroxyapatitebased (CS-HA newly synthesized nanomaterials, after being implanted into the subcutaneous tissue of a rats and direct pulp capping of rabbit teeth. Methods. The tested materials were implanted in 40 Wistar male rats, sacrificed after seven, 15, 30, and 60 days. The direct pulp capping was performed on the teeth of rabbits. Cavities were prepared on the vestibular surface of the incisors. The animals were sacrificed after 10 and 15 days. The control material was mineral trioxide aggregate (MTA. Histological analysis covered the tracking of inflammatory reaction cellular components, presence of gigantic cells, and necrosis of the tissue. Results. Seven days after the implantation, the strongest inflammatory response was given by the MTA (3.3 Ѓ} 0.48, while CS and CS-HA scored 3 ± 0.71. After 60 days, the rate of inflammatory reactions dropped, which was the least visible with CS-HA (0.2 ± 0.45. The least visible inflammatory reaction of the rabbits’ pulp tissue was spotted with the CS (1.83 ± 0.75, than with the MTA and CS-HA (2.67 ± 1.53, 3 ± 0.63. Conclusion. The newly synthesized materials caused a slight reaction of the subcutaneous tissue. CS-HA showed the best tissue tolerance. Nanostructural biomaterials caused a slight to moderate inflammatory reaction of the rabbits’ pulp tissue only in the immediate vicinity of the implanted material.

  15. Synthetic oils

    Science.gov (United States)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  16. Radiation chemical technology for production of polymeric hydrogels for medical purposes

    International Nuclear Information System (INIS)

    Mun, G.A.; Nurkeeva, Z.S.; Akhmetkalieva, G.; Sergaziev, A.D.; Petukhov, V.K.; Lyssukhin, S.N.; Chakrov, P.V.

    2003-01-01

    Full text: Polymeric hydrogels are water-swelling cross-linked hydrophilic polymers with ability to store reversibly great amount of water (more than 1000 g of water per 1 g of dry polymer). At present they found a lot of different applications in highly developed countries in science and industry. The set of unique physicochemical and biomedical properties (regulated sorption ability in respect to water and biological liquids, biocompatibility, soft tissue state, permeability in respect to small and big molecules, non-toxicity, etc.) allows their application in medicine. According to the clinical data there are no materials that can compete with hydrogels in development of endo-prostheses of soft-tissues in surgery, contact lenses for eyesight correction, hemo-compatible materials, novel for treatment of wounds and burns, targeted drug delivery systems. Polymeric hydrogels today practically substitute the traditional hydrophobic bases (Vaseline, lanolin) in technology of drug forms for development of ointments and dressings, containing natural and synthetic physiologically active substances. The advantages of hydrogels in comparison with hydrophobic analogues are obvious due to the drainage effect, homogenous distribution of drugs, better contact with wound, painless removing by water washing. The polymeric hydrogels are not produced in Kazakhstan in spite of the big source of raw materials. The aim of the present work is the development of radiation-chemical technology and development of polymeric biomedical hydrogels production based on raw materials of Kazakhstan. The novel types of polymeric hydrogel materials are developed by the authors of the report based on vinyl ethers of glycols, which produced in 'Alash Ltd.' (Temirtau). The great fundamental information content has been obtained about these monomers and polymers including direct quantitative data of their structure formation mechanism and physicochemical properties. These data served as a basis for

  17. Synthetic bone substitute material comparable with xenogeneic material for bone tissue regeneration in oral cancer patients: First and preliminary histological, histomorphometrical and clinical results.

    Science.gov (United States)

    Ghanaati, Shahram; Barbeck, Mike; Lorenz, Jonas; Stuebinger, Stefan; Seitz, Oliver; Landes, Constantin; Kovács, Adorján F; Kirkpatrick, Charles J; Sader, Robert A

    2013-07-01

    The present study was first to evaluate the material-specific cellular tissue response of patients with head and neck cancer to a nanocrystalline hydroxyapatite bone substitute NanoBone (NB) in comparison with a deproteinized bovine bone matrix Bio-Oss (BO) after implantation into the sinus cavity. Eight patients with tumor resection for oral cancer and severely resorbed maxillary bone received materials according to a split mouth design for 6 months. Bone cores were harvested prior to implantation and analyzed histologically and histomorphometrically. Implant survival was followed-up to 2 years after placement. Histologically, NB underwent a higher vascularization and induced significantly more tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated giant cells when compared with BO, which induced mainly mononuclear cells. No significant difference was observed in the extent of new bone formation between both groups. The clinical follow-up showed undisturbed healing of all implants in the BO-group, whereas the loss of one implant was observed in the NB-group. Within its limits, the present study showed for the first time that both material classes evaluated, despite their induction of different cellular tissue reactions, may be useful as augmentation materials for dental and maxillofacial surgical applications, particularly in patients who previously had oral cancer.

  18. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    Science.gov (United States)

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  19. Evaluation of the physicochemical properties of structured materials: metallic, polymeric and ceramic, for the treatment of sour gases; Evaluacion de las propiedades fisicoquimicas de materiales estructurados: metalico, polimerico y ceramico, para el tratamiento de gases acidos

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, A.; Chavez, R. H. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Olea, O.; Solis, D., E-mail: rosahilda.chavez@inin.gob.mx [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Cerro de Coatepec s/n, Ciudad Universitaria, 50100 Toluca, Estado de Mexico (Mexico)

    2013-07-01

    in this work the physicochemical properties of three structured materials: metallic, polymeric and ceramic, from Sulzer Brothers Limited brand, are studied in order to removal sour gases, by absorption process, in aqueous solution of Monoethanolamine (Mea), at 30% weight. Mechanical properties, chemical composition, morphology and corrosion resistance were determined, using different characterization techniques, such as: 1) mechanically, according to standard procedures Astm E-384-1990, 2) chemically, by the corrosion resistance in the presence of an electrochemical cell, in aqueous solution of H{sub 2}SO{sub 4}, 1 N by Astm G-5-1999, 3) morphologically by scanning electron microscopy technique, and 4) efficiency of separation, by the gas chromatography technique in order to determine the chemical absorption of CO{sub 2} by Mea. The ceramic material was the hardest with 700 Hk value and tensile strength of 90 MPa, likewise showed resistance to corrosion of 10.28 m py, separation efficiency of 74% CO{sub 2}, at 10 minutes. The metallic material had a hardness of 190 Hk and it was the most resistant of tension, with 831 MPa, and corrosion resistance of 780.4 x 10{sup -6} m py, likewise promoted CO{sub 2} separation efficiency of 90% during the evaluation. The polymeric material presented hardness of 20 Hk and 35 MPa and it was not suffered surface change with electrochemical attack, with 282.4 x 10{sup -6} m py, and separation efficiency of 88%. Therefore the polymer was the most ductile, with smooth surface and greater resistance with H{sub 2}SO{sub 4}. The metal material was more resistant to plastic deformation and more corrugated surface and the second resistance in the presence of acid medium in aqueous solutions. For all the above, the metallic material is recommended by its greater separation in the reduction of acid gases and the polymer due to its greater chemical resistance. (Author)

  20. PREFACE: IUMRS-ICA 2008 Symposium, Sessions 'X. Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' and 'Y. Frontier of Polymeric Nano-Soft-Materials - Precision Polymer Synthesis, Self-assembling and Their Functionalization'

    Science.gov (United States)

    Takahara, Atsushi; Kawahara, Seiichi

    2009-09-01

    Tashiro (Toyota Technological Institute) Professor Kazuo Sakurai(Kitakyushu University) Professor Keiji Tanaka (Kyushu University) Dr Sono Sasaki (JASRI/Spring-8) Professor Naoya Torikai (KENS) Professor Moonhor Ree (POSTECH) Professor Kookheon Char (Seoul National University) Professor Charles C Han (CAS) Professor Atsushi Takahara(Kyushu University) Frontier of Polymeric Nano-Soft-Materials, Precision Polymer Synthesis, Self-assembling and Their Functionalization (Symposium Y of IUMRS-ICA2008) Seiichi Kawahara, Rong-Ming Ho, Hiroshi Jinnai, Masami Kamigaito, Takashi Miyata, Hiroshi Morita, Hideyuki Otsuka, Daewon Sohn, Keiji Tanaka It is our great pleasure and honor to publish peer-reviewed papers, presented in Symposium Y 'Frontier of Polymeric Nano-Soft-Materials Precision Polymer Synthesis, Self-assembling and Their Functionalization' at the International Union of Materials Research Societies International Conference in Asia 2008 (IUMRS-ICA2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. 'Polymeric nano-soft-materials' are novel outcomes based on a recent innovative evolution in polymer science, i.e. precision polymer synthesis, self-assembling and functionalization of multi-component systems. The materials are expected to exhibit specific functions and unique properties due to their hierarchic morphologies brought either by naturally-generated ordering or by artificial manipulation of the systems, e.g., crystallization and phase-separation. The emerging precision synthesis has brought out new types of polymers with well-controlled primary structures. Furthermore, the surface and interface of the material are recognized to play an important role in the outstanding mechanical, electrical and optical properties, which are required for medical and engineering applications. In order to understand structure-property relationships in the nano-soft-materials, it is indispensable to develop novel characterization techniques. Symposium Y

  1. Synthetic environments

    Science.gov (United States)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  2. Synthetic Metabolic Pathways

    DEFF Research Database (Denmark)

    topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Synthetic Metabolic Pathways: Methods and Protocols aims to ensure successful results in the further study...

  3. Synthetic antiferromagnetic spintronics

    Science.gov (United States)

    Duine, R. A.; Lee, Kyung-Jin; Parkin, Stuart S. P.; Stiles, M. D.

    2018-03-01

    Spintronic and nanomagnetic devices often derive their functionality from layers of different materials and the interfaces between them. We discuss the opportunities that arise from synthetic antiferromagnets consisting of two or more ferromagnetic layers that are separated by metallic spacers or tunnel barriers and have antiparallel magnetizations.

  4. Polymerization catalyst, production and use

    International Nuclear Information System (INIS)

    Best, S.A.

    1987-01-01

    A process is described for polymerization of ethylene and alpha-olefins having from 1 to 20 carbon atoms or mixtures of ethylene, alpha-olefins and diolefins. The process comprises polymerizing one or more olefins in the presence of the catalyst system comprising (a) an organoaluminum cocatalyst, and (b) a vanadium containing a catalyst component obtained by treating an inert solid support material in an inert solvent with (i) an organoaluminum compound represented by the formula R/sub m/AIX/sub 3-m/, wherein R represents an alkyl group, cycloalkyl group or aryl group having from 1 to 18 carbon atoms, X represents halogen atoms, and 1≤m≤3, (ii) an acyl halide, and (iii) a vanadium compound. Another process is identified wherein the inert solid support material is an inorganic oxide or mixtures of inorganic oxides. Also a process wherein the inorganic oxide is silica is described

  5. Polymerization catalyst, production and use

    International Nuclear Information System (INIS)

    Best, S.A.

    1987-01-01

    A process is described for the polymerization of ethylene and alpha-olefins having from 1 to 2 carbon atoms of mixtures of ethylene, alpha-olefins or diolefins. The process comprises polymerizing one or more olefins in the presence of the catalyst system comprising (A) an organo aluminum cocatalyst, and (B) a vanadium-containing catalyst component obtained by sequentially treating an inert solid support material in an inert solvent with (i) a dihydrocarbyl magnesium compound, (ii) optionally an oxygen-containing compound which is an alcohol, ketone or aldehyde, (iii) a vanadium compound, and (iv) a Group IIIa metal halide. The process as above is described wherein the inert solid support material is an inorganic oxide or mixtures of inorganic oxides

  6. Electrochemical characterization of corrosion in materials of grounding systems, simulating conditions of synthetic soils with characteristics of local soils

    Science.gov (United States)

    Salas, Y.; Guerrero, L.; Vera-Monroy, S. P.; Blanco, J.; Jimenez, C.

    2017-12-01

    The integrity of structures buried in earthing becomes relevant when analysing maintenance and replacement costs of these systems, as the deterioration is mainly due to two factors, namely: the failures caused in the electrical systems, which are due to the system. Failure in earthing due to corrosion at the interface cause an alteration in the structure of the component material and generates an undesirable resistivity that cause malfunction in this type of protection systems. Two local soils were chosen that were categorized as sandy loam and clay loam type, whose chemical characteristics were simulated by means of an electrolyte corresponding to the amount of ions present determined by a soil characterization based on the CICE (effective cation exchange coefficient), which allows us to deduce the percentage of chloride and sulphate ions present for the different levels established in the experimental matrix. The interaction of these soils with grounding electrodes is a complex problem involving many factors to consider. In this study, the rates and corrosion currents of the different soils on two types of electrodes, one copper and the other AISI 304 stainless steel, were approximated by electrochemical techniques such as potentiodynamic curves and electrochemical impedance spectra. Considerably higher speeds were determined for copper-type electrodes when compared to those based on steel. However, from the Nyquist diagrams, it was noted that copper electrodes have better electrical performance than steel ones. The soil with the highest ionic activity turned out to be the sandy loam. The clay loam soil presents a tendency to water retention and this may be the reason for the different behaviour with respect to ionic mobility. The diffusion control in the steel seems to alter the ionic mobility because its corrosion rates proved to be very similar regardless of the type of soil chemistry. In general, corrosion rates fell since tenths of a millimetre every year to

  7. Crystallisation of hydroxyapatite in phosphorylated poly(vinyl alcohol) as a synthetic route to tough mechanical hybrid materials

    International Nuclear Information System (INIS)

    Kusakabe, Akane; Hirota, Ken; Mizutani, Tadashi

    2017-01-01

    Partially phosphorylated poly(vinyl alcohol) was prepared by treating poly(vinyl alcohol) with 100% phosphoric acid, and 5, 10 and 20% of the hydroxyl groups were converted to phosphoric acid ester. Addition of Ca 2+ to an aqueous solution of phosphorylated poly(vinyl alcohol) gave a transparent gel. Five cycles of alternate soaking of the gel in aqueous CaCl 2 and aqueous (NH 4 ) 2 HPO 4 were carried out to crystallise hydroxyapatite (HAP) in the phosphorylated poly(vinyl alcohol) matrix. The X-ray diffraction peaks of HAP formed in 5% phosphorylated PVA were sharp, while those of HAP formed in 20% phosphorylated PVA were broad. The contents of inorganic phase in the hybrid powder were increased from 58 to 76 wt% as the fraction of phosphate groups in the gel was decreased from 20% to 5%. The hybrid powder was first subjected to uniaxial pressing, followed by cold isostatic pressing (CIP) and warm isostatic pressing (WIP) at 120 °C at pressures of 300–980 MPa, to obtain the specimens for three-point bending test. These hybrid specimens showed bending strengths of 15–53 MPa. The hybrid compacts prepared from 10% phosphorylated poly(vinyl alcohol) showed the smallest Young's modulus, the largest displacement at break, and the largest fracture energy, showing that it has the highest toughness among the hybrid materials prepared from poly(vinyl alcohol) with varying degrees of phosphorylation. - Graphical abstract: Densification of hydroxyapatite crystallised in 10% phosphorylated poly(vinyl alcohol) gave the toughest compact. - Highlights: • Hydroxyapatite was crystallised in phosphorylated poly(vinyl alcohol) gels. • Crystallite size of hydroxyapatite decreased as phosphate density was increased. • The hybrid specimens prepared in 10% phosphorylated gel was the toughest. • Phosphate density in organic matrix regulated the mechanical properties of the hybrid.

  8. Stereospecific olefin polymerization with chiral metallocene catalysts

    OpenAIRE

    Brintzinger, Hans-Herbert; Fischer, David; Mülhaupt, Rolf; Rieger, Bernhard; Waymouth, Robert M.

    1995-01-01

    Current studies on novel, metallocenebased catalysts for the polymerization of α-olefins have far-reaching implications for the development of new materials as well as for the understanding of basic reaction mechanisms responsible for the growth of a polymer chain at a catalyst center and the control of its stereoregularity. In contrast to heterogeneous Ziegler–Natta catalysts, polymerization by a homogeneous, metallocene-based catalyst occurs principally at a single type of metal center with...

  9. Fusion Bead Procedure for Nuclear Forensics Employing Synthetic Enstatite to Dissolve Uraniferous and Other Challenging Materials Prior to Laser Ablation Inductively Coupled Plasma Mass Spectrometry.

    Science.gov (United States)

    Reading, David G; Croudace, Ian W; Warwick, Phillip E

    2017-06-06

    There is an increasing demand for rapid and effective analytical tools to support nuclear forensic investigations of seized or suspect materials. Some methods are simply adapted from other scientific disciplines and can effectively be used to rapidly prepare complex materials for subsequent analysis. A novel sample fusion method is developed, tested, and validated to produce homogeneous, flux-free glass beads of geochemical reference materials (GRMs), uranium ores, and uranium ore concentrates (UOC) prior to the analysis of 14 rare earth elements (REE) via laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The novelty of the procedure is the production of glass beads using 9 parts high purity synthetic enstatite (MgSiO 3 ) as the glass former with 1 part of sample (sample mass ∼1.5 mg). The beads are rapidly prepared (∼10 min overall time) by fusing the blended mixture on an iridium strip resistance heater in an argon-purged chamber. Many elements can be measured in the glass bead, but the rare earth group in particular is a valuable series in nuclear forensic studies and is well-determined using LA-ICP-MS. The REE data obtained from the GRMs, presented as chondrite normalized patterns, are in very good agreement with consensus patterns. The UOCs have comparable patterns to solution ICP-MS methods and published data. The attractions of the current development are its conservation of sample, speed of preparation, and suitability for microbeam analysis, all of which are favorable for nuclear forensics practitioners and geochemists requiring REE patterns from scarce or valuable samples.

  10. Cooperative polymerization of α-helices induced by macromolecular architecture

    Science.gov (United States)

    Baumgartner, Ryan; Fu, Hailin; Song, Ziyuan; Lin, Yao; Cheng, Jianjun

    2017-07-01

    Catalysis observed in enzymatic processes and protein polymerizations often relies on the use of supramolecular interactions and the organization of functional elements in order to gain control over the spatial and temporal elements of fundamental cellular processes. Harnessing these cooperative interactions to catalyse reactions in synthetic systems, however, remains challenging due to the difficulty in creating structurally controlled macromolecules. Here, we report a polypeptide-based macromolecule with spatially organized α-helices that can catalyse its own formation. The system consists of a linear polymeric scaffold containing a high density of initiating groups from which polypeptides are grown, forming a brush polymer. The folding of polypeptide side chains into α-helices dramatically enhances the polymerization rate due to cooperative interactions of macrodipoles between neighbouring α-helices. The parameters that affect the rate are elucidated by a two-stage kinetic model using principles from nucleation-controlled protein polymerizations; the key difference being the irreversible nature of this polymerization.

  11. Polymeric drugs: Advances in the development of pharmacologically active polymers

    Science.gov (United States)

    Li, Jing; Yu, Fei; Chen, Yi; Oupický, David

    2015-01-01

    Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents. PMID:26410809

  12. Structural and thermoelectric characterization of Ba substituted LaCoO3 perovskite-type materials obtained by polymerized gel combustion method

    International Nuclear Information System (INIS)

    Kun, Robert; Populoh, Sascha; Karvonen, Lassi; Gumbert, Julia; Weidenkaff, Anke; Busse, Matthias

    2013-01-01

    Highlights: •Ba-substituted LaCoO 3 perovskites prepared by polymerized gel combustion method. •Φ affects the agglomeration grade, compacting, sintering behavior of the perovskites. •ZT-values reach maximum at 400–500 K temperature range. -- Abstract: Structural and thermoelectric transport properties of Ba 2+ containing lanthanum cobaltate (La 1−x Ba x CoO 3 ; x = 0.01, 0.03, 0.05) prepared by soft chemistry method were investigated and discussed. The influence of the fuel-to-oxidizer ratio (Φ) of the redox mixture on the powder microstructure was studied. The agglomeration grade of the nanocrystalline perovskite phases can be influenced due to initial composition of the redox mixture. Since the different burning characteristic of the polymerized gels results in different xerogel structures, the as-calcined single phase perovskite samples show different compacting and sintering behavior. The thermoelectric transport properties were measured in the 300–1300 K temperature range. It was found that the electrical and thermal conductivity of the sintered pellets show strong dependence on microstructure. In addition increasing Ba 2+ content in the samples results in lower thermal conductivity values (κ < 1.5 W/K m). The calculated dimensionless figure of merit (ZT) showed maximum value in the 400–500 K range

  13. Structural and thermoelectric characterization of Ba substituted LaCoO{sub 3} perovskite-type materials obtained by polymerized gel combustion method

    Energy Technology Data Exchange (ETDEWEB)

    Kun, Robert, E-mail: robert.kun@uni-bremen.de [University of Bremen, FB 4, Near Net Shape Technologies, Wiener Str. 12, 28359 Bremen (Germany); Populoh, Sascha; Karvonen, Lassi [Solid State Chemistry and Catalysis, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Gumbert, Julia [University of Bremen, FB 4, Near Net Shape Technologies, Wiener Str. 12, 28359 Bremen (Germany); Weidenkaff, Anke [Solid State Chemistry and Catalysis, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland); Busse, Matthias [University of Bremen, FB 4, Near Net Shape Technologies, Wiener Str. 12, 28359 Bremen (Germany); Fraunhofer Institute for Manufacturing Technology and Applied Materials Research, IFAM, Wiener Str. 12, 28359 Bremen (Germany)

    2013-12-05

    Highlights: •Ba-substituted LaCoO{sub 3} perovskites prepared by polymerized gel combustion method. •Φ affects the agglomeration grade, compacting, sintering behavior of the perovskites. •ZT-values reach maximum at 400–500 K temperature range. -- Abstract: Structural and thermoelectric transport properties of Ba{sup 2+} containing lanthanum cobaltate (La{sub 1−x}Ba{sub x}CoO{sub 3}; x = 0.01, 0.03, 0.05) prepared by soft chemistry method were investigated and discussed. The influence of the fuel-to-oxidizer ratio (Φ) of the redox mixture on the powder microstructure was studied. The agglomeration grade of the nanocrystalline perovskite phases can be influenced due to initial composition of the redox mixture. Since the different burning characteristic of the polymerized gels results in different xerogel structures, the as-calcined single phase perovskite samples show different compacting and sintering behavior. The thermoelectric transport properties were measured in the 300–1300 K temperature range. It was found that the electrical and thermal conductivity of the sintered pellets show strong dependence on microstructure. In addition increasing Ba{sup 2+} content in the samples results in lower thermal conductivity values (κ < 1.5 W/K m). The calculated dimensionless figure of merit (ZT) showed maximum value in the 400–500 K range.

  14. Synthetic Rutile

    International Nuclear Information System (INIS)

    Burastero, J.

    1975-01-01

    This work is about the laboratory scale investigation of the conditions in the rutile synthetic production from one me nita in Aguas Dulces reservoir. The iron mineral is chlorinated and volatilized selectively leaving a residue enriched in titanium dioxide which can be used as a substitute of rutile mineral

  15. Synthesis of polymeric materials and their use as wax deposition inhibitors of crude oil and its medium distillates; Sintese de materiais polimericos para serem utilizados como inibidores de deposicao de parafinas em petroleo e em seus destilados medios

    Energy Technology Data Exchange (ETDEWEB)

    Mansur, Claudia R.E.; Passos, Leonardo B.; Lucas, Elizabete F. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mails: celias@ima.ufrj.br, elucas@ima.ufrj.br; Gonzalez, Gaspar; Alvarez, Dellyo [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mails: gaspar@cenpes.petrobras.com.br; dellyo@cenpes.petrobras.com.br

    2003-07-01

    This work aims at the development of polymeric materials to be employed as organic deposition inhibitors - ODI's for petroleum and middle distillate of petroleum, such as lube oils. The additives were obtained by chemical modifications involving esterification reactions of commercial ethylene-co-vinyl acetate (EVA) copolymers and poly(vinyl alcohol) (PVA) with long chain organic acid chlorides. The materials efficiency was tested by pour point measurements of the model system containing commercial paraffin. Data show that chemically modified copolymers had a reasonable performance as pour point reducing agents of the model system used. Moreover, the products were also tested as lube oil additives, and the results showed that the chemically modified copolymers presented a more pronounced influence on the paraffin crystallization process than the non-modified EVA commercial sample. (author)

  16. Polymeric Membrane Reactors

    OpenAIRE

    José M. Sousa; Luís M. Madeira; João C. Santos; Adélio Mendes

    2008-01-01

    The aim of this chapter is the study of membrane reactors with polymeric membranes, particularly catalytic polymeric membranes. After an introduction where the main advantages and disadvantages of the use of polymeric membranes are summarised, a review of the main areas where they have been applied, integrated in chemical reactors, is presented. This excludes the field of bio-membranes processes, which is analysed in a specific chapter of this book. Particular attention is then given to model...

  17. Polymerization Using Phosphazene Bases

    KAUST Repository

    Zhao, Junpeng

    2015-09-01

    In the recent rise of metal-free polymerization techniques, organic phosphazene superbases have shown their remarkable strength as promoter/catalyst for the anionic polymerization of various types of monomers. Generally, the complexation of phosphazene base with the counterion (proton or lithium cation) significantly improves the nucleophilicity of the initiator/chain end resulting in highly enhanced polymerization rates, as compared with conventional metalbased initiating systems. In this chapter, the general features of phosphazenepromoted/catalyzed polymerizations and the applications in macromolecular engineering (synthesis of functionalized polymers, block copolymers, and macromolecular architectures) are discussed with challenges and perspectives being pointed out.

  18. New discrete and polymeric supramolecular architectures derived from dinuclear Co(II), Ni(II) and Cu(II) complexes of aryl-linked bis-beta-diketonato ligands and nitrogen bases: synthetic, structural and high pressure studies.

    Science.gov (United States)

    Clegg, Jack K; Hayter, Michael J; Jolliffe, Katrina A; Lindoy, Leonard F; McMurtrie, John C; Meehan, George V; Neville, Suzanne M; Parsons, Simon; Tasker, Peter A; Turner, Peter; White, Fraser J

    2010-03-21

    New examples of nitrogen base adducts of dinuclear Co(II), Ni(II) and Cu(II) complexes of the doubly deprotonated forms of 1,3-aryl linked bis-beta-diketones of type [RC(=O)CH(2)C(=O)C(6)H(4)C(=O)CH(2)C(=O)R] (L(1)H(2)) incorporating the mono- and difunctional amine bases pyridine (Py), 4-ethylpyridine (EtPy), piperidine (pipi), 1,4-piperazine (pip), N-methylmorpholine (mmorph), 1,4-dimethylpiperazine (dmpip) and N,N,N',N'-tetramethylethylenediamine (tmen) have been synthesised by reaction of the previously reported [Cu(2)(L(1))(2)].2.5THF (R = Me), [Cu(2)(L(1))(2)(THF)(2)] (R = t-Bu), [Ni(2)(L(1))(2)(Py)(4)] (R = t-Bu) and [Co(2)(L(1))(2)(Py)(4)] (R = t-Bu) complexes with individual bases of the above type. Comparative X-ray structural studies involving all ten base adduct derivatives have been obtained and reveal a range of interesting discrete and polymeric molecular architectures. The respective products have the following stoichiometries: [Cu(2)(L(1))(2)(Py)(2)].Py (R = Me), [Cu(2)(L(1))(2)(EtPy)(2)].2EtPy (R = t-Bu), [Cu(2)(L(1))(2)(pipi)(2)].2pipi (R = t-Bu), [Cu(2)(L(1))(2)(mmorph)(2)] (R = t-Bu), [Cu(2)(L(1))(2)(tmen)(2)] (R = t-Bu) and {[Cu(2)(L(1))(2)(pip)].pip.2THF}(n), [Co(2)(L(1))(2)(tmen)(2)] (R = t-Bu), [Ni(2)(L(1))(2)(Py)(4)].dmpip (R = t-Bu), [Ni(2)(L(1))(2)(pipi)(4)].pipi (R = t-Bu) and [Ni(2)(L(1))(2)(tmen)(2)] (R = t-Bu). The effect of pressure on the X-ray structure of [Cu(2)(L(1))(2)(mmorph)(2)] has been investigated. An increase in pressure from ambient to 9.1 kbar resulted in modest changes to the unit cell parameters as well as a corresponding decrease of 6.7 percent in the unit cell volume. While a small 'shearing' motion occurs between adjacent molecular units throughout the lattice, no existing bonds are broken or new bonds formed.

  19. Mechanochemical treatment of polymeric materials. A low environmental impact solution for mixed plastic waste recycling; Il trattamento meccanochimico di materiali polimerici: una soluzione a basso impatto ambientale per il riciclaggio di plastiche eterogenee

    Energy Technology Data Exchange (ETDEWEB)

    Padella, F.; Magini, M.; Masci, A. [ENEA Centro Ricerche Casaccia, Rome (Italy). Dipt. Innovazione

    1999-07-01

    Standard polymeric materials as well as mixtures of them coming from urban wastes, were milled at near room temperature in suitable milling conditions. All the experiments carried out gave a material having a homogeneous fibrous aspect. Structural and thermal analysis of the resulting material clearly shows that the mechanochemical action is able to promote a deep destructuring of the starting networks with a very high energy storage in the milled materials. Further, the fibrous material can be easily consolidated whatever the starting composition of the mixture. preliminary results, coming from mechanical tests on compacted materials, lead to an optimistic conclusion as far as plastic recycling by ball milling is concerned. [Italian] Materiali polimerici standard, cosi' come miscele di materiali plastici provenienti da rifiuti solidi urbani, sono stati macinati a temperatura pressoche' ambiente in opportune condizioni operative. Tutti gli esperimenti hanno prodotto un materiale morfologicamente omogeneo di aspetto fibroso. Le analisi termiche e strutturali condotte sui prodotti mostrano chiaramente come l'azione meccanochimica sia in grado di promuovere una forte destrutturazione del materiale di partenza, accompagnata da un evidente accumulo di energia nel prodotto macinato. In aggiunta, il materiale fibroso puo' essere facilmente consolidato in forme finite, indipendemente dalla composizione di partenza. I risultati preliminari delle prove meccaniche eseguite sui materiali consolidati inducono a conclusioni ottimistiche relativamente all'utilizzo di tecniche di macinazione ad alta energia per il riciclaggio di materiali plastici.

  20. Optical and Scanning electron Microscopy as advanced analysis methods to determine the condition of synthetic geo membranes; Las microscopias optica de reflexion y electronica de barrido como metodos avanzados de analisis para conocer el estado de las geomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Soriano Carrillo, J.; Blanco Fernandez, M.; Garcia Calleja, M. A.; Leiro Lopez, A.; Mateo Sanz, B.; Aguilar Gonzalez, E.; Rubin de Celix, M.

    2014-02-01

    Microscopic techniques have been widely used for years in the study of inorganic materials however their use in organic materials and specifically, in synthetic geo membranes, is very limited. In this study, this innovative technology has been used with the different geo synthetic polymeric barriers with which this research team is experienced: plasticized polyvinyl chloride, polyethylenes, rubbers such as ethenyltriphenyl-diene monomer terpolymer and butyl, polyolefins, ethylene-vinyl acetate copolymer, chlorosulfonated polyethylene and polypropylene. the influence of the extraction area and the time since their application is tested. (Author)