WorldWideScience

Sample records for synthetic polymeric materials

  1. Performance polymeric concrete with synthetic fiber reinforcement against reflective cracking in rigid pavement overlay

    International Nuclear Information System (INIS)

    Khan, N.U.; Khan, B.

    2012-01-01

    Cement concrete pavements are used for heavy traffic loads throughout the world owing to its better and economical performance. Placing of a concrete overlay on the existing pavement is the most prevalent rehabilitating method for such pavements, however, the problem associated with the newly placed overlay is the occurrence of reflective cracking. This paper presents an assessment of the performance of polymeric concrete with synthetic fiber reinforcement against reflective cracking in an overlay system. The performance of polymeric concrete with synthetic fibers as an overlay material is measured in terms of the load-deflection, strain-deflection and load-strain behavior of beams of the polymeric concrete. For this purpose, five types of beams having different number of fiber wires and position are tested for flexure strength. Deflection/strains for each increment of load are recorded. In addition, cubes of plain concrete and of concrete with synthetic fiber needles were tested after 7 and 28 days for compressive strengths. Finite element models in ANSYS software for the beams have also been developed. Beams with greater number of longitudinal fiber wires displayed relatively better performance against deflection whilst beams with synthetic fiber needles showed better performance against strains. Thus, polymeric concrete overlay with fiber reinforcement will serve relatively better against occurrence of reflective cracking. (author)

  2. Recent progress of atomic layer deposition on polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong Chen; Ye, Enyi [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Li, Zibiao, E-mail: lizb@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Han, Ming-Yong [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Loh, Xian Jun, E-mail: lohxj@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore); Singapore Eye Research Institute, 20 College Road, Singapore 169856 (Singapore)

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. - Highlights: • ALD deposition on different natural and synthetic polymer materials • Reaction mechanism based on the surface functional groups of polymers • Application of ALD-modified polymers in different fields.

  3. [Applications of synthetic biology in materials science].

    Science.gov (United States)

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  4. In Silico Synthesis of Synthetic Receptors: A Polymerization Algorithm.

    Science.gov (United States)

    Cowen, Todd; Busato, Mirko; Karim, Kal; Piletsky, Sergey A

    2016-12-01

    Molecularly imprinted polymer (MIP) synthetic receptors have proposed and applied applications in chemical extraction, sensors, assays, catalysis, targeted drug delivery, and direct inhibition of harmful chemicals and pathogens. However, they rely heavily on effective design for success. An algorithm has been written which mimics radical polymerization atomistically, accounting for chemical and spatial discrimination, hybridization, and geometric optimization. Synthetic ephedrine receptors were synthesized in silico to demonstrate the accuracy of the algorithm in reproducing polymers structures at the atomic level. Comparative analysis in the design of a synthetic ephedrine receptor demonstrates that the new method can effectively identify affinity trends and binding site selectivities where commonly used alternative methods cannot. This new method is believed to generate the most realistic models of MIPs thus produced. This suggests that the algorithm could be a powerful new tool in the design and analysis of various polymers, including MIPs, with significant implications in areas of biotechnology, biomimetics, and the materials sciences more generally. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Conducting Polymeric Materials

    DEFF Research Database (Denmark)

    Hvilsted, Søren

    2016-01-01

    The overall objective of this collection is to provide the most recent developments within the various areas of conducting polymeric materials. The conductivity of polymeric materials is caused by electrically charged particles, ions, protons and electrons. Materials in which electrons...

  6. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David; Hadjichristidis, Nikolaos

    2015-01-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization

  7. Report for fiscal 1998 on results of research and development of silicon-based polymeric material; 1998 nendo keisokei kobunshi zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The research and development of 'silicon-based polymeric materials' has been implemented under ten year plan since 1991 by the research and development system for industrial science and technology, with the following subjects conducted in the general accounting section of fiscal 1998. In the research and development of the synthetic technology of electrically conductive silicon-based polymeric materials, a synthetic method was established for unsaturated side-chain group polysilanes as a basic structural unit for structuring multidimensions. In the research and development of the synthetic technology of new silicon-based polymeric materials capable of plotting circuits, network-shaped polysilanes with various amino groups introduced were synthesized, for which electrical conductivity and temperature dependency were measured. In the research and development of new silicon-based polymeric materials with an electro-luminous function and the like, polymeric synthesis began developing smoothly that has hole-transporting and electron transporting properties concerning the electro-luminous function. In the research and development of silicon-based photoelectric conversion materials, examination was made on the improvement of photoelectric conversion performance by materialization technology including lamination and mixture. The general investigation and research committee contrived further advancement of the research and development. (NEDO)

  8. Packaging based on polymeric materials

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available In the past two years the consumption of common in the developed countries world wide (high tonnage polymers for packaging has approached a value of 50 wt.%. In the same period more than 50% of the packaging units on the world market were made of polymeric materials despite the fact that polymeric materials present 17 wt.% of all packaging materials. The basic properties of polymeric materials and their environmental and economical advantages, providing them such a position among packaging materials, are presented in this article. Recycling methods, as well as the development trends of polymeric packaging materials are also presented.

  9. Applied bioactive polymeric materials

    CERN Document Server

    Carraher, Charles; Foster, Van

    1988-01-01

    The biological and biomedical applications of polymeric materials have increased greatly in the past few years. This book will detail some, but not all, of these recent developments. There would not be enough space in this book to cover, even lightly, all of the major advances that have occurred. Some earlier books and summaries are available by two of this book's Editors (Gebelein & Carraher) and these should be consul ted for additional information. The books are: "Bioactive Polymeric Systems" (Plenum, 1985); "Polymeric Materials In Medication" (Plenum, 1985); "Biological Acti vi ties of Polymers" (American Chemical Society, 1982). Of these three, "Bioacti ve Polymeric Systems" should be the most useful to a person who is new to this field because it only contains review articles written at an introductory level. The present book primarily consists of recent research results and applications, with only a few review or summary articles. Bioactive polymeric materials have existed from the creation of life...

  10. Polymeric membrane materials for artificial organs.

    Science.gov (United States)

    Kawakami, Hiroyoshi

    2008-01-01

    Many polymeric materials have already been used in the field of artificial organs. However, the materials used in artificial organs are not necessarily created with the best material selectivity and materials design; therefore, the development of synthesized polymeric membrane materials for artificial organs based on well-defined designs is required. The approaches to the development of biocompatible polymeric materials fall into three categories: (1) control of physicochemical characteristics on material surfaces, (2) modification of material surfaces using biomolecules, and (3) construction of biomimetic membrane surfaces. This review will describe current issues regarding polymeric membrane materials for use in artificial organs.

  11. Recent advances of basic materials to obtain electrospun polymeric nanofibers for medical applications

    Science.gov (United States)

    Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.

    2016-08-01

    The most important applications of electrospun polymeric nanofibers are by far those from biomedical field. From the biological point of view, almost all the human tissues and organs consist of nanofibroas structures. The examples include the bone, dentine, cartilage, tendons and skin. All these are characterized through different fibrous structures, hierarchically organized at nanometer scale. Electrospinning represents one of the nanotechnologies that permit to obtain such structures for cell cultures, besides other technologies, such as selfassembling and phase separation technologies. The basic materials used to produce electrospun nanofibers can be natural or synthetic, having polymeric, ceramic or composite nature. These materials are selected depending of the nature and structure of the tissue meant to be regenerated, namely: for the regeneration of smooth tissues regeneration one needs to process through electrospinning polymeric basic materials, while in order to obtain the supports for the regeneration of hard tissues one must mainly use ceramic materials or composite structures that permit imbedding the bioactive substances in distinctive zones of the matrix. This work presents recent studies concerning basic materials used to obtain electrospun polymeric nanofibers, and real possibilities to produce and implement these nanofibers in medical bioengineering applications.

  12. Synthetic Light-Curable Polymeric Materials Provide a Supportive Niche for Dental Pulp Stem Cells.

    Science.gov (United States)

    Vining, Kyle H; Scherba, Jacob C; Bever, Alaina M; Alexander, Morgan R; Celiz, Adam D; Mooney, David J

    2018-01-01

    Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used. Based on these findings, thiol-ene chemistry is employed to achieve rapid light-curing and minimize residual monomer of the lead materials. Several triacrylate bulk polymers support DPSC adhesion, proliferation, and differentiation in vitro, and exhibit stiffness and tensile strength similar to existing dental materials. Conversely, materials composed of a trimethacrylate monomer or bisphenol A glycidyl methacrylate, which is a monomer standard in dental materials, do not support stem cell adhesion and negatively impact matrix and signaling pathways. Furthermore, thiol-ene polymerized triacrylates are used as permanent filling materials at the dentin-pulp interface in direct contact with irreversibly injured pulp tissue. These novel triacrylate-based biomaterials have potential to enable novel regenerative dental therapies in the clinic by both restoring teeth and providing a supportive niche for DPSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Waterproofing with polymeric geo synthetic barriers (GBR-P) in the manual for the design, construction, management and maintenance of reservoirs

    International Nuclear Information System (INIS)

    Blanco, M.; Cea, J. C.; Garcia, F.; Sanchez, F. J.; Castillo, F.; Mora, J.; Crespo, M. A.

    2010-01-01

    This article presents a part of Manual for the Design, Construction, Management and Maintenance of Reservoirs relative to waterproofing with Polymeric Geo synthetic Barriers (GBR-P). the nature materials of geo membranes is studied also theirs characteristics and specifications. (Author) 26 refs.

  14. Cross-linking of polymeric materials

    International Nuclear Information System (INIS)

    Bloom, L.I.; Du Plessis, T.A.; Meij, G.O.

    1991-01-01

    The invention provides a method of producing a cured polymeric artifact from a polymeric thermoplastic starting material, the material of the artifact having reduced thermoplasticity relative to the starting material and exhibiting an enhanced degree of cross-linking relative to the starting material. The method includes subjecting a polymeric thermoplastic starting material, which is capable of being cross-linked by irradiation, to sufficient irradiation partially to cross-linked the starting material to produce a thermoplastic partially cross-linked intermediate material. The thermoplasticity of the intermediate material is then reduced by heating it to raise its melting point. The invention also provides a method of making a partially cross-linked feedstocks and a master batch for use in making such artifacts

  15. Recent Advances in Polymeric Materials Used as Electron Mediators and Immobilizing Matrices in Developing Enzyme Electrodes

    Directory of Open Access Journals (Sweden)

    Mambo Moyo

    2012-01-01

    Full Text Available Different classes of polymeric materials such as nanomaterials, sol-gel materials, conducting polymers, functional polymers and biomaterials have been used in the design of sensors and biosensors. Various methods have been used, for example from direct adsorption, covalent bonding, crossing-linking with glutaraldehyde on composites to mixing the enzymes or use of functionalized beads for the design of sensors and biosensors using these polymeric materials in recent years. It is widely acknowledged that analytical sensing at electrodes modified with polymeric materials results in low detection limits, high sensitivities, lower applied potential, good stability, efficient electron transfer and easier immobilization of enzymes on electrodes such that sensing and biosensing of environmental pollutants is made easier. However, there are a number of challenges to be addressed in order to fulfill the applications of polymeric based polymers such as cost and shortening the long laboratory synthetic pathways involved in sensor preparation. Furthermore, the toxicological effects on flora and fauna of some of these polymeric materials have not been well studied. Given these disadvantages, efforts are now geared towards introducing low cost biomaterials that can serve as alternatives for the development of novel electrochemical sensors and biosensors. This review highlights recent contributions in the development of the electrochemical sensors and biosensors based on different polymeric material. The synergistic action of some of these polymeric materials and nanocomposites imposed when combined on electrode during sensing is discussed.

  16. Radiation-Induced Graft Polymerization: Gamma Radiation and Electron Beam Technology for Materials Development

    International Nuclear Information System (INIS)

    Madrid, Jordan F.; Cabalar, Patrick Jay; Lopez, Girlie Eunice; Abad, Lucille V.

    2015-01-01

    The formation of functional hybrid materials by attaching polymer chains with advantageous tailored properties to the surface of a base polymer with desirable bulk character is an attractive application of graft copolymerization. Radiation-induced graft polymerization (RIGP) has been a popular approach for surface modification of polymers because of its merits over conventional chemical processes. RIGP, which proceeds primarily via free radical polymerization process, has the advantages such as simplicity, low cost, control over process and adjustment of the materials composition and structure. RIGP can be performed using either electron beam or gamma radiation and it can be applied to both synthetic and natural polymers. These merits make RIGP a popular research topic worldwide. Moreover, the materials synthesized and produced via RIGP has found applications, and were proposed to produce continuous impact, in the fields of medicine, agriculture, pollution remediation, rare earth and valuable metals recovery, fuel cell membrane synthesis and catalysis to name a few. From 2012 our group has performed electron beam and gamma radiation-induced graft polymerization of various monomers onto polymers of natural and synthetic origins (e.g. monomers - glycidyl methacrylate, styrene, acrylonitrile, N,N-dimethylaminoethyl methacrylate; base polymers – polyethylene/polypropylene nonwoven fabric, polypropylene nonwoven fabric pineapple fibers, cellulose nonwoven fabric microcrystalline cellulose). We tested these grafted materials for heavy metals (Pb, Ni, Cu) and organic molecule removal from aqueous solutions and E. coli activity (using reversible addition fragmentation chain transfer RAFT mediated grafting). The results clearly showed the success of materials modified via FIGP in these applications. Currently, we are studying the applications of grafted materials on treatment of waste waters from tanning industry, value addition to abaca nonwoven fabrics cell sheet

  17. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Directory of Open Access Journals (Sweden)

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  18. Deformation and flow of polymeric materials

    CERN Document Server

    Münstedt, Helmut

    2014-01-01

    This book describes the properties of single polymer molecules and polymeric materials and the methods how to characterize them. Molar masses, molar mass distributions and branching structure are discussed in detail. These properties are decisive for a deeper understanding of structure/properties relationships of polymeric materials. This book therefore describes and discusses them in detail. The mechanical behavior as a function of time and temperature is a key subject of the book. The authors present it on the basis of many original results they have obtained in their long research careers. They present the temperature dependence of mechanical properties of various polymeric materials in a wide temperature range: from cryogenic temperatures to the melt. Besides an extensive data collection on the transitions of various different polymeric materials, they also carefully present the physical explanations of the observed phenomena. Glass transition and melting temperatures are discussed, particularly, with the...

  19. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    Science.gov (United States)

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.

  20. Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies

    Science.gov (United States)

    Mirji, Rajeshwari; Lobo, Blaise

    2017-06-01

    The gamma ray mass attenuation coefficients of ten synthetic polymeric materials, namely, polyethylene (PE), polystyrene (PS), polycarbonate (PC), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), Polyethylene terephthalate (PET), Polyvinyl pyrrolidone (PVP), Polytetrafluoroethylene (PTFE), Polypropylene (PP) and Polymethyl methacrylate (PMMA) have been calculated using second order polynomial equation and logarithmic interpolation formula at selected gamma photon energies, in the energy range starting from 14.4 keV up to 1332 keV. It is important to note that second order polynomial equation fits very well with NIST data for all the polymeric materials considered here, for gamma photon energies ranging from 300 keV up to 2000 keV. Third order polynomial fitting is best suited for lower gamma photon energies (from 10 keV up to 200 keV).

  1. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Käpylä, Elli, E-mail: elli.kapyla@tut.fi [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland); Sedlačík, Tomáš [Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Břevnov, Prague (Czech Republic); Aydogan, Dogu Baran [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland); Viitanen, Jouko [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland); Rypáček, František [Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Břevnov, Prague (Czech Republic); Kellomäki, Minna [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland)

    2014-10-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. - Highlights: • Methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s) were synthesized. • Direct laser writing by two-photon polymerization (2PP-DLW) of poly(AA)s is shown. • Poly(AA)s have wider processing windows than poly(ethylene glycol) diacrylates. • 3D poly(AA) structures with 80% water content were fabricated.

  2. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    International Nuclear Information System (INIS)

    Käpylä, Elli; Sedlačík, Tomáš; Aydogan, Dogu Baran; Viitanen, Jouko; Rypáček, František; Kellomäki, Minna

    2014-01-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. - Highlights: • Methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s) were synthesized. • Direct laser writing by two-photon polymerization (2PP-DLW) of poly(AA)s is shown. • Poly(AA)s have wider processing windows than poly(ethylene glycol) diacrylates. • 3D poly(AA) structures with 80% water content were fabricated

  3. The relevance of polymeric synthetic membranes in topical formulation assessment and drug diffusion study.

    Science.gov (United States)

    Ng, Shiow-Fern; Rouse, Jennifer J; Sanderson, Francis D; Eccleston, Gillian M

    2012-03-01

    Synthetic membranes are composed of thin sheets of polymeric macromolecules that can control the passage of components through them. Generally, synthetic membranes used in drug diffusion studies have one of two functions: skin simulation or quality control. Synthetic membranes for skin simulation, such as the silicone-based membranes polydimethylsiloxane and Carbosil, are generally hydrophobic and rate limiting, imitating the stratum corneum. In contrast, synthetic membranes for quality control, such as cellulose esters and polysulfone, are required to act as a support rather than a barrier. These synthetic membranes also often contain pores; hence, they are called porous membranes. The significance of Franz diffusion studies and synthetic membranes in quality control studies involves an understanding of the fundamentals of synthetic membranes. This article provides a general overview of synthetic membranes, including a brief background of the history and the common applications of synthetic membranes. This review then explores the types of synthetic membranes, the transport mechanisms across them, and their relevance in choosing a synthetic membrane in Franz diffusion cell studies for formulation assessment purposes.

  4. Application of Synthetic Polymeric Scaffolds in Breast Cancer 3D Tissue Cultures and Animal Tumor Models

    Directory of Open Access Journals (Sweden)

    Girdhari Rijal

    2017-01-01

    Full Text Available Preparation of three-dimensional (3D porous scaffolds from synthetic polymers is a challenge to most laboratories conducting biomedical research. Here, we present a handy and cost-effective method to fabricate polymeric hydrogel and porous scaffolds using poly(lactic-co-glycolic acid (PLGA or polycaprolactone (PCL. Breast cancer cells grown on 3D polymeric scaffolds exhibited distinct survival, morphology, and proliferation compared to those on 2D polymeric surfaces. Mammary epithelial cells cultured on PLGA- or PCL-coated slides expressed extracellular matrix (ECM proteins and their receptors. Estrogen receptor- (ER- positive T47D breast cancer cells are less sensitive to 4-hydroxytamoxifen (4-HT treatment when cultured on the 3D porous scaffolds than in 2D cultures. Finally, cancer cell-laden polymeric scaffolds support consistent tumor formation in animals and biomarker expression as seen in human native tumors. Our data suggest that the porous synthetic polymer scaffolds satisfy the basic requirements for 3D tissue cultures both in vitro and in vivo. The scaffolding technology has appealing potentials to be applied in anticancer drug screening for a better control of the progression of human cancers.

  5. Fluoropolymer materials and architectures prepared by controlled radical polymerizations

    DEFF Research Database (Denmark)

    Hansen, Natanya Majbritt Louie; Jankova Atanasova, Katja; Hvilsted, Søren

    2007-01-01

    This review initially summarizes the mechanisms, merits and limitations of the three controlled radical polymerizations: nitroxide mediated polymerization (NMP), atom transfer radical polymerization (ATRP) or metal catalyzed living radical polymerization, and reversible addition–fragmentation chain...... transfer (RAFT) polymerization. This is followed by two parts, one dealing with homo- and copolymerizations of fluorinated methacrylates and acrylates, and a second where fluorinated styrenes, alone or in combination with other monomers, are the main issues. In these parts, initiators (including...... properties and functionalities that can be obtained from these novel fluorinated materials and architectures are especially emphasized. Thus, various amphiphilic, biocompatible or low energy materials, fluorinated nanoparticles and nanoporous films/membranes as well as materials for submicron and nanolevel...

  6. Pharmaceutical Applications of Polymeric Nano materials

    International Nuclear Information System (INIS)

    Wu, L.; Sun, L.

    2011-01-01

    With significant attention focused on nano science and nano technology in recent years, nano materials have been used in a wide variety of applications such as automotive, environmental, energy, catalysis, biomedical, drug delivery, and polymeric industries. Among those fields, the application of nano materials with pharmaceutical science is an emerging and rapidly growing field and has drawn increasing attention recently. Research and development in this field is mainly focused on several aspects such as the discoveries of novel functional nano materials, exploration on nanoparticles with controlled and targeted drug delivery characteristics, and investigation of bio functionalized and diagnostic nano materials. In this special issue, we have invited a few papers related to recent advances in pharmaceutical application of polymeric nano materials

  7. Polymeric matrix materials for infrared metamaterials

    Science.gov (United States)

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  8. Photocontrol in Complex Polymeric Materials: Fact or Illusion?

    Science.gov (United States)

    Jerca, Valentin Victor; Hoogenboom, Richard

    2018-06-04

    Photoswitches: Exciting recent progress realized in the field of light-controlled polymeric materials is highlighted. It is discussed how the rational choice of azobenzene molecules and their incorporation into complex materials by making use of physical interactions can lead to genuine photocontrollable polymeric systems. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David

    2015-09-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization mechanisms using conventional (various amines) as well as some recently developed initiators (hexamethyldisilazane, N-heterocyclic persistent carbenes, etc.) is presented, and their benefits and drawbacks for preparation of polypeptides with well-defined chain lengths and chain-end functionality are discussed. Recent examples from literature are used to illustrate different possibilities for synthesis of pure polypeptide materials with different molecular architectures bearing various functional groups, which are introduced either by modification of amino acids, before they are transformed into corresponding Ncarboxyanhydrides, or by post-polymerization modifications using protective groups and/or orthogonal functional groups. Different approaches for preparation of polypeptide-based hybrid materials are discussed as well using examples from recent literature. Syntheses of simple block copolymers or copolymers with more complex molecular architectures (graft and star copolymers) as well as modifications of nanoparticles and other surfaces with polypeptides are described.

  10. Synthetic fiber technology evolving into a high-tech field

    Energy Technology Data Exchange (ETDEWEB)

    Yumura, Takao

    1988-07-01

    This paper reports the trend of synthetic fiber technology. Representative synthetic fibers are nylon, polyester, and acrylic. Researchers are studying the continuation of polymerization processes, high-efficiency catalysts, thin-film polymerization, the possibility of energy saving by interfacial polymerization, and small quantities of a large variety of items method. They are making considerable progress in accelerating, simplifying, and rationalizing production processes. As a result, they have already omitted the elongation chamber and realized the continuation of spinning and elongation processes. The textile industry is planning to adopt a super-fast spinning system. To meet customers' needs for a wider variety of advanced materials, researchers are developing differential, high-value-added materials. High functions are added to fibers during all processes including polymerization, spinning, thread or cotton making, knitting, and after-treatment. Researchers have developed new materials looking exactly like silk or wool, having aesthetic properties, artificial suede, and combining moisture permeability and waterproofness. New materials developed for high-technology purposes include carbon fiber, aramid fiber that obtains high strength and elasticity without being elongated, high-strength, and high-elasticity super-high-polymer polyethylene fiber. (3 figs, 1 tab)

  11. Survey and research on precision polymerization polymeric materials; Seimitsu jugo kobunshi zairyo ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey and research on the precision control of primary structure of polymeric materials and the precision evaluation technology have been conducted to develop advanced polymeric materials. It is proposed that the three basic processes of polymer synthesis, i.e., addition, condensation, and biomimesis, in forming the precision polymerization skeleton are to be covered through a centralized joint research effort with participation of industry, academia, and the government institute and under the leadership of researchers from academic institutions as the team leaders. For the study of technology trends, international conferences held in UK, Germany, and Hawaii are introduced, and domestic meetings, i.e., Annual Polymer Congress and Polymer Conference, are summarized. In addition, Precision Polymerization Forum and International Workshop on Precision Polymerization were held. The basic studies include a quantum-chemical elucidation of the elementary process in polymerization reaction, time-resolved analysis of polymerization process and polymer properties, synthesis of polymers with controlled microstructures by coordination polymerization using metal complexes, synthesis of polymer with controlled microstructures by precision polycondensation, molecular recognition in catalyst-reaction site, and synthesis of imprinting polymers. 246 refs., 117 figs., 14 tabs.

  12. Designing materials for advanced microelectronic patterning applications using controlled polymerization RAFT technology

    Science.gov (United States)

    Sheehan, Michael T.; Farnham, William B.; Chambers, Charles R.; Tran, Hoang V.; Okazaki, Hiroshi; Brun, Yefim; Romberger, Matthew L.; Sounik, James R.

    2011-04-01

    Reversible Addition Fragmentation Chain Transfer (RAFT) polymerization technology enables the production of polymers possessing low polydispersity (PD) in high yield for many applications. RAFT technology also enables control over polymer architecture. With synthetic control over these polymer characteristics, a variety of polymers can be designed and manufactured for use in advanced electronic applications. By matching the specific RAFT reagent and monomer combinations, we can accommodate monomer reactivity and optimize acrylate or methacrylate polymerizations (193 and 193i photoresist polymers) or optimize styrenic monomer systems (248 nm photoresist polymers) to yield polymers with PD as low as 1.05. For 193i lithography, we have used RAFT technology to produce block copolymers comprising of a random "resist" block with composition and size based on conventional dry photoresist materials and a "low surface energy" block The relative block lengths and compositions may be varied to tune solution migration behavior, surface energy, contact angles, and solubility in developer. Directed self assembly is proving to be an interesting and innovative method to make 2- and even 3-dimensional periodic, uniform patterns. Two keys to acceptable performance of directed self assembly from block copolymers are the uniformity and the purity of the materials will be discussed.

  13. Polymeric Smart Skin Materials: Concepts, Materials, and Devices

    Science.gov (United States)

    2006-03-31

    Fudouzi, H. and Xia, Y., Langmuir 2003, 19, 9653-9658 (also see the highlight in Materials Today, 2003, December, p. 7). 15. Langmuir - Blodgett Silver...development of electroactive dendrimers, dendronized polymers, hyperbranched polymers, and phase- separating block copolymers. Development of such materials...Dalton, and A. K-Y. Jen, " Hyperbranched Fluorinated Aromatic Polyester from Mild One-Pot Polymerization of AB 2 Hydroxy Acid Monomer," Macromolecules

  14. Novel polymeric nanocomposites and porous materials prepared using organogels

    International Nuclear Information System (INIS)

    Lai, Wei-Chi; Tseng, Shen-Chen

    2009-01-01

    We propose a new method for preparing polymeric nanocomposites and porous materials using self-assembled templates formed by 1,3:2,4-dibenzylidene sorbitol (DBS) organogels. DBS is capable of self-assembling into a 3D nanofibrillar network at relatively low concentrations in some organic solvents to produce organogels. In this study, we induced the formation of such physical cross-linked networks in styrene. Subsequently, we polymerized the styrene in the presence of chemical cross-linkers, divinyl benzene (DVB), with different amounts of DBS using thermal-initiated polymerization. The resulting materials were transparent, homogeneous polystyrene (PS) nanocomposites with both physical and chemical cross-links. The porous polymeric materials were obtained by solvent extraction of the DBS nanofibrils from the PS. Brunauer-Emmett-Teller (BET) measurements show that the amounts of DBS and DVB influenced the specific surface area after the removal of the DBS fibrils.

  15. Novel polymeric nanocomposites and porous materials prepared using organogels

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Wei-Chi; Tseng, Shen-Chen, E-mail: wclai@mail.tku.edu.t [Department of Chemical and Materials Engineering, Tamkang University, 151 Ying-chuan Road, Tamsui, Taipei 25137, Taiwan (China)

    2009-11-25

    We propose a new method for preparing polymeric nanocomposites and porous materials using self-assembled templates formed by 1,3:2,4-dibenzylidene sorbitol (DBS) organogels. DBS is capable of self-assembling into a 3D nanofibrillar network at relatively low concentrations in some organic solvents to produce organogels. In this study, we induced the formation of such physical cross-linked networks in styrene. Subsequently, we polymerized the styrene in the presence of chemical cross-linkers, divinyl benzene (DVB), with different amounts of DBS using thermal-initiated polymerization. The resulting materials were transparent, homogeneous polystyrene (PS) nanocomposites with both physical and chemical cross-links. The porous polymeric materials were obtained by solvent extraction of the DBS nanofibrils from the PS. Brunauer-Emmett-Teller (BET) measurements show that the amounts of DBS and DVB influenced the specific surface area after the removal of the DBS fibrils.

  16. Optical investigations of various polymeric materials used in dental technology

    Science.gov (United States)

    Negrutiu, Meda Lavinia; Sinescu, Cosmin; Topala, Florin Ionel; Ionita, Ciprian; Goguta, Luciana; Marcauteanu, Corina; Rominu, Mihai; Podoleanu, Adrian Gh.

    2011-10-01

    Dental prosthetic restorations have to satisfy high stress as well as aesthetic requirements. In order to avoid deficiencies of dental prostheses, several alternative systems and procedures were imagined, directly related to the material used and also to the manufacturing technology. Increasing the biomechanical comportment of polymeric materials implies fiber reinforcing. The different fibers reinforcing products made very difficult the evaluation of their performances and biomechanical properties analysis. There are several known methods which are used to assess the quality of dental prostheses, but most are invasive. These lead to the destruction of the samples and often no conclusion could be drawn in the investigated areas of interest. Using a time domain en-face OCT system, we have recently demonstrated real time thorough evaluation of quality of various dental treatments. The aim of this study was to assess the quality of various polymeric materials used in dental technology and to validate the en face OCT imagistic evaluation of polymeric dental prostheses by using scanning electron microscopy (SEM) and microcomputer tomography (μCT). SEM investigations evidenced the nonlinear aspect of the interface between the polymeric material and the fiber reinforcement and materials defects in some samples. The results obtained by microCT revealed also some defects inside the polymeric materials and at the interfaces with the fiber reinforcement. The advantages of the OCT method consist in non-invasiveness and high resolution. In addition, en face OCT investigations permit visualization of the more complex stratified structure at the interface between the polymeric material and the fiber reinforcement.

  17. Novel polymeric materials from triglycerides

    Science.gov (United States)

    Triglycerides are good platforms for new polymeric products that can substitute for petroleum-based materials. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a number of reactions in efforts to produce a wide range of value-added products. In this ...

  18. Polymeric materials obtained by electron beam irradiation

    International Nuclear Information System (INIS)

    Dragusin, M.; Moraru, R.; Martin, D.; Radoiu, M.; Marghitu, S.; Oproiu, C.

    1995-01-01

    Research activities in the field of electron beam irradiation of monomer aqueous solution to produce polymeric materials used for waste waters treatment, agriculture and medicine are presented. The technologies and special features of these polymeric materials are also described. The influence of the chemical composition of the solution to ba irradiated, absorbed dose level and absorbed dose rate level are discussed. Two kinds of polyelectrolytes, PA and PV types and three kinds of hydrogels, pAAm, pAAmNa and pNaAc types, the production of which was first developed with IETI-10000 Co-60 source and then adapted to the linacs built in Accelerator Laboratory, are described. (author)

  19. Programmed photodegradation of polymeric/oligomeric materials derived from renewable bioresources.

    Science.gov (United States)

    Rajendran, Saravanakumar; Raghunathan, Ramya; Hevus, Ivan; Krishnan, Retheesh; Ugrinov, Angel; Sibi, Mukund P; Webster, Dean C; Sivaguru, Jayaraman

    2015-01-19

    Renewable polymeric materials derived from biomass with built-in phototriggers were synthesized and evaluated for degradation under irradiation of UV light. Complete decomposition of the polymeric materials was observed with recovery of the monomer that was used to resynthesize the polymers. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Research work of radiation induced graft polymerization for synthesis and modification of polymer materials in CRICI

    Energy Technology Data Exchange (ETDEWEB)

    Hu Fumin; Ma Xueming [Chenguan Research Institute of Chemical Industry, Chengdu (China)

    2000-03-01

    The direct and post radiation induced graft polymerization had been studied in CRICI (Chenguan Research Institute of Chemical Industry). The method consists of irradiation of various polymer substrates in the presence (or absence) of monomers in a liquid, saturated vapour or gaseous and non-saturated vapour. 1. Grafting of functional monomers. --- It is possible to divide the grafting into two main approaches for synthesis of functional polymer materials. The first is grafting of monomers attached required functional group such as unsaturated carboxylic acid (acrylic and methacrylic acid), unsaturated nitrogen containing (alkali) base (vinylpyridine), monomers with hydrophilic unionized and polar groups (acrylamide, N-vinylpyrrolidone glycidylmethacrylate) and so on. The second is grafting of monomers capable of continuing chemical modification after graft polymerization. This approach essentially expands synthetic possibility of RGP for preparing functional polymers. 2. The effect of some salts on aqueous solution graft polymerization. The grafting of AA or AAm onto PE by direct or post radiation method in the presence of Mohr's salt or cupric nitrate was studied in detail. 3. Radiation induced graft polymerization by gaseous phase of monomers. This method consists of irradiation or preirradiation of various polymer substrates in the presence (or absence for preirradiation) of monomer in a gaseous of nonsaturated vapour state. (J.P.N.)

  1. Research work of radiation induced graft polymerization for synthesis and modification of polymer materials in CRICI

    International Nuclear Information System (INIS)

    Hu Fumin; Ma Xueming

    2000-01-01

    The direct and post radiation induced graft polymerization had been studied in CRICI (Chenguan Research Institute of Chemical Industry). The method consists of irradiation of various polymer substrates in the presence (or absence) of monomers in a liquid, saturated vapour or gaseous and non-saturated vapour. 1. Grafting of functional monomers. --- It is possible to divide the grafting into two main approaches for synthesis of functional polymer materials. The first is grafting of monomers attached required functional group such as unsaturated carboxylic acid (acrylic and methacrylic acid), unsaturated nitrogen containing (alkali) base (vinylpyridine), monomers with hydrophilic unionized and polar groups (acrylamide, N-vinylpyrrolidone glycidylmethacrylate) and so on. The second is grafting of monomers capable of continuing chemical modification after graft polymerization. This approach essentially expands synthetic possibility of RGP for preparing functional polymers. 2. The effect of some salts on aqueous solution graft polymerization. The grafting of AA or AAm onto PE by direct or post radiation method in the presence of Mohr's salt or cupric nitrate was studied in detail. 3. Radiation induced graft polymerization by gaseous phase of monomers. This method consists of irradiation or preirradiation of various polymer substrates in the presence (or absence for preirradiation) of monomer in a gaseous of nonsaturated vapour state. (J.P.N.)

  2. [Synthetic biology and rearrangements of microbial genetic material].

    Science.gov (United States)

    Liang, Quan-Feng; Wang, Qian; Qi, Qing-Sheng

    2011-10-01

    As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.

  3. Smart polymeric materials in forms of fiber and film

    International Nuclear Information System (INIS)

    Sugo, Takanobu

    1998-01-01

    Chemical grafting: graft polymerization is a powerful technology to append novel functionality to base fibers, clothes, felts, films and others, while maintaining their original properties. As shown in Figure 1, while a gardener may use a pair of shears to cut the branch, to cut the molecular branch of a polymeric material, one can utilize the radiation energy. Effective utilization of the radiation energy can proceed to a novel reaction that is impossible for other conventional methods and develop a new material bearing outstanding functions. This technology is named radiation-induced graft polymerization (RIGP). In this article, the present research and development of novel functional polymeric materials by radiation-induced graft polymerization is described. The felt of intertwined fibers has been widely used as a filter to remove particles from air but not toxic gaseous compounds. However, by RIGP, one can transform the felt into a high functional filter that will absorb the toxic gaseous compounds while removing particles simultaneously. As a result, the RIGP technology, which is impossible by conventional technology, has enabled the development of a novel functional material that produce highly pure air. Commercialization of this filter for applications in a semiconductor manufacturing facility and as an air purifier is under process. Moreover, this filter can also be used to produce highly purified water by removing toxic heavy metals. Commercially available polyethylene films are also been transform into conductive separators by RIGP to increase the lifetime of a battery by more than five-fold. (J.P.N)

  4. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    Science.gov (United States)

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  5. Polymeric materials from renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; Silva, Cristina G. da; Castro, Daniele O.; Ramires, Elaine C.; Oliveira, Fernando de; Santos, Rachel P. O. [Macromolecular Materials and Lignocellulosic Fibers Group, Center for Research on Science and Technology of BioResources, Institute of Chemistry of São Carlos, University of São Paulo, CP 780, 13560-970 São Carlos, São Paulo (Brazil)

    2016-05-18

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called “biopolyethylene” (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  6. Polymeric materials from renewable resources

    Science.gov (United States)

    Frollini, Elisabete; Rodrigues, Bruno V. M.; da Silva, Cristina G.; Castro, Daniele O.; Ramires, Elaine C.; de Oliveira, Fernando; Santos, Rachel P. O.

    2016-05-01

    The goals of our studies have been the use of renewable raw materials in the preparation of polymeric materials with diversified properties. In this context, lignosulfonate, which is produced in large scale around the world, but not widely used in the production of polymeric materials, was used to replace phenol and polyols in the preparation of phenolic- (Ligno-PH) and polyurethane-type (Ligno-PU) polymers, respectively. These polymers were used to prepare composites reinforced with sisal lignocellulosic fibers. The use of lignosulfonate in the formulation of both types of polymers was beneficial, because in general composites with improved properties, specially impact strength, were obtained. Composites were also prepared from the so called "biopolyethylene" (HDPE), curaua lignocellulosic fiber, and castor oil (CO). All composites HDBPE/CO/Fiber exhibited higher impact strength, when compared to those of the corresponding HDBPE/Fiber. These results, combined with others (eg SEM images of the fractured surfaces) indicated that, in addition to acting as a plasticizer, this oil may have acted as a compatibilizer of the hydrophilic fiber with the hydrophobic polymer. The set of results indicated that (i) mats with nano (diameter ≤ 100nm) and/or ultrafine (submicron scale) fibers were produced, (ii) hybrid fibers were produced (bio-based mats composites), (iii) cellulosic pulp (CP) and/or lignin (Lig) can be combined with PET matrices to control properties such as stiffness and hydrophilicity of the respective mats. Materials with diversified properties were prepared from high content of renewable raw materials, thus fulfilling the proposed targets.

  7. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    International Nuclear Information System (INIS)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-01-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20–80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5–25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties. - Highlights: ► Chitosan and starch-based biodegradable films were prepared by casting. ► With the increase of chitosan in starch, the strength of the films improved significantly. ► Monomer, 2-Butane diol-diacrylate was grafted with the films by gamma radiation. ► Mechanical properties of synthetic polymeric films improved by gamma radiation. ► The irradiated polymer films showed better water vapor barrier properties.

  8. POLYMERIC MATERIALS FOR SOLAR ENERGY UTILIZATION: A COMPARATIVE EXPERIMENTAL STUDY AND ENVIRONMENTAL ASPECTS

    Directory of Open Access Journals (Sweden)

    Alexander Doroshenko

    2016-08-01

    Full Text Available Full-scale metal solar collectors and solar collectors fabricated from polymeric materials are studied in present research. Honeycomb multichannel plates made from polycarbonate were chosen to create a polymeric solar collector. Polymeric collector is 67.8% lighter than metal solar collector. It was experimentally shown that the efficiency of a polymeric collector is 7–14% lower than a traditional collector. An ecologically based Life Cycle Assessment showed the advantages of the application of polymeric materials in the construction of solar collectors.

  9. Polymerization Simulator for Introductory Polymer and Material Science Courses

    Science.gov (United States)

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  10. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  11. Micromechanical exfoliation of two-dimensional materials by a polymeric stamp

    International Nuclear Information System (INIS)

    Costa, M C Ferraz da; Ribeiro, H B; Kessler, F; Souza, E A T de; Fechine, G J M

    2016-01-01

    In this work, an alternative technique to the traditional micromechanical exfoliation of two-dimensional materials is proposed, consisting of isolated flakes of graphite and molybdenum disulphide onto polymeric surfaces films. The set made up of polymer and flakes is fabricated by using a hot-press machine called polymeric stamp. The polymeric stamp was used to allocate flakes and also to allow the exfoliation process to take place just in one face of isolated flake. Optical microscopy, Raman spectroscopy and photoluminescence spectroscopy results showed that multilayers, bilayers and single layers of graphene and MoS 2 were obtained by using a polymeric stamp as tool for micromechanical exfoliation. These crystals were more easily found because the exfoliation process concentrates them in well-defined locations. The results prove the effectiveness of the method by embedding two-dimensional materials into polymers to fabricate fewer layers crystals in a fast, economic and clean way. (paper)

  12. Micromechanical exfoliation of two-dimensional materials by a polymeric stamp

    Science.gov (United States)

    Ferraz da Costa, M. C.; Ribeiro, H. B.; Kessler, F.; de Souza, E. A. T.; Fechine, G. J. M.

    2016-02-01

    In this work, an alternative technique to the traditional micromechanical exfoliation of two-dimensional materials is proposed, consisting of isolated flakes of graphite and molybdenum disulphide onto polymeric surfaces films. The set made up of polymer and flakes is fabricated by using a hot-press machine called polymeric stamp. The polymeric stamp was used to allocate flakes and also to allow the exfoliation process to take place just in one face of isolated flake. Optical microscopy, Raman spectroscopy and photoluminescence spectroscopy results showed that multilayers, bilayers and single layers of graphene and MoS2 were obtained by using a polymeric stamp as tool for micromechanical exfoliation. These crystals were more easily found because the exfoliation process concentrates them in well-defined locations. The results prove the effectiveness of the method by embedding two-dimensional materials into polymers to fabricate fewer layers crystals in a fast, economic and clean way.

  13. Polymer-Based Black Phosphorus (bP) Hybrid Materials by in Situ Radical Polymerization: An Effective Tool To Exfoliate bP and Stabilize bP Nanoflakes

    Science.gov (United States)

    2018-01-01

    Black phosphorus (bP) has been recently investigated for next generation nanoelectronic multifunctional devices. However, the intrinsic instability of exfoliated bP (the bP nanoflakes) toward both moisture and air has so far overshadowed its practical implementation. In order to contribute to fill this gap, we report here the preparation of new hybrid polymer-based materials where bP nanoflakes (bPn) exhibit a significantly improved stability. The new materials have been prepared by different synthetic paths including: (i) the mixing of conventionally liquid-phase exfoliated bP (in dimethyl sulfoxide, DMSO) with poly(methyl methacrylate) (PMMA) solution; (ii) the direct exfoliation of bP in a polymeric solution; (iii) the in situ radical polymerization after exfoliating bP in the liquid monomer (methyl methacrylate, MMA). This last methodology concerns the preparation of stable suspensions of bPn–MMA by sonication-assisted liquid-phase exfoliation (LPE) of bP in the presence of MMA followed by radical polymerization. The hybrids characteristics have been compared in order to evaluate the bP dispersion and the effectiveness of the bPn interfacial interactions with polymer chains aimed at their long-term environmental stabilization. The passivation of the bPn is particularly effective when the hybrid material is prepared by in situ polymerization. By using this synthetic methodology, the nanoflakes, even if with a gradient of dispersion (size of aggregates), preserve their chemical structure from oxidation (as proved by both Raman and 31P-solid state NMR studies) and are particularly stable to air and UV light exposure. The feasibility of this approach, capable of efficiently exfoliating bP while protecting the bPn, has been then verified by using different vinyl monomers (styrene and N-vinylpyrrolidone), thus obtaining hybrids where the nanoflakes are embedded in polymer matrices with a variety of intriguing thermal, mechanical, and solubility characteristics.

  14. Waterproofing with polymeric geo synthetic barriers (GBR-P) in the manual for the design, construction, management and maintenance of reservoirs; La impermeabilizacion con barreras geosinteticas polimericas (GBR-P) en el manual para el diseno, construccion, explotacion y mantenimiento de balsas

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, M.; Cea, J. C.; Garcia, F.; Sanchez, F. J.; Castillo, F.; Mora, J.; Crespo, M. A.

    2010-07-01

    This article presents a part of Manual for the Design, Construction, Management and Maintenance of Reservoirs relative to waterproofing with Polymeric Geo synthetic Barriers (GBR-P). the nature materials of geo membranes is studied also theirs characteristics and specifications. (Author) 26 refs.

  15. Bioactive Polymeric Materials for Tissue Repair

    Directory of Open Access Journals (Sweden)

    Diane R. Bienek

    2017-01-01

    Full Text Available Bioactive polymeric materials based on calcium phosphates have tremendous appeal for hard tissue repair because of their well-documented biocompatibility. Amorphous calcium phosphate (ACP-based ones additionally protect against unwanted demineralization and actively support regeneration of hard tissue minerals. Our group has been investigating the structure/composition/property relationships of ACP polymeric composites for the last two decades. Here, we present ACP’s dispersion in a polymer matrix and the fine-tuning of the resin affects the physicochemical, mechanical, and biological properties of ACP polymeric composites. These studies illustrate how the filler/resin interface and monomer/polymer molecular structure affect the material’s critical properties, such as ion release and mechanical strength. We also present evidence of the remineralization efficacy of ACP composites when exposed to accelerated acidic challenges representative of oral environment conditions. The utility of ACP has recently been extended to include airbrushing as a platform technology for fabrication of nanofiber scaffolds. These studies, focused on assessing the feasibility of incorporating ACP into various polymer fibers, also included the release kinetics of bioactive calcium and phosphate ions from nanofibers and evaluate the biorelevance of the polymeric ACP fiber networks. We also discuss the potential for future integration of the existing ACP scaffolds into therapeutic delivery systems used in the precision medicine field.

  16. Polymeric Bicontinuous Microemulsions as Templates for Nanostructured Materials

    Science.gov (United States)

    Jones, Brad Howard

    Ternary blends of two homopolymers and a diblock copolymer can self-assemble into interpenetrating, three dimensionally-continuous networks with a characteristic length scale of ˜ 100 nm. In this thesis, it is shown that these liquid phases, known as polymeric bicontinuous microemulsions (BμE), can be designed as versatile precursors to nanoporous materials having pores with uniform sizes of ˜ 100 nm. The model blends from which the porous materials are derived are composed of polyethylene (PE) and a sacrificial polyolefin. The liquid BμE structure is captured by crystallization of the PE, and a three-dimensionally continuous pore network with a narrow pore size distribution is generated by selective extraction of the sacrificial component. The original BμE structure is retained in the resultant nanoporous PE. This monolithic material is then used as a template in the synthesis of other nanoporous materials for which structural control at the nm scale has traditionally been difficult to achieve. These materials, which include a high-temperature ceramic, polymeric thermosets, and a conducting polymer, are produced by a simple nanocasting process, providing an inverse replica of the PE template. On account of the BμE structure of the template, the product materials also possess three-dimensionally continuous pore networks with narrow size distributions centered at ˜ 100 nm. The PE template is further used as a template for the production of hierarchically structured inorganic and polymeric materials by infiltration of mesostructured compounds into its pore network. In the former case, a hierarchically porous SiO2 material is demonstrated, simultaneously possessing two discrete, bicontinuous pore networks with sizes differing by over an order of magnitude. Finally, the templating procedures are extended to thin films supported on substrates and novel conductive polymer films are synthesized. The work described herein represents an unprecedented suite of

  17. Synthetic Self-Assembled Materials in Biological Environments

    NARCIS (Netherlands)

    Versluis, F.; van Esch, J.H.; Eelkema, R.

    2016-01-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA,

  18. Application of radiation-induced graft polymerization to preparation of functional materials

    International Nuclear Information System (INIS)

    Sugo, Takanobu

    2010-01-01

    Radiation-induced graft polymerization is a powerful method for appending various functionalities onto existing fabrics, nonwoven fabrics, fibers, membranes, and beads while maintaining the shape and mechanical strength. By using this method, the author has developed and commercialized functional polymeric materials over 45 years. The materials produced by the fruits of radiation chemistry contributed to the improvement of our lives and environments and the collection of rare metal resources. (author)

  19. Biodegradable starch-based polymeric materials

    Science.gov (United States)

    Suvorova, Anna I.; Tyukova, Irina S.; Trufanova, Elena I.

    2000-05-01

    The effects of low-molecular-weight additives, temperature and mechanical action on the structure and properties of starch are discussed. Special attention is given to mixtures of starch with synthetic polymers, e.g., co-polymers of ethylene with vinyl acetate, vinyl alcohol, acrylic acid, cellulose derivatives and other natural polymers. These mixtures can be used in the development of novel environmentally safe materials (films, coatings, packaging materials) and various articles for short-term use. The bibliography includes 105 references.

  20. Optical Fiber Sensors Based on Polymeric Sensitive Coatings

    Directory of Open Access Journals (Sweden)

    Pedro J. Rivero

    2018-03-01

    Full Text Available Polymer technology is one of the fastest growing fields of contemporary research due to the possibility of using a wide variety of synthetic chemical routes for obtaining a polymeric network with a well-defined structure, resulting in materials with outstanding macroscopic properties. Surface engineering techniques based on the implementation of polymeric structures can be used as an interesting tool for the design of materials with functional properties. In this sense, the use of fabrication techniques for the design of nanostructured polymeric coatings is showing an important growth due to the intrinsic advantages of controlling the structure at a nanoscale level because physical, chemical, or optical properties can be considerably improved in comparison with the bulk materials. In addition, the presence of these sensitive polymeric coatings on optical fiber is a hot topic in the scientific community for its implementation in different market niches because a wide variety of parameters can be perfectly measured with a high selectivity, sensitivity, and fast response time. In this work, the two main roles that a polymeric sensitive matrix can play on an optical fiber for sensing applications are evaluated. In a first section, the polymers are used as a solid support for the immobilization of specific sensitive element, whereas in the second section the polymeric matrix is used as the chemical transducer itself. Additionally, potential applications of the optical fiber sensors in fields as diverse as biology, chemistry, engineering, environmental, industry or medicine will be presented in concordance with these two main roles of the polymeric sensitive matrices.

  1. Microencapsulated Comb-Like Polymeric Solid-Solid Phase Change Materials via In-Situ Polymerization

    Directory of Open Access Journals (Sweden)

    Wei Li

    2018-02-01

    Full Text Available To enhance the thermal stability and permeability resistance, a comb-like polymer with crystallizable side chains was fabricated as solid-solid phase change materials (PCMs inside the cores of microcapsules and nanocapsules prepared via in-situ polymerization. In this study, the effects on the surface morphology and microstructure of micro/nanocapsules caused by microencapsulating different types of core materials (i.e., n-hexadecane, ethyl hexadecanoate, hexadecyl acrylate and poly(hexadecyl acrylate were systematically studied via field emission scanning electron microscope (FE-SEM and transmission electron microscope (TEM. The confined crystallization behavior of comb-like polymer PCMs cores was investigated via differential scanning calorimeter (DSC. Comparing with low molecular organic PCMs cores, the thermal stability of PCMs microencapsulated comb-like polymer enhanced significantly, and the permeability resistance improved obviously as well. Based on these resultant analysis, the microencapsulated comb-like polymeric PCMs with excellent thermal stability and permeability resistance showed promising foreground in the field of organic solution spun, melt processing and organic coating.

  2. Degradable polymeric materials for osteosynthesis: Tutorial

    Directory of Open Access Journals (Sweden)

    D Eglin

    2008-12-01

    Full Text Available This report summarizes the state of the art and recent developments and advances in the use of degradable polymers devices for osteosynthesis. The current generation of biodegradable polymeric implants for bone repair utilising designs copied from metal implants, originates from the concept that devices should be supportive and as “inert” substitute to bone tissue. Today degradable polymeric devices for osteosynthesis are successful in low or mild load bearing applications. However, the lack of carefully controlled randomized prospective trials that document their efficacy in treating a particular fracture pattern is still an issue. Then, the choice between degradable and non-degradable devices must be carefully weighed and depends on many factors such as the patient age and condition, the type of fracture, the risk of infection, etc. The improvement of the biodegradable devices mechanical properties and their degradation behaviour will have to be achieved to broaden their use. The next generation of biodegradable implants will probably see the implementation of the recent gained knowledge in cell-material interactions and cells therapy, with a better control of the spatial and temporal interfaces between the material and the surrounding bone tissue.

  3. Novel distributed strain sensing in polymeric materials

    International Nuclear Information System (INIS)

    Abot, Jandro L; Song, Yi; Medikonda, Sandeep; Rooy, Nathan; Schulz, Mark J

    2010-01-01

    Monitoring the state of strain throughout an entire structure is essential to determine its state of stress, detect potential residual stresses after fabrication, and also to help to establish its integrity. Several sensing technologies are presently available to determine the strain in the surface or inside a structure. Large sensor dimensions, complex signal conditioning equipment, and difficulty in achieving a widely distributed system have however hindered their development into robust structural health monitoring techniques. Recently, carbon nanotube forests were spun into a microscale thread that is electrically conductive, tough, and easily tailorable. The thread was integrated into polymeric materials and used for the first time as a piezoresistive sensor to monitor strain and also to detect damage in the material. It is revealed that the created self-sensing polymeric materials are sensitive to normal strains above 0.07% and that the sensor thread exhibits a perfectly linear delta resistance–strain response above 0.3%. The longitudinal gauge factors were determined to be in the 2–5 range. This low cost and simple built-in sensor thread may provide a new integrated and distributed sensor technology that enables robust real-time health monitoring of structures

  4. Synthesis of polymeric micro- and nanostructural materials for application in non-linear optics

    International Nuclear Information System (INIS)

    Kravets, Lyubov; Palistrant, Natalia; Bivol, Valerii; Robu, Stepan; Barba, Nikolai; Orelovitch, Oleg

    2007-01-01

    The present paper describes a new approach developed for the preparation of micro- and nanostructural materials on the basis of polymeric compositions used as a matrix in non-linear optics. This approach consists in filling the pores of poly(ethylene terephthalate) track membranes (PET TM) from polymeric compositions using an impregnation method. It is shown that depending on the concentration of polymeric compositions in the solution it is possible to form a variety of micro- and nanostructural materials (tubules and wires as well as composite membranes) with a wide spectrum of characteristics. The developed method of producing micro- and nanostructural materials provides a possible way for creating polymeric objects with non-linear optic properties which can be used to design electronic micro- and nanodevices and to obtain chemical and optical sensors

  5. Electroactivity in Polymeric Materials

    CERN Document Server

    2012-01-01

    Electroactivity in Polymeric Materials provides an in-depth view of the theory of electroactivity and explores exactly how and why various electroactive phenomena occur. The book explains the theory behind electroactive bending (including ion-polymer-metal-composites –IPMCs), dielectric elastomers, electroactive contraction, and electroactive contraction-expansion cycles.  The book also balances theory with applications – how electroactivity can be used – drawing inspiration from the manmade mechanical world and the natural world around us.  This book captures: A complete introduction to electroactive materials including examples and recent developments The theory and applications of numerous topics like electroactive bending of dielectric elastomers and electroactive contraction and expansion New topics, such as biomimetic applications and energy harvesting This is a must-read within the electroactive community, particularly for professionals and graduate students who are interested in the ...

  6. Tribology of polymeric nanocomposites friction and wear of bulk materials and coatings

    CERN Document Server

    Friedrich, Klaus

    2013-01-01

    Tribology of Polymeric Nanocomposites provides a comprehensive description of polymeric nanocomposites, both as bulk materials and as thin surface coatings, and provides rare, focused coverage of their tribological behavior and potential use in tribological applications. Providing engineers and designers with the preparation techniques, friction and wear mechanisms, property information and evaluation methodology needed to select the right polymeric nanocomposites for the job, this unique book also includes valuable real-world examples of polymeric nanocomposites in a

  7. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science.

    Science.gov (United States)

    Rother, Martin; Nussbaumer, Martin G; Renggli, Kasper; Bruns, Nico

    2016-11-07

    Protein cages are hollow protein nanoparticles, such as viral capsids, virus-like particles, ferritin, heat-shock proteins and chaperonins. They have well-defined capsule-like structures with a monodisperse size. Their protein subunits can be modified by genetic engineering at predetermined positions, allowing for example site-selective introduction of attachment points for functional groups, catalysts or targeting ligands on their outer surface, in their interior and between subunits. Therefore, protein cages have been extensively explored as functional entities in bionanotechnology, as drug-delivery or gene-delivery vehicles, as nanoreactors or as templates for the synthesis of organic and inorganic nanomaterials. The scope of functionalities and applications of protein cages can be significantly broadened if they are combined with synthetic polymers on their surface or within their interior. For example, PEGylation reduces the immunogenicity of protein cage-based delivery systems and active targeting ligands can be attached via polymer chains to favour their accumulation in diseased tissue. Polymers within protein cages offer the possibility of increasing the loading density of drug molecules, nucleic acids, magnetic resonance imaging contrast agents or catalysts. Moreover, the interaction of protein cages and polymers can be used to modulate the size and shape of some viral capsids to generate structures that do not occur with native viruses. Another possibility is to use the interior of polymer cages as a confined reaction space for polymerization reactions such as atom transfer radical polymerization or rhodium-catalysed polymerization of phenylacetylene. The protein nanoreactors facilitate a higher degree of control over polymer synthesis. This review will summarize the hybrid structures that have been synthesized by polymerizing from protein cage-bound initiators, by conjugating polymers to protein cages, by embedding protein cages into bulk polymeric

  8. Polymeric Materials for Cell Microencapsulation.

    Science.gov (United States)

    Aijaz, A; Perera, D; Olabisi, Ronke M

    2017-01-01

    Mammalian cells have been microencapsulated within both natural and synthetic polymers for over half a century. Specifically, in the last 36 years microencapsulated cells have been used therapeutically to deliver a wide range of drugs, cytokines, growth factors, and hormones while enjoying the immunoisolation provided by the encapsulating material. In addition to preventing immune attack, microencapsulation prevents migration of entrapped cells. Cells can be microencapsulated in a variety of geometries, the most common being solid microspheres and hollow microcapsules. The micrometer scale permits delivery by injection and is within diffusion limits that allow the cells to provide the necessary factors that are missing at a target site, while also permitting the exchange of nutrients and waste products. The majority of cell microencapsulation is performed with alginate/poly-L-lysine microspheres. Since alginate itself can be immunogenic, for cell-based therapy applications various groups are investigating synthetic polymers to microencapsulate cells. We describe a protocol for the formation of microspheres and microcapsules using the synthetic polymer poly(ethylene glycol) diacrylate (PEGDA).

  9. Trends in polymeric electrospun fibers and their use as oral biomaterials.

    Science.gov (United States)

    Meireles, Agnes B; Corrêa, Daniella K; da Silveira, João Vw; Millás, Ana Lg; Bittencourt, Edison; de Brito-Melo, Gustavo Ea; González-Torres, Libardo A

    2018-05-01

    Electrospinning is one of the techniques to produce structured polymeric fibers in the micro or nano scale and to generate novel materials for biomedical proposes. Electrospinning versatility provides fibers that could support different surgical and rehabilitation treatments. However, its diversity in equipment assembly, polymeric materials, and functional molecules to be incorporated in fibers result in profusion of recent biomaterials that are not fully explored, even though the recognized relevance of the technique. The present article describes the main electrospun polymeric materials used in oral applications, and the main aspects and parameters of the technique. Natural and synthetic polymers, blends, and composites were identified from the available literature and recent developments. Main applications of electrospun fibers were focused on drug delivery systems, tissue regeneration, and material reinforcement or modification, although studies require further investigation in order to enable direct use in human. Current and potential usages as biomaterials for oral applications must motivate the development in the use of electrospinning as an efficient method to produce highly innovative biomaterials, over the next few years. Impact statement Nanotechnology is a challenge for many researchers that look for obtaining different materials behaviors by modifying characteristics at a very low scale. Thus, the production of nanostructured materials represents a very important field in bioengineering, in which the electrospinning technique appears as a suitable alternative. This review discusses and provides further explanation on this versatile technique to produce novel polymeric biomaterials for oral applications. The use of electrospun fibers is incipient in oral areas, mainly because of the unfamiliarity with the technique. Provided disclosure, possibilities and state of the art are aimed at supporting interested researchers to better choose proper materials

  10. Handbook - Status assessment of polymeric materials in flue gas cleaning systems; Handbok - Statusbedoemning av polymera material i roekgassystem

    Energy Technology Data Exchange (ETDEWEB)

    Roemhild, Stefanie

    2011-01-15

    In today's flue gas cleaning systems with advanced energy recovery systems and improved flue gas cleaning, the use of polymeric materials has continuously increased in applications where the flue gas environment is to corrosive to be handled with metallic materials. Typical polymeric materials used are fibre reinforced plastics (FRP), glassflake-filled linings, polypropylene (PP) and fluoropolymers. Demands on increased profitability and efficiency at incineration plants involve that also polymeric materials have to face more demanding environments with increased temperature, temperature changes, changes in fuel composition and therewith fluegas composition and longer service intervals. The knowledge on how polymeric materials perform in general and how these service conditions influence them, is, however, poor and continuous status assessment is therefore necessary. The overall aim of this project has been to assess simple techniques for status assessment of polymeric materials in flue gas cleaning equipment and to perform an inventory of present experience and knowledge on the use of polymeric materials. The project consisted of an inventory of present experience, analysis of material from shut-down plants and plants still in service, field testing in a plant adding sulphur during combustion and the assessment of different non-destructive testing (NDT) methods by laboratory experiments. The results of the project are summarised in the form of a handbook which in the first place addresses plant owners and maintenance staff at incineration plants and within the pulp and paper industry. In the introductory chapter typical polymeric materials (FRP, flake linings, PP and fluoropolymers) used in flue gas cleaning equipment are described as well as the occurring corrosion mechanisms. The inventory of process equipment is divided into sections about scrubbers, flue gas ducts, stacks, internals and other equipment such as storage tanks. Typical damages are

  11. Preparation and characterization of a novel polymeric based solid-solid phase change heat storage material

    International Nuclear Information System (INIS)

    Xi Peng; Gu Xiaohua; Cheng Bowen; Wang Yufei

    2009-01-01

    Here we reported a two-step procedure for preparing a novel polymeric based solid-solid phase change heat storage material. Firstly, a copolymer monomer containing a polyethylene glycol monomethyl ether (MPEG) phase change unit and a vinyl unit was synthesized via the modification of hydrogen group of MPEG. Secondly, by copolymerization of the copolymer monomer and phenyl ethylene, a novel polymeric based solid-solid phase change heat storage material was prepared. The composition, structure and properties of the novel polymeric based solid-solid phase change material were characterized by IR, 1 H NMR, DSC, WAXD, and POM, respectively. The results show that the novel polymeric based solid-solid phase change material possesses of excellent crystal properties and high phase change enthalpy.

  12. Design considerations for multi component molecular-polymeric nonlinear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Singer, K.D. (Case Western Reserve Univ., Cleveland, OH (USA). Dept. of Physics); Kuzyk, M.G. (Washington State Univ., Pullman, WA (USA). Dept. of Physics); Fang, T.; Holland, W.R. (AT and T Bell Labs., Princeton, NJ (USA)); Cahill, P.A. (Sandia National Labs., Albuquerque, NM (USA))

    1990-01-01

    We review our work on multi component polymeric nonlinear optical materials. These materials consist of nonlinear optical molecules incorporated in a polymeric host. A cross-linked triazine polymer incorporating a dicyanovinyl terminated azo dye was found to be relatively stable at 85{degree} and posses an electro-optic coefficient of 11pm/V. We have also observed the zero dispersion condition in a new anomalous dispersion dye for phase matched second harmonic generation, and expect efficient conversion to the blue. A squarylium dye, ISQ, has been found to posses a large third order nonlinearity, and may display two-level behavior. 24 refs., 11 figs.

  13. 21 CFR 874.3620 - Ear, nose, and throat synthetic polymer material.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear, nose, and throat synthetic polymer material. 874.3620 Section 874.3620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN..., and throat synthetic polymer material. (a) Identification. Ear, nose, and throat synthetic polymer...

  14. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials

    OpenAIRE

    Janeczek, Maciej; Herman, Katarzyna; Fita, Katarzyna; Dudek, Krzysztof; Kowalczyk-Zaj?c, Ma?gorzata; Czajczy?ska-Waszkiewicz, Agnieszka; Piesiak-Pa?czyszyn, Dagmara; Kosior, Piotr; Dobrzy?ski, Maciej

    2016-01-01

    Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved fo...

  15. Numerical study of the thermal degradation of isotropic and anisotropic polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Soler, E. [Departamento de Lenguajes y Ciencias de la Computacion, ETSI Informatica, Universidad de Malaga, 29071 Malaga (Spain); Ramos, J.I. [Room I-320-D, ETS Ingenieros Industriales, Universidad de Malaga, Plaza El Ejido, s/n, 29013 Malaga (Spain)

    2005-08-01

    The thermal degradation of two-dimensional isotropic, orthotropic and anisotropic polymeric materials is studied numerically by means of a second-order accurate (in both space and time) linearly implicit finite difference formulation which results in linear algebraic equations at each time step. It is shown that, for both isotropic and orthotropic composites, the monomer mass diffusion tensor plays a role in initiating the polymerization kinetics, the formation of a polymerization kernel and the initial front propagation, whereas the later stages of the polymerization are nearly independent of the monomer mass diffusion tensor. In anisotropic polymeric composites, it has been found that the monomer mass diffusion tensor plays a paramount role in determining the initial stages of the polymerization and the subsequent propagation of the polymerization front, the direction and speed of propagation of which are found to be related to the principal directions of both the monomer mass and the heat diffusion tensors. It is also shown that the polymerization time and temperatures depend strongly on the anisotropy of the mass and heat diffusion tensors. (authors)

  16. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials.

    Science.gov (United States)

    Janeczek, Maciej; Herman, Katarzyna; Fita, Katarzyna; Dudek, Krzysztof; Kowalczyk-Zając, Małgorzata; Czajczyńska-Waszkiewicz, Agnieszka; Piesiak-Pańczyszyn, Dagmara; Kosior, Piotr; Dobrzyński, Maciej

    2016-01-01

    Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved four composite restorative materials, one lining material and a dentine bonding agent. The polymerization was conducted with the use of a diode light-curing unit. The measurements of the external surface temperature of the samples were carried out using the Thermovision®550 thermal camera. Results. The examined materials significantly differed in terms of the maximum temperatures values they reached, as well as the time required for reaching the temperatures. A statistically significant positive correlation of the maximum temperature and the sample weight was observed. Conclusions. In clinical practice, it is crucial to bear in mind the risk of thermal damage involved in the application of light-cured materials. It can be reduced by using thin increments of composite materials.

  17. Preparation and use of polymeric materials containing hydrophobic anions and plasticizers for separation of cesium and strontium

    International Nuclear Information System (INIS)

    Abney, K.D.; Kinkead, S.A.; Mason, C.F.V.; Rais, J.

    1997-01-01

    Preparation and use is described for polymeric materials containing hydrophobic anions and plasticizers for extraction of cesium and strontium. The use of polymeric materials containing plasticizers which are solvents for hydrophobic anions such as derivatives of cobalt dicarbollide or tetraphenylborate which are capable of extracting cesium and strontium ions from aqueous solutions in contact with the polymeric materials, is described. The polymeric material may also include a synergistic agent for a given ion like polyethylene glycol or a crown ether, for removal of radioactive isotopes of cesium and strontium from solutions of diverse composition and, in particular, for solutions containing large excess of sodium nitrate

  18. Functional polymeric materials : Complexing amphiphiles as structure-inducing elements

    NARCIS (Netherlands)

    ten Brinke, G.; Ikkala, O.

    2003-01-01

    Self-assembly of polymeric comb-shaped supramolecules is a powerful tool to prepare functional materials. Enhanced conductivity due to hexagonal self-organization of conducting polyaniline and polarized photoluminance in solid-state films of rodlike poly(2,5-pyridinediyl) obtained by removing

  19. Influence of zeolite nanofillers on properties of polymeric materials

    OpenAIRE

    Kopcová, M.; Ondrušová, D.; Krmela, J.; Průša, P.; Pajtášová, M.; Jankurová, Z.

    2012-01-01

    The present work deals with the preparation and study of modified polymeric materials with the replacement of carbon black by nanofillers on the basis of zeolite that is environmentally friendly. Natural zeolites from a group of aluminosilicate nanoporous materials have wide range of possibilities for applications that are environmentally friendly. Zeolites can be used in the role of fillers into the polymer materials too [1]. The given work deals with the preparation and study of modif...

  20. Polymeric materials for solar thermal applications

    CERN Document Server

    Köhl, Michael; Papillon, Philippe; Wallner, Gernot M; Saile, Sandrin

    2012-01-01

    Bridging the gap between basic science and technological applications, this is the first book devoted to polymers for solar thermal applications.Clearly divided into three major parts, the contributions are written by experts on solar thermal applications and polymer scientists alike. The first part explains the fundamentals of solar thermal energy especially for representatives of the plastics industry and researchers. Part two then goes on to provide introductory information on polymeric materials and processing for solar thermal experts. The third part combines both of these fields, dis

  1. Polymeric synthetic geo membranes in reservoirs waterproofing in the Kingdom of Morocco

    International Nuclear Information System (INIS)

    Blanco Fernandez, M.

    2015-01-01

    This essay aims to address some of the aspects related to polymeric synthetic geo membranes that could be used in reservoirs of water located in the Kingdom of Morocco. In this regard, it offers a description of the two basic components geo membranes consist of, that is, resins and additives. It also gives an overview of the key pieces of legislation affecting such an issue. Furthermore, it stresses the paramount importance of implementing monitoring procedures in order to assess the condition of geo membranes over time and, if necessary, to proceed to provide for new waterproofing. Lastly, the characteristics of the process monitoring aforementioned are detailed in terms of tensile strength, elongation, tear resistance, dynamic impact, puncture resistance, low-temperature folding. Shore hardness, stress cracking, oxidation induction times, joint strength shear and peeling test, content and dispersion of carbon black and reflection-optical and scanning-electron microscopy. (Author)

  2. Apparatus and method for stabilization or oxidation of polymeric materials

    Science.gov (United States)

    Paulauskas, Felix L [Knoxville, TN; Sherman, Daniel M [Knoxville, TN

    2010-01-19

    An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere at a selected temperature; a means for supporting the polymeric material within the chamber; and, a source of ozone-containing gas, which decomposes at the selected temperature yielding at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at the selected temperature. The ozone may be generated by a plasma discharge or by various chemical processes. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments as well as to make flame-retardant fabrics.

  3. Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization

    Science.gov (United States)

    Kermagoret, Anthony; Debuigne, Antoine; Jérôme, Christine; Detrembleur, Christophe

    2014-03-01

    The copolymerization of ethylene with polar monomers is a major challenge when it comes to the manufacture of materials with potential for a wide range of commercial applications. In the chemical industry, free-radical polymerization is used to make a large proportion of such copolymers, but the forcing conditions result in a lack of fine control over the architecture of the products. Herein we introduce a synthetic tool, effective under mild experimental conditions, for the precision design of unprecedented ethylene- and polar-monomer-based copolymers. We demonstrate how an organocobalt species can control the growth of the copolymer chains, their composition and the monomer distribution throughout the chain. By fine tuning the ethylene pressure during polymerization and by exploiting a unique reactive mode of the end of the organometallic chain, novel block-like copolymer structures can be prepared. This highly versatile synthetic platform provides access to a diverse range of polymer materials.

  4. Photo-triggered solvent-free metamorphosis of polymeric materials.

    Science.gov (United States)

    Honda, Satoshi; Toyota, Taro

    2017-09-11

    Liquefaction and solidification of materials are the most fundamental changes observed during thermal phase transitions, yet the design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion remains challenging. Here, we demonstrate that solvent-free repeatable molecular architectural transformation between liquid-star and nonliquid-network polymers that relies on cleavage and reformation of a covalent bond in hexaarylbiimidazole. Liquid four-armed star-shaped poly(n-butyl acrylate) and poly(dimethyl siloxane) with 2,4,5-triphenylimidazole end groups were first synthesized. Subsequent oxidation of the 2,4,5-triphenylimidazoles into 2,4,5-triphenylimidazoryl radicals and their coupling with these liquid star polymers to form hexaarylbiimidazoles afforded the corresponding nonliquid network polymers. The resulting nonliquid network polymers liquefied upon UV irradiation and produced liquid star-shaped polymers with 2,4,5-triphenylimidazoryl radical end groups that reverted to nonliquid network polymers again by recoupling of the generated 2,4,5-triphenylimidazoryl radicals immediately after terminating UV irradiation.The design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion is challenging. Here, the authors show solvent-free repeatable molecular architectural transformation between liquid-star and non-liquid-network polymers by the cleavage and reformation of covalent bonds in the polymer chain.

  5. Assessment of Heat Hazard during the Polymerization of Selected Light-Sensitive Dental Materials

    Directory of Open Access Journals (Sweden)

    Maciej Janeczek

    2016-01-01

    Full Text Available Introduction. Polymerization of light-cured dental materials used for restoration of hard tooth tissue may lead to an increase in temperature that may have negative consequence for pulp vitality. Aim. The aim of this study was to determine maximum temperatures reached during the polymerization of selected dental materials, as well as the time that is needed for samples of sizes similar to those used in clinical practice to reach these temperatures. Materials and Methods. The study involved four composite restorative materials, one lining material and a dentine bonding agent. The polymerization was conducted with the use of a diode light-curing unit. The measurements of the external surface temperature of the samples were carried out using the Thermovision®550 thermal camera. Results. The examined materials significantly differed in terms of the maximum temperatures values they reached, as well as the time required for reaching the temperatures. A statistically significant positive correlation of the maximum temperature and the sample weight was observed. Conclusions. In clinical practice, it is crucial to bear in mind the risk of thermal damage involved in the application of light-cured materials. It can be reduced by using thin increments of composite materials.

  6. Evaluation of polymeric materials packed in fixed bed column for oil water remediation; Avaliacao de materiais polimericos empacotados em colunas de leito fixo para a remediacao de aguas oleosas

    Energy Technology Data Exchange (ETDEWEB)

    Queiros, Yure G.C.; Barros, Cintia Chagas; Oliveira, Roberta S.; Marques, Luiz R.S.; Cunha, Luciana; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Eloisa Mano], e-mail: yuregomes@ima.ufrj.br, e-mail: elucas@ima.ufrj.br

    2007-07-01

    Polymeric resins are being tried as an alternative material for treating oily waters from the petroleum industry, which have already been treated by conventional methods. The objective of this work has been to evaluate the purification degree of synthetic oily waters when treated in fixed bed columns packed with polymeric resins made up of hydrophilic and lipophilic moieties. The analysis used for characterizing the total grease and oil content (TOG) was fluorimetry. Starting oily waters of average TOG 50 ppm were prepared. Data obtained from eluted waters did not outweigh 10% of the TOG values of starting solutions in some blends of resins with a pretty good mechanical stability under the increase of pressure. Organoclay material showed a good retention performance, but has presented a mechanical instability too, compromising its use for larger amounts of wastewater. (author)

  7. Simultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials

    Directory of Open Access Journals (Sweden)

    Bao-guo Yao

    2017-10-01

    Full Text Available Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.

  8. Apparatus and method for oxidation and stabilization of polymeric materials

    Science.gov (United States)

    Paulauskas, Felix L [Knoxville, TN; White, Terry L [Knoxville, TN; Sherman, Daniel M [Knoxville, TN

    2009-05-19

    An apparatus for treating polymeric materials comprises a treatment chamber adapted to maintain a selected atmosphere; a means for supporting the polymeric material within the chamber; and, a source of plasma-derived gas containing at least one reactive oxidative species whereby the polymer is stabilized and cross linked through exposure to the oxidative species in the chamber at a selected temperature. The polymer may be directly exposed to the plasma, or alternatively, the plasma may be established in a separate volume from which the reactive species may be extracted and introduced into the vicinity of the polymer. The apparatus may be configured for either batch-type or continuous-type processing. The apparatus and method are especially useful for preparing polymer fibers, particularly PAN fibers, for later carbonization treatments.

  9. Improvements in or relating to method of preparing porous material/synthetic polymer composites

    International Nuclear Information System (INIS)

    Hills, P.R.; McGahan, D.J.

    1976-01-01

    Monomers in a porous natural material, e.g. cellulose fibre, wood, are polymerized with gamma radiation. Addition of a chlorinated hydrocarbon to the monomer improves fire resistance, brittleness and friction coefficient and reduces the radiation dose required for polymerization. (U.K.)

  10. Polymeric Materials for Aerospace Power and Propulsion: Overview of Polymer Research at NASA Glenn

    Science.gov (United States)

    Meador, Michael A.

    2007-01-01

    Weight, durability and performance are all major concerns for any NASA mission. Use of lightweight materials, such as fiber reinforced polymer matrix composites can lead to significant reductions in vehicle weight and improvements in vehicle performance. Research in the Polymeric Materials Branch at NASA Glenn is focused on improving the durability, properties, processability and performance of polymeric materials by utilizing both conventional polymer science and engineering as well as nanotechnology and bioinspired approaches. This presentation will provide an overview of these efforts and highlight recent progress.

  11. Development of deodorizing materials by radiation graft polymerization

    International Nuclear Information System (INIS)

    Sugo, Takanobu; Okamoto, Jiro; Fujiwara, Kunio; Sekiguchi, Hideo.

    1989-01-01

    With the development of society, the countermeasures for service water and sewerage in large cities and the environment preservation in industrial districts become difficult as their scale becomes larger. There are many unsolved problems, for example photochemical smog due to harmful gases, exhaust gas from automobiles, and smell of toilets and home waste water. The deodorizing materials used so far are mainly inorganic substances, and their ability of adsorbing harmful gases is very low. Besides, those are mostly granular, and limited in the formability. Therefore, it is expected to develop the fibrous adsorbent which has large adsorbing surface area and is easy to make filters. The chemical structures of the compounds having smell are shown. Eight legal bad smell substances which exert large influence to environment even in very small amount are designated. In this paper, the method of introducing functional radicals into existing fiber materials by the application of radiation graft polymerization process and the test of removing smelling compositions by using the obtained resin are reported. The experimental method, and the results of radiation graft polymerization, the adsorption of basic gases and acid gases, and gas flow test are described. (K.I.)

  12. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the “one-pot” synthetic approach of single-electron-transfer living radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Xu, Dazhuang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Liu, Liangji [Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Graphical abstract: The PEGylated graphene oxides with high water dispersibility, good biocompatibility as well as high drug loading capability were fabricated via “one-pot” SET-LRP. - Highlights: • Surface modification of graphene oxide with polymers. • One-pot single-electron-transfer living radical polymerization. • Improving drug delivery characteristics. • The synthetic approach is rather simple, universal and effective. - Abstract: Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient “one-pot” strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  13. Natural minerals and synthetic materials for sorption of radioactive anions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mun Ja; Chun, Kwan Sik; Kim, Seung Soo

    1998-07-01

    Technetium-99 and iodine-129 are fission products with long half-lives, and exist as highly soluble anionic species. Studies on natural and synthetic materials sorbing TcO{sub 4} and/or I have been performed by several researchers. The application of these materials as an additive in the high-level waste disposal has been considered. The iron- or sulfide-containing minerals such as metal iron, iron powder, stibnite and pyrrhotite show a high capacity for TcO{sub 4} sorption. And the small amounts of activated carbon are reported to have high distribution coefficients recently. In the iodine sorption studies, sulfide-, copper-, lead- or mercury-containing minerals can be a candidate. Pyrite, chalcopyrite, galena, Cu{sub 2}S and CuS reveal a high capacity for I sorption. The synthetic materials were found to have high sorption capacity and compensate the defects of natural minerals, which contain hydrous oxides such as zirconium oxide, aluminium oxide and mercarbide. The mercarbide has the high distribution coefficients for the sorption of TcO{sub 4} and I. Recently it was proposed that the synthetic clay, hydrotalcite, could be useful for the fixation of anion. However, to determine the applicability of those natural and synthetic materials as an additive to a buffer or backfill material for sorption of TcO{sub 4} and/or I, the sorption behavior of the anions on those materials under the repository conditions should be identified. (author). 32 refs., 21 tabs., 10 figs

  14. Radiation durability and functional reliability of polymeric materials in space systems

    International Nuclear Information System (INIS)

    Haruvy, Y.

    1990-01-01

    Polymeric materials are preferred for the light-weight construction of space-systems. Materials in space systems are required to fulfill a complete set of specifications, at utmost reliability, throughout the whole period of service in space, while being exposed to the hazardous influence of the space environment. The major threats of the space environment in orbits at the geostationary altitude (GSO) arise from ionizing radiations, the main constituents of which are highly energetic protons (affecting mainly the surface) and fast electrons (which produce the main threat to the electronic components). The maximum dose of ionizing radiation (within the limits of uncertainty of the calculations) at the surface of a material mounted on a space system, namely the ''Skin-Dose'', is ca. 2500 Mrads/yr. Space systems such as telecommunication satellites are planned to serve for prolonged periods of 30 years and longer. The cumulative predicted dose of ionizing-radiation over such periods presents a severe threat of chemical degradation to most of the polymeric construction materials commonly utilized in space systems. The reliability of each of the polymeric materials must be evaluated in detail, considering each of the relevant typical threats, such as ionizing-radiation, UV radiation, meteoroides flux, thermal cycling and ultra-high vacuum. For each of the exposed materials, conservation of the set of functional characteristics such as mechanical integrity, electrical and thermo-optical properties, electrical conductivity, surface charging and outgassing properties, which may cause contamination of neighboring systems, is evaluated. The reliability of functioning of the materials exposed to the space environment can thus be predicted, utilizing data from the literature, experimental results reported from space flights and laboratory simulations, and by chemical similarity of untested polymers to others. (author)

  15. The compatibility of various polymeric liner and pipe materials with simulated double-shell slurry feed at 90 degree C

    International Nuclear Information System (INIS)

    Farnsworth, R.K.; Hymas, C.R.

    1989-08-01

    The purpose of this study was to evaluate the compatibility of various polymeric liner and pipe materials with a low-level radioactive waste slurry called double-shell slurry feed (DSSF). The evaluation was necessary as part of the permitting process authorized by the Resource Conservation and Recovery Act (RCRA), PL-94-580. Materials that were examined included five flexible membrane liners (Hytrel reg sign polyester, polyurethane, 8130 XR5 reg sign, polypropylene, and high-density polyethylene) and high-density polyethylene (HDPE) pipe. The liner and pipe samples were immersed for 120 days in the synthetic DSSE at 90 degree C, the maximum expected temperature in the waste disposal scenario. Physical properties of the liner and pipe samples were measured before immersion and every 30 days after immersion, in accordance with EPA Method 9090. In addition, some of the materials were exposed to four different radiation doses after 30 days of immersion. Physical properties of these materials were measured immediately after exposure and after an additional 90 days of immersion to determine each material's response to radiation, and whether radiation exposure affected the chemical compatibility of the material. 20 refs., 41 figs., 13 tabs

  16. New Soft Polymeric Materials Applicable as Elastomeric Transducers

    DEFF Research Database (Denmark)

    Bejenariu, Anca Gabriela; Skov, Anne Ladegaard

    An elastomer is a material characterized by the capability to regain its original size and shape after being deformed (stretched or distorted). An ideal elastomer for electroactive polymer (EAP) applications is a system characterized by high extensibility, flexibility and a good mechanical fatigue....... Dielectric elastomers (DEs) are part of electronic EAPs presenting a good combination of electromechanical properties such as high achievable strains and stresses, fast response speeds, long lifetime, high reliability and high efficiency1. Subjected to a voltage, a polymeric electroactive material sandwiched...... easy to handle. From a mechanical point of view, the materials for EAPs use have to be soft with sufficient mechanical strength so the rupture of the material can be avoided at high strain actuation. Considering the EAP requirements and the experimental data for the hyperswollen networks based...

  17. PREFACE: 9th National Symposium on Polymeric Materials (NSPM 2009)

    Science.gov (United States)

    Ali, Aidy; Salit, Sapuan

    2010-07-01

    NSPM 2009 is the formal proceedings of the 9th National Symposium on Polymeric Materials held in Residence Hotel Uniten Bangi on 14-16 December 2009. It is also organised with The Plastics and Rubber Institute Malaysia PRIM. The symposium proceedings consists of 94 papers covering a large number of issues on experimental and analytical studies of polymeric materials. The objectives of the symposium are to review the state-of-the art, present and latest findings and exchange ideas among engineers, researchers and practitioners involved in this field. We strongly hope the outcomes of this symposium will stimulate and enhanced the progress of experimental and analytical studies on polymeric materials as well as contribute to the fundamental understanding in related fields. After careful refereeing of all manuscripts, 15 papers were selected for publications in this issue. Another 20 papers were selected for publication in Pertanika Journal of Science and Technology (PJST). The content of the material and its rapid dissemination was considered to be more important than its form. We are grateful to all the authors for their papers and presentations in this symposium. They are also the ones who help make this symposium possible through their hard work in the preparation of the manuscripts. We would also like to offer our sincere thanks to all the invited speakers who came to share their knowledge with us. We would also like to acknowledge the untiring efforts of the reviewers, research assistants and students in meeting deadlines and for their patience and perseverance. We are indeed honoured to associate this event with Department of Mechanical and Manufacturing, and Faculty of Engineering, Universiti Putra Malaysia. Finally, we appreciate the sponsor support provided by Faculty of Engineering, The Plastics and Rubber Institute Malaysia (PRIM) and PETRONAS Malaysia. Thank you all. Editors: Aidy Ali and S M Sapuan

  18. Optical and Scanning electron Microscopy as advanced analysis methods to determine the condition of synthetic geo membranes

    International Nuclear Information System (INIS)

    Soriano Carrillo, J.; Blanco Fernandez, M.; Garcia Calleja, M. A.; Leiro Lopez, A.; Mateo Sanz, B.; Aguilar Gonzalez, E.; Rubin de Celix, M.

    2014-01-01

    Microscopic techniques have been widely used for years in the study of inorganic materials however their use in organic materials and specifically, in synthetic geo membranes, is very limited. In this study, this innovative technology has been used with the different geo synthetic polymeric barriers with which this research team is experienced: plasticized polyvinyl chloride, polyethylenes, rubbers such as ethenyltriphenyl-diene monomer terpolymer and butyl, polyolefins, ethylene-vinyl acetate copolymer, chlorosulfonated polyethylene and polypropylene. the influence of the extraction area and the time since their application is tested. (Author)

  19. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol-Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science.

    Science.gov (United States)

    Czarnecki, Sebastian; Bertin, Annabelle

    2018-03-07

    Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Thermally Re-mendable Cross-Linked Polymeric Material

    Science.gov (United States)

    Chen, Xiangxu; Dam, Matheus A.; Ono, Kanji; Mal, Ajit; Shen, Hongbin; Nutt, Steven R.; Sheran, Kevin; Wudl, Fred

    2002-03-01

    We have developed a transparent organic polymeric material that can repeatedly mend or ``re-mend'' itself under mild conditions. The material is a tough solid at room temperature and below with mechanical properties equaling those of commercial epoxy resins. At temperatures above 120°C, approximately 30% (as determined by solid-state nuclear magnetic resonance spectroscopy) of ``intermonomer'' linkages disconnect but then reconnect upon cooling, This process is fully reversible and can be used to restore a fractured part of the polymer multiple times, and it does not require additional ingredients such as a catalyst, additional monomer, or special surface treatment of the fractured interface.

  1. A phenomenological approach of solidification of polymeric phase change materials

    Science.gov (United States)

    Bahrani, Seyed Amir; Royon, Laurent; Abou, Bérengère; Osipian, Rémy; Azzouz, Kamel; Bontemps, André

    2017-01-01

    Phase Change Materials (PCMs) are widely used in thermal energy storage and thermal management systems due to their small volume for a given stored energy and their capability for maintaining nearly constant temperatures. However, their performance is limited by their low thermal conductivity and possible leaks while in the liquid phase. One solution is to imprison the PCM inside a polymer mesh to create a Polymeric Phase Change Material (PPCM). In this work, we have studied the cooling and solidification of five PPCMs with different PCMs and polymer fractions. To understand the heat transfer mechanisms involved, we have carried out micro- and macrorheological measurements in which Brownian motion of tracers embedded in PPCMs has been depicted and viscoelastic moduli have been measured, respectively. Beyond a given polymer concentration, it was shown that the Brownian motion of the tracers is limited by the polymeric chains and that the material exhibits an elastic behavior. This would suggest that heat transfer essentially occurs by conduction, instead of convection. Experiments were conducted to measure temperature variation during cooling of the five samples, and a semi-empirical model based on a phenomenological approach was proposed as a practical tool to choose and size PPCMs.

  2. TEGDMA and UDMA monomers released from composite dental material polymerized with diode and halogen lamps.

    Science.gov (United States)

    Wacławczyk, Agnieszka; Postek-Stefańska, Lidia; Pietraszewska, Daria; Birkner, Ewa; Zalejska-Fiolka, Jolanta; Wysoczańska-Jankowicz, Iwona

    2018-03-20

    More than 35 substances released from composite fillings have been identified. Among these, basic monomers and the so-called co-monomers are most often reported. The substances released from polymer-based materials demonstrate allergenic, cytotoxic, genotoxic, mutagenic, embryotoxic, teratogenic, and estrogenic properties. The aim of this study was to measure the amounts of triethylene glycol dimethacrylate (TEGDMA) and urethane dimethacrylate (UDMA) monomers released from composite dental fillings to citrate-phosphate buffer with the pH of 4, 6, 8 after 24 h and 6 months from the polymerization. Ten samples for each polymerization method had been made from the composite material (Filtek Supreme XT, 3M ESPE, St. Paul, USA), which underwent polymerization using the following lamps: halogen lamp (Translux CL, Heraeus Kulzer, Hanau, Germany) (sample H) and diode lamp (Elipar Freelight 2, 3M ESPE), with soft start function (group DS) and without that function (group DWS). It has been demonstrated that the type of light-curing units has a significant impact on the amount of TEGDMA and UDMA released. The amount of UDMA and TEGDMA monomers released from composite fillings differed significantly depending on the source of polymerization applied, as well as the pH of the solution and sample storage time. Elution of the monomers from composite material polymerized using halogen lamp was significantly greater as compared to curing with diode lamps.

  3. Studies on Development of Polymeric Materials Using Gamma Irradiation for Contact and Intraocular Lenses

    Directory of Open Access Journals (Sweden)

    Pranshu Chhabra

    2009-01-01

    Full Text Available For the development of materials for contact lenses and intraocular lenses, the selection criteria is based on the (i capacity to absorb and retain water, (ii hydrophilicity and hydrophobicity, (iii refractive index and (iv hardness besides the other essential properties. Various monomers are being studied to develop suitable materials for such applications. Selection of suitable monomers that can be converted into optical materials of desired characteristics is the most essential step. In the present paper, an attempt has been made to develop suitable optical polymers based on 2-hydroxy ethyl methacrylate (HEMA, N-vinyl pyrrolidone (NVP, methyl methacrylate (MMA, methacrylic acid (MAA, and styrene. Compositions were prepared in such a way that polymers of varying hydrophilicity or hydrophobicity could be obtained keeping HEMA as the base (main monomer. For polymerization, gamma irradiation (Co-60 as a source was used. The results of the study showed that: (i an increase in NVP and MAA content brought in an increase in hydrophilicity of polymerized HEMA (pHEMA, while the addition of styrene and MMA decreased hydrophilicity of polymerized HEMA (pHEMA, (ii polymers for contact lenses with water retention capacity as high as >50 wt.% and as low as <10 wt% with varying content of suitable comonomers can be designed, (iii polymeric materials for contact lenses can be made by using radiation processing such as Co-60 and (iv a dose of 40 kGy was found to be ideal for purpose.

  4. Radiation durability of polymeric materials in solid polymer electrolyzer for fusion tritium plant

    International Nuclear Information System (INIS)

    Iwai, Yasunori; Yamanishi, Toshihiko; Hiroki, Akihiro; Tamada, Masao

    2009-02-01

    This document presents the radiation durability of various polymeric materials applicable to a solid-polymer-electrolyte (SPE) water electrolyzer to be used in the tritium facility of fusion reactor. The SPE water electrolyzers are applied to the water detritiation system (WDS) of the ITER. In the ITER, an electrolyzer should keep its performance during two years operation in the tritiated water of 9TBq/kg, the design tritium concentration of the ITER. The tritium exposure of 9TBq/kg for two years is corresponding to the irradiation of no less than 530 kGy. In this study, the polymeric materials were irradiated with γ-rays or with electron beams at various conditions up to 1600 kGy at room temperature or at 343 K. The change in mechanical and functional properties were investigated by stress-strain measurement, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray photoelectron spectra (XPS), and so on. Our selection of polymeric materials for a SPE water electrolyzer used in a radiation environment was Pt + Ir applied Nafion N117 ion exchange membrane, VITON O-ring seal and polyimide insulator. (author)

  5. Mechanical and Electrical Properties of Sulfur-Containing Polymeric Materials Prepared via Inverse Vulcanization

    Directory of Open Access Journals (Sweden)

    Sergej Diez

    2017-02-01

    Full Text Available Recently, new methods have been developed for the utilization of elemental sulfur as a feedstock for novel polymeric materials. One promising method is the inverse vulcanization, which is used to prepare polymeric structures derived from sulfur and divinyl comonomers. However, the mechanical and electrical properties of the products are virtually unexplored. Hence, in the present study, we synthesized a 200 g scale of amorphous, hydrophobic as well as translucent, hyperbranched polymeric sulfur networks that provide a high thermal resistance (>220 °C. The polymeric material properties of these sulfur copolymers can be controlled significantly by varying the monomers as well as the feed content. The investigated comonomers are divinylbenzene (DVB and 1,3-diisopropenylbenzene (DIB. Plastomers with low elastic content and high shape retention containing 12.5%–30% DVB as well as low viscose waxy plastomers with a high flow behavior containing a high DVB content of 30%–35% were obtained. Copolymers with 15%–30% DIB act, on the one hand, as thermoplastics and, on the other hand, as vitreous thermosets with a DIB of 30%–35%. Results of the thermogravimetric analysis (TGA, the dynamic scanning calorimetry (DSC and mechanical characterization, such as stress–strain experiments and dynamic mechanical thermal analysis, are discussed with the outcome that they support the assumption of a polymeric cross-linked network structure in the form of hyper-branched polymers.

  6. Radiation sterilization of polymeric implant materials

    International Nuclear Information System (INIS)

    Bruck, S.D.; Mueller, E.P.

    1988-01-01

    High-energy irradiation sterilization of medical devices and implants composed of polymeric biomaterials that are in contact with tissue and/or blood, may adversely affect their long-term mechanical and/or biological performance (tissue and/or blood compatibility). Since many polymeric implants may contain trace quantities of catalysts and/or other additives, the effect of high-energy radiation on these additives, and possible synergistic effects with the polymer chains under the influence of high-energy radiation, must be considered. It is essential to indicate whether polymeric implants are used in short-term (acute) or long-term (chronic) applications. Relatively small changes in their physicochemical, mechanical, and biological properties may be tolerable in the short term, whereas similar changes may lead to catastrophic failures in long-term applications. Therefore, polymeric implants which are to be sterilized by high-energy irradiation should be carefully evaluated for long-term property changes which may be induced by the radiation

  7. Synthetic opal as a template for nanostructured materials

    Science.gov (United States)

    White, Paul A.; Heales, Lindsey; Barber, Richard L.; Turney, Terence W.

    2001-04-01

    Synthetic opal has been used as a template for making 3D inverse opals of silica, titania and silicone rubber. The materials are mesoporous with connected pores and channels and have better opalescence than the opal templates they replace. Thin films of synthetic opal have been grown onto glass substrates by spin coating and these have also been used as templates for making thin films of inverse opal and as masks for depositing metal nanodots. This method produced hexagonally patterned 50 nm gold dots on a flat graphite substrate.

  8. Two-photon polymerization of an epoxy-acrylate resin material system

    International Nuclear Information System (INIS)

    Winfield, R.J.; O'Brien, S.

    2011-01-01

    Improved material systems are of great interest in the development of two-photon polymerization techniques for the fabrication of three dimensional micro- and nano-structures. The properties of the photosensitive resin are important in the realisation of structures with submicron dimensions. In this study investigation of a custom organic resin, cross-linked by a two-photon induced process, using a femtosecond Ti:sapphire laser, is described. A structural, optical and mechanical analysis of the optimised material is presented. The influence of both material system and laser processing parameters on achievable micro-structure and size is presented as are representative structures. Parameters include: laser power, photo-initiator concentration and material composition.

  9. Polymeric Materials for Conversion of Electromagnetic Waves from the Sun to Electric Power

    Directory of Open Access Journals (Sweden)

    SK Manirul Haque

    2018-03-01

    Full Text Available Solar photoelectric energy converted into electricity requires large surface areas with incident light and flexible materials to capture these light emissions. Currently, sunlight rays are converted to electrical energy using silicon polymeric material with efficiency up to 22%. The majority of the energy is lost during conversion due to an energy gap between sunlight photons and polymer energy transformation. This energy conversion also depends on the morphology of present polymeric materials. Therefore, it is very important to construct mechanisms of highest energy occupied molecular orbitals (HOMOs and the lowest energy unoccupied molecular orbitals (LUMOs to increase the efficiency of conversion. The organic and inorganic solar cells used as dyes can absorb more photons from sunlight and the energy gap will be less for better conversion of energy to electricity than the conventional solar cells. This paper provides an up-to-date review on the performance, characterization, and reliability of different composite polymeric materials for energy conversion. Specific attention has been given to organic solar cells because of their several advantages over others, such as their low-energy payback time, conversion efficiency and greenhouse emissions. Finally, this paper provides the recent progress on the application of both organic and inorganic solar cells for electric power generations together with several challenges that are currently faced.

  10. The synthesis and characterisation of mucoadhesive polymeric systems using synthetic and natural polymers

    OpenAIRE

    Sarah, Duggan

    2015-01-01

    Mucoadhesion is the binding of a material to a mucosal surface. The mucosal surface has a rate of absorption of up to four times that of the skin and, therefore, has great potential as a route of drug administration. Mucoadhesive polymeric drug delivery devices have been designed to allow for the slow and controlled release of a drug to a specific site, with fewer side effects and greater bioavailability in comparison to other methods of administration. In this project, mucoadhesive polyme...

  11. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    Science.gov (United States)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-08-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20-80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5-25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties.

  12. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  13. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  14. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  15. Polymer-Block-Polypeptides and Polymer-Conjugated Hybrid Materials as Stimuli-Responsive Nanocarriers for Biomedical Applications.

    Science.gov (United States)

    John, Johnson V; Johnson, Renjith P; Heo, Min Seon; Moon, Byeong Kyu; Byeon, Seong Jin; Kim, Il

    2015-01-01

    Stimuli-responsive nanocarriers are a class of soft materials that includes natural polymers, synthetic polymers, and polypeptides. Recently, modern synthesis tools such as atom transfer radical polymerization, reversible addition-fragmentation chain transfer polymerization, nitroxide-mediated radical polymerization, ring-opening polymerization of α-amino acid N-carboxyanhydrides, and various "click" chemistry strategies were simultaneously employed for the design and synthesis of nanosized drug delivery vehicles. Importantly, the research focused on the improvement of the nanocarrier targetability and the site-specific, triggered release of therapeutics with high drug loading efficiency and minimal drug leakage during the delivery to specific targets. In this context, nanocarriers responsive to common stimuli such as pH, temperature, redox potential, light, etc. have been widely used for the controlled delivery of therapeutics to pathological sites. Currently, different synthesis and self-assembly strategies improved the drug loading efficacy and targeted delivery of therapeutic agents to the desired site. In particular, polypeptide-containing hybrid materials have been developed for the controlled delivery of therapeutic agents. Therefore, stimuli-sensitive synthetic polypeptide-based materials have been extensively investigated in recent years. This review focuses on recent advances in the development of polymer-block-polypeptides and polymer-conjugated hybrid materials that have been designed and evaluated for various stimuli-responsive drug and gene delivery applications.

  16. Sensor calibration of polymeric Hopkinson bars for dynamic testing of soft materials

    Science.gov (United States)

    Martarelli, Milena; Mancini, Edoardo; Lonzi, Barbara; Sasso, Marco

    2018-02-01

    Split Hopkinson pressure bar (SHPB) testing is one of the most common techniques for the estimation of the constitutive behaviour of metallic materials. In this paper, the characterisation of soft rubber-like materials has been addressed by means of polymeric bars thanks to their reduced mechanical impedance. Due to their visco-elastic nature, polymeric bars are more sensitive to temperature changes than metallic bars, and due to their low conductance, the strain gauges used to measure the propagating wave in an SHPB may be exposed to significant heating. Consequently, a calibration procedure has been proposed to estimate quantitatively the temperature influence on strain gauge output. Furthermore, the calibration is used to determine the elastic modulus of the polymeric bars, which is an important parameter for the synchronisation of the propagation waves measured in the input and output bar strain gate stations, and for the correct determination of stress and strain evolution within the specimen. An example of the application has been reported in order to demonstrate the effectiveness of the technique. Different tests at different strain rates have been carried out on samples made of nytrile butadyene rubber (NBR) from the same injection moulding batch. Thanks to the correct synchronisation of the measured propagation waves measured by the strain gauges and applying the calibrated coefficients, the mechanical behaviour of the NBR material is obtained in terms of strain-rate-strain and stress-strain engineering curves.

  17. New methodology developed for the differential scanning calorimetry analysis of polymeric matrixes incorporating phase change materials

    International Nuclear Information System (INIS)

    Barreneche, Camila; Solé, Aran; Miró, Laia; Martorell, Ingrid; Cabeza, Luisa F; Fernández, A Inés

    2012-01-01

    Nowadays, thermal comfort needs in buildings have led to an increase in energy consumption of the residential and service sectors. For this reason, thermal energy storage is shown as an alternative to achieve reduction of this high consumption. Phase change materials (PCM) have been studied to store energy due to their high storage capacity. A polymeric material capable of macroencapsulating PCM was developed by the authors of this paper. However, difficulties were found while measuring the thermal properties of these materials by differential scanning calorimetry (DSC). The polymeric matrix interferes in the detection of PCM properties by DSC. To remove this interfering effect, a new methodology which replaces the conventional empty crucible used as a reference in the DSC analysis by crucibles composed of the polymeric matrix was developed. Thus, a clear signal from the PCM is obtained by subtracting the new full crucible signal from the sample signal. (paper)

  18. The Synthesis of Cellulose Graft Copolymers Using Cu(0)-Mediated Polymerization

    Science.gov (United States)

    Donaldson, Jason L.

    Cellulose is the most abundant renewable polymer on the planet and there is great interest in expanding its use beyond its traditional applications. However, its hydrophilicity and insolubility in most common solvent systems are obstacles to its widespread use in advanced materials. One way to counteract this is to attach hydrophobic polymer chains to cellulose: this allows the properties of the copolymer to be tailored by the molecular weight, density, and physical properties of the grafts. Two methods were used here to synthesize the graft copolymers: a 'grafting-from' approach, where synthetic chains were grown outward from bromoester moieties on cellulose (Cell-BiB) via Cu(0)-mediated polymerization; and a 'grafting-to' approach, where fully formed synthetic chains with terminal sulfide functionality were added to cellulose acetate with methacrylate functionality (CA-MAA) via thiol-ene Michael addition. The Cell-BiB was synthesized in the ionic liquid 1-butyl-3-methylimidazolium chloride and had a degree of substitution of 1.13. Polymerization from Cell-BiB proceeded at similar but slightly slower rate than an analogous non-polymeric initiator (EBiB). The average graft density of poly(methyl acrylate) chains was 0.71 chains/ring, with a maximum of 1.0 obtained. The graft density when grafting poly(methyl methacrylate) was only 0.15, and this appeared to be due to the slow initiation of BiB groups. Using EBiB to model the reaction and improve the design should allow this to be overcome. Chain extension experiments demonstrated the living behaviour of the polymer. The CA-MAA was synthesized by esterification with methacrylic acid. Reactions of CA-MAA with thiophenol and dodecanethiol resulted in quantitative addition of the thiol to the alkene. The grafts were synthesized by Cu(0)-mediated polymerization from a bifunctional initiator containing a disulfide bond, followed by reduction to sulfides. The synthetic polymers were successfully grafted to CA-MAA but the

  19. Influences of air pollutants on polymeric materials. Natural weathering of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, T.F.R. [Fraunhofer-Institut fuer Chemische Technologie, Pfinztal-Berghausen (Germany)

    1995-12-31

    Polymeric materials are affected during their entire service life by a number of environmental influences. These originate from both man made and natural sources. Such environmental influences include solar radiation, temperature, humidity and air pollutant effects. They all act together, some independently and some synergistically, to influence material properties, as well as functionality, service life, quality and reliability of the poly materials and systems. The main degradation process is chain scission with loss of molecular weight and oxidation, followed by fading of colours and loss of gloss and mechanical strength. Due to the large number of different types of polymers there are many types of degradation processes and it is difficult to generalise about the effects of the environment on organic materials. Materials, as opposed to organisms, have no self-repair mechanism which allows them to tolerate a certain level of stress. In principle, therefore, it is not possible to define critical levels for the effects of pollutants on materials below which no deterioration occurs. Material deterioration by weathering is normally a very slow process lasting some or more years. Therefore attempts have been made to produce deterioration in short-term experiments by using high stress levels. The limits for the high stress levels are given by the comparability of the obtained damage from artificially accelerated weathering with these from real natural weathering. To investigate the damage caused by air pollutants on polymeric materials, samples were natural weathered with some light exposed and some dark stored samples in different climatic and polluted areas of Germany. The weathering stations are closed to the continuously measuring stations for air quality

  20. Influences of air pollutants on polymeric materials. Natural weathering of polymers

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, T F.R. [Fraunhofer-Institut fuer Chemische Technologie, Pfinztal-Berghausen (Germany)

    1996-12-31

    Polymeric materials are affected during their entire service life by a number of environmental influences. These originate from both man made and natural sources. Such environmental influences include solar radiation, temperature, humidity and air pollutant effects. They all act together, some independently and some synergistically, to influence material properties, as well as functionality, service life, quality and reliability of the poly materials and systems. The main degradation process is chain scission with loss of molecular weight and oxidation, followed by fading of colours and loss of gloss and mechanical strength. Due to the large number of different types of polymers there are many types of degradation processes and it is difficult to generalise about the effects of the environment on organic materials. Materials, as opposed to organisms, have no self-repair mechanism which allows them to tolerate a certain level of stress. In principle, therefore, it is not possible to define critical levels for the effects of pollutants on materials below which no deterioration occurs. Material deterioration by weathering is normally a very slow process lasting some or more years. Therefore attempts have been made to produce deterioration in short-term experiments by using high stress levels. The limits for the high stress levels are given by the comparability of the obtained damage from artificially accelerated weathering with these from real natural weathering. To investigate the damage caused by air pollutants on polymeric materials, samples were natural weathered with some light exposed and some dark stored samples in different climatic and polluted areas of Germany. The weathering stations are closed to the continuously measuring stations for air quality

  1. Cyclic stress-strain behavior of polymeric nonwoven structures for the use as artificial leaflet material for transcatheter heart valve prostheses

    Directory of Open Access Journals (Sweden)

    Arbeiter Daniela

    2017-09-01

    Full Text Available Xenogenic leaflet material, bovine and porcine pericardium, is widely used for the fabrication of surgically implanted and transcatheter heart valve prostheses. As a biological material, long term durability of pericardium is limited due to calcification, degeneration and homogeneity. Therefore, polymeric materials represent a promising approach for a next generation of artificial heart valve leaflets with improved durability. Within the current study we analyzed the mechanical performance of polymeric structures based on elastomeric materials. Polymeric cast films were prepared and nonwovens were manufactured in an electrospinning process. Analysis of cyclic stress-strain behavior was performed, using a universal testing machine. The uniaxial cyclic tensile experiments of the elastomeric samples yielded a non-linear elastic response due to viscoelastic behavior with hysteresis. Equilibrium of stress-strain curves was found after a specific number of cycles, for cast films and nonwovens, respectively. In conclusion, preconditioning was found obligatory for the evaluation of the mechanical performance of polymeric materials for the use as artificial leaflet material for heart valve prostheses.

  2. REVIEW: CHITOSAN BASED HYDROGEL POLYMERIC BEADS – AS DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Manjusha Rani

    2010-11-01

    Full Text Available Chitosan obtained by alkaline deacetylation of chitin is a non-toxic, biocompatible, and biodegradable natural polymer. Chitosan-based hydrogel polymeric beads have been extensively studied as micro- or nano-particulate carriers in the pharmaceutical and medical fields, where they have shown promise for drug delivery as a result of their controlled and sustained release properties, as well as biocompatibility with tissue and cells. To introduce desired properties and enlarge the scope of the potential applications of chitosan, graft copolymerization with natural or synthetic polymers on it has been carried out, and also, various chitosan derivatives have been utilized to form beads. The desired kinetics, duration, and rate of drug release up to therapeutical level from polymeric beads are limited by specific conditions such as beads material and their composition, bead preparation method, amount of drug loading, drug solubility, and drug polymer interaction. The present review summarizes most of the available reports about compositional and structural effects of chitosan-based hydrogel polymeric beads on swelling, drug loading, and releasing properties. From the studies reviewed it is concluded that chitosan-based hydrogel polymeric beads are promising drug delivery systems.

  3. Testing of Candidate Polymeric Materials for Compatibility with Pure Alternate Pretreat as Part of the Universal Waste Management System (UWMS)

    Science.gov (United States)

    Wingard, C. D.

    2018-01-01

    The Universal Waste Management System (UWMS) is an improved Waste Collection System for astronauts living and working in low Earth orbit spacecraft. Polymeric materials used in water recovery on International Space Station are regularly exposed to phosphoric acid-treated 'pretreated' urine. Polymeric materials used in UWMS are not only exposed to pretreated urine, but also to concentrated phosphoric acid with oxidizer before dilution known as 'pure pretreat.' Samples of five different polymeric materials immersed in pure pretreat for 1 year were tested for liquid compatibility by measuring changes in storage modulus with a dynamic mechanical analyzer.

  4. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering.

    Science.gov (United States)

    Rosellini, Elisabetta; Cristallini, Caterina; Guerra, Giulio D; Barbani, Niccoletta

    2015-01-01

    The aim of this work was the development of new synthetic polymeric systems, functionalized by surface chemical modification with bioactive peptides, for myocardial tissue engineering. Polycaprolactone and a poly(ester-ether-ester) block copolymer synthesized in our lab, polycaprolactone-poly(ethylene oxide)-polycaprolactone (PCL-PEO-PCL), were used as the substrates to be modified. Two pentapeptides, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS) from fibronectin and H-Tyr-Ile-Gly-Ser-Arg-OH (YIGSR) from laminin, were used for the functionalization. Polymeric membranes were obtained by casting from solutions and then functionalized by means of alkaline hydrolysis and subsequent coupling of the bioactive molecules through 1-(3-dimethylaminopropyl)-3-ethylcarbodimide hydrochloride/N-hydroxysuccinimide chemistry. The hydrolysis conditions, in terms of hydrolysis time, temperature, and sodium hydroxide concentration, were optimized for the two materials. The occurrence of the coupling reaction was demonstrated by infrared spectroscopy, as the presence on the functionalized materials of the absorption peaks typical of the two peptides. The peptide surface density was determined by chromatographic analysis and the distribution was studied by infrared chemical imaging. The results showed a nearly homogeneous peptide distribution, with a density above the minimum value necessary to promote cell adhesion. Preliminary in vitro cell culture studies demonstrated that the introduction of the bioactive molecules had a positive effect on improving C2C12 myoblasts growth on the synthetic materials.

  5. Thermally Self-Healing Polymeric Materials : The Next Step to Recycling Thermoset Polymers?

    NARCIS (Netherlands)

    Zhang, Youchun; Broekhuis, Antonius A.; Picchioni, Francesco

    2009-01-01

    We developed thermally self-healing polymeric materials on the basis of furan-functionalized, alternating thermosetting polyketones (PK-furan) and bis-maleimide by using the Diels-Alder (DA) and Retro-Diels-Alder (RDA) reaction sequence. PK-furan can be easily obtained under mild conditions by the

  6. In Vitro Investigation of Wear of CAD/CAM Polymeric Materials Against Primary Teeth

    Directory of Open Access Journals (Sweden)

    Jae-Won Choi

    2017-12-01

    Full Text Available The aim of the study was to evaluate the effects of polymeric computer-aided design/computer-aided manufacturing CAD/CAM materials on antagonistic primary tooth wear. Five CAD/CAM polymeric materials were examined: Vipi Block Monocolor (VBM, Yamahachi polymethylmethacrylate (PMMA (YAP, Mazic Duro (MZD, Vita Enamic (ENA, and Pekkton (PEK. All of the specimens were tested in a thermomechanical loading machine with the primary canine as the antagonist (50 N, 1.2 × 105 cycles, 1.7 Hz, 5/55 °C. The wear losses of the antagonist tooth and the restorative materials were calculated using reverse modelling software and an electronic scale. VBM and ENA showed significantly higher antagonist tooth wear than PEK (p < 0.05, but there was no significant difference observed among VBM, YAP, MZD, and ENA (p > 0.05. PEK showed the largest value in both material volumetric and weight losses. In terms of material volumetric losses, there was no significant difference between all of the groups (p > 0.05. In terms of material weight losses, PEK was significantly larger than ENA (p < 0.05, but there was no significant difference between VBM, YAP, MZD, and ENA (p > 0.05. Volumetric and weight losses of materials showed similar wear behaviour. However, the wear patterns of antagonists and materials were different, especially in PEK.

  7. Phospholipid Adsorption Polymeric Materials for Detection of Xylazine and Metabolite in Blood and Urine

    Directory of Open Access Journals (Sweden)

    Xue Gao

    2016-01-01

    Full Text Available Polymers have been used in different areas. Recently, polymeric material is favored in analytical area due to its high performance and high consistency, which was used in sample pretreatment in this study. Xylazine poisoning is often seen in body fluid samples obtained from various accidents or suicides. However, the content of xylazine is difficult to detect precisely due to matrix effect in testing practices. In this paper, a method application for phospholipid adsorption polymeric materials to determine xylazine in blood and urine samples was proposed, developed, and validated. Compared with existing method, this method using polymeric pretreatment has a wider linear range of 2.0–2000.0 ng/mL for xylazine and its metabolite 2,6-dimethylaniline in both blood and urine and lower detection limits of 0.3 ng/mL for 2,6-dimethylaniline and xylazine in blood and 0.2 ng/mL for 2,6-dimethylaniline and xylazine in urine. Therefore, this method is suggested to be applied in testing practices by academic groups and commercial organizations.

  8. Method of preparation of carbon materials for use as electrodes in rechargeable batteries

    Science.gov (United States)

    Doddapaneni, Narayan; Wang, James C. F.; Crocker, Robert W.; Ingersoll, David; Firsich, David W.

    1999-01-01

    A method of producing carbon materials for use as electrodes in rechargeable batteries. Electrodes prepared from these carbon materials exhibit intercalation efficiencies of .apprxeq.80% for lithium, low irreversible loss of lithium, long cycle life, are capable of sustaining a high rates of discharge and are cheap and easy to manufacture. The method comprises a novel two-step stabilization process in which polymeric precursor materials are stabilized by first heating in an inert atmosphere and subsequently heating in air. During the stabilization process, the polymeric precursor material can be agitated to reduce particle fusion and promote mass transfer of oxygen and water vapor. The stabilized, polymeric precursor materials can then be converted to a synthetic carbon, suitable for fabricating electrodes for use in rechargeable batteries, by heating to a high temperature in a flowing inert atmosphere.

  9. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  10. [In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].

    Science.gov (United States)

    Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei

    2015-08-01

    In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.

  11. Polymeric materials in medication

    CERN Document Server

    Carraher, Charles

    1985-01-01

    The art of using chemical agents for medication dates back into antiquity, although most of the earliest examples used plants, herbs, and other natural materials. The old Egyptian medical papyri, which date from before 1400 B. C. , contain dozens of examples of such medicinal plants and animal extracts. In the Old Testament of the Bible, we can find references to using oil to soften the skin and sores (Isaiah 1:6), the use of tree leaves for medicine (Ezekiel 47:12) and various medical balms (Jeremiah 8:22). Not all these recipes were effective in curing the ailments for which they were used and sometimes the treatment was worse than the disease. Nevertheless, the art of using chemical derived agents for medicines continued to develop and received great impetus during the present century with the rise of synthetic organic chemistry. One of the most vexing problems has always been to achieve specifici­ ty with the medications. While some medical agents do indeed possess a relatively high degree of specificity...

  12. Radiation chemical technology for production of polymeric hydrogels for medical purposes

    International Nuclear Information System (INIS)

    Mun, G.A.; Nurkeeva, Z.S.; Akhmetkalieva, G.; Sergaziev, A.D.; Petukhov, V.K.; Lyssukhin, S.N.; Chakrov, P.V.

    2003-01-01

    Full text: Polymeric hydrogels are water-swelling cross-linked hydrophilic polymers with ability to store reversibly great amount of water (more than 1000 g of water per 1 g of dry polymer). At present they found a lot of different applications in highly developed countries in science and industry. The set of unique physicochemical and biomedical properties (regulated sorption ability in respect to water and biological liquids, biocompatibility, soft tissue state, permeability in respect to small and big molecules, non-toxicity, etc.) allows their application in medicine. According to the clinical data there are no materials that can compete with hydrogels in development of endo-prostheses of soft-tissues in surgery, contact lenses for eyesight correction, hemo-compatible materials, novel for treatment of wounds and burns, targeted drug delivery systems. Polymeric hydrogels today practically substitute the traditional hydrophobic bases (Vaseline, lanolin) in technology of drug forms for development of ointments and dressings, containing natural and synthetic physiologically active substances. The advantages of hydrogels in comparison with hydrophobic analogues are obvious due to the drainage effect, homogenous distribution of drugs, better contact with wound, painless removing by water washing. The polymeric hydrogels are not produced in Kazakhstan in spite of the big source of raw materials. The aim of the present work is the development of radiation-chemical technology and development of polymeric biomedical hydrogels production based on raw materials of Kazakhstan. The novel types of polymeric hydrogel materials are developed by the authors of the report based on vinyl ethers of glycols, which produced in 'Alash Ltd.' (Temirtau). The great fundamental information content has been obtained about these monomers and polymers including direct quantitative data of their structure formation mechanism and physicochemical properties. These data served as a basis for

  13. Effect of conventional and experimental gingival retraction solutions on the tensile strength and inhibition of polymerization of four types of impression materials

    Directory of Open Access Journals (Sweden)

    Sérgio Sábio

    2008-08-01

    Full Text Available In the present study, two types of tests (tensile strength test and polymerization inhibition test were performed to evaluate the physical and chemical properties of four impression materials [a polysulfide (Permlastic, a polyether (Impregum, a condensation silicone (Xantopren and a polyvinylsiloxane (Aquasil ,3; when polymerized in contact with of one conventional (Hemostop and two experimental (Vislin and Afrin gingival retraction solutions. For the tensile strength test, the impression materials were mixed and packed into a steel plate with perforations that had residues of the gingival retraction solutions. After polymerization, the specimens were tested in tensile strength in a universal testing machine. For the polymerization inhibition test, specimens were obtained after taking impressions from a matrix with perforations that contained 1 drop of the gingival retraction solutions. Two independent examiners decided on whether or not impression material remnants remained unpolymerized, indicating interference of the chemical solutions. Based on the analysis of the results of both tests, the following conclusions were reached: 1. The tensile strength of the polysulfide decreased after contact with Hemostop and Afrin. 2. None of the chemical solutions inhibited the polymerization of the polysulfide; 3. The polyether presented lower tensile strength after polymerization in contact with the three gingival retraction agents; 4. The polyether had its polymerization inhibited only by Hemostop; 5. None of the chemical solutions affected the tensile strength of the condensation silicone; 6. Only Hemostop inhibited the polymerization of the condensation silicone; 7. The polyvinylsiloxane specimens polymerized in contact with Hemostop had significantly lower tensile strength; 8. Neither of the chemical solutions (Afrin and Vislin affected the tensile strength of the polyvinylsiloxane and the condensation silicone; 9. Results of the tensile strength

  14. Microbiological destruction of composite polymeric materials in soils

    Science.gov (United States)

    Legonkova, O. A.; Selitskaya, O. V.

    2009-01-01

    Representatives of the same species of microscopic fungi developed on composite materials with similar polymeric matrices independently from the type of soils, in which the incubation was performed. Trichoderma harzianum, Penicillium auranthiogriseum, and Clonostachys solani were isolated from the samples of polyurethane. Fusarium solani, Clonostachys rosea, and Trichoderma harzianum predominated on the surface of ultrathene samples. Ulocladium botrytis, Penicillium auranthiogriseum, and Fusarium solani predominated in the variants with polyamide. Trichoderma harzianum, Penicillium chrysogenum, Aspergillus ochraceus, and Acremonium strictum were isolated from Lentex-based composite materials. Mucor circinelloides, Trichoderma harzianum, and Penicillium auranthiogriseum were isolated from composite materials based on polyvinyl alcohol. Electron microscopy demonstrated changes in the structure of polymer surface (loosening and an increase in porosity) under the impact of fungi. The physicochemical properties of polymers, including their strength, also changed. The following substances were identified as primary products of the destruction of composite materials: stearic acid for polyurethane-based materials; imide of dithiocarbonic acid and 1-nonadecen in variants with ultrathene; and tetraaminopyrimidine and isocyanatodecan in variants with polyamide. N,N-dimethyldodecan amide, 2-methyloximundecanon and 2-nonacosane were identified for composites on the base of Lentex A4-1. Allyl methyl sulfide and imide of dithiocarbonic acid were found in variants with the samples of composites based on polyvinyl alcohol. The identified primary products of the destruction of composite materials belong to nontoxic compounds.

  15. Preparation and characterization of nano hydroxyapatite/polymeric composites materials. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Khaled R., E-mail: kh_rezk1966@yahoo.com [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); El-Rashidy, Zenab M. [Biomaterials Dept., National Research Centre, Dokki, Cairo (Egypt); Salama, Aida A. [Biophysics Dept., Faulty of Science, El-Azhar Univ., Cairo (Egypt)

    2011-10-17

    Highlights: {yields} The formation and coating of CHA increased by increasing polymer content. {yields} The size of the prepared CHA was within nano-range scale. {yields} The composites had homogeneity and CHA formed within the polymeric matrix. - Abstract: The present study is focused on preparation of nano composite materials and the effect of citric acid on their different properties. The formation of nano HA and its interaction with chitosan (C), gelatin (G) polymers and citric acid (CA) materials were studied. The Fourier Transformed Infrared Spectroscopy (FT-IR), X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), transmission electron microscope (TEM), and scanning electron microscope (SEM) were used to characterize these composite materials. The compressive strength (CS) was also measured to know the reinforcement of the prepared composites. The results show that carboxylic and amino groups play crucial role for HA formation on chitosan-gelatin polymeric matrix in the presence of citric acid (CA). The formation of nano HA particles and its average size of crystallite is increased with increase of CG content and decreased with addition of CA. Also, the HA formation and binding strength between its particles are improved into the composites especially with CA. The nano-composites containing the best ratio of nHA (70%) with CA (0.2 M) are promising for medical applications in the future.

  16. Magnetite Core-Shell Nanoparticles in Nondestructive Flaw Detection of Polymeric Materials.

    Science.gov (United States)

    Hetti, Mimi; Wei, Qiang; Pohl, Rainer; Casperson, Ralf; Bartusch, Matthias; Neu, Volker; Pospiech, Doris; Voit, Brigitte

    2016-10-04

    Nondestructive flaw detection in polymeric materials is important but difficult to achieve. In this research, the application of magnetite nanoparticles (MNPs) in nondestructive flaw detection is studied and realized, to the best of our knowledge, for the first time. Superparamagnetic and highly magnetic (up to 63 emu/g) magnetite core-shell nanoparticles are prepared by grafting bromo-end-group-functionalized poly(glycidyl methacrylate) (Br-PGMA) onto surface-modified Fe 3 O 4 NPs. These Fe 3 O 4 -PGMA NPs are blended into bisphenol A diglycidylether (BADGE)-based epoxy to form homogeneously distributed magnetic epoxy nanocomposites (MENCs) after curing. The core Fe 3 O 4 of the Fe 3 O 4 -PGMA NPs endows the MENCs with magnetic property, which is crucial for nondestructive flaw detection of the materials, while the shell PGMA promotes colloidal stability and prevents NP aggregation during curing. The eddy current testing (ET) technique is first applied to detect flaws in the MENCs. Through the brightness contrast of the ET image, surficial and subsurficial flaws in MENCs can be detected, even for MENCs with low content of Fe 3 O 4 -PGMA NPs (1 wt %). The incorporation of Fe 3 O 4 -PGMA NPs can be easily extended to other polymer and polymer-based composite systems and opens a new and very promising pathway toward MNP-based nondestructive flaw detection in polymeric materials.

  17. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Brant, Antonio J.C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT). - Highlights: • Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. • Landfills will not be enough for an estimated accumulation of 25 million tons per year of plastics. • Incorporation of natural/synthetic polymers in PP/HMSPP to reduce

  18. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization.

    Science.gov (United States)

    Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2016-03-14

    The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.

  19. Studies on Stress-Strain Relationships of Polymeric Materials Used in Space Applications

    Science.gov (United States)

    Jana, Sadhan C.; Freed, Alan

    2002-01-01

    A two-year research plan was undertaken in association with Polymers Branch, NASA Glenn Research Center, to carry out experimental and modeling work relating stress and strain behavior of polymeric materials, especially elastomers and vulcanized rubber. An experimental system based on MTS (Mechanical Testing and Simulation) A/T-4 test facility environment has been developed for a broader range of polymeric materials in addition to a design of laser compatible temperature control chamber for online measurements of various strains. Necessary material processing has been accomplished including rubber compounding and thermoplastic elastomer processing via injection molding. A broad suite of testing methodologies has been identified to reveal the complex non-linear mechanical behaviors of rubbery materials when subjected to complex modes of deformation. This suite of tests required the conceptualization, design and development of new specimen geometries, test fixtures, and test systems including development of a new laser based technique to measure large multi-axial deformations. Test data has been generated for some of these new fixtures and has revealed some complex coupling effects generated during multi-axial deformations. In addition, fundamental research has been conducted concerning the foundation principles of rubber thermodynamics and resulting theories of rubber elasticity. Studies have been completed on morphological properties of several thermoplastic elastomers. Finally, a series of steps have been identified to further advance the goals of NASA's ongoing effort.

  20. Post-Synthetic Polymerization of UiO-66-NH2 Nanoparticles and Polyurethane Oligomer toward Stand-Alone Membranes for Dye Removal and Separation.

    Science.gov (United States)

    Yao, Bing-Jian; Jiang, Wei-Ling; Dong, Ying; Liu, Zhi-Xian; Dong, Yu-Bin

    2016-07-18

    Metal-organic frameworks (MOFs) are widely used as porous materials in the fields of adsorption and separation. However, their practical application is largely hindered by limitations to their processability. Herein, new UiO-66-Urea-based flexible membranes with MOF loadings of 50 (1), 60 (2), and 70 wt % (3) were designed and prepared by post-synthetic polymerization of UiO-66-NH2 nanoparticles and a polyurethane oligomer under mild conditions. The adsorption behavior of membrane 3 towards four hydrophilic dyes, namely, eosin Y (EY), rhodamine B (RB), malachite green (MG), and methylene blue (MB), in aqueous solution was studied in detail. It exhibits strong adsorption of EY and RB but weak adsorption of MG and MB in aqueous solution. Owing to the selective adsorption of these hydrophilic dyes, membrane 3 can remove EY and RB from aqueous solution and completely separate EY/MB, RB/MG, and RB/MB mixtures in aqueous solution. In addition, the membrane is uniformly textured, easily handled, and can be reused for dye adsorption and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synthesis of Conductive Polymeric Nanocomposites for Applications in Responsive Materials

    Science.gov (United States)

    Chavez, Jessica

    The development of next generation "smart" textiles has emerged with significant interest due to the immense demand for high-performance wearable technology. The economic market for wearable technologies is predicted to increase significantly in both volume and value. In the next four years, the wearable technology market will be valued at $34 billion. This large demand has opened up a new research area involving smart wearable devices and conductive fabrics. Many research groups have taken various paths to study and ultimately fabricate wearable devices. Due to the limiting capabilities of conventional conductors, researchers have centered their research on the integration of conductive polymers into textile materials for applications involving responsive material. Conducive polymers are very unique organic molecules that have the ability to transfer electrons across their molecular structure due to the excess presence of pi-electrons. Conductive polymers are favored over conventional conductors because they can be easily manipulated and integrated into flexible material. Two very common conductive polymers are polyaniline (PANI) and polypyrrole (PPY) because of their large favorability in literature, high conductance values, and environmental stability. Common commercial fibers were coated via the chemical polymerization of PANI or PPY. A series of reactions were done to study the polymerization process of each polymer. The conductive efficiency of each conducting polymer is highly dependent on the type of reactants used, the acidic nature of the reaction, and the temperature of the reaction. The coated commercial fiber nanocomposites produced higher conductivity values when the polymerization reaction was run using ammonium peroxydisulfate (APS) as the oxidizing agent, run in an acidic environment, and run at very low temperatures. Other factors that improved the overall efficiency of the coated commercial fiber nanocomposites was the increase in polymer

  2. Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes

    Science.gov (United States)

    Narayan, Sri R.; Yen, Shiao-Ping S.; Reddy, Prakash V.; Nair, Nanditha

    2012-01-01

    Polymer electrolyte membranes that conduct hydroxide ions have potential use in fuel cells. A variety of polystyrene-based quaternary ammonium hydroxides have been reported as anion exchange fuel cell membranes. However, the hydrolytic stability and conductivity of the commercially available membranes are not adequate to meet the requirements of fuel cell applications. When compared with commercially available membranes, polystyrene-imidazolium alkaline membrane electrolytes are more stable and more highly conducting. At the time of this reporting, this has been the first such usage for imidazolium-based polymeric materials for fuel cells. Imidazolium salts are known to be electrochemically stable over wide potential ranges. By controlling the relative ratio of imidazolium groups in polystyrene-imidazolium salts, their physiochemical properties could be modulated. Alkaline anion exchange membranes based on polystyrene-imidazolium hydroxide materials have been developed. The first step was to synthesize the poly(styrene-co-(1-((4-vinyl)methyl)-3- methylimidazolium) chloride through a free-radical polymerization. Casting of this material followed by in situ treatment of the membranes with sodium hydroxide solutions provided the corresponding hydroxide salts. Various ratios of the monomers 4-chloromoethylvinylbenzine (CMVB) and vinylbenzine (VB) provided various compositions of the polymer. The preferred material, due to the relative ease of casting the film, and its relatively low hygroscopic nature, was a 2:1 ratio of CMVB to VB. Testing confirmed that at room temperature, the new membranes outperformed commercially available membranes by a large margin. With fuel cells now in use at NASA and in transportation, and with defense potential, any improvement to fuel cell efficiency is a significant development.

  3. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  4. From precision polymers to complex materials and systems

    Science.gov (United States)

    Lutz, Jean-François; Lehn, Jean-Marie; Meijer, E. W.; Matyjaszewski, Krzysztof

    2016-05-01

    Complex chemical systems, such as living biological matter, are highly organized structures based on discrete molecules in constant dynamic interactions. These natural materials can evolve and adapt to their environment. By contrast, man-made materials exhibit simpler properties. In this Review, we highlight that most of the necessary elements for the development of more complex synthetic matter are available today. Using modern strategies, such as controlled radical polymerizations, supramolecular polymerizations or stepwise synthesis, polymers with precisely controlled molecular structures can be synthesized. Moreover, such tailored polymers can be folded or self-assembled into defined nanoscale morphologies. These self-organized macromolecular objects can be at thermal equilibrium or can be driven out of equilibrium. Recently, in the latter case, interesting dynamic materials have been developed. However, this is just a start, and more complex adaptive materials are anticipated.

  5. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells.

    Science.gov (United States)

    Bacakova, Marketa; Pajorova, Julia; Stranska, Denisa; Hadraba, Daniel; Lopot, Frantisek; Riedel, Tomas; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2017-01-01

    Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide- co -glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.

  6. Adhesion of Pharmaceutical Binding Agents I-Adhesion to polymeric materials

    Directory of Open Access Journals (Sweden)

    Hossain Orafai

    1996-08-01

    Full Text Available Adhesion of three commonly used pharmaceutical binding agents, HPMC , PVP and Gelatin to five different polymeric sheet materials was studied. After conditioning, the bond strength of the specimens were measured by shear testing method using a suitablely designed apparatus. The results were correlated to the surface energies and the solubiiity parameters of the adherends. It is concluded that the thermodynamic properties and the solubility parameters are dominant when the mechanisms of adhesion are by adsorption and diffusion respectively.

  7. Investigation of crafting polymerization of acrylic acid to cellulose materials under the action of accelerated electrons

    International Nuclear Information System (INIS)

    Valiev, A.; Bazhenov, L.G.; Asamov, M.K.; Sagatov, Eh.A.

    1996-01-01

    Crafting polymerization of acrylic acid (AA) to cellulose materials in the presence of copper, zinc and silver salts under the action of accelerated electrons has been investigated with the aim to attach anti microbe properties to these materials. (author). 2 refs., 1 tab

  8. Apparatus and test method for characterizing the temperature regulating properties of thermal functional porous polymeric materials.

    Science.gov (United States)

    Yao, Bao-Guo; Zhang, Shan; Zhang, De-Pin

    2017-05-01

    In order to evaluate the temperature regulating properties of thermal functional porous polymeric materials such as fabrics treated with phase change material microcapsules, a new apparatus was developed. The apparatus and the test method can measure the heat flux, temperature, and displacement signals during the dynamic contact and then quickly give an evaluation for the temperature regulating properties by simulating the dynamic heat transfer and temperature regulating process when the materials contact the body skin. A series of indices including the psychosensory intensity, regulating capability index, and relative regulating index were defined to characterize the temperature regulating properties. The measurement principle, the evaluation criteria and grading method, the experimental setup and the test results discussion, and the gage capability analysis of the apparatus are presented. The new apparatus provides a method for the objective measurement and evaluation of the temperature regulating properties of thermal functional porous polymeric materials.

  9. Development of a impact limiter for radioactive material transport packages - characterization of the polymeric material used

    International Nuclear Information System (INIS)

    Mourao, Rogerio Pimenta; Mattar Neto, Miguel

    2000-01-01

    Impact limiters are sacrificial components widely used to protect radioactive waste packages against damages arising from falls, fires and collisions with protruding objects. Several materials have been used as impact limiter filling: wood, aluminum honeycomb, and metallic or polymeric foams. Besides, hollow structures are also used as shock absorbers, either as a single shell or as a tube array. One of the most popular materials among package designers is rigid polyurethane foam, owing to its toughness, workability, low specific weight, low costs and commercial availability. In Brazil, a foam developed using the polymer extracted from the castor oil plant (Ricinus communis) is being studied as a potential impact limiter filling. For a better performance of this material, it is necessary to minimize the impact limiter dimensions without compromising the package safety. For this, a detailed knowledge of the foam physical and mechanical properties is essential. A relatively vast amount of data about regular polymeric foams can be found in the literature and in foreign manufacturers brochures, but no data has been published about the properties of the castor oil foam. This paper presents data gathered in an ongoing research program aiming at the development of a Type-B packaging. Foam samples were submitted to uniaxial static compression tests and to hydrostatic tests. The results obtained reveal that the castor oil foam has a mechanical behavior similar to that of regular foams, with good property reproducibility and homogeneity. (author)

  10. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  11. Use of polymeric resins for removing contaminants from oily waters

    Energy Technology Data Exchange (ETDEWEB)

    Clarisse, M.D.; Queiros, Y.G.C.; Mauro, A.C.; Lucas, E.F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas; Barbosa, C.C.R. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Barbosa, L.C.F.; Louvisse, A.M.T. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Polymeric resins are being tried as an alternative material for treating oily waters from the petroleum industry, which have already been treated by conventional methods. The objective of this work has been to evaluate the purification degree of synthetic oily waters when treated in fixed bed columns packed with polymeric resins made up of hydrophilic and lipophilic moieties. The analysis used for characterizing the total grease and oil content (TOG) was fluorimetry. Starting oily waters of average TOG 40 ppm were prepared. Data obtained from eluted waters did not outweigh 1% of the TOG values of starting solutions. The kinetic study showed that the contaminant removal efficiency depends on the system elution flow rate; optimum removal values were reached at a 7.0 mL/min flow rate. High efficiency and speed in the purification process were obtained at this optimum flow rate. The passage of a water volume 1,000 times the volume of the column bed was not sufficient to observe its saturation level. (author)

  12. Novel biomimetic composite material for potentiometric screening of acetylcholine, a neurotransmitter in Alzheimer's disease.

    Science.gov (United States)

    Sacramento, Ana S; Moreira, Felismina T C; Guerreiro, Joana L; Tavares, Ana P; Sales, M Goreti F

    2017-10-01

    This work describes a novel approach to produce an antibody-like biomimetic material. It includes preparing composite imprinted material never presented before, with highly conductive support nanostructures and assembling a high conductivity polymeric layer at low temperature. Overall, such highly conductive material may enhance the final features of electrically-based devices. Acetylcholine (ACh) was selected as target analyte, a neurotransmitter of importance in Alzheimer's disease. Potentiometric transduction was preferred, allowing quick responses and future adaptation to point-of-care requirements. The biomimetic material was obtained by bulk polymerization, where ACh was placed in a composite matrix of multiwalled carbon nanotubes (MWCNTs) and aniline (ANI). Subsequent polymerization, initiated by radical species, yielded a polymeric structure of polyaniline (PANI) acting as physical support of the composite. A non-imprinted material (NIM) having only PANI/MWCNT (without ACh) has been prepared for comparison of the biomimetic-imprinted material (BIM). RAMAN and Fourier Transform Infrared spectroscopy (FTIR), Transmission Electron microscopy (TEM), and Scanning Electron microscope (SEM) analysis characterized the structures of the materials. The ability of this biomaterial to rebind ACh was confirmed by including it as electroactive compound in a PVC/plasticizer mixture. The membranes with imprinted material and anionic additive presented the best analytical characteristics, with a sensitivity of 83.86mV decade -1 and limit of detection (LOD) of 3.45×10 -5 mol/L in HEPES buffer pH4.0. Good selectivity was observed against creatinine, creatine, glucose, cysteine and urea. The electrodes were also applied on synthetic serum samples and seemed a reliable tool for screening ACh in synthetic serum samples. The overall performance showed fast response, reusability, simplicity and low price. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    Science.gov (United States)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  14. The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve.

    Science.gov (United States)

    Ghanbari, Hossein; Kidane, Asmeret G; Burriesci, Gaetano; Ramesh, Bala; Darbyshire, Arnold; Seifalian, Alexander M

    2010-11-01

    Calcification currently represents a major cause of failure of biological tissue heart valves. It is a complex phenomenon influenced by a number of biochemical and mechanical factors. Recent advances in material science offer new polymers with improved properties, potentially suitable for synthetic leaflets heart valves manufacturing. In this study, the calcification-resistance efficacy and mechanical and surface properties of a new nanocomposite polymeric material (polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane; POSS-PCU) which has been developed by our group are assessed by means of in vitro testing. In particular, thin sheets of nanocomposite, glutaraldehyde-fixed bovine pericardium (BP) and polyurethane (PU) were exposed to a calcium solution into a specially designed in vitro accelerated physiological pulsatile pressure system for a period of 31days and a total of 4×10(7) cycles. The samples were investigated for signs of calcification after exposure to calcium solution by means of X-ray, microscopic and chemical inspections. Mechanical and surface properties were also studied using stress-strain behaviour and surface morphology and hydrophobicity. Comparison shows that, in the experimental conditions, the level of calcification for the nanocomposite is considerably lower than for the fixed BP (p=0.008) and PU samples (p=0.015). Also, mechanical properties were unchanged in POSS-PCU, while there was a significant deterioration in PU samples (pnanocomposite remained more hydrophobic than the PU sample (pnanocomposite in synthetic leaflets heart valves may lead to potential advantages in terms of long-term performances and durability. Copyright © 2010. Published by Elsevier Ltd.

  15. Biodeterioration of synthetic materials - A brief review

    Energy Technology Data Exchange (ETDEWEB)

    Flemming, H.C. [Biofilm Centre, University of Duisburg-Essen, Geibelstr. 41, 47057 Duisburg (Germany)

    2010-12-15

    Although synthetic polymers are part of our global waste problem because they are not sufficiently biologically degraded, microorganisms can severely impair the properties and functions of these materials. It seems as if consumers do not really acknowledge this cause of problems and there is only sparse systematic research about. Damaging mechanisms include (i) covering of surfaces (biofouling) which may be enhanced by leaching of biodegradable additives, (ii) depletion of such additives which can lead to loss of material properties, (iii) intrusion into materials by fungal hyphae, (iv) water uptake, and (v) discoloration. The common countermeasure is the addition of biocides or simply to tolerate the effects of biodeterioration and live on with them. It is suggested to encourage further systematic research, and to develop integrated strategies in order to avoid problems, e.g., based on nutrient and water limitation whenever possible. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Characteristics of low polymerization shrinkage flowable resin composites in newly-developed cavity base materials for bulk filling technique.

    Science.gov (United States)

    Nitta, Keiko; Nomoto, Rie; Tsubota, Yuji; Tsuchikawa, Masuji; Hayakawa, Tohru

    2017-11-29

    The purpose of this study was to evaluate polymerization shrinkage and other physical properties of newly-developed cavity base materials for bulk filling technique, with the brand name BULK BASE (BBS). Polymerization shrinkage was measured according to ISO/FDIS 17304. BBS showed the significantly lowest polymerization shrinkage and significantly higher depth of cure than conventional flowable resin composites (p<0.05). The Knoop hardness, flexural strength and elastic modulus of that were significantly lower than conventional flowable resin composites (p<0.05). BBS had the significantly greatest filler content (p<0.05). SEM images of the surface showed failure of fillers. The lowest polymerization shrinkage was due to the incorporation of a new type of low shrinkage monomer, which has urethane moieties. There were no clear correlations between inorganic filler contents and polymerization shrinkage, flexural strength and elastic modulus. In conclusion, the low polymerization shrinkage of BBS will be useful for cavity treatment in dental clinics.

  17. Peptide/protein-polymer conjugates: synthetic strategies and design concepts.

    Science.gov (United States)

    Gauthier, Marc A; Klok, Harm-Anton

    2008-06-21

    This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.

  18. Preparation of epoxy/zirconia hybrid materials via in situ polymerization using zirconium alkoxide coordinated with acid anhydride

    International Nuclear Information System (INIS)

    Ochi, Mitsukazu; Nii, Daisuke; Harada, Miyuki

    2011-01-01

    Highlights: → Novel epoxy/zirconia hybrid materials were synthesized via in situ polymerization using zirconium alkoxide coordinated with acid anhydride. → The half-ester compound of acid anhydride desorbed from zirconium played as curing agent of epoxy resin. → The zirconia was uniformly dispersed in the epoxy matrix on the nanometer or sub-nanometer scale by synchronizing the epoxy curing and sol-gel reactions. → The refractive indices of the hybrid materials significantly improved with an increase in the zirconia content. - Abstract: Novel epoxy/zirconia hybrid materials were synthesized using a bisphenol A epoxy resin (diglycidyl ether of bisphenol A; DGEBA), zirconium(IV)-n-propoxide (ZTNP), and hexahydrophthalic anhydride (HHPA) via in situ polymerization. HHPA played two roles in this system: it acted as a modifier to control the hydrolysis and condensation reactions of zirconium alkoxide and also as a curing agent - the half-ester compound of HHPA desorbed from zirconium reacted with the epoxy resin to form the epoxy network. As a result, both the sol-gel reaction and epoxy curing occurred simultaneously in a homogeneous solution, and organic-inorganic hybrid materials were readily obtained. Further, the zirconia produced by the in situ polymerization was uniformly dispersed in the epoxy matrix on the nanometer or sub-nanometer scale; thus, hybrid materials that exhibited excellent optical transparency were obtained. Furthermore, the heat resistance of the hybrid materials could be improved by hybridization with zirconia. And, the refractive indices of the hybrid materials significantly improved with an increase in the zirconia content.

  19. Solid-phase extraction of the alcohol abuse biomarker phosphatidylethanol using newly synthesized polymeric sorbent materials containing quaternary heterocyclic groups.

    Science.gov (United States)

    Duarte, Mariana; Jagadeesan, Kishore Kumar; Billing, Johan; Yilmaz, Ecevit; Laurell, Thomas; Ekström, Simon

    2017-10-13

    Phosphatidylethanol (PEth) is an interesting biomarker finding increased use for detecting long term alcohol abuse with high specificity and sensitivity. Prior to detection, sample preparation is an unavoidable step in the work-flow of PEth analysis and new protocols may facilitate it. Solid-phase extraction (SPE) is a versatile sample preparation method widely spread in biomedical laboratories due to its simplicity of use and the possibility of automation. In this work, SPE was used for the first time to directly extract PEth from spiked human plasma and spiked human blood. A library of polymeric SPE materials with different surface functionalities was screened for PEth extraction in order to identify the surface characteristics that control PEth retention and recovery. The plasma samples were diluted 1:10 (v/v) in water and spiked at different concentrations ranging from 0.3 to 5μM. The library of SPE materials was then evaluated using the proposed SPE method and detection was done by LC-MS/MS. One SPE material efficiently retained and recovered PEth from spiked human plasma. With this insight, four new SPE materials were formulated and synthesized based on the surface characteristics of the best SPE material found in the first screening. These new materials were tested with spiked human blood, to better mimic a real clinical sample. All the newly synthetized materials outperformed the pre-existing commercially available materials. Recovery values for the new SPE materials were found between 29.5% and 48.6% for the extraction of PEth in spiked blood. A material based on quaternized 1-vinylimidazole with a poly(trimethylolpropane trimethacrylate) backbone was found suitable for PEth extraction in spiked blood showing the highest analyte recovery in this experiment, 48.6%±6.4%. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Stimuli-Responsive Polymeric Nanoparticles.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Ying; Urban, Marek W

    2017-07-01

    There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Short-term organic carbon migration from polymeric materials in contact with chlorinated drinking water.

    Science.gov (United States)

    Mao, Guannan; Wang, Yingying; Hammes, Frederik

    2018-02-01

    Polymeric materials are widely used in drinking water distribution systems. These materials could release organic carbon that supports bacterial growth. To date, the available migration assays for polymeric materials have not included the potential influence of chlorination on organic carbon migration behavior. Hence, we established a migration and growth potential protocol specifically for analysis of carbon migration from materials in contact with chlorinated drinking water. Four different materials were tested, including ethylene propylene dienemethylene (EPDM), poly-ethylene (PEX b and PEX c) and poly-butylene (PB). Chlorine consumption rates decreased gradually over time for EPDM, PEXc and PB. In contrast, no free chlorine was detected for PEXb at any time during the 7 migration cycles. Total organic carbon (TOC) and assimilable organic carbon (AOC) was evaluated in both chlorinated and non-chlorinated migrations. TOC concentrations for EPDM and PEXb in chlorinated migrations were significantly higher than non-chlorinated migrations. The AOC results showed pronounced differences among tested materials. AOC concentrations from chlorinated migration waters of EPDM and PB were higher compared to non-chlorinated migrations, whereas the opposite trend was observed for PEXb and PEXc. There was also a considerable difference between tested materials with regards to bacterial growth potential. The results revealed that the materials exposed to chlorine-influenced migration still exhibited a strong biofilm formation potential. The overall results suggested that the choice in material would make a considerable difference in chlorine consumption and carbon migration behavior in drinking water distribution systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. UV laser engraving of high temperature polymeric materials

    International Nuclear Information System (INIS)

    Martinez, D.; Laude, L.D.; Kolev, K.; Hanus, F.

    1999-01-01

    Among emerging technologies, those associated with laser sources as surface processing tools are quite promising. In the present work, a UV pulsed (excimer) laser source is experimented for engraving (or ablating) polymeric materials based on three high temperature polymers: polyethylene terephtalate (PET), polyethersulfone (PES) and polyphenylene sulfide (PPS). The ablation phenomenon is demonstrated on all these polymers and evaluated by stylus profilometry upon varying the laser fluence at impact. For each polymer, results give evidence for three characteristic quantities: an ablation threshold E sub 0, a maximum ablation depth per pulse z sub 0 and an initial rate of ablation α, just above threshold. A simple ablation model is presented which describes correctly the observed behaviours and associates closely the above quantities to the polymer formulation, thus providing for the first time a rational basis to polymer ablation. The model may be extended to parent plastic materials whenever containing the same polymers. It may also be used to predict the behaviours of other polymers when subjected to excimer laser irradiation

  3. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    Science.gov (United States)

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  4. Biocompatible Polymeric Materials Intended for Drug Delivery and Therapeutic Applications

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Javakhishvili, Irakli; Bednarek, Melania

    2007-01-01

    of polymer blocks by “click chemistry”. An all polymerization strategy would imply preparing polymers by living/controlled techniques in such a manner that one block after polymerization can be converted to a macroinitiator enabling the second block to polymerize. The coupling strategy invariably inserts...... a linking unit, 1,4-triazol, resulting from the catalyzed, irreversible 1,3-dipolar cycloaddition reaction between an alkyne and an azide. Thus, this strategy necessitates the proper end functionalization of the polymeric building blocks. Fortunately the 1,4-triazol unit is FDA approved already existing...

  5. Accelerated Aging Effect on Epoxy-polysiloxane Polymeric Insulator Material with Rice Husk Ash Filler

    Directory of Open Access Journals (Sweden)

    Rochmadi .

    2012-12-01

    Full Text Available The performances of outdoor polymeric insulators are influenced by environmental conditions. This paper presents the effect of artificial tropical climate on the hydrophobicity, equivalent salt deposit density (ESDD, surface leakage current, flashover voltage, and surface degradation on epoxy-polysiloxane polymeric insulator materials with rice husk ash (RHA. Test samples are made at room temperature vulcanized (RTV of various composition of epoxy-polysiloxane with rice husk ash as filler. The aging was carried out in test chamber at temperature from 50oC to 62oC, relative humidity of 60% to 80%, and ultraviolet (UV  radiation 21.28 w/cm2 in daylight conditions for 96 hours. The experiment results showed that the flashover voltage fluctuates from 34.13 kV up to 40.92 kV and tends to decrease on each variation of material composition. The surface leakage current fluctuates and tends to increase. Test samples with higher filler content result greater hydrophobicity, smaller equivalent salt deposit density, and smaller critical leakage current, which caused the increase of the flashover voltage. Insulator material (RTVEP3 showed the best performance in tropical climate environment. Artificial tropical aging for short duration gives less effect to the surface degradation of epoxy-polysiloxane insulator material.

  6. Dynamic testing of horseshoe designs at impact on synthetic and dirt Thoroughbred racetrack materials.

    Science.gov (United States)

    Mahaffey, C A; Peterson, M L; Thomason, J J; McIlwraith, C W

    2016-01-01

    Different horseshoe designs have been developed in an attempt to optimise footing for equine athletes. Horseshoe performance is assumed to be dependent on the surface and gait, but there are limited data on horseshoe performance on different surfaces, independent of gait variation. To quantify the dynamic loading for 3 aluminium racing shoe designs on Thoroughbred racetrack surface materials, using a biomechanical surface tester. A flat racing plate, a serrated V-Grip and a shoe with a 6 mm toe grab and 10 mm heel calks were tested on synthetic and dirt surfaces under typical operating conditions of temperature and moisture content for the respective material samples. Samples were tested under laboratory conditions, replicating a track surface by compacting material into a latex-lined mould surrounded by silica sand for representative boundary conditions. Peak loading and loading rates were measured vertically and horizontally (craniocaudal), simulating aspects of primary and secondary impacts of the hoof in a galloping horse. Maximum vertical and shear loads and loading rates were not significantly different between shoe types, with the exception of a reduced craniocaudal loading rate for the V-Grip shoe on the synthetic surface. All other statistical significance was related to the surface material. These 3 different Thoroughbred racing shoes do not have a significant impact on loading and loading rate, with the exception of the V-Grip shoe on a synthetic surface. Although the V-Grip may reduce craniocaudal peak load rates in a synthetic material with relatively high wax and/or low oil content, the reduction in load rate is less than the difference found between materials. This study indicates that shoeing has little effect, and that a track's surface material and its preparation have a significant effect on the dynamic loading during the impact phase of the stance. © 2015 EVJ Ltd.

  7. Thermal polymerization of Moringa oleifera oil

    International Nuclear Information System (INIS)

    Melo, Tania M.S.; Novack, Katia M.; Leandro, Cristiano

    2011-01-01

    It is increasingly clear both for society and the scientific community, that is necessary to find alternatives to reduce the use of polymeric materials because of their damage to the environment. One way to minimize the environmental problems related to the use of polymers is try to make them quickly degradable. In this study it was obtained a material with polymeric appearance derived from heating of the vegetable oil extracted from seeds of Moringa oleifera. The resulting product is an interesting alternative to obtain polymeric materials that may have biodegradable characteristics, coming from a renewable source and low cost. Moringa oil can be used since it has a high content of unsaturated fatty acids, and its main constituent oleic acid. All samples were characterized by FTIR, NMR and GPC. It was obtained a polymeric material, malleable, high viscosity, with some elasticity, low crystallinity and no unpleasant odor. (author)

  8. Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors.

    Science.gov (United States)

    Fathi, Marziyeh; Barar, Jaleh

    2017-01-01

    Introduction: Polymeric nanoparticles (NPs) formulated using biodegradable polymers offer great potential for development of de novo drug delivery systems (DDSs) capable of delivering a wide range of bioactive agents. They can be engineered as advanced multifunctional nanosystems (NSs) for simultaneous imaging and therapy known as theranostics or diapeutics. Methods: A brief prospective is provided on biomedical importance and applications of biodegradable polymeric NSs through reviewing the recently published literature. Results: Biodegradable polymeric NPs present unique characteristics, including: nanoscaled structures, high encapsulation capacity, biocompatibility with non-thrombogenic and non-immunogenic properties, and controlled-/sustained-release profile for lipophilic and hydrophilic drugs. Once administered in vivo, all classes of biodegradable polymers (i.e., synthetic, semi-synthetic, and natural polymers) are subjected to enzymatic degradation; and hence, transformation into byproducts that can be simply eliminated from the human body. Natural and semi-synthetic polymers have been shown to be highly stable, much safer, and offer a non-/less-toxic means for specific delivery of cargo drugs in comparison with synthetic polymers. Despite being biocompatible and enzymatically-degradable, there are some drawbacks associated with these polymers such as batch to batch variation, high production cost, structural complexity, lower bioadhesive potential, uncontrolled rate of hydration, and possibility of microbial spoilage. These pitfalls have bolded the importance of synthetic counterparts despite their somewhat toxicity. Conclusion: Taken all, to minimize the inadvertent effects of these polymers and to engineer much safer NSs, it is necessary to devise biopolymers with desirable chemical and biochemical modification(s) and polyelectrolyte complex formation to improve their drug delivery capacity in vivo.

  9. Polymeric drugs: Advances in the development of pharmacologically active polymers

    Science.gov (United States)

    Li, Jing; Yu, Fei; Chen, Yi; Oupický, David

    2015-01-01

    Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents. PMID:26410809

  10. Maxillary Sinus Floor Augmentation With Synthetic Bone Substitutes Compared With Other Grafting Materials

    DEFF Research Database (Denmark)

    Starch-Jensen, Thomas; Mordenfeld, Arne; Becktor, Jonas Peter

    2018-01-01

    OBJECTIVE: To test the hypotheses of no differences in implant treatment outcome after maxillary sinus floor augmentation (MSFA) with synthetic bone substitutes (SBS) compared with other grafting materials applying the lateral window technique. MATERIALS AND METHODS: A MEDLINE/PubMed, Embase and ...

  11. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bercaw, John E. [California Institute of Technology

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  12. Neutron is a marvelous probe to see the living things as it is alive. Real time and in-situ observation on living polymerization

    International Nuclear Information System (INIS)

    Koizumi, Satoshi

    2011-01-01

    Small-angle neutron scattering was employed in order to perform a real time and in-situ observation on a polymerization-induced self-assembly process in in-vivo or in-vitro systems; precise living anionic polymerization of poly-styrene-b-polyisoprene, pre-irradiation radical polymerization of polystyrene onto a polytetrafluoroethylene film, and microbial or enzymatic polymerization of cellulose. The aim of these studies is to clarify self-organizations of macro-molecular assemblies appeared in open non-equilibrium systems, which are exposed to external energy and mass flows induced by chemical reactions. The open non-equilibrium systems are believed to be important for understanding pattern formations not only in materials processing in industry but also in living things. Small-angle scattering observed for the systems was investigated according to the methods established for condensed matter physics (fractal and computational analyses), bridging with synthetic chemistry and molecular biology. (author)

  13. Methods For Improving Polymeric Materials For Use In Solar Cell Applications

    Science.gov (United States)

    Hanoka, Jack I.

    2003-07-01

    A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.

  14. Lignin-Based Materials Through Thiol-Maleimide "Click" Polymerization.

    Science.gov (United States)

    Buono, Pietro; Duval, Antoine; Averous, Luc; Habibi, Youssef

    2017-03-09

    In the present report an environmentally friendly approach to transforming renewable feedstocks into value-added materials is proposed. This transformation pathway was conducted under green conditions, without the use of solvents or catalyst. First, controlled modification of lignin, a major biopolymer present in wood and plants, was achieved by esterification with 11-maleimidoundecylenic acid (11-MUA), a derivative from castor oil that contains maleimide groups, following its transformation into 11-maleimidoundecanoyl chloride (11-MUC). Different degrees of substitution were achieved by using various amounts of the 11-MUC, leading to an efficient conversion of lignin hydroxy groups, as demonstrated by 1 H and 31 P NMR analyses. These fully biobased maleimide-lignin derivatives were subjected to an extremely fast (ca. 1 min) thiol-ene "click" polymerization with thiol-containing linkers. Aliphatic and aromatic thiol linkers bearing two to four thiol groups were used to tune the reactivity and crosslink density. The properties of the resulting materials were evaluated by swelling tests and thermal and mechanical analyses, which showed that varying the degree of functionality of the linker and the linker structure allowed accurate tailoring of the thermal and mechanical properties of the final materials, thus providing interesting perspectives for lignin in functional aromatic polymers. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. An Evaluation of the Effect of Various Gloves on Polymerization Inhibition of Elastomeric Impression Materials: An In vitro Study.

    Science.gov (United States)

    Hiremath, Vinuta; Vinayakumar, G; Ragher, Mallikarjuna; Rayannavar, Sounyala; Bembalagi, Mahantesh; Ashwini, B L

    2017-11-01

    Latex protective barriers such as gloves and rubber dam material have been used widely in restorative procedures for crown and bridge. However, the chemical used during latex glove fabrication is thought to inhibit the polymerization of elastomeric impression materials used for impression making which has a detrimental effect on the dimensional accuracy and surface definition of resultant casts used for restorative procedures. The objectives of the study were to examine the surface of different elastomeric impressions on contact with various gloves. This clinical study included a total of eighty specimens of two types of the putty elastomeric impression material were hand manipulated by wearing three different gloves materials and is placed on a marked area of a clean and alcohol-treated glass slab at room temperature. The specimens examined for any signs of polymerization inhibition. The specimen will be rated as being "inhibited" if any residue remains on the glass slab and absence of the above will result as "no inhibition." The results showed no interference with the polymerization inhibition of the selected elastomers followed by the nitrile glove. The latex gloves showed inhibited set of the elastomeric impression material but set after sometime confirming time-dependent inhibition of the impression material. This study shows that the use of latex and sometime nitrile gloves during crown and bridge procedures should be contraindicated and the use of vinyl gloves should be stressed when working with elastomeric impression materials.

  16. Synthetic polymeric substrates as potent pro-oxidant versus anti-oxidant regulators of cytoskeletal remodeling and cell apoptosis.

    Science.gov (United States)

    Sung, Hak-Joon; Chandra, Prafulla; Treiser, Matthew D; Liu, Er; Iovine, Carmine P; Moghe, Prabhas V; Kohn, Joachim

    2009-03-01

    The role of reactive oxygen species (ROS)-mediated cell signal transduction pathways emanating from engineered cell substrates remains unclear. To elucidate the role, polymers derived from the amino acid L-tyrosine were used as synthetic matrix substrates. Variations in their chemical properties were created by co-polymerizing hydrophobic L-tyrosine derivatives with uncharged hydrophilic poly(ethylene glycol) (PEG, Mw = 1,000 Da), and negatively charged desaminotyrosyl-tyrosine (DT). These substrates were characterized for their intrinsic ability to generate ROS, as well as their ability to elicit Saos-2 cell responses in terms of intracellular ROS production, actin remodeling, and apoptosis. PEG-containing substrates induced both exogenous and intracellular ROS production, whereas the charged substrates reduced production of both types, indicating a coupling of exogenous ROS generation and intracellular ROS production. Furthermore, PEG-mediated ROS induction caused nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase and an increase in caspase-3 activity, confirming a link with apoptosis. PEG-rich pro-oxidant substrates caused cytoskeletal actin remodeling through beta-actin cleavage by caspase-3 into fractins. The fractins co-localized to the mitochondria and reduced the mitochondrial membrane potential. The remnant cytosolic beta-actin was polymerized and condensed, events consistent with apoptotic cell shrinkage. The cytoskeletal remodeling was integral to the further augmentation of intracellular ROS production. Conversely, the anti-oxidant DT-containing charged substrates suppressed the entire cascade of apoptotic progression. We demonstrate that ROS activity serves an important role in "outside-in" signaling for cells grown on substrates: the ROS activity couples exogenous stress, driven by substrate composition, to changes in intracellular signaling. This signaling causes cell apoptosis, which is mediated by actin remodeling.

  17. Polymeric Materials for Printed-Based Electroanalytical (BioApplications

    Directory of Open Access Journals (Sweden)

    Stefano Cinti

    2017-11-01

    Full Text Available Advances in design of selective interfaces and printed technology have mighty contributed to the expansion of the electroanalysis fame. The real advantage in electroanalytical field is the possibility to manufacture and customize plenty of different sensing platforms, thus avoiding expensive equipment, hiring skilled personnel, and expending economic effort. Growing developments in polymer science have led to further improvements in electroanalytical methods such as sensitivity, selectivity, reproducibility, and accuracy. This review provides an overview of the technical procedures that are used in order to establish polymer effectiveness in printed-based electroanalytical methods. Particular emphasis is placed on the development of electronalytical sensors and biosensors, which highlights the diverse role of the polymeric materials depending on their specific application. A wide overview is provided, taking into account the most significant findings that have been reported from 2010 to 2017.

  18. Device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor

    International Nuclear Information System (INIS)

    Jaeger, W.

    1984-01-01

    This invention concerns a device for manufacturing methane or synthetic gas from materials containing carbon using a nuclear reactor, where part of the carbon is gasified with hydration and the remaining carbon is converted to synthetic gas by adding steam. This synthetic gas consists mainly of H 2 , CO, CO 2 and CH 4 and can be converted to methane in so-called methanising using a nickel catalyst. The hydrogen gasifier is situated in the first of two helium circuits of a high temperature reactor, and the splitting furnace is situated in the second helium circuit, where part of the methane produced is split into hydrogen at high temperature, which is used for the hydrating splitting of another part of the material containing carbon. (orig./RB) [de

  19. Technological physics and special materials: wood-plastic composites obtained by radiation polymerization

    International Nuclear Information System (INIS)

    Peteu, Gh.; Iliescu, V.

    1995-01-01

    General estimates and references are made in connection with the role of technological physics in obtaining materials with specific features. The first part of the paper presents the modification of weak wood essences as well as technological processes at bench-scale and semi industrial scale of wood-plastic composites, under various irradiation conditions. Two technological installations for the fabrication of wood-plastic composites on both scales with technical and practical specifications of their performances are presented. Experimental data for different wood-plastic composite systems using some local wood essences in combination with several polymer and copolymer systems are given. Impregnation and polymerization levels are mentioned for every specific system. The radiation dose rate and integrated dose are given for every experimental polymerization system. The features of the wood-plastic composites are compared with the initial wood essences. Finally, a few technical and economic assessments of wood-plastic composites and their implications in the domestic economy are presented. (author)

  20. A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit

    Energy Technology Data Exchange (ETDEWEB)

    Koyuncu, Fatma Baycan, E-mail: fatmabaycan@hotmail.co [Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, 17020 Canakkale (Turkey); Koyuncu, Sermet [Can Vocational School, Canakkale Onsekiz Mart University, 17400 Canakkale (Turkey); Ozdemir, Eyup, E-mail: eozdemir@comu.edu.t [Department of Chemistry, Faculty of Sciences and Arts, Canakkale Onsekiz Mart University, 17020 Canakkale (Turkey)

    2010-07-01

    We report here the synthesis of a novel polymeric electrochromic material containing carbazole (Cbz)-donor and 1,8-napthalimide-acceptor as subunit. The band gap E{sub g} was measured using UV-vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Due to intramolecular electron transfer from Cbz-donor to 1,8-napthalimide-acceptor, the fluorescence quenching was observed. When the spectro-electrochemical and electrochromic properties of polymer film were investigated, various tones of green color were obtained on the polymeric film. In the positive regime, the polymer film obtained thereby is dark green resulting from the association of carbazolylium cation radicals at oxidized state and then it can be bleached by electrochemical reduction. Besides, in the negative regime, yellowish green color of film converted to blue attributed to reduction of the 1,8-napthalimide moiety. Finally, the polymeric electrochromic exhibits multi-electrochromic behavior, high redox stability, high coloration efficiency and reasonable response time.

  1. A novel donor-acceptor polymeric electrochromic material containing carbazole and 1,8-naphtalimide as subunit

    International Nuclear Information System (INIS)

    Koyuncu, Fatma Baycan; Koyuncu, Sermet; Ozdemir, Eyup

    2010-01-01

    We report here the synthesis of a novel polymeric electrochromic material containing carbazole (Cbz)-donor and 1,8-napthalimide-acceptor as subunit. The band gap E g was measured using UV-vis spectroscopy and compared with that obtained by cyclic voltammetry (CV). Due to intramolecular electron transfer from Cbz-donor to 1,8-napthalimide-acceptor, the fluorescence quenching was observed. When the spectro-electrochemical and electrochromic properties of polymer film were investigated, various tones of green color were obtained on the polymeric film. In the positive regime, the polymer film obtained thereby is dark green resulting from the association of carbazolylium cation radicals at oxidized state and then it can be bleached by electrochemical reduction. Besides, in the negative regime, yellowish green color of film converted to blue attributed to reduction of the 1,8-napthalimide moiety. Finally, the polymeric electrochromic exhibits multi-electrochromic behavior, high redox stability, high coloration efficiency and reasonable response time.

  2. Materials Manufactured from 3D Printed Synthetic Biology Arrays

    Science.gov (United States)

    Gentry, Diana; Micks, Ashley

    2013-01-01

    Many complex, biologically-derived materials have extremely useful properties (think wood or silk), but are unsuitable for space-related applications due to production, manufacturing, or processing limitations. Large-scale ecosystem-based production, such as raising and harvesting trees for wood, is impractical in a self-contained habitat such as a space station or potential Mars colony. Manufacturing requirements, such as the specialized equipment needed to harvest and process cotton, add too much upmass for current launch technology. Cells in nature are already highly specialized for making complex biological materials on a micro scale. We envision combining these strengths with the recently emergent technologies of synthetic biology and 3D printing to create 3D-structured arrays of cells that are bioengineered to secrete different materials in a specified three-dimensional pattern.

  3. Synthesis of magnetic polymeric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I [M.V. Lomonosov Moscow State Academy of Fine Chemical Technology, Moscow (Russian Federation)

    2010-05-13

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  4. Synthesis of magnetic polymeric microspheres

    International Nuclear Information System (INIS)

    Gervald, A Yu; Gritskova, Inessa A; Prokopov, Nikolai I

    2010-01-01

    The key types of magnetic polymeric microspheres are considered. Methods of synthesis of different types of magnetic nanoparticles and of preparation of stable magnetic fluids on their basis are outlined. The overview of the methods for the manufacture of magnetic polymeric microspheres is presented. The effect of the synthesis conditions on the characteristics of magnetic polymeric microspheres such as the diameter and the particle size distribution and the content of magnetic material is discussed by particular examples. The application fields of magnetic polymeric microspheres are briefly surveyed.

  5. An evaluation of the effect of various gloves on polymerization inhibition of elastomeric impression materials: An In vitro study

    Directory of Open Access Journals (Sweden)

    Vinuta Hiremath

    2017-01-01

    Full Text Available Background: Latex protective barriers such as gloves and rubber dam material have been used widely in restorative procedures for crown and bridge. However, the chemical used during latex glove fabrication is thought to inhibit the polymerization of elastomeric impression materials used for impression making which has a detrimental effect on the dimensional accuracy and surface definition of resultant casts used for restorative procedures. The objectives of the study were to examine the surface of different elastomeric impressions on contact with various gloves. Materials and Methods: This clinical study included a total of eighty specimens of two types of the putty elastomeric impression material were hand manipulated by wearing three different gloves materials and is placed on a marked area of a clean and alcohol-treated glass slab at room temperature. The specimens examined for any signs of polymerization inhibition. The specimen will be rated as being “inhibited” if any residue remains on the glass slab and absence of the above will result as “no inhibition.” Results: The results showed no interference with the polymerization inhibition of the selected elastomers followed by the nitrile glove. The latex gloves showed inhibited set of the elastomeric impression material but set after sometime confirming time-dependent inhibition of the impression material. Conclusion: This study shows that the use of latex and sometime nitrile gloves during crown and bridge procedures should be contraindicated and the use of vinyl gloves should be stressed when working with elastomeric impression materials.

  6. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor

    2015-01-22

    The present application offers a solution to the current problems associated with recovery and recycling of precious metals from scrap material, discard articles, and other items comprising one or more precious metals. The solution is premised on a microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  7. Selective enzymatic degradation of self-assembled particles from amphiphilic block copolymers obtained by the combination of N-carboxyanhydride and nitroxide-mediated polymerization

    NARCIS (Netherlands)

    Habraken, G.J.M.; Peeters, M.; Thornton, P.D.; Koning, C.E.; Heise, A.

    2011-01-01

    Combining controlled radical polymerizations and a controlled polypeptide synthetic technique, such as N-carboxyanhydride (NCA) ring-opening polymerization, enables the generation of well-defined block copolymers to be easily accessible. Here we combine NCA polymerization with the nitroxide-mediated

  8. Laser assisted removal of synthetic painting-conservation materials using UV radiation of ns and fs pulse duration: Morphological studies on model samples

    International Nuclear Information System (INIS)

    Pouli, P.; Nevin, A.; Andreotti, A.; Colombini, P.; Georgiou, S.; Fotakis, C.

    2009-01-01

    In an effort to establish the optimal parameters for the cleaning of complex layers of polymers (mainly based on acrylics, vinyls, epoxys known as Elvacite, Laropal, Paraloid B72, among others) applied during past conservation treatments on the surface of wall paintings, laser cleaning tests were performed with particular emphasis on the plausible morphological modifications induced in the remaining polymeric material. Pulse duration effects were studied using laser systems of different pulse durations (ns and fs) at 248 nm. Prior to tests on real fragments from the Monumental Cemetery in Pisa (Italy) which were coated with different polymers, attention was focused on the study of model samples consisting of analogous polymer films cast on quartz disks. Ultraviolet irradiation is strongly absorbed by the studied materials both in ns and fs irradiation regimes. However, it is demonstrated that ultrashort laser pulses result in reduced morphological alterations in comparison to ns irradiation. In addition, the dependence of the observed alterations on the chemical composition of the consolidation materials in both regimes was examined. Most importantly, it was shown that in this specific conservation problem, an optimum cleaning process may rely not only on the minimization of laser-induced morphological changes but also on the exploitation of the conditions that favour the disruption of the adhesion between the synthetic material and the painting.

  9. Studies on atom transfer radical polymerization of acrylates and styrenes with controlled polymeric block structures

    OpenAIRE

    Ibrahim, Khalid

    2006-01-01

    Atom transfer radical polymerization (ATRP) was applied to homo and block copolymerization of vinyl monomers methacrylates, acrylates, and styrene with iron (FeCl2.4H2O) as the transition metal in most cases. As complexing ligand either a commercially available ligand (triphenyl phosphine) (PPh3) or synthetic aliphatic amines were used. As initiators, methyl 2-bromopropionate, ethyl 2-bromoisobutyrate, α,α-dichloroacetophenone, and poly(ethylene oxide) macroinitiator were employed. Block ...

  10. Silicon dioxide obtained by Polymeric Precursor Method

    International Nuclear Information System (INIS)

    Oliveira, C.T.; Granado, S.R.; Lopes, S.A.; Cavalheiro, A.A.

    2011-01-01

    The Polymeric Precursor Method is able for obtaining several oxide material types with high surface area even obtained in particle form. Several MO 2 oxide types such as titanium, silicon and zirconium ones can be obtained by this methodology. In this work, the synthesis of silicon oxide was monitored by thermal analysis, XRD and surface area analysis in order to demonstrate the influence of the several synthesis and calcining parameters. Surface area values as higher as 370m2/g and increasing in the micropore volume nm were obtained when the material was synthesized by using ethylene glycol as polymerizing agent. XRD analysis showed that the material is amorphous when calcinated at 600°C in despite of the time of calcining, but the material morphology is strongly influenced by the polymeric resin composition. Using Glycerol as polymerizing agent, the pore size increase and the surface area goes down with the increasing in decomposition time, when compared to ethylene glycol. (author)

  11. Magnetic Levitation To Characterize the Kinetics of Free-Radical Polymerization.

    Science.gov (United States)

    Ge, Shencheng; Semenov, Sergey N; Nagarkar, Amit A; Milette, Jonathan; Christodouleas, Dionysios C; Yuan, Li; Whitesides, George M

    2017-12-27

    This work describes the development of magnetic levitation (MagLev) to characterize the kinetics of free-radical polymerization of water-insoluble, low-molecular-weight monomers that show a large change in density upon polymerization. Maglev measures density, and certain classes of monomers show a large change in density when monomers covalently join in polymer chains. MagLev characterized both the thermal polymerization of methacrylate-based monomers and the photopolymerization of methyl methacrylate and made it possible to determine the orders of reaction and the Arrhenius activation energy of polymerization. MagLev also made it possible to monitor polymerization in the presence of solids (aramid fibers, and carbon fibers, and glass fibers). MagLev offers a new analytical technique to materials and polymer scientists that complements other methods (even those based on density, such as dilatometry), and will be useful in investigating polymerizations, evaluating inhibition of polymerizations, and studying polymerization in the presence of included solid materials (e.g., for composite materials).

  12. Report on surveys in fiscal 2000 on the surveys and researches on fundamental technology of polymeric materials in relation to materials nano-technology program; 2000 nendo zairyo nano technology program ni kansuru kobunshi zairyo kiban gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    On the 'polymeric' technology field being the constitution elementary technology of the material neon-technology program, surveys and researches have been performed through holding workshops on the directionality of technological development to be proceeded in a medium term in the future, and the assignments to be worked on with emphasis. The 'Fundamental technology of polymeric materials workshop' was held together with the 49th polymer discussion meeting, in which 300 persons have attended showing high interest of researchers. With regard to the prospect and possibility of the polymeric technology, statements were given on the ways the polymeric technology development should be in the future, and expectations toward the polymeric technology. In the development assignments for the polymeric technology, discussions were given on the current status and problems in the primary structure control technology, tertiary structure control technology, and surface and interface structure control technology. Discussions were also given on the current status and problems in textiles as the high-order structure control technology, the current status and problems in the material forming technology, and the systematization of the polymeric technology and the knowledge thereof. The core of the polymeric technology is the nano-technology itself, whereas the expectations toward the 'Fundamental Polymeric Technology Research Center' were indicated. (NEDO)

  13. Report on surveys in fiscal 2000 on the surveys and researches on fundamental technology of polymeric materials in relation to materials nano-technology program; 2000 nendo zairyo nano technology program ni kansuru kobunshi zairyo kiban gijutsu ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    On the 'polymeric' technology field being the constitution elementary technology of the material neon-technology program, surveys and researches have been performed through holding workshops on the directionality of technological development to be proceeded in a medium term in the future, and the assignments to be worked on with emphasis. The 'Fundamental technology of polymeric materials workshop' was held together with the 49th polymer discussion meeting, in which 300 persons have attended showing high interest of researchers. With regard to the prospect and possibility of the polymeric technology, statements were given on the ways the polymeric technology development should be in the future, and expectations toward the polymeric technology. In the development assignments for the polymeric technology, discussions were given on the current status and problems in the primary structure control technology, tertiary structure control technology, and surface and interface structure control technology. Discussions were also given on the current status and problems in textiles as the high-order structure control technology, the current status and problems in the material forming technology, and the systematization of the polymeric technology and the knowledge thereof. The core of the polymeric technology is the nano-technology itself, whereas the expectations toward the 'Fundamental Polymeric Technology Research Center' were indicated. (NEDO)

  14. Machine guides restoration by using a polymeric material

    Directory of Open Access Journals (Sweden)

    В. Б. Струтинський

    2015-11-01

    Full Text Available The restoration of slide rest guides of the automatic lathe PUB 130 was made by using a polymeric material in the laboratory, and the measurements of the rest displacement strength were made on a specially created experimental stand with the ADC and the PC and subsequent determination of the coefficient of friction. The performed experiments revealed that in the speed range of saddle feed from 0,0228 to 0,075 m/s, the coefficient of friction is within 0,047-0,055. At the same time, the transition to the low-feed (0,0005-0,0022 m/s results in to marked increase of the friction coefficient and the rest hopping movement. However, this phenomenon is likely due to the fact that elastic tie in the form of steel beam with tensometers was put into the feeder of the rest. This explanation let us hope that, with rigid connection of the drive and the rest such a phenomenon will not take place and the value of friction will not differ substantially from the friction obtained at high speeds. The obtained results make it possible to consider the use of a polymer material to be the optimal way to restore worn-out machines

  15. Natural and synthetic polymers in fabric and home care applications

    Science.gov (United States)

    Paderes, Monissa; Ahirwal, Deepak; Fernández Prieto, Susana

    2017-07-01

    Polymers can be tailored to provide different benefits in Fabric & Home Care formulations depending on the monomers and modifications used, such as avoiding dye transfer inhibition in the wash, modifying the surface of tiles or increasing the viscosity and providing suspension properties to consumer products. Specifically, the rheology modification properties of synthetic and natural polymers are discussed in this chapter. The choice of a polymeric rheology modifier will depend on the formulation ingredients (charges, functional groups), the type and the amount of surfactants, the pH and the desired rheology modification. Natural polymeric rheology modifiers have been traditionally used in the food industry, being xanthan gum one of the most well-known ones. On the contrary, synthetic rheology modifiers are preferably used in paints & coats, textile printing and cleaning products.

  16. Supramolecular polymeric materials via cyclodextrin-guest interactions.

    Science.gov (United States)

    Harada, Akira; Takashima, Yoshinori; Nakahata, Masaki

    2014-07-15

    CONSPECTUS: Cyclodextrins (CDs) have many attractive functions, including molecular recognition, hydrolysis, catalysis, and polymerization. One of the most important uses of CDs is for the molecular recognition of hydrophobic organic guest molecules in aqueous solutions. CDs are desirable host molecules because they are environmentally benign and offer diverse functions. This Account demonstrates some of the great advances in the development of supramolecular materials through host-guest interactions within the last 10 years. In 1990, we developed topological supramolecular complexes with CDs, polyrotaxane, and CD tubes, and these preparation methods take advantage of self-organization between the CDs and the polymers. The combination of polyrotaxane with αCD forms a hydrogel through the interaction of αCDs with the OH groups on poly(ethylene glycol). We categorized these polyrotaxane chemistries within main chain type complexes. At the same time, we studied the interactions of side chain type supramolecular complexes with CDs. In these systems the guest molecules modified the polymers and selectively formed inclusion complexes with CDs. The systems that used low molecular weight compounds did not show such selectivity with CDs. The multivalency available within the complex cooperatively enhances the selective binding of CD with guest molecules via the polymer side chains, a phenomenon that is analogous to binding patterns observed in antigen-antibody complexes. To incorporate the molecular recognition properties of CDs within the polymer side chains, we first prepared stimuli-responsive sol-gel switching materials through host-guest interactions. We chose azobenzene derivatives for their response to light and ferrocene derivatives for their response to redox conditions. The supramolecular materials were both redox-responsive and self-healing, and these properties resulted from host-guest interactions. These sol-gels with built in switches gave us insight for

  17. A New Route for High-Purity Organic Materials: High-Pressure-Ramp-Induced Ultrafast Polymerization of 2-(Hydroxyethyl)Methacrylate

    Science.gov (United States)

    Evlyukhin, E.; Museur, L.; Traore, M.; Perruchot, C.; Zerr, A.; Kanaev, A.

    2015-12-01

    The synthesis of highly biocompatible polymers is important for modern biotechnologies and medicine. Here, we report a unique process based on a two-step high-pressure ramp (HPR) for the ultrafast and efficient bulk polymerization of 2-(hydroxyethyl)methacrylate (HEMA) at room temperature without photo- and thermal activation or addition of initiator. The HEMA monomers are first activated during the compression step but their reactivity is hindered by the dense glass-like environment. The rapid polymerization occurs in only the second step upon decompression to the liquid state. The conversion yield was found to exceed 90% in the recovered samples. The gel permeation chromatography evidences the overriding role of HEMA2•• biradicals in the polymerization mechanism. The HPR process extends the application field of HP-induced polymerization, beyond the family of crystallized monomers considered up today. It is also an appealing alternative to typical photo- or thermal activation, allowing the efficient synthesis of highly pure organic materials.

  18. Optical and Scanning electron Microscopy as advanced analysis methods to determine the condition of synthetic geo membranes; Las microscopias optica de reflexion y electronica de barrido como metodos avanzados de analisis para conocer el estado de las geomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Soriano Carrillo, J.; Blanco Fernandez, M.; Garcia Calleja, M. A.; Leiro Lopez, A.; Mateo Sanz, B.; Aguilar Gonzalez, E.; Rubin de Celix, M.

    2014-02-01

    Microscopic techniques have been widely used for years in the study of inorganic materials however their use in organic materials and specifically, in synthetic geo membranes, is very limited. In this study, this innovative technology has been used with the different geo synthetic polymeric barriers with which this research team is experienced: plasticized polyvinyl chloride, polyethylenes, rubbers such as ethenyltriphenyl-diene monomer terpolymer and butyl, polyolefins, ethylene-vinyl acetate copolymer, chlorosulfonated polyethylene and polypropylene. the influence of the extraction area and the time since their application is tested. (Author)

  19. Synthetic Strategies in the Preparation of Polymer/Inorganic Hybrid Nanoparticles

    Science.gov (United States)

    Hood, Matthew A.; Mari, Margherita; Muñoz-Espí, Rafael

    2014-01-01

    This article reviews the recent advances and challenges in the preparation of polymer/inorganic hybrid nanoparticles. We mainly focus on synthetic strategies, basing our classification on whether the inorganic and the polymer components have been formed in situ or ex situ, of the hybrid material. Accordingly, four types of strategies are identified and described, referring to recent examples: (i) ex situ formation of the components and subsequent attachment or integration, either by covalent or noncovalent bonding; (ii) in situ polymerization in the presence of ex situ formed inorganic nanoparticles; (iii) in situ precipitation of the inorganic components on or in polymer structures; and (iv) strategies in which both polymer and inorganic component are simultaneously formed in situ. PMID:28788665

  20. How accelerated biological aging can affect solar reflective polymeric based building materials

    Science.gov (United States)

    Ferrari, C.; Santunione, G.; Libbra, A.; Muscio, A.; Sgarbi, E.

    2017-11-01

    Among the main issues concerning building materials, in particular outdoor ones, one can identify the colonization by microorganisms referred to as biological aggression. This can affect not only the aesthetical aspect but also the thermal performance of solar reflective materials. In order to improve the reliability of tests aimed to assess the resistance to biological aggression and contextually reduce the test duration, an accelerated test method has been developed. It is based on a lab reproducible setup where specific and controlled environmental and boundary conditions are imposed to accelerate as much as possible biological growth on building materials. Due to their widespread use, polymeric materials have been selected for the present analysis, in the aim of reaching an advanced bio-aged level in a relatively short time (8 weeks or less) and at the same time comparatively evaluate different materials under a given set of ageing conditions. Surface properties before, during and after ageing have been investigated by surface, microstructural and chemical analyses, as well as by examination of time progressive images to assess bacterial and algal growth rate.

  1. Studies on selected polymeric materials using the photoacoustic spectroscopic technique

    International Nuclear Information System (INIS)

    Singh, Hukum

    2011-01-01

    Polymethylmethacrylate—graft—polybisphenol—A-carbonate (PMMA-G-PC) with 50% grafting is synthesized. The graft co-polymerization of methylmethacrylate (0.036 mol · lit −1 ) onto polybisphenol—A-carbonate (0.5 g) in the presence of a redox couple formed from potassium persulphate (40 mol · lit −1 ) and thio-urea (30 mmol · lit −1 ) in aqueous nitric acid (0.18 M, 100 ml) in air at (45±2) °C for 3.0 h. Condensation of (PMMA-G-PC) with N- [p-(carboxyl phenyl amino acetic acid)] hydrazide (PCPH) affords polybisphenol-A-carbonate-graft-polymethylmethacrylate hydrazide (PCGH). The photoacoustic (PA) spectra of (PCGH) are recorded in a wavelength range from 200 nm to 800 nm at a modulation frequency of 22 Hz, and compared with those of pure polybisphenol-A-carbonate (PC), (PMMA-G-PC) and (PCPH). In the present work, a non-destructive and non-contact analytical method, namely the photoacoustic technique, is successfully implemented for optical and thermal characterization of selected polymeric materials. The indigenous PA spectrometer used in the present study consists of a 300-W xenon arc lamp, a lock-in amplifier, a chopper, a (1/8)-m monochromator controlled by computer and a home-made PA cell. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Elastic properties of synthetic materials for soft tissue modeling

    International Nuclear Information System (INIS)

    Mansy, H A; Grahe, J R; Sandler, R H

    2008-01-01

    Mechanical models of soft tissue are useful for studying vibro-acoustic phenomena. They may be used for validating mathematical models and for testing new equipment and techniques. The objective of this study was to measure density and visco-elastic properties of synthetic materials that can be used to build such models. Samples of nine different materials were tested under dynamic (0.5 Hz) compressive loading conditions. The modulus of elasticity of the materials was varied, whenever possible, by adding a softener during manufacturing. The modulus was measured over a nine month period to quantify the effect of ageing and softener loss on material properties. Results showed that a wide range of the compression elasticity modulus (10 to 1400 kPa) and phase (3.5 0 -16.7 0 ) between stress and strain were possible. Some materials tended to exude softener over time, resulting in a weight loss and elastic properties change. While the weight loss under normal conditions was minimal in all materials (<3% over nine months), loss under accelerated weight-loss conditions can reach 59%. In the latter case an elasticity modulus increase of up to 500% was measured. Key advantages and limitations of candidate materials were identified and discussed

  3. On-demand photoinitiated polymerization

    Science.gov (United States)

    Boydston, Andrew J; Grubbs, Robert H; Daeffler, Chris; Momcilovic, Nebojsa

    2013-12-10

    Compositions and methods for adjustable lenses are provided. In some embodiments, the lenses contain a lens matrix material, a masking compound, and a prepolymer. The lens matrix material provides structure to the lens. The masking compound is capable of blocking polymerization or crosslinking of the prepolymer, until photoisomerization of the compound is triggered, and the compound is converted from a first isomer to a second isomer having a different absorption profile. The prepolymer is a composition that can undergo a polymerization or crosslinking reaction upon photoinitiation to alter one or more of the properties of the lenses.

  4. Evaluation of ceramic and polymeric materials for use in engineered barrier systems

    International Nuclear Information System (INIS)

    Fullam, H.T.; Skiens, W.E.

    1980-01-01

    Ceramic materials evaluated in the screening studies were Al 2 O 3 (99.8%), mullite, vitreous silica, BaTiO 3 , CaTiO 3 , CaZrO 3 , CaTiSiO 5 , TiO 2 , ZrSiO 4 , basalt, Pyroceram 9617, and Marcor code 9658 machinable glass ceramic. One grade of graphite (Toyotanso IB-11) was also evaluated. Demineralized water, a synthetic Hanford groundwater, and a synthetic NaCl brine solution were used in the screening tests. Demineralized water was used in all five of the leach tests, but the other solutions were only used in the static leach tests at 150 and 250 0 C. Based on the results obtained, graphite appears to be the most leach resistant of the materials tested with the two grades of alumina being the best of the ceramic materials. Titanium dioxide and ZrO 2 are the most leach resistant of the remaining materials. Candidate materials from all three general classes of polymers (thermoplastics, thermosets, and elastomers) were considered in the selection of materials. Selected groups of polymers were tested in the flowing autoclave at 150, 200, and 250 0 C with some polymers being further tested at the next higher temperature. Next, selected samples were exposed to gamma radiation. These samples were then submitted for tensile and elongation measurements. Selected samples which appeared promising from both autoclave and radiation testing were further evaluated by impact tests. The materials that appeared most promising after autoclave testing were the EPDM rubbers, polyphenylene sulfide, poly(ethylene-tetrafluoroethylene) copolymer, and polyfurfuryl alcohol. The radiation dose had little effect on polyfurfuryl alcohol and polyphenylene sulfide samples; very significant decreases in elongation were observed for the fluorocarbon copolymer and the EPDM rubbers. While the polyphenylene sulfide and polyfurfuryl alcohol showed little change in impact strength, poly(ethylene-tetrafluoroethylene) decreased in impact strength

  5. Biodegraded polymers as materials for sowing of grain crops seeds

    Directory of Open Access Journals (Sweden)

    L. S. Shibryaeva

    2015-01-01

    Full Text Available Increase of efficiency of grain production, solution of problems of food security demand search and development of innovative technologies at all stages. One of ways of environmentally friendly production is sowing of seeds on an excipient located in the soil, for example, nonwoven fabric made of eco- decomposable decomposed biodegraded polymer. Biodegraded polymeric materials influence on sowing properties of grain crops seeds and provide realization of their potential productivity. The authors used an electroforming method with chloroform and a dichloroethane application to receive nonwoven fabric from poly-3-hydroxybutyrate (PHB and its compositions together with synthetic nitrile rubber (PHB-SNR. Polymeric material influences on energy of germination and viability of wheat seeds. Germination index is calculated, heat physical parameters are determined for the polymeric excipient. The major factor influencing seeds germination is a structure of nonwoven fabric. Water diffusion, its supply to seeds and their viability depend on morphological features of polymeric material. Polymer excipient structure influence on speed of development of root system on which, in turn, intensity of destruction of polymer depends. The best indicators of energy of germination and viability of seeds correspond to the greatest value of decrease of melting heat of PHB in mix PHB-SNR. In addition, among the studied samples of PHB-SNR the material received from blend of solvents is most effective. The cause is in feature of its structure favorable for a seed germination.

  6. Development of more friendly food packaging materials base on polypropylene through blending with polylacticacid

    Science.gov (United States)

    Setiawan, Achmad Hanafi; Aulia, Fauzan

    2017-01-01

    The commonly food packaging materials today is used a thin layer plastic or film, which is made of a synthetic polymer, such as polypropylene (PP). However, the use of these polymers has a negative impact on the environment, because the synthetic polymer is difficult to degrade naturally by the biotic components such as micro-organisms decomposers and abiotic components such as the sunshine. The use of the biodegradable polymeric material will reduce the use of synthetic polymer products, thereby reducing plastic waste pollution at relatively low cost, it is expected to produce positive effects both for the environment and in terms of economy. PLA is a biodegradable polymer that can be substituted totally or partially to synthetic polymers as far as could fulfill the main function of packaging in the protection and preservation of food. Increasing PLA content in polypropylene blend will affect to the increasing in its water absorption and also its biodegradable. 20% PLA may the optimum composition of poly-blend for food packaging.

  7. Potential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against tuberculosis: A systematic review

    Directory of Open Access Journals (Sweden)

    Farzad Khademi

    2018-02-01

    Full Text Available Objective(s: Production of effective tuberculosis (TB vaccine is necessity. However, the development of new subunit vaccines is faced with concerns about their weak immunogenicity. To overcome such problems, polymers-based vaccine delivery systems have been proposed to be used via various routes. The purpose of this study was to determine the potential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against TB. Materials and Methods: PubMed, Scopus, Science-Direct, and the ISI web of knowledge databases were searched for related keywords. A total of 420 articles, written up to June 25, 2016, were collected on the potential of polymeric particles as TB vaccine delivery systems after parenteral and non-parenteral immunization. Thirty-one relevant articles were selected by applying inclusion and exclusion criteria. Results: It was shown that the immunogenicity of TB vaccines had been improved by using biodegradable and non-biodegradable synthetic polymers as well as natural polymers and they are better able to enhance the humoral and cellular immune responses, compared to TB vaccines alone. The present study revealed that various polymeric particles, after M. tuberculosis challenge in animal models, provide long-lasting protection against TB. PLGA (poly (lactide-co-glycolide and chitosan polymers were widely used as TB vaccine delivery systems/adjuvants. Conclusion: It seems that PLGA and chitosan polymers are well-suited particles for the parenteral and non-parenteral administration of TB vaccines, respectively. Non-biodegradable synthetic polymers in comparison with biodegradable synthetic and natural polymers have been used less frequently. Therefore, further study on this category of polymers is required.

  8. Design and fabrication of polymeric nanocomposites with conducting fillers as electronic nanomaterials

    Science.gov (United States)

    Mushibe, Eliud Kizito

    The growing demand for small, portable and high performance electronic devices has resulted in research activity for embedded electronic components. This offers prospects for the development of flexible electronic components that combines the use of organic and inorganic materials and can be produced on a roll-to-roll process. This dissertation presents advances in the fabrication and characterization of flexible polymeric nanocomposite thin films. Inorganic and synthetic metal nanostructures with high electrical and dielectric properties were employed as filler materials. The processability of these functional filler materials was achieved by dispersion in conventional polymer matrices such as polystyrene (PS), polymethylmethacrylate (PMMA) and poly(vinylidene fluoride) to afford electroactive polymeric composite materials. In the fabrication of inorganic nanostructures, a Tubes by Fiber Template technique was employed to afford submicron metal and metal oxide tubes. Silver and copper nanostructures were fabricated by electroless deposition on electrospun fiber templates. To obtain hollow, submicron tubes, the sacrificial polymer template materials were removed by a combination of solvent dissolution and thermal degradation under an inert atmosphere. Polyaniline thin film deposited on the fiber template was used as a binding interface to enhance uniform and continuous deposition of the metal. This was instrumental in fabricating tubes with varied wall thicknesses ranging from 50 to 300 nm obtained as a function of plating time. By doping electrically conducting polymers such as polyaniline, the conductivity can be modified. We describe the fabrication of highly conducting polyaniline nanostructures via template free synthesis. A novel approach that involves a combination of hydrochloric acid and camphorsulfonic acid dopant at low concentrations was adopted. This approach afforded nanofibers with diameters of 150 ± 50 nm and high electrical conductivity of 4.2

  9. Visualization of in vitro evaluation of restored teeth with synthetic resins by neutron radiography

    International Nuclear Information System (INIS)

    Barbosa, Andre Luis N.; Crispim, Verginia R.

    2013-01-01

    The goal of the present study was to evaluate whether the technique of neutron radiography can provide information on strength and adherence in dental restoration with synthetic polymeric materials, particularly as a tool for the analysis of micro leakage and voids. Thus, tooth samples were drilled, producing cavities with similar dimensions in each tooth, and then carefully filled with eight types of resins that are the most commonly used by dentists. After exposing the tooth samples to a neutron beam, their radiographic images were analyzed. This technique gave good results showing that all the tooth samples were suitably restored. (author)

  10. Impregnation and Polymerization Methods and Systems Used in the Production of Wood-Polymer Materials

    Energy Technology Data Exchange (ETDEWEB)

    Mott, W. E.; Rotariu, G. J. [United States Atomic Energy Commission, Washington, DC 20545 (United States)

    1968-10-15

    Studies on the radiation production of wood-polymer materials began in the United States in 1961 at West Virginia University and have continued until today. In this paper the impregnation and polymerization methods and systems that have evolved from these studies are reviewed. Included is a description of the procedures developed at the College of Forestry, Syracuse University, for producing wood-polymers via a thermal-catalytic process. (author)

  11. Emerging Insights into Directed Assembly: Taking Examples from Nature to Design Synthetic Processes

    Science.gov (United States)

    de Pablo, Juan J.

    There is considerable interest in controlling the assembly of polymeric material in order to create highly ordered materials for applications. Such materials are often trapped in metastable, non-equilibrium states, and the processes through which they assemble become an important aspect of the materials design strategy. An example is provided by di-block copolymer directed self-assembly, where a decade of work has shown that, through careful choice of process variables, it is possible to create ordered structures whose degree of perfection meets the constraints of commercial semiconductor manufacturing. As impactful as that work has been, it has focused on relatively simple materials neutral polymers, consisting of two or at most three blocks. Furthermore, the samples that have been produced have been limited to relatively thin films, and the assembly has been carried out on ideal, two-dimensional substrates. The question that arises now is whether one can translate those achievements to polymeric materials having a richer sequence, to monomers that include charges, to three-dimensional substrates, or to active systems that are in a permanent non-equilibrium state. Building on discoveries from the biophysics literature, this presentation will review recent work from our group and others that explains how nature has evolved to direct the assembly of nucleic acids into intricate, fully three-dimensional macroscopic functional materials that are not only active, but also responsive to external cues. We will discuss how principles from polymer physics serve to explain those assemblies, and how one might design a new generation of synthetic systems that incorporate some of those principles.

  12. Innovative agricultural materials

    Directory of Open Access Journals (Sweden)

    L. S. Shibryaeva

    2016-01-01

    Full Text Available Development of ecodegradable materials and use of them in innovative technology of sowing of seeds of grain crops in a tape isan important and actual problem of polymeric chemistry. Material is affected by programmable destruction under the influence of natural factors taking into account the biochemical processes in a plant. At the present time in literature there are no the data about polymeric materials which can operate plants biochemical processes when contacting to root system of directly in the soil. The authors developed compositions on the basis of synthetic polymer - low density polyethylene (LDPE and biodegradable polymer - a polylactide (PLA. Thermophysical properties of ecofilms change under the influence of ultra-violet radiation. Photooxidation leads to cracking of samples with the raised maintenance of PLA. Temperature of melting of PLA decreases from 165 to 152 degrees Celsius (in some compositions to 137 degrees and crystallinity degrees lower on average by 20 percent. Thus the most considerable decrease in crystallinity (about 30 percent is noted in composition with a ratio of components of 50:50 mass percent. A composition formulation affects on the speed of destructive influence of moisture and an ultraviolet. The speed advantage of these processes is characteristic for the compositions containing from 30 to 60 mass percent of PLA. The soil samples with the maintenance of PLA more than 30 mass percent will be in less time exposed to biodegradation. Composition 50:50 has the greatest loss of weight equaled 18 percent. For other samples relative loss of weight makes 5-10 percent. The test for biodestruction showed considerable change of properties of polymeric samples of PLA- LDPE depending on mix composition. It means that it is possible to select such ratio of components at which material properties would conform to requirements imposed to agricultural appointment films.

  13. Immobilization of biocatalysts for enzymatic polymerizations : Possibilities, advantages, applications

    NARCIS (Netherlands)

    Miletic, Nemanja; Nastasovic, Aleksandra; Loos, Katja; Miletić, Nemanja; Nastasović, Aleksandra

    Biotechnology also holds tremendous opportunities for realizing functional polymeric materials. Biocatalytic pathways to polymeric materials are an emerging research area with not only enormous scientific and technological promise, but also a tremendous impact on environmental issues. Many of the

  14. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  15. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  16. [Plants' materials and synthetic agonists of cannabinoid receptors use as a substitute of Marihuana, appearing in a current forensic toxicology practice of evidence materials].

    Science.gov (United States)

    Geppert, Bogna; Tezyk, Artur; Florek, Ewa; Zaba, Czesław

    2010-01-01

    Cannabis sativa species Indica (Marihuana) is nowadays one of the most common plant drug, with psychoactive activity, presently appearing on the illegal market in Poland. It is reported that frequency of securing evidential materials so called substitute of Marihuana, is growing rapidly during the last few years. The substitutes of Marihuana occurring on the market are of natural or synthetic origins, for example different species of raw plants' materials having action similar to Cannabis or raw plants' materials with no psychoactive properities but with an addition of components so called synthetic cannabinoids. The review presents recent developments in drug market and current problems of forensic toxicology on the example of Marihuana.

  17. Method of polymerizing ethylenically unsaturated materials by irradiation and composition for use therein

    International Nuclear Information System (INIS)

    Nemcek, J.; Heap, N.

    1976-01-01

    This patent concerns photopolymerizable compositions consisting essentially of at least one polymerizable ethylenically unsaturated material and a photosensitive catalyst comprising (a) from 0.5 to 5 percent based on the ethylenically unsaturated material of at least one photosensitizer having the structure Ph(CO)C 2 A(CO)Ph, where Ph is phenyl, halogen-substituted phenyl, phenylene or halogen-substituted phenylene and A is a cyclic hydrocarbyl group, a halogen-substituted cyclic hydrocarbyl group, or a group of the formula X(NR)COCONRY, where X and Y each is hydrogen, a hydrocarbyl, or a halogen-substituted hydrocarbyl group, and (b) from 1 to 5 percent by weight based on the ethylenically unsaturated material of a reducing agent capable of reducing the photosensitizer when the photosensitizer is in an excited state. Also described is a process of preparing polymeric materials by irradiating the foregoing polymerizable composition at a wavelength capable of exciting the photosensitizer to an excited state

  18. Studies in reactive extrusion processing of biodegradable polymeric materials

    Science.gov (United States)

    Balakrishnan, Sunder

    Various reaction chemistries such as Polymerization, Polymer cross-linking and Reactive grafting were investigated in twin-screw extruders. Poly (1,4-dioxan-2-one) (PPDX) was manufactured in melt by the continuous polymerization of 1,4-dioxan-2-one (PDX) monomer in a twin-screw extruder using Aluminum tri-sec butoxide (ATSB) initiator. Good and accurate control over molecular weight was obtained by controlling the ratio of monomer to initiator. A screw configuration consisting of only conveying elements was used for the polymerization. The polymerization reaction was characterized by a monomer-polymer dynamic equilibrium, above the melting temperature of the polymer, limiting the equilibrium conversion to 78-percent. Near complete (˜100-percent) conversion was obtained on co-polymerizing PDX monomer with a few mol-percent (around 8-percent) Caprolactone (CL) monomer in a twin-screw extruder using ATSB initiator. The co-polymers exhibited improved thermal stability with reduction in glass transition temperature. The extruder was modeled as an Axial Dispersed Plug Flow Reactor for the polymerization of CL monomer using Residence Time Distribution (RTD) Analysis. The model provided a good fit to the experimental RTD and conversion data. Aliphatic and aliphatic-aromatic co-polyesters, namely Polycaprolactone (PCL) and Poly butylenes (adipate-co-terephthalate) (Ecoflex) were cross-linked in a twin-screw extruder using radical initiator to form micro-gel reinforced biodegradable polyesters. Cross-linked Ecoflex was further extrusion blended with talc to form blends suitable to be blown into films. A screw configuration consisting of conveying and kneading elements was found to be effective in dispersion of the talc particles (5--10 microns) in the polyester matrix. While the rates of crystallization increased for the talc filled polyester blends, overall crystallinity reduced. Mechanical, tear and puncture properties of films made using the talc filled polyester blends

  19. Energy and charge control in mass spectrometry of synthetic polymers

    NARCIS (Netherlands)

    Nasioudis, A.

    2011-01-01

    Synthetic polymers are the products of humans’ attempts to imitate nature’s gigantic molecular chain architectures. The extended variety of building blocks and reaction mechanisms resulted in a plethora of different polymeric architectures. The biggest challenge for polymer chemists is to develop an

  20. Polymeric Nanogels Obtained by Radiation Technique

    Energy Technology Data Exchange (ETDEWEB)

    Ulanski, P.; Kadłubowski, A. K.; Olejnik,; Rokita, B.; Wach, R.; Rosiak, J. M. [Institute of Applied Radiation Chemistry, Technical University of Lodz, Lodz (Poland)

    2009-07-01

    Soft nanomaterials - polymeric nanogels and microgels - have made a fast and brilliant career, from an unwanted by-product of polymerization processes to an important and fashionable topic of interdisciplinary research in the fields of polymer chemistry and physics, materials science, pharmacy and medicine. Together with their larger analogues - macroscopic gels, most known in the form of water-swellable hydrogels - they have a broad field of actual and potential applications ranging from filler materials in coating industry to modern biomaterials.

  1. Polymeric Nanogels Obtained by Radiation Technique

    International Nuclear Information System (INIS)

    Ulanski, P.; Kadłubowski, A.K.; Olejnik; Rokita, B.; Wach, R.; Rosiak, J.M.

    2009-01-01

    Soft nanomaterials - polymeric nanogels and microgels - have made a fast and brilliant career, from an unwanted by-product of polymerization processes to an important and fashionable topic of interdisciplinary research in the fields of polymer chemistry and physics, materials science, pharmacy and medicine. Together with their larger analogues - macroscopic gels, most known in the form of water-swellable hydrogels - they have a broad field of actual and potential applications ranging from filler materials in coating industry to modern biomaterials

  2. Acoustical characterization and parameter optimization of polymeric noise control materials

    Science.gov (United States)

    Homsi, Emile N.

    2003-10-01

    The sound transmission loss (STL) characteristics of polymer-based materials are considered. Analytical models that predict, characterize and optimize the STL of polymeric materials, with respect to physical parameters that affect performance, are developed for single layer panel configuration and adapted for layered panel construction with homogenous core. An optimum set of material parameters is selected and translated into practical applications for validation. Sound attenuating thermoplastic materials designed to be used as barrier systems in the automotive and consumer industries have certain acoustical characteristics that vary in function of the stiffness and density of the selected material. The validity and applicability of existing theory is explored, and since STL is influenced by factors such as the surface mass density of the panel's material, a method is modified to improve STL performance and optimize load-bearing attributes. An experimentally derived function is applied to the model for better correlation. In-phase and out-of-phase motion of top and bottom layers are considered. It was found that the layered construction of the co-injection type would exhibit fused planes at the interface and move in-phase. The model for the single layer case is adapted to the layered case where it would behave as a single panel. Primary physical parameters that affect STL are identified and manipulated. Theoretical analysis is linked to the resin's matrix attribute. High STL material with representative characteristics is evaluated versus standard resins. It was found that high STL could be achieved by altering materials' matrix and by integrating design solution in the low frequency range. A suggested numerical approach is described for STL evaluation of simple and complex geometries. In practice, validation on actual vehicle systems proved the adequacy of the acoustical characterization process.

  3. Optical Properties of the Self-Assembling Polymeric Colloidal Systems

    Directory of Open Access Journals (Sweden)

    Alexandra Mocanu

    2013-01-01

    Full Text Available In the last decade, optical materials have gained much interest due to the high number of possible applications involving path or intensity control and filtering of light. The continuous emerging technology in the field of electrooptical devices or medical applications allowed the development of new innovative cost effective processes to obtain optical materials suited for future applications such as hybrid/polymeric solar cells, lasers, polymeric optical fibers, and chemo- and biosensing devices. Considering the above, the aim of this review is to present recent studies in the field of photonic crystals involving the use of polymeric materials.

  4. Synthetic biology, inspired by synthetic chemistry.

    Science.gov (United States)

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Microgravity Processing and Photonic Applications of Organic and Polymeric Materials

    Science.gov (United States)

    Frazier, Donald O.; Paley, Mark S.; Penn, Benjamin G.; Abdeldayem, Hossin A.; Smith, David D.; Witherow, William K.

    1997-01-01

    Some of the primary purposes of this work are to study important technologies, particularly involving thin films, relevant to organic and polymeric materials for improving applicability to optical circuitry and devices and to assess the contribution of convection on film quality in unit and microgravity environments. Among the most important materials processing techniques of interest in this work are solution-based and by physical vapor transport, both having proven gravitational and acceleration dependence. In particular, PolyDiAcetylenes (PDA's) and PhthaloCyanines (Pc's) are excellent NonLinear Optical (NLO) materials with the promise of significantly improved NLO properties through order and film quality enhancements possible through microgravity processing. Our approach is to focus research on integrated optical circuits and optoelectronic devices relevant to solution-based and vapor processes of interest in the Space Sciences Laboratory at the Marshall Space Flight Center (MSFC). Modification of organic materials is an important aspect of achieving more highly ordered structures in conjunction with microgravity processing. Parallel activities include characterization of materials for particular NLO properties and determination of appropriation device designs consistent with selected applications. One result of this work is the determination, theoretically, that buoyancy-driven convection occurs at low pressures in an ideal gas in a thermalgradient from source to sink. Subsequent experiment supports the theory. We have also determined theoretically that buoyancy-driven convection occurs during photodeposition of PDA, an MSFC-patented process for fabricating complex circuits, which is also supported by experiment. Finally, the discovery of intrinsic optical bistability in metal-free Pc films enables the possibility of the development of logic gate technology on the basis of these materials.

  6. Drag reduction by natural polymeric additives in PMDS microchannel: Effect of types of additives

    OpenAIRE

    Ling Fiona W.M.; Abdulbari Hayder A.

    2017-01-01

    Drag reduction technology was used in medical applications to enhance the blood flow in semiclogged blood streams which can be an alternative treatment for atherosclerosis. In this present study, natural polymeric drag reducing additives (DRA) was introduced to replace synthetic polymer which has the possibility of bringing side effects to human health. Three different sources, namely okra, aloe vera and hibiscus were utilized to extract the natural polymeric additives which were then tested ...

  7. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  8. Ultimate evaluation report on research and development of basic technologies for next-generation industry. Conductive polymeric materials; Jisedai sangyo kiban gijutsu kenkyu kaihatsu saishu kenkyu kaihatsu hyoka. Dodensei kobunshi zairyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-05-01

    Basic technologies are established that equip polymeric materials (insulators in general) with conductivity similar to that of metals for the realization of novel conducting materials characterized by light weight, high resistance to corrosion, and ease of machining, and for the manufacture of novel electrical/electronic materials having new functions different from those of conventionally used metals. The aims are to realize a conductivity of 10{sup 5}S/cm or more, to manufacture materials sufficiently stable when left in the ordinary or inert atmosphere, and to manufacture materials which may be machined into proper shapes as required in the industry. The results of the 10-year-long development endeavor greatly contribute to the creation of high-level materials, the systematization of technologies, and the elucidation of the conducting mechanism. In relation to polymeric materials, in particular, a new technology is developed that equips, with high reproducibility, polymeric materials with conductivity similar to that of silver or copper; a graphitic material is created for the first time provided with conductivity superior to that of metals; and conducting polymeric materials are equipped with an easy-to-machine feature. A great contribution is accomplished to the production of superconductivity in organic charge-transfer complex crystals and to the elucidation of the conducting mechanism. (NEDO)

  9. Electrochromism for organic materials in polymeric all-solid-state systems

    Science.gov (United States)

    Hirai, Yoshihiko; Tani, Chizuka

    1983-10-01

    This letter reports a new electrochromic polymeric film system consisting of a polymer, an electrochromic (EC) dye which is pyrazoline or tetrathiafulvalene (TTF), and lithium perchlorate (LiClO4). The electrochromic cell structure is glass/ITO/polymeric EC film/Au film. The cell using pyrazoline as an EC dye exhibited yellow coloration at 1.0 V and the cell with TTF exhibited red coloration at 3.5 V. These cells exhibited memory.

  10. Application of plasma technology for the modification of polymer and textile materials

    Directory of Open Access Journals (Sweden)

    Radetić Maja M.

    2004-01-01

    Full Text Available Plasma treatment is based on the physico-chemical changes of the material surface and as an ecologically and economically acceptable process it can be an attractive alternative to conventional modifications. The possibilities of plasma technology application to the modification of polymer and textile materials are discussed. Different specific properties of the material can be achieved by plasma cleaning, etching, functionalization or polymerization. The final effects are strongly influenced by the treatment parameters (treatment time, pressure, power, gas flow, the applied gas and nature of the material. The plasma treatment of polymers is predominantly focused on cleaning and activation of the surfaces to increase adhesion, binding, wettability, dye ability and printability. Current studies deal more with plasma polymerization where an ultra thin film of plasma polymer is deposited on the material surface and, depending on the applied monomer, different specific properties can be obtained (i.e. chemical and thermal resistance, abrasion resistance, antireflexion, water repellence, etc.. Plasma application to textiles is mostly oriented toward wool and synthetic fibres, though some studies also consider cotton, hemp, flax and silk. The main goal of plasma treatment is to impart a more hydrophilic fibre surface and accordingly increase wettability, dye ability, printability and particularly, shrink resistance in the case of wool. Recent studies have favored technical textiles, where plasma polymerization can offer a wide range of opportunities.

  11. Polymeric Materials Models in the Warrior Injury Assessment Manikin (WIAMan) Anthropomorphic Test Device (ATD) Tech Demonstrator

    Science.gov (United States)

    2017-01-01

    analytical model currently used by military vehicle analysts has been continuously updated to address the model’s inherent deficiencies and make the... model is a hyperelastic polymer model based upon statistical mechanics and the finite extensibility of a polymer chain.23 Its rheological ...ARL-TR-7927 ● JAN 2017 US Army Research Laboratory Polymeric Materials Models in the Warrior Injury Assessment Manikin (WIAMan

  12. Multicomponent polymeric materials

    CERN Document Server

    Thomas, Sabu; Saha, Prosenjit

    2016-01-01

    The book offers an in-depth review of the materials design and manufacturing processes employed in the development of multi-component or multiphase polymer material systems. This field has seen rapid growth in both academic and industrial research, as multiphase materials are increasingly replacing traditional single-component materials in commercial applications. Many obstacles can be overcome by processing and using multiphase materials in automobile, construction, aerospace, food processing, and other chemical industry applications. The comprehensive description of the processing, characterization, and application of multiphase materials presented in this book offers a world of new ideas and potential technological advantages for academics, researchers, students, and industrial manufacturers from diverse fields including rubber engineering, polymer chemistry, materials processing and chemical science. From the commercial point of view it will be of great value to those involved in processing, optimizing an...

  13. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  14. Porous Chromatographic Materials as Substrates for Preparing Synthetic Nuclear Explosion Debris Particles

    International Nuclear Information System (INIS)

    Harvey, Scott D.; Liezers, Martin; Antolick, Kathryn C.; Garcia, Ben J.; Sweet, Lucas E.; Carman, April J.; Eiden, Gregory C.

    2013-01-01

    In this study, we investigated several porous chromatographic materials as synthetic substrates for preparing surrogate nuclear explosion debris particles. The resulting synthetic debris materials are of interest for use in developing analytical methods. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110°C) to drive off water, and then treating them at high temperatures (up to 800°C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies were applied to characterize solubility, material balance, and formation of recalcitrant species. Dissolution experiments indicated loading was 1.5 to 3 times higher than expected from the pore volume alone, a result attributed to surface coating. Analysis of load solutions before and after filling the material pores revealed that most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating some metals were selectively loaded. High-temperature treatments caused reduced solubility of several metal species, and loss of some metals (rhenium and tellurium) because volatile species were formed. Sample preparation reproducibility was high (the inter-batch relative standard deviation was 7.8%, and the intra-batch relative standard deviation was 0.84%) indicating that this material is suitable for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in

  15. Synthetic approaches towards new polymer systems by the combination of living carbocationic and anionic polymerizations

    DEFF Research Database (Denmark)

    Feldthusen, Jesper; Ivan, Bela; Muller, Axel. H.E.

    1996-01-01

    Recent efforts to obtain block copolymers by combination of living carbocationic and anionic polymerizations are presented.When tolyl-ended polyisobutylene was used as macroinitiator of anionic polymerization of methacrylate derivatives mixtures of homopolymers and block copolymers were formed due...... to incomplete lithiation of this chain end.In another approach a new functionalization method was developed by end-quenching living polyisobutylene with 1,1-diphenylethylene. After transformation of the groups into 2,2-diphenylvinyl end groups and lithiation polymers were synthesized from protected acrylate...

  16. Trends in Materials Science for Ligament Reconstruction.

    Science.gov (United States)

    Sava, Oana Roxana; Sava, Daniel Florin; Radulescu, Marius; Albu, Madalina Georgiana; Ficai, Denisa; Veloz-Castillo, Maria Fernanda; Mendez-Rojas, Miguel Angel; Ficai, Anton

    2017-01-01

    The number of ligament injuries increases every year and concomitantly the need for materials or systems that can reconstruct the ligament. Limitations imposed by autografts and allografts in ligament reconstruction together with the advances in materials science and biology have attracted a lot of interest for developing systems and materials for ligament replacement or reconstruction. This review intends to synthesize the major steps taken in the development of polymer-based materials for anterior cruciate ligament, their advantages and drawbacks and the results of different in vitro and in vivo tests. Until present, there is no successful polymer system for ligament reconstruction implanted in humans. The developing field of synthetic polymers for ligament reconstruction still has a lot of potential. In addition, several nano-structured materials, made of nanofibers or in the form of ceramic/polymeric nanocomposites, are attracting the interest of several groups due to their potential use as engineered scaffolds that mimic the native environment of cells, increasing the chances for tissue regeneration. Here, we review the last 15 years of literature in order to obtain a better understanding on the state-of-the-art that includes the usage of nano- and poly-meric materials for ligament reconstruction, and to draw perspectives on the future development of the field. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Silicoaluminates as “Support Activator” Systems in Olefin Polymerization Processes

    Science.gov (United States)

    Tabernero, Vanessa; Camejo, Claudimar; Terreros, Pilar; Alba, María Dolores; Cuenca, Tomás

    2010-01-01

    In this work we report the polymerization behaviour of natural clays (montmorillonites, MMT) as activating supports. These materials have been modified by treatment with different aluminium compounds in order to obtain enriched aluminium clays and to modify the global Brönsted/Lewis acidity. As a consequence, the intrinsic structural properties of the starting materials have been changed. These changes were studied and these new materials used for ethylene polymerization using a zirconocene complex as catalyst. All the systems were shown to be active in ethylene polymerization. The catalyst activity and the dependence on acid strength and textural properties have been also studied. The behaviour of an artificial silica (SBA 15) modified with an aluminium compound to obtain a silicoaluminate has been studied, but no ethylene polymerization activity has been found yet.

  18. Time, temperature, chemical and radiation exposure effects on the mechanical performance of polymeric materials used for the containment of radioactive waste. Abstract 56

    International Nuclear Information System (INIS)

    Brown, L.; Bui, V.T.; Bonin, H.W.

    2004-01-01

    'Full text:' The mechanical performance of materials used for the fabrication of materials used for the fabrication of a storage container for radioactive waste is dependent on the environment to which the container will be exposed over its lifetime. There exists a complex relationship between the many variables affecting the properties of the polymer and potentially decreasing the mechanical performance properties of the container. To further complicate the system, the degradation processes are often time dependant. Experimental results for Nylon 6,6, Semi-Aromatic Nylon, and Polycarbonate have been used as a basis for the development of a model, which represents the performance of a polymeric container used for the storage of radioactive waste over time. The experimental work aimed at providing information on the materials performance in a variety of environmental conditions, as well as a function of time. This included exposing the polymeric material samples to a mixed field of radiation in the SLOWPOKE-2 nuclear reactor. A series of dilution viscometry experiments have been used to relate the changes in mechanical performance to changes in the physical characteristics of the polymer molecules. This provided a valuable tool in the extrapolation of the model to other polymeric materials, and allowed for use of the model based on theoretical predictions of a polymer molecules reaction to various environmental conditions. (author)

  19. Time, temperature, chemical and radiation exposure effects on the mechanical performance of polymeric materials used for the containment of radioactive waste. Abstract 56

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.; Bui, V.T.; Bonin, H.W. [Royal Military College of Canada, Dept. of Chemistry and Chemical Engineering, Kingston, Ontario (Canada)]. E-mail: Laura-lee.Brown@rmc.ca; bui-v@rmc.ca; bonin-h@rmc.ca

    2004-07-01

    'Full text:' The mechanical performance of materials used for the fabrication of materials used for the fabrication of a storage container for radioactive waste is dependent on the environment to which the container will be exposed over its lifetime. There exists a complex relationship between the many variables affecting the properties of the polymer and potentially decreasing the mechanical performance properties of the container. To further complicate the system, the degradation processes are often time dependant. Experimental results for Nylon 6,6, Semi-Aromatic Nylon, and Polycarbonate have been used as a basis for the development of a model, which represents the performance of a polymeric container used for the storage of radioactive waste over time. The experimental work aimed at providing information on the materials performance in a variety of environmental conditions, as well as a function of time. This included exposing the polymeric material samples to a mixed field of radiation in the SLOWPOKE-2 nuclear reactor. A series of dilution viscometry experiments have been used to relate the changes in mechanical performance to changes in the physical characteristics of the polymer molecules. This provided a valuable tool in the extrapolation of the model to other polymeric materials, and allowed for use of the model based on theoretical predictions of a polymer molecules reaction to various environmental conditions. (author)

  20. Polypropylene/graphite nanocomposites by in situ polymerization

    International Nuclear Information System (INIS)

    Milani, Marceo A.; Galland, Giselda B.; Quijada, Raul

    2011-01-01

    This work presents the synthesis of nanocomposites of polypropylene/graphite by in situ polymerization using metallocene catalyst and graphene nanosheets. Initially was analyzed which of the metallocene catalysts rac-Et(Ind) 2 ZrCl 2 or rac-Me 2 Si(Ind) 2 ZrCl 2 produces polypropylene with mechanical properties more relevant. Then it were performed the in situ polymerization reactions to obtain the nanocomposites. The polymeric materials were characterized by XRD, DSC, GPC and DMTA. (author)

  1. Architecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2013-07-01

    Full Text Available This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of various hydrophobic polymers, such as polyethers, polyesters, poly(ester-ether, and polycarbonates as a guest polymer, such inclusion supramolecules were formed by the hydrophobic interaction in the progress of polymerization. Because the representation of propagation in the polymerization is similar to the way that a vine of a plant grows, twining around a rod, this polymerization method for the formation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. To yield an inclusion complex from a strongly hydrophobic polyester, the parallel enzymatic polymerization system was extensively developed. The author found that amylose selectively included one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest polymers poly(tetrahydrofuran (PTHF in the vine-twining polymerization. Selective inclusion behavior of amylose toward stereoisomers of chiral polyesters, poly(lactides, also appeared in the vine-twining polymerization.

  2. Fiscal 1992 R and D project for next generation infrastructure technology. Report on results of R and D on silicon-based polymeric material; 1992 nendo keisokei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-03-01

    R and D was conducted with the purpose of establishing fundamental technologies for molecular design, synthesis, material formation and evaluation method concerning silicon-based polymer. with the fiscal 1992 results summarized. In the studies on synthesis technology of electrically conductive silicon-based polymeric materials, silicon-based compounds were synthesized including in particular -Si-Si- bond and carbon multiple bond like -C-C-, with acquisition/analysis of material data started. In the studies on new silicon-based polymeric materials capable of circuit plotting, syntheses were performed for network polysilanes through the disproportionation reaction of alkoxydisilanes. In the studies on new silicon-based polymeric materials having a light emitting function, evaluation of oxidation-reduction potential and search for synthesizing conditions were performed for halosilanes and hydrosilanes. In the studies on silicon-based photoelectric conversion materials, molecular design progressed using a crystal orbital method. Furthermore, researches were implemented on such subjects as silicon-based polymeric materials having a sea-island structure, interpenetrating polymer network forming technologies, and composite structural materials composed of organic metallic complex and silicon-based polymers. (NEDO)

  3. Recent aspects of self-oscillating polymeric materials: designing self-oscillating polymers coupled with supramolecular chemistry and ionic liquid science.

    Science.gov (United States)

    Ueki, Takeshi; Yoshida, Ryo

    2014-06-14

    Herein, we summarise the recent developments in self-oscillating polymeric materials based on the concepts of supramolecular chemistry, where aggregates of molecular building blocks with non-covalent bonds evolve the temporal or spatiotemporal structure. By utilising the rhythmic oscillation of the association/dissociation of molecular aggregates coupled with the redox oscillation by the BZ reaction, novel soft materials that express similar functions as those of living matter will be achieved. Further, from the viewpoint of materials science, our recent approach to prepare self-oscillating materials that operate long-term under mild conditions will be introduced.

  4. Production of jet fuel range paraffins by low temperature polymerization of gaseous light olefins using ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Peiwen; Wu, Xiaoping; Zhu, Lijuan; Jin, Feng; Liu, Junxu; Xia, Tongyan; Wang, Tiejun; Li, Quanxin

    2016-01-01

    Graphical abstract: A novel catalytic transformation of light olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. - Highlights: • A novel transformation of light olefins to jet fuel range paraffins was demonstrated. • The synthetic fuels can be produced by atmospheric olefin polymerizations. • C 8 –C 15 iso-paraffins from light olefins was achieved with a selectivity of 80.6%. - Abstract: This work demonstrated a novel catalytic transformation of gaseous olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. The production of the desired C 8 –C 15 iso-paraffins with the selectivity of 80.6 C mol% was achieved by the room-temperature polymerizations of gaseous light olefins using the [BMIM] Al 2 Cl 7 ionic liquid. The influences of the reaction conditions on the olefinic polymerizations were investigated in detail. The properties of hydrocarbons in the synthetic fuels were determined by the GC–MS analyses combined with 1 H NMR, and 13 C NMR analyses. The formation of C 8 –C 15 hydrocarbons from gaseous light olefins was illustrated by the identified products and the functional groups. This transformation potentially provides a useful avenue for the production of the most important components of iso-paraffins required in jet fuels.

  5. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    Science.gov (United States)

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.

  6. Emerging synthetic strategies for core cross-linked star (CCS) polymers and applications as interfacial stabilizers: bridging linear polymers and nanoparticles.

    Science.gov (United States)

    Chen, Qijing; Cao, Xueteng; Xu, Yuanyuan; An, Zesheng

    2013-10-01

    Core cross-linked star (CCS) polymers become increasingly important in polymer science and are evaluated in many value-added applications. However, limitations exist to varied degrees for different synthetic methods. It is clear that improvement in synthetic efficiency is fundamental in driving this field moving even further. Here, the most recent advances are highlighted in synthetic strategies, including cross-linking with cross-linkers of low solubility, polymerization-induced self-assembly in aqueous-based heterogeneous media, and cross-linking via dynamic covalent bonds. The understanding of CCS polymers is also further refined to advocate their role as an intermediate between linear polymers and polymeric nanoparticles, and their use as interfacial stabilizers is rationalized within this context. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Study of the Thermal Polymerization of Linseed and Passion Fruit Oils

    Science.gov (United States)

    Lopes, R. V. V.; Loureiro, N. P. D.; Fonseca, P. S.; Macedo, J. L.; Santos, M. L.; Sales, M. J.

    2008-08-01

    Researches involving ecofriendliness materials are growing up, as well as, a current interest in developing materials from inexpensive and renewable resources. Vegetable oils show a number of excellent properties, which could be utilized to produce valuable polymeric materials. In this work is described the synthesis of polymeric materials from linseed oil (Linum usitatissimum L.) and passion fruit oil (Passiflora edulis) and their characterization by thermogravimetry (TG), differential scanning calorimetry (DSC) and Raman spectroscopy. The TG curve shows that those polymeric materials present two stages of decomposition. DSC plots of the vegetable oils showed some endothermic and exothermic transitions which are not present in the DSC curves corresponding to oil-based polymers. The Raman spectra of the polymers indicate declining of absorbance in the region of C = C stretching (˜1600 cm-1). This absorption was used to estimate the degree of polymerization (79% and 67.5% for linseed and passion fruit oils, respectively)

  8. Using Synthetic Biology to Engineer Living Cells That Interface with Programmable Materials.

    Science.gov (United States)

    Heyde, Keith C; Scott, Felicia Y; Paek, Sung-Ho; Zhang, Ruihua; Ruder, Warren C

    2017-03-09

    We have developed an abiotic-biotic interface that allows engineered cells to control the material properties of a functionalized surface. This system is made by creating two modules: a synthetically engineered strain of E. coli cells and a functionalized material interface. Within this paper, we detail a protocol for genetically engineering selected behaviors within a strain of E. coli using molecular cloning strategies. Once developed, this strain produces elevated levels of biotin when exposed to a chemical inducer. Additionally, we detail protocols for creating two different functionalized surfaces, each of which is able to respond to cell-synthesized biotin. Taken together, we present a methodology for creating a linked, abiotic-biotic system that allows engineered cells to control material composition and assembly on nonliving substrates.

  9. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    Science.gov (United States)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  10. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at National Taipei University of Technology)

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at National Taipei University of Technology. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  11. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at Center for Condensed Matter Sciences)

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at Center for Condensed Matter Sciences. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  12. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at National Sun Yat-sen University) 

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at National Sun Yat-sen University. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  13. Wear resistance of thick diamond like carbon coatings against polymeric materials used in single screw plasticizing technology

    Science.gov (United States)

    Zitzenbacher, G.; Liu, K.; Forsich, C.; Heim, D.

    2015-05-01

    Wear on the screw and barrel surface accompany polymer single screw plasticizing technology from the beginning. In general, wear on screws can be reduced by using nitrided steel surfaces, fused armour alloys on the screw flights and coatings. However, DLC-coatings (Diamond Like Carbon) comprise a number of interesting properties such as a high hardness, a low coefficient of friction and an excellent corrosion resistance due to their amorphous structure. The wear resistance of about 50 µm thick DLC-coatings against polyamide 6.6, polybutylene terephthalate and polypropylene is investigated in this paper. The tribology in the solids conveying zone of a single screw extruder until the beginning of melting is evaluated using a pin on disc tribometer and a so called screw tribometer. The polymeric pins are pressed against coated metal samples using the pin on disc tribometer and the tests are carried out at a defined normal force and sliding velocity. The screw tribometer is used to perform tribological experiments between polymer pellets and rotating coated metal shafts simulating the extruder screw. Long term experiments were performed to evaluate the wear resistance of the DLC-coating. A reduction of the coefficient of friction can be observed after a frictional distance of about 20 kilometers using glass fibre reinforced polymeric materials. This reduction is independent on the polymer and accompanied by a black layer on the wear surface of the polymeric pins. The DLC-coated metal samples show an up to 16 µm deep wear track after the 100 kilometer test period against the glass fiber filled materials only.

  14. Fiscal 1994 technological survey report. Research study on polymer materials by precision polymerization; 1994 nendo seimitsu jugo kobunshi zairyo ni kansuru chosa kenkyu hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-03-01

    In the paradigm that propelled polymer chemistry, there are involved the establishment of polymer concept, engineering plastics, regulation of higher ordered structure, and precision polymerization. The first two produced the polymer chemistry era in the 20th century. The regulation of higher ordered structure and the precision polymerization are the fundamental technologies supporting the polymer chemistry of the 21st century. The precision polymerization is a technology for regulating the stereospecificity, sequential structure, and molecular weight of polymers by regulating atoms and molecules and is referred to the following important techniques to be concrete. In the precision addition polymerization, stereospecific regulation and purification of active site to give living polymers are required while, in the precision condensation polymerization, regulation of condensation probability process to be secondary Marcov chain is necessary, as is the establishment of non-defect condensation condition avoiding high temperature deterioration and the like. In the biomimetic precision polymerization, key issues are the method of incorporating molecular recognition control and sequential structure control by living organs into an industrial process. If the higher ordered structure can be regulated by the precision polymerization, it is possible to obtain numerous high performance/high functional materials such as superconductors. (NEDO)

  15. Affects of Microgravity on the Polymerization and Material Properties of Biomedical Grade Polymers

    Science.gov (United States)

    Crane, Deborah J.

    2002-01-01

    the material of choice in the production of acetabular cups for hip and tibial cradles for knee orthopeadic implant components for over 30 years. Although UHMWPE is used for more than 1.5 million implants a year in the United States alone and more than 3 million implant surgeries a year worldwide, problems with debris particle formation, pitting and fracture continue to induce premature failure of implant components. chains produced during polymerization are capable of packing into crystalline structures called lamellae, which are embedded within randomly oriented amorphous regions. Crosslinks, or tie molecules bridge the crystalline structures, which contribute to the materials' toughness and strength as a biomedical material. Research has been conducted providing evidence that a crosslinked gradient at the articulating surface of the polymer component provides resistance to surface degradation and subsequent debris formation. Recently, the introduction of highly crosslinked UHMWPE had proven to reduce some of the problems associated with the applications of this polymer as a biomedical material and was seen as the answer to solving the continuing problems associated with UHMWPE implant components. Yet current research into the fatigue characteristics of highly crosslinked UHMWPE has shown that subsurface crack propagation and subsequent delamination continues to produce problematic debris generation. Studies have shown that various sterilization and accelerated aging (to emulate natural oxidation rates) protocols adversely effects the material properties. Additional research has shown that alignment of the lamellae, caused by processing technique, fabrication or surface articulation may be the precursor to debris particle formation. Processing techniques performed under high pressure has proven to effect the width of the crystalline lamellae and therefore, the material's response to wear and fracture. UHMWP due to a microgravity environment, which could be

  16. Evaluation of solid polymeric organic materials for use in bioreactive sediment capping to stimulate the degradation of chlorinated aliphatic hydrocarbons

    NARCIS (Netherlands)

    Atashgahi, S.; Maphosa, F.; Vrieze, de J.; Haest, P.J.; Boon, N.; Smidt, H.; Springael, D.; Dejonghe, W.

    2014-01-01

    In situ bioreactive capping is a promising technology for mitigation of surface water contamination by discharging polluted groundwater. Organohalide respiration (OHR) of chlorinated ethenes in bioreactive caps can be stimulated through incorporation of solid polymeric organic materials (SPOMs) that

  17. Nanotechnology tools for antibacterial materials.

    Science.gov (United States)

    Rizzello, Loris; Cingolani, Roberto; Pompa, Pier Paolo

    2013-05-01

    The understanding of the interactions between biological systems and nanoengineered devices is crucial in several research fields, including tissue engineering, biomechanics, synthetic biology and biomedical devices. This review discusses the current knowledge of the interactions between bacteria and abiotic nanostructured substrates. First, the effects of randomly organized nanoscale topography on bacterial adhesion and persistence are described. Second, the interactions between microorganisms and highly organized/ordered micro- and nano-patterns are discussed. Finally, we survey the most promising approaches for the fabrication of silver polymeric nanocomposites, which have important applications as antimicrobial materials. The advantages, drawbacks and limitations of such nanotechnologies are critically discussed in view of potential future applications.

  18. The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters

    Science.gov (United States)

    Suaria, Giuseppe; Avio, Carlo G.; Mineo, Annabella; Lattin, Gwendolyn L.; Magaldi, Marcello G.; Belmonte, Genuario; Moore, Charles J.; Regoli, Francesco; Aliani, Stefano

    2016-11-01

    The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea.

  19. Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes.

    Science.gov (United States)

    Lee, Seung-Jin; Kim, Jae-Hong

    2014-01-01

    Ceramic ultrafiltration membranes has drawn increasing attention in drinking water treatment sectors as an alternative to traditional polymeric counterparts, yet only limited information has been made available about the characteristics of ceramic membrane fouling by natural organic matter. The effects of solution chemistry including ionic strength, divalent ion concentration and pH on the flux behavior were comparatively evaluated for ceramic and polymeric ultrafiltration of synthetic water containing model natural organic matter. Filtration characteristics were further probed via resistance-in-series model analysis, fouling visualization using quantum dots, batch adsorption test, contact angle measurement, solute-membrane surface adhesion force measurement, and quantitative comparison of fouling characteristics between ceramic and polymeric membranes. The results collectively suggested that the effects of solution chemistry on fouling behavior of ceramic membranes were generally similar to polymeric counterparts in terms of trends, while the extent varied significantly depending on water quality parameters. Lower fouling tendency and enhanced cleaning efficiency were observed with the ceramic membrane, further promoting the potential for ceramic membrane application to surface water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Evaluation of metal-polymeric fixed partial prosthesis using optical coherence tomography

    Science.gov (United States)

    Sinescu, C.; Negrutiu, M. L.; Duma, V. F.; Marcauteanu, C.; Topala, F. I.; Rominu, M.; Bradu, A.; Podoleanu, A. Gh.

    2013-11-01

    Metal-Polymeric fixed partial prosthesis is the usual prosthetic treatment for many dental patients. However, during the mastication the polymeric component of the prosthesis is fractured and will be lost. This fracture is caused by the material defects or by the fracture lines trapped inside the esthetic components of the prosthesis. This will finally lead to the failure of the prosthetic treatment. Nowadays, there is no method of identification and forecast for the materials defects of the polymeric materials. The aim of this paper is to demonstrate the capability of Optical Coherence Tomography (OCT) as a non-invasive clinical method that can be used for the evaluation of metal-polymeric fixed partial prostheses. Twenty metal-polymeric fixed partial prostheses were used for this study. The esthetic component of the prostheses has been Adoro (Ivoclar). Optical investigations of the metal prostheses have revealed no material defects or fracture lines. All the prostheses were temporary cemented in the oral cavities of the patients for six month. The non-invasive method used for the investigations was OCT working in Time Domain mode at 1300 nm. The evaluations of the prostheses were performed before and after their cementation in the patient mouths. All the imagistic results were performed in 2D and than in 3D, after the reconstruction. The results obtained after the OCT evaluation allowed for the identification of 4 metal-polymeric fixed partial prostheses with material defects immediately after finishing the technological procedures. After 6 month in the oral environment other 3 fixed partial prostheses revealed fracture lines. In conclusion, OCT proved to be a valuable tool for the noninvasive evaluation of the metal-polymeric fixed partial prostheses.

  1. Pin-on-disk apparatus for tribological studies of polymeric materials

    DEFF Research Database (Denmark)

    Ølholm Larsen, Thomas; Løgstrup Andersen, Tom; Thorning, Bent

    2009-01-01

    polymeric materials under dry-sliding conditions. The different main parts of the apparatus are described in a way which partly explains the choice of construction and partly makes it possible to produce a similar apparatus. Furthermore, a limited amount of tribological data is presented mainly to exemplify......The purpose of this paper is to describe the construction of a custom-built pin-on-disk (POD) apparatus based on a simple design and on important guidelines. The POD apparatus is built as a part of the main author's PhD project. The apparatus is built at a low cost and is suited for testing...... weave. The data presented in this paper are limited since the main objective is to describe the construction of a POD apparatus. The paper is intended to be a source of inspiration for industrial or academic laboratories who want to establish their own tailor-suited tribological test-equipment, instead...

  2. Scintigraphic evaluation of the pharmacokinetics of a soluble polymeric drug carrier

    International Nuclear Information System (INIS)

    Pimm, M.V.; Perkins, A.C.; Hudecz, F.

    1992-01-01

    There is a growing interest in the use of macromolecular carriers for therapeutic agents. If these carriers can be labelled with an appropriate gamma-emitter, their biodistribution could be followed by scintigraphy. We have imaged the biodistribution of a synthetic branched polypeptide, based on a poly-L-lysine backbone (average molecular mass 45 kDa). The polymer was conjugated to diethylene triamine penta-acetic acid and labelled by chelation with indium-111. Mice were injected i.v. with labelled material and imaged with a gamma-camera with a pin-hole collimator. Images showed the majority of tracer remaining in the blood pool, but about 35% appeared in the urinary bladder within 1.5 h. When the 111 In-polymer was fractionated by gel filtration chromatography on S-300, the imaging showed that the early eluting material was retained, the intermediate showed some renal clearance, and the late was rapidly excreted. These findings show the value of gamma-scintigraphy for biodistribution studies with such polymeric drug carriers and its potential for clinical pharmacokinetic studies. (orig.)

  3. Broadband Terahertz Refraction Index Dispersion and Loss of Polymeric Dielectric Substrate and Packaging Materials

    Science.gov (United States)

    Motaharifar, E.; Pierce, R. G.; Islam, R.; Henderson, R.; Hsu, J. W. P.; Lee, Mark

    2018-01-01

    In the effort to push the high-frequency performance of electronic circuits and signal interconnects from millimeter waves to beyond 1 THz, a quantitative knowledge of complex refraction index values and dispersion in potential dielectric substrate, encapsulation, waveguide, and packaging materials becomes critical. Here we present very broadband measurements of the real and imaginary index spectra of four polymeric dielectric materials considered for use in high-frequency electronics: benzocyclobutene (BCB), polyethylene naphthalate (PEN), the photoresist SU-8, and polydimethylsiloxane (PDMS). Reflectance and transmittance spectra from 3 to 75 THz were made using a Fourier transform spectrometer on freestanding material samples. These data were quantitatively analyzed, taking into account multiple partial reflections from front and back surfaces and molecular bond resonances, where applicable, to generate real and imaginary parts of the refraction index as a function of frequency. All materials showed signatures of infrared active organic molecular bond resonances between 10 and 50 THz. Low-loss transmission windows as well as anti-window bands of high dispersion and loss can be readily identified and incorporated into high-frequency design models.

  4. Gamma radiation-polymerized methacrylates used as heavy metals adsorbents

    International Nuclear Information System (INIS)

    Barrera D, C.; Roa M, G.; Balderas H, P.; Bilyeu, B.; Urena N, F.

    2009-01-01

    Heavy metal removal from aqueous solution is a priority research area since the actual methods are costly and a major drawback is the large amounts of sludge generated when applying traditional techniques. Adsorption is a physiochemical wastewater treatment process, which is gaining prominence as a means of producing high quality effluents, which are low in metal ion concentrations. The development of inexpensive adsorbents for the treatment of wastewater is an important area in environmental sciences. In this work we describe some of the physical and chemical phenomena that take place in the polymerization of methacrylates when gamma radiation is used. We explain how polymeric material characterization equipment are used for obtaining information regarding the material properties. Then we explain how the new polymeric material obtained can be use for the wastewater treatment. Finally, a comparison in the heavy metal removal from aqueous solution with other sorbent materials is presented. (Author)

  5. Synthetic carbohydrate: An aid to nutrition in the future

    Science.gov (United States)

    Berman, G. A. (Editor); Murashige, K. H. (Editor)

    1973-01-01

    The synthetic production of carbohydrate on a large scale is discussed. Three possible nonagricultural methods of making starch are presented in detail and discussed. The simplest of these, the hydrolysis of cellulose wastes to glucose followed by polymerization to starch, appears a reasonable and economic supplement to agriculture at the present time. The conversion of fossil fuels to starch was found to be not competitive with agriculture at the present time, but tractable enough to allow a reasonable plant design to be made. A reconstruction of the photosynthetic process using isolated enzyme systems proved technically much more difficult than either of the other two processes. Particular difficulties relate to the replacement of expensive energy carrying compounds, separation of similar materials, and processing of large reactant volumes. Problem areas were pinpointed, and technological progress necessary to permit such a system to become practical is described.

  6. Method for forming polymerized microfluidic devices

    Science.gov (United States)

    Sommer, Gregory J.; Hatch, Anson V.; Wang, Ying-Chih; Singh, Anup K.; Renzi, Ronald F.; Claudnic, Mark R.

    2013-03-12

    Methods for making a microfluidic device according to embodiments of the present invention include defining.about.cavity. Polymer precursor solution is positioned in the cavity, and exposed to light to begin the polymerization process and define a microchannel. In some embodiments, after the polymerization process is partially complete, a solvent rinse is performed, or fresh polymer precursor introduced into the microchannel. This may promote removal of unpolymerized material from the microchannel and enable smaller feature sizes. The polymer precursor solution may contain an iniferter. Polymerized features therefore may be capped with the iniferter, which is photoactive. The iniferter may aid later binding of a polyacrylamide gel to the microchannel surface.

  7. Recent advances on polymeric membranes for membrane reactors

    KAUST Repository

    Buonomenna, M. G.

    2012-06-24

    Membrane reactors are generally applied in high temperature reactions (>400 °C). In the field of fine chemical synthesis, however, much milder conditions are generally applicable and polymeric membranes were applied without their damage. The successful use of membranes in membrane reactors is primary the result of two developments concerning: (i) membrane materials and (ii) membrane structures. The selection of a suited material and preparation technique depends on the application the membrane is to be used in. In this chapter a review of up to date literature about polymers and configuration catalyst/ membranes used in some recent polymeric membrane reactors is given. The new emerging concept of polymeric microcapsules as catalytic microreactors has been proposed. © 2012 Bentham Science Publishers. All rights reserved.

  8. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Hassager, Ole; Kristensen, Susanne Brogaard; Larsen, Johannes Ruben

    1999-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane. The polymeric material is described by an arbitrary combination of a viscoelastic and a purely viscous component to the stress. Some viscoelastic materials described by a Mooney......-Rivlin model show a monotone increasing pressure during inflation of a spherical membrane. These materials develop a homogeneous membrane thickness in agreement with the Considere-Pearson condition. Molecularly based models such as the neo-Hookean, Doi-Edwards or Tom-Pom model show a pressure maximum when...... inflated. Membranes described by these models develop a local thinning of the membrane which may lead to bursting in finite time. (C) 1999 Elsevier Science B.V. All rights reserved....

  9. Nonlinear viscoelasticity of pre-compressed layered polymeric composite under oscillatory compression

    KAUST Repository

    Xu, Yangguang

    2018-05-03

    Describing nonlinear viscoelastic properties of polymeric composites when subjected to dynamic loading is essential for development of practical applications of such materials. An efficient and easy method to analyze nonlinear viscoelasticity remains elusive because the dynamic moduli (storage modulus and loss modulus) are not very convenient when the material falls into nonlinear viscoelastic range. In this study, we utilize two methods, Fourier transform and geometrical nonlinear analysis, to quantitatively characterize the nonlinear viscoelasticity of a pre-compressed layered polymeric composite under oscillatory compression. We discuss the influences of pre-compression, dynamic loading, and the inner structure of polymeric composite on the nonlinear viscoelasticity. Furthermore, we reveal the nonlinear viscoelastic mechanism by combining with other experimental results from quasi-static compressive tests and microstructural analysis. From a methodology standpoint, it is proved that both Fourier transform and geometrical nonlinear analysis are efficient tools for analyzing the nonlinear viscoelasticity of a layered polymeric composite. From a material standpoint, we consequently posit that the dynamic nonlinear viscoelasticity of polymeric composites with complicated inner structures can also be well characterized using these methods.

  10. Thermal polymerization of Moringa oleifera oil; Termopolimerizacao do oleo de Moringa oleifera

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Tania M.S.; Novack, Katia M.; Leandro, Cristiano, E-mail: tania@iceb.ufop.br [Departamento de Quimica - UFOP, Campus Morro do Cruzeiro, Ouro Preto, MG (Brazil)

    2011-07-01

    It is increasingly clear both for society and the scientific community, that is necessary to find alternatives to reduce the use of polymeric materials because of their damage to the environment. One way to minimize the environmental problems related to the use of polymers is try to make them quickly degradable. In this study it was obtained a material with polymeric appearance derived from heating of the vegetable oil extracted from seeds of Moringa oleifera. The resulting product is an interesting alternative to obtain polymeric materials that may have biodegradable characteristics, coming from a renewable source and low cost. Moringa oil can be used since it has a high content of unsaturated fatty acids, and its main constituent oleic acid. All samples were characterized by FTIR, NMR and GPC. It was obtained a polymeric material, malleable, high viscosity, with some elasticity, low crystallinity and no unpleasant odor. (author)

  11. ROMP-Derived cyclooctene-based monolithic polymeric materials reinforced with inorganic nanoparticles for applications in tissue engineering

    Directory of Open Access Journals (Sweden)

    Franziska Weichelt

    2010-12-01

    Full Text Available Porous monolithic inorganic/polymeric hybrid materials have been prepared via ring-opening metathesis copolymerization starting from a highly polar monomer, i.e., cis-5-cyclooctene-trans-1,2-diol and a 7-oxanorborn-2-ene-derived cross-linker in the presence of porogenic solvents and two types of inorganic nanoparticles (i.e., CaCO3 and calcium hydroxyapatite, respectively using the third-generation Grubbs initiator RuCl2(Py2(IMesH2(CHPh. The physico-chemical properties of the monolithic materials, such as pore size distribution and microhardness were studied with regard to the nanoparticle type and content. Moreover, the reinforced monoliths were tested for the possible use as scaffold materials in tissue engineering, by carrying out cell cultivation experiments with human adipose tissue-derived stromal cells.

  12. Sixtieth Anniversary of Ziegler-Natta Catalysts and Stereospecific Polymerization

    Directory of Open Access Journals (Sweden)

    Janović Z.

    2015-07-01

    Full Text Available This review article highlights the history of the discoveries of organometallic catalysts and stereospecific polymerization of α-olefins, dienes and a number of vinyl monomers by Karl Ziegler and Giulio Natta sixty years ago, their developments and recent progress. As one of the most important achievements in the field of catalysis, macromolecular science and polymer materials, their inventors were awarded the Nobel Prize in Chemistry in 1963 “for their discoveries in the field of chemistry and technology of high polymers”. These discoveries have stimulated an intensive, both basic and applied research all over the world, up to the present times, leading to great development of the polymer industry. The important biographical data and scientific advancements of K. Ziegler and G. Natta are presented as well. Karl Ziegler, a German scientist, Director of Max Planck Institute for Coal Research in Mülheim, besides many scientific achievements, in 1953 discovered a new process for the polymerization of ethylene into linear polyethylene under mild conditions by using titanium chloride and alkyl aluminium catalytic system that was superior to all existing polymerization. Giulio Natta, an Italian scientist, Director of the Department of Industrial Chemistry at Polytechnic, University of Milan, besides many achievements in petrochemical processes, in 1954 obtained for the first time isotactic polypropylene and Montecatini Co. started its production already in 1958. He conducted pioneering studies on the chain microstructure of synthetic organic polymers and postulated the mechanisms of stereospecific polymerizations. Since the discovery of the Zeigler-Natta catalyst, stereospecific polymerization and processes, significant developments have occurred. The breakthrough in polymerization processes such as fluid bed, liquid phase loop reactor and reactor granule technology led to significant development and growth of polyolefin production. In the 1980s

  13. Micromechanical Properties of a New Polymeric Microcapsule for Self-Healing Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Leyang Lv

    2016-12-01

    Full Text Available Self-healing cementitious materials containing a microencapsulated healing agent are appealing due to their great application potential in improving the serviceability and durability of concrete structures. In this study, poly(phenol–formaldehyde (PF microcapsules that aim to provide a self-healing function for cementitious materials were prepared by an in situ polymerization reaction. Size gradation of the synthesized microcapsules was achieved through a series of sieving processes. The shell thickness and the diameter of single microcapsules was accurately measured under environmental scanning electron microscopy (ESEM. The relationship between the physical properties of the synthesized microcapsules and their micromechanical properties were investigated using nanoindentation. The results of the mechanical tests show that, with the increase of the mean size of microcapsules and the decrease of shell thickness, the mechanical force required to trigger the self-healing function of microcapsules increased correspondingly from 68.5 ± 41.6 mN to 198.5 ± 31.6 mN, featuring a multi-sensitive trigger function. Finally, the rupture behavior and crack surface of cement paste with embedded microcapsules were observed and analyzed using X-ray computed tomography (XCT. The synthesized PF microcapsules may find potential application in self-healing cementitious materials.

  14. Hybrid Synthetic Receptors on MOSFET Devices for Detection of Prostate Specific Antigen in Human Plasma.

    Science.gov (United States)

    Tamboli, Vibha K; Bhalla, Nikhil; Jolly, Pawan; Bowen, Chris R; Taylor, John T; Bowen, Jenna L; Allender, Chris J; Estrela, Pedro

    2016-12-06

    The study reports the use of extended gate field-effect transistors (FET) for the label-free and sensitive detection of prostate cancer (PCa) biomarkers in human plasma. The approach integrates for the first time hybrid synthetic receptors comprising of highly selective aptamer-lined pockets (apta-MIP) with FETs for sensitive detection of prostate specific antigen (PSA) at clinically relevant concentrations. The hybrid synthetic receptors were constructed by immobilizing an aptamer-PSA complex on gold and subjecting it to 13 cycles of dopamine electropolymerization. The polymerization resulted in the creation of highly selective polymeric cavities that retained the ability to recognize PSA post removal of the protein. The hybrid synthetic receptors were subsequently used in an extended gate FET setup for electrochemical detection of PSA. The sensor was reported to have a limit of detection of 0.1 pg/mL with a linear detection range from 0.1 pg/mL to 1 ng/mL PSA. Detection of 1-10 pg/mL PSA was also achieved in diluted human plasma. The present apta-MIP sensor developed in conjunction with FET devices demonstrates the potential for clinical application of synthetic hybrid receptors for the detection of clinically relevant biomarkers in complex samples.

  15. Nanoparticles and nonlinear thermal radiation properties in the rheology of polymeric material

    Directory of Open Access Journals (Sweden)

    M. Awais

    2018-03-01

    Full Text Available The present analysis is related to the dynamics of polymeric liquids (Oldroyd-B model with the presence of nanoparticles. The rheological system is considered under the application of nonlinear thermal radiations. Energy and concentration equations are presented when thermophoresis and Brownian motion effects are present. Bidirectional form of stretching is considered to interpret the three-dimensional flow dynamics of polymeric liquid. Making use of the similarity transformations, problem is reduced into ordinary differential system which is approximated by using HAM. Influence of physical parameters including Deborah number, thermophoresis and Brownian motion on velocity, temperature and mass fraction expressions are plotted and analyzed. Numerical values for local Sherwood and Nusselt numbers are presented and discussed. Keywords: Nanoparticles, Polymeric liquid, Oldroyd-B model, Nonlinear thermal radiation

  16. Report for fiscal 1998 on results of research and development of silicon-based polymeric material. Material research for the liquid methane fueled aircraft engine; 1998 nendo keisokei kobunshi zairyo no kenkyu kaihatsu seika hokokusho. Methane nenryo kokukiyo engine kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Research was conducted for the purpose of establishing basic technology concerning molecular design, synthesis, material formation, and evaluation of silicon-based polymers which are expected to provide superior electronic/optical functions, high heat/combustion resistance and dynamic properties. The research subjects were such as following: research and development of silicon-based polymeric materials with sea-island microstructures; research and development of silicon-based polymeric materials with sea-island microstructures; research and development on IPN formation with silicon-based polymers; research and development of hybrid silicon polymers with organometallic compounds; research and development of silicon containing polymer materials with ring structures; general committee for investigation and research; the optimized low-temperature Wurtz synthesis and modification of polysilanes; study of unsaturated and hypercoordinate organosilicon compounds; basic studies on the synthesis and properties of silicon-based high polymers; studies of new monomer-synthesis and their polymerization reaction; studies on new method of preparation and functionalization of polysilanes; novel applications of silicon-based polymers in imaging devices for information display, memory, and recordings; and molecular design of silicon-containing {pi}-conjugated and {sigma}-conjugated compounds. (NEDO)

  17. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization.

    Science.gov (United States)

    Kufelt, Olga; El-Tamer, Ayman; Sehring, Camilla; Meißner, Marita; Schlie-Wolter, Sabrina; Chichkov, Boris N

    2015-05-01

    Fabrication of three-dimensional (3D) hydrogel microenvironments with predefined geometry and porosity can facilitate important requirements in tissue engineering and regenerative medicine. Chitosan (CH) is well known as a biocompatible hydrogel with prospective biological properties for biomedical aims. So far, microstructuring of this soft material presents a great limitation for its application as functional supporting material for guided tissue formation. Enabling photopolymerization, chemically modified CH can be applied for the biofabrication of reproducible 3D scaffolds using rapid prototyping techniques like two-photon polymerization (2PP) or others. The application of this technique allows precise serial fabrication of computer-designed microstructure geometries by scanning a femtosecond laser beam within a photosensitive material. This work explores a new synthesis of water-soluble photosensitive chitosan and the fabrication of well-defined microstructures from the generated materials. To modulate the mechanical and biochemical properties of the material, CH was combined and cross-linked with synthetic poly(ethylene glycol) diacrylate. For a biological adaption to the in vivo situation, CH was covalently crosslinked with a photosensitive modified vascular endothelial growth factor (VEGF). Performed in vitro studies reveal that modified CH is biocompatible. VEGF enhances CH bioactivity. Furthermore, a 3D CH scaffold can be successfully seeded with cells. Therefore, the established CH holds great promise for future applications in tissue engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Treatment and characterization of fiber licuri for synthesis of polymeric composites

    International Nuclear Information System (INIS)

    Oliveira, J.C.; Miranda, C.S.; Carvalho, R.F.; Jose, N.M.; Boaventura, J.S.

    2010-01-01

    Natural fibers are materials of increasing use of polymeric composites, due to several advantageous properties compared to synthetic fibers: low cost, density, toxicity and excellent biodegradability. Licuri fiber is widely used in the manufacture of handicrafts, with a wide range of possible applications. Before this, characterize the properties of the fiber is of great interest economic, technological and social. This study characterized the fibers in nature, which were washed with water, treated with 5% H 2 SO 4 or 5% NaOH. Techniques were used FTIR, DSC, TGA and XRD, as well as analysis of surface reactivity of the acid and base. All treatments altered the surface of licuri, exposing reactive sites. It was observed that sodium hydroxide licuri changed significantly, as expected. These results are very significant for the recovery of a natural fiber (licuri), abundant in poor regions of the country. (author)

  19. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  20. Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials.

    Science.gov (United States)

    Ovsianikov, Aleksandr; Schlie, Sabrina; Ngezahayo, Anaclet; Haverich, Axel; Chichkov, Boris N

    2007-01-01

    We report on recent advances in the fabrication of three-dimensional (3D) scaffolds for tissue engineering and regenerative medicine constructs using a two-photon polymerization technique (2PP). 2PP is a novel CAD/CAM technology allowing the fabrication of any computer-designed 3D structure from a photosensitive polymeric material. The flexibility of this technology and the ability to precisely define 3D construct geometry allows issues associated with vascularization and patient-specific tissue fabrication to be directly addressed. The fabrication of reproducible scaffold structures by 2PP is important for systematic studies of cellular processes and better understanding of in vitro tissue formation. In this study, 2PP was applied for the generation of 3D scaffold-like structures, using the photosensitive organic-inorganic hybrid polymer ORMOCER (ORganically MOdified CERamics) and epoxy-based SU8 materials. By comparing the proliferation rates of cells grown on flat material surfaces and under control conditions, it was demonstrated that ORMOCER and SU8 are not cytotoxic. Additional tests show that the DNA strand breaking of GFSHR-17 granulosa cells was not affected by the presence of ORMOCER. Furthermore, gap junction conductance measurements revealed that ORMOCER did not alter the formation of cell-cell junctions, critical for functional tissue growth. The possibilities of seeding 3D structures with cells were analysed. These studies demonstrate the great potential of 2PP technique for the manufacturing of scaffolds with controlled topology and properties.

  1. Novel Zinc-Catalytic Systems for Ring-Opening Polymerization of ε-Caprolactone

    Directory of Open Access Journals (Sweden)

    Karolina Żółtowska

    2015-02-01

    Full Text Available Polycaprolactone (PCL is a biodegradable synthetic polymer that is currently widely used in many pharmaceutical and medical applications. In this paper we describe the coordination ring-opening polymerization of ε-caprolactone in the presence of two newly synthesized catalytic systems: diethylzinc/gallic acid and diethylzinc/propyl gallate. The chemical structures of the obtained PCLs were characterized by 1H- or 13C-NMR, FTIR spectroscopy and MALDI TOF mass spectrometry. The average molecular weight of the resulting polyesters was analysed by gel permeation chromatography and a viscosity method. The effects of temperature, reaction time and type of catalytic system on the polymerization process were examined. Linear PCLs with defined average molecular weight were successfully obtained. Importantly, in some cases the presence of macrocyclic products was not observed during the polymerization process. This study provides an effective method for the synthesis of biodegradable polyesters for medical and pharmaceutical applications due to the fact that gallic acid/propyl gallate are commonly used in the pharmaceutical industry.

  2. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.

    Science.gov (United States)

    Wen, Gang; Guo, ZhiGuang; Liu, Weimin

    2017-03-09

    Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world

  3. Polymerized and functionalized triglycerides

    Science.gov (United States)

    Plant oils are useful sustainable raw materials for the development of new chemical products. As part of our research emphasis in sustainability and green polymer chemistry, we have explored a new method for polymerizing epoxidized triglycerides with the use of fluorosulfonic acid. Depending on the ...

  4. Natural and synthetic biomaterials for controlled drug delivery.

    Science.gov (United States)

    Kim, Jang Kyoung; Kim, Hyung Jin; Chung, Jee-Young; Lee, Jong-Hwan; Young, Seok-Beom; Kim, Yong-Hee

    2014-01-01

    A wide variety of delivery systems have been developed and many products based on the drug delivery technology are commercially available. The development of controlled-release technologies accelerated new dosage form design by altering pharmacokinetic and pharmacodynamics profiles of given drugs, resulting in improved efficacy and safety. Various natural or synthetic polymers have been applied to make matrix, reservoir or implant forms due to the characteristics of polymers, especially ease of control for modifications of biocompatibility, biodegradation, porosity, charge, mechanical strength and hydrophobicity/hydrophilicity. Hydrogel is a hydrophilic, polymeric network capable of imbibing large amount of water and biological fluids. This review article introduces various applications of natural and synthetic polymer-based hydrogels from pharmaceutical, biomedical and bioengineering points of view.

  5. Wind erosion control of soils using polymeric materials

    Directory of Open Access Journals (Sweden)

    Mohammad Movahedan

    2012-07-01

    Full Text Available Wind erosion of soils is one of the most important problems in environment and agriculture which could affects several fields. Agricultural lands, water reservoires, irrigation canals, drains and etc. may be affected by wind erosion and suspended particles. As a result wind erosion control needs attention in arid and semi-arid regions. In recent years, some polymeric materials have been used for improvement of structural stability, increasing aggregate stability and soil stabilization, though kind of polymer, quantity of polymer, field efficiency and durability and environmental impacts are some important parameters which should be taken into consideration. In this study, a Polyvinil Acetate-based polymer was used to treat different soils. Then polymer-added soil samples were investigated experimentally in a wind tunnel to verify the effecte of polymer on wind erosion control of the soils and the results were compared with water treated soil samples. The results of wind tunnel experiments with a maximum 26 m/s wind velocity showed that there was a significat difference between the erosion of polymer treated and water treated soil samples. Application of 25g/m2 polymer to Aeolian sands reduced the erosion of Aeolian sands samples to zero related to water treated samples. For silty and calyey soils treated by polymer, the wind erosion reduced minimum 90% in relation to water treated samples.

  6. Proline-poor hydrophobic domains modulate the assembly and material properties of polymeric elastin.

    Science.gov (United States)

    Muiznieks, Lisa D; Reichheld, Sean E; Sitarz, Eva E; Miao, Ming; Keeley, Fred W

    2015-10-01

    Elastin is a self-assembling extracellular matrix protein that provides elasticity to tissues. For entropic elastomers such as elastin, conformational disorder of the monomer building block, even in the polymeric form, is essential for elastomeric recoil. The highly hydrophobic monomer employs a range of strategies for maintaining disorder and flexibility within hydrophobic domains, particularly involving a minimum compositional threshold of proline and glycine residues. However, the native sequence of hydrophobic elastin domain 30 is uncharacteristically proline-poor and, as an isolated polypeptide, is susceptible to formation of amyloid-like structures comprised of stacked β-sheet. Here we investigated the biophysical and mechanical properties of multiple sets of elastin-like polypeptides designed with different numbers of proline-poor domain 30 from human or rat tropoelastins. We compared the contributions of these proline-poor hydrophobic sequences to self-assembly through characterization of phase separation, and to the tensile properties of cross-linked, polymeric materials. We demonstrate that length of hydrophobic domains and propensity to form β-structure, both affecting polypeptide chain flexibility and cross-link density, play key roles in modulating elastin mechanical properties. This study advances the understanding of elastin sequence-structure-function relationships, and provides new insights that will directly support rational approaches to the design of biomaterials with defined suites of mechanical properties. © 2015 Wiley Periodicals, Inc.

  7. DNA-nanoparticle assemblies go organic: Macroscopic polymeric materials with nanosized features

    Directory of Open Access Journals (Sweden)

    Mentovich Elad D

    2012-05-01

    Full Text Available Abstract Background One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Method Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. Results and conclusions One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC, which creates an all-organic engineered network.

  8. DNA-nanoparticle assemblies go organic: macroscopic polymeric materials with nanosized features.

    Science.gov (United States)

    Mentovich, Elad D; Livanov, Konstantin; Prusty, Deepak K; Sowwan, Mukules; Richter, Shachar

    2012-05-30

    One of the goals in the field of structural DNA nanotechnology is the use of DNA to build up 2- and 3-D nanostructures. The research in this field is motivated by the remarkable structural features of DNA as well as by its unique and reversible recognition properties. Nucleic acids can be used alone as the skeleton of a broad range of periodic nanopatterns and nanoobjects and in addition, DNA can serve as a linker or template to form DNA-hybrid structures with other materials. This approach can be used for the development of new detection strategies as well as nanoelectronic structures and devices. Here we present a new method for the generation of unprecedented all-organic conjugated-polymer nanoparticle networks guided by DNA, based on a hierarchical self-assembly process. First, microphase separation of amphiphilic block copolymers induced the formation of spherical nanoobjects. As a second ordering concept, DNA base pairing has been employed for the controlled spatial definition of the conjugated-polymer particles within the bulk material. These networks offer the flexibility and the diversity of soft polymeric materials. Thus, simple chemical methodologies could be applied in order to tune the network's electrical, optical and mechanical properties. One- two- and three-dimensional networks have been successfully formed. Common to all morphologies is the integrity of the micelles consisting of DNA block copolymer (DBC), which creates an all-organic engineered network.

  9. Forensic engineering of advanced polymeric materials. Part III - Biodegradation of thermoformed rigid PLA packaging under industrial composting conditions.

    Science.gov (United States)

    Musioł, Marta; Sikorska, Wanda; Adamus, Grazyna; Janeczek, Henryk; Richert, Jozef; Malinowski, Rafal; Jiang, Guozhan; Kowalczuk, Marek

    2016-06-01

    This paper presents a forensic engineering study on the biodegradation behaviour of prototype packaging thermoformed from PLA-extruded film and plain PLA film under industrial composting conditions. Hydrolytic degradation in water was conducted for reference. The effects of composting duration on changes in molar mass, glass transition temperature and degree of crystallinity of the polymeric material were monitored using gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The chemical structure of water soluble degradation products of the polymeric material was determined using nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS). The results show that the biodegradation process is less dependent on the thermoforming process of PLA and more dependent on the composting/degradation conditions that are applied. The increase in the dispersity index, leading to the bimodal molar mass distribution profile, suggests an autocatalytic hydrolysis effect at the early stage of the composting process, during which the bulk hydrolysis mechanism dominantly operates. Both the prototype PLA-packaging and PLA rigid film samples were shown to have a gradual increase in opacity due to an increase in the degree of crystallinity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Stimuli-Triggered Sol-Gel Transitions of Polypeptides Derived from α-Amino Acid N-Carboxyanhydride (NCA) Polymerizations.

    Science.gov (United States)

    He, Xun; Fan, Jingwei; Wooley, Karen L

    2016-02-18

    The past decade has witnessed significantly increased interest in the development of smart polypeptide-based organo- and hydrogel systems with stimuli responsiveness, especially those that exhibit sol-gel phase-transition properties, with an anticipation of their utility in the construction of adaptive materials, sensor designs, and controlled release systems, among other applications. Such developments have been facilitated by dramatic progress in controlled polymerizations of α-amino acid N-carboxyanhydrides (NCAs), together with advanced orthogonal functionalization techniques, which have enabled economical and practical syntheses of well-defined polypeptides and peptide hybrid polymeric materials. One-dimensional stacking of polypeptides or peptide aggregations in the forms of certain ordered conformations, such as α helices and β sheets, in combination with further physical or chemical cross-linking, result in the construction of three-dimensional matrices of polypeptide gel systems. The macroscopic sol-gel transitions, resulting from the construction or deconstruction of gel networks and the conformational changes between secondary structures, can be triggered by external stimuli, including environmental factors, electromagnetic fields, and (bio)chemical species. Herein, the most recent advances in polypeptide gel systems are described, covering synthetic strategies, gelation mechanisms, and stimuli-triggered sol-gel transitions, with the aim of demonstrating the relationships between chemical compositions, supramolecular structures, and responsive properties of polypeptide-based organo- and hydrogels. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Functionalized Materials From Elastomers to High Performance Thermoplastics

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Laura Ann [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Synthesis and incorporation of functionalized materials continues to generate significant research interest in academia and in industry. If chosen correctly, a functional group when incorporated into a polymer can deliver enhanced properties, such as adhesion, water solubility, thermal stability, etc. The utility of these new materials has been demonstrated in drug-delivery systems, coatings, membranes and compatibilizers. Two approaches exist to functionalize a material. The desired moiety can be added to the monomer either before or after polymerization. The polymers used range from low glass transition temperature elastomers to high glass transition temperature, high performance materials. One industrial example of the first approach is the synthesis of Teflon(reg. sign). Poly(tetrafluoroethylene) (PTFE or Teflon(reg. sign)) is synthesized from tetrafluoroethylene, a functionalized monomer. The resulting material has significant property differences from the parent, poly(ethylene). Due to the fluorine in the polymer, PTFE has excellent solvent and heat resistance, a low surface energy and a low coefficient of friction. This allows the material to be used in high temperature applications where the surface needs to be nonabrasive and nonstick. This material has a wide spread use in the cooking industry because it allows for ease of cooking and cleaning as a nonstick coating on cookware. One of the best examples of the second approach, functionalization after polymerization, is the vulcanization process used to make tires. Natural rubber (from the Hevea brasiliensis) has a very low glass transition temperature, is very tacky and would not be useful to make tires without synthetic alteration. Goodyear's invention was the vulcanization of polyisoprene by crosslinking the material with sulfur to create a rubber that was tough enough to withstand the elements of weather and road conditions. Due to the development of polymerization techniques to make cis

  12. Layer-by-Layer Assembly of Halogen-Free Polymeric Materials on Nylon/Cotton Blend for Flame Retardant Applications

    Science.gov (United States)

    2015-07-01

    Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply with a collection...BY-LAYER ASSEMBLY OF HALOGEN-FREE POLYMERIC MATERIALS ON NYLON/COTTON BLEND FOR FLAME RETARDANT APPLICATIONS 5a. CONTRACT NUMBER W911NF-11-D-0001...Tensile strength and dynamic mechanical analysis. Malaysian Polymer Journal 2009; 4(2):52–61. 29. Hardin IR, Hsieh Y. Thermal conditions and

  13. Use of CRM's as mutual calibrating materials and control of synthetic multielement standards as used in INAA

    International Nuclear Information System (INIS)

    Rossbach, M.; Stoeppler, M.

    1987-01-01

    Dilution effects of different multielement synthetic standard solutions were studied by measuring 10-12 different concentrations of the same solution. Peak area comparison of four Certified Reference Materials (CRMs) using one value for the evaluation of the other three repetitively led to the intercomparison (degree of compatibility) of the certified values. The idea of the preparation of each laboratory's 'secondary reference standard' by comparison of synthetic multielement standards with as many CRMs as practically feasible is advocated to improve the reliability of analytical results. (author)

  14. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides

    Directory of Open Access Journals (Sweden)

    Carmen M. González-Henríquez

    2017-10-01

    Full Text Available In this review, we provide a general and clear overview about the different alternatives reported to fabricate a myriad of polypeptide architectures based on the ring-opening polymerization of N-carbonyanhydrides (ROP NCAs. First of all, the strategies for the preparation of NCA monomers directly from natural occurring or from modified amino acids are analyzed. The synthetic alternatives to prepare non-functionalized and functionalized NCAs are presented. Protection/deprotection protocols, as well as other functionalization chemistries are discussed in this section. Later on, the mechanisms involved in the ROP NCA polymerization, as well as the strategies developed to reduce the eventually occurring side reactions are presented. Finally, a general overview of the synthetic strategies described in the literature to fabricate different polypeptide architectures is provided. This part of the review is organized depending on the complexity of the macromolecular topology prepared. Therefore, linear homopolypeptides, random and block copolypeptides are described first. The next sections include cyclic and branched polymers such as star polypeptides, polymer brushes and highly branched structures including arborescent or dendrigraft structures.

  15. Instrumentation for Measurement of Gas Permeability of Polymeric Membranes

    Science.gov (United States)

    Upchurch, Billy T.; Wood, George M.; Brown, Kenneth G.; Burns, Karen S.

    1993-01-01

    A mass spectrometric 'Dynamic Delta' method for the measurement of gas permeability of polymeric membranes has been developed. The method is universally applicable for measurement of the permeability of any gas through polymeric membrane materials. The usual large sample size of more than 100 square centimeters required for other methods is not necessary for this new method which requires a size less than one square centimeter. The new method should fulfill requirements and find applicability for industrial materials such as food packaging, contact lenses and other commercial materials where gas permeability or permselectivity properties are important.

  16. Use of computed tomography in nondestructive testing of polymeric materials

    International Nuclear Information System (INIS)

    Persson, S.; Oestman, E.

    1985-01-01

    Computed tomography has been used to detect imperfections and to measure cross-link density gradients in polymeric products, such as airplane tires, rubber shock absorbers, and filament-wound high-pressure tanks

  17. Molecular dynamics modeling the synthetic and biological polymers interactions pre-studied via docking

    Science.gov (United States)

    Tsvetkov, Vladimir B.; Serbin, Alexander V.

    2014-06-01

    In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 ( HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [ HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics ( MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.

  18. Research regarding biodegradable properties of food polymeric products under microorganism activity

    Science.gov (United States)

    Opran, Constantin; Lazar, Veronica; Fierascu, Radu Claudiu; Ditu, Lia Mara

    2018-02-01

    Aim of this research is the structural analysis by comparison of the biodegradable properties of two polymeric products made by non-biodegradable polymeric material (polypropylene TIPPLEN H949 A) and biodegradable polymeric material (ECOVIO IS 1335), under microorganism activity in order to give the best solution for the manufacture of food packaging biodegradable products. It presents the results of experimental determinations on comparative analysis of tensile strength for the two types of polymers. The sample weight variations after fungal biodegradation activity revealed that, after 3 months, there are no significant changes in polymeric substratum for non-biodegradable polymeric. The microscopically analysis showed that the fungal filaments did not strongly adhered on the non-biodegradable polymeric material, instead, both filamentous fungi strains adhered and covered the surface of the biodegradable sample with germinated filamentous conidia. The spectral analysis of polymer composition revealed that non-biodegradable polymer polypropylene spectra are identical for control and for samples that were exposed to fungal activity, suggesting that this type of sample was not degraded by the fungi strains. Instead, for biodegradable polymer sample, it was observed significant structural changes across multiple absorption bands, suggesting enzyme activity manifested mainly by Aspergillus niger strain. Structural analysis of interdisciplinary research results, lead, to achieving optimal injection molded technology emphasizing technological parameters, in order to obtain food packaging biodegradable products.

  19. Polymerized serum albumin beads for use as slow-release adjuvants

    International Nuclear Information System (INIS)

    Martin, M.E.D.

    1987-02-01

    Experimental vaccines have been made by covalently bonding virus particles into polymerized rabbit serum albumin beads. Using Nodamura virus as a model antigen, these model vaccines induced specific humoral antibody production, comparable with that achieved using Freund's adjuvants. Virus specific antibodies were also induced when Nodamura virus was covalently attached to the bead surface using different crosslinkers. However, when poliovirus type 2 (Sabin strain) was polymerized into beads, the levels of neutralizing antibodies were insignificant compared with control aqueous vaccines. The synthetic immunostimulator, muramyl dipeptide, was included with bead vaccines in an attempt to potentiate the immune response. Immunostimulation is achieved by a slow release of antigen coinciding with the gradual breakdown of bead structure. Methods used include radio-iodination and radioimmunoassay. 65 figs., 6 tabs., 173 refs

  20. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  1. Inflation and Instability of a Polymeric Membrane

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole

    1999-01-01

    We consider an axisymmetric polymeric membrane inflated by a uniform pressure difference acting across the membrane. The polymeric materialis described by an arbitrary combination of a viscoelastic and a purely viscous component to the stress. Some viscoelastic materials described by a Mooney......-Rivlin model show a monotone increasingpressure during inflation of a spherical membrane. These materials develop a homogeneous membrane thickness in agreement with the Considere-Pearson condition. Molecularly based models such as the neo-Hookean, Doi-Edwards or Tom-Pom model show a pressure maximum when...... inflated. Membranesdescribed by these models develop a local thinning of the membrane which may lead to bursting in finite time....

  2. Polymerizations of beta-substituted allylic arsonium ylides with catalytic amounts of organoboron compounds

    International Nuclear Information System (INIS)

    Mondiere, R.

    2004-01-01

    My Ph.D. work consisted in the generalization and optimization of a new polymerization reaction involving allylic arsonium ylides and catalytic amounts of various boron compounds. Thus, various β-substituted allylic arsonium salts were produced according to synthetic strategies that depended on the nature of the functional group born by the salt. These salts were converted in situ to the corresponding arsonium ylides which were then treated with boron compounds to yield polymers. Our new method of polymerization afforded either non conjugated polyenes that are functionalized every three atoms of carbon, or statistic copolymers, depending on the nature of the group R born on the β position of the ylide. These new polymers cannot be synthesized by usual methods of polymerization. Initial molar ratios of reactants were found to give molar mass control of the synthesized polymers. This controlled polymerization allowed us to produce several bloc copolymers. All the polymers were characterized by NMR techniques, by size exclusion chromatography and, for some of them, by mass spectrometry. Investigation of their physicochemical properties will need additional experiments. (author)

  3. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering.

    Science.gov (United States)

    Storrie, Hannah; Mooney, David J

    2006-07-07

    The encapsulation of DNA into polymeric depot systems can be used to spatially and temporally control DNA release, leading to a sustained, local delivery of therapeutic factors for tissue regeneration. Prior to encapsulation, DNA may be condensed with cationic polymers to decrease particle size, protect DNA from degradation, promote interaction with cell membranes, and facilitate endosomal release via the proton sponge effect. DNA has been encapsulated with either natural or synthetic polymers to form micro- and nanospheres, porous scaffolds and hydrogels for sustained DNA release and the polymer physical and chemical properties have been shown to influence transfection efficiency. Polymeric depot systems have been applied for bone, skin, and nerve regeneration as well as therapeutic angiogenesis, indicating the broad applicability of these systems for tissue engineering.

  4. Effects of sulfur-based hemostatic agents and gingival retraction cords handled with latex gloves on the polymerization of polyvinyl siloxane impression materials

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Palhares Machado

    2011-12-01

    Full Text Available OBJECTIVES: This study investigated the possible interactions between three addition silicone materials (Express®, Aquasil Ultra® and Adsil®, three hemostatic agents (ferric sulfate, StatGel FS®; aluminum sulfate, GelCord®; and aluminum chloride, Hemostop® and gingival retraction cords previously handled with latex gloves to determine whether direct contact with medicaments or indirect contamination by latex in conditions similar to those found in clinical practice inhibit or affect the setting of the impression materials. MATERIAL AND METHODS: A portable device for the simultaneous test of several specimens was specifically developed for this study. Polymerization inhibition was analyzed by examination of the impressions and the molded surface. Ten trials were performed for each addition silicone material used in the study, at a total of 240 study samples. RESULTS: All the samples tested (N=240 were nonreactive regardless of the type of combination used. CONCLUSIONS: Aluminum sulfate, ferric sulfate and aluminum chloride hemostatic solutions did not show any inhibitory potential on the addition silicone samples under study, and there were no changes in polymerization as a result of contact between addition silicone and retraction cords handled with latex gloves.

  5. [The influence of polymerization time on physicochemical properties of the acrylic resin Vertex RS].

    Science.gov (United States)

    Fraczak, Bogumiła; Sobolewska, Ewa; Ey-Chmielewska, Halina; Skowronek, Maria; Błazewicz, Stanisław

    2009-01-01

    A good denture can only be produced through proper actions during the clinical and laboratory stages of the production process. The aim of this study was to determine if a change in polymerization time affects the physicochemical properties of polymethacrylate material used for dentures. We examined the acrylic resin Vertex R.S. polymerized for 15, 25, 40, or 60 minutes. Palapress Vario was taken as reference material. Static bending, microhardness, surface wettability, and susceptibility to abrasion were determined. The microhardness test showed that most of the samples had similar Vickers hardness (VS) values, except for the sample polymerized for 25 min. which demonstrated a significantly higher value. Grindability was affected by a change in polymerization time. Mass loss was greatest for samples polymerized for 15, 25, and 60 min. and smallest for Vertex 40 and Palapress Vario. We also observed differences in the wetting angle. Vertex 40 and 60 had a relatively low wetting angle signifying that longer polymerization time results in lower hydrophobicity of the material. The present study has demonstrated that polymerization time has a significant effect on the hardness and some mechanical properties of the acrylic resin.

  6. Nonperturbative Renormalization Group Approach to Polymerized Membranes

    Science.gov (United States)

    Essafi, Karim; Kownacki, Jean-Philippe; Mouhanna, Dominique

    2014-03-01

    Membranes or membrane-like materials play an important role in many fields ranging from biology to physics. These systems form a very rich domain in statistical physics. The interplay between geometry and thermal fluctuations lead to exciting phases such flat, tubular and disordered flat phases. Roughly speaking, membranes can be divided into two group: fluid membranes in which the molecules are free to diffuse and thus no shear modulus. On the other hand, in polymerized membranes the connectivity is fixed which leads to elastic forces. This difference between fluid and polymerized membranes leads to a difference in their critical behaviour. For instance, fluid membranes are always crumpled, whereas polymerized membranes exhibit a phase transition between a crumpled phase and a flat phase. In this talk, I will focus only on polymerized phantom, i.e. non-self-avoiding, membranes. The critical behaviour of both isotropic and anisotropic polymerized membranes are studied using a nonperturbative renormalization group approach (NPRG). This allows for the investigation of the phase transitions and the low temperature flat phase in any internal dimension D and embedding d. Interestingly, graphene behaves just as a polymerized membrane in its flat phase.

  7. Sol-Gel Manufactured Energetic Materials

    Science.gov (United States)

    Simpson, Randall L.; Lee, Ronald S.; Tillotson, Thomas M.; Hrubesh, Lawrence W.; Swansiger, Rosalind W.; Fox, Glenn A.

    2005-05-17

    Sol-gel chemistry is used for the preparation of energetic materials (explosives, propellants and pyrotechnics) with improved homogeneity, and/or which can be cast to near-net shape, and/or made into precision molding powders. The sol-gel method is a synthetic chemical process where reactive monomers are mixed into a solution, polymerization occurs leading to a highly cross-linked three dimensional solid network resulting in a gel. The energetic materials can be incorporated during the formation of the solution or during the gel stage of the process. The composition, pore, and primary particle sizes, gel time, surface areas, and density may be tailored and controlled by the solution chemistry. The gel is then dried using supercritical extraction to produce a highly porous low density aerogel or by controlled slow evaporation to produce a xerogel. Applying stress during the extraction phase can result in high density materials. Thus, the sol-gel method can be used for precision detonator explosive manufacturing as well as producing precision explosives, propellants, and pyrotechnics, along with high power composite energetic materials.

  8. Fibrous and textile materials for composite applications

    CERN Document Server

    Fangueiro, Raul

    2016-01-01

    This book focuses on the fibers and textiles used in composite materials. It presents both existing technologies currently used in commercial applications and the latest advanced research and developments. It also discusses the different fiber forms and architectures, such as short fibers, unidirectional tows, directionally oriented structures or advanced 2D- and 3D-textile structures that are used in composite materials. In addition, it examines various synthetic, natural and metallic fibers that are used to reinforce polymeric, cementitious and metallic matrices, as well as fiber properties, special functionalities, manufacturing processes, and composite processing and properties. Two entire chapters are dedicated to advanced nanofiber and nanotube reinforced composite materials. The book goes on to highlight different surface treatments and finishes that are applied to improve fiber/matrix interfaces and other essential composite properties. Although a great deal of information about fibers and textile str...

  9. Photo and radiation chemistry of polymeric systems and nanomaterials

    International Nuclear Information System (INIS)

    Mikhaylov, A.I.

    2004-01-01

    New approaches of analytical ESR-spectroscopy to studying of free-radical and electron-transport processes at radiation-chemical and photochemical modification both fictionalization of polymeric systems and nanomaterials were surveyed. Measuring techniques using of ESR-spectroscopy of paramagnetic centers were fulfilled. The radiation-chemical processes of modification, microencapsulation and kinetic stabilization of thermodynamically incompatible systems and interfaces for nanomaterials including fullerenes, nanotubes, nanofibres, etc. and composites on the basis of synthetic and natural polymers including plant fibers, fluoropolymers, polyolefins, etc. were developed

  10. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.

    Science.gov (United States)

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.

  11. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    Science.gov (United States)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  12. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  13. Synthesis, characterization and polymerization of methacrylates of copper (II), cobalt (II) and molybdenum (II). Generation of new materials

    International Nuclear Information System (INIS)

    Rojas Bolanos, Omar

    2006-01-01

    Coordination compounds of the species copper (II), cobalt (II) and molybdenum (II) with methacrylic acid were synthesized and characterized. Besides, it realized reactions of bromine addition to the doubles links of the species obtained previously, also too like reactions with dry HCl. Finally, it got hybrids materials by polymerization of the first compounds in an acrylic matrix. Research concluded with the characterization of all the products. (author) [es

  14. Electron spin resonance spectroscopy on packing material: An indirect identification of radiation treatment

    International Nuclear Information System (INIS)

    Helle, N.; Zachaeus, U.; Ehlers, D.; Schreiber, G.A.

    1993-01-01

    In those cases, where foodstuffs did not contain hard and dry parts, e.s.r. spectroscopy can be helpful as a fast and reliable screening method measuring the package material instead of the (liquid) content. Not only natural cellulose materials like paper can be used but also some commercially used synthetic polymeres are suited. Especially polypropylene and some polystyrene packagings produced stable radicals upon irradiation. Polyethylene can only give informations about a previous irradiation of the product if it was stored at deep temperatures. At room temperature the radical concentration decreases very fast and radicals could only be detected for a short time. (orig.)

  15. Pulsed-laser polymerization in compartmentalized liquids. 1. Polymerization in vesicles

    NARCIS (Netherlands)

    Jung, M.; Casteren, van I.A.; Monteiro, M.J.; Herk, van A.M.; German, A.L.

    2000-01-01

    Polymerization in vesicles is a novel type of polymerization in heterogeneous media, leading to parachute-like vesicle-polymer hybrid morphologies. To explore the kinetics of vesicle polymerizations and to learn more about the actual locus of polymerization we applied the pulsed-laser polymerization

  16. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites

    Directory of Open Access Journals (Sweden)

    Udeni Gunathilake T.M. Sampath

    2016-12-01

    Full Text Available Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen, synthetic biopolymers (poly(lactic acid, poly(lactic-co-glycolic acid and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  17. Fabrication of Porous Materials from Natural/Synthetic Biopolymers and Their Composites.

    Science.gov (United States)

    Sampath, Udeni Gunathilake T M; Ching, Yern Chee; Chuah, Cheng Hock; Sabariah, Johari J; Lin, Pai-Chen

    2016-12-07

    Biopolymers and their applications have been widely studied in recent years. Replacing the oil based polymer materials with biopolymers in a sustainable manner might give not only a competitive advantage but, in addition, they possess unique properties which cannot be emulated by conventional polymers. This review covers the fabrication of porous materials from natural biopolymers (cellulose, chitosan, collagen), synthetic biopolymers (poly(lactic acid), poly(lactic- co -glycolic acid)) and their composite materials. Properties of biopolymers strongly depend on the polymer structure and are of great importance when fabricating the polymer into intended applications. Biopolymers find a large spectrum of application in the medical field. Other fields such as packaging, technical, environmental, agricultural and food are also gaining importance. The introduction of porosity into a biomaterial broadens the scope of applications. There are many techniques used to fabricate porous polymers. Fabrication methods, including the basic and conventional techniques to the more recent ones, are reviewed. Advantages and limitations of each method are discussed in detail. Special emphasis is placed on the pore characteristics of biomaterials used for various applications. This review can aid in furthering our understanding of the fabrication methods and about controlling the porosity and microarchitecture of porous biopolymer materials.

  18. Evaluation of Zirconium Silico phosphate Material for the Removal of Copper Ions from Waste Water

    International Nuclear Information System (INIS)

    Abd El-Mohsen, E.S.; El-Naggar, M.R.; EI-Naggar, I.M.; El-Shahhat, M.F.

    2014-01-01

    Zirconium silico phosphate/polyacrylamide (ZrSP/PAA) nano composite was synthesized. Synthesis process was based on the intercalation polymerization technique. The obtained nano product was characterized using XRF, XRD, FTIR, TG-DTA, SEM and TEM techniques. The physicochemical properties indicated that the synthesized material was semicrystalline in nature with a particle size in the nan orange (45 nm). FTIR analysis suggested that the intercalation polymerization was achieved via hydrogen bonding. The kinetics of copper retention at different temperatures were analyzed using pseudo first-order, pseudo second-order and Helfferich kinetic models. Kinetic modeling of the experimentally obtained data indicated that the intra-particle diffusion was the controlled mechanism of the sorption process. Various parameters such as effective diffusion coefficient and activation energy were evaluated. The mean free energy was in the range corresponding to the ion exchange type of sorption. Results indicated that synthetic ZrSP/PAA nano composite can be used as an efficient ion exchange material for the removal of cupper ions from waste water

  19. Study of the toughening mechanisms in bone and biomimetic hydroxyapatite materials using Raman microprobe spectroscopy.

    Science.gov (United States)

    Pezzotti, Giuseppe; Sakakura, Seiji

    2003-05-01

    A Raman microprobe spectroscopy characterization of microscopic fracture mechanisms is presented for a natural hydroxyapatite material (cortical bovine femur) and two synthetic hydroxyapatite-based materials with biomimetic structures-a hydroxyapatite skeleton interpenetrated with a metallic (silver) or a polymeric (nylon-6) phase. In both the natural and synthetic materials, a conspicuous amount of toughening arose from a microscopic crack-bridging mechanism operated by elasto-plastic stretching of unbroken second-phase ligaments along the crack wake. This mechanism led to a rising R-curve behavior. An additional micromechanism, responsible for stress relaxation at the crack tip, was recognized in the natural bone material and was partly mimicked in the hydroxyapatite/silver composite. This crack-tip mechanism conspicuously enhanced the cortical bone material resistance to fracture initiation. A piezo-spectroscopic technique, based on a microprobe measurement of 980 cm(-1) Raman line of hydroxyapatite, enabled us to quantitatively assess in situ the microscopic stress fields developed during fracture both at the crack tip and along the crack wake. Using the Raman piezo-spectroscopy technique, toughening mechanisms were assessed quantitatively and rationally related to the macroscopic fracture characteristics of hydroxyapatite-based materials. Copyright 2003 Wiley Periodicals, Inc.

  20. Volumetric polymerization shrinkage of contemporary composite resins

    Directory of Open Access Journals (Sweden)

    Halim Nagem Filho

    2007-10-01

    Full Text Available The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (a or = 0.05 was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01 and Definite (1.89±0.01 shrank significantly less than the other composite resins. SureFil (2.01±0.06, Filtek Z250 (1.99±0.03, and Fill Magic (2.02±0.02 presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation.

  1. Toward a versatile toolbox for cucurbit[n]uril-based supramolecular hydrogel networks through in situ polymerization.

    Science.gov (United States)

    Liu, Ji; Soo Yun Tan, Cindy; Lan, Yang; Scherman, Oren A

    2017-09-15

    The success of exploiting cucurbit[ n ]uril (CB[ n ])-based molecular recognition in self-assembled systems has sparked a tremendous interest in polymer and materials chemistry. In this study, polymerization in the presence of host-guest complexes is applied as a modular synthetic approach toward a diverse set of CB[8]-based supramolecular hydrogels with desirable properties, such as mechanical strength, toughness, energy dissipation, self-healing, and shear-thinning. A range of vinyl monomers, including acrylamide-, acrylate-, and imidazolium-based hydrophilic monomers, could be easily incorporated as the polymer backbones, leading to a library of CB[8] hydrogel networks. This versatile strategy explores new horizons for the construction of supramolecular hydrogel networks and materials with emergent properties in wearable and self-healable electronic devices, sensors, and structural biomaterials. © 2017 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3105-3109.

  2. Polymeric Materials For Scale Inhibition In Cooling Water Systems

    Directory of Open Access Journals (Sweden)

    Najwa S.Majeed

    2013-04-01

    Full Text Available Calcium carbonate deposition is generally predominant in cooling water-circulating system. For the control of calcium carbonate scale formation two types of polymeric scale inhibitors were used Polyamino polyether methylene phosphonate  (PAPEMPand polyacrylaminde(PAA.Model of cooling tower system have been built up in laboratory scale. Experiments were carried out using different inhibitor concentrations(0.5,1,1.5,2,3ppm ,at water temperature of  40oC and flow rate of 150 l/hr. It was found that Polyamino polyether methylene phosphonate    more effective than polyacryle amide'  as scale inhibitor in all used concentrations and the best inhibition efficiency (95% was at (2.5ppm of Polyamino polyether methylene phosphonate  and (85% with poly acryle amide at concentrations of (3 ppm. The performance of the polymeric scale inhibitors was compared with a method used to control heavy calcium carbonate scale forming by the deposition of sufficiently thin protective calcium carbonate scale using sulfuric acid and depending on Ryznar stability index controlling method. 

  3. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    Science.gov (United States)

    Cardoso, Elisabeth C. L.; Scagliusi, Sandra R.; Lima, Luis F. C. P.; Bueno, Nelson R.; Brant, Antonio J. C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT).

  4. Plasma polymerized high energy density dielectric films for capacitors

    Science.gov (United States)

    Yamagishi, F. G.

    1983-01-01

    High energy density polymeric dielectric films were prepared by plasma polymerization of a variety of gaseous monomers. This technique gives thin, reproducible, pinhole free, conformable, adherent, and insoluble coatings and overcomes the processing problems found in the preparation of thin films with bulk polymers. Thus, devices are prepared completely in a vacuum environment. The plasma polymerized films prepared all showed dielectric strengths of greater than 1000 kV/cm and in some cases values of greater than 4000 kV/cm were observed. The dielectric loss of all films was generally less than 1% at frequencies below 10 kHz, but this value increased at higher frequencies. All films were self healing. The dielectric strength was a function of the polymerization technique, whereas the dielectric constant varied with the structure of the starting material. Because of the thin films used (thickness in the submicron range) surface smoothness of the metal electrodes was found to be critical in obtaining high dielectric strengths. High dielectric strength graft copolymers were also prepared. Plasma polymerized ethane was found to be thermally stable up to 150 C in the presence of air and 250 C in the absence of air. No glass transitions were observed for this material.

  5. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2017-05-01

    Full Text Available This review presents the past and current efforts with a brief description on the featured properties of hydrogel membranes fabricated from biopolymers and synthetic ones for wound dressing applications. Many endeavors have been exerted during past ten years for developing new artificial polymeric membranes, which fulfill the demanded conditions for the treatment of skin wounds. This review mainly focuses on representing specifications of ideal polymeric wound dressing membranes, such as crosslinked hydrogels compatible with wound dressing purposes. But as the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the typical wound dressing requirements.

  6. Studies in Finishing Effects of Clay Mineral in Polymers and Synthetic Fibers

    Directory of Open Access Journals (Sweden)

    Faheem Uddin

    2013-01-01

    Full Text Available The use of clay mineral in modifying the properties of polymeric material is improved in application. The current interest in modifying the polymeric materials, particularly polyethylene, polypropylene, polystyrene, and nylon using clay mineral for improved flame retardancy, thermal stability, peak heat release rate, fracture, and strength properties generated significant research literature. This paper aims to review some of the important recent modification achieved in the performance of polymeric materials using organoclay mineral. Degradation of clay mineral-polymer (nm composite is discussed with appropriate known examples. Clay mineral (nm loading of 5 wt.% to 7 wt.% that was significantly smaller than the percent loading of conventional fillers in polymeric materials introduced significant improvement in terms of thermal and physical stability. An attempt is made to emphasize flammability and thermal stability and to indicate the areas that are relatively little explored in modification of fiber-forming polymers to enhance further research interest.

  7. Surface PEGylation of mesoporous silica materials via surface-initiated chain transfer free radical polymerization: Characterization and controlled drug release.

    Science.gov (United States)

    Huang, Long; Liu, Meiying; Mao, Liucheng; Huang, Qiang; Huang, Hongye; Wan, Qing; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-12-01

    As a new type of mesoporous silica materials with large pore diameter (pore size between 2 and 50nm) and high specific surface areas, SBA-15 has been widely explored for different applications especially in the biomedical fields. The surface modification of SBA-15 with functional polymers has demonstrated to be an effective way for improving its properties and performance. In this work, we reported the preparation of PEGylated SBA-15 polymer composites through surface-initiated chain transfer free radical polymerization for the first time. The thiol group was first introduced on SBA-15 via co-condensation with γ-mercaptopropyltrimethoxysilane (MPTS), that were utilized to initiate the chain transfer free radical polymerization using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and itaconic acid (IA) as the monomers. The successful modification of SBA-15 with poly(PEGMA-co-IA) copolymers was evidenced by a series of characterization techniques, including 1 H NMR, FT-IR, TGA and XPS. The final SBA-15-SH- poly(PEGMA-co-IA) composites display well water dispersity and high loading capability towards cisplatin (CDDP) owing to the introduction of hydrophilic PEGMA and carboxyl groups. Furthermore, the CDDP could be released from SBA-15-SH-poly(PEGMA-co-IA)-CDDP complexes in a pH dependent behavior, suggesting the potential controlled drug delivery of SBA-15-SH-poly(PEGMA-co-IA). More importantly, the strategy should be also useful for fabrication of many other functional materials for biomedical applications owing to the advantages of SBA-15 and well monomer adoptability of chain transfer free radical polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Use of CRM's as mutual calibrating materials and control of synthetic multielement standards as used in INAA

    International Nuclear Information System (INIS)

    Rossbach, M.; Stoeppler, M.

    1986-01-01

    The comparability of analytical results from different laboratories requires accurately known concentrations in the applied standards. Dilution effects of different multielement synthetic standard solutions have been studied by measuring 10 - 12 different concentrations of the same solution. Peak area comparison of four Certified Reference Materials (CRM's) using one value for the evaluation of the other three repetitively led to the intercomparison (degree of compatibility) of the certified values. The idea of the preparation of each laboratory's ''secondary reference standard'' by comparison of synthetic multielement standards with as many CRM's as practically feasible is advocated to improve the reliability of analytical results. (author)

  9. Polymeric synthetic geo membranes in reservoirs waterproofing in the Kingdom of Morocco; Las geomembranas sinteticas polimericas en la impermeabilizacion de balsas en el Reino de Marruecos

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Fernandez, M.

    2015-07-01

    This essay aims to address some of the aspects related to polymeric synthetic geo membranes that could be used in reservoirs of water located in the Kingdom of Morocco. In this regard, it offers a description of the two basic components geo membranes consist of, that is, resins and additives. It also gives an overview of the key pieces of legislation affecting such an issue. Furthermore, it stresses the paramount importance of implementing monitoring procedures in order to assess the condition of geo membranes over time and, if necessary, to proceed to provide for new waterproofing. Lastly, the characteristics of the process monitoring aforementioned are detailed in terms of tensile strength, elongation, tear resistance, dynamic impact, puncture resistance, low-temperature folding. Shore hardness, stress cracking, oxidation induction times, joint strength shear and peeling test, content and dispersion of carbon black and reflection-optical and scanning-electron microscopy. (Author)

  10. The Polymerization of MMA and ST to Prepare Material with Gradient Refractive Index in Electric Field

    Directory of Open Access Journals (Sweden)

    Yao Huang

    2015-01-01

    Full Text Available Light scattering material with gradient refractive index was prepared under the electrical field by taking methyl methacrylate (MMA monomer as the matrix with the addition of a little preheated styrene (ST and peroxidation benzoin formyl (BPO. The material obtained under electrical field presented different transmittance and molecular weight at different parts of the cylindrical sample along the axis of the direction of electric field which led to the layering phenomenon and gradient refractive index. The disparity of molecular weight between different layers can be as much as 230 thousand. There were several peaks in the figure of GPC test of the sample under electric field. This proved that there were polymers with different molecular weights in the sample. Therefore, it can be concluded that electrical field has a significant effect on polymerization.

  11. The Effect of Plasma Surface Treatment on a Porous Green Ceramic Film with Polymeric Binder Materials

    International Nuclear Information System (INIS)

    Yun Jeong Woo

    2013-01-01

    To reduce time and energy during thermal binder removal in the ceramic process, plasma surface treatment was applied before the lamination process. The adhesion strength in the lamination films was enhanced by oxidative plasma treatment of the porous green ceramic film with polymeric binding materials. The oxygen plasma characteristics were investigated through experimental parameters and weight loss analysis. The experimental results revealed the need for parameter analysis, including gas material, process time, flow rate, and discharge power, and supported a mechanism consisting of competing ablation and deposition processes. The weight loss analysis was conducted for cyclic plasma treatment rather than continuous plasma treatment for the purpose of improving the film's permeability by suppressing deposition of the ablated species. The cyclic plasma treatment improved the permeability compared to the continuous plasma treatment.

  12. Study and selection of structured packing material: metallic, polymeric or ceramic to operate a column of absorption polluting gases coming from brick kilns efficiently

    International Nuclear Information System (INIS)

    Salazar P, A.

    2012-01-01

    In this research three structured packing materials were characterized: a metallic, polymeric and ceramic. The study of the physical properties of structured packing materials, and their behavior within the absorption column allowed to suggest a gas-liquid contactor material with higher mechanical and chemical resistance, which is more efficient for the treatment of sour gases from brick kilns. To study the mechanical properties (hardness, tension and elastic modulus) were used procedures of the American Society for Testing Materials, as well as resistance to corrosion. The geometric characteristics, the density, the melting temperature and the weight were tested with procedures of the measuring equipment. The structure was evaluated by X-ray diffraction, morphology was observed by scanning electron microscopy coupled to a sound of dispersive energy of X-ray, to quantify elemental chemical composition. The interaction of gas-liquid contactors materials in presence of CO 2 , was evaluated in three absorption columns built of Pyrex glass, with a diameter of 0.1016 m, of 1.5 m in height, 0.0081m 2 cross-sectional area, packed with every kind of material: metallic, polymeric and ceramic, processing a gas flow of 20m 3 / h at 9% CO 2 , in air and a liquid flow to 30% of Mea 5 L/min. The results of the properties studied were by the metallic material: more density, higher roughness, the greater tensile strength, greater resistance to corrosion in the presence of an aqueous solution of monoethanolamine (Mea) to 30% by weight, improvement more efficient absorption of CO 2 , and higher modulus of elasticity. The polymeric material was characterized to have lower hardness, lower roughness, lower density, lower melting temperature, greater resistance to corrosion in the presence of 1 N H 2 SO 4 aqueous solution, and allowed an absorption efficiency of CO 2 , 2% lower than that presented by the material metallic. The ceramic material found to be the hardest of the three

  13. Increasing the lego of 2D electronics materials: silicene and germanene, graphene's new synthetic cousins

    Science.gov (United States)

    Le Lay, Guy; Salomon, Eric; Angot, Thierry; Eugenia Dávila, Maria

    2015-05-01

    The realization of the first Field Effect Transistors operating at room temperature, based on a single layer silicene channel, open up highly promising perspectives, e.g., typically, for applications in digital electronics. Here, we describe recent results on the growth, characterization and electronic properties of novel synthetic two-dimensional materials beyond graphene, namely silicene and germanene, its silicon and germanium counterparts.

  14. Anisotropic evaluation of synthetic surgical meshes.

    Science.gov (United States)

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  15. Application of Synthetic Mineral Alloys as Materials for Bulletproof Vests and Products for Different Objects Protection

    Directory of Open Access Journals (Sweden)

    Anna Ignatova.

    2015-11-01

    Full Text Available Authors study ballistic properties of the material which has never been used for impact protection and the presented results prove that synthetic mineral alloys belong to the field of bulletproof ballistic protection and particularly to the means of objects’ protection from kinetic threats. Although the material has been described in connection with such specific embodiments as SVD and a cumulative jet, it is evident that many alternatives and modifications of their application for various protective articles are possible.

  16. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    Science.gov (United States)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1995-01-01

    Production of an electric voltage in response to mechanical excitation (piezoelectricity) or thermal excitation (pyroelectricity) requires a material to have a preferred dipole orientation in its structure. This preferred orientation or polarization occurs naturally in some crystals such as quartz and can be induced into some ceramic and polymeric materials by application of strong electric or mechanical fields. For some materials, a combination of mechanical and electrical orientation is necessary to completely polarize the material. The only commercially available piezoelectric polymer is poly(vinylidene fluoride) (PVF2). However, this polymer has material and process limitations which prohibit its use in numerous device applications where thermal stability is a requirement. By the present invention, thermally stable, piezoelectric and pyroelectric polymeric substrates were prepared from polymers having a softening temperature greater than 1000C. A metal electrode material is deposited onto the polymer substrate and several electrical leads are attached to it. The polymer substrate is heated in a low dielectric medium to enhance molecular mobility of the polymer chains. A voltage is then applied to the polymer substrate inducing polarization. The voltage is then maintained while the polymer substrate is cooled 'freezing in' the molecular orientation. The novelty of the invention resides in the process of preparing the piezoelectric and pyroelectric polymeric substrate. The nonobviousness of the invention is found in heating the polymeric substrate in a low dielectric medium while applying a voltage.

  17. Durability of Polymeric Encapsulation Materials for a PMMA/glass Concentrator Photovoltaic System

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David C.; Kempe, Michael D.; Muller, Matthew T; Gray, Matthew H.; Araki, Kenji; Kurtz, Sarah R.

    2014-04-08

    The durability of polymeric encapsulation materials was examined using outdoor exposure at the nominal geometric concentration of 500 suns. The results for 36 months cumulative field deployment are presented for materials including: poly(ethylene-co-vinyl acetate), (EVA); polyvinyl butyral (PVB); ionomer; polyethylene/ polyoctene copolymer (PO); thermoplastic polyurethane (TPU); poly(dimethylsiloxane) (PDMS); poly(diphenyl dimethyl siloxane) (PDPDMS); and poly(phenyl-methyl siloxane) (PPMS). Measurements of the field conditions including ambient temperature and ultraviolet (UV) dose were recorded at the test site during the experiment. Measurements for the experiment included optical transmittance (with subsequent analysis of solar-weighted transmittance, UV cut-off wavelength, and yellowness index), mass, visual photography, photoelastic imaging, and fluorescence spectroscopy. While the results to date for EVA are presented and discussed, examination here focuses more on the siloxane materials. A specimen recently observed to fail by thermal decomposition is discussed in terms of the implementation of the experiment as well as its fluorescence signature, which was observed to become more pronounced with age. Modulated thermogravimetry (allowing determination of the activation energy of thermal decomposition) was performed on a subset of the siloxanes to quantify the propensity for decomposition at elevated temperatures. Supplemental, Pt-catalyst- and primer-solutions as well as peroxide-cured PDMS specimens were examined to assess the source of the luminescence. The results of the study including the change in optical transmittance, observed failure modes, and subsequent analyses of the failure modes are described in the conclusions.

  18. Olefin metathesis and metathesis polymerization

    CERN Document Server

    Ivin, K J

    1997-01-01

    This book is a follow-up to Ivins Olefin Metathesis, (Academic Press, 1983). Bringing the standard text in the field up to date, this Second Edition is a result of rapid growth in the field, sparked by the discovery of numerous well-defined metal carbene complexes that can act as very efficient initiators of all types of olefin metathesis reaction, including ring-closing metathesis of acyclic dienes, enynes, and dienynes; ring-opening metathesis polymerizationof cycloalkenes, acyclic diene metathesis polymerization; and polymerization of alkynes, as well as simple olefin metathesis. Olefin Metathesis and Metathesis Polymerization provides a broad, up-to-date account of the subject from its beginnings in 1957 to the latest applications in organic synthesis. The book follows the same format as the original, making it useful toteachers and to researchers, and will be of particular interest to those working in the fields of organic chemistry, polymer chemistry, organometallic chemistry, catalysis, materials scien...

  19. Living Polycondensation: Synthesis of Well-Defined Aromatic Polyamide-Based Polymeric Materials

    KAUST Repository

    Alyami, Mram Z.

    2016-11-01

    Chain growth condensation polymerization is a powerful tool towards the synthesis of well-defined polyamides. This thesis focuses on one hand, on the synthesis of well-defined aromatic polyamides with different aminoalkyl pendant groups with low polydispersity and controlled molecular weights, and on the other hand, on studying their thermal properties. In the first project, well-defined poly (N-octyl-p-aminobenzoate) and poly (N-butyl-p-aminobenzoate) were synthesized, and for the first time, their thermal properties were studied. In the second project, ethyl4-aminobenzoate, ethyl 4-octyl aminobenzoate and 4-(hydroxymethyl) benzoic acid were used as novel efficient initiators of ε-caprolactone with t-BuP2 as a catalyst. Macroinitiator and Macromonomer of poly (ε-caprolactone) were synthesized with ethyl 4-octyl aminobenzoate and ethyl 4-aminobenzoate as initiators to afford polyamide-block-poly (ε-caprolactone) and polyamide-graft-poly (ε-caprolactone) by chain growth condensation polymerization (CGCP). In the third project, a new study has been done on chain growth condensation polymerization to discover the probability to synthesize new polymers and studied their thermal properties. For this purpose, poly (N-cyclohexyl-p-aminobenzoate) and poly (N-hexyl-p-aminobenzoate) were synthesized with low polydispersity and controlled molecular weights.

  20. What Makes the Optimal Wound Healing Material? A Review of Current Science and Introduction of a Synthetic Nanofabricated Wound Care Scaffold.

    Science.gov (United States)

    MacEwan, Matthew R; MacEwan, Sarah; Kovacs, Tamas R; Batts, Joel

    2017-10-02

    Wound matrix materials are used to improve the regeneration of dermal and epidermal layers in both acute and chronic wounds. Contemporary wound matrices are primarily composed of biologic materials such as processed xenogeneic and allogeneic tissues. Unfortunately, existing biologic wound matrices possess multiple limitations including poor longevity, durability, strength, and enzymatic resistance required for persistent support for new tissue formation. A fully-synthetic, resorbable electrospun material (Restrata Wound Matrix, Acera, St.Louis, Missouri ) that exhibits structural similarities to the native extracellular matrix offers a new approach to the treatment of acute and chronic wounds. This novel matrix is the first product to combine the advantages of synthetic construction (e.g. resistance to enzymatic degradation, excellent biocompatibility, strength/durability and controlled degradation) with the positive attributes of biologic materials (e.g. biomimetic architecture similar to human extracellular matrix (ECM), fibrous architecture optimized to support cellular migration and proliferation, engineered porosity to encourage tissue ingrowth and vascularization). These features allow RWM to achieve rapid and complete healing of full-thickness wounds that, in preclinical studies, is comparable to Integra Bilayer Wound Matrix (Integra LifeSciences, Plainsboro, New Jersey), a gold standard biologic material with diverse clinical indications in the wound care. Together, this review suggests that the RWM offers a unique fully-synthetic alternative to existing biologic matrices that is effective, widely available, easy to store, simple to apply and low cost.

  1. Opalescence and fluorescence properties of indirect and direct resin materials.

    Science.gov (United States)

    Song, Sang-Hoon; Yu, Bin; Ahn, Jin-Soo; Lee, Yong-Keun

    2008-08-01

    To measure the opalescence and fluorescence properties of indirect and direct resin materials before and after polymerization, and to determine the influence of the material and shade group combination on these properties. BelleGlass NG (BG, indirect resin) and Estelite Sigma (ES, direct resin), each composed in 3 shade groups (EN, OD and TL for BG; BS, AS and OP for ES) out of a total of 16 shades were investigated. Resin material was packed into a mold (the BEC condition) and polymerized with a light-polymerization unit (CWL). Secondary polymerization (CIC) was performed for BG. Color was measured in the BEC, CWL, and CIC conditions, and the opalescence parameter (OP) and fluorescence parameter (FL) were calculated. For the OP, the mean for BG material was 24.3 before polymerization, which changed to 19.9 after polymerization (CIC). In the case of ES, the mean OP before polymerization was 25.6, which changed to 12.4 after polymerization (CWL). For the FL, the mean FL for BG was 2.5 before polymerization, which changed to 0.7 after polymerization. In the case of ES, the mean FL before polymerization was 1.2, which did not change after polymerization. Material and shade group combination influenced the OP and FL values (popalescence and fluorescence properties of resin materials varied depending on the material, shade group, and polymerization. Clinically, these properties should be considered when neighboring teeth are restored with different types of material.

  2. Boronic Acid functionalized core-shell polymer nanoparticles prepared by distillation precipitation polymerization for glycopeptide enrichment.

    Science.gov (United States)

    Qu, Yanyan; Liu, Jianxi; Yang, Kaiguang; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2012-07-16

    The boronic acid-functionalized core-shell polymer nanoparticles, poly(N,N-methylenebisacrylamide-co-methacrylic acid)@4-vinylphenylboronic acid (poly(MBA-co-MAA)@VPBA), were successfully synthesized for enriching glycosylated peptides. Such nanoparticles were composed of a hydrophilic polymer core prepared by distillation precipitation polymerization (DPP) and a boronic acid-functionalized shell designed for capturing glycopeptides. Owing to the relatively large amount of residual vinyl groups introduced by DPP on the core surface, the VPBA monomer was coated with high efficiency, working as the shell. Moreover, the overall polymerization route, especially the use of DPP, made the synthesis of nanoparticles facile and time-saving. With the poly(MBA-co-MAA)@VPBA nanoparticles, 18 glycopeptides from horseradish peroxidase (HRP) digest were captured and identified by MALDI-TOF mass spectrometric analysis, relative to eight glycopeptides enriched by using commercially available meta-aminophenylboronic acid agarose under the same conditions. When the concentration of the HRP digest was decreased to as low as 5 nmol, glycopeptides could still be selectively isolated by the prepared nanoparticles. Our results demonstrated that the synthetic poly(MBA-co-MAA)@VPBA nanoparticles might be a promising selective enrichment material for glycoproteome analysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Comparison between rice husk ash and commercial silica as filler in polymeric composites

    International Nuclear Information System (INIS)

    Fernandes, I.J.; Calheiro, D.; Santos, E.C.A. dos; Oliveira, R.; Rocha, T.L.A.C.; Moraes, C.A.M.

    2014-01-01

    The use of rice husk ash (RHA) as filler in polymeric materials has been studied in different polymers. Research reported that RHA may successfully replace silica. The silica production process using ore demands high energy input and produces considerable amounts of waste. Therefore, the replacement of silica by RHA may be economically and environmentally advantageous, reducing environmental impact and adding value to a waste material. In this context, this study characterizes and compares RHA of different sources (travelling grate reactor and fluidized bed reactor) with commercially available silicas to assess performance as filler in polymeric materials. Samples were characterized by X-ray fluorescence, loss on ignition, X-ray diffraction, grain size, specific surface area and specific weight. The results show that RHA may be used as a filler in several polymeric materials.(author)

  4. Effects of sulfur-based hemostatic agents and gingival retraction cords handled with latex gloves on the polymerization of polyvinyl siloxane impression materials.

    Science.gov (United States)

    Machado, Carlos Eduardo Palhares; Guedes, Carlos Gramani

    2011-01-01

    This study investigated the possible interactions between three addition silicone materials (Express®, Aquasil Ultra® and Adsil®), three hemostatic agents (ferric sulfate, StatGel FS®; aluminum sulfate, GelCord®; and aluminum chloride, Hemostop®) and gingival retraction cords previously handled with latex gloves to determine whether direct contact with medicaments or indirect contamination by latex in conditions similar to those found in clinical practice inhibit or affect the setting of the impression materials. A portable device for the simultaneous test of several specimens was specifically developed for this study. Polymerization inhibition was analyzed by examination of the impressions and the molded surface. Ten trials were performed for each addition silicone material used in the study, at a total of 240 study samples. All the samples tested (N=240) were nonreactive regardless of the type of combination used. Aluminum sulfate, ferric sulfate and aluminum chloride hemostatic solutions did not show any inhibitory potential on the addition silicone samples under study, and there were no changes in polymerization as a result of contact between addition silicone and retraction cords handled with latex gloves.

  5. Influence of Pichia pastoris cellular material on polymerase chain reaction performance as a synthetic biology standard for genome monitoring.

    Science.gov (United States)

    Templar, Alexander; Woodhouse, Stefan; Keshavarz-Moore, Eli; Nesbeth, Darren N

    2016-08-01

    Advances in synthetic genomics are now well underway in yeasts due to the low cost of synthetic DNA. These new capabilities also bring greater need for quantitating the presence, loss and rearrangement of loci within synthetic yeast genomes. Methods for achieving this will ideally; i) be robust to industrial settings, ii) adhere to a global standard and iii) be sufficiently rapid to enable at-line monitoring during cell growth. The methylotrophic yeast Pichia pastoris (P. pastoris) is increasingly used for industrial production of biotherapeutic proteins so we sought to answer the following questions for this particular yeast species. Is time-consuming DNA purification necessary to obtain accurate end-point polymerase chain reaction (e-pPCR) and quantitative PCR (qPCR) data? Can the novel linear regression of efficiency qPCR method (LRE qPCR), which has properties desirable in a synthetic biology standard, match the accuracy of conventional qPCR? Does cell cultivation scale influence PCR performance? To answer these questions we performed e-pPCR and qPCR in the presence and absence of cellular material disrupted by a mild 30s sonication procedure. The e-pPCR limit of detection (LOD) for a genomic target locus was 50pg (4.91×10(3) copies) of purified genomic DNA (gDNA) but the presence of cellular material reduced this sensitivity sixfold to 300pg gDNA (2.95×10(4) copies). LRE qPCR matched the accuracy of a conventional standard curve qPCR method. The presence of material from bioreactor cultivation of up to OD600=80 did not significantly compromise the accuracy of LRE qPCR. We conclude that a simple and rapid cell disruption step is sufficient to render P. pastoris samples of up to OD600=80 amenable to analysis using LRE qPCR which we propose as a synthetic biology standard. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Synthetic Defects for Vibrothermography

    Science.gov (United States)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  7. Hyperbranched polymers from polymerization in solid state

    International Nuclear Information System (INIS)

    Tomaz, Vivian A.; Silva, Rafael; Muniz, Edvani C.; Rubira, Adley F.

    2009-01-01

    The macroscopic properties of polymers are directly related to the chemical characteristics of the monomeric units and also with the geometric arrangement of polymer chains. Thus, polymers were synthesized from two well-known chelators EDTA and EDA. We evaluated the conditions for the polymerization of the precursors in the solid state. The polymerization was carried out varying the proportions of reagents, aiming the polymers with different degrees of chain branching and the materials were characterized by FTIR. The materials obtained from the best condition for synthesis were purified by size-exclusion chromatography of and were subjected to characterization by FTIR and NMR of 1 H and 13 C. The content of end groups in these samples was determined by back titration. (author)

  8. Template Synthesis of Nanostructured Polymeric Membranes by Inkjet Printing.

    Science.gov (United States)

    Gao, Peng; Hunter, Aaron; Benavides, Sherwood; Summe, Mark J; Gao, Feng; Phillip, William A

    2016-02-10

    The fabrication of functional nanomaterials with complex structures has been serving great scientific and practical interests, but current fabrication and patterning methods are generally costly and laborious. Here, we introduce a versatile, reliable, and rapid method for fabricating nanostructured polymeric materials. The novel method is based on a combination of inkjet printing and template synthesis, and its utility and advantages in the fabrication of polymeric nanomaterials is demonstrated through three examples: the generation of polymeric nanotubes, nanowires, and thin films. Layer-by-layer-assembled nanotubes can be synthesized in a polycarbonate track-etched (PCTE) membrane by printing poly(allylamine hydrochloride) and poly(styrenesulfonate) sequentially. This sequential deposition of polyelectrolyte ink enables control over the surface charge within the nanotubes. By a simple change of the printing conditions, polymeric nanotubes or nanowires were prepared by printing poly(vinyl alcohol) in a PCTE template. In this case, the high-throughput nature of the method enables functional nanomaterials to be generated in under 3 min. Furthermore, we demonstrate that inkjet printing paired with template synthesis can be used to generate patterns comprised of chemically distinct nanomaterials. Thin polymeric films of layer-by-layer-assembled poly(allylamine hydrochloride) and poly(styrenesulfonate) are printed on a PCTE membrane. Track-etched membranes covered with the deposited thin films reject ions and can potentially be utilized as nanofiltration membranes. When the fabrication of these different classes of nanostructured materials is demonstrated, the advantages of pairing template synthesis with inkjet printing, which include fast and reliable deposition, judicious use of the deposited materials, and the ability to design chemically patterned surfaces, are highlighted.

  9. Functional polyester materials with tunable degradability: Investigations into the use of reductive amination, ketoxime ether, and hydrazone linkages for functionalization, covalent stabilization and crosslinking of poly(epsilon-caprolactone) materials

    Science.gov (United States)

    van Horn, Brooke Angela

    Aliphatic polyesters represent one class of degradable, polymeric materials that is receiving significant attention in the search for, and design of, biocompatible and bioresorbable synthetic substances. Functional and crosslinked polyesters, having potential biomedical value, are the target of many avenues of current research. This dissertation work expands the utility of a specific aliphatic polyester, poly(epsilon-caprolactone-co-2-oxepane-1,5-dione) (P(CL-co-OPD)), which contains backbone ketone units that can be reacted with various functional, nucleophilic agents. Results presented in this dissertation convey both the successes had and the challenges encountered in the employment of different "iminyl" chemistries for the synthesis of functional and crosslinked materials. Specifically, the ketone-functionalized polyester was investigated as a general substrate designed to undergo solution-state intramolecular crosslinking and functionalization upon reductive amination with 1,6-hexanediamine and hexylamine, respectively, in the presence of NaCNBH3. Through detailed analysis of the products from these reactions, and simpler systems including small molecule model compounds, the polymeric gamma-keto ester functionality was determined to be incompatible with the reductive amination chemistry, resulting in chain cleavage via intramolecular lactam formation. Subsequent investigation of ketoxime ether formation using synthetic model hydroxylamines, 1-aminooxydodecane and 1,6-bis(aminooxy)hexane, in solution and in the presence of an acid catalyst, resulted in the targeted graft and crosslinked particulate/gel materials, respectively. With the significant interest in the development of synthetic polymer materials of increasing degrees of complexity, attention has been focused on the efficient and high-yielding conversion of polyesters into multi-functional materials. Facile conjugation of aminooxy- and sulfonyl hydrazide model ligands with P(CL-co-OPD) were also

  10. Layered niobate KNb3O8 synthesized by the polymeric precursor method

    International Nuclear Information System (INIS)

    Souza, J.K.D. de; Honório, L.M.C.; Torres, S.M.; Santos, I.M.G.; Maia, A.S.; Ferreira, J.M.

    2018-01-01

    The polymeric precursor method was used for the synthesis of KNb 3 O 8 and compared to the solid-state method. The materials were characterized by X-ray diffraction (XRD), infrared spectroscopy, Raman spectroscopy, scanning electron microscopy, and determination of surface area and total pore volume by nitrogen isotherms at 77 K. The material prepared by the polymeric precursor method was single-phase while K 2 Nb 4 O 11 was obtained as secondary phase when the solid state method was used, as evidenced by the XRD patterns and the Raman spectra. The morphology of the materials was significantly altered by the synthesis method, as the KNb 3 O 8 prepared by the polymeric precursor method presented a more porous morphology leading to a higher surface area and pore volume. (author)

  11. Conjugated Polymers Via Direct Arylation Polymerization in Continuous Flow: Minimizing the Cost and Batch-to-Batch Variations for High-Throughput Energy Conversion.

    Science.gov (United States)

    Gobalasingham, Nemal S; Carlé, Jon E; Krebs, Frederik C; Thompson, Barry C; Bundgaard, Eva; Helgesen, Martin

    2017-11-01

    Continuous flow methods are utilized in conjunction with direct arylation polymerization (DArP) for the scaled synthesis of the roll-to-roll compatible polymer, poly[(2,5-bis(2-hexyldecyloxy)phenylene)-alt-(4,7-di(thiophen-2-yl)-benzo[c][1,2,5]thiadiazole)] (PPDTBT). PPDTBT is based on simple, inexpensive, and scalable monomers using thienyl-flanked benzothiadiazole as the acceptor, which is the first β-unprotected substrate to be used in continuous flow via DArP, enabling critical evaluation of the suitability of this emerging synthetic method for minimizing defects and for the scaled synthesis of high-performance materials. To demonstrate the usefulness of the method, DArP-prepared PPDTBT via continuous flow synthesis is employed for the preparation of indium tin oxide (ITO)-free and flexible roll-coated solar cells to achieve a power conversion efficiency of 3.5% for 1 cm 2 devices, which is comparable to the performance of PPDTBT polymerized through Stille cross coupling. These efforts demonstrate the distinct advantages of the continuous flow protocol with DArP avoiding use of toxic tin chemicals, reducing the associated costs of polymer upscaling, and minimizing batch-to-batch variations for high-quality material. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Barrier Properties of Polymeric Packaging Materials to Major Aroma Volatiles in Herbs

    Directory of Open Access Journals (Sweden)

    Leelaphiwat Pattarin

    2016-01-01

    Full Text Available This study determined the main transport coefficients (diffusion, solubility and permeability of key aroma compounds present in tropical herbs (eucalyptol and estragol through low‒density polyethylene (LDPE, polypropylene (PP, nylon (Nylon, polyethylene terephthalate (PET, metalized‒polyethylene terephthalate (MPET and poly(lactic acid (PLA films at 15 and 25 °C. The concentration of aroma compounds permeating through the films were evaluated at various time intervals using a gas chromatograph flame ionization detector (GC–FID. Results showed that the diffusion coefficients of aroma compounds were highest in LDPE whereas the solubility coefficients were highest in PLA at both temperatures. PLA had the highest permeability coefficients for estragol at both temperatures. PP and LDPE had the highest permeability coefficients for eucalyptol at 15 and 25 °C, respectively. MPET had the lowest permeability for both aroma compounds studied. Aroma barrier properties can be used when selecting polymeric packaging materials to prevent aroma loss in various food and consumer products.

  13. Bulk-fill resin composites: polymerization contraction, depth of cure, and gap formation.

    Science.gov (United States)

    Benetti, A R; Havndrup-Pedersen, C; Honoré, D; Pedersen, M K; Pallesen, U

    2015-01-01

    The bulk-filling of deep, wide dental cavities is faster and easier than traditional incremental restoration. However, the extent of cure at the bottom of the restoration should be carefully examined in combination with the polymerization contraction and gap formation that occur during the restorative procedure. The aim of this study, therefore, was to compare the depth of cure, polymerization contraction, and gap formation in bulk-fill resin composites with those of a conventional resin composite. To achieve this, the depth of cure was assessed in accordance with the International Organization for Standardization 4049 standard, and the polymerization contraction was determined using the bonded-disc method. The gap formation was measured at the dentin margin of Class II cavities. Five bulk-fill resin composites were investigated: two high-viscosity (Tetric EvoCeram Bulk Fill, SonicFill) and three low-viscosity (x-tra base, Venus Bulk Fill, SDR) materials. Compared with the conventional resin composite, the high-viscosity bulk-fill materials exhibited only a small increase (but significant for Tetric EvoCeram Bulk Fill) in depth of cure and polymerization contraction, whereas the low-viscosity bulk-fill materials produced a significantly larger depth of cure and polymerization contraction. Although most of the bulk-fill materials exhibited a gap formation similar to that of the conventional resin composite, two of the low-viscosity bulk-fill resin composites, x-tra base and Venus Bulk Fill, produced larger gaps.

  14. Distinction of synthetic dl-α-tocopherol from natural vitamin E (d-α-tocopherol) by reversed-phase liquid chromatography. Enhanced selectivity of a polymeric C18 stationary phase at low temperature and/or at high pressure.

    Science.gov (United States)

    Yui, Yuko; Miyazaki, Shota; Ma, Yan; Ohira, Masayoshi; Fiehn, Oliver; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2016-06-10

    Separation of diastereomers of dl-α-tocopherol was studied by reversed-phase liquid chromatography using three types of stationary phases, polymeric ODS, polymeric C30, and monomeric ODS. Polymeric ODS stationary phase (Inertsil ODS-P, 3mmID, 20cm) was effective for the separation of the isomers created by the presence of three chiral centers on the alkyl chain of synthetic dl-α-tocopherol. Considerable improvement of the separation of isomers was observed on ODS-P phase at high pressure and at low temperature. Complete separation of four pairs of diastereomers was achieved at 12.0°C, 536bar, while three peaks were observed when the separation was carried out either at 12.0°C at low pressure or at 20°C at 488bar. Higher temperature (30.0°C) with the ODS-P phase resulted in only partial separation of the diastereomers even at high pressure. Only slight resolution was observed for the mixture of diastereomers with the C30 stationary phase (Inertsil C30) at 12.0°C and 441bar, although the stationary phase afforded greater resolution for β- and γ-tocopherol than ODS-P. A monomeric C18 stationary phase did not show any separation at 12.0°C and 463bar. The results suggest that the binding site of the polymeric ODS-P phase is selective for flexible alkyl chains that provided the longest retention for the natural form, (R,R,R) form, and the enantiomer, (S,S,S) form, of dl-α-tocopherol. Copyright © 2016. Published by Elsevier B.V.

  15. PPLA-cellulose nanocrystals nanocomposite prepared by in situ polymerization

    International Nuclear Information System (INIS)

    Paula, Everton L. de; Pereirea, Fabiano V.; Mano, Valdir

    2011-01-01

    This work reports the preparation and and characterization of a PLLA-cellulose nanocrystals nanocomposite obtained by in situ polymerization. The nanocomposite was prepared by ring opening polymerization of the lactide dimer in the presence of cellulose nanocrystals (CNCs) and the as-obtained materials was characterized using FTIR, DSC, XRD and TGA measurements. The incorporation of cellulose nanocrystals in PLLA using this method improved the thermal stability and increased the crystallinity of PLLA. These results indicate that the incorporation of CNCs by in situ polymerization improve thermal properties and has potential to improve also mechanical properties of this biodegradable polymer. (author)

  16. A Review on Surface Stress-Based Miniaturized Piezoresistive SU-8 Polymeric Cantilever Sensors

    Science.gov (United States)

    Mathew, Ribu; Ravi Sankar, A.

    2018-06-01

    In the last decade, microelectromechanical systems (MEMS) SU-8 polymeric cantilevers with piezoresistive readout combined with the advances in molecular recognition techniques have found versatile applications, especially in the field of chemical and biological sensing. Compared to conventional solid-state semiconductor-based piezoresistive cantilever sensors, SU-8 polymeric cantilevers have advantages in terms of better sensitivity along with reduced material and fabrication cost. In recent times, numerous researchers have investigated their potential as a sensing platform due to high performance-to-cost ratio of SU-8 polymer-based cantilever sensors. In this article, we critically review the design, fabrication, and performance aspects of surface stress-based piezoresistive SU-8 polymeric cantilever sensors. The evolution of surface stress-based piezoresistive cantilever sensors from solid-state semiconductor materials to polymers, especially SU-8 polymer, is discussed in detail. Theoretical principles of surface stress generation and their application in cantilever sensing technology are also devised. Variants of SU-8 polymeric cantilevers with different composition of materials in cantilever stacks are explained. Furthermore, the interdependence of the material selection, geometrical design parameters, and fabrication process of piezoresistive SU-8 polymeric cantilever sensors and their cumulative impact on the sensor response are also explained in detail. In addition to the design-, fabrication-, and performance-related factors, this article also describes various challenges in engineering SU-8 polymeric cantilevers as a universal sensing platform such as temperature and moisture vulnerability. This review article would serve as a guideline for researchers to understand specifics and functionality of surface stress-based piezoresistive SU-8 cantilever sensors.[Figure not available: see fulltext.

  17. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials.

    Science.gov (United States)

    Espinosa, Horacio D; Juster, Allison L; Latourte, Felix J; Loh, Owen Y; Gregoire, David; Zavattieri, Pablo D

    2011-02-01

    Nacre, the iridescent material in seashells, is one of many natural materials employing hierarchical structures to achieve high strength and toughness from relatively weak constituents. Incorporating these structures into composites is appealing as conventional engineering materials often sacrifice strength to improve toughness. Researchers hypothesize that nacre's toughness originates within its brick-and-mortar-like microstructure. Under loading, bricks slide relative to each other, propagating inelastic deformation over millimeter length scales. This leads to orders-of-magnitude increase in toughness. Here, we use in situ atomic force microscopy fracture experiments and digital image correlation to quantitatively prove that brick morphology (waviness) leads to transverse dilation and subsequent interfacial hardening during sliding, a previously hypothesized dominant toughening mechanism in nacre. By replicating this mechanism in a scaled-up model synthetic material, we find that it indeed leads to major improvements in energy dissipation. Ultimately, lessons from this investigation may be key to realizing the immense potential of widely pursued nanocomposites.

  18. Iron Polymerization and Arsenic Removal During In-Situ Iron Electrocoagulation in Synthetic Bangladeshi Groundwater

    Science.gov (United States)

    van Genuchten, C. M.; Pena, J.; Addy, S.; Gadgil, A.

    2010-12-01

    Millions of people worldwide are exposed to arsenic-contamination in groundwater drinking supplies. The majority of affected people live in rural Bangladesh. Electrocoagulation (EC) using iron electrodes is a promising arsenic removal strategy that is based on the generation of iron precipitates with a high affinity for arsenic through the electrochemical dissolution of a sacrificial iron anode. Many studies of iron hydrolysis in the presence of co-occurring ions in groundwater such as PO43-, SiO44-, and AsO43- suggest that these ions influence the polymerization and formation of iron oxide phases. However, the combined impact of these ions on precipitates generated by EC is not well understood. X-ray absorption spectroscopy (XAS) was used to examine EC precipitates generated in synthetic Bangladeshi groundwater (SBGW). The iron oxide structure and arsenic binding geometry were investigated as a function of EC operating conditions. As and Fe k-edge spectra were similar between samples regardless of the large range of current density (0.02, 1.1, 5.0, 100 mA/cm2) used during sample generation. This result suggests that current density does not play a large role in the formation EC precipitates in SBGW. Shell-by-shell fits of Fe K-edge data revealed the presence of a single Fe-Fe interatomic distance at approximately 3.06 Å. The absence of longer ranged Fe-Fe correlations suggests that EC precipitates consist of nano-scale chains (polymers) of FeO6 octahedra sharing equatorial edges. Shell-by-shell fits of As K-edge spectra show arsenic bound in primarily bidentate, binuclear corner sharing complexes. In this coordination geometry, arsenic prevents the formation of FeO6 corner-sharing linkages, which are necessary for 3-dimensional crystal growth. The individual and combined effects of other anions, such as PO43- and SiO44- present in SBGW are currently being investigated to determine the role of these ions in stunting crystal growth. The results provided by this

  19. Biochemical indicators of nephrotoxicity in blood serum of rats treated with novel 4-thiazolidinone derivatives or their complexes with polyethylene glycol-containing nanoscale polymeric carrier

    Directory of Open Access Journals (Sweden)

    L. I. Kоbylinska

    2016-02-01

    Full Text Available The aim of this study was to compare the effect of new synthetic 4-thiazolidinone derivatives (potential anticancer compounds denoted as 3882, 3288 and 3833 and doxorubicin (positive control in free form and in their complexes with synthetic polyethylene glycol-containing nanoscale polymeric carrier on the biochemical indicators of nephrotoxicity in blood serum of rats. The concentration of total protein, urea, creatinine, glucose, ions of sodium, potassium, calcium, iron and chloride was measured. It was found that after injection of the investigated compounds, the concentration of sodium cations and chloride anions in blood serum was increased compared with control (untreated animals. Doxorubicin’s injection was accompanied by a decrease in the concentration of iron cations. The concentration of total protein, urea and creatinine decreased under the influence of the studied compounds. Complexation of these аntineoplastic substances with a synthetic polymeric nanocarrier lowered the concentration of the investigated metabolites substantially compared to the effect of these compounds in free form. The normalization of concentration of total protein, urea and creatinine in blood serum of rats treated with complexes of the studied compounds with the polymeric carrier comparing with increased concentration of these indicators at the introduction of such compounds in free form was found.

  20. Radiation techniques in the formulation of synthetic biomaterials

    International Nuclear Information System (INIS)

    Kaetsu, Isao

    1992-01-01

    This chapter reviews the uses of various radiation techniques, such as radiation polymerization, grafting, and crosslinking, for the formulation of synthetic biomaterials. The biomaterials are divided into four categories: Biocompatible polymers, immobilized proteins, immobilized cells, and drug delivery systems. The recent achievements in each category are described, and the contributions of novel radiation techniques to this field are discussed. Work on drug delivery systemsis also reviewed, and the status of the practical applications of drug delivery systems for therapy is summarized. Future trends in the field of radiation-synthesized biomaterials are indicated. (orig.)

  1. Fluorescent polymeric nanocomposite films generated by surface-mediated photoinitiation of polymerization

    International Nuclear Information System (INIS)

    Avens, Heather J.; Chang, Erin L.; May, Allison M.; Berron, Brad J.; Seedorf, Gregory J.; Balasubramaniam, Vivek; Bowman, Christopher N.

    2011-01-01

    Incorporation of nanoparticles (NPs) into polymer films represents a valuable strategy for achieving a variety of desirable physical, optical, mechanical, and electrical attributes. Here, we describe and characterize the creation of highly fluorescent polymer films by entrapment of fluorescent NPs into polymer matrices through surface-mediated eosin photoinitiation reactions. Performing surface-mediated polymerizations with NPs combines the benefits of a covalently anchored film with the unique material properties afforded by NPs. The effects of monomer type, crosslinker content, NP size, and NP surface chemistry were investigated to determine their impact on the relative amount of NPs entrapped in the surface-bound films. The density of entrapped NPs was increased up to 6-fold by decreasing the NP diameter. Increasing the crosslinking agent concentration enabled a greater than 2-fold increase in the amount of NPs entrapped. Additionally, the monomer chemistry played a significant role as poly(ethylene glycol) diacrylate (PEGDA)-based monomer formulations entrapped a 10-fold higher density of carboxy-functionalized NPs than did acrylamide/bisacrylamide formulations, though the latter formulations ultimately immobilized more fluorophores by generating thicker films. In the context of a polymerization-based microarray biodetection platform, these findings enabled tailoring of the monomer and NP selection to yield a 200-fold improvement in sensitivity from 31 (±1) to 0.16 (±0.01) biotinylated target molecules per square micron. Similarly, in polymerization-based cell staining applications, appropriate monomer and NP selection enabled facile visualization of microscale, sub-cellular features. Careful consideration of monomer and NP selection is critical to achieve the desired properties in applications that employ surface-mediated polymerization to entrap NPs.

  2. Chemistry and technology of radiation processed composite materials

    International Nuclear Information System (INIS)

    Czvikovszky, T.

    1985-01-01

    Composite materials of synthetics (based on monomers, oligomers and thermoplastics) and of natural polymers (wood and other fibrous cellulosics) prepared by radiation processing, offer valuable structural materials with enhanced coupling forces between the components. The applied polymer chemistry of such composites shows several common features with that of radiation grafting, e.g. the polymerization rate of oligomer-monomer mixtures in wood remains in most cases proportional to the square-root of the initiating dose-rate, just as in the simultaneous grafting, demonstrating that the chain termination kinetics remain regularly bimolecular in the corresponding dose-rate ranges. In the processing experiences of such composites, low dose requirement, easy process-control, and good technical feasibility have been found for composites of wood with oligomer-monomer mixtures, for coconut fibres with unsaturated polyesters and for pretreated wood fibre with polypropylene. (author)

  3. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  4. Drag reduction by natural polymeric additives in PMDS microchannel: Effect of types of additives

    Directory of Open Access Journals (Sweden)

    Ling Fiona W.M.

    2017-01-01

    Full Text Available Drag reduction technology was used in medical applications to enhance the blood flow in semiclogged blood streams which can be an alternative treatment for atherosclerosis. In this present study, natural polymeric drag reducing additives (DRA was introduced to replace synthetic polymer which has the possibility of bringing side effects to human health. Three different sources, namely okra, aloe vera and hibiscus were utilized to extract the natural polymeric additives which were then tested in custom made microchannel simulating human heart blood vessels. The performance of different types of additives was evaluated using pressure measurements. The maximum drag reduction up to 63.48% is achieved using 300 ppm of hibiscus mucilage at operating pressure of 50 mbar. In this present work, hibiscus showed the best drag reduction performance, giving the highest %FI in most of the cases. This experimental results proved that these natural polymeric additives could be utilized as DRA in enhancing the blood flow in semiclogged blood streams.

  5. Unique effects of microwave heating on polymerization kinetics of poly(methyl methacrylate) composites

    Energy Technology Data Exchange (ETDEWEB)

    Spasojević, Pavle [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade (Serbia); Jovanović, Jelena, E-mail: jelenaj@ffh.bg.ac.rs [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11001 Belgrade (Serbia); Adnadjevic, Borivoj [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11001 Belgrade (Serbia)

    2013-09-16

    The effects of heating mode (conventional and microwave) on the kinetics of isothermal polymerization of MMA composite materials were investigated. Isothermal kinetics curves at temperature range from 343 K to 363 K for both conventional (CH) and microwave heating (MWH) were determined. It was found that the polymerization of MMA composite materials was kinetically elementary reaction for both CH and MWH. The kinetics of CH polymerization can be described by the model of phase-boundary controlled process (contracting volume), whereas the kinetics of MWH polymerization can be described by the model of first-order chemical reaction. The kinetics parameters (E{sub a} and ln A) of the polymerization under microwave heating are lower than for conventional heating. The established decreases in the activation energy and pre-exponential factor under the MWH compared to the CH is explained with the increase in the energy of ground vibrational level of the C–O valence vibrations (ν = 987 cm{sup −1}) in methyl methacrylate molecule and with the decrease in its anharmonicity factor which is caused with the selective resonant transfer of energy from the energetic reservoir to the oscillators in methyl methacrylate molecules. - Graphical abstract: Display Omitted - Highlights: • The MWH speeds the MMA material polymerization and changes the kinetics model. • A novel concept of MWH action based on activation complexes formation is presented. • The Selective Energy Transfer model is used to explain the effects of MWH. • The kinetics parameters under MWH are lower than for CH. • The activation energy for both MWH and CH polymerization is quantized.

  6. Formation of low charge state ions of synthetic polymers using quaternary ammonium compounds.

    Science.gov (United States)

    Nasioudis, Andreas; Joyce, William F; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F

    2010-07-01

    Factors such as high polymer dispersity and variation in elemental composition (of copolymers) often complicate the electrospray ionization mass spectrometry (ESI-MS) analysis of synthetic polymers with high molar mass. In the experiments described in this study, quaternary ammonium compounds were observed to facilitate the production of low charge state pseudomolecular ions when added to the spray solution for ESI-MS. This approach was then used for the ESI time-of-flight mass spectrometry (TOF-MS) analysis of synthetic polymers. Hexadecyltrimethylammonium chloride permitted the successful analysis of poly(ethylene glycol) of 2-40 kDa, poly(propylene glycol) and poly(tetramethylene glycol) oligomers. Increasing the quaternary ammonium compounds' concentration results in the production of low charge state pseudomolecular ions. A comparison of structurally different quaternary ammonium compounds showed that the best performance is expected from large molecules with specific charge localization, which leaves the charge available for interactions. The applicability of the method for the MS analysis of other polymeric systems was also studied. In the case of poly(tetramethylene glycol), the method not only shifted the distributions to higher m/z values but also allowed the detection of high molecular weight material that was not observed without addition of the modifier to the spray solution.

  7. Natural and Synthetic Barriers to Immobilize Radionuclides

    International Nuclear Information System (INIS)

    Um, W.

    2011-01-01

    The experiments of weathering of glass waste form and the reacted sediments with simulated glass leachates show that radionuclide sequestration can be significantly enhanced by promoting the formation of secondary precipitates. In addition, synthetic phosphate-bearing nanoporous material exhibits high stability at temperature and has a very high K d value for U(VI) removal. Both natural and synthetic barrier materials can be used as additional efficient adsorbents for retarding transport of radionuclides for various contaminated waste streams and waste forms present at U. S. Department of Energy clean-up sites and the proposed geologic radioactive waste disposal facility. In the radioactive waste repository facility, natural or synthetic materials are planned to be used as a barrier material to immobilize and retard radionuclide release. The getter material can be used to selectively scavenge the radionuclide of interest from a liquid waste stream and subsequently incorporate the loaded getters in a cementitious or various monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides form monolithic waste forms by being emplaced as a backfill barrier material around the wastes or waste form to minimize the potential around the wastes or waste form to minimize the potential hazard of leached radioactive wastes. The barrier material should be highly efficient to sequester radionuclides and possess physical and chemical stability for long-term exposure to severe weathering conditions. Because potential leaching of radionuclides depends on various environmental and weathering conditions of the near-field repository, the barrier materials must be durable and not disintegrate under a range of moisture, temperature, pressure, radiation, Eh, ph. and

  8. Polyaniline/multi-walled carbon nanotubes composite with core-shell structures as a cathode material for rechargeable lithium-polymer cells

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pan [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China); Han, Jia-Jun, E-mail: hanjiajunhitweihai@163.com [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China); Jiang, Li-Feng [Dalian Chemical Institute of Chinese Academy of Sciences, Dalian 116011 (China); Li, Zhao-Yu; Cheng, Jin-Ning [School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209 (China)

    2017-04-01

    Highlights: • The polyaniline multi-walled carbon nanotubes composite with core-shell structures was synthetized via in situ chemical oxidative polymerization, and the materials were characterized by physical and chemical methods. • The PANI/WMCNTs was synthetized via in situ chemical oxidative polymerization with core-shell structures. • The WMCNTs highly enhanced the conductivity of composites. • The comopsites were more conducive to the intercalation and deintercalation of anions and cations. • The much better performance as the cathode for lithium-ion cells was acquired for the composites. • The composites are low cost and eco-friendly which have a good prospect in future. - Abstract: The aniline was polymerized onto functionalized multi-walled carbon nanotubes in order to obtain a cathode material with core-shell structures for lithium batteries. The structure and morphology of the samples were investigated by Fourier transform infrared spectroscopy analysis, scanning electron microscope, transmission electron microscope and X-ray diffraction. The electrochemical properties of the composite were characterized by the cyclic voltammetry, the charge/discharge property, coulombic efficiency, and ac impedance spectroscopy in detail. At a constant current density of 0.2 C, the first specific discharge capacity of the reduced and oxidized PANI/WMCNTs were 181.8 mAh/g and 135.1 mAh/g separately, and the capacity retention rates were corresponding to 76.75% and 86.04% for 100 cycles with 99% coulombic efficiency. It was confirmed that the CNTs obviously enhanced the conductivity and electrochemical performance of polyaniline, and compared with the pure PANI, the reduced composite possessed a quite good performance for the cathode of lithium batteries.

  9. Research and development project in fiscal 1989 for fundamental technologies for next generation industries. Achievement report on research and development on high-crystalline polymeric materials; 1989 nendo kokesshosei kobunshi zairyo no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1990-03-01

    With an objective to expand applications of polymeric materials having features of light weight, high corrosion resistance, and easy-to-process performance, researches have been performed on fundamental technologies for high-crystalline polymeric materials. This paper summarizes the achievements in fiscal 1989. In monophyletic system materials, thermotropic liquid crystal polyarylate was taken as the object to study optimization of the polymeric chemical structure, and elongation and fluid orientation processing. In the research of polyphyletic materials by means of special dissolution forming, researches were carried out on elastic modules manifestation factors of poly-PIBO, and the relationship between the melting viscosity and the orientation performance of polyazomethine. For molecular composite formed polyphyletic materials, a tape with tensile modulus of elasticity of 142 GPa using aromatic copolyamide as matrix, and laminates with bending modules of elasticity of 110 GPa were obtained. Regarding cross-linking system materials, synthesizing, forming, and improvements were discussed on hybrid cross-linking polymers containing multiple number of cross-linking functional groups. In addition, research was performed on a poly-functional diacetylene based material as a three-dimensional cross-linking material with high elasticity modulus of new conception having covalent linkage. (NEDO)

  10. Novel Polymeric Dielectric Materials for the Additive Manufacturing of Microwave Devices

    Science.gov (United States)

    O'Keefe, Shamus E.

    The past decade has seen a rapid increase in the deployment of additive manufacturing (AM) due to the perceived benefits of lower cost, higher quality, and a smaller environmental footprint. And while the hardware behind most of AM processes is mature, the study and development of material feedstock(s) are in their infancy, particularly so for niche areas. In this dissertation, we look at novel polymeric materials to support AM for microwave devices. Chapter 1 provides an overview of the benefits of AM, followed by the specific motivation for this work, and finally a scope defining the core objectives. Chapter 2 delves into a higher-level background of dielectric theory and includes a brief overview of the two common dielectric spectroscopy techniques used in this work. The remaining chapters, summarized below, describe experiments in which novel polymeric materials were developed and their microwave dielectric properties measured. Chapter 3 describes the successful synthesis of polytetrafluroethylene (PTFE)/polyacrylate (PA) core-shell nanoparticles and their measured microwave dielectric properties. PTFE/PA core-shell nanoparticles with spherical morphology were successfully made by aerosol deposition followed by a brief annealing. The annealing temperature is closely controlled to exceed the glass transition (Tg) of the PA shell yet not exceed the Tg of the PTFE core. Furthermore, the annealing promotes coalescence amongst the PA shells of neighboring nanoparticles and results in the formation of a contiguous PA matrix that has excellent dispersion of PTFE cores. The measured dielectric properties agree well with theoretical predictions and suggest the potential of this material as a feedstock for AM microwave devices. Chapter 4 delves into the exploration of various polyimide systems with the aim of replacing the PA in the previously studied PTFE/PA core-shell nanoparticles. Fundamental relationships between polymer attributes (flexibility/rigidity and

  11. Living Polycondensation: Synthesis of Well-Defined Aromatic Polyamide-Based Polymeric Materials

    KAUST Repository

    Alyami, Mram Z.

    2016-01-01

    Chain growth condensation polymerization is a powerful tool towards the synthesis of well-defined polyamides. This thesis focuses on one hand, on the synthesis of well-defined aromatic polyamides with different aminoalkyl pendant groups with low

  12. Random Poly(Amino Acids Synthesized by Ring Opening Polymerization as Additives in the Biomimetic Mineralization of CaCO3

    Directory of Open Access Journals (Sweden)

    Vladimir Dmitrovic

    2012-05-01

    Full Text Available Biominerals such as bones, teeth and seashells, very often have advanced material properties and are a source of inspiration for material chemists. As in biological systems acidic proteins play an important role in regulating the formation of CaCO3 biominerals, we employ poly(amino acids to mimic the processes involved in the laboratory. Here we report on the synthesis of random aminoacid copolymers of glutamic acid (Glu, lysine (Lys and alanine (Ala using the ring opening polymerization (ROP of their respective N-carboxy anhydrides (NCA. The synthetic approach yields a series of polymers with different monomer composition but with similar degrees of polymerization (DP 45–56 and comparable polydispersities (PDI 1.2–1.6. Using random copolymers we can investigate the influence of composition on the activity of the polymers without having to take into account the effects of secondary structure or specific sequences. We show that variation of the Glu content of the polymer chains affects the nucleation and thereby also the particle size. Moreover, it is shown that the polymers with the highest Glu content affect the kinetics of mineral formation such that the first precipitate is more soluble than in the case of the control.

  13. Molecularly Imprinted Microrods via Mesophase Polymerization.

    Science.gov (United States)

    Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco

    2017-12-28

    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  14. Sinus Floor Elevation and Augmentation Using Synthetic Nanocrystalline and Nanoporous Hydroxyapatite Bone Substitute Materials: Preliminary Histologic Results.

    Science.gov (United States)

    Belouka, Sofia-Maria; Strietzel, Frank Peter

    To compare the tissue composition of augmented sites after using two different synthetic bone substitute materials, nanocrystalline and nanoporous hydroxyapatite (HA), for sinus floor elevation and augmentation. Forty-four patients received 88 titanium screw implants (Camlog Promote plus) of 4.3-mm diameter and 11- or 13-mm length, placed simultaneously during sinus floor elevation and augmentation. Nanocrystalline (Ostim) or nanoporous (NanoBone) HA were used exclusively. Bone substitute materials and implant lengths were allocated by randomization. Bone biopsy specimens were obtained from the former area of the lateral access window at implant exposure during healing abutment placement after 6 months. Biopsy specimens were prepared and examined histologically and histomorphometrically. All implants were osseointegrated at the time of exposure. Clinically and histologically, no signs of inflammation in the augmented sites were present. The histomorphometric analysis of 44 biopsy specimens revealed 31.8% ± 11.6% newly formed bone for sites augmented with nanocrystalline HA and 34.6% ± 9.2% for nanoporous HA (P = .467). The proportion of remaining bone substitute material was 28.4% ± 18.6% and 30% ± 13%, respectively (P = .453). The proportion of soft tissue within the biopsy specimens was 39.9% ± 11.1% and 35.4% ± 6.8%, respectively (P = .064). No significant differences were found between the area fractions of bone, bone substitute material, and soft tissue concerning the bone substitute material utilized. Within the present study, both synthetic bone substitute materials, nanocrystalline and nanoporous HA, were found to support bone formation in sinus floor elevation and augmentation procedures by osteoconductivity. They were not completely resorbed after 6 months. The amounts of newly formed bone, soft tissue, and bone substitute material remnants were found to be similar, indicating that both materials are likewise suitable for sinus floor elevation and

  15. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu; Phuoc, Duong; Nunes, Suzana Pereira

    2017-01-01

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  16. Advanced Polymeric and Organic–Inorganic Membranes for Pressure-Driven Processes

    KAUST Repository

    Le, Ngoc Lieu

    2017-02-13

    The state-of-the-art of membranes for reverse osmosis, nanofiltration, and gas separation is shortly reviewed, taking in account the most representative examples currently in application. Emphasis is also done on recent developments of advanced polymeric and organic–inorganic materials for pressure-driven processes. Many of the more recent membranes are not only polymeric but also contain an inorganic phase. Tailoring innovative materials with organic and inorganic phases coexisting in a nanoscale with multifunctionalization is an appealing approach to control at the same time diffusivity and gas solubility. Other advanced materials that are now being considered for membrane development are organic or organic–inorganic self-assemblies, metal-organic frameworks, and different forms of carbon fillers.

  17. Anionic PPV polymerization from the sulfinyl precursor route : Block copolymer formation from sequential addition of monomers

    NARCIS (Netherlands)

    Cosemans, Inge; Vandenbergh, Joke; Voet, Vincent S. D.; Loos, Katja; Lutsen, Laurence; Vanderzande, Dirk; Junkers, Thomas

    2013-01-01

    The sulfinyl precursor route for the synthesis of poly(p-phenylene vinylene) (PPV) materials via an anionic polymerization procedure employing dedicated initiators is evaluated in depth. Reaction kinetics are investigated to gain more control over the polymerization, since polymerization proceeds to

  18. Research and development of basic technologies for next-generation industry. Ultimate evaluation report on research and development of highly crystalline polymeric material; Jisedai sangyo kiban gijutsu kenkyu kaihatsu. Kokesshosei kobunshi zairyo saishu kenkyu kaihatsu hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-05-01

    Basic technologies are developed involving highly crystalline polymeric materials comparable to metals in dynamic property even when used singly. The aim is to expand the application scope of polymeric materials including those designed as structural materials so that their light weight, high resistance to corrosion, and excellent machinability may be utilized in various fields. Target performance includes an elastic modulus under bending force of 100GPa or more in anisotropic materials and 50GPa or more in isotropic materials, a linear expansion coefficient of 5 times 10{sup -5}/degrees C or less, and a thermal deformation temperature of 180 degrees C or more. Tasks faced in relation to film or molded articles of anisotropic materials are the rigid molecular design, molding method including molecular orientation control, and molecular complex technology; and, in isotropic materials, the strengthening of interaction between molecules, establishment of molding methods, and equipping materials with high machinability. After a 10-year/3-phase development endeavors, the initially intended goals are sufficiently achieved. To be mentioned are achievements involving the generation of multidimensionally bound diacetylene polymeric crystals, higher elastic modulus and moldability provided to polyarylate materials, magnetic field orientation, ultrahigh-elasticity layered body, and organic-inorganic ionically bonded complex material, etc. (NEDO)

  19. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Xian-bin Kong

    2017-01-01

    Full Text Available Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compelling findings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1 polyethylene glycol as an adjustable biomolecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2 Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3 Polyethylene glycol hydrogels have been used as supporting substrates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury

  20. Polyethylene glycol as a promising synthetic material for repair of spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Xian-bin Kong; Qiu-yan Tang; Xu-yi Chen; Yue Tu; Shi-zhong Sun; Zhong-lei Sun

    2017-01-01

    Polyethylene glycol is a synthetic, biodegradable, and water-soluble polyether. Owing to its good biological and material properties, polyethylene glycol shows promise in spinal cord tissue engineering applications. Although studies have examined repairing spinal cord injury with polyethylene glycol, these compellingfindings have not been recently reviewed or evaluated as a whole. Thus, we herein review and summarize the findings of studies conducted both within and beyond China that have examined the repair of spinal cord injury using polyethylene glycol. The following summarizes the results of studies using polyethylene glycol alone as well as coupled with polymers or hydrogels: (1) polyethylene glycol as an adjustable bio-molecule carrier resists nerve fiber degeneration, reduces the inflammatory response, inhibits vacuole and scar formation, and protects nerve membranes in the acute stage of spinal cord injury. (2) Polyethylene glycol-coupled polymers not only promote angiogenesis but also carry drugs or bioactive molecules to the injury site. Because such polymers cross both the blood-spinal cord and blood-brain barriers, they have been widely used as drug carriers. (3) Polyethylene glycol hydrogels have been used as supporting sub-strates for the growth of stem cells after injury, inducing cell migration, proliferation, and differentiation. Simultaneously, polyethylene glycol hydrogels isolate or reduce local glial scar invasion, promote and guide axonal regeneration, cross the transplanted area, and re-establish synaptic connections with target tissue, thereby promoting spinal cord repair. On the basis of the reviewed studies, we conclude that polyethylene glycol is a promising synthetic material for use in the repair of spinal cord injury.

  1. A study on synthetic method and material characteristics of magnesium ammine chloride as ammonia transport materials for solid SCR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Jong Kook; Yoon, Cheon Seog [Dept. of Mechanical Engineering, Hannam University, Daejeon (Korea, Republic of); Kim, Hong Suk [Engine Research Center, Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-11-15

    Among various ammonium salts and metal ammine chlorides used as solid materials for the sources of ammonia with solid SCR for lean NOx reduction, magnesium ammine chloride was taken up for study in this paper because of its ease of handling and safety. Lab-scale synthetic method of magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%). To understand material characteristics for lab-made magnesium ammine chloride, DA, IC, FT-IR, XRD and SDT analyses were performed using the published data available in literature. From the analytical results, the water content in the lab-made magnesium ammine chloride can be determined. A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%.

  2. A study on synthetic method and material characteristics of magnesium ammine chloride as ammonia transport materials for solid SCR

    International Nuclear Information System (INIS)

    Shin, Jong Kook; Yoon, Cheon Seog; Kim, Hong Suk

    2015-01-01

    Among various ammonium salts and metal ammine chlorides used as solid materials for the sources of ammonia with solid SCR for lean NOx reduction, magnesium ammine chloride was taken up for study in this paper because of its ease of handling and safety. Lab-scale synthetic method of magnesium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%). To understand material characteristics for lab-made magnesium ammine chloride, DA, IC, FT-IR, XRD and SDT analyses were performed using the published data available in literature. From the analytical results, the water content in the lab-made magnesium ammine chloride can be determined. A new test procedure for water removal was proposed, by which the adsorption rate of lab-made sample was found to be approximately 100%

  3. Forming of Polymeric Tubular Micro-components

    DEFF Research Database (Denmark)

    Qin, Yi; Zhao, Jie; Anyasodor, Gerald

    2015-01-01

    platform for the production of functional polymeric tubular micro-components. The chapter gives background on the current market and process development trends, followed by description of materials, process configuration, tool design and machine development for each processing technology as well......This chapter is intended to provide an overview of three nontraditional shaping technologies for the forming of polymeric micro-tubes, which are hot embossing, blow molding, and cross rolling, as well as realization of a process chain and the integration of a modular machine-based manufacturing...... as strategy for integration of the technologies and equipment into a common platform. Finally, potential applications of the technologies and facilities developed are highlighted....

  4. Analytical methods for the measurement of polymerization kinetics and stresses of dental resin-based composites: A review

    Directory of Open Access Journals (Sweden)

    Mehrsima Ghavami-Lahiji

    2017-01-01

    Full Text Available Resin-based composites are commonly used restorative materials in dentistry. Such tooth-colored restorations can adhere to the dental tissues. One drawback is that the polymerization shrinkage and induced stresses during the curing procedure is an inherent property of resin composite materials that might impair their performance. This review focuses on the significant developments of laboratory tools in the measurement of polymerization shrinkage and stresses of dental resin-based materials during polymerization. An electronic search of publications from January 1977 to July 2016 was made using ScienceDirect, PubMed, Medline, and Google Scholar databases. The search included only English-language articles. Only studies that performed laboratory methods to evaluate the amount of the polymerization shrinkage and/or stresses of dental resin-based materials during polymerization were selected. The results indicated that various techniques have been introduced with different mechanical/physical bases. Besides, there are factors that may contribute the differences between the various methods in measuring the amount of shrinkages and stresses of resin composites. The search for an ideal and standard apparatus for measuring shrinkage stress and volumetric polymerization shrinkage of resin-based materials in dentistry is still required. Researchers and clinicians must be aware of differences between analytical methods to make proper interpretation and indications of each technique relevant to a clinical situation.

  5. Novel polymer coatings based on plasma polymerized 2-methoxyethyl acrylate

    DEFF Research Database (Denmark)

    Wu, Zhenning; Jiang, Juan; Benter, Maike

    2008-01-01

    plasma system[4]. The system named SoftPlasma™ is equipped with unique three-phase pulsed AC voltage. Low energy plasma polymerization has almost no thermal load for sensitive polymer materials[5]. Plasma polymerized coatings are highly cross-linked, pin-hole free and provide hydrophilic or hydrophobic...... properties[4-6]. We have exploited these possibilities and prepared plasma polymerized 2-methoxyethyl acrylate (PPMEA) coatings on various polymer substrates. The PPMEA coatings were optimized using various plasma polymerization conditions and characterized by X-ray photoelectron spectroscopy......, Fouriertransform infrared spectroscopy, Atomic force spectroscopy and Water contact-angle measurements. The microstructures ofPPMEA coatings with different thicknesses were also studied. For practical applications in mind, the coating stability was tested in different media (air, water, acetone, phosphate...

  6. Comparative study of pressure-induced polymerization in C60 nanorods and single crystals

    International Nuclear Information System (INIS)

    Hou Yuanyuan; Liu Bingbing; Wang Lin; Yu Shidan; Yao Mingguang; Chen Ao; Liu Dedi; Zou Yonggang; Li Zepeng; Zou Bo; Cui Tian; Zou Guangtian; Iwasiewicz-Wabnig, Agnieszka; Sundqvist, Bertil

    2007-01-01

    In this paper, we report a comparative study of pressure-induced polymerization in C 60 nanorods and bulk single crystals, treated simultaneously under various pressures and temperatures in the same experiment. For both materials, orthorhombic, tetragonal and rhombohedral phases have been produced under high pressure and high temperature. The structures have been identified and compared between the two sample types by Raman and photoluminescence spectroscopy. There are differences between the Raman and photoluminescence spectra from the two types of materials for all polymeric phases, but especially for the tetragonal phase. From the comparison between nanorods and bulk samples, we tentatively assign photoluminescence peaks for various polymeric phases

  7. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  8. Nanoparticles and nonlinear thermal radiation properties in the rheology of polymeric material

    Science.gov (United States)

    Awais, M.; Hayat, T.; Muqaddass, N.; Ali, A.; Aqsa; Awan, Saeed Ehsan

    2018-03-01

    The present analysis is related to the dynamics of polymeric liquids (Oldroyd-B model) with the presence of nanoparticles. The rheological system is considered under the application of nonlinear thermal radiations. Energy and concentration equations are presented when thermophoresis and Brownian motion effects are present. Bidirectional form of stretching is considered to interpret the three-dimensional flow dynamics of polymeric liquid. Making use of the similarity transformations, problem is reduced into ordinary differential system which is approximated by using HAM. Influence of physical parameters including Deborah number, thermophoresis and Brownian motion on velocity, temperature and mass fraction expressions are plotted and analyzed. Numerical values for local Sherwood and Nusselt numbers are presented and discussed.

  9. Push-out bond strength of bioceramic materials in a synthetic tissue fluid.

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2013-12-01

    Full Text Available This study compared the push-out bond strength of EndoSequence Root Repair Material (ERRM and Bioaggregate (BA, new bioceramic materials, to that of mineral trioxide aggregate (MTA after incubation in phosphate-buffered saline (PBS, a synthetic tissue fluid, for either 1 week or 2 months.One-hundred and twenty root sections were filled with ProRoot MTA, BA, or ERRM. Each tested material was then randomly divided into two subgroups (n = 20: root sections were immersed in PBS for 1 week or 2 months. The bond strengths were measured using a universal testing machine. After that, the failure modes were examined with stereomicroscopy and scanning electron microscopy (SEM. The push-out data and failure mode categories were analyzed by two-way ANOVA and chi-square tests, respectively.The bond strength of ERRM was significantly higher than that of BA and MTA at both incubation periods. No significant difference was found between the bond strength of MTA and BA at either 1 week or 2 months. Increasing the incubation time to 2 months resulted in a significant increase in bond strength of all the materials. The failure mode was mainly mixed for MTA and BA, but cohesive for ERRM at both incubation periods.ERRM had significantly higher bond strength to root canal walls compared to MTA and BA. Increasing the incubation time significantly improved the bond strength and bioactive reaction products of all materials.

  10. Numerical simulation of anisotropic polymeric foams

    Directory of Open Access Journals (Sweden)

    Volnei Tita

    Full Text Available This paper shows in detail the modelling of anisotropic polymeric foam under compression and tension loadings, including discussions on isotropic material models and the entire procedure to calibrate the parameters involved. First, specimens of poly(vinyl chloride (PVC foam were investigated through experimental analyses in order to understand the mechanical behavior of this anisotropic material. Then, isotropic material models available in the commercial software AbaqusTM were investigated in order to verify their ability to model anisotropic foams and how the parameters involved can influence the results. Due to anisotropy, it is possible to obtain different values for the same parameter in the calibration process. The obtained set of parameters are used to calibrate the model according to the application of the structure. The models investigated showed minor and major limitations to simulate the mechanical behavior of anisotropic PVC foams under compression, tension and multi-axial loadings. Results show that the calibration process and the choice of the material model applied to the polymeric foam can provide good quantitative results and save project time. Results also indicate what kind and order of error one will get if certain choices are made throughout the modelling process. Finally, even though the developed calibration procedure is applied to specific PVC foam, it still outlines a very broad drill to analyze other anisotropic cellular materials.

  11. A total cost perspective on use of polymeric materials in solar collectors – Importance of environmental performance on suitability

    International Nuclear Information System (INIS)

    Carlsson, Bo; Persson, Helena; Meir, Michaela; Rekstad, John

    2014-01-01

    Highlights: • A polymeric solar collector system was compared with two traditional ones. • It was found the best in terms of climatic performance per solar heat collected. • The differences in climatic cost between the systems compared however are small. • The low climatic cost makes solar heating better compared to natural gas heating. • Use of Ecoindicator 99 for environmental cost makes solar heating even better. - Abstract: To assess the suitability of solar collector systems in which polymeric materials are used versus those in which more traditional materials are used, a case study was undertaken. In this case study a solar heating system with polymeric solar collectors was compared with two equivalent but more traditional solar heating systems: one with flat plate solar collectors and one with evacuated tube solar collectors. To make the comparison, a total cost accounting approach was adopted. The life cycle assessment (LCA) results clearly indicated that the polymeric solar collector system is the best as regards climatic and environmental performance when they are expressed in terms of the IPPC 100 a indicator and the Ecoindicator 99, H/A indicator, respectively. In terms of climatic and environmental costs per amount of solar heat collected, the differences between the three kinds of collector systems were small when compared with existing energy prices. With the present tax rates, it seems unlikely that the differences in environmental and climatic costs will have any significant influence on which system is the most favoured, from a total cost point of view. In the choice between a renewable heat source and a heat source based on the use of a fossil fuel, the conclusion was that for climatic performance to be an important economic factor, the tax or trade rate of carbon dioxide emissions must be increased significantly, given the initial EU carbon dioxide emission trade rate. The rate would need to be at least of the same order of magnitude

  12. Highly efficient and selective pressure-assisted photon-induced polymerization of styrene

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Jiwen [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Song, Yang, E-mail: yang.song@uwo.ca [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Department of Chemistry, University of Western Ontario, London, Ontario N6A 5B7 (Canada)

    2016-06-07

    The polymerization process of condensed styrene to produce polystyrene as an industrially important polymeric material was investigated using a novel approach by combining external compression with ultraviolet radiation. The reaction evolution was monitored as a function of time and the reaction products were characterized by in situ Fourier transform infrared spectroscopy. By optimizing the loading pressures, we observed highly efficient and selective production of polystyrene of different tacticities. Specifically, at relatively low loading pressures, infrared spectra suggest that styrene monomers transform to amorphous atactic polystyrene (APS) with minor crystalline isotactic polystyrene. In contrast, APS was found to be the sole product when polymerization occurs at relatively higher loading pressures. The time-dependent reaction profiles allow the examination of the polymerization kinetics by analyzing the rate constant and activation volume as a function of pressure. As a result, an optimized pressure condition, which allows a barrierless reaction to proceed, was identified and attributed to the very desirable reaction yield and kinetics. Finally, the photoinitiated reaction mechanism and the growth geometry of the polymer chains were investigated from the energy diagram of styrene and by the topology analysis of the crystal styrene. This study shows strong promise to produce functional polymeric materials in a highly efficient and controlled manner.

  13. Microhardness of dual-polymerizing resin cements and foundation composite resins for luting fiber-reinforced posts.

    Science.gov (United States)

    Yoshida, Keiichi; Meng, Xiangfeng

    2014-06-01

    The optimal luting material for fiber-reinforced posts to ensure the longevity of foundation restorations remains undetermined. The purpose of this study was to evaluate the suitability of 3 dual-polymerizing resin cements and 2 dual-polymerizing foundation composite resins for luting fiber-reinforced posts by assessing their Knoop hardness number. Five specimens of dual-polymerizing resin cements (SA Cement Automix, G-Cem LincAce, and Panavia F2.0) and 5 specimens of dual-polymerizing foundation composite resins (Clearfil DC Core Plus and Unifil Core EM) were polymerized from the top by irradiation for 40 seconds. Knoop hardness numbers were measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours and 7 days after irradiation. Data were statistically analyzed by repeated measures ANOVA, 1-way ANOVA, and the Tukey compromise post hoc test (α=.05). At both times after irradiation, the 5 resins materials showed the highest Knoop hardness numbers at the 0.5-mm depth. At 7 days after irradiation, the Knoop hardness numbers of the resin materials did not differ significantly between the 8.0-mm and 10.0-mm depths (P>.05). For all materials, the Knoop hardness numbers at 7 days after irradiation were significantly higher than those at 0.5 hours after irradiation at all depths (Presin materials were found to decrease in the following order: DC Core Plus, Unifil Core EM, Panavia F2.0, SA Cement Automix, and G-Cem LincAce (Pcomposite resins were higher than those of the 3 dual-polymerizing resin cements, notable differences were seen among the 5 materials at all depths and at both times after irradiation. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  14. A study of porosity of synthetic polymer nanoparticles using PALS

    Energy Technology Data Exchange (ETDEWEB)

    Pham, B; Smith, S V [Centre for Antimatter-Matter Studies, Australian Nuclear Science and Technology Organisation (ANSTO) NSW 2232 (Australia); Guagliardo, P; Williams, J; Samarin, S, E-mail: binh.pham@ansto.gov.au, E-mail: svs@ansto.gov.au [Centre for Antimatter-Matter Studies, School of Physics, University of Western Australia, WA 6009 (Australia)

    2011-01-01

    Positron annihilation lifetime spectroscopy (PALS) has been used to study the free volume in dry synthetic polymer nanoparticles of various sizes. A series of poly(styrene/divinyl benzene) particles with diameters in the range of 100 to 500 nm were synthesized and then carefully chemically treated using the sulfonation process, to increase their porosity. The particles were characterised by Scanning Electron Microscopy (SEM), light scattering and PALS. Light scattering gave larger size for the treated particles, reflecting the hydration effect and therefore the increase in porosity. PALS spectra of untreated and treated particles gave four and three life-time components, respectively. Analysis by PAScual version 1.3.0 program indicated there was a reduction in the intensity and the type of the micropores in the treated particles. The data suggest PALS is a sensitive tool for detecting changes in microporosity in particles. The conflicting results obtained for light scattering compared to PALS for chemically treated particles is difficult to resolve and suggests sample preparation of polymeric materials for PALS is the critical factor.

  15. Synthesis and testing of a conducting polymeric composite material for lightning strike protection applications

    Science.gov (United States)

    Katunin, A.; Krukiewicz, K.; Turczyn, R.; Sul, P.; Łasica, A.; Catalanotti, G.; Bilewicz, M.

    2017-02-01

    Lightning strike protection is one of the important issues in the modern maintenance problems of aircraft. This is due to a fact that the most of exterior elements of modern aircraft is manufactured from polymeric composites which are characterized by isolating electrical properties, and thus cannot carry the giant electrical charge when the lightning strikes. This causes serious damage of an aircraft structure and necessity of repairs and tests before returning a vehicle to operation. In order to overcome this problem, usually metallic meshes are immersed in the polymeric elements. This approach is quite effective, but increases a mass of an aircraft and significantly complicates the manufacturing process. The approach proposed by the authors is based on a mixture of conducting and dielectric polymers. Numerous modeling studies which are based on percolation clustering using kinetic Monte Carlo methods, finite element modeling of electrical and mechanical properties, and preliminary experimental studies, allow achieving an optimal content of conducting particles in a dielectric matrix in order to achieve possibly the best electrical conductivity and mechanical properties, simultaneously. After manufacturing the samples with optimal content of a conducting polymer, mechanical and electrical characterization as well as high-voltage testing was performed. The application of such a material simplifies manufacturing process and ensures unique properties of aircraft structures, which allows for minimizing damage after lightning strike, as well as provide electrical bounding and grounding, interference shielding, etc. The proposed solution can minimize costs of repair, testing and certification of aircraft structures damaged by lightning strikes.

  16. Investigation of metallic, ceramic, and polymeric materials for engineered barrier applications in nuclear-waste packages

    International Nuclear Information System (INIS)

    Westerman, R.E.

    1980-10-01

    An effort to develop licensable engineered barrier systems for the long-term (about 1000 yr) containment of nuclear wastes under conditions of deep continental geologic disposal has been underway at Pacific Northwest Laboratory since January 1979, under the auspices of the High-Level Waste Immobilization Program. In the present work, the barrier system comprises the hard or structural elements of the package: the canister, the overpack(s), and the hole sleeve. A number of candidate metallic, ceramic, and polymeric materials were put through mechanical, corrosion, and leaching screening tests to determine their potential usefulness in barrier-system applications. Materials demonstrating adequate properties in the screening tests will be subjected to more detailed property tests, and, eventually, cost/benefit analyses, to determine their ultimate applicability to barrier-system design concepts. The following materials were investigated: two titanium alloys of Grade 2 and Grade 12; 300 and 400 series stainless steels, Inconels, Hastelloy C-276, titanium, Zircoloy, copper-nickel alloys and cast irons; total of 14 ceramic materials, including two grades of alumina, plus graphite and basalt; and polymers such as polyamide-imide, polyarylene, polyimide, polyolefin, polyphenylene sulfide, polysulfone, fluoropolymer, epoxy, furan, silicone, and ethylene-propylene terpolymer (EPDM) rubber. The most promising candidates for further study and potential use in engineered barrier systems were found to be rubber, filled polyphenylene sulfide, fluoropolymer, and furan derivatives

  17. Comparison of candidate materials for a synthetic osteo-odonto keratoprosthesis device.

    Science.gov (United States)

    Tan, Xiao Wei; Perera, A Promoda P; Tan, Anna; Tan, Donald; Khor, K A; Beuerman, Roger W; Mehta, Jodhbir S

    2011-01-05

    Osteo-odonto keratoprosthesis is one of the most successful forms of keratoprosthesis surgery for end-stage corneal and ocular surface disease. There is a lack of detailed comparison studies on the biocompatibilities of different materials used in keratoprosthesis. The aim of this investigation was to compare synthetic bioinert materials used for keratoprosthesis surgery with hydroxyapatite (HA) as a reference. Test materials were sintered titanium oxide (TiO(2)), aluminum oxide (Al(2)O(3)), and yttria-stabilized zirconia (YSZ) with density >95%. Bacterial adhesion on the substrates was evaluated using scanning electron microscopy and the spread plate method. Surface properties of the implant discs were scanned using optical microscopy. Human keratocyte attachment and proliferation rates were assessed by cell counting and MTT assay at different time points. Morphologic analysis and immunoblotting were used to evaluate focal adhesion formation, whereas cell adhesion force was measured with a multimode atomic force microscope. The authors found that bacterial adhesion on the TiO(2), Al(2)O(3), and YSZ surfaces were lower than that on HA substrates. TiO(2) significantly promoted keratocyte proliferation and viability compared with HA, Al(2)O(3,) and YSZ. Immunofluorescent imaging analyses, immunoblotting, and atomic force microscope measurement revealed that TiO(2) surfaces enhanced cell spreading and cell adhesion compared with HA and Al(2)O(3). TiO(2) is the most suitable replacement candidate for use as skirt material because it enhanced cell functions and reduced bacterial adhesion. This would, in turn, enhance tissue integration and reduce device failure rates during keratoprosthesis surgery.

  18. Radiation initiated polymerization of trioxane and stabilization of polyoxymethylene

    International Nuclear Information System (INIS)

    Rao, M.H.; Ramanan, G.; Kunjappu, J.T.; Rao, K.N.

    1990-01-01

    Gamma ray induced polymerization of trioxane from an indigenous source (M/s. Nuchem Plastics, Faridabad) has been investigated by both in-source and post polymerization techniques. Impurity levels in the trioxane samples are determined and compared with those in an imported material. Critical evaluation of the results of its purification by different methods, viz. treatment with molecular sieves, crystallization from solvents and their variations, has been carried out prior to optimising the conditions of polymerization. A novel but simple purification procedure employing benzene as the solvent which is found to form a ternary azeotrope with trioxane and water has been developed. The effect of these purification methods on the polymerization efficiency and their dependence on the molecular weight of the polymer formed are also discussed. Experimental details of polymerizing trioxane in 10 kg scale are also described. To improve upon the thermal stabilty of the polyoxymethylene thus formed, protection of the free hydroxyl end groups (end-capping) has been achieved by an acetylation procedure using acetic anhydride in presence of catalytic amounts of sodium acetate. (author). 11 tabs., 4 figs

  19. Elektroaktive polymerer

    DEFF Research Database (Denmark)

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  20. Vinyl Chloride Emulsion Polymerization Reaction: Effect of Various Formulations

    Directory of Open Access Journals (Sweden)

    Seyed Mehrdad Jalilian

    2013-01-01

    Full Text Available A mixture  of  sodium  lauryl  sulfate  (SLS  as  ionic  emulsifer  and  stearyl alcohol as non-ionic emulsifer was employed in a vinyl chloride emulsion polymerization  reaction  to  study  the  infuence  of  various  interactive parameters involved in the reaction system. It was found that the particle size was dependent on the amount and type of emulsifer. The average particle size of polyvinyl chloride was dropped by higher amount of emulsifying agents.  At the gel point, more heat was generated by higher amount of vinyl chloride fed into the reaction system. The molecular weight of the polymer was decreased by increases in reaction temperature while,  it  increased by augmenting  the amount of emulsifer. According to the 13C NMR and FTIR spectroscopic data no defect was detected in the chain structure of synthetic polyvinylchloride product. An optimization of polymerization reaction condition was reached based on ultimate particle size desired for its favorable distribution in plastisols.

  1. Process, Design and Materials for Unidirectionally Tilted Polymeric Micro/Nanohairs and Their Adhesion Characteristics

    Directory of Open Access Journals (Sweden)

    Hyeon Seong Im

    2016-09-01

    Full Text Available Recent research in the field of gecko-inspired dry adhesive has focused on modifying the material and structural properties of polymer-based nanohairs. Polymers such as polystyrene (PS, high-density polyethylene (HDPE, ultraviolet curable epoxy (SU-8, polyurethane acrylate (PUA, polycarbonate (PC, and polydimethyl siloxane (PDMS can fulfill many mechanical property requirements, are easily tunable, and can be produced via large-scale fabrication. However, the fabrication process for tilted structure remains challenging. The tilted structure is a crucial factor in high-degree conformal contact, which facilitates high adhesion, low effective modulus, and directional adhesion properties. Recent studies have attempted to create a tilted structure by applying beam irradiation, mechanical and thermal stress, and magnetic fields. This review provides a comprehensive investigation into advanced strategies for producing tilted polymeric nanostructures and their potential applications in the near future.

  2. Development of Novel Polymeric Materials for Gene Therapy and pH-Sensitive Drug Delivery: Modeling, Synthesis, Characterization, and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian Curtis [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    The underlying theme of this thesis is the use of polymeric materials in bioapplications. Chapters 2-5 either develop a fundamental understanding of current materials used for bioapplications or establish protocols and procedures used in characterizing and synthesizing novel materials. In chapters 6 and 7 these principles and procedures are applied to the development of materials to be used for gene therapy and drug delivery. Chapter one is an introduction to the ideas that will be necessary to understand the subsequent chapters, as well as a literature review of these topics. Chapter two is a paper that has been published in the ''Journal of Controlled Release'' that examines the mechanism of drug release from a polymer gel, as well as experimental design suggestions for the evaluation of water soluble drug delivery systems. Chapter three is a paper that has been published in the ''Journal of Pharmaceutical Sciences'' that discusses the effect ionic salts have on properties of the polymer systems examined in chapter two. Chapter four is a paper published in the Materials Research Society Fall 2000 Symposium Series dealing with the design and synthesis of a pH-sensitive polymeric drug delivery device. Chapter five is a paper that has been published in the journal ''Biomaterials'' proposing a novel polymer/metal composite for use as a biomaterial in hip arthroplasty surgery. Chapter six is a paper that will appear in an upcoming volume of the Journal ''Biomaterials'' dealing with the synthesis of a novel water soluble cationic polymer with possible applications in non-viral gene therapy. Chapter seven is a paper that has been submitted to ''Macromolecules'' discussing several novel block copolymers based on poly(ethylene glycol) and poly(diethylamino ethyl methacrylate) that possess both pH-sensitive and temperature sensitive properties. Chapter eight contains a

  3. IR spectroscopy of synthetic glasses with Mercury surface composition: Analogs for remote sensing

    Science.gov (United States)

    Morlok, Andreas; Klemme, Stephan; Weber, Iris; Stojic, Aleksandra; Sohn, Martin; Hiesinger, Harald

    2017-11-01

    In a study to provide ground-truth data for mid-infrared observations of the surface of Mercury with the MERTIS (Mercury Radiometer and Thermal Infrared Spectrometer) instrument onboard the ESA/JAXA BepiColombo mission, we have studied 17 synthetic glasses. These samples have the chemical compositions of characteristic Hermean surface areas based on MESSENGER data. The samples have been characterized using optical microscopy, EMPA and Raman spectroscopy. Mid-infrared spectra have been obtained from polished thin sections using Micro-FTIR, and of powdered size fractions of bulk material (0-25, 25-63, 93-125 and 125-250 μm) in the 2.5-18 μm range. The synthetic glasses display mostly spectra typical for amorphous materials with a dominating, single Reststrahlen Band (RB) at 9.5-10.7 μm. RB Features of crystalline forsterite are found in some cases at 9.5-10.2 μm, 10.4-11.2 μm, and at 11.9 μm. Dendritic crystallization starts at a MgO content higher than 23 wt.% MgO. The Reststrahlen Bands, Christiansen Features (CF), and Transparency Features (TF) shift depending on the SiO2 and MgO contents. Also a shift of the Christiansen Feature of the glasses compared with the SCFM (SiO2/(SiO2+CaO+FeO+MgO)) index is observed. This shift could potentially help distinguish crystalline and amorphous material in remote sensing data. A comparison between the degree of polymerization of the glass and the width of the characteristic strong silicate feature shows a weak positive correlation. A comparison with a high-quality mid-IR spectrum of Mercury shows some moderate similarity to the results of this study, but does not explain all features.

  4. Ultrahigh Molecular Weight Linear Block Copolymers: Rapid Access by Reversible-Deactivation Radical Polymerization and Self- Assembly into Large Domain Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Mapas, Jose Kenneth D.; Thomay, Tim; Cartwright, Alexander N.; Ilavsky, Jan; Rzayev, Javid

    2016-05-05

    Block copolymer (BCP) derived periodic nanostructures with domain sizes larger than 150 nm present a versatile platform for the fabrication of photonic materials. So far, the access to such materials has been limited to highly synthetically involved protocols. Herein, we report a simple, “user-friendly” method for the preparation of ultrahigh molecular weight linear poly(solketal methacrylate-b-styrene) block copolymers by a combination of Cu-wire-mediated ATRP and RAFT polymerizations. The synthesized copolymers with molecular weights up to 1.6 million g/mol and moderate dispersities readily assemble into highly ordered cylindrical or lamella microstructures with domain sizes as large as 292 nm, as determined by ultra-small-angle x-ray scattering and scanning electron microscopy analyses. Solvent cast films of the synthesized block copolymers exhibit stop bands in the visible spectrum correlated to their domain spacings. The described method opens new avenues for facilitated fabrication and the advancement of fundamental understanding of BCP-derived photonic nanomaterials for a variety of applications.

  5. Stability of guest molecules in urea canal complexes by canal polymerization

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Makuuchi, Keizo

    1995-01-01

    It was found that various organic materials are attracted into urea canal by hexanediol diacrylate (HDDA) and long chain compounds. This means that materials which does not form complex by itself are induced in canal by HDDA and long chain compounds. To include with stability perfumes, insecticides, attractants and repellents in urea canal, leaf alcohol was used as a model compound for guest molecules in the canal. The leaf alcohol from the canal released gradually over many days and the release was inhibited for 15 days by long chain compounds and for 30 days by polymerized HDDA after irradiation. After releasing, the leaf alcohol in the canal remained 25 % stable for long chain compounds and 40 % for polymerized HDDA. The dose required for stabilization of leaf alcohol in the urea canal by canal polymerization of HDDA was 30 kGy. (author)

  6. Personal Cooling Fabric Based on Polymeric Thermoelectrics

    Science.gov (United States)

    2016-07-28

    There are also concerns about environmental impact given their toxic heavy metal content. Despite these limitations and the lack of improvement in...polymeric TE materials were studied, they offered the additional advantages (over metallic materials) of low density, no toxic heavy metals (bismuth, lead...First, fluorene was reacted with two equivalents of bromoethane under basic conditions to afford 9,9’-diethyl fluorine , which was bromomethylated

  7. The use of synthetic materials in the treatment of stress urinary incontinence

    Directory of Open Access Journals (Sweden)

    Robert Stanek

    2016-07-01

    Full Text Available Stress urinary incontinence is a very serious problem which has been noticed by the WHO. This difficult medical condition poses a serious problem as it affects c.a. 20% of the female population and it increases up to 35% in the group of females over 60 years of age. Since there is no single standard surgical procedure which could solve this problem, numerous synthetic materials are used for the operations. It seems that the materials are effective as they improve the condition of women suffering from stress urinary incontinence. Unfortunately these materials have their shortcomings which might lead to certain post-operative complications. Stress urinary incontinence is a disease which affects the social life of the patients. It has a high percentage of recurrence and causes the patient substantial difficulties with keeping high standards of personal hygiene which is consequence makes it impossible to fulfill their social roles. The etiology of this disease is complex and calls for a cross-disciplinary approach to the problem. As there are no standardized or unanimous treatment methods of stress urinary incontinence, numerous sources based on the clinical experience of many medical centers suggest performing TVT and TOT procedures as the most effective treatment methods. The efficacy of the TOT procedure is about 90.8%.

  8. Fiscal 1993 R and D project for industrial science and technology. Report on results in developing methane-fueled aircraft engine (R and D on silicon-based polymeric material); 1993 nendo methane nenryo kokukiyo engine kaihatsu seika hokokusho. Keisokei kobunshi zairyo no gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-03-01

    R and D was conducted on silicon-based polymeric materials for structural use, for the purpose of establishing fundamental technologies such as molecular design, synthesis, material forming and evaluation method concerning silicon-based polymers, with the fiscal 1993 results summarized. In the studies of synthesis technologies of silicon-based polymeric materials having a sea-island structure, a series of polymers with an Si-C main chain structure were prepared by ring-opening polymerization of the cyclic monomers. In the studies of interpenetrating polymer network (IPN) structure forming technologies, polycarbosilanes with superior thermal stability and solvent solubility were synthesized through structural control based on molecular design. In the studies of composite structural materials between organic metallic complex and silicon-based high polymer, the compounding was carried out by introducing or blending organic metallic complex into the main chain of silicon polymer, with evaluation made on the heat resistance. The studies of silicon polymer structural materials having a ring structure were conducted on high heat resistant polymers that were obtained by dehydrocoupling polymerization with magnesia as a catalyst. (NEDO)

  9. Synthetic Metabolic Pathways

    DEFF Research Database (Denmark)

    topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Synthetic Metabolic Pathways: Methods and Protocols aims to ensure successful results in the further study...

  10. Evaluation of Rosin Gum and Eudragit® RS PO as a Functional Film Coating Material.

    Science.gov (United States)

    Pomin, Suélen Plaza; de Lima, Isabela Angeli; Pezarini, Rogério Ribeiro; Cavalcanti, Osvaldo Albuquerque

    2017-11-01

    Polymers are essential tools in the research and development of new therapeutic devices. The diversity and flexibility of these materials have generated high expectations in the composition of new materials with extraordinary abilities, especially in the design of new systems for the modified release of pharmaceutically active ingredients. The natural polymer rosin features moisture protection and pH-dependent behavior (i.e., it is sensitive to pH > 7.0), suggesting its possible use in pharmaceutical systems. The synthetic polymer Eudragit® RS PO is a low-permeability material, the disintegration of which depends on the time of residence in the gastrointestinal tract. The present study developed a polymeric material with desirable physicochemical characteristics and synergistic effects that resulted from the inherent properties of the associated polymers. Isolated films were obtained by solvent evaporation and subjected to a water vapor transmission test, scanning electron microscopy, calorimetry, Fourier transform-infrared (FT-IR) spectroscopy, micro-Raman spectroscopy, and mechanical analysis. The new polymeric material was macroscopically continuous and homogeneous, was appropriately flexible, had low water permeability, was vulnerable in alkaline environments, and was thermally stable, maintaining an unchanged structure up to temperatures of ∼400°C. The new material also presented potentially suitable characteristics for application in film coatings for oral solids, suggesting that it is capable of carrying therapeutic substances to distal regions of the gastrointestinal tract. These findings indicate that this new material may be added to the list of functional excipients.

  11. Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.

    Science.gov (United States)

    Hansson, Jonas; Yasuga, Hiroki; Haraldsson, Tommy; van der Wijngaart, Wouter

    2016-01-21

    We introduce Synthetic Microfluidic Paper, a novel porous material for microfluidic applications that consists of an OSTE polymer that is photostructured in a well-controlled geometry of slanted and interlocked micropillars. We demonstrate the distinct benefits of Synthetic Microfluidic Paper over other porous microfluidic materials, such as nitrocellulose, traditional paper and straight micropillar arrays: in contrast to straight micropillar arrays, the geometry of Synthetic Microfluidic Paper was miniaturized without suffering capillary collapse during manufacturing and fluidic operation, resulting in a six-fold increased internal surface area and a three-fold increased porous fraction. Compared to commercial nitrocellulose materials for capillary assays, Synthetic Microfluidic Paper shows a wider range of capillary pumping speed and four times lower device-to-device variation. Compared to the surfaces of the other porous microfluidic materials that are modified by adsorption, Synthetic Microfluidic Paper contains free thiol groups and has been shown to be suitable for covalent surface chemistry, demonstrated here for increasing the material hydrophilicity. These results illustrate the potential of Synthetic Microfluidic Paper as a porous microfluidic material with improved performance characteristics, especially for bioassay applications such as diagnostic tests.

  12. Silicon dioxide obtained by Polymeric Precursor Method; Obtencao de dioxido de silicio pelo Metodo dos Precursores Polimericos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, C.T.; Granado, S.R.; Lopes, S.A.; Cavalheiro, A.A., E-mail: cinthia_quimica@hotmail.com [Universidade Estadual de Mato Grosso do Sul (CPTREN/UEMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais

    2011-07-01

    The Polymeric Precursor Method is able for obtaining several oxide material types with high surface area even obtained in particle form. Several MO{sub 2} oxide types such as titanium, silicon and zirconium ones can be obtained by this methodology. In this work, the synthesis of silicon oxide was monitored by thermal analysis, XRD and surface area analysis in order to demonstrate the influence of the several synthesis and calcining parameters. Surface area values as higher as 370m2/g and increasing in the micropore volume nm were obtained when the material was synthesized by using ethylene glycol as polymerizing agent. XRD analysis showed that the material is amorphous when calcinated at 600°C in despite of the time of calcining, but the material morphology is strongly influenced by the polymeric resin composition. Using Glycerol as polymerizing agent, the pore size increase and the surface area goes down with the increasing in decomposition time, when compared to ethylene glycol. (author)

  13. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch.

    Science.gov (United States)

    Say, R; Şenay, R Hilal; Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz; Akgöl, Sinan; Denizli, Adil

    2013-05-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. Km values were 0.26 and 0.87 mM and Vmax values were 0.36 IU mg(-1) and 22.32 IU mg(-1) for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70-80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Final Technical Report: Collaborative Research. Polymeric Muliferroics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shenqiang [Univ. of Kansas, Lawrence, KS (United States)

    2015-06-05

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of organic charge-transfer complexes has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer complexes. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PIs seek to fundamental understanding of the synthetic control of organic complexes to demonstrate and explore room temperature multiferroicity.

  15. Functional properties of whey protein and its application in nanocomposite materials and functional foods

    Science.gov (United States)

    Walsh, Helen

    Whey is a byproduct of cheese making; whey proteins are globular proteins which can be modified and polymerized to add functional benefits, these benefits can be both nutritional and structural in foods. Modified proteins can be used in non-foods, being of particular interest in polymer films and coatings. Food packaging materials, including plastics, can linings, interior coatings of paper containers, and beverage cap sealing materials, are generally made of synthetic petroleum based compounds. These synthetic materials may pose a potential human health risk due to presence of certain chemicals such as Bisphenol A (BPA). They also add to environmental pollution, being difficult to degrade. Protein-based materials do not have the same issues as synthetics and so can be used as alternatives in many packaging types. As proteins are generally hydrophilic they must be modified structurally and their performance enhanced by the addition of waterproofing agents. Polymerization of whey proteins results in a network, adding both strength and flexibility. The most interesting of the food-safe waterproofing agents are the (large aspect ratio) nanoclays. Nanoclays are relatively inexpensive, widely available and have low environmental impact. The clay surface can be modified to make it organophilic and so compatible with organic polymers. The objective of this study is the use of polymerized whey protein (PWP), with reinforcing nanoclays, to produce flexible surface coatings which limit the transfer of contents while maintaining food safety. Four smectite and kaolin type clays, one treated and three natural were assessed for strengthening qualities and the potential waterproofing and plasticizing benefits of other additives were also analyzed. The nutritional benefits of whey proteins can also be used to enhance the protein content of various foodstuffs. Drinkable yogurt is a popular beverage in the US and other countries and is considered a functional food, especially when

  16. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  17. Direct laser writing by two-photon polymerization as a tool for developing microenvironments for evaluation of bacterial growth

    Energy Technology Data Exchange (ETDEWEB)

    Otuka, A.J.G. [Instituto de Física de São Carlos, Universidade de São Paulo, CP.369, 13560-970 São Carlos, SP (Brazil); Corrêa, D.S. [Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação, Rua XV de Novembro, 1452, CP.741, 13560-970 São Carlos, SP (Brazil); Fontana, C.R. [Department of Clinical Analysis, School of Pharmaceutical Sciences, University of São Paulo State (UNESP), 1621 Expedicionarios do Brasil Street, Araraquara, Sao Paulo 14801-960 (Brazil); Mendonça, C.R., E-mail: crmendon@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, CP.369, 13560-970 São Carlos, SP (Brazil)

    2014-02-01

    Monitoring bacteria growth and motion in environments is fundamental to understand, for instance, how they proliferate and contaminate organism. Therefore, techniques to fabricate microenvironments for in situ and in vivo studies are interesting for that purpose. In this work we used two-photon polymerization to fabricate microenvironments and, as a proof of principle, we demonstrated the development of the bacteria ATCC 25922 Escherichia coli (E. coli) into the microstructure surroundings. Two varieties of polymeric microenvironments are presented: (i) a microenvironment doped at specific site with ciprofloxacin, an antibiotic typically used in the treatment of diseases caused by E. coli and (ii) micro-fences, which serve as traps for bacteria. These microenvironments, fabricated by two-photon polymerization, may be a potential platform for drug delivery system, by promoting or inhibiting the growth of bacteria in specific biological or synthetic sites. - Highlights: • Microenvironments were fabricated by two-photon polymerization. • We demonstrated the development of Escherichia coli into the microstructure surroundings. • Microenvironment doped with the antibiotic ciprofloxacin was fabricated. • Micro-fences, which serve as traps for bacteria, were also produced.

  18. Direct laser writing by two-photon polymerization as a tool for developing microenvironments for evaluation of bacterial growth

    International Nuclear Information System (INIS)

    Otuka, A.J.G.; Corrêa, D.S.; Fontana, C.R.; Mendonça, C.R.

    2014-01-01

    Monitoring bacteria growth and motion in environments is fundamental to understand, for instance, how they proliferate and contaminate organism. Therefore, techniques to fabricate microenvironments for in situ and in vivo studies are interesting for that purpose. In this work we used two-photon polymerization to fabricate microenvironments and, as a proof of principle, we demonstrated the development of the bacteria ATCC 25922 Escherichia coli (E. coli) into the microstructure surroundings. Two varieties of polymeric microenvironments are presented: (i) a microenvironment doped at specific site with ciprofloxacin, an antibiotic typically used in the treatment of diseases caused by E. coli and (ii) micro-fences, which serve as traps for bacteria. These microenvironments, fabricated by two-photon polymerization, may be a potential platform for drug delivery system, by promoting or inhibiting the growth of bacteria in specific biological or synthetic sites. - Highlights: • Microenvironments were fabricated by two-photon polymerization. • We demonstrated the development of Escherichia coli into the microstructure surroundings. • Microenvironment doped with the antibiotic ciprofloxacin was fabricated. • Micro-fences, which serve as traps for bacteria, were also produced

  19. Living Polymerization of N -Substituted β-Alanine N -Carboxyanhydrides: Kinetic Investigations and Preparation of an Amphiphilic Block Copoly-β-Peptoid

    KAUST Repository

    Grossmann, Arlett

    2012-07-03

    Poly(α-peptoid)s (N-substituted polyglycines) are interesting peptidomimetic biomaterials that have been discussed for many applications. Poly(β-peptoid)s (N-substituted poly-β-alanines), although equally intriguing, have received much less attention. Here we present results that suggest that while N-substituted β-alanine N-carboxyanhydrides can undergo a living nucleophilic ring-opening polymerization, the solubility of poly(β-peptoid)s can be very poor, which contributes to the limited accessibility using other synthetic approaches. The living character of the polymerization was utilized for the preparation of the first polymerized amphiphilic block copoly-β-peptoid. Our results may open a new route towards highly defined functional poly(β-peptoid)s which could represent biomaterials. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Evaluation of the in vitro biocompatibility of polymeric materials for the regeneration of cutaneous tissue

    International Nuclear Information System (INIS)

    Escudero Castellanos, A.

    2016-01-01

    The problems associated with medical cases of functional tissue loss or organ failure are destructive and expensive, even more frequent than could be perceived, sometime if not properly treated, even deathly. Tissue engineering is an interdisciplinary field that emerged to address these clinical problems, it is based on researching and development of biomaterials that have evolved along with areas such as cell biology, molecular and materials science and engineering. Today, the technique is based on seeding cells onto prefabricated scaffold biomaterials, like the hydrogels, that are three-dimensional networks with hydrophilic properties. These materials are characterized as being porous and sticky, favoring the support for the proliferation of certain cells in order to lead the regeneration of injured tissue. As a prerequisite for the use of materials in tissue engineering is testing biocompatibility which is the ability of the bio material to allow contact with any tissue, existing a favorable host response, accepting it as their own and restoring previously lost function. The first step for evaluating biocompatibility is to perform the in vitro assays. These assays have been demonstrated more reproducibility and predictability than in vivo assays, therefore the in vitro assays are used to produce high quality scaffolds and testing on animals as less as possible. This test is essential to establish the benefits and limitations of biomaterials tested in order to improve the scaffolds. This work will focus on assessing the biocompatibility of three polymeric materials with potential use in tissue engineering by means of cytological compatibility tests and hemo compatibility tests. Furthermore, disinfection techniques and gamma sterilization were evaluated to produce sterile materials that can be used in tissue engineering. (Author)

  1. Polymeric Gas-Separation Membranes for Petroleum Refining

    Directory of Open Access Journals (Sweden)

    Yousef Alqaheem

    2017-01-01

    Full Text Available Polymeric gas-separation membranes were commercialized 30 years ago. The interest on these systems is increasing because of the simplicity of concept and low-energy consumption. In the refinery, gas separation is needed in many processes such as natural gas treatment, carbon dioxide capture, hydrogen purification, and hydrocarbons separations. In these processes, the membranes have proven to be a potential candidate to replace the current conventional methods of amine scrubbing, pressure swing adsorption, and cryogenic distillation. In this paper, applications of polymeric membranes in the refinery are discussed by reviewing current materials and commercialized units. Economical evaluation of these membranes in comparison to traditional processes is also indicated.

  2. Noncovalent assembly. A rational strategy for the realization of chain-growth supramolecular polymerization.

    Science.gov (United States)

    Kang, Jiheong; Miyajima, Daigo; Mori, Tadashi; Inoue, Yoshihisa; Itoh, Yoshimitsu; Aida, Takuzo

    2015-02-06

    Over the past decade, major progress in supramolecular polymerization has had a substantial effect on the design of functional soft materials. However, despite recent advances, most studies are still based on a preconceived notion that supramolecular polymerization follows a step-growth mechanism, which precludes control over chain length, sequence, and stereochemical structure. Here we report the realization of chain-growth polymerization by designing metastable monomers with a shape-promoted intramolecular hydrogen-bonding network. The monomers are conformationally restricted from spontaneous polymerization at ambient temperatures but begin to polymerize with characteristics typical of a living mechanism upon mixing with tailored initiators. The chain growth occurs stereoselectively and therefore enables optical resolution of a racemic monomer. Copyright © 2015, American Association for the Advancement of Science.

  3. Synthesizing Smart Polymeric and Composite Materials

    Science.gov (United States)

    Gong, Chaokun

    Smart materials have been widely investigated to explore new functionalities unavailable to traditional materials or to mimic the multifunctionality of biological systems. Synthetic polymers are particularly attractive as they already possess some of the attributes required for smart materials, and there are vast room to further enhance the existing properties or impart new properties by polymer synthesis or composite formulation. In this work, three types of smart polymer and composites have been investigated with important new applications: (1) healable polymer composites for structural application and healable composite conductor for electronic device application; (2) conducting polymer polypyrrole actuator for implantable medical device application; and (3) ferroelectric polymer and ceramic nanoparticles composites for electrocaloric effect based solid state refrigeration application. These application entail highly challenging materials innovation, and my work has led to significant progress in all three areas. For the healable polymer composites, well known intrinsically healable polymer 2MEP4F (a Diels-Alder crosslinked polymer formed from a monomer with four furan groups and another monomer with two maleimide groups) was first chosen as the matrix reinforced with fiber. Glass fibers were successfully functionalized with maleimide functional groups on their surface. Composites from functionalized glass fibers and 2MEP4F healable polymer were made to compare with composites made from commercial carbon fibers and 2MEP4F polymer. Dramatically improved short beam shear strength was obtained from composite of functionalized glass fibers and 2MEP4F polymer. The high cost of 2MEP4F polymer can potentially limit the large-scale application of the developed healable composite, we further developed a new healable polymer with much lower cost. This new polymer was formed through the Diels-Alder crosslinking of poly(furfuryl alcohol) (PFA) and 1,1'-(Methylenedi-4

  4. Bioinspired fabrication and characterization of a synthetic fish skin for the protection of soft materials.

    Science.gov (United States)

    Funk, Natasha; Vera, Marc; Szewciw, Lawrence J; Barthelat, Francois; Stoykovich, Mark P; Vernerey, Franck J

    2015-03-18

    The scaled skin of fish is a high-performance natural armor that represents a source of inspiration for novel engineering designs. In this paper, we present a biomimetic fish skin material, fabricated with a design and components that are simple, that achieves many of the advantageous attributes of natural materials, including the unique combination of flexibility and mechanical robustness. The bioinspired fish skin material is designed to replicate the structural, mechanical, and functional aspects of a natural teleost fish skin comprised of leptoid-like scales, similar to that of the striped red mullet Mullus surmuletus. The man-made fish skin material consists of a low-modulus elastic mesh or "dermis" layer that holds rigid, plastic scales. The mechanics of the synthetic material is characterized under in-plane, bending, and indentation modes of deformation and is successfully described by theoretical deformation models that have been developed. This combined experimental and modeling approach elucidates the critical mechanisms by which the composite material achieves its unique properties and provides design rules that allow for the engineering of scaled skins. Such artificial scaled skins that are flexible, lightweight, transparent, and robust under mechanical deformation may thus have potential as thin protective coatings for soft materials.

  5. Robust Crosslinked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization

    KAUST Repository

    Vidal, Fernando

    2016-07-07

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust crosslinked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site controlled propagation mechanism. Post-functionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible crosslinked thin film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Crosslinking of such complexes afforded robust crosslinked stereocomplexes that are solvent resistant and also exhibit considerably enhanced thermal and mechanical properties as compared to the uncrosslinked stereocompexes.

  6. Robust Crosslinked Stereocomplexes and C60 Inclusion Complexes of Vinyl-Functionalized Stereoregular Polymers Derived from Chemo/Stereoselective Coordination Polymerization

    KAUST Repository

    Vidal, Fernando; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y.-X.

    2016-01-01

    The successful synthesis of highly syndiotactic polar vinyl polymers bearing the reactive pendant vinyl group on each repeat unit, which is enabled by perfectly chemoselective and highly syndiospecific coordination polymerization of divinyl polar monomers developed through this work, has allowed the construction of robust crosslinked supramolecular stereocomplexes and C60 inclusion complexes. The metal-mediated coordination polymerization of three representative polar divinyl monomers, including vinyl methacrylate (VMA), allyl methacrylate (AMA), and N,N-diallyl acrylamide (DAA) by Cs-ligated zirconocenium ester enolate catalysts under ambient conditions exhibits complete chemoselectivity and high stereoselectivity, thus producing the corresponding vinyl-functionalized polymers with high (92% rr) to quantitative (>99% rr) syndiotacticity. A combined experimental (synthetic, kinetic, and mechanistic) and theoretical (DFT) investigation has yielded a unimetallic, enantiomorphic-site controlled propagation mechanism. Post-functionalization of the obtained syndiotactic vinyl-functionalized polymers via the thiol-ene click and photocuring reactions readily produced the corresponding thiolated polymers and flexible crosslinked thin film materials, respectively. Complexation of such syndiotactic vinyl-functionalized polymers with isotactic poly(methyl methacrylate) and fullerene C60 generates supramolecular crystalline helical stereocomplexes and inclusion complexes, respectively. Crosslinking of such complexes afforded robust crosslinked stereocomplexes that are solvent resistant and also exhibit considerably enhanced thermal and mechanical properties as compared to the uncrosslinked stereocompexes.

  7. Modification of Clays by Sol-Gel Reaction and Their Use in the Ethylene In Situ Polymerization for Obtaining Nanocomposites

    Directory of Open Access Journals (Sweden)

    E. Moncada

    2012-01-01

    Full Text Available The nanocomposites formation by in situ polymerization used a metallocene catalyst (butyl-2-cyclopentadienyl zirconium 2-chlorines and a hectorite synthetic clay type which is discussed. This research was carried out in two phases. The first phase consisted of mixing the components of the metallocenic polymerization reaction (metallocene-methylaluminoxane-ethylene with clay in a reactor. In the second phase, the metallocenic catalytic system was supported by clay particles and then a polymerization reaction was made. In this second phase, the clay particles were modified using a sol-gel reaction with different pH values: pH = 3, pH = 8, and pH = 12. The results were compared in terms of the catalytic activity in the different systems (phase 1 and phase 2 and the nanoparticle morphology of nanocomposites generated in this study.

  8. Natural and Synthetic Polymers as Inhibitors of Drug Efflux Pumps

    Science.gov (United States)

    2007-01-01

    Inhibition of efflux pumps is an emerging approach in cancer therapy and drug delivery. Since it has been discovered that polymeric pharmaceutical excipients such as Tweens® or Pluronics® can inhibit efflux pumps, various other polymers have been investigated regarding their potential efflux pump inhibitory activity. Among them are polysaccharides, polyethylene glycols and derivatives, amphiphilic block copolymers, dendrimers and thiolated polymers. In the current review article, natural and synthetic polymers that are capable of inhibiting efflux pumps as well as their application in cancer therapy and drug delivery are discussed. PMID:17896100

  9. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    Science.gov (United States)

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  10. A multifunctional polymeric nanofilm with robust chemical performances for special wettability

    Science.gov (United States)

    Wang, Yabin; Lin, Feng; Dong, Yaping; Liu, Zhong; Li, Wu; Huang, Yudong

    2016-02-01

    A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has the potential to act as a superhydrophilic and underwater superoleophobic material. As the polymeric nanofilm atop the copper mesh is modified with long-chain octadecyltrichlorosilane (OTS), the functionalized surface becomes superhydrophobic and superoleophilic. The OTS-modified polymeric nanofilm shows outstanding chemical durability and stability that are seldom concurrently satisfied for a material with special wettability, owing to its inherent architecture. These textures generate high separation efficiency, durable separation capability and excellent thermal stability. The protective ability, originating from the textures of the underlying cross-linked disulfide units (-SS-) and siloxane networks (SiOSi) on the top of the nanofilm, prolongs the chemical durability. The activating capability stemming from the residual SiOH groups improves the chemical stability as a result of the chemical bonds developed by these sites. The significant point of this investigation lies in enlightening us on the fabrication of multifunctional polymeric nanofilms on different metal surfaces using various triazinedithiolsilane compounds, and on the construction of interfaces with controllable wettable performances in demanding research or industrial applications.A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has

  11. Polymeric Materials - introduction and degradation

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios

    1999-01-01

    These notes support the polymer part of the courses 91742 and 91762 (Materials and Corrosion/degradation of materials) taught in IFAKthey contain a short introduction on group contribution methods for estimating properties of polymers, polymer thermodynamics, viscoelasticity models as well...

  12. Porous chromatographic materials as substrates for preparing synthetic nuclear explosion debris particles

    International Nuclear Information System (INIS)

    Harvey, S.D.; Carman, A.J.; Martin Liezers; Antolick, K.C.; Garcia, B.J.; Eiden, G.C.; Sweet, L.E.

    2013-01-01

    Several porous chromatographic materials were investigated as synthetic substrates for preparing surrogate nuclear explosion debris particles. Eighteen metals, including some of forensic interest, were loaded onto materials by immersing them in metal solutions (556 mg/L of each metal) to fill the pores, applying gentle heat (110 deg C) to drive off water, and then treating them at high temperatures (up to 800 deg C) in air to form less soluble metal species. High-boiling-point metals were uniformly loaded on spherical controlled-pore glass to emulate early fallout, whereas low-boiling-point metals were loaded on core-shell silica to represent coated particles formed later in the nuclear fallout-formation process. Analytical studies characterized material balance and the formation of recalcitrant species. Metal loading was 1.5-3 times higher than expected from the pore volume alone, a result attributed to surface coating. Most metals were passively loaded; that is, solutions filled the pores without active metal discrimination. However, niobium and tin concentrations were lower in solutions after pore filling, and were found in elevated concentrations in the final products, indicating selective loading. High-temperature treatments caused reduced solubility of several metals, and the loss of some volatile species (rhenium and tellurium). Sample preparation reproducibility was high (the inter- and intra-batch relative standard deviations were 7.8 and 0.84 %, respectively) indicating suitability for use as a working standard for analytical methods development. We anticipate future standardized radionuclide-loaded materials will find use in radioanalytical methods development and/or serve as a starting material for the synthesis of more complex nuclear explosion debris forms (e.g., Trinitite). (author)

  13. Development of partially biodegradable foams from PP/HMSPP blends with natural and synthetic polymers

    International Nuclear Information System (INIS)

    Cardoso, Elizabeth Carvalho Leite

    2014-01-01

    Polymers are used in various application and in different industrial areas providing enormous quantities of wastes in environment. Among diverse components of residues in landfills are polymeric materials, including Polypropylene, which contribute with 20 to 30% of total volume of solid residues. As polymeric materials are immune to microbial degradation, they remain in soil and in landfills as a semi-permanent residue. Environmental concerning in litter reduction is being directed to renewable polymers development for manufacturing of polymeric foams. Foamed polymers are considered future materials, with a wide range of applications; high density structural foams are specially used in civil construction, in replacement of metal, woods and concrete with a final purpose of reducing materials costs. At present development, it was possible the incorporation of PP/HMSPP polymeric matrix blends with sugarcane bagasse, PHB and PLA, in structural foams production. Thermal degradation at 100, 120 and 160 deg C temperatures was not enough to induce biodegradability. Gamma irradiation degradation, at 50, 100, 200 and 500 kGy showed effective for biodegradability induction. Irradiated bagasse blends suffered surface erosion, in favor of water uptake and consequently, a higher biodegradation in bulk structure. (author)

  14. Polymeric Luminescent Compositions Doped with Beta-Diketonates Boron Difluoride as Material for Luminescent Solar Concentrator

    Science.gov (United States)

    Khrebtov, A. A.; Fedorenko, E. V.; Reutov, V. A.

    2017-11-01

    In this paper we investigated polymeric luminescent compositions based on polystyrene doped with beta diketonates boron difluoride. Transparent films with effective absorption in the ultraviolet and blue regions of the spectrum were obtained. Polymeric luminescent compositions based on the mixture of dyes allow expanding the absorption region and increase the radiation shift. A luminescent solar concentrator consisting of a glass plate coated with such film can be used for photovoltaic window application.

  15. The study of polymeric hydro-gels with unique properties obtained by polymerization with gamma radiation processing

    International Nuclear Information System (INIS)

    Dragusin, M.

    1995-01-01

    This thesis presents the work carried out on polymeric hydro-gels obtained by radiation processing using 60 Co gamma rays from the irradiation facility IETI-10.000 (10 k Ci), and on the polymeric hydro-gels obtained by irradiation with the electron beams from a linear accelerator (6 MeV). The aim of the study was to determine the effect of the rate dose and total dose absorbed in the materials. There are presented the preparation methods of homo- and co-polymer hydro-gels (acrylics, namely anionic and neutral monomers (acrylamide, acrylic acid, vinyl acetate) and cationic monomers (di-methyl di-allyl ammonium chloride)) such as floculants, additives, absorbers, etc. Concerning with these we have analysed the preparation methods, the mechanical, thermal, diffusivity, and swelling properties of polymeric hydro-gels in a large variety of gels of type I or II. The technological aspects and end use were studied in connection with the characteristics of the radiation processing of these hydro-gels as a function of chemical composition rate and absorbed dose, swelling degree (low and very high hydro-soluble), mechanical and diffusional properties. (author) 33 figs., 12 tabs., 101 refs

  16. Electron beam irradiation to the allogeneic, xenogenic and synthetic bone materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soung Min; Park, Min Woo; Jeong, Hyun Oh [School of Dentistry Seoul National University, Seoul (Korea, Republic of); and others

    2013-07-01

    For the development of the biocompatible bony regeneration materials, allogenic, xenogenic and synthetic bone were irradiated by electron beam to change the basic components and structures. For the efficient electron beam irradiating condition of these allogenic, xenogenic and artificial bone substitutes, the optimal electron beam energy and their individual dose were established, to maximize the bony regeneration capacity. Commercial products of four allogenic bones, such as Accell (ISOTIS OrthogBiologics Co., USA), Allotis (Korea Bone Bank Co., Korea), Oragraft (LifeNet Co., USA), and Orthoblast (Integra Orthobiologics Inc., USA), six xenogenic bones, such as BBP (OscoTec Co., Korea), Bio-cera (OscoTec Co., Korea), Bio-oss (Geistlich Pharma AG, Switzerland), Indu-cera (OscoTec Co., Korea), OCS-B (Nibec Co., Korea), and OCS-H (Nibec Co., Korea), and six synthetic bones, such as BMP (Couellmedi Co., Korea), BoneMedik (Meta Biomed Co., Korea), Bone plus (Megagen Co., Korea), MBCP (Biomatlante Co., France), Osteon (Genoss Co., Korea), and Osteogen (Impladent LTD., USA), were used. We used 1.0 and 2.0 MeV superconduction accelerator, and/or microtrone with different individual 60, 120 kGy irradiation dose. Different dose irradiated specimens were divided 6 portions each, so total 360 groups were prepared. 4 portions were analyzed each by elementary analysis using FE-SEM (Field Emission Scanning Microscopy) and another 2 portions were grafted to the calvarial defect of Sprague-Dawley rat, following histologic, immunohistochemical analysis and TEM study were processed at the 8th and 16th weeks, in vivo. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST)

  17. Synthetic greenhouse gases under control

    International Nuclear Information System (INIS)

    Horisberger, B.; Karlaganis, G.

    2003-01-01

    This article discusses new Swiss regulations on the use of synthetic materials that posses a considerable greenhouse-warming potential. Synthetic materials such as hydro-chlorofluorocarbons HCFCs, perfluoride-hydrocarbons and sulphur hexafluoride have, in recent years, replaced chlorofluorocarbons CFCs, which were banned on account of their ozone depletion characteristics. The use of these persistent substances is now being limited to applications where more environment-friendly alternatives are not available. The measures decreed in the legislation, which include a general ban on HCFCs as of 2004 and a ban on the export of installations and equipment that use ozone-depleting refrigerants are described. Details on the legislation's effects on the Swiss refrigeration industry are listed and discussed

  18. Polymeric Cantilever Arrays for Biosensing Applications

    DEFF Research Database (Denmark)

    Calleja, M.; Tamayo, J.; Johansson, Alicia

    2003-01-01

    We report the fabrication of arrays of polymeric cantilevers for biochemistry applications. The cantilevers are fabricated in the polymer SU-8. The use of a polymer as the component material for the cantilevers provides the sensors with very high sensitivity due to convenient mechanical material...... properties. The fabrication process is based on spin coating of the photosensitive polymer and near-ultraviolet exposure. The method allows obtaining well-controlled and uniform mechanical properties of the cantilevers. The elastic constant of the cantilevers was measured, and their dynamic response...

  19. Polymerization of epoxidized triglycerides with fluorosulfonic acid

    Science.gov (United States)

    The use of triglycerides as agri-based renewable raw materials for the development of new products is highly desirable in view of uncertain future petroleum prices. A new method of polymerizing epoxidized soybean oil has been devised with the use of fluorosulfonic acid. Depending on the reaction con...

  20. Crack initiation and propagation on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing

    Directory of Open Access Journals (Sweden)

    G. M. Domínguez Almaraz

    2015-10-01

    Full Text Available Crack initiation and propagation have been investigated on the polymeric material ABS (Acrylonitrile Butadiene Styrene, under ultrasonic fatigue testing. Three controlled actions were implemented in order to carry out fatigue tests at very high frequency on this material of low thermal conductivity, they are: a The applying load was low to limit heat dissipation at the specimen neck section, b The dimensions of testing specimen were small (but fitting the resonance condition, in order to restraint the temperature gradient at the specimen narrow section, c Temperature at the specimen neck section was restrained by immersion in water or oil during ultrasonic fatigue testing. Experimental results are discussed on the basis of thermo-mechanical behaviour: the tail phenomenon at the initial stage of fatigue, initial shear yielding deformation, crazed development on the later stage, plastic strain on the fracture surface and the transition from low to high crack growth rate. In addition, a numerical analysis is developed to evaluate the J integral of energy dissipation and the stress intensity factor K, with the crack length

  1. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  2. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqi; Li, Zheng [College of Chemistry, Jilin University, Changchun 130012 (China); Niu, Qian [Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Ma, Jiutong [College of Chemistry, Jilin University, Changchun 130012 (China); Jia, Qiong, E-mail: jiaqiong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-10-30

    Graphical abstract: Poly(methacrylic acid-ethylene dimethacrylate) monolithic column embedded with zeolites was prepared and employed for the polymer monolith microextraction of colorants combined with HPLC. - Highlights: • Zeolite, as a kind of mesoporous material, was firstly combined with PMME. • Zeolite@poly(MAA-EDMA) monolith columns were prepared for the enrichment of colorants. • Zeolite@poly(MAA-EDMA) monolith columns demonstrated relatively high extraction capacity. - Abstract: A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  3. Operation voltage behavior of organic light emitting diodes with polymeric buffer layers doped by weak electron acceptor

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Hyeon Soo; Cho, Sang Hee [Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Seo, Jaewon; Park, Yongsup [Department of Physics, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Suh, Min Chul, E-mail: mcsuh@khu.ac.kr [Department of Information Display and Advanced Display Research Center, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2013-11-01

    We present polymeric buffer materials based on poly[2,7-(9,9-dioctyl-fluorene)-co-(1,4-phenylene -((4-sec-butylphenyl)imino)-1,4-phenylene)] (TFB) for highly efficient solution processed organic light emitting diodes (OLEDs). Doped TFB with 9,10-dicyanoanthracene, a weak electron acceptor results in significant improvement of current flow and driving voltage. Maximum current- and power-efficiency value of 12.6 cd/A and 18.1 lm/W are demonstrated from phosphorescent red OLEDs with this doped polymeric anode buffer system. - Highlights: • Polymeric buffer materials for organic light emitting diodes (OLEDs). • Method to control hole conductivity of polymeric buffer layer in OLED device. • Enhanced current density of buffer layers upon 9,10-dicyanoanthracene (DCA) doping. • Comparison of OLED devices having polymeric buffer layer with or without DCA. • Effect on operating voltage by doping DCA in the buffer layer.

  4. Synthetic

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2010-06-01

    Full Text Available Traditionally materials have been associated with a series of physical properties that can be used as inputs to production and manufacturing. Recently we witnessed an interest in materials considered not only as ‘true matter’, but also as new breeds where geometry, texture, tooling and finish are able to provoke new sensations when they are applied to a substance. These artificial materials can be described as synthetic because they are the outcome of various qualities that are not necessarily true to the original matter, but they are the combination of two or more parts, whether by design or by natural processes. The aim of this paper is to investigate the potential of architectural surfaces to produce effects through the invention of new breeds of artificial matter, using micro-scale details derived from Nature as an inspiration.

  5. Vapor phase polymerization deposition of conducting polymer/graphene nanocomposites as high performance electrode materials.

    Science.gov (United States)

    Yang, Yajie; Li, Shibin; Zhang, Luning; Xu, Jianhua; Yang, Wenyao; Jiang, Yadong

    2013-05-22

    In this paper, we report chemical vapor phase polymerization (VPP) deposition of novel poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene nanocomposites as solid tantalum electrolyte capacitor cathode films. The PEDOT/graphene films were successfully prepared on porous tantalum pentoxide surface as cathode films through the VPP procedure. The results indicated that the high conductivity nature of PEDOT/graphene leads to the decrease of cathode films resistance and contact resistance between PEDOT/graphene and carbon paste. This nanocomposite cathode film based capacitor showed ultralow equivalent series resistance (ESR) ca. 12 mΩ and exhibited better capacitance-frequency performance than the PEDOT based capacitor. The leakage current investigation revealed that the device encapsulation process does not influence capacitor leakage current, indicating the excellent mechanical strength of PEDOT-graphene films. The graphene showed a distinct protection effect on the dielectric layer from possible mechanical damage. This high conductivity and mechanical strength graphene based conducting polymer nanocomposites indicated a promising application future for organic electrode materials.

  6. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations.

    Science.gov (United States)

    Gädt, Torben; Ieong, Nga Sze; Cambridge, Graeme; Winnik, Mitchell A; Manners, Ian

    2009-02-01

    Block copolymers consist of two or more chemically distinct polymer segments, or blocks, connected by a covalent link. In a selective solvent for one of the blocks, core-corona micelle structures are formed. We demonstrate that living polymerizations driven by the epitaxial crystallization of a core-forming metalloblock represent a synthetic tool that can be used to generate complex and hierarchical micelle architectures from diblock copolymers. The use of platelet micelles as initiators enables the formation of scarf-like architectures in which cylindrical micelle tassels of controlled length are grown from specific crystal faces. A similar process enables the fabrication of brushes of cylindrical micelles on a crystalline homopolymer substrate. Living polymerizations driven by heteroepitaxial growth can also be accomplished and are illustrated by the formation of tri- and pentablock and scarf architectures with cylinder-cylinder and platelet-cylinder connections, respectively, that involve different core-forming metalloblocks.

  7. Application of the Organic Synthetic Designs to Astrobiology

    Science.gov (United States)

    Kolb, V. M.

    2009-12-01

    In this paper we propose a synthesis of the heterocyclic compounds and the insoluble materials on the meteorites. Our synthetic scheme involves the reaction of sugars and amino acids, the so-called Maillard reaction. We have developed this scheme based on the combined analysis of the regular and retrosynthetic organic synthetic principles. The merits of these synthetic methods for the prebiotic design are addressed.

  8. Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units

    Directory of Open Access Journals (Sweden)

    Sayed-Mostafa Mousavinasab

    2014-08-01

    Full Text Available Objectives Light-curing of resin-based materials (RBMs increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs of three different RBMs using quartz tungsten halogen (QTH and light-emitting diode (LED units (LCUs. Materials and Methods Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12 during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey, a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE, and a giomer (Beautifil II, Shofu GmbH, was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. Results The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p 0.05. Conclusions Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

  9. Long circulating polymeric nanoparticles for gene/drug delivery.

    Science.gov (United States)

    Hu, Jiaming; Sheng, Yan; Shi, Junfeng; Yu, Bohao; Yu, Zhiqiang; Liao, Guochao

    2017-12-07

    The major limitation in the improving polymeric nanoparticles into an efficient gene/drug delivery carrier is the rapid opsonization, phagocytic uptake by mononuclear phagocyte system and subsequent clearance from the bloodstream. The prolonged circulation time of nanoparticles in the blood is a prerequisite to realizing a controlled and targeted (passive or active targeting) release of the encapsulated gene/drug at the desired site of action. In this review, the factors such as biological barriers and physical barriers including particle size, shape, zeta potential, and hydrophilicity will be discussed, which can cause effects on blood clearance and organ accumulation. Some natural and synthetic polymers utilized in long-circulating nanoparticles will also be discussed. The most popular method to mask or camouflage nanoparticles is the adsorbed, grafted or conjugated of poly (ethylene glycol) (PEG) or other hydrophilic polymers (e.g. polysaccharides) to the particle surface. Surface modification of nanoparticles with these polymers results in an increased blood circulation time by several orders of magnitude in comparison to the bare nanoparticles. However, the circulation half-life of nanoparticles still cannot satisfy the need for clinical use. At present, identification of novel potential coating materials is an emerging field of interest in the design of long-circulating polymer-based nanoparticulate gene/drug delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications-Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules.

    Science.gov (United States)

    Solano, Francisco

    2017-07-18

    The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis) ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA) can easily polymerize to get polydopamine melanin (PDAM), that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications.

  11. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications—Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules

    Science.gov (United States)

    2017-01-01

    The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis) ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA) can easily polymerize to get polydopamine melanin (PDAM), that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications. PMID:28718807

  12. Melanin and Melanin-Related Polymers as Materials with Biomedical and Biotechnological Applications—Cuttlefish Ink and Mussel Foot Proteins as Inspired Biomolecules

    Directory of Open Access Journals (Sweden)

    Francisco Solano

    2017-07-01

    Full Text Available The huge development of bioengineering during the last years has boosted the search for new bioinspired materials, with tunable chemical, mechanical, and optoelectronic properties for the design of semiconductors, batteries, biosensors, imaging and therapy probes, adhesive hydrogels, tissue restoration, photoprotectors, etc. These new materials should complement or replace metallic or organic polymers that cause cytotoxicity and some adverse health effects. One of the most interesting biomaterials is melanin and synthetic melanin-related molecules. Melanin has a controversial molecular structure, dependent on the conditions of polymerization, and therefore tunable. It is found in animal hair and skin, although one of the common sources is cuttlefish (Sepia officinalis ink. On the other hand, mussels synthesize adhesive proteins to anchor these marine animals to wet surfaces. Both melanin and mussel foot proteins contain a high number of catecholic residues, and their properties are related to these groups. Dopamine (DA can easily polymerize to get polydopamine melanin (PDAM, that somehow shares properties with melanin and mussel proteins. Furthermore, PDAM can easily be conjugated with other components. This review accounts for the main aspects of melanin, as well as DA-based melanin-like materials, related to their biomedical and biotechnological applications.

  13. Atomic force microscopy analysis of synthetic membranes applied in release studies

    Energy Technology Data Exchange (ETDEWEB)

    Olejnik, Anna, E-mail: annamar@amu.edu.pl; Nowak, Izabela

    2015-11-15

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  14. Atomic force microscopy analysis of synthetic membranes applied in release studies

    International Nuclear Information System (INIS)

    Olejnik, Anna; Nowak, Izabela

    2015-01-01

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  15. Twin screw extruders as polymerization reactors for a free radical homo polymerization

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Janssen, L.P.B.M.

    The bulk polymerization of n-butylmethacrylate was investigated in a counter-rotating twin screw extruder. It appeared that the gel effect, occurring with bulk polymerizations, affected the polymerization progress very strongly. Due to this effect the conversion of the reaction is independent of the

  16. EVALUATION OF THE FUNCTIONAL PROPERTIES OF HUMAN ENDOTHELIAL AND SMOOTH MUSCLE CELLS AFTER SEEDING ON THE SURFACE OF NATURAL AND SYNTHETIC MATERIALS

    Directory of Open Access Journals (Sweden)

    Sh. B. Saaya

    2016-01-01

    Full Text Available At present, vascular surgery using small diameter synthetic grafts is associated with a higher incidence of complications (thrombosis, restenosis, intimal hyperplasia than in operations using autologous vessels. However, the occurrence of concomitant pathology, reoperations and multifocal vascular disease limit the use of autologous vein and arteries. The important factor providing a long-term patency is the presence of vascular cells, which produce biologically active substance and provide mechanical properties. Aim. Selection of the optimal scaffold for creating cell-seeded tissue-engineering vessels. Materials and methods. Endothelial (EC and smooth muscle cells (SMC derived from human myocardium were seeded on different surfaces: decellularized homoarteriа, хenopericardium, polytetrafl uoroethylene (PTFE, polyethylene terephthalate (PET, polycaprolactone (PCL and polylactide-co-glycolide (PLGA. Results. Synthetic biodegradable materials polycaprolactone and polylactide-co-glycolide provide cell adhesion. The cells cultured on the polycaprolactone and polylactide-coglycolide scaffolds retain their functional properties: viability and proliferative properties, maintain specifi c endothelial antigens and synthesis of extracellular matrix. Conclusion. Synthetic biodegradable polycaprolactone and polylactide-co-glycolide electrospun scaffolds can be used for creation of cell-fi lled vascular prostheses. 

  17. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch

    International Nuclear Information System (INIS)

    Say, R.; Şenay, R. Hilal; Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz; Akgöl, Sinan; Denizli, Adil

    2013-01-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. K m values were 0.26 and 0.87 mM and V max values were 0.36 IU mg −1 and 22.32 IU mg −1 for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70–80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. - Highlights: ► Developing to prepare nanoprotein particles carrying α-amylase ► Characterization of nanostructured α-amylase ► Usability of α-amylase nanoparticles in hydrolysis of starch

  18. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch

    Energy Technology Data Exchange (ETDEWEB)

    Say, R. [Anadolu University, Faculty of Science, Chemistry Department, Yunus Emre Campus, Eskişehir (Turkey); Şenay, R. Hilal [Ege University, Faculty of Science, Biochemistry Department, 35100 Bornova-Izmir (Turkey); Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz [Anadolu University, Faculty of Science, Chemistry Department, Yunus Emre Campus, Eskişehir (Turkey); Akgöl, Sinan, E-mail: sinanakgol@yahoo.co.uk [Ege University, Faculty of Science, Biochemistry Department, 35100 Bornova-Izmir (Turkey); Denizli, Adil [Hacettepe University, Faculty of Science, Chemistry Department, 06532 Ankara (Turkey)

    2013-05-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. K{sub m} values were 0.26 and 0.87 mM and V{sub max} values were 0.36 IU mg{sup −1} and 22.32 IU mg{sup −1} for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70–80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. - Highlights: ► Developing to prepare nanoprotein particles carrying α-amylase ► Characterization of nanostructured α-amylase ► Usability of α-amylase nanoparticles in hydrolysis of starch.

  19. Research and development of basic technologies for next generation industries, 'high crystalline polymeric material'. Evaluation on second term research and development; Jisedai sangyo kiban gijutsu kenkyu kaihatsu. Kokesshosei kobunshi zairyo (dainiki kenkyu kaihatsu kenkyu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1988-03-01

    This research and development is intended to establish a basic technology related to high crystalline polymeric material that has dynamic properties comparable to metallic materials by single polymeric material as a structural material. Thick and large high-elasticity molded forms were obtained by searching poly-arylate material, and by developing such processing technologies as high-pressure injection molding, composite injection molding, and elongation fluidity molding. High-elasticity molded forms with uniform internal orientation were obtained by heating and molding liquid crystal polymers under high magnetic field. Solution molding was performed on a molecular composite consisting of rigid chains and soft chains, which was laminated and bonded to have obtained an isotropic form with as high elasticity as 54 GPa. In addition, high pressure powder formation of cross-linked polymers of di-acetylene system provided an isotropic form with sound wave elasticity of 23 GPa.

  20. Effective Interfacially Polymerized Polyester Solvent Resistant Nanofiltration Membrane from Bioderived Materials

    KAUST Repository

    Abdellah, Mohamed H.

    2018-05-18

    Utilization of sustainable and environmentally friendly solvents for the preparation of membranes has attracted growing interest in recent years. In this work, a polyester thin film composite solvent resistant nanofiltration (SRNF) membrane is prepared by interfacial polymerization on a cellulose support. The cellulose support is prepared by nonsolvent‐induced phase separation from a dope solution containing an ionic liquid as an environmentally friendly solvent (negligible vapor pressure). The polyester film is formed via the interfacial reaction between quercetin, a plant‐derived polyphenol, and terephthaloyl chloride. Alpha‐pinene is used as a green alternative solvent to dissolve terephthaloyl chloride (TPC) while quercetin is dissolved in a 0.2 m NaOH solution. The interfacial polymerization reaction is successfully confirmed by Fourier transform infrared and X‐ray photoelectron spectroscopy while scanning electron and atomic force microscopy are used to characterize the membrane structure. The composite membrane shows an outstanding performance with a molecular weight cut‐off around 330 Da combined with a dimethylformamide (DMF) permeance up to 2.8 L m−2 bar−1 h−1. The membrane is stable in strong aprotic solvents such as DMF offering potential application in the pharmaceutical and petrochemical industries.

  1. Polymethylene-based copolymers by polyhomologation or by its combination with controlled/living and living polymerizations

    KAUST Repository

    Zhang, Hefeng

    2014-01-20

    Polyhomologation, recently developed by Shea, is a borane-initiated living polymerization of ylides leading to linear polymethylenes (C1 polymerization) with controlled molecular weight, low polydispersity, and well-defined structures. In this Review, the copolyhomologation of different ylides as well as the combination of polyhomologation with controlled/living (nitroxide-mediated, atom transfer radical, reversible addition-fragmentation chain-transfer) and living (ring opening, anionic) polymerizations is discussed. Polyhomologation of ylides, in combination with living and controlled/living polymerizations, leads to a plethora novel well-defined polymethylene (polyethylene)-based polymeric materials, which are very important for understanding/improving the behavior of industrial polyethylenes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The use of radiation-induced graft polymerization for obtaining polymeric biomaterial on the basis of preparation 'Piyavit'

    International Nuclear Information System (INIS)

    Kudryavtsev, V.N.; Degtyareva, T.V.; Kabanov, V.Ya.

    1998-01-01

    The purpose of the present study is to obtain hemocompatible polymeric materials. The method of modification of polymer surface have been elaborated using the radiation-induced graft polymerization after which the surface is capable of coupling with the biologically active substances (BAS) produced from the medicinal leeches. At the Biological Department of Lomonosov Moscow State University was created a medicinal preparation 'Piyavit' isolated from the salivary glands secretion of the medicinal leeches (Hirudo medicinalis). It possess a wide spectrum of biological action on the human organism thanks to the presence of an unique complex natural of BAS (enzymes, inhibitors of proteolityc ensymes, prostanoids and et. al) guaranteed the anticoagulating, thrombolytic, antithrombotic, antiphlogistic, antiatherosclerotic, hypotentic effects and et al.. It has several advantages over anticoagulant heparin which is widely used for above mentioned purpose. 'Piyavit' is the multifunctional preparation, has not negative side-effects and is more cheap. The method of obtaining biocompatible polymers (basically polyethylene) with immobilized 'Piyavit' consist of three stages: 1. The modification of polymer surface by the radiation-induced graft polymerization of acrylic acid to obtain grafted chains polyacrylic acid (PAA) with controlled number and length. 2. The treatment of radiation grafted PAA by thionyl chloride that lead to conversion carboxyl groups of PAA in highly reactive acide chloride groups. 3. The covalent immobilization BAS of 'Piyavit' by acylation amino- and hydroxy-groups (functional groups in BAS) by acide chloride of PAA grafted on the polymere. (author)

  3. Design and testing of tubular polymeric capsules for self-healing of concrete

    Science.gov (United States)

    Araújo, M.; Van Tittelboom, K.; Feiteira, J.; Gruyaert, E.; Chatrabhuti, S.; Raquez, J.-M.; Šavija, B.; Alderete, N.; Schlangen, E.; De Belie, N.

    2017-10-01

    Polymeric healing agents have proven their efficiency to heal cracks in concrete in an autonomous way. However, the bottleneck for valorisation of self-healing concrete with polymeric healing agents is their encapsulation. In the present work, the suitability of polymeric materials such as poly(methyl methacrylate) (PMMA), polystyrene (PS) and poly(lactic acid) (PLA) as carriers for healing agents in self-healing concrete has been evaluated. The durability of the polymeric capsules in different environments (demineralized water, salt water and simulated concrete pore solution) and their compatibility with various healing agents have been assessed. Next, a numerical model was used to simulate capsule rupture when intersected by a crack in concrete and validated experimentally. Finally, two real-scale self-healing concrete beams were made, containing the selected polymeric capsules (with the best properties regarding resistance to concrete mixing and breakage upon crack formation) or glass capsules and a reference beam without capsules. The self-healing efficiency was determined after crack creation by 3-point-bending tests.

  4. Two- and Three-Component Visible Light Photoinitiating Systems for Radical Polymerization Based on Onium Salts: An Overview of Mechanistic and Laser Flash Photolysis Studies

    Directory of Open Access Journals (Sweden)

    María L. Gómez

    2012-01-01

    Full Text Available A review of our work on two- and-three component photoinitiator systems is presented. The emphasis is in on visible light polymerization in aqueous media. The systems discussed comprise a synthetic dye as sensitizer and an onium salt as coinitiator, or a dye-amine-onium salt with the amine as coinitiator and the onium salt as an enhancer of the polymerization efficiency. The effect of the composition of the system on the photopolymerization kinetics was analyzed. To this end, the photophysics and photochemistry of the dye under polymerization conditions was explored by means of stationary and time-resolved spectroscopic methods. Different dyes and onium salts were investigated. The action mechanism of the different photoinitiators systems is discussed.

  5. Raman spectrum of natural and synthetic stishovite

    Science.gov (United States)

    Hemley, R.J.; Mao, Ho-kwang; Chao, E.C.T.

    1986-01-01

    Raman spectra of natural and synthetic samples of stishovite have been measured with a micro-optical spectrometer system. These spectra have a pattern that is characteristic of rutile-structured oxides. The spectrum of synthetic stishovite is characterized by well-resolved bands at 231, 589, 753, and 967 cm-1, which are assigned as the B1g, Eg, A1g, and B2g fundamentals, respectively, of the first-order Raman spectrum of the ideal, ordered structure. Natural stishovite obtained from Meteor Crater, Arizona has a first-order Raman spectrum that is fully consistent with that of the synthetic material. The observed spectrum of the natural sample, however, is weaker and has bands in addition to those identified as fundamentals in the spectrum of the synthetic material. A broad band at ???475 cm-1 may be indicative of glass or contaminants derived from the extraction procedure. Alternatively, this band may arise from multiphonon scattering that is enhanced by poor crystallinity or structural disorder in the natural shocked sample. ?? 1986 Springer-Verlag.

  6. Method of predicting air pollution of coal mines with use of new synthetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, V V; Putilina, O.N.

    1988-08-01

    Presents a methodological approach that enables on the basis of laboratory experiment to give a hygienic evaluation of synthetic materials used in coal mines to harden coal and rock masses to prevent rock falls and caving and for hermetization of ventilation equipment. Polyurethane, carbamidoformaldehyde and phenolformaldehyde plastic foam are studied in an experiment tha examined quantitative emission ofsubstances from their original components in the process of forming contaminants. Synthetics in a beaker are placed in an exsiccator, mixed with air, samples of volatiles particles collected and dynamics of their emission are calculated using regression and linear equations. Amounts of 2,4- toluenediisocyanate and diethylamine produced by polyurethane, and formaldehyde and methanol from carbamidoformaldehyde did not exceed limits of maximum concentrations; phenolformaldehyde plastic foam produced amounts of phenols and formaldehydes that are significantly higher than maximal permissible concentrations. Laboratory procedure and use of formulae were confirmed by testing air in a Donetsugol' mine. Polyurethane and carbamidoformaldehyde didnot contaminate air above hygienically safe limits, while phenolformaldehyde plastic foam exceeded safety limits proving need for hygienic measures to protect miners from its contaminants. Adequacy of laboratory-mathematical method to evaluate emissions of harmful chemicals from resins under mining conditions shows value of laboratory testing of many resins for safety in mine use. 4 refs.

  7. National Nanotechnology Laboratory (LNNano) open facilities for scientific community: new methods for polymeric materials characterization

    International Nuclear Information System (INIS)

    Silva, Cristiane A.; Santos, Ramon H.Z. dos; Bernardes, Juliana S.; Gouveia, Rubia F.

    2015-01-01

    National Nanotechnology Laboratory (LNNano) at the National Center for Energy and Materials (CNPEM) presents open facilities for scientific public in some areas. In this work will be discussed the facilities for mainly the polymeric community, as well as new methods for the characterization. Low density polyethylene (LDPE) surfaces were characterized by X-ray microtomography and X-ray photoelectron spectroscopy (XPS). The results obtained by microtomography have shown that these surfaces present different contrasts when compared with the bulk. These differences are correlated with the formation of an oxidized layer at the polymer surface, which consequently have a greater X-ray attenuation. This hypothesis is confirmed by XPS, which shows LDPE surface layers are richer in carbonyl, carboxyl and vinyl groups than the bulk. This work presents that microtomography can be used as a new method for detection and characterization of polymer surface oxidation. (author)

  8. Structure-property-correlation of 3D microstructures fabricated using two-photon-polymerization

    International Nuclear Information System (INIS)

    Cicha, K.

    2012-01-01

    In the research field of materials sciences, the determination of material properties such as Young's modulus, tensile strength, elongation at break and the like is done on a routine basis. However, when the size of the available test sample gets smaller (in the range of a few millimeters) many of the classic material testing methods are no longer applicable. Components or structures which were fabricated using two-photon polymerization (2PP) are micrometer scale - traditional testing methods are no longer applicable. It was therefore the aim of this thesis to develop routines which allow a characterization of materials or material components (monomer, photoinitiator) with respect to their suitability for the two-photon process. The three methods differ significantly in terms of the measurement result, the user friendliness and the effort for evaluation of the measurement. While the first method is based on optical assessment of manufactured structures and thus provides no quantifiable results, method 2 and method 3 give a quantifiable measure as result of the test procedure. In method 2, the double-bond conversion is measured by using FTIR spectroscopy giving direct information on the reactivity of the material formulation. Method 3 is based on the measurement of the Young's modulus of micro-cantilevers that are deflected by a standard nanoindentation device recording the load and the corresponding deflection signals. Quantifiable measurement of material properties on samples that were fabricated by two-photon polymerization represents an absolute novelty and can provide new insights into the exact mechanisms of the two-photon polymerization. (author) [de

  9. Pervaporation separation of ethanol-water mixtures using polyethylenimine composite membranes

    Science.gov (United States)

    Neidlinger, H.H.; Schissel, P.O.; Orth, R.A.

    1985-06-19

    Synthetic, organic, polymeric membranes were prepared from polyethylenimine for use with pervaporation apparatus in the separation of ethanol-water mixtures. The polymeric material was prepared in dilute aqueous solution and coated onto a polysulfone support film, from which excess polymeric material was subsequently removed. Cross-links were then generated by limited exposure to toluene-2,4-diisocyanate solution, after which the prepared membrane was heat-cured. The resulting membrane structures showed high selectivity in permeating ethanol or water over a wide range of feed concentrations. 2 tabs.

  10. Water vapor and Gas Transport through Polymeric Membranes

    NARCIS (Netherlands)

    Metz, S.J.

    2003-01-01

    Water vapor transport through polymeric materials plays an important role in a large number of applications such as: food packaging, breathable clothing, roofing membranes, diapers, and the removal of water vapor from gas streams (e.g. dehydration of natural gas or the drying of compressed air).

  11. Synthetic Sling Failure - Evaluations and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. S. [Washington River Protection Solutions, Richland, WA (United States); Mackey, Thomas C. [Washington River Protection Solutions, Richland, WA (United States)

    2009-10-26

    The information and evaluations provided in this report were compiled to address the recurring problem of synthetic sling failure. As safety is the number one priority in all work aspects, a solution must be devised to prevent accidents from occurring. A total of thirteen cases regarding synthetic sling failure were evaluated in order to determine their causes, effects, and preventative measures. From the collected data, it was found that all cases in which the synthetic sling contacted the edge of its load resulted in sling failure. It is required that adequate synthetic sling protection devices be used to protect slings in any lift where the sling comes in direct contact with the edge or corner of its load. However, there are no consensus codes or standards stating the type, material, or purpose of the type of protective device used to protect the sling from being cut. Numerous industry standards and codes provide vague descriptions on how to protect synthetic slings. Without a clear, concise statement of how to protect synthetic slings, it is common for inadequate materials and sling protection devices to be used in an attempt to meet the intent of these requirements. The use of an inadequate sling protection device is the main cause of synthetic sling failure in all researched cases. Commercial sling protection devices come in many shapes and sizes, and have a variety of names, as well as advertised uses. 'Abrasion pads' and 'wear protectors' are two different names for products with the same intended purpose. There is no distinguishable way to determine the extent of sling protection which these devices will provide, or what specific scenarios they are made for. This creates room for error in a field where error is unacceptable. This report provides a recommended action for hoisting and rigging activities which require synthetic slings to contact a load, as well as recommended changes to industry standards which will benefit overall

  12. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  13. Photonic devices based on patterning by two photon induced polymerization techniques

    Science.gov (United States)

    Fortunati, I.; Dainese, T.; Signorini, R.; Bozio, R.; Tagliazucca, V.; Dirè, S.; Lemercier, G.; Mulatier, J.-C.; Andraud, C.; Schiavuta, P.; Rinaldi, A.; Licoccia, S.; Bottazzo, J.; Franco Perez, A.; Guglielmi, M.; Brusatin, G.

    2008-04-01

    Two and three dimensional structures with micron and submicron resolution have been achieved in commercial resists, polymeric materials and sol-gel materials by several lithographic techniques. In this context, silicon-based sol-gel materials are particularly interesting because of their versatility, chemical and thermal stability, amount of embeddable active compounds. Compared with other micro- and nano-fabrication schemes, the Two Photon Induced Polymerization is unique in its 3D processing capability. The photopolymerization is performed with laser beam in the near-IR region, where samples show less absorption and less scattering, giving rise to a deeper penetration of the light. The use of ultrashort laser pulses allows the starting of nonlinear processes like multiphoton absorption at relatively low average power without thermally damaging the samples. In this work we report results on the photopolymerization process in hybrid organic-inorganic films based photopolymerizable methacrylate-containing Si-nanobuilding blocks. Films, obtained through sol-gel synthesis, are doped with a photo-initiator allowing a radical polymerization of methacrylic groups. The photo-initiator is activated by femtosecond laser source, at different input energies. The development of the unexposed regions is performed with a suitable solvent and the photopolymerized structures are characterized by microscopy techniques.

  14. The synthesis of poly(vinylphosphonic acid-co-methacrylic acid) microbeads by suspension polymerization and the characterization of their indium adsorption properties

    International Nuclear Information System (INIS)

    Kwak, Noh-Seok; Baek, Youngmin; Hwang, Taek Sung

    2012-01-01

    Highlights: ► Microbeads were synthesized by suspension polymerization based on VPA, MAA and PEGDA. ► The best preparation condition was determined from the yield, water uptake and IEC. ► The adsorption isotherm of indium was fit to the Langmuir and Freundlich models. - Abstract: Poly(vinylphosphonic acid-co-methacrylic acid) microbeads were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The obtained microbeads were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The microbeads were wrinkled spheres, irrespective of the components, and their sizes ranged from 100 to 200 μm. The microbeads were thermally stable up to 260 °C. As the vinylphosphonic acid (VPA) content was increased, the synthetic yields and ion-exchange capacities decreased and the water uptakes increased. The optimum synthetic yield, ion-exchange capacity and water uptake were obtained at a 0.5 mol ratio of VPA. In addition, the maximum adsorption predicted by the Langmuir adsorption isotherm model was greatest at a 0.5 mol ratio of VPA.

  15. The synthesis of poly(vinylphosphonic acid-co-methacrylic acid) microbeads by suspension polymerization and the characterization of their indium adsorption properties

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Noh-Seok; Baek, Youngmin [Department of Applied Chemistry and Biological Engineering, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764 (Korea, Republic of); Hwang, Taek Sung, E-mail: tshwang@cnu.ac.kr [Department of Applied Chemistry and Biological Engineering, Chungnam National University, 79 Daehangno, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Microbeads were synthesized by suspension polymerization based on VPA, MAA and PEGDA. Black-Right-Pointing-Pointer The best preparation condition was determined from the yield, water uptake and IEC. Black-Right-Pointing-Pointer The adsorption isotherm of indium was fit to the Langmuir and Freundlich models. - Abstract: Poly(vinylphosphonic acid-co-methacrylic acid) microbeads were synthesized by suspension polymerization, and their indium adsorption properties were investigated. The obtained microbeads were characterized by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The microbeads were wrinkled spheres, irrespective of the components, and their sizes ranged from 100 to 200 {mu}m. The microbeads were thermally stable up to 260 Degree-Sign C. As the vinylphosphonic acid (VPA) content was increased, the synthetic yields and ion-exchange capacities decreased and the water uptakes increased. The optimum synthetic yield, ion-exchange capacity and water uptake were obtained at a 0.5 mol ratio of VPA. In addition, the maximum adsorption predicted by the Langmuir adsorption isotherm model was greatest at a 0.5 mol ratio of VPA.

  16. Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization

    International Nuclear Information System (INIS)

    Yasar-Inceoglu, Ozgul; Mangolini, Lorenzo; Zhong, Lanlan

    2015-01-01

    Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3–4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented. (paper)

  17. Core/shell silicon/polyaniline particles via in-flight plasma-induced polymerization

    Science.gov (United States)

    Yasar-Inceoglu, Ozgul; Zhong, Lanlan; Mangolini, Lorenzo

    2015-08-01

    Although silicon nanoparticles have potential applications in many relevant fields, there is often the need for post-processing steps to tune the property of the nanomaterial and to optimize it for targeted applications. In particular surface modification is generally necessary to both tune dispersibility of the particles in desired solvents to achieve optimal coating conditions, and to interface the particles with other materials to realize functional heterostructures. In this contribution we discuss the realization of core/shell silicon/polymer nanoparticles realized using a plasma-initiated in-flight polymerization process. Silicon particles are produced in a non-thermal plasma reactor using silane as a precursor. After synthesis they are aerodynamically injected into a second plasma reactor into which aniline vapor is introduced. The second plasma initiates the polymerization reactor leading to the formation of a 3-4 nm thick polymer shell surrounding the silicon core. The role of processing conditions on the properties of the polymeric shell is discussed. Preliminary results on the testing of this material as an anode for lithium ion batteries are presented.

  18. Production methodologies of polymeric and hydrogel particles for drug delivery applications.

    Science.gov (United States)

    Lima, Ana Catarina; Sher, Praveen; Mano, João F

    2012-02-01

    Polymeric particles are ideal vehicles for controlled delivery applications due to their ability to encapsulate a variety of substances, namely low- and high-molecular mass therapeutics, antigens or DNA. Micro and nano scale spherical materials have been developed as carriers for therapies, using appropriated methodologies, in order to achieve a prolonged and controlled drug administration. This paper reviews the methodologies used for the production of polymeric micro/nanoparticles. Emulsions, phase separation, spray drying, ionic gelation, polyelectrolyte complexation and supercritical fluids precipitation are all widely used processes for polymeric micro/nanoencapsulation. This paper also discusses the recent developments and patents reported in this field. Other less conventional methodologies are also described, such as the use of superhydrophobic substrates to produce hydrogel and polymeric particulate biomaterials. Polymeric drug delivery systems have gained increased importance due to the need for improving the efficiency and versatility of existing therapies. This allows the development of innovative concepts that could create more efficient systems, which in turn may address many healthcare needs worldwide. The existing methods to produce polymeric release systems have some critical drawbacks, which compromise the efficiency of these techniques. Improvements and development of new methodologies could be achieved by using multidisciplinary approaches and tools taken from other subjects, including nanotechnologies, biomimetics, tissue engineering, polymer science or microfluidics.

  19. The emerging age of cell-free synthetic biology.

    Science.gov (United States)

    Smith, Mark Thomas; Wilding, Kristen M; Hunt, Jeremy M; Bennett, Anthony M; Bundy, Bradley C

    2014-08-25

    The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  20. Olefin polymerization from single site catalysts confined within porous media

    Science.gov (United States)

    Kasi, Rajeswari M.

    Single Site Catalysts (SSCs) have been utilized for olefin polymerization. Altering the metal-ligand architecture in the SSCs, polyolefin properties can be enhanced in a rational manner. This influence of the ligands in the SSC on the property of polyolefins prepared can be referred to as the primary ligand influence. Extending this understanding and subsequent control of the metal-ligand framework to the interaction of SSCs within organic and inorganic supports is vital for the synthesis of polyolefins with tailored properties. The motivation behind this thesis was to explore the support influence on the reactivity of the SSC tethered to a support matrix during ethylene homo and copolymerization. In order to address this question of the support influence on the final polyolefin properties, synthetic routes to covalently bind SSCs on different matrices have been explored. Two distinct supported SSCs have been used to prepare branched polyethylenes. Branched polyethylenes can be prepared by either copolymerization (ethylene and alpha-olefin) or oligomerization/copolymerization processes (ethylene and in situ generated alpha-olefin). Synthetic routes to prepare precursor catalysts to Constrained Geometry Catalysts (CGCs) by silyl elimination chemistry have been developed (Chapter 2). Efficient synthetic protocols to assemble CGCs on aminomethylpolysytrene matrices (Chapter 3) and amine-functionalized mesoporous silica (Chapter 4) are also reported. These supported catalysts, with appropriate cocatalysts have been used to prepare ethylene homo and copolymers, the polymer thermal properties and microstructures were analyzed by various analytical techniques. Branched polyethylenes (LLDPE) can be prepared by copolymerization chemistry. It has been observed is that the influence of the support is seen in the production of lower crystalline forms of high density polyethylene (HDPE, 20--50% crystalline), while homogeneous polymerization of analogous soluble CGCs afford HDPE

  1. Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units.

    Science.gov (United States)

    Mousavinasab, Sayed-Mostafa; Khoroushi, Maryam; Moharreri, Mohammadreza; Atai, Mohammad

    2014-08-01

    Light-curing of resin-based materials (RBMs) increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs) of three different RBMs using quartz tungsten halogen (QTH) and light-emitting diode (LED) units (LCUs). Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12) during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey), a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE), and a giomer (Beautifil II, Shofu GmbH), was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p 0.05). Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU.

  2. Engineering an artificial amoeba propelled by nanoparticle-triggered actin polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yi Jinsoo; Schmidt, Jacob; Chien Aichi; Montemagno, Carlo D [Department of Bioengineering, University of California Los Angeles, 420 Westwood Plaza, 7523 Boelter Hall, Los Angeles, CA 90095-1600 (United States)], E-mail: montemcd@ucmail.uc.edu

    2009-02-25

    We have engineered an amoeba system combining nanofabricated inorganic materials with biological components, capable of propelling itself via actin polymerization. The nanofabricated materials have a mechanism similar to the locomotion of the Listeria monocytogenes, food poisoning bacteria. The propulsive force generation utilizes nanoparticles made from nickel and gold functionalized with the Listeria monocytogenes transmembrane protein, ActA. These Listeria-mimic nanoparticles were in concert with actin, actin binding proteins, ATP (adenosine triphosphate) and encapsulated within a lipid vesicle. This system is an artificial cell, such as a vesicle, where artificial nanobacteria and actin polymerization machinery are used in driving force generators inside the cell. The assembled structure was observed to crawl on a glass surface analogously to an amoeba, with the speed of the movement dependent on the amount of actin monomers and ATP present.

  3. Emulsion polymerization with high energy radiation

    International Nuclear Information System (INIS)

    Stannett, V.T.; Stahel, E.P.

    1992-01-01

    High energy radiation, particularly that of cobalt-60 or caesium-137 gamma-rays, provides in principle an ideal initiator for emulsion polymerization. The high free radical yields from the radiolysis of the aqueous phase combined with the high kinetic chain lengths associated with emulsion polymerization lead to a highly effective utilization of the radiation. There are other important advantages compared with the use of chemical initiators such as potassium persulfate. These are outlined in the chapter, together with some attendant disadvantages. Radiation-induced initiation is temperature independent, and low temperature polymerizations can be conducted with ease. Monomers that mainly terminate their growing chains by chain transfer to monomer give higher molecular weights at lower temperatures. Industrially, vinyl acetate is an important example of such a monomer, and it has been studied using radiation initiation. Both laboratory and pilot plant studies have been carried out and reported. The results are summarized in this chapter. Styrene is the classical example of a material that under a number of conditions closely obeys the so-called ideal Smith-Ewart kinetics. It has been found that under similar conditions but substituting radiation for potassium persulfate as the initiator, ideal kinetics were closely followed. Most of the conventional and some non-standard vinyl and diene monomers have been studied to some extent with radiation-initiated polymerizations in emulsion. To conserve space however, this chapter presents and discusses the results obtained only with styrene and vinyl acetate, both in laboratory and pilot plant investigations. Other monomers and special situations are referenced either directly or to the other available reviews. (orig.)

  4. Parity-Time Synthetic Phononic Media

    DEFF Research Database (Denmark)

    Christensen, Johan; Willatzen, Morten; Velasco, V. R.

    2016-01-01

    media, have been devised in many optical systems with the ground breaking potential to create nonreciprocal structures and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where the most important ingredients within synthetic materials, loss and gain......, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection....

  5. Preparation and characterization of pyrromethene-567 dye-doped polymer samples using Gamma Irradiation Polymerization Method (GIPM)

    Energy Technology Data Exchange (ETDEWEB)

    Al-Ghamdi, Attieh A., E-mail: aaaalghamdi4@kau.edu.sa [Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia); Mahrous, Eiman M. [Taibah University, Department of Physics, Madinah (Saudi Arabia); Al-Enizi, Abdullah M. [King Saud University, Department of Chemistry, Riyadh (Saudi Arabia); Azam, Ameer [Center of Nanotechnology, King Abdulaziz University, Jeddah (Saudi Arabia)

    2015-01-15

    Dye-doped polymer gain media laser samples of pyrromethene-567 in a mixture with methyl methacrylate and 2-hydroxyethyl methacrylate copolymer have been prepared and synthesized by the Conventional Thermal Polymerization Method (CTPM) using an oven, and by the Gamma Irradiation Polymerization Method (GIPM) using Cobalt-60 ({sup 60}Co). Physical properties comprising absorption molar coefficients, absorption cross sections, fluorescence quantum yields, fluorescence life times, and emission cross sections were determined and calculated from the measured absorption and emission spectra. The efficiency and photo-stability of samples fabricated by both methods were measured and compared. The time required for synthesis was reduced by 90% using the GIPM. Complete polymerization of the GIPM sample was found to be at 7 kGy. Further, the GIPM produces high laser damage resistance material, which might be attributed to the highly dense polymeric network structure formed as a result of the effect of gamma radiation on MMA and HEMA monomers. - Highlights: • Samples of PM-567 in a mixture with MMA/HEMA were synthesized by the GIPM. • The time required for synthesis was reduced by 90% using the GIPM. • Complete polymerization of the GIPM sample was at 7 kGy. • The laser media produced is fast and free of contamination that gives high purity material. • The GIPM produced a high laser damage resistance material.

  6. Flexible Polymeric Materials Prepared by Radiation Copolymerization of MMA/ Pyridene in the Presence of Acrylic Acid

    International Nuclear Information System (INIS)

    Hegazy, D.E.

    2014-01-01

    Gamma-irradiation initiated copolymerization of methyl methacrylate (MMA) and pyridine (Py) was carried out at room temperature.To improve the obtained copolymer functionality and molecular weight, acrylic acid (AA) was incorporated into the mixture during irradiation. The samples were characterized by thermal analysis techniques (DSC and TGA), Fourier transform infrared spectroscopy (FTIR) and UV-VIS spectrometry. Molecular weight of the obtained copolymers was determined using gel permeation chromatography (GPC). The variation of refractive index and surface hardness with the molecular weight were also investigated. The results obtained show a decrease in glass transition temperature and the hardness (shore D) of the supporting matrix for P(MMA/Py) copolymers with a pronounced increase of the molecular weight. The addition of PAA into the matrix enhanced the hardness and shifts the glass transition temperature to a little higher temperature with a pronounced decrease in the melting temperature. The obtained materials maintain good structural order and flexibility resulting from the softening effect of pyridine onto MMA matrix. The studies performed made possible the selection of experimental conditions to be adequate for the production of new co polymeric materials with high molecular weight that having good flexibility and transparent properties.

  7. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  8. Membrane properties for permeability testing: Skin versus synthetic membranes.

    Science.gov (United States)

    Haq, Anika; Dorrani, Mania; Goodyear, Benjamin; Joshi, Vivek; Michniak-Kohn, Bozena

    2018-03-25

    Synthetic membranes that are utilized in diffusion studies for topical and transdermal formulations are usually porous thin polymeric sheets for example cellulose acetate (CA) and polysulfones. In this study, the permeability of human skin was compared using two synthetic membranes: cellulose acetate and Strat-M® membrane and lipophilic and hydrophilic compounds either as saturated or formulated solutions as well as marketed dosage forms. Our data suggests that hydrophilic compounds have higher permeation in Strat-M membranes compared with lipophilic ones. High variation in permeability values, a typical property of biological membranes, was not observed with Strat-M. In addition, the permeability of Strat-M was closer to that of human skin than that of cellulose acetate (CA > Strat-M > Human skin). Our results suggest that Strat-M with little or no lot to lot variability can be applied in pilot studies of diffusion tests instead of human skin and is a better substitute than a cellulose acetate. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Syringyl Methacrylate, a Hardwood Lignin-Based Monomer for High-Tg Polymeric Materials.

    Science.gov (United States)

    Holmberg, Angela L; Reno, Kaleigh H; Nguyen, Ngoc A; Wool, Richard P; Epps, Thomas H

    2016-05-17

    As viable precursors to a diverse array of macromolecules, biomass-derived compounds must impart wide-ranging and precisely controllable properties to polymers. Herein, we report the synthesis and subsequent reversible addition-fragmentation chain-transfer polymerization of a new monomer, syringyl methacrylate (SM, 2,6-dimethoxyphenyl methacrylate), that can facilitate widespread property manipulations in macromolecules. Homopolymers and heteropolymers synthesized from SM and related monomers have broadly tunable and highly controllable glass transition temperatures ranging from 114 to 205 °C and zero-shear viscosities ranging from ∼0.2 kPa·s to ∼17,000 kPa·s at 220 °C, with consistent thermal stabilities. The tailorability of these properties is facilitated by the controlled polymerization kinetics of SM and the fact that one vs two o -methoxy groups negligibly affect monomer reactivity. Moreover, syringol, the precursor to SM, is an abundant component of depolymerized hardwood (e.g., oak) and graminaceous (e.g., switchgrass) lignins, making SM a potentially sustainable and low-cost candidate for tailoring macromolecular properties.

  10. Synthesis of polystyrene with high melting temperature through BDE/CuCl catalyzed polymerization

    Institute of Scientific and Technical Information of China (English)

    WAN; Xiaolong

    2001-01-01

    and purified of copper halide, Inog. Synth., 1946, 2: 1.[22]Ishihara, N., Seimiya, M., Kuramoto, U. M., Crystalline syndiotactic polystyrene, Macromolecules, 1986, 19: 2464.[23]Sato, H., Tanaka, Y., Hatada, K., C-13 NMR analysis of polystyrene from low-molecular-weight model compounds, J. Polym. Sci., Polym. Phys. Ed., 1983, 21: 1667.[24]Wan Xiaolong, Ying Shengkang, Living radical bulk polymerization catalyzed by Cu/BDE, China Synthetic Rubber Industry, 1999, 22(1): 53.

  11. Thermal, spectral, and surface properties of LED light-polymerized bulk fill resin composites.

    Science.gov (United States)

    Pişkin, Mehmet Burçin; Atalı, Pınar Yılmaz; Figen, Aysel Kantürk

    2015-02-01

    The aim of this study was to evaluate the thermal, spectral, and surface properties of four different bulk fill materials – SureFil SDR (SDR, Dentsplay DETREY), QuixFil (QF, Dentsplay DETREY), X-tra base (XB, Voco) X-tra fil (XF, Voco) – polymerized by light-emitting diode (LED). Resin matrix, filler type, size and amount, and photoinitiator types influence the degree of conversion. LED-cured bulk fill composites achieved sufficient polymerization. Scanning electron microscope (SEM) analysis revealed different patterns of surface roughness, depending on the composite material. Bulk fill materials showed surface characteristics similar to those of nanohybrid composites. Based on the thermal analysis results, glass transition (T(g)) and initial degradation (T(i)) temperatures changed depending on the bulk fill resin composites.

  12. Recent advances and developments in composite dental restorative materials.

    Science.gov (United States)

    Cramer, N B; Stansbury, J W; Bowman, C N

    2011-04-01

    Composite dental restorations represent a unique class of biomaterials with severe restrictions on biocompatibility, curing behavior, esthetics, and ultimate material properties. These materials are presently limited by shrinkage and polymerization-induced shrinkage stress, limited toughness, the presence of unreacted monomer that remains following the polymerization, and several other factors. Fortunately, these materials have been the focus of a great deal of research in recent years with the goal of improving restoration performance by changing the initiation system, monomers, and fillers and their coupling agents, and by developing novel polymerization strategies. Here, we review the general characteristics of the polymerization reaction and recent approaches that have been taken to improve composite restorative performance.

  13. Synthesis of nanoporous carbons from mixtures of coal tar pitch and furfural and their application as electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Petrova, B.; Tsyntsarski, B.; Budinova, T.; Petrov, N.; Ania, C.O.; Parra, J.B.; Mladenov, M.; Tzvetkov, P.

    2010-11-15

    Synthetic nanoporous carbons are prepared by polymerization of mixtures containing coal tar pitch and furfural in different proportions, followed by carbonization of obtained solid product and steam activation of the carbonizate. The chemical composition of the initial mixture significantly affects the physicochemical properties (surface area, pore structure, electro resistance and amount of oxygen-containing groups on the surface) of the obtained materials. The incorporation of oxygen in the precursor mixture by means of furfural, has a strong influence in the synthetic step; increasing the furfural content facilitates the formation of a solid product characterized by a large oxygen content. Moreover, the solid product is more reactive towards activation as the furfural content increases, giving rise to nanoporous carbons with large surface areas and unique chemical features (high density of oxygen functionalities of basic nature). These nanoporous carbons have been investigated as electrodes in electrochemical applications. (author)

  14. Synthesis and Characterization of a Chondroitin Sulfate Based Hybrid Bio/Synthetic Biomimetic Aggrecan Macromolecule

    Science.gov (United States)

    Sarkar, Sumona

    Lower back pain resulting from intervertebral disc degeneration is one of the leading musculoskeletal disorders confronting our health system. In order to mechanically stabilize the disc early in the degenerative cascade and prevent the need for spinal fusion surgeries, we have proposed the development of a hybrid-bio/synthetic biomimetic proteoglycan macromolecule for injection into the disc in the early stages of degeneration. The goal of this thesis was to incorporate natural chondroitin sulfate (CS) chains into bottle brush polymer synthesis strategies for the fabrication of CS-macromolecules which mimic the proteoglycan structure and function while resisting enzymatic degradation. Both the "grafting-to" and "grafting-through" techniques of bottle brush synthesis were explored. CS was immobilized via a terminal primary amine onto a model polymeric backbone (polyacrylic acid) for investigation of the "grafting-to" strategy and an epoxy-amine step-growth polymerization technique was utilized for the "grafting-through" synthesis of CS-macromolecules with polyethylene glycol backbone segments. Incorporation of a synthetic polymeric backbone at the terminal amine of CS was confirmed via biochemical assays, 1H-NMR and FTIR spectroscopy, and CS-macromolecule size was demonstrated to be higher than that of natural CS via gel permeation chromatography, transmission electron microscopy and viscosity measurements. Further analysis of CS-macromolecule functionality indicated maintenance of natural CS properties such as high fixed charge density, high osmotic potential and low cytotoxicity with nucleus pulposus cells. These studies are the first attempt at the incorporation of natural CS into biomimetic bottle brush structures. CS-macromolecules synthesized via the methods developed in these studies may be utilized in the treatment and prevention of debilitating back pain as well as act as mimetics for other proteoglycans implicated in cartilage, heart valve, and nervous

  15. Ecological materials for solar architecture

    International Nuclear Information System (INIS)

    Zbasnik-Senegaenik, M.

    2000-01-01

    In general, materials which have been used in construction, have had a negative influence in all the phases of the life cycle. The effects can be seen in the form of tampering with the environment, overuse of electric power, harmful emissions, wastes and in the form of pollution with vapours, dust, fibres, poisonous and radioactive matter. Materials can be divided into three groups regarding their origin: natural materials, artificial mineral materials and synthetic materials. An assessment of separate influences on macro- and micro-environment shows a hierarchical scale of suitability of material use. Materials of natural origin (stone, clay, wood) and less artificial ones (brick, ceramic, metals, glass, lime, cement, concrete, mineral thermal-insulation materials) are most convenient for man and environment. Synthetic materials (plastics, polymers, synthetic thermal-insulation materials, synthetic pastes, composed synthetic materials) negatively influence macro- and micro-environment and therefore they should be used on an extremely selective and premeditated basis. Ecological structure of the future will demand the nowadays-established exploitation of natural sources of power and passive exploitation of natural resources. Introduction of ecological constructing is to be foreseen in planing of the future buildings. At present ecological constructing includes two principles ecological selection of materials and disintegration of composite materials and constructions. (au)

  16. Organometallic Polymeric Conductors

    Science.gov (United States)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  17. Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method

    International Nuclear Information System (INIS)

    Zhang, Lei; Zhu, Jiaoqun; Zhou, Weibin; Wang, Jun; Wang, Yan

    2011-01-01

    Highlights: → Form-stable PMMA/PEG/AlN PCMs were prepared by in situ polymerization method. → AlN additive effectively enhanced the heat transfer property of composite PCMs. → The composites exhibited desirable thermal performance and electric insulativity. → The composites were available for the thermal management of electronic device. - Abstract: This work was focused on the preparation and characterization of a new type of form-stable phase change material (PCM) employed in thermal management. Using the method of in situ polymerization, polyethylene glycol (PEG) acting as the PCM and aluminum nitride (AlN) serving as the thermal conductivity promoter were uniformly encapsulated and embedded inside the three-dimensional network structure of PMMA matrix. When the mass fraction of PEG was below 70%, the prepared composite PCMs remained solid without leakage above the melting point of the PEG. XRD and FT-IR results indicated that the PEG was physically combined with PMMA matrix and AlN additive and did not participate in the polymerization. Thermal analysis results showed that the prepared composite PCMs possess available latent heat capacity and thermal stability, and the AlN additive was able to effectively enhance the heat transfer property of organic PCM. Moreover, the volume resistivity of composite achieved (5.92 ± 0.16) x 10 10 Ω cm when the mass ratio of AlN was 30%. To sum up, the prepared form-stable PCMs were competent for the thermal management of electronic device due to their acceptable thermal performance and electric insulativity.

  18. Charpy Impact Test on Polymeric Molded Parts

    Directory of Open Access Journals (Sweden)

    Alexandra Raicu

    2012-09-01

    Full Text Available The paper presents the Charpy impact tests on the AcrylonitrileButadiene-Styrene (ABS polymeric material parts. The Charpy impact test, also known as the Charpy V-notch test, is a standardized strain rate test which determines the amount of energy absorbed by a material during fracture. This is a typical method described in ASTM Standard D 6110. We use for testing an Instron - Dynatup equipment which have a fully integrated hardware and software package that let us capture load information at very high speed from the impact tests.

  19. Dependence of the mechanical fracture energy of the polymeric composite material from the mixture of filler fractions

    Directory of Open Access Journals (Sweden)

    E. M. Nurullaev

    2015-01-01

    Full Text Available This paper for the first time presents an equation for calculating the mechanical fracture energy of the polymeric composite material (PCM with regard to the basic formulation parameters. By means of the developed computer program the authors calculated the mechanical fracture energy of the polymer binder of the 3D cross-linked plasticized elastomer filled with multifractional silica. The solution of the integral equation was implemented using the corresponding dependence of stress on relative elongation at uniaxial tension. Engineering application of the theory was considered with respect to asphalt road covering. The authors proposed a generalized dependence of ruptural deformation of the polymer binder from the effective concentration of chemical and physical (intermolecular bonds for calculating the mechanical fracture energy of available and advanced PCMs as filled elastomers.

  20. SATL Based Lesson for Teaching Grignard Reagents in Synthetic ...

    African Journals Online (AJOL)

    Synthesizing new products from raw materials has been very popular aspects of research in organic chemistry. Traditionally, Grignard reagent has been very vital component of such synthetic procedures. Hence learning of various issues concerning with applications of Grignard reactions in synthetic organic chemistry is ...