WorldWideScience

Sample records for synthetic polymer scaffolds

  1. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  2. A new bioabsorbable cotton-textured synthetic polymer scaffold for osteochondral repair.

    Science.gov (United States)

    Sakata, Ryosuke; Kokubu, Takeshi; Mifune, Yutaka; Inui, Atsuyuki; Nishimoto, Hanako; Fujioka, Hiroyuki; Kuroda, Ryosuke; Kurosaka, Masahiro

    2014-11-01

    We have previously reported that a cylindrical bioabsorbable synthetic polymer scaffold made of poly (DL-lactide-co-glycolide) (PLG) can be used to repair osteochondral defects without using cultured cells in a rabbit model. This cylindrical scaffold has a solid and pre-formed design, which limits its widespread application. Therefore, we created a cotton-textured PLG scaffold, which would be superior to other scaffolds in terms of plastic property and operability. The purpose of the present study was to examine the efficacy of the cotton-textured PLG scaffold in the repair of osteochondral defects. Cotton-textured PLG scaffolds were prepared using the electrospinning method and used to repair osteochondral defects produced on the right femoral condyle in 36 rabbits. As a control, the defect was left untreated. The outcomes of repair were examined histologically at postoperative weeks four, eight, and 12. In the untreated control group, the surface of the defect remained concave and the regenerated cartilaginous tissue partially covered the articular surface even at postoperative week 12. In the scaffold group, cartilaginous tissue covered the surface of the defect at postoperative week four, and the surface was smooth and the cartilaginous tissue was well regenerated and integrated with the native cartilage at postoperative week 12. The cotton-textured PLG scaffold could repair the osteochondral defect with good outcomes similar to those previously reported for the cylindrical scaffold, with its characteristic advantages of better plasticity and operability. We conclude that the cotton-textured PLG scaffold has potential for clinical application in comminuted osteochondral injury.

  3. Mineralization of Synthetic Polymer Scaffolds: A Bottom-upApproach for the Development of Artificial Bone

    Energy Technology Data Exchange (ETDEWEB)

    Song, Jie; Viengkham, Malathong; Bertozzi, Carolyn R.

    2004-09-27

    The controlled integration of organic and inorganic components confers natural bone with superior mechanical properties. Bone biogenesis is thought to occur by templated mineralization of hard apatite crystals by an elastic protein scaffold, a process we sought to emulate with synthetic biomimetic hydrogel polymers. Crosslinked polymethacrylamide and polymethacrylate hydrogels were functionalized with mineral-binding ligands and used to template the formation of hydroxyapatite. Strong adhesion between the organic and inorganic materials was achieved for hydrogels functionalized with either carboxylate or hydroxy ligands. The mineral-nucleating potential of hydroxyl groups identified here broadens the design parameters for synthetic bone-like composites and suggests a potential role for hydroxylated collagen proteins in bone mineralization.

  4. Tissue engineered esophagus scaffold constructed with porcine small intestinal submucosa and synthetic polymers.

    Science.gov (United States)

    Fan, Mei-Rong; Gong, Mei; Da, Lin-Cui; Bai, Lin; Li, Xiu-Qun; Chen, Ke-Fei; Li-Ling, Jesse; Yang, Zhi-Ming; Xie, Hui-Qi

    2014-02-01

    Acellular porcine small intestinal submucosa (SIS) has been successfully used for reconstructing esophagus with half circumferential defects. However, repairing full circumferential esophageal defects with SIS has been restricted due to the latter's poor mechanical properties. In the present study, synthetic polyesters biomaterial poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(lactide-co-glycolide) (PLGA) have been used to improve the mechanical properties of SIS. Feasibility of SIS/PHBHHx-PLGA composite material scaffold for esophageal tissue engineering has been assessed through a series of testing. The appropriate mixing ratio of PHBHHx and PLGA polymers has been determined as 5:5 by mechanical testing and in vitro degradation experiment. The morphology of constructed membranous and tubular scaffolds was also characterized. As confirmed by enzyme-linked immunosorbent assay, the contents of VEGF and TGF-β have respectively reached 657 ± 18 ng mL(-1) and 130 ± 4 pg mL(-1) within the SIS/PHBHHx-PLGA specimens. Biocompatibility of the SIS/PHBHHx-PLGA specimens with rat bone marrow mesenchymal stem cells (MSCs) was also evaluated by scanning electron microscopy and a live-dead cell viability assay. Actin filaments of MSCs on the composite materials were labeled. Biological safety of the extract from SIS/PHBHHx-PLGA specimens, measured as hemolysis rate, was all lower than 5%. Compared with SIS and SIS/PHBHHx-PLGA specimens, inflammatory reaction provoked by the PHBHHx-PLGA specimens in rats was however more severe. Our results have suggested that SIS/PHBHHx-PLGA composite material can offer a new approach for esophageal tissue engineering.

  5. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process

    International Nuclear Information System (INIS)

    Park, Jeong Hun; Jung, Jin Woo; Cho, Dong-Woo; Kang, Hyun-Wook

    2014-01-01

    One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of complex 3D scaffolds by using both direct and indirect techniques. In principle, direct 3DP techniques rely on the straightforward utilization of the final scaffold materials during the actual scaffold fabrication process. In contrast, indirect 3DP techniques use a negative mold based on a scaffold design, to which the desired biomaterial is cast and then sacrificed to obtain the final scaffold. Such indirect 3DP techniques generally impose a solvent-based process for scaffold fabrication, resulting in a considerable increase in the fabrication time and poor mechanical properties. In addition, the internal architecture of the resulting scaffold is affected by the properties of the biomaterial solution. In this study, we propose an advanced indirect 3DP technique using projection-based micro-stereolithography and an injection molding system (IMS) in order to address these challenges. The scaffold was fabricated by a thermal molding process using IMS to overcome the limitation of the solvent-based molding process in indirect 3DP techniques. The results indicate that the thermal molding process using an IMS has achieved a substantial reduction in scaffold fabrication time and has also provided the scaffold with higher mechanical modulus and strength. In addition, cell adhesion and proliferation studies have indicated no significant difference in cell activity between the scaffolds prepared by solvent-based and thermal molding processes. (paper)

  6. Synthetic biodegradable functional polymers for tissue engineering: a brief review

    OpenAIRE

    BaoLin, GUO; MA, Peter X.

    2014-01-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glyce...

  7. Biodegradable Polymer-Based Scaffolds for Bone Tissue Engineering

    CERN Document Server

    Sultana, Naznin

    2013-01-01

    This book addresses the principles, methods and applications of biodegradable polymer based scaffolds for bone tissue engineering. The general principle of bone tissue engineering is reviewed and the traditional and novel scaffolding materials, their properties and scaffold fabrication techniques are explored. By acting as temporary synthetic extracellular matrices for cell accommodation, proliferation, and differentiation, scaffolds play a pivotal role in tissue engineering. This book does not only provide the comprehensive summary of the current trends in scaffolding design but also presents the new trends and directions for scaffold development for the ever expanding tissue engineering applications.

  8. Synthetic biodegradable functional polymers for tissue engineering: a brief review.

    Science.gov (United States)

    BaoLin, Guo; Ma, Peter X

    2014-04-01

    Scaffolds play a crucial role in tissue engineering. Biodegradable polymers with great processing flexibility are the predominant scaffolding materials. Synthetic biodegradable polymers with well-defined structure and without immunological concerns associated with naturally derived polymers are widely used in tissue engineering. The synthetic biodegradable polymers that are widely used in tissue engineering, including polyesters, polyanhydrides, polyphosphazenes, polyurethane, and poly (glycerol sebacate) are summarized in this article. New developments in conducting polymers, photoresponsive polymers, amino-acid-based polymers, enzymatically degradable polymers, and peptide-activated polymers are also discussed. In addition to chemical functionalization, the scaffold designs that mimic the nano and micro features of the extracellular matrix (ECM) are presented as well, and composite and nanocomposite scaffolds are also reviewed.

  9. Synthetic approaches to uniform polymers.

    Science.gov (United States)

    Ali, Monzur; Brocchini, Steve

    2006-12-30

    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  10. Soluble polymer supported divergent synthesis of tetracyclic benzene-fused pyrazino/diazepino indoles: an advanced synthetic approach to bioactive scaffolds.

    Science.gov (United States)

    Lin, Po-Tsung; Salunke, Deepak B; Chen, Li-Hsun; Sun, Chung-Ming

    2011-04-21

    The synthesis of indoline substituted nitrobenzene on a PEG support and its further elaboration to structurally diverse benzene-fused pyrazino/diazepino indoles is disclosed. A reagent based diversification approach coupled with Pictet-Spengler type condensation reactions furnished these fused polycyclic scaffolds. Microwave irradiation was used as a means of rate acceleration for soluble polymer-supported reactions. The efficiency of these fused heterocyclic molecules to inhibit the vascular endothelial growth factor receptor 3 (VEGFR-3) was examined in vitro using kinase receptor activation enzyme-linked immunosorbant assay (KIRA-ELISA). Based on the preliminary results obtained, a small set of potential drug candidates were identified as novel leads in this therapeutic area to be further explored as anti-metastatic agents.

  11. Application of Synthetic Polymeric Scaffolds in Breast Cancer 3D Tissue Cultures and Animal Tumor Models

    Directory of Open Access Journals (Sweden)

    Girdhari Rijal

    2017-01-01

    Full Text Available Preparation of three-dimensional (3D porous scaffolds from synthetic polymers is a challenge to most laboratories conducting biomedical research. Here, we present a handy and cost-effective method to fabricate polymeric hydrogel and porous scaffolds using poly(lactic-co-glycolic acid (PLGA or polycaprolactone (PCL. Breast cancer cells grown on 3D polymeric scaffolds exhibited distinct survival, morphology, and proliferation compared to those on 2D polymeric surfaces. Mammary epithelial cells cultured on PLGA- or PCL-coated slides expressed extracellular matrix (ECM proteins and their receptors. Estrogen receptor- (ER- positive T47D breast cancer cells are less sensitive to 4-hydroxytamoxifen (4-HT treatment when cultured on the 3D porous scaffolds than in 2D cultures. Finally, cancer cell-laden polymeric scaffolds support consistent tumor formation in animals and biomarker expression as seen in human native tumors. Our data suggest that the porous synthetic polymer scaffolds satisfy the basic requirements for 3D tissue cultures both in vitro and in vivo. The scaffolding technology has appealing potentials to be applied in anticancer drug screening for a better control of the progression of human cancers.

  12. Polymer scaffold degradation control via chemical control

    Science.gov (United States)

    Hedberg-Dirk, Elizabeth L.; Dirk, Shawn; Cicotte, Kirsten

    2016-01-05

    A variety of polymers and copolymers suitable for use as biologically compatible constructs and, as a non-limiting specific example, in the formation of degradable tissue scaffolds as well methods for synthesizing these polymers and copolymers are described. The polymers and copolymers have degradation rates that are substantially faster than those of previously described polymers suitable for the same uses. Copolymers having a synthesis route which enables one to fine tune the degradation rate by selecting the specific stoichiometry of the monomers in the resulting copolymer are also described. The disclosure also provides a novel synthesis route for maleoyl chloride which yields monomers suitable for use in the copolymer synthesis methods described herein.

  13. Optimization of Polymer-ECM Composite Scaffolds for Tissue Engineering: Effect of Cells and Culture Conditions on Polymeric Nanofiber Mats

    Directory of Open Access Journals (Sweden)

    Ritu Goyal

    2017-01-01

    Full Text Available The design of composite tissue scaffolds containing an extracellular matrix (ECM and synthetic polymer fibers is a new approach to create bioactive scaffolds that can enhance cell function. Currently, studies investigating the effects of ECM-deposition and decellularization on polymer degradation are still lacking, as are data on optimizing the stability of the ECM-containing composite scaffolds during prolonged cell culture. In this study, we develop fibrous scaffolds using three polymer compositions, representing slow (E0000, medium (E0500, and fast (E1000 degrading materials, to investigate the stability, degradation, and mechanics of the scaffolds during ECM deposition and decellularization, and during the complete cellularization-decell-recell cycle. We report data on percent molecular weight (% Mw retention of polymeric fiber mats, changes in scaffold stiffness, ECM deposition, and the presence of fibronectin after decellularization. We concluded that the fast degrading E1000 (Mw retention ≤ 50% after 28 days was not sufficiently stable to allow scaffold handling after 28 days in culture, while the slow degradation of E0000 (Mw retention ≥ 80% in 28 days did not allow deposited ECM to replace the polymer support. The scaffolds made from medium degrading E0500 (Mw retention about 60% at 28 days allowed the gradual replacement of the polymer network with cell-derived ECM while maintaining the polymer network support. Thus, polymers with an intermediate rate of degradation, maintaining good scaffold handling properties after 28 days in culture, seem best suited for creating ECM-polymer composite scaffolds.

  14. Applications of synthetic polymers in clinical medicine

    OpenAIRE

    Maitz, M.F.

    2015-01-01

    Multiple biological, synthetic and hybrid polymers are used for multiple medical applications. A wide range of different polymers is available, and they have further the advantage to be tunable in physical, chemical and biological properties in a wide range to match the requirements of specific applications. This review gives a brief overview about the introduction and developments of polymers in medicine in general, addressing first stable polymers, then polymers with degradability as a firs...

  15. Porous polymer/hydroxyapatite scaffolds: characterization and biocompatibility investigations.

    NARCIS (Netherlands)

    Douglas, T.E.L.; Pamula, E.; Hauk, D.; Wiltfang, J.; Sivananthan, S.; Sherry, E.; Warnke, P.H.

    2009-01-01

    Poly-lactic-glycolic acid (PLGA) has been widely used as a scaffold material for bone tissue engineering applications. 3D sponge-like porous scaffolds have previously been generated through a solvent casting and salt leaching technique. In this study, polymer-ceramic composite scaffolds were created

  16. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    Starting from the standard model of polymer motion - the Rouse model - we briefly present some key experimental results on the mesoscopic dynamics of polymer systems. We touch the role of topological confinement as expressed in the reptation model and discuss in some more detail processes limiting the confinement.

  17. [Progress and prospect of synthetic biodegradable polymers for bone repair and reconstruction].

    Science.gov (United States)

    Zhao, Zenghui; Jiang, Dianming

    2010-03-01

    To review the latest researches of synthetic biodegradable polymers for bone repair and reconstruction, to predict the progress of bone substitute materials and bone tissue engineering scaffolds in future. The literature concerning synthetic biodegradable polymers as bone substitute materials or bone tissue engineering scaffolds was collected and discussed. Aliphatic polyester, polyanhydride, polyurethane and poly (amino acids) were the most extensively studied synthetic biodegradable polymers as bone substitutes and the scaffolds. Each polymer was of good biological safety and biocompatibility, and the degradation products were nontoxic to human body. The mechanical properties and degradation rate of the polymers could be adjusted by the type or number of the monomers and different synthetic methods. Therefore, the polymers with suitable mechanical strength and degradation rate could be produced according to the different requirements for bone grafting. Preliminary studies in vivo showed their favorable capacity for bone repair. The synthetic biodegradable polymers, especially the copolymers, composite materials and those carrying bone growth factors are expected to be the most promising and ideal biomaterials for bone repair and reconstruction.

  18. Nano-structured polymer scaffolds for tissue engineering and regenerative medicine

    Science.gov (United States)

    Smith, I.O.; Liu, X.H.; Smith, L.A.; Ma, P.X.

    2009-01-01

    The structural features of tissue engineering scaffolds affect cell response and must be engineered to support cell adhesion, proliferation and differentiation. The scaffold acts as an interim synthetic extracellular matrix (ECM) that cells interact prior to forming new tissue. In this review, bone tissue engineering is used as the primary example because of our group’s focus and for the sake of brevity. We focus on nano-fibrous scaffolds and the incorporation of other components including other nanofeatures into the scaffold structure. Since the ECM is comprised in large part of collagen fibers, between 50–500 nm in diameter, well-designed nano-fibrous scaffolds mimic this structure. Our group has developed a novel thermally-induced phase separation (TIPS) process in which a solution of biodegradable polymer is cast into a porous scaffold, resulting in a nano-fibrous pore-wall structure. These nano-scale fibers have a diameter (50–500 nm) comparable to those collagen fibers found in the ECM. This process can then be combined with a porogen leaching technique, also developed by our group, to engineer an interconnected pore structure that promotes cell migration and tissue ingrowth in three dimensions. To improve upon efforts to incorporate a ceramic component into polymer scaffolds by mixing, our group has also developed a technique where apatite crystals are grown onto biodegradable polymer scaffolds by soaking them in simulated body fluid (SBF). By changing the polymer used, the concentration of ions in the SBF and by varying the treatment time, the size and distribution of these crystals is varied. Work is currently being done to improve the distribution of these crystals throughout three-dimensional scaffolds and to create nano-scale apatite deposits that better mimic those found in the ECM. In both nano-fibrous and composite scaffolds, cell adhesion, proliferation and differentiation improved when compared to control scaffolds. Additionally, composite

  19. Butyrate production in engineered Escherichia coli with synthetic scaffolds.

    Science.gov (United States)

    Baek, Jang-Mi; Mazumdar, Suman; Lee, Sang-Woo; Jung, Moo-Young; Lim, Jae-Hyung; Seo, Sang-Woo; Jung, Gyoo-Yeol; Oh, Min-Kyu

    2013-10-01

    Butyrate pathway was constructed in recombinant Escherichia coli using the genes from Clostridium acetobutylicum and Treponema denticola. However, the pathway constructed from exogenous enzymes did not efficiently convert carbon flux to butyrate. Three steps of the productivity enhancement were attempted in this study. First, pathway engineering to delete metabolic pathways to by-products successfully improved the butyrate production. Second, synthetic scaffold protein that spatially co-localizes enzymes was introduced to improve the efficiency of the heterologous pathway enzymes, resulting in threefold improvement in butyrate production. Finally, further optimizations of inducer concentrations and pH adjustment were tried. The final titer of butyrate was 4.3 and 7.2 g/L under batch and fed-batch cultivation, respectively. This study demonstrated the importance of synthetic scaffold protein as a useful tool for optimization of heterologous butyrate pathway in E. coli. Copyright © 2013 Wiley Periodicals, Inc.

  20. The Azobenzene Optical Storage Puzzle - Demands on the Polymer Scaffold?

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, PS

    2001-01-01

    of the nature of the main chain on polyester morphology and on the permanency of the induced anisotropy are discussed. Arguments for the design and methods of preparation of other very different polymer scaffolds supporting the cyanoazobenzene are elucidated. Whereas oligopeptides invariably form amorphous...... materials, both copolymethacrylates and dendritic or hyperbranched polyesters provide some materials that exhibit liquid crystallinity. However, none of these other scaffolds offer materials that allow long-lasting anisotropy to be laser Light induced....

  1. The azobenzene optical storage puzzle - Demands on the polymer scaffold?

    DEFF Research Database (Denmark)

    Hvilsted, Søren; Ramanujam, P.S.

    2001-01-01

    of the nature of the main chain on polyester morphology and on the permanency of the induced anisotropy are discussed. Arguments for the design and methods of preparation of other very different polymer scaffolds supporting the cyanoazobenzene are elucidated. Whereas oligopeptides invariably form amorphous...... materials, both copolymethacrylates and dendritic or hyperbranched polyesters provide some materials that exhibit liquid crystallinity. However, none of these other scaffolds offer materials that allow long-lasting anisotropy to be laser Light induced....

  2. Macromolecular multi-chromophoric scaffolding

    NARCIS (Netherlands)

    Schwartz, E.; Schwartz, Erik; Le Gac, Stephane; le Gac, Severine; Cornelissen, Jeroen Johannes Lambertus Maria; Nolte, Roeland J.M.; Rowan, Alan E.

    2010-01-01

    This critical review describes recent efforts in the field of chromophoric scaffolding. The advances in this research area, with an emphasis on rigid scaffolds, for example, synthetic polymers, carbon nanotubes (CNTs), nucleic acids, and viruses, are presented (166 references).

  3. Engineering of a polymer layered bio-hybrid heart valve scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Jahnavi, S., E-mail: jani84@gmail.com [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India); Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Kumary, T.V., E-mail: tvkumary@yahoo.com [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Trivandrum, Kerala 695012 (India); Bhuvaneshwar, G.S., E-mail: gs.bhuvnesh@gmail.com [Trivitron Innovation Centre, Department of Engineering Design, Indian Institute of Technology Madras, Chennai 600036, TN (India); Natarajan, T.S., E-mail: tsniit@gmail.com [Conducting Polymer laboratory, Department of Physics, Indian Institute of Technology, Madras, Chennai 600036, TN (India); Verma, R.S., E-mail: vermars@iitm.ac.in [Stem Cell and Molecular Biology Laboratory, Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, TN (India)

    2015-06-01

    Current treatment strategy for end stage valve disease involves either valvular repair or replacement with homograft/mechanical/bioprosthetic valves. In cases of recurrent stenosis/ regurgitation, valve replacement is preferred choice of treatment over valvular repair. Currently available mechanical valves primarily provide durability whereas bioprosthetic valves have superior tissue compatibility but both lack remodelling and regenerative properties making their utility limited in paediatric patients. With advances in tissue engineering, attempts have been made to fabricate valves with regenerative potential using various polymers, decellularized tissues and hybrid scaffolds. To engineer an ideal heart valve, decellularized bovine pericardium extracellular matrix (DBPECM) is an attractive biocompatible scaffold but has weak mechanical properties and rapid degradation. However, DBPECM can be modified with synthetic polymers to enhance its mechanical properties. In this study, we developed a Bio-Hybrid scaffold with non-cross linked DBPECM in its native structure coated with a layer of Polycaprolactone-Chitosan (PCL-CH) nanofibers that displayed superior mechanical properties. Surface and functional studies demonstrated integration of PCL-CH to the DBPECM with enhanced bio and hemocompatibility. This engineered Bio-Hybrid scaffold exhibited most of the physical, biochemical and functional properties of the native valve that makes it an ideal scaffold for fabrication of cardiac valve with regenerative potential. - Highlights: • A Bio-Hybrid scaffold was fabricated with PCL-CH blend and DBPECM. • PCL-CH functionally interacted with decellularized matrix without cross linking. • Modified scaffold exhibited mechanical properties similar to native heart valve. • Supported better fibroblast and endothelial cell adhesion and proliferation. • The developed scaffold can be utilized for tissue engineering of heart valve.

  4. Polymer porous scaffolds for transplantation of Langerhans islets

    Czech Academy of Sciences Publication Activity Database

    Kubies, Dana

    2016-01-01

    Roč. 7, 2 (Suppl) (2016), s. 101 ISSN 2157-7552. [ International Conference on Tissue Engineering & Regenerative Medicine /5./. 12.09.2016-14.09.2016, Berlin] R&D Projects: GA MŠk(CZ) LQ1604 Institutional support: RVO:61389013 Keywords : polymer scaffolds * porosity * vascularization Subject RIV: EB - Genetics ; Molecular Biology

  5. The electron beam damage of synthetic polymers

    International Nuclear Information System (INIS)

    Vesely, D.

    1977-01-01

    Beam damage is a severe limitation when the electron microscope is applied to the study of microstructures of synthetic polymers. There is no practical method for increasing significantly the critical dose required to damage a specimen. It is therefore necessary to utilize fully the information present in the electron beam by efficient recording and by eliminating unnecessary accumulation of irradiation damage. The STEM technique provides a unique facility for this type of work mainly because of localized and well controlled beam damage in both the image and microdiffraction modes. Examples are given. (author)

  6. Synthetic applications of immobilized lipases in polymers

    International Nuclear Information System (INIS)

    Dalla-Vecchia, Roberto; Nascimento, Maria da Graca; Soldi, Valdir

    2004-01-01

    The application of biocatalysis is a promising field related to new technologies for organic synthesis. The development of immobilization techniques is very important due to the multiple or repetitive use of a single batch of enzymes and the ability to stop the reaction rapidly, at any stage, by removing the enzymes. In most cases, after immobilization, enzymes and microorganisms maintain or even increase their activity and stability. This work presents an overview of the common methods for lipase immobilization in polymers and applications of these systems to obtain compounds of synthetic interest. (author)

  7. The use of biodegradable polymers in design of cellular scaffolds.

    Science.gov (United States)

    Orłowska, Joanna; Kurczewska, Urszula; Derwińska, Katarzyna; Orłowski, Wojciech; Orszulak-Michalak, Daria

    2015-03-05

    The objective of this work was to demonstrate the usage of biodegradable polymers, made of calcium alginate and dibutyrylchitin, in the design of cellular scaffolds having broad application in reconstructive therapy (dentistry, orthopedics). To visualize cells seeded on calcium alginate and dibutyrylchitin polymers DAPI staining of fibroblasts nuclei was used. The cytotoxicity of the materials and microscopic evaluation of the viability of seeded cells was tested with a PKH 67 fluorescent dye. To assess the cellular toxicity the proliferation of fibroblasts adjacent to the tested polymers was examined. The vitability of cells seeded on polymers was also evaluated by measuring the fluorescence intensity of calcein which binds only to live cells. The conducted experiments (DAPI and PKH 67 staining) show that the tested materials have a positive influence on cell adhesion crucial for wound healing - fibroblasts. The self-made dibutyrylchitin dressing do not cause the reduction of viability of cells seeded on them. The in vitro study illustrated the interactions between the tested materials, constructed of calcium alginate or dibutyrylchitin and mouse fibroblasts and proved their usefulness in the design of cellular scaffolds. Examined polymers turned out to be of great interest and promise for cellular scaffolds design.

  8. The use of biodegradable polymers in design of cellular scaffolds

    Directory of Open Access Journals (Sweden)

    Joanna Orłowska

    2015-03-01

    Full Text Available The objective of this work was to demonstrate the usage of biodegradable polymers, made of calcium alginate and dibutyrylchitin, in the design of cellular scaffolds having broad application in reconstructive therapy (dentistry, orthopedics. To visualize cells seeded on calcium alginate and dibutyrylchitin polymers DAPI staining of fibroblasts nuclei was used. The cytotoxicity of the materials and microscopic evaluation of the viability of seeded cells was tested with a PKH 67 fluorescent dye. To assess the cellular toxicity the proliferation of fibroblasts adjacent to the tested polymers was examined. The vitability of cells seeded on polymers was also evaluated by measuring the fluorescence intensity of calcein which binds only to live cells. The conducted experiments (DAPI and PKH 67 staining show that the tested materials have a positive influence on cell adhesion crucial for wound healing – fibroblasts. The self-made dibutyrylchitin dressing do not cause the reduction of viability of cells seeded on them. The in vitro study illustrated the interactions between the tested materials, constructed of calcium alginate or dibutyrylchitin and mouse fibroblasts and proved their usefulness in the design of cellular scaffolds. Examined polymers turned out to be of great interest and promise for cellular scaffolds design.

  9. Multimodal separation and multistage mass spectrometry of synthetic polymers

    NARCIS (Netherlands)

    Song, J.

    2011-01-01

    Synthetic polymers and polymer-based materials are essential and indispensable in many aspects of our life. An increasing demand of polymers with tailor-made properties has led to an extraordinary range of new materials. Most of the methods for characterisation of polymers only produce results on an

  10. Polymer structure-property requirements for stereolithographic 3D printing of soft tissue engineering scaffolds.

    Science.gov (United States)

    Mondschein, Ryan J; Kanitkar, Akanksha; Williams, Christopher B; Verbridge, Scott S; Long, Timothy E

    2017-09-01

    This review highlights the synthesis, properties, and advanced applications of synthetic and natural polymers 3D printed using stereolithography for soft tissue engineering applications. Soft tissue scaffolds are of great interest due to the number of musculoskeletal, cardiovascular, and connective tissue injuries and replacements humans face each year. Accurately replacing or repairing these tissues is challenging due to the variation in size, shape, and strength of different types of soft tissue. With advancing processing techniques such as stereolithography, control of scaffold resolution down to the μm scale is achievable along with the ability to customize each fabricated scaffold to match the targeted replacement tissue. Matching the advanced manufacturing technique to polymer properties as well as maintaining the proper chemical, biological, and mechanical properties for tissue replacement is extremely challenging. This review discusses the design of polymers with tailored structure, architecture, and functionality for stereolithography, while maintaining chemical, biological, and mechanical properties to mimic a broad range of soft tissue types. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Gyroid nanoporous scaffold for conductive polymers

    DEFF Research Database (Denmark)

    Guo, Fengxiao; Schulte, Lars; Zhang, Weimin

    2011-01-01

    Conductive nanoporous polymers with interconnected large surface area have been prepared by depositing polypyrrole onto nanocavity walls of nanoporous 1,2-polybutadiene films with gyroid morphology. Vapor phase polymerization of pyrrole was used to generate ultrathin films and prevent pore blocking...

  12. A polymer scaffold for self-healing perovskite solar cells

    Science.gov (United States)

    Zhao, Yicheng; Wei, Jing; Li, Heng; Yan, Yin; Zhou, Wenke; Yu, Dapeng; Zhao, Qing

    2016-01-01

    Advancing of the lead halide perovskite solar cells towards photovoltaic market demands large-scale devices of high-power conversion efficiency, high reproducibility and stability via low-cost fabrication technology, and in particular resistance to humid environment for long-time operation. Here we achieve uniform perovskite film based on a novel polymer-scaffold architecture via a mild-temperature process. These solar cells exhibit efficiency of up to ~16% with small variation. The unencapsulated devices retain high output for up to 300 h in highly humid environment (70% relative humidity). Moreover, they show strong humidity resistant and self-healing behaviour, recovering rapidly after removing from water vapour. Not only the film can self-heal in this case, but the corresponding devices can present power conversion efficiency recovery after the water vapour is removed. Our work demonstrates the value of cheap, long chain and hygroscopic polymer scaffold in perovskite solar cells towards commercialization.

  13. Designing Uniquely Addressable Bio-orthogonal Synthetic Scaffolds for DNA and RNA Origami.

    Science.gov (United States)

    Kozyra, Jerzy; Ceccarelli, Alessandro; Torelli, Emanuela; Lopiccolo, Annunziata; Gu, Jing-Ying; Fellermann, Harold; Stimming, Ulrich; Krasnogor, Natalio

    2017-07-21

    Nanotechnology and synthetic biology are rapidly converging, with DNA origami being one of the leading bridging technologies. DNA origami was shown to work well in a wide array of biotic environments. However, the large majority of extant DNA origami scaffolds utilize bacteriophages or plasmid sequences thus severely limiting its future applicability as a bio-orthogonal nanotechnology platform. In this paper we present the design of biologically inert (i.e., "bio-orthogonal") origami scaffolds. The synthetic scaffolds have the additional advantage of being uniquely addressable (unlike biologically derived ones) and hence are better optimized for high-yield folding. We demonstrate our fully synthetic scaffold design with both DNA and RNA origamis and describe a protocol to produce these bio-orthogonal and uniquely addressable origami scaffolds.

  14. Nanocomposite bone scaffolds based on biodegradable polymers and hydroxyapatite.

    Science.gov (United States)

    Becker, Johannes; Lu, Lichun; Runge, M Brett; Zeng, Heng; Yaszemski, Michael J; Dadsetan, Mahrokh

    2015-08-01

    In tissue engineering, development of an osteoconductive construct that integrates with host tissue remains a challenge. In this work, the effect of bone-like minerals on maturation of pre-osteoblast cells was investigated using polymer-mineral scaffolds composed of poly(propylene fumarate)-co-poly(caprolactone) (PPF-co-PCL) and nano-sized hydroxyapatite (HA). The HA of varying concentrations was added to an injectable formulation of PPF-co-PCL and the change in thermal and mechanical properties of the scaffolds was evaluated. No change in onset of degradation temperature was observed due to the addition of HA, however compressive and tensile moduli of copolymer changed significantly when HA amounts were increased in composite formulation. The change in mechanical properties of copolymer was found to correlate well to HA concentration in the constructs. Electron microscopy revealed mineral nucleation and a change in surface morphology and the presence of calcium and phosphate on surfaces was confirmed using energy dispersive X-ray analysis. To characterize the effect of mineral on attachment and maturation of pre-osteoblasts, W20-17 cells were seeded on HA/copolymer composites. We demonstrated that cells attached more to the surface of HA containing copolymers and their proliferation rate was significantly increased. Thus, these findings suggest that HA/PPF-co-PCL composite scaffolds are capable of inducing maturation of pre-osteoblasts and have the potential for use as scaffold in bone tissue engineering. © 2014 Wiley Periodicals, Inc.

  15. Aligned and Electrospun Piezoelectric Polymer Fiber Assembly and Scaffold

    Science.gov (United States)

    Scott Carnell, Lisa A. (Inventor); Siochi, Emilie J. (Inventor); Holloway, Nancy M. (Inventor); Leong, Kam W. (Inventor); Kulangara, Karina (Inventor)

    2017-01-01

    A method of manufacturing and/or using a scaffold assembly for stem cell culture and tissue engineering applications is disclosed. The scaffold at least partially mimics a native biological environment by providing biochemical, topographical, mechanical and electrical cues by using an electroactive material. The assembly includes at least one layer of substantially aligned, electrospun polymer fiber having an operative connection for individual voltage application. A method of cell tissue engineering and/or stem cell differentiation that uses the assembly seeded with a sample of cells suspended in cell culture media, incubates and applies voltage to one or more layers, and thus produces cells and/or a tissue construct. In another aspect, the invention provides a method of manufacturing the assembly including the steps of providing a first pre-electroded substrate surface; electrospinning a first substantially aligned polymer fiber layer onto the first surface; providing a second pre-electroded substrate surface; electrospinning a second substantially aligned polymer fiber layer onto the second surface; and, retaining together the layered surfaces with a clamp and/or an adhesive compound.

  16. Advances in synthetic optically active condensation polymers - A review

    Directory of Open Access Journals (Sweden)

    2011-02-01

    Full Text Available The study of optically active polymers is a very active research field, and these materials have exhibited a number of interesting properties. Much of the attention in chiral polymers results from the potential of these materials for several specialized utilizations that are chiral matrices for asymmetric synthesis, chiral stationary phases for the separation of racemic mixtures, synthetic molecular receptors and chiral liquid crystals for ferroelectric and nonlinear optical applications. Recently, highly efficient methodologies and catalysts have been developed to synthesize various kinds of optically active compounds. Some of them can be applied to chiral polymer synthesis. In a few synthetic approaches for optically active polymers, chiral monomer polymerization has essential advantages in applicability of monomer, apart from both asymmetric polymerization of achiral or prochiral monomers and enantioselective polymerization of a racemic monomer mixture. The following are the up to date successful approaches to the chiral synthetic polymers by condensation polymerization reaction of chiral monomers.

  17. Comparing the effect of bioflocculant with synthetic polymers on ...

    African Journals Online (AJOL)

    This study was aimed at introducing a novel bioflocculant to enhance anaerobic granulation in a UASB reactor for lowstrength synthetic wastewater and comparing the effect with synthetic polymers. A laboratory-scale study was undertaken to achieve this goal. Four identical UASB reactors were operated in parallel in the ...

  18. Energy and charge control in mass spectrometry of synthetic polymers

    NARCIS (Netherlands)

    Nasioudis, A.

    2011-01-01

    Synthetic polymers are the products of humans’ attempts to imitate nature’s gigantic molecular chain architectures. The extended variety of building blocks and reaction mechanisms resulted in a plethora of different polymeric architectures. The biggest challenge for polymer chemists is to develop an

  19. Next-generation resorbable polymer scaffolds with surface-precipitated calcium phosphate coatings.

    Science.gov (United States)

    Kim, Jinku; Magno, Maria Hanshella R; Ortiz, Ophir; McBride, Sean; Darr, Aniq; Kohn, Joachim; Hollinger, Jeffrey O

    2015-03-01

    Next-generation synthetic bone graft therapies will most likely be composed of resorbable polymers in combination with bioactive components. In this article, we continue our exploration of E1001(1k), a tyrosine-derived polycarbonate, as an orthopedic implant material. Specifically, we use E1001(1k), which is degradable, nontoxic, and osteoconductive, to fabricate porous bone regeneration scaffolds that were enhanced by two different types of calcium phosphate (CP) coatings: in one case, pure dicalcium phosphate dihydrate was precipitated on the scaffold surface and throughout its porous structure (E1001(1k) + CP). In the other case, bone matrix minerals (BMM) such as zinc, manganese and fluoride were co-precipitated within the dicalcium phosphate dihydrate coating (E1001(1k) + BMM). These scaffold compositions were compared against each other and against ChronOS (Synthes USA, West Chester, PA, USA), a clinically used bone graft substitute (BGS), which served as the positive control in our experimental design. This BGS is composed of poly(lactide co-ε-caprolactone) and beta-tricalcium phosphate. We used the established rabbit calvaria critical-sized defect model to determine bone regeneration within the defect for each of the three scaffold compositions. New bone formation was determined after 2, 4, 6, 8 and 12 weeks by micro-computerized tomography (μCT) and histology. The experimental tyrosine-derived polycarbonate, enhanced with dicalcium phosphate dihydrate, E1001(1k) + CP, supported significant bone formation within the defects and was superior to the same scaffold containing a mix of BMM, E1001(1k) + BMM. The comparison with the commercially available BGS was complicated by the large variability in bone formation observed for the laboratory preparations of E1001(1k) scaffolds. At all time points, there was a trend for E1001(1k) + CP to be superior to the commercial BGS. However, only at the 6-week time point did this trend reach statistical significance

  20. Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate

    OpenAIRE

    Boyang Huang; Guilherme Caetano; Cian Vyas; Jonny James Blaker; Carl Diver; Paulo Bártolo

    2018-01-01

    The design of bioactive scaffolds with improved mechanical and biological properties is an important topic of research. This paper investigates the use of polymer-ceramic composite scaffolds for bone tissue engineering. Different ceramic materials (hydroxyapatite (HA) and β-tri-calcium phosphate (TCP)) were mixed with poly-ε-caprolactone (PCL). Scaffolds with different material compositions were produced using an extrusion-based additive manufacturing system. The produced scaffolds were physi...

  1. From structural proteins to synthetic polymers

    NARCIS (Netherlands)

    Ayres, L.

    2005-01-01

    This thesis describes the preparation, via atom transfer radical polymerisation (ATRP), of a series of peptide-polymer hybrid materials. The first chapter gives an overview of the work done so far in the preparation of peptide-polymer hybrid materials. In the second, third and fourth chapter, the

  2. [Application of electrostatic spinning technology in nano-structured polymer scaffold].

    Science.gov (United States)

    Chen, Denglong; Li, Min; Fang, Qian

    2007-04-01

    To review the latest development in the research on the application of the electrostatic spinning technology in preparation of the nanometer high polymer scaffold. The related articles published at home and abroad during the recent years were extensively reviewed and comprehensively analyzed. Micro/nano-structure and space topology on the surfaces of the scaffold materials, especially the weaving structure, were considered to have an important effect on the cell adhesion, proliferation, directional growth, and biological activation. The electrospun scaffold was reported to have a resemblance to the structure of the extracellular matrix and could be used as a promising scaffold for the tissue engineering application. The electrospun scaffolds were applied to the cartilage, bone, blood vessel, heart, and nerve tissue engineering fields. The nano-structured polymer scaffold can support the cell adhesion, proliferation, location, and differentiation, and this kind of scaffold has a considerable value in the tissue engineering field.

  3. Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture

    KAUST Repository

    Inal, Sahika

    2017-05-03

    This work reports the design of a live-cell monitoring platform based on a macroporous scaffold of a conducting polymer, poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate). The conducting polymer scaffolds support 3D cell cultures due to their biocompatibility and tissue-like elasticity, which can be manipulated by inclusion of biopolymers such as collagen. Integration of a media perfusion tube inside the scaffold enables homogenous cell spreading and fluid transport throughout the scaffold, ensuring long term cell viability. This also allows for co-culture of multiple cell types inside the scaffold. The inclusion of cells within the porous architecture affects the impedance of the electrically conducting polymer network and, thus, is utilized as an in situ tool to monitor cell growth. Therefore, while being an integral part of the 3D tissue, the conducting polymer is an active component, enhancing the tissue function, and forming the basis for a bioelectronic device with integrated sensing capability.

  4. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth.

    Science.gov (United States)

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark

    2014-06-01

    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Molecular weight characterisation of synthetic polymers

    CERN Document Server

    Holding, Steve R

    1995-01-01

    The report comprises a state-of-the-art overview of the subject of molecular weight characterisation, supported by an extensive, indexed bibliography. The bibliography contains over 400 references and abstracts, compiled from the Polymer Library.

  6. Custom-Made Synthetic Scaffolds for Bone Reconstruction: A Retrospective, Multicenter Clinical Study on 15 Patients

    Directory of Open Access Journals (Sweden)

    Fabrizia Luongo

    2016-01-01

    Full Text Available Purpose. To present a computer-assisted-design/computer-assisted-manufacturing (CAD/CAM technique for the design, fabrication, and clinical application of custom-made synthetic scaffolds, for alveolar ridge augmentation. Methods. The CAD/CAM procedure consisted of (1 virtual planning/design of the custom-made scaffold; (2 milling of the scaffold into the exact size/shape from a preformed synthetic bone block; (3 reconstructive surgery. The main clinical/radiographic outcomes were vertical/horizontal bone gain, any biological complication, and implant survival. Results. Fifteen patients were selected who had been treated with a custom-made synthetic scaffold for ridge augmentation. The scaffolds closely matched the shape of the defects: this reduced the operation time and contributed to good healing. A few patients experienced biological complications, such as pain/swelling (2/15: 13.3% and exposure of the scaffold (3/15: 20.0%; one of these had infection and complete graft loss. In all other patients, 8 months after reconstruction, a well-integrated newly formed bone was clinically available, and the radiographic evaluation revealed a mean vertical and horizontal bone gain of 2.1±0.9 mm and 3.0±1.0 mm, respectively. Fourteen implants were placed and restored with single crowns. The implant survival rate was 100%. Conclusions. Although positive outcomes have been found with custom-made synthetic scaffolds in alveolar ridge augmentation, further studies are needed to validate this technique.

  7. [New polymer-drug systems based on natural and synthetic polymers].

    Science.gov (United States)

    Racoviţă, Stefania; Vasiliu, Silvia; Foia, Liliana

    2010-01-01

    The great versatility of polymers makes them very useful in the biomedical and pharmaceutical fields. The combination of natural and synthetic polymers leads to new materials with tailored functional properties. The aim of this work consists in the preparation of new drug delivery system based on chitosan (natural polymer) and polybetaines (synthetic polymers), by a simple process, well known in the literature as complex coacervation methods. Also, the adsorption and release studies of two antibiotics as well as the preservation of their bactericidal capacities were performed.

  8. Construction of synthetic dermis and skin based on a self-assembled peptide hydrogel scaffold.

    Science.gov (United States)

    Kao, Bunsho; Kadomatsu, Koichi; Hosaka, Yoshiaki

    2009-09-01

    Using biocompatible peptide hydrogel as a scaffold, we prepared three-dimensional synthetic skin that does not contain animal-derived materials or pathogens. The present study investigated preparation methods, proliferation, and functional expression of fibroblasts in the synthetic dermis and differentiation of keratinocytes in the epidermis. Synthetic dermis was prepared by mixing fibroblasts with peptide hydrogel, and synthetic skin was prepared by forming an epidermal layer using keratinocytes on the synthetic dermis. A fibroblast-rich foamy layer consisting of homogeneous peptide hydrogel subsequently formed in the synthetic dermis, with fibroblasts aggregating in clusters within the septum. The epidermis consisted of three to five keratinocyte layers. Immunohistochemical staining showed human type I collagen, indicating functional expression around fibroblasts in the synthetic dermis, keratinocyte differentiation in the epidermis, and expression of basement membrane proteins. The number of fibroblasts tended to increase until the second week and was maintained until the fourth week, but rapidly decreased in the fifth week. In the synthetic dermis medium, the human type I collagen concentration increased after the second week to the fifth week. These findings suggest that peptide hydrogel acts as a synthetic skin scaffold that offers a platform for the proliferation and functional expression of fibroblasts and keratinocytes.

  9. Controlled polymer synthesis--from biomimicry towards synthetic biology.

    Science.gov (United States)

    Pasparakis, George; Krasnogor, Natalio; Cronin, Leroy; Davis, Benjamin G; Alexander, Cameron

    2010-01-01

    The controlled assembly of synthetic polymer structures is now possible with an unprecedented range of functional groups and molecular architectures. In this critical review we consider how the ability to create artificial materials over lengthscales ranging from a few nm to several microns is generating systems that not only begin to mimic those in nature but also may lead to exciting applications in synthetic biology (139 references).

  10. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  11. Efficient Malic Acid Production in Escherichia coli Using a Synthetic Scaffold Protein Complex.

    Science.gov (United States)

    Somasundaram, Sivachandiran; Eom, Gyeong Tae; Hong, Soon Ho

    2018-04-01

    Recently, malic acid has gained attention due to its potential application in food, pharmaceutical, and medical industries. In this study, the synthetic scaffold complex strategy was employed between the two key enzymes pyruvate kinase (PykF) and malic enzyme (SfcA); SH3 ligand was attached to PykF, and the SH3 domain was attached to the C-terminus of ScfA. Synthetic scaffold systems can organize enzymes spatially and temporally to increase the local concentration of intermediates. In a flask culture, the recombinant strain harboring scaffold complex produced a maximum concentration of 5.72 g/L malic acid from 10 g/L glucose. The malic acid production was significantly increased 2.1-fold from the initial culture period. Finally, malic acid production was elevated to 30.2 g in a 5 L bioreactor from recombinant strain XL-1 blue.

  12. Biomimeticity in tissue engineering scaffolds through synthetic peptide modifications-altering chemistry for enhanced biological response.

    Science.gov (United States)

    Sreejalekshmi, Kumaran G; Nair, Prabha D

    2011-02-01

    Biomimetic and bioactive biomaterials are desirable as tissue engineering scaffolds by virtue of their capability to mimic natural environments of the extracellular matrix. Biomimeticity has been achieved by the incorporation of synthetic short peptide sequences into suitable materials either by surface modification or by bulk incorporation. Research in this area has identified several novel synthetic peptide segments, some of them with cell-specific interactions, which may serve as potential candidates for use in explicit tissue applications. This review focuses on the developments and prospective directions of incorporating short synthetic peptide sequences onto scaffolds for tissue engineering, with emphasis on the chemistry of peptide immobilization and subsequent cell responses toward modified scaffolds. The article provides a decision-tree-type flow chart indicating the most probable cellular events on a given peptide-modified scaffold along with the consolidated list of synthetic peptide sequences, supports as well as cell types used in various tissue engineering studies, and aims to serve as a quick reference guide to peptide chemists and material scientists interested in the field. 2010 Wiley Periodicals, Inc.

  13. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation

    International Nuclear Information System (INIS)

    Bergemann, Claudia; Cornelsen, Matthias; Quade, Antje; Laube, Thorsten; Schnabelrauch, Matthias; Rebl, Henrike; Weißmann, Volker; Seitz, Hermann; Nebe, Barbara

    2016-01-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(L-lactide-co-D,L-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA — improvement of compressive strength of calcium phosphate scaffolds – is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10 mm hybrid scaffold were dynamically cultivated for 14 days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. - Highlights: • Mechanical stabilization of β-tricalcium phosphate scaffolds by PLA infiltration • Hybrid scaffolds with higher cell attraction due to plasma polymerized allylamine • 3D perfusion in vitro model for observation of cell migration inside scaffolds • Enhanced cell migration within plasma polymer coated TCP hybrid scaffolds

  14. Continuous cellularization of calcium phosphate hybrid scaffolds induced by plasma polymer activation

    Energy Technology Data Exchange (ETDEWEB)

    Bergemann, Claudia [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany); Cornelsen, Matthias [University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock (Germany); Quade, Antje [Leibniz-Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, D-17489 Greifswald (Germany); Laube, Thorsten; Schnabelrauch, Matthias [INNOVENT e.V., Biomaterials Department, Pruessingstrasse 27B, D-07745 Jena (Germany); Rebl, Henrike [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany); Weißmann, Volker [Institute for Polymer Technologies (IPT) e.V., Alter Holzhafen 19, D-23966 Wismar (Germany); Seitz, Hermann [University of Rostock, Fluid Technology and Microfluidics, Justus-von-Liebig Weg 6, D-18059 Rostock (Germany); Nebe, Barbara, E-mail: barbara.nebe@med.uni-rostock.de [University Medical Center Rostock, Cell Biology, Schillingallee 69, D-18057 Rostock (Germany)

    2016-02-01

    The generation of hybrid materials based on β-tricalcium phosphate (TCP) and various biodegradable polymers like poly(L-lactide-co-D,L-lactide) (PLA) represents a common approach to overcoming the disadvantages of pure TCP devices. These disadvantages lie in TCP's mechanical properties, such as brittleness. The positive characteristic of PLA — improvement of compressive strength of calcium phosphate scaffolds – is diametrically opposed to its cell attractiveness. Therefore, the objective of this work was to optimize osteoblast migration and cellularization inside a three-dimensionally (3D) printed, PLA polymer stabilized TCP hybrid scaffold by a plasma polymer process depositing amino groups via allylamine. MG-63 osteoblastic cells inside the 10 mm hybrid scaffold were dynamically cultivated for 14 days in a 3D model system integrated in a perfusion reactor. The whole TCP/PLA hybrid scaffold was continuously colonized due to plasma polymerized allylamine activation inducing the migration potential of osteoblasts. - Highlights: • Mechanical stabilization of β-tricalcium phosphate scaffolds by PLA infiltration • Hybrid scaffolds with higher cell attraction due to plasma polymerized allylamine • 3D perfusion in vitro model for observation of cell migration inside scaffolds • Enhanced cell migration within plasma polymer coated TCP hybrid scaffolds.

  15. Understanding the folding process of synthetic polymers by small ...

    Indian Academy of Sciences (India)

    WINTEC

    *For correspondence. Understanding the folding process of synthetic polymers by ... Conformational control in biological macromole- cules depends largely ... context of sensors. 11–13 and more recently with regard to foldamers. 14–17. In these systems, the com- plexation of the OE segment by a metal-ion leads to either a ...

  16. Understanding the folding process of synthetic polymers by small ...

    Indian Academy of Sciences (India)

    WINTEC

    Understanding the folding process of synthetic polymers by small-molecule folding agents. S G RAMKUMAR and S RAMAKRISHNAN*. Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560 012 e-mail: raman@ipc.iisc.ernet.in. Abstract. Two acceptor containing polyimides PDI and NDI ...

  17. Biodegradation of Synthetic Polymers by Composting and Fungal Treatment

    Czech Academy of Sciences Publication Activity Database

    Šašek, Václav; Vitásek, J.; Chromcová, D.; Prokopová, I.; Brožek, J.; Náhlík, J.

    2006-01-01

    Roč. 51, č. 5 (2006), s. 425-430 ISSN 0015-5632 R&D Projects: GA ČR GA203/03/0508 Institutional research plan: CEZ:AV0Z50200510 Keywords : biodegradation * composting * synthetic polymers Subject RIV: EE - Microbiology, Virology Impact factor: 0.963, year: 2006

  18. Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate.

    Science.gov (United States)

    Huang, Boyang; Caetano, Guilherme; Vyas, Cian; Blaker, Jonny James; Diver, Carl; Bártolo, Paulo

    2018-01-14

    The design of bioactive scaffolds with improved mechanical and biological properties is an important topic of research. This paper investigates the use of polymer-ceramic composite scaffolds for bone tissue engineering. Different ceramic materials (hydroxyapatite (HA) and β-tri-calcium phosphate (TCP)) were mixed with poly-ε-caprolactone (PCL). Scaffolds with different material compositions were produced using an extrusion-based additive manufacturing system. The produced scaffolds were physically and chemically assessed, considering mechanical, wettability, scanning electron microscopy and thermal gravimetric tests. Cell viability, attachment and proliferation tests were performed using human adipose derived stem cells (hADSCs). Results show that scaffolds containing HA present better biological properties and TCP scaffolds present improved mechanical properties. It was also possible to observe that the addition of ceramic particles had no effect on the wettability of the scaffolds.

  19. Polymer-Ceramic Composite Scaffolds: The Effect of Hydroxyapatite and β-tri-Calcium Phosphate

    Directory of Open Access Journals (Sweden)

    Boyang Huang

    2018-01-01

    Full Text Available The design of bioactive scaffolds with improved mechanical and biological properties is an important topic of research. This paper investigates the use of polymer-ceramic composite scaffolds for bone tissue engineering. Different ceramic materials (hydroxyapatite (HA and β-tri-calcium phosphate (TCP were mixed with poly-ε-caprolactone (PCL. Scaffolds with different material compositions were produced using an extrusion-based additive manufacturing system. The produced scaffolds were physically and chemically assessed, considering mechanical, wettability, scanning electron microscopy and thermal gravimetric tests. Cell viability, attachment and proliferation tests were performed using human adipose derived stem cells (hADSCs. Results show that scaffolds containing HA present better biological properties and TCP scaffolds present improved mechanical properties. It was also possible to observe that the addition of ceramic particles had no effect on the wettability of the scaffolds.

  20. 21 CFR 874.3620 - Ear, nose, and throat synthetic polymer material.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ear, nose, and throat synthetic polymer material. 874.3620 Section 874.3620 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN..., and throat synthetic polymer material. (a) Identification. Ear, nose, and throat synthetic polymer...

  1. Oxygen diffusivity of biologic and synthetic scaffold materials for tissue engineering.

    Science.gov (United States)

    Valentin, Jolene E; Freytes, Donald O; Grasman, Jonathan M; Pesyna, Colin; Freund, John; Gilbert, Thomas W; Badylak, Stephen F

    2009-12-15

    Scaffolds for tissue engineering and regenerative medicine applications are commonly manufactured from synthetic materials, intact or isolated components of extracellular matrix (ECM), or a combination of such materials. After surgical implantation, the metabolic requirements of cells that populate the scaffold depend upon adequate gas and nutrient exchange with the surrounding microenvironment. The present study measured the oxygen transfer through three biologic scaffold materials composed of ECM including small intestinal submucosa (SIS), urinary bladder submucosa (UBS), and urinary bladder matrix (UBM), and one synthetic biomaterial, Dacron. The oxygen diffusivity was calculated from Fick's first law of diffusion. Each material permitted measurable oxygen diffusion. The diffusivity of SIS was found to be dependent on the direction of oxygen transfer; the oxygen transfer in the abluminal-to-luminal direction was significantly greater than the luminal-to-abluminal direction. The oxygen diffusivity of UBM and UBS were similar despite the presence of an intact basement membrane on the luminal surface of UBM. Dacron showed oxygen diffusivity values seven times greater than the ECM biomaterials. The current study showed that each material has unique oxygen diffusivity values, and these values may be dependent on the scaffold's ultrastructure.

  2. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Jin-Hyung; Park, Min; Park, Jaesung; Cho, Dong-Woo [Department of Mechanical Engineering, POSTECH (Korea, Republic of); Kim, Jong Young, E-mail: dwcho@postech.ac.kr [Department of Mechanical Engineering, Andong National University (Korea, Republic of)

    2011-09-15

    Natural biomaterials such as hyaluronic acid, gelatin and collagen provide excellent environments for tissue regeneration. Furthermore, gel-state natural biomaterials are advantageous for encapsulating cells and growth factors. In cell printing technology, hydrogel which contains cells was printed directly to form three-dimensional (3D) structures for tissue or organ regeneration using various types of printers. However, maintaining the 3D shape of the printed structure, which is made only of the hydrogel, is very difficult due to its weak mechanical properties. In this study, we developed a hybrid scaffold consisting of synthetic biomaterials and natural hydrogel using a multi-head deposition system, which is useful in solid freeform fabrication technology. The hydrogel was intentionally infused into the space between the lines of a synthetic biomaterial-based scaffold. The cellular efficacy of the hybrid scaffold was validated using rat primary hepatocytes and a mouse pre-osteoblast MC3T3-E1 cell line. In addition, the collagen hydrogel, which encapsulates cells, was dispensed and the viability of the cells observed. We demonstrated superior effects of the hybrid scaffold on cell adhesion and proliferation and showed the high viability of dispensed cells.

  3. Development of a hybrid scaffold with synthetic biomaterials and hydrogel using solid freeform fabrication technology

    International Nuclear Information System (INIS)

    Shim, Jin-Hyung; Park, Min; Park, Jaesung; Cho, Dong-Woo; Kim, Jong Young

    2011-01-01

    Natural biomaterials such as hyaluronic acid, gelatin and collagen provide excellent environments for tissue regeneration. Furthermore, gel-state natural biomaterials are advantageous for encapsulating cells and growth factors. In cell printing technology, hydrogel which contains cells was printed directly to form three-dimensional (3D) structures for tissue or organ regeneration using various types of printers. However, maintaining the 3D shape of the printed structure, which is made only of the hydrogel, is very difficult due to its weak mechanical properties. In this study, we developed a hybrid scaffold consisting of synthetic biomaterials and natural hydrogel using a multi-head deposition system, which is useful in solid freeform fabrication technology. The hydrogel was intentionally infused into the space between the lines of a synthetic biomaterial-based scaffold. The cellular efficacy of the hybrid scaffold was validated using rat primary hepatocytes and a mouse pre-osteoblast MC3T3-E1 cell line. In addition, the collagen hydrogel, which encapsulates cells, was dispensed and the viability of the cells observed. We demonstrated superior effects of the hybrid scaffold on cell adhesion and proliferation and showed the high viability of dispensed cells.

  4. Natural and synthetic polymers in fabric and home care applications

    Science.gov (United States)

    Paderes, Monissa; Ahirwal, Deepak; Fernández Prieto, Susana

    2017-07-01

    Polymers can be tailored to provide different benefits in Fabric & Home Care formulations depending on the monomers and modifications used, such as avoiding dye transfer inhibition in the wash, modifying the surface of tiles or increasing the viscosity and providing suspension properties to consumer products. Specifically, the rheology modification properties of synthetic and natural polymers are discussed in this chapter. The choice of a polymeric rheology modifier will depend on the formulation ingredients (charges, functional groups), the type and the amount of surfactants, the pH and the desired rheology modification. Natural polymeric rheology modifiers have been traditionally used in the food industry, being xanthan gum one of the most well-known ones. On the contrary, synthetic rheology modifiers are preferably used in paints & coats, textile printing and cleaning products.

  5. Chitosan-Based Hyaluronic Acid Hybrid Polymer Fibers as a Scaffold Biomaterial for Cartilage Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shintarou Yamane

    2010-12-01

    Full Text Available An ideal scaffold material is one that closely mimics the natural environment in the tissue-specific extracellular matrix (ECM. Therefore, we have applied hyaluronic acid (HA, which is a main component of the cartilage ECM, to chitosan as a fundamental material for cartilage regeneration. To mimic the structural environment of cartilage ECM, the fundamental structure of a scaffold should be a three-dimensional (3D system with adequate mechanical strength. We structurally developed novel polymer chitosan-based HA hybrid fibers as a biomaterial to easily fabricate 3D scaffolds. This review presents the potential of a 3D fabricated scaffold based on these novel hybrid polymer fibers for cartilage tissue engineering.

  6. Hybrid scaffold bearing polymer-siloxane Schiff base linkage for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Bindu P., E-mail: bindumelekkuttu@gmail.com; Gangadharan, Dhanya; Mohan, Neethu; Sumathi, Babitha; Nair, Prabha D., E-mail: pdnair49@gmail.com

    2015-07-01

    Scaffolds that can provide the requisite biological cues for the fast regeneration of bone are highly relevant to the advances in tissue engineering and regenerative medicine. In the present article, we report the fabrication of a chitosan–gelatin–siloxane scaffold bearing interpolymer-siloxane Schiff base linkage, through a single-step dialdehyde cross-linking and freeze-drying method using 3-aminopropyltriethoxysilane as the siloxane precursor. Swelling of the scaffolds in phosphate buffered saline indicates enhancement with increase in siloxane concentration, whereas compressive moduli of the wet scaffolds reveal inverse dependence, owing to the presence of siloxane, rich in silanol groups. It is suggested that through the strategy of dialdehyde cross-linking, a limiting siloxane loading of 20 wt.% into a chitosan-gelatin matrix should be considered ideal for bone tissue engineering, because the scaffold made with 30 wt.% siloxane loading degrades by 48 wt.%, in 21 days. The hybrid scaffolds bearing Schiff base linkage between the polymer and siloxane, unlike the stable linkages in earlier reports, are expected to give a faster release of siloxanes and enhancement in osteogenesis. This is verified by the in vitro evaluation of the hybrid scaffolds using rabbit adipose mesenchymal stem cells, which revealed osteogenic cell-clusters on a polymer-siloxane scaffold, enhanced alkaline phosphatase activity and the expression of bone-specific genes, whereas the control scaffold without siloxane supported more of cell-proliferation than differentiation. A siloxane concentration dependent enhancement in osteogenic differentiation is also observed. - Highlights: • A hybrid scaffold bearing interpolymer-siloxane Schiff base linkage • A limiting siloxane loading of 20 wt.% into chitosan–gelatin matrix • A siloxane concentration dependent enhancement in osteogenic differentiation.

  7. Natural and synthetic polymers for wounds and burns dressing.

    Science.gov (United States)

    Mogoşanu, George Dan; Grumezescu, Alexandru Mihai

    2014-03-25

    In the last years, health care professionals faced with an increasing number of patients suffering from wounds and burns difficult to treat and heal. During the wound healing process, the dressing protects the injury and contributes to the recovery of dermal and epidermal tissues. Because their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body, some natural polymers such as polysaccharides (alginates, chitin, chitosan, heparin, chondroitin), proteoglycans and proteins (collagen, gelatin, fibrin, keratin, silk fibroin, eggshell membrane) are extensively used in wounds and burns management. Obtained by electrospinning technique, some synthetic polymers like biomimetic extracellular matrix micro/nanoscale fibers based on polyglycolic acid, polylactic acid, polyacrylic acid, poly-ɛ-caprolactone, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, exhibit in vivo and in vitro wound healing properties and enhance re-epithelialization. They provide an optimal microenvironment for cell proliferation, migration and differentiation, due to their biocompatibility, biodegradability, peculiar structure and good mechanical properties. Thus, synthetic polymers are used also in regenerative medicine for cartilage, bone, vascular, nerve and ligament repair and restoration. Biocompatible with fibroblasts and keratinocytes, tissue engineered skin is indicated for regeneration and remodeling of human epidermis and wound healing improving the treatment of severe skin defects or partial-thickness burn injuries. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Inelastic neutron scattering from synthetic and biological polymers

    International Nuclear Information System (INIS)

    White, J.W.

    1976-01-01

    Neutron elastic and inelastic scattering measurements have provided many unique insights into structure, and by reviewing progress on synthetics, important differences likely to arise in biological systems are identified and a direction for studies of the latter is suggested. By neutron inelastic scattering it is possible to measure the frequency of thermally excited interatomic and intermolecular vibrations in crystals. With perfect organic and inorganic crystals the technique is now classical and has given great insight into the crystal forces responsible for the observed structures as well as the phase transitions they undergo. The study of polymer crystals immediately presents two problems of disorder: (1) Macroscopic disorder arises because the sample is a mixture of amorphous and crystalline fractions, and it may be acute enough to inhibit growth of a single crystal large enough for neutron studies. (2) Microscopic disorder in the packing of polymer chains in the ''crystalline'' regions is indicated by broadening of Bragg peaks. Both types of disorder problem arise in biological systems. The methods by which they were partially overcome to allow neutron measurements with synthetic polymers are described but first a classical example of the determination of interatomic forces by inelastic neutron scattering is given

  9. 3D printing for the design and fabrication of polymer-based gradient scaffolds.

    Science.gov (United States)

    Bracaglia, Laura G; Smith, Brandon T; Watson, Emma; Arumugasaamy, Navein; Mikos, Antonios G; Fisher, John P

    2017-07-01

    To accurately mimic the native tissue environment, tissue engineered scaffolds often need to have a highly controlled and varied display of three-dimensional (3D) architecture and geometrical cues. Additive manufacturing in tissue engineering has made possible the development of complex scaffolds that mimic the native tissue architectures. As such, architectural details that were previously unattainable or irreproducible can now be incorporated in an ordered and organized approach, further advancing the structural and chemical cues delivered to cells interacting with the scaffold. This control over the environment has given engineers the ability to unlock cellular machinery that is highly dependent upon the intricate heterogeneous environment of native tissue. Recent research into the incorporation of physical and chemical gradients within scaffolds indicates that integrating these features improves the function of a tissue engineered construct. This review covers recent advances on techniques to incorporate gradients into polymer scaffolds through additive manufacturing and evaluate the success of these techniques. As covered here, to best replicate different tissue types, one must be cognizant of the vastly different types of manufacturing techniques available to create these gradient scaffolds. We review the various types of additive manufacturing techniques that can be leveraged to fabricate scaffolds with heterogeneous properties and discuss methods to successfully characterize them. Additive manufacturing techniques have given tissue engineers the ability to precisely recapitulate the native architecture present within tissue. In addition, these techniques can be leveraged to create scaffolds with both physical and chemical gradients. This work offers insight into several techniques that can be used to generate graded scaffolds, depending on the desired gradient. Furthermore, it outlines methods to determine if the designed gradient was achieved. This review

  10. Hybrid scaffold bearing polymer-siloxane Schiff base linkage for bone tissue engineering.

    Science.gov (United States)

    Nair, Bindu P; Gangadharan, Dhanya; Mohan, Neethu; Sumathi, Babitha; Nair, Prabha D

    2015-01-01

    Scaffolds that can provide the requisite biological cues for the fast regeneration of bone are highly relevant to the advances in tissue engineering and regenerative medicine. In the present article, we report the fabrication of a chitosan-gelatin-siloxane scaffold bearing interpolymer-siloxane Schiff base linkage, through a single-step dialdehyde cross-linking and freeze-drying method using 3-aminopropyltriethoxysilane as the siloxane precursor. Swelling of the scaffolds in phosphate buffered saline indicates enhancement with increase in siloxane concentration, whereas compressive moduli of the wet scaffolds reveal inverse dependence, owing to the presence of siloxane, rich in silanol groups. It is suggested that through the strategy of dialdehyde cross-linking, a limiting siloxane loading of 20 wt.% into a chitosan -gelatin matrix should be considered ideal for bone tissue engineering, because the scaffold made with 30 wt.% siloxane loading degrades by 48 wt.%, in 21 days. The hybrid scaffolds bearing Schiff base linkage between the polymer and siloxane, unlike the stable linkages in earlier reports, are expected to give a faster release of siloxanes and enhancement in osteogenesis. This is verified by the in vitro evaluation of the hybrid scaffolds using rabbit adipose mesenchymal stem cells, which revealed osteogenic cell-clusters on a polymer-siloxane scaffold, enhanced alkaline phosphatase activity and the expression of bone-specific genes, whereas the control scaffold without siloxane supported more of cell-proliferation than differentiation. A siloxane concentration dependent enhancement in osteogenic differentiation is also observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. DESIGN AND EVALUATION OF LOSARTAN POTASSIUM MATRIX TABLETS WITH NATURAL AND SYNTHETIC POLYMERS

    OpenAIRE

    R. L. C. Sasidhar et al.

    2012-01-01

    The objective of the study was to formulate controlled release matrix tablets of losartan Potassium by using a combination of hydrophilic synthetic polymer like poly (ethylene oxides) and natural gums like xanthan gum, karaya gum and guar gum. A combination of synthetic hydrophobic polymers like methacrylates with synthetic hydrophilic polymer like poly (ethylene oxide) was also used in the preparation of matrix tablets and evaluated for their influence on controlled drug release. The matrix ...

  12. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.

    Science.gov (United States)

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Leng, Jinsong; Zhang, Lijie Grace

    2016-10-01

    The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term "4D printing" refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from -8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at -18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of

  13. Synthetic Polymer with a Structure-Driven Hepatic Deposition and Curative Pharmacological Activity in Hepatic Cells

    DEFF Research Database (Denmark)

    Riber, Camilla Frich; Halling Folkmar Andersen, Anna; Anegaard Rolskov, Lærke

    2017-01-01

    Synthetic polymers make strong contributions as tools for delivery of biological drugs and chemotherapeutics. The most praised characteristic of polymers in these applications is complete lack of pharmacological function such as to minimize the side effects within the human body. In contrast...... on synthetic polymers as curative, functional agents and present PEAA as a unique biomedical tool with applications related to health of the human liver......., synthetic polymers with curative pharmacological activity are truly rare. Moreover, such activity is typically nonspecific rather than structure-defined. In this work, we present the discovery of poly(ethylacrylic acid) (PEAA) as a polymer with a suit of structure-defined, unexpected, pharmacological...

  14. Selection of polymers for application in scaffolds applicable for human pancreatic islet transplantation

    NARCIS (Netherlands)

    Smink, Alexandra M; de Haan, Bart J; Paredes-Juarez, Genaro A; Wolters, Anouk H G; Kuipers, Jeroen; Giepmans, Ben N G; Schwab, Leendert; Engelse, Marten A; van Apeldoorn, Aart A; de Koning, Eelco; Faas, Marijke M; de Vos, Paul

    2016-01-01

    The liver is currently the site for transplantation of islets in humans. This is not optimal for islets, but alternative sites in humans are not available. Polymeric scaffolds in surgically accessible areas are a solution. As human donors are rare, the polymers should not interfere with functional

  15. Restoring the Breast Mound Using a Preadipoctye-Seeded Growth Factor-Loaded Polymer Hydrogel System

    National Research Council Canada - National Science Library

    Patrick, Charles W., Jr

    2004-01-01

    .... This multidisciplinary application employs principles of bioengineering, synthetic polymer chemistry, and preadipocyte cell biology to develop an innovative biodegradable scaffold material capable...

  16. A review of: application of synthetic scaffold in tissue engineering heart valves.

    Science.gov (United States)

    Fallahiarezoudar, Ehsan; Ahmadipourroudposht, Mohaddeseh; Idris, Ani; Mohd Yusof, Noordin

    2015-03-01

    The four heart valves represented in the mammalian hearts are responsible for maintaining unidirectional, non-hinder blood flow. The heart valve leaflets synchronically open and close approximately 4 million times a year and more than 3 billion times during the life. Valvular heart dysfunction is a significant cause of morbidity and mortality around the world. When one of the valves malfunctions, the medical choice is may be to replace the original valves with an artificial one. Currently, the mechanical and biological artificial valves are clinically used with some drawbacks. Tissue engineering heart valve concept represents a new technique to enhance the current model. In tissue engineering method, a three-dimensional scaffold is fabricated as the template for neo-tissue development. Appropriate cells are seeded to the matrix in vitro. Various approaches have been investigated either in scaffold biomaterials and fabrication techniques or cell source and cultivation methods. The available results of ongoing experiments indicate a promising future in this area (particularly in combination of bone marrow stem cells with synthetic scaffold), which can eliminate the need for lifelong anti-coagulation medication, durability and reoperation problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The Mediterranean Plastic Soup: synthetic polymers in Mediterranean surface waters

    Science.gov (United States)

    Suaria, Giuseppe; Avio, Carlo G.; Mineo, Annabella; Lattin, Gwendolyn L.; Magaldi, Marcello G.; Belmonte, Genuario; Moore, Charles J.; Regoli, Francesco; Aliani, Stefano

    2016-11-01

    The Mediterranean Sea has been recently proposed as one of the most impacted regions of the world with regards to microplastics, however the polymeric composition of these floating particles is still largely unknown. Here we present the results of a large-scale survey of neustonic micro- and meso-plastics floating in Mediterranean waters, providing the first extensive characterization of their chemical identity as well as detailed information on their abundance and geographical distribution. All particles >700 μm collected in our samples were identified through FT-IR analysis (n = 4050 particles), shedding for the first time light on the polymeric diversity of this emerging pollutant. Sixteen different classes of synthetic materials were identified. Low-density polymers such as polyethylene and polypropylene were the most abundant compounds, followed by polyamides, plastic-based paints, polyvinyl chloride, polystyrene and polyvinyl alcohol. Less frequent polymers included polyethylene terephthalate, polyisoprene, poly(vinyl stearate), ethylene-vinyl acetate, polyepoxide, paraffin wax and polycaprolactone, a biodegradable polyester reported for the first time floating in off-shore waters. Geographical differences in sample composition were also observed, demonstrating sub-basin scale heterogeneity in plastics distribution and likely reflecting a complex interplay between pollution sources, sinks and residence times of different polymers at sea.

  18. Micropatterning of nanocomposite polymer scaffolds using sacrificial phosphate glass fibers for tendon tissue engineering applications.

    Science.gov (United States)

    Alshomer, Feras; Chaves, Camilo; Serra, Tiziano; Ahmed, Ifty; Kalaskar, Deepak M

    2017-04-01

    This study presents a simple and reproducible method of micropatterning the novel nanocomposite polymer (POSS-PCU) using a sacrificial phosphate glass fiber template for tendon tissue engineering applications. The diameters of the patterned scaffolds produced were dependent on the diameter of the glass fibers (15 μm) used. Scaffolds were tested for their physical properties and reproducibility using various microscopy techniques. For the first time, we show that POSS-PCU supports growth of human tenocytes cells. Furthermore, we show that cellular alignment, their biological function and expression of various tendon related proteins such as scleraxis, collagen I and III, tenascin-C are significantly elevated on the micropatterned polymer surfaces compared to flat samples. This study demonstrated a simple, reproducible method of micropatterning POSS-PCU nanocomposite polymer for novel tendon repair applications, which when provided with physical cues could help mimic the microenvironment of tenocytes cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Direct ink writing of silica-bonded calcite scaffolds from preceramic polymers and fillers.

    Science.gov (United States)

    Fiocco, L; Elsayed, H; Badocco, D; Pastore, P; Bellucci, D; Cannillo, V; Detsch, R; Boccaccini, A R; Bernardo, E

    2017-05-11

    Silica-bonded calcite scaffolds have been successfully 3D-printed by direct ink writing, starting from a paste comprising a silicone polymer and calcite powders, calibrated in order to match a SiO 2 /CaCO 3 weight balance of 35/65. The scaffolds, fabricated with two slightly different geometries, were first cross-linked at 350 °C, then fired at 600 °C, in air. The low temperature adopted for the conversion of the polymer into amorphous silica, by thermo-oxidative decomposition, prevented the decomposition of calcite. The obtained silica-bonded calcite scaffolds featured open porosity of about 56%-64% and compressive strength of about 2.9-5.5 MPa, depending on the geometry. Dissolution studies in SBF and preliminary cell culture tests, with bone marrow stromal cells, confirmed the in vitro bioactivity of the scaffolds and their biocompatibility. The seeded cells were found to be alive, well anchored and spread on the samples surface. The new silica-calcite composites are expected to be suitable candidates as tissue-engineering 3D scaffolds for regeneration of cancellous bone defects.

  20. Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2.

    Science.gov (United States)

    Niu, Xufeng; Feng, Qingling; Wang, Mingbo; Guo, Xiaodong; Zheng, Qixin

    2009-03-04

    It is advantageous to incorporate controlled growth factor delivery into tissue engineering strategies. The purpose of the present study was to develop a novel tissue engineering scaffold with the capability of controlled releasing BMP-2-derived synthetic peptide. Porous nano-hydroxyapatite/collagen/poly(L-lactic acid)/chitosan microspheres (nHAC/PLLA/CMs) composite scaffolds containing different quantities of chitosan microspheres (CMs) were prepared by a thermally induced phase separation method. Dioxane was used as the solvent for PLLA. Introduction of less than 30% of CMs (on PLLA weight basis) did not remarkably affect the morphology and porosity of the nHAC/PLLA/CMs scaffolds. However, as the microspheres contents increased to 50%, the porosity of the composite decreased rapidly. The compressive modulus of the composite scaffolds increased from 15.4 to 25.5 MPa, while the compressive strength increased from 1.42 to 1.63 MPa as the microspheres contents increased from 0% to 50%. The hydrolytic degradation and synthetic peptide release kinetics in vitro were investigated by incubation in phosphate buffered saline solution (pH 7.4). The results indicated that the degradation rate of the scaffolds was increased with the enhancement of CMs dosage. The synthetic peptide was released in a temporally controlled manner, depending on the degradation of both incorporated chitosan microspheres and PLLA matrix. In vitro bioactivity assay revealed that the encapsulated synthetic peptide was biologically active as evidenced by stimulation of rabbit marrow mesenchymal stem cells (MSCs) alkaline phosphatase (ALP) activity. The successful microspheres-scaffold system offers a new delivery method of growth factors and a novel scaffold design for bone regeneration.

  1. Antibacterial TAP-mimic electrospun polymer scaffold: effects on P. gingivalis-infected dentin biofilm.

    Science.gov (United States)

    Albuquerque, Maria Tereza P; Evans, Joshua D; Gregory, Richard L; Valera, Marcia C; Bottino, Marco C

    2016-03-01

    This study sought to investigate, in vitro, the effects of a recently developed triple antibiotic paste (TAP)-mimic polymer nanofibrous scaffold against Porphyromonas gingivalis-infected dentin biofilm. Dentin specimens (4 × 4 × 1 mm(3)) were prepared from human canines. The specimens were sterilized, inoculated with P. gingivalis (ATCC 33277), and incubated for 1 week to allow for biofilm formation. Infected dentin specimens were exposed for 3 days to the following treatments: antibiotic-free polydioxanone scaffold (PDS, control), PDS + 25 wt% TAP [25 mg of each antibiotic (metronidazole, ciprofloxacin, and minocycline) per mL of the PDS polymer solution], or a saturated TAP-based solution (50 mg of each antibiotic per mL of saline solution). In order to serve as the negative control, infected dentin specimens were left untreated (bacteria only). To determine the antimicrobial efficacy of the TAP-mimic scaffold, a colony-forming unit (CFU) per milliliter (n = 10/group) measurement was performed. Furthermore, additional specimens (n = 2/group) were prepared to qualitatively study biofilm inhibition via scanning electron microscopy (SEM). Statistics were performed, and significance was set at the 5% level. Both the TAP-mimic scaffold and the positive control (TAP solution) led to complete bacterial elimination, differing statistically (p scaffolds (2.7 log10 CFU/mL) and the negative control (5.9 log10 CFU/mL). The obtained data revealed significant antimicrobial properties of the novel PDS-based TAP-mimic scaffold against an established P. gingivalis-infected dentin biofilm. Collectively, the data suggest that the proposed nanofibrous scaffold might be used as an alternative to the advocated clinical gold standard (i.e., TAP) for intracanal disinfection prior to regenerative endodontics.

  2. Fabrication of a Bioactive, PCL-based "Self-fitting" Shape Memory Polymer Scaffold.

    Science.gov (United States)

    Nail, Lindsay N; Zhang, Dawei; Reinhard, Jessica L; Grunlan, Melissa A

    2015-10-23

    Tissue engineering has been explored as an alternative strategy for the treatment of critical-sized cranio-maxillofacial (CMF) bone defects. Essential to the success of this approach is a scaffold that is able to conformally fit within an irregular defect while also having the requisite biodegradability, pore interconnectivity and bioactivity. By nature of their shape recovery and fixity properties, shape memory polymer (SMP) scaffolds could achieve defect "self-fitting." In this way, following exposure to warm saline (~60 ºC), the SMP scaffold would become malleable, permitting it to be hand-pressed into an irregular defect. Subsequent cooling (~37 ºC) would return the scaffold to its relatively rigid state within the defect. To meet these requirements, this protocol describes the preparation of SMP scaffolds prepared via the photochemical cure of biodegradable polycaprolactone diacrylate (PCL-DA) using a solvent-casting particulate-leaching (SCPL) method. A fused salt template is utilized to achieve pore interconnectivity. To realize bioactivity, a polydopamine coating is applied to the surface of the scaffold pore walls. Characterization of self-fitting and shape memory behaviors, pore interconnectivity and in vitro bioactivity are also described.

  3. In Vitro Biological Evaluation of Electrospun Polycaprolactone/Gelatine Nanofibrous Scaffold for Tissue Engineering

    OpenAIRE

    Lim, Mim Mim; Sun, Tao; Sultana, Naznin

    2015-01-01

    The fabrication of biocompatible and biodegradable scaffolds which mimic the native extracellular matrix of tissues to promote cell adhesion and growth is emphasized recently. Many polymers have been utilized in scaffold fabrication, but there is still a need to fabricate hydrophilic nanosized fibrous scaffolds with an appropriate degradation rate for skin tissue engineering applications. In this study, nanofibrous scaffolds of a biodegradable synthetic polymer, polycaprolactone (PCL), and bl...

  4. In vitro biocompatibility testing of some synthetic polymers used for the achievement of nervous conduits

    OpenAIRE

    Mihai, R; Florescu, IP; Coroiu, V; Oancea, A; Lungu, M

    2011-01-01

    Biocompatible synthetic polymers are largely used in the bio–medical domain, tissue engineering and in controlled release of medicines. Polymers can be used in the achievement of cardiac and vascular devices, mammary implants, eye lenses, surgical threads, nervous conduits, adhesives, blood substitutes, etc. Our study was axed on the development of cytotoxicity tests for 3 synthetic polymers, namely polyvinyl alcohol, polyethylene glycol and polyvinyl chloride. These tests targeted to determi...

  5. Identification of Synthetic Polymers and Copolymers by Analytical Pyrolysis-Gas Chromatography/Mass Spectrometry

    Science.gov (United States)

    Kusch, Peter

    2014-01-01

    An experiment for the identification of synthetic polymers and copolymers by analytical pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) was developed and performed in the polymer analysis courses for third-year undergraduate students of chemistry with material sciences, and for first-year postgraduate students of polymer sciences. In…

  6. * Meltblown Polymer Fabrics as Candidate Scaffolds for Rotator Cuff Tendon Tissue Engineering.

    Science.gov (United States)

    Jenkins, Thomas L; Meehan, Sean; Pourdeyhimi, Behnam; Little, Dianne

    2017-09-01

    Various biomaterial technologies are promising for tissue engineering, including electrospinning, but commercial scale-up of throughput is difficult. The goal of the study was to evaluate meltblown fabrics as candidate scaffolds for rotator cuff tendon tissue engineering. Meltblown poly(lactic acid) fabrics were produced with several polymer crystallinities and airflow velocities [500(low), 900(medium) or 1400(high) m 3 air/h/m fabric]. Fiber diameter, alignment, and baseline bidirectional tensile mechanical properties were evaluated. Attachment and spreading of human adipose-derived stem cells (hASCs) were evaluated over 3 days immediately following seeding. After initial screening, the fabric with the greatest Young's modulus and yield stress was selected for 28-day in vitro culture and for evaluation of tendon-like extracellular matrix production and development of mechanical properties. As expected, airflow velocity of the polymer during meltblowing demonstrated an inverse relationship with fiber diameter. All fabrics exhibited fiber alignment parallel to the direction of collector rotation. All fabrics demonstrated mechanical anisotropy at baseline. Cells attached, proliferated, and spread on all fabrics over the initial three-day culture period. Consistent with the observed loss of integrity of the unseeded biomaterial, hASC-seeded scaffolds demonstrated a significant decrease in Young's modulus over 28 days of culture. However, dsDNA, sulfated glycosaminoglycan, and collagen content increased significantly over 28 days. Histology and polarized light microscopy demonstrated collagen deposition and alignment throughout the thickness of the scaffolds. While fiber diameters approximated an order of magnitude greater than those previously reported for electrospun scaffolds intended for tendon tissue engineering, they were still within the range of collagen fiber diameters found in healthy tendon. The extent of matrix production and alignment was similar to that

  7. Introducing an attractive method for total biomimetic creation of a synthetic biodegradable bioactive bone scaffold based on statistical experimental design.

    Science.gov (United States)

    Shahbazi, Sara; Zamanian, Ali; Pazouki, Mohammad; Jafari, Yaser

    2018-05-01

    A new total biomimetic technique based on both the water uptake and degradation processes is introduced in this study to provide an interesting procedure to fabricate a bioactive and biodegradable synthetic scaffold, which has a good mechanical and structural properties. The optimization of effective parameters to scaffold fabrication was done by response surface methodology/central composite design (CCD). With this method, a synthetic scaffold was fabricated which has a uniform and open-interconnected porous structure with the largest pore size of 100-200μm. The obtained compressive ultimate strength of ~35MPa and compression modulus of 58MPa are similar to some of the trabecular bone. The pore morphology, size, and distribution of the scaffold were characterized using a scanning electron microscope and mercury porosimeter. Fourier transform infrared spectroscopy, EDAX and X-ray diffraction analyses were used to determine the chemical composition, Ca/P element ratio of mineralized microparticles, and the crystal structure of the scaffolds, respectively. The optimum biodegradable synthetic scaffold based on its raw materials of polypropylene fumarate, hydroxyethyl methacrylate and nano bioactive glass (PPF/HEMA/nanoBG) as 70/30wt/wt%, 20wt%, and 1.5wt/wt% (PHB.732/1.5) with desired porosity, pore size, and geometry were created by 4weeks immersion in SBF. This scaffold showed considerable biocompatibility in the ranging from 86 to 101% for the indirect and direct contact tests and good osteoblast cell attachment when studied with the bone-like cells. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Science.gov (United States)

    Kumar, Pradeep; Choonara, Yahya E.; du Toit, Lisa C.; Modi, Girish; Naidoo, Dinesh; Pillay, Viness

    2012-01-01

    Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS) mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%), grafting ratio (GR = 263%), intrinsic viscosity (IV = 5.231 dL/g) and viscometric average molecular mass (MW = 1.63 × 106 Da) compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT)—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness, superior

  9. Novel High-Viscosity Polyacrylamidated Chitosan for Neural Tissue Engineering: Fabrication of Anisotropic Neurodurable Scaffold via Molecular Disposition of Persulfate-Mediated Polymer Slicing and Complexation

    Directory of Open Access Journals (Sweden)

    Viness Pillay

    2012-10-01

    Full Text Available Macroporous polyacrylamide-grafted-chitosan scaffolds for neural tissue engineering were fabricated with varied synthetic and viscosity profiles. A novel approach and mechanism was utilized for polyacrylamide grafting onto chitosan using potassium persulfate (KPS mediated degradation of both polymers under a thermally controlled environment. Commercially available high molecular mass polyacrylamide was used instead of the acrylamide monomer for graft copolymerization. This grafting strategy yielded an enhanced grafting efficiency (GE = 92%, grafting ratio (GR = 263%, intrinsic viscosity (IV = 5.231 dL/g and viscometric average molecular mass (MW = 1.63 × 106 Da compared with known acrylamide that has a GE = 83%, GR = 178%, IV = 3.901 dL/g and MW = 1.22 × 106 Da. Image processing analysis of SEM images of the newly grafted neurodurable scaffold was undertaken based on the polymer-pore threshold. Attenuated Total Reflectance-FTIR spectral analyses in conjugation with DSC were used for the characterization and comparison of the newly grafted copolymers. Static Lattice Atomistic Simulations were employed to investigate and elucidate the copolymeric assembly and reaction mechanism by exploring the spatial disposition of chitosan and polyacrylamide with respect to the reactional profile of potassium persulfate. Interestingly, potassium persulfate, a peroxide, was found to play a dual role initially degrading the polymers—“polymer slicing”—thereby initiating the formation of free radicals and subsequently leading to synthesis of the high molecular mass polyacrylamide-grafted-chitosan (PAAm-g-CHT—“polymer complexation”. Furthermore, the applicability of the uniquely grafted scaffold for neural tissue engineering was evaluated via PC12 neuronal cell seeding. The novel PAAm-g-CHT exhibited superior neurocompatibility in terms of cell infiltration owing to the anisotropic porous architecture, high molecular mass mediated robustness

  10. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair.

    Science.gov (United States)

    Guillaume, O; Geven, M A; Sprecher, C M; Stadelmann, V A; Grijpma, D W; Tang, T T; Qin, L; Lai, Y; Alini, M; de Bruijn, J D; Yuan, H; Richards, R G; Eglin, D

    2017-05-01

    Fabrication of composite scaffolds using stereolithography (SLA) for bone tissue engineering has shown great promises. However, in order to trigger effective bone formation and implant integration, exogenous growth factors are commonly combined to scaffold materials. In this study, we fabricated biodegradable composite scaffolds using SLA and endowed them with osteopromotive properties in the absence of biologics. First we prepared photo-crosslinkable poly(trimethylene carbonate) (PTMC) resins containing 20 and 40wt% of hydroxyapatite (HA) nanoparticles and fabricated scaffolds with controlled macro-architecture. Then, we conducted experiments to investigate how the incorporation of HA in photo-crosslinked PTMC matrices improved human bone marrow stem cells osteogenic differentiation in vitro and kinetic of bone healing in vivo. We observed that bone regeneration was significantly improved using composite scaffolds containing as low as 20wt% of HA, along with difference in terms of osteogenesis and degree of implant osseointegration. Further investigations revealed that SLA process was responsible for the formation of a rich microscale layer of HA corralling scaffolds. To summarize, this work is of substantial importance as it shows how the fabrication of hierarchical biomaterials via surface-enrichment of functional HA nanoparticles in composite polymer stereolithographic structures could impact in vitro and in vivo osteogenesis. This study reports for the first time the enhance osteopromotion of composite biomaterials, with controlled macro-architecture and microscale distribution of hydroxyapatite particles, manufactured by stereolithography. In this process, the hydroxyapatite particles are not only embedded into an erodible polymer matrix, as reported so far in the literature, but concentrated at the surface of the structures. This leads to robust in vivo bone formation at low concentration of hydroxyapatite. The reported 3D self-corralling composite

  11. Cell adhesion and viability of human endothelial cells on electrospun polymer scaffolds

    Directory of Open Access Journals (Sweden)

    Matschegewski Claudia

    2016-09-01

    Full Text Available The usage of electrospun polymer scaffolds is a promising approach for artificial heart valve design. This study aims at the evaluation of biological performance of nanofibrous polymer scaffolds poly(L-lactide PLLA L210, PLLA L214 and polyamide-6 fabricated by electrospinning via analyzing viability, adhesion and morphology of human umbilical vein endothelial cells (EA.hy926. Nanofibrous surface topography was shown to influence cell phenotype and cell viability according to the observation of diminished cell spreading accompanied with reduced cell viability on nonwovens. Among those, highest biocompatibility was assessed for PLLA L214, although being generally low when compared to the planar control surface. Electrospinning was demonstrated as an innovative technique for the fabrication of advanced biomaterials aiming at guided cellular behavior as well as the design of novel implant platforms. A better understanding of cell–biomaterial interactions is desired to further improve implant development.

  12. Selection of polymers for application in scaffolds applicable for human pancreatic islet transplantation.

    Science.gov (United States)

    Smink, Alexandra M; de Haan, Bart J; Paredes-Juarez, Genaro A; Wolters, Anouk H G; Kuipers, Jeroen; Giepmans, Ben N G; Schwab, Leendert; Engelse, Marten A; van Apeldoorn, Aart A; de Koning, Eelco; Faas, Marijke M; de Vos, Paul

    2016-05-13

    The liver is currently the site for transplantation of islets in humans. This is not optimal for islets, but alternative sites in humans are not available. Polymeric scaffolds in surgically accessible areas are a solution. As human donors are rare, the polymers should not interfere with functional survival of human-islets. We applied a novel platform to test the adequacy of polymers for application in scaffolds for human-islet transplantation. Viability, functionality, and immune parameters were included to test poly(D,L-lactide-co-ε-caprolactone) (PDLLCL), poly(ethylene oxide terephthalate)/polybutylene terephthalate (PEOT/PBT) block copolymer, and polysulfone. The type of polymer influenced the functional survival of human islets. In islets cultured on PDLLCL the glucagon-producing α-cells and insulin-producing β-cells contained more hormone granules than in islets in contact with PEOT/PBT or polysulfone. This was studied with ultrastructural analysis by electron microscopy (nanotomy) during 7 d of culture. PDLLCL was also associated with statistically significant lower release of double-stranded DNA (dsDNA, a so called danger-associate molecular pattern (DAMP)) from islets on PDLLCL when compared to the other polymers. DAMPs support undesired immune responses. Hydrophilicity of the polymers did not influence dsDNA release. Islets on PDLLCL also showed less cellular outgrowth. These outgrowing cells were mainly fibroblast and some β-cells undergoing epithelial to mesenchymal cell transition. None of the polymers influenced the glucose-stimulated insulin secretion. As PDLLCL was associated with less release of DAMPs, it is a promising candidate for creating a scaffold for human islets. Our study demonstrates that for sensitive, rare cadaveric donor tissue such as pancreatic islets it might be necessary to first select materials that do not influence functionality before proposing the biomaterial for in vivo application. Our presented platform may facilitate

  13. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.

    Science.gov (United States)

    Kim, In Gul; Hwang, Mintai P; Du, Ping; Ko, Jaehoon; Ha, Chul-won; Do, Sun Hee; Park, Kwideok

    2015-05-01

    Successful bone tissue engineering generally requires an osteoconductive scaffold that consists of extracellular matrix (ECM) to mimic the natural environment. In this study, we developed a PLGA/PLA-based mesh scaffold coated with cell-derived extracellular matrix (CDM) for the delivery of bone morphogenic protein (BMP-2), and assessed the capacity of this system to provide an osteogenic microenvironment. Decellularized ECM from human lung fibroblasts (hFDM) was coated onto the surface of the polymer mesh scaffolds, upon which heparin was then conjugated onto hFDM via EDC chemistry. BMP-2 was subsequently immobilized onto the mesh scaffolds via heparin, and released at a controlled rate. Human placenta-derived mesenchymal stem cells (hPMSCs) were cultured in such scaffolds and subjected to osteogenic differentiation for 28 days in vitro. The results showed that alkaline phosphatase (ALP) activity, mineralization, and osteogenic marker expression were significantly improved with hPMSCs cultured in the hFDM-coated mesh scaffolds compared to the control and fibronectin-coated ones. In addition, a mouse ectopic and rat calvarial bone defect model was used to examine the feasibility of current platform to induce osteogenesis as well as bone regeneration. All hFDM-coated mesh groups exhibited a significant increase of newly formed bone and in particular, hFDM-coated mesh scaffold loaded with a high dose of BMP-2 exhibited a nearly complete bone defect healing as confirmed via micro-CT and histological observation. This work proposes a great potency of using hFDM (biophysical) coupled with BMP-2 (biochemical) as a promising osteogenic microenvironment for bone tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Enhanced sintering ability of biphasic calcium phosphate by polymers used for bone scaffold fabrication.

    Science.gov (United States)

    Gao, Chengde; Yang, Bo; Hu, Huanlong; Liu, Jinglin; Shuai, Cijun; Peng, Shuping

    2013-10-01

    Biphasic calcium phosphate (BCP), which is composed of hydroxyapatite [HAP, Ca10(PO4)6(OH)2] and β-tricalcium phosphate [β-TCP, β-Ca3(PO4)2], is usually difficult to densify into a solid state with selective laser sintering (SLS) due to the short sintering time. In this study, the sintering ability of BCP ceramics was significantly improved by adding a small amount of polymers, by which a liquid phase was introduced during the sintering process. The effects of the polymer content, laser power and HAP/β-TCP ratios on the microstructure, chemical composition and mechanical properties of the BCP scaffolds were investigated. The results showed that the BCP scaffolds became increasingly more compact with the increase of the poly(l-lactic acid) (PLLA) content (0-1 wt.%) and laser power (6-10 W). The fracture toughness and micro-hardness of the sintered scaffolds were also improved. Moreover, PLLA could be gradually decomposed in the late sintering stages and eliminated from the final BCP scaffolds if the PLLA content was below a certain value (approximately 1 wt.% in this case). The added PLLA could not be completely eliminated when its content was further increased to 1.5 wt.% or higher because an unexpected carbon phase was detected in the sintered scaffolds. Furthermore, many pores were observed due to the removal of PLLA. Micro-cracks and micro-pores occurred when the laser power was too high (12 W). These defects resulted in a deterioration of the mechanical properties. The hardness and fracture toughness reached maximum values of 490.3±10 HV and 1.72±0.10 MPa m(1/2), respectively, with a PLLA content of approximately 1 wt.% and laser power of approximately 10 W. Poly(l-lactic-co-glycolic acid) (PLGA) showed similar effects on the sintering process of BCP ceramics. Rectangular, porous BCP scaffolds were fabricated based on the optimum values of the polymer content and laser power. This work may provide an experimental basis for improving the mechanical

  15. Large animal in vivo evaluation of a binary blend polymer scaffold for skeletal tissue-engineering strategies; translational issues.

    Science.gov (United States)

    Smith, James O; Tayton, Edward R; Khan, Ferdous; Aarvold, Alexander; Cook, Richard B; Goodship, Allen; Bradley, Mark; Oreffo, Richard O C

    2017-04-01

    Binary blend polymers offer the opportunity to combine different desirable properties into a single scaffold, to enhance function within the field of tissue engineering. Previous in vitro and murine in vivo analysis identified a polymer blend of poly(l-lactic acid)-poly(ε-caprolactone) (PLLA:PCL 20:80) to have characteristics desirable for bone regeneration. Polymer scaffolds in combination with marrow-derived skeletal stem cells (SSCs) were implanted into mid-shaft ovine 3.5 cm tibial defects, and indices of bone regeneration were compared to groups implanted with scaffolds alone and with empty defects after 12 weeks, including micro-CT, mechanical testing and histological analysis. The critical nature of the defect was confirmed via all modalities. Both the scaffold and scaffold/SSC groups showed enhanced quantitative bone regeneration; however, this was only found to be significant in the scaffold/SSCs group (p = 0.04) and complete defect bridging was not achieved in any group. The mechanical strength was significantly less than that of contralateral control tibiae (p blend polymer scaffold. © 2015 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd. © 2015 The Authors. Journal of Tissue Engineering and Regenerative Medicine published by John Wiley & Sons, Ltd.

  16. A study of porosity of synthetic polymer nanoparticles using PALS

    Energy Technology Data Exchange (ETDEWEB)

    Pham, B; Smith, S V [Centre for Antimatter-Matter Studies, Australian Nuclear Science and Technology Organisation (ANSTO) NSW 2232 (Australia); Guagliardo, P; Williams, J; Samarin, S, E-mail: binh.pham@ansto.gov.au, E-mail: svs@ansto.gov.au [Centre for Antimatter-Matter Studies, School of Physics, University of Western Australia, WA 6009 (Australia)

    2011-01-01

    Positron annihilation lifetime spectroscopy (PALS) has been used to study the free volume in dry synthetic polymer nanoparticles of various sizes. A series of poly(styrene/divinyl benzene) particles with diameters in the range of 100 to 500 nm were synthesized and then carefully chemically treated using the sulfonation process, to increase their porosity. The particles were characterised by Scanning Electron Microscopy (SEM), light scattering and PALS. Light scattering gave larger size for the treated particles, reflecting the hydration effect and therefore the increase in porosity. PALS spectra of untreated and treated particles gave four and three life-time components, respectively. Analysis by PAScual version 1.3.0 program indicated there was a reduction in the intensity and the type of the micropores in the treated particles. The data suggest PALS is a sensitive tool for detecting changes in microporosity in particles. The conflicting results obtained for light scattering compared to PALS for chemically treated particles is difficult to resolve and suggests sample preparation of polymeric materials for PALS is the critical factor.

  17. Synthetic polymers and methods of making and using the same

    Science.gov (United States)

    Daily, Michael D.; Grate, Jay W.; Mo, Kai-For

    2016-06-14

    Monomer embodiments that can be used to make polymers, such as homopolymers, heteropolymers, and that can be used in particular embodiments to make sequence-defined polymers are described. Also described are methods of making polymers using such monomer embodiments. Methods of using the polymers also are described.

  18. Understanding the folding process of synthetic polymers by small ...

    Indian Academy of Sciences (India)

    This two-point interaction between the folding agent and the polymer backbone leads to a folding of the polymer chain, which was readily monitored by NMR titrations. The effect of various parameters, such as structures of the folding agent and polymer, and the solvent composition, on the folding propensities of the polymer ...

  19. Radiation luminescence of polymers - emission behaviour of aromatic compounds incorporated in synthetic rubbers

    International Nuclear Information System (INIS)

    Kawanishi, Shunichi; Hagiwara, Miyuki

    1986-01-01

    For a deep understanding of a radiation protection mechanism of some aromatic compounds on synthetic polymers, their optical emission behavior under electron irradiation was studied. The fluorescence light was led out of an irradiation room through a wave guide and detected by a photomultiplier so that less noisy spectrum was obtained. Acenaphthene or acenaphthylene was added to the synthetic rubbers such as ethylene propylene diene terpolymer, styrene butadiene rubber and cis-1,4-polybutadiene. The intensities of optical emission induced by electron beams changed from polymer to polymer, while those by ultraviolet lights were independent of the kind of polymers. The dependence of emission intensity on polymers under electron irradiation was estimated to show the fact that the radiation excited energy transfers occur from the polymer matrix to the additives and that an efficiency of the energy transfer is dependent on kinds of polymers. (author)

  20. Enhanced neuronal cell differentiation combining biomimetic peptides and a carbon nanotube-polymer scaffold.

    Science.gov (United States)

    Scapin, Giorgia; Salice, Patrizio; Tescari, Simone; Menna, Enzo; De Filippis, Vincenzo; Filippini, Francesco

    2015-04-01

    Carbon nanotubes are attractive candidates for the development of scaffolds able to support neuronal growth and differentiation thanks to their ability to conduct electrical stimuli, to interface with cells and to mimic the neural environment. We developed a biocompatible composite scaffold, consisting of multi-walled carbon nanotubes dispersed in a poly-L-lactic acid matrix able to support growth and differentiation of human neuronal cells. Moreover, to mimic guidance cues from the neural environment, we also designed synthetic peptides, derived from L1 and LINGO1 proteins. Such peptides could positively modulate neuronal differentiation, which is synergistically improved by the combination of the nanocomposite scaffold and the peptides, thus suggesting a prototype for the development of implants for long-term neuronal growth and differentiation. From the clinical editor: The study describes the design and preparation of nanocomposite scaffolds with multi-walled carbon nanotubes in a poly-L-lactic acid matrix. This compound used in combination with peptides leads to synergistic effects in supporting neuronal cell growth and differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The influence of supercritical foaming conditions on properties of polymer scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Kosowska Katarzyna

    2017-12-01

    Full Text Available The results of experimental investigations into foaming process of poly(ε-caprolactone using supercritical CO2 are presented. The objective of the study was to explore the aspects of fabrication of biodegradable and biocompatible scaffolds that can be applied as a temporary three-dimensional extracellular matrix analog for cells to grow into a new tissue. The influence of foaming process parameters, which have been proven previously to affect significantly scaffold bioactivity, such as pressure (8-18 MPa, temperature (323-373 K and time of saturation (1-6 h on microstructure and mechanical properties of produced polymer porous structures is presented. The morphology and mechanical properties of considered materials were analyzed using a scanning electron microscope (SEM, x-ray microtomography (μ-CT and a static compression test. A precise control over porosity and morphology of obtained polymer porous structures by adjusting the foaming process parameters has been proved. The obtained poly(ε-caprolactone solid foams prepared using scCO2 have demonstrated sufficient mechanical strength to be applied as scaffolds in tissue engineering.

  2. Selenium-Substituted Hydroxyapatite/Biodegradable Polymer/Pamidronate Combined Scaffold for the Therapy of Bone Tumour

    Directory of Open Access Journals (Sweden)

    Ewa Oledzka

    2015-09-01

    Full Text Available The present study evaluated a new concept of combined scaffolds as a promising bone replacement material for patients with a bone tumour or bone metastasis. The scaffolds were composed of hydroxyapatite doped with selenium ions and a biodegradable polymer (linear or branched, and contained an active substance—bisphosphonate. For this purpose, a series of biodegradable polyesters were synthesized through a ring-opening polymerization of ε-caprolactone or d,l-lactide in the presence of 2-hydroxyethyl methacrylate (HEMA or hyperbranched 2,2-bis(hydroxymethylpropionic acid polyester-16-hydroxyl (bis-MPA initiators, substances often used in the synthesis of medical materials. The polymers were obtained with a high yield and a number-average molecular weight up to 45,300 (g/mol. The combined scaffolds were then manufactured by a direct compression of pre-synthesized hydroxyapatite doped with selenite or selenate ions, obtained polymer and pamidronate as a model drug. It was found that the kinetic release of the drug from the scaffolds tested in vitro under physiological conditions is strongly dependent on the physicochemical properties and average molecular weight of the polymers. Furthermore, there was good correlation with the hydrolytic biodegradation results of the scaffolds fabricated without drug. The preliminary findings suggest that the fabricated combined scaffolds could be effectively used for the sustained delivery of bioactive molecules at bone defect sites.

  3. High resolution NMR spectroscopy of synthetic polymers in bulk

    International Nuclear Information System (INIS)

    Komorski, R.A.

    1986-01-01

    The contents of this book are: Overview of high-resolution NMR of solid polymers; High-resolution NMR of glassy amorphous polymers; Carbon-13 solid-state NMR of semicrystalline polymers; Conformational analysis of polymers of solid-state NMR; High-resolution NMR studies of oriented polymers; High-resolution solid-state NMR of protons in polymers; and Deuterium NMR of solid polymers. This work brings together the various approaches for high-resolution NMR studies of bulk polymers into one volume. Heavy emphasis is, of course, given to 13C NMR studies both above and below Tg. Standard high-power pulse and wide-line techniques are not covered

  4. Design, fabrication and in vitro evaluation of a novel polymer-hydrogel hybrid scaffold for bone tissue engineering.

    Science.gov (United States)

    Igwe, John C; Mikael, Paiyz E; Nukavarapu, Syam P

    2014-02-01

    The development of a bone mechanically-compatible and osteoinductive scaffold is important for bone tissue engineering applications, particularly for the repair and regeneration of large area critically-sized bone defects. Although previous studies with weight-bearing scaffolds have shown promising results, there is a clear need to develop better osteoinductive strategies for effective scaffold-based bone regeneration. In this study, we designed and fabricated a novel polymer-hydrogel hybrid scaffold system in which a load-bearing polymer matrix and a peptide hydrogel allowed for the synergistic combination of mechanical strength and great potential for osteoinductivity in a single scaffold. The hybrid scaffold system promoted increased pre-osteoblastic cell proliferation. Further, we biotinylated human recombinant bone morphogenetic protein 2 (rhBMP2), and characterized the biotin addition and its effect on rhBMP2 biological activity. The biotinylated rhBMP2 was tethered to the hybrid scaffold using biotin-streptavidin complexation. Controlled release studies demonstrated increased rhBMP2 retention with the tethered rhBMP2 hybrid scaffold group. In vitro evaluation of the hybrid scaffold was performed with rat bone marrow stromal cells and mouse pre-osteoblast cell line MC3T3-E1 cells. Gene expression of alkaline phosphatase (ALP), collagen I (Col I), osteopontin (OPN), bone sialoprotein (BSP), Runx-2 and osteocalcin (OC) increased in MC3T3-E1 cells seeded on the rhBMP2 tethered hybrid scaffolds over the untethered counterparts, demonstrating osteoinductive potential of the hybrid graft. These findings suggest the possibility of developing a novel polymer-hydrogel hybrid system that is weight bearing and osteoinductive for effective bone tissue engineering. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Protein stabilization with a dipeptide-mimic triazine-scaffolded synthetic affinity ligand.

    Science.gov (United States)

    Sousa, I T; Lourenço, N M T; Afonso, C A M; Taipa, M A

    2013-02-01

    Protein stabilization was achieved by a novel approach based on the adsorption and establishment of affinity-like interactions with a biomimetic triazine-scaffolded ligand. A synthetic lead compound (ligand 3'/11, K(a) ≈ 10(4) M(-1)) was selected from a previously screened solid-phase library of affinity ligands for studies of adsorption and stabilization of cutinase from Fusarium solani pisi used as a model system. This ligand, directly synthesized in agarose by a well-established solid-phase synthesis method, was able to strongly bind cutinase and led to impressive half-lives of more than 8 h at 70 °C, and of approximately 34 h at 60 °C for bound protein (a 25- and 57-fold increase as compared with the free enzyme, respectively). The ligand density in the solid matrix was found to be a determinant parameter for cutinase stabilization. It is conceivable that the highly stabilizing effect observed results from the binding of more than one ligand residue to the enzyme, creating specific macromolecular configurations that lock structural mobility thus improving molecular stability. Copyright © 2013 John Wiley & Sons, Ltd.

  6. Structural and functional synthetic model of mono-iron hydrogenase featuring an anthracene scaffold

    Science.gov (United States)

    Seo, Junhyeok; Manes, Taylor A.; Rose, Michael J.

    2017-06-01

    Mono-iron hydrogenase was the third type of hydrogenase discovered. Its Lewis acidic iron(II) centre promotes the heterolytic cleavage of the H-H bond and this non-redox H2 activation distinguishes it from the well-studied dinuclear [FeFe] and [NiFe] hydrogenases. Cleavage of the H-H bond is followed by hydride transfer to the enzyme's organic substrate, H4MPT+, which serves as a CO2 'carrier' in methanogenic pathways. Here we report a scaffold-based synthetic approach by which to model mono-iron hydrogenase using an anthracene framework, which supports a biomimetic fac-C,N,S coordination motif to an iron(II) centre. This arrangement includes the biomimetic and organometallic Fe-C σ bond, which enables bidirectional activity reminiscent of the native enzyme: the complex activates H2 under mild conditions, and catalyses C-H hydride abstraction plus H2 generation from a model substrate. Notably, neither H2 activation nor C-H hydride abstraction was observed in the analogous complex with a pincer-type mer-C,N,S ligation, emphasizing the importance of the fac-C,N,S-iron(II) motif in promoting enzyme-like reactivity.

  7. The masquelet induced membrane technique with BMP and a synthetic scaffold can heal a rat femoral critical size defect.

    Science.gov (United States)

    Bosemark, Per; Perdikouri, Christina; Pelkonen, Mea; Isaksson, Hanna; Tägil, Magnus

    2015-04-01

    Long bone defects can be managed by the induced membrane technique together with autologous bone graft. However, graft harvest is associated with donor site morbidity. This study investigates if a tricalcium phosphate hydroxyapatite scaffold can be used alone or in combination with bone active drugs to improve healing. Sprague Dawley rats (n = 40) were randomized into four groups. (A) scaffold, (B) BMP-7, (C) BMP-7 + scaffold, and (D) BMP-7 + scaffold + systemic bisphosphonate at 2 weeks. Locked femoral nailing was followed by 6 mm segment removal and implantation of an epoxy spacer. At 4 weeks, the spacers were removed and the defects grafted. Eleven weeks later, the bones were explanted for evaluation with radiography, manual assessment, micro-CT, histology, and Fourier Transform Infrared spectroscopy (FTIR). Isolated scaffolds (A) did not heal any defects, whereas the other treatments led to healing in 7/10 (B), 10/10 (C), and 9/10 (D) rats. Group D had greater volume of highly mineralized bone (p < 0.01) and higher bone volume fraction (p < 0.01) compared to all other groups. A synthetic scaffold + BMP-7 combined with a bisphosphonate improved the callus properties in a rat femoral critical size defect, compared to both BMP-7 and scaffold alone or the two combined. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  8. Control of polymer-packing orientation in thin films through synthetic tailoring of backbone coplanarity

    KAUST Repository

    Chen, Mark S.

    2013-10-22

    Controlling solid-state order of π-conjugated polymers through macromolecular design is essential for achieving high electronic device performance; yet, it remains a challenge, especially with respect to polymer-packing orientation. Our work investigates the influence of backbone coplanarity on a polymer\\'s preference to pack face-on or edge-on relative to the substrate. Isoindigo-based polymers were synthesized with increasing planarity by systematically substituting thiophenes for phenyl rings in the acceptor comonomer. This increasing backbone coplanarity, supported by density functional theory (DFT) calculations of representative trimers, leads to the narrowing of polymer band gaps as characterized by ultraviolet-visible-near infrared (UV-vis-NIR) spectroscopy and cyclic voltammetry. Among the polymers studied, regiosymmetric II and TII polymers exhibited the highest hole mobilities in organic field-effect transistors (OFETs), while in organic photovoltaics (OPVs), TBII polymers that display intermediate levels of planarity provided the highest power conversion efficiencies. Upon thin-film analysis by atomic force microscropy (AFM) and grazing-incidence X-ray diffraction (GIXD), we discovered that polymer-packing orientation could be controlled by tuning polymer planarity and solubility. Highly soluble, planar polymers favor face-on orientation in thin films while the less soluble, nonplanar polymers favor an edge-on orientation. This study advances our fundamental understanding of how polymer structure influences nanostructural order and reveals a new synthetic strategy for the design of semiconducting materials with rationally engineered solid-state properties. © 2013 American Chemical Society.

  9. In situ immobilization of tin dioxide nanoparticles by nanoporous polymers scaffold toward monolithic humidity sensing devices.

    Science.gov (United States)

    Wei, Shu; Han, Dong-Dong; Guo, Li; He, Yinyan; Ding, Hong; Zhang, Yong-Lai; Xiao, Feng-Shou

    2014-10-01

    Reported here is in situ immobilization of tin dioxide (SnO2) nanoparticles (NPs) within nanoporous polymer scaffolds for the development of monolithic humidity sensing devices. Through solvothermal polymerization of divinylbenzene (DVB) monomers in the interspaces of SnO2 fine powders, SnO2 NPs could be homogeneously immobilized in polymer matrices, forming a novel composite material. Immobilization of SnO2 NPs in nanoporous polymer matrices not only simplifies the fabrication process of NPs-based sensing devices, but also improves their adsorptive properties. The resultant nanoporous polymer/SnO2 NPs composites with adjustable SnO2 contents possess high BET surface areas, large pore sizes and pore volumes, thus they exhibit high adsorptive capacities for H2O vapor. As a general approach to NPs/nanoporous polymer composites, this work may open up a new way to nanomaterial-based sensing devices that features enhanced adsorptive property. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Blends of synthetic and natural polymers as drug delivery systems for growth hormone.

    Science.gov (United States)

    Cascone, M G; Sim, B; Downes, S

    1995-05-01

    In order to overcome the biological deficiencies of synthetic polymers and to enhance the mechanical characteristics of natural polymers, two synthetic polymers, poly(vinyl alcohol) (PVA) and poly(acrylic acid) (PAA) were blended, in different ratios, with two biological polymers, collagen (C) and hyaluronic acid (HA). These blends were used to prepare films, sponges and hydrogels which were loaded with growth hormone (GH) to investigate their potential use as drug delivery systems. The GH release was monitored in vitro using a specific enzyme-linked immunosorbent assay. The results show that GH can be released from HA/PAA sponges and from HA/PVA and C/PVA hydrogels. The initial GH concentration used for sample loading affected the total quantity of GH released but not the pattern of release. The rate and quantity of GH released was significantly dependent on the HA or C content of the polymers.

  11. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  12. A bioactive "self-fitting" shape memory polymer scaffold with potential to treat cranio-maxillo facial bone defects.

    Science.gov (United States)

    Zhang, Dawei; George, Olivia J; Petersen, Keri M; Jimenez-Vergara, Andrea C; Hahn, Mariah S; Grunlan, Melissa A

    2014-11-01

    While tissue engineering is a promising alternative for treating critical-sized cranio-maxillofacial bone defects, improvements in scaffold design are needed. In particular, scaffolds that can precisely match the irregular boundaries of bone defects as well as exhibit an interconnected pore morphology and bioactivity would enhance tissue regeneration. In this study, a shape memory polymer (SMP) scaffold was developed exhibiting an open porous structure and the capacity to conformally "self-fit" into irregular defects. The SMP scaffold was prepared via photocrosslinking of poly(ε-caprolactone) (PCL) diacrylate using a SCPL method, which included a fused salt template. A bioactive polydopamine coating was applied to coat the pore walls. Following exposure to warm saline at T>T(trans) (T(trans)=T(m) of PCL), the scaffold became malleable and could be pressed into an irregular model defect. Cooling caused the scaffold to lock in its temporary shape within the defect. The polydopamine coating did not alter the physical properties of the scaffold. However, polydopamine-coated scaffolds exhibited superior bioactivity (i.e. formation of hydroxyapatite in vitro), osteoblast adhesion, proliferation, osteogenic gene expression and extracellular matrix deposition. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Synthetic genetic polymers capable of heredity and evolution

    DEFF Research Database (Denmark)

    Pinheiro, Vitor B; Taylor, Alexander I; Cozens, Christopher

    2012-01-01

    in and recovered from six alternative genetic polymers based on simple nucleic acid architectures not found in nature [xeno-nucleic acids (XNAs)]. We also select XNA aptamers, which bind their targets with high affinity and specificity, demonstrating that beyond heredity, specific XNAs have the capacity...... for Darwinian evolution and folding into defined structures. Thus, heredity and evolution, two hallmarks of life, are not limited to DNA and RNA but are likely to be emergent properties of polymers capable of information storage....

  14. Review of Synthetic Methods to Form Hollow Polymer Nanocapsules

    Energy Technology Data Exchange (ETDEWEB)

    Barker, Madeline T. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-03-13

    Syntactic foams have grown in interest due to the widened range of applications because of their mechanical strength and high damage tolerance. In the past, hollow glass or ceramic particles were used to create the pores. This paper reviews literature focused on the controlled synthesis of hollow polymer spheres with diameters ranging from 100 –200 nm. By using hollow polymer spheres, syntactic foams could reach ultra-low densities.

  15. In vitro biocompatibility testing of some synthetic polymers used for the achievement of nervous conduits.

    Science.gov (United States)

    Mihai, R; Florescu, I P; Coroiu, V; Oancea, A; Lungu, M

    2011-08-15

    Biocompatible synthetic polymers are largely used in the bio-medical domain, tissue engineering and in controlled release of medicines. Polymers can be used in the achievement of cardiac and vascular devices, mammary implants, eye lenses, surgical threads, nervous conduits, adhesives, blood substitutes, etc. Our study was axed on the development of cytotoxicity tests for 3 synthetic polymers, namely polyvinyl alcohol, polyethylene glycol and polyvinyl chloride. These tests targeted to determine the viability and morphology of cells (fibroblasts) that were in indirect contact with the studied polymers. Cell viability achieved for all the studied synthetic polymers allowed their frame in biocompatible material category. Cell morphology did not significantly change, thus accomplishing a new biocompatibility criterion. The degree of biocompatibility of the studied polymers varied. Polyvinyl alcohol presented the highest grade of biocompatibility and polyvinyl chloride placed itself at the lowest limit of biocompatibility. The results achieved allowed the selection of those polymers that (by enhancing their degrees of biocompatibility due to the association with various biopolymers) will be used in the development of new biocompatible materials, useful in nervous conduits manufacture.

  16. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.

    Science.gov (United States)

    Mistry, Amit S; Cheng, Stacy H; Yeh, Tiffany; Christenson, Elizabeth; Jansen, John A; Mikos, Antonios G

    2009-04-01

    In this work, the fabrication and in vitro degradation of porous fumarate-based/alumoxane nanocomposites were evaluated for their potential as bone tissue engineering scaffolds. The biodegradable polymer poly (propylene fumarate)/propylene fumarate-diacrylate (PPF/PF-DA), a macrocomposite composed of PPF/PF-DA and boehmite microparticles, and a nanocomposite composed of PPF/PF-DA and surface-modified alumoxane nanoparticles were used to fabricate porous scaffolds by photo-crosslinking and salt-leaching. Scaffolds then underwent 12 weeks of in vitro degradation in phosphate buffered saline at 37 degrees C. The presence of boehmite microparticles and alumoxane nanoparticles in the polymer inhibited scaffold shrinkage during crosslinking. Furthermore, the incorporation of alumoxane nanoparticles into the polymer limited salt-leaching, perhaps due to tighter crosslinking within the nanocomposite. Analysis of crosslinking revealed that the acrylate and overall double bond conversions in the nanocomposite were higher than in the PPF/PF-DA polymer alone, though these differences were not significant. During 12 weeks of in vitro degradation, the nanocomposite lost 5.3% +/- 2.4% of its mass but maintained its compressive mechanical properties and porous architecture. The addition of alumoxane nanoparticles into the fumarate-based polymer did not significantly affect the degradation of the nanocomposite compared with the other materials in terms of mass loss, compressive properties, and porous structure. These results demonstrate the feasibility of fabricating degradable nanocomposite scaffolds for bone tissue engineering by photo-crosslinking and salt-leaching mixtures of fumarate-based polymers, alumoxane nanoparticles, and salt microparticles. Copyright 2008 Wiley Periodicals, Inc.

  17. Studying Synthetic Polymers in the Undergraduate Chemistry Curriculum. A Review of the Educational Literature

    Science.gov (United States)

    Hodgson, Steven C.; Bigger, Stephen W.; Billingham, Norman C.

    2001-04-01

    This review and its comprehensive list of 339 references is published on the Web at the JCE Online site. It is offered as an up-to-date resource for chemical educators for their use in developing innovative ways of teaching the topic of synthetic polymers within the context of the undergraduate chemistry curriculum. An account is given of (i) the scope of polymer chemistry in education, (ii) the educational literature available in this field, (iii) course modules that may be used for instruction about polymer chemistry, and (iv) polymer-based experiments for the teaching laboratory. To encourage the wider inclusion of polymers in the undergraduate chemistry curriculum, a selection of simple experiments that relate to common polymers is recommended.

  18. Recent developments in scaffold-guided cartilage tissue regeneration.

    Science.gov (United States)

    Liao, Jinfeng; Shi, Kun; Ding, Qiuxia; Qu, Ying; Luo, Feng; Qian, Zhiyong

    2014-10-01

    Articular cartilage repair is one of the most challenging problems in biomedical engineering because the regenerative capacity of cartilage is intrinsically poor. The lack of efficient treatment modalities motivates researches into cartilage tissue engineering such as combing cells, scaffolds and growth factors. In this review we summarize the current developments on scaffold systems available for cartilage tissue engineering. The factors that are critical to successfully design an ideal scaffold for cartilage regeneration were discussed. Then we present examples of selected material types (natural polymers and synthetic polymers) and fabricated forms of the scaffolds (three-dimensional scaffolds, micro- or nanoparticles, and their composites). In the end of review, we conclude with an overview of the ways in which biomedical nanotechnology is widely applied in cartilage tissue engineering, especially in the design of composite scaffolds. This review attempts to provide recommendations on the combination of qualities that would produce the ideal scaffold system for cartilage tissue engineering.

  19. Fabrication and in vitro degradation of porous fumarate-based polymer/alumoxane nanocomposite scaffolds for bone tissue engineering.

    NARCIS (Netherlands)

    Mistry, A.S.; Cheng, S.H.; Yeh, T.; Christenson, E.; Jansen, J.A.; Mikos, A.G.

    2009-01-01

    In this work, the fabrication and in vitro degradation of porous fumarate-based/alumoxane nanocomposites were evaluated for their potential as bone tissue engineering scaffolds. The biodegradable polymer poly (propylene fumarate)/propylene fumarate-diacrylate (PPF/PF-DA), a macrocomposite composed

  20. Comparison of polymer scaffolds in rat spinal cord: A step toward quantitative assessment of combinatorial approaches to spinal cord repair

    Science.gov (United States)

    Chen, Bingkun K.; Knight, Andrew M.; Madigan, Nicolas N.; Gross, LouAnn; Dadsetan, Mahrokh; Nesbitt, Jarred J; Rooney, Gemma E.; Currier, Bradford L.; Yaszemski, Michael J.; Spinner, Robert J.; Windebank, Anthony J.

    2011-01-01

    The transected rat thoracic (T9/10) spinal cord model is a platform for quantitatively compa0ring biodegradable polymer scaffolds. Schwann cell-loaded scaffolds constructed from poly (lactic co-glycolic acid) (PLGA), poly(ε-caprolactone fumarate) (PCLF), oligo(polyethylene glycol) fumarate (OPF) hydrogel or positively charged OPF (OPF+) hydrogel were implanted into the model. We demonstrated that the mechanical properties (3-point bending and stiffness) of OPF and OPF+ hydrogels closely resembled rat spinal cord. After one month, tissues were harvested and analyzed by morphometry of neurofilament-stained sections at rostral, midlevel, and caudal scaffold. All polymers supported axonal growth. Significantly higher numbers of axons were found in PCLF (P polymers showed more centrally distributed axonal regeneration within the channels while other polymers (PLGA, PCLF and OPF) tended to show more evenly dispersed axons within the channels. The centralized distribution was associated with significantly more axons regenerating (P scaffold was measured and compared. There were significantly smaller cyst volumes in PLGA compared to PCLF groups. The model provides a quantitative basis for assessing individual and combined tissue engineering strategies. PMID:21803415

  1. Microparticles based on natural and synthetic polymers for ophthalmic applications.

    Science.gov (United States)

    Tataru, G; Popa, M; Costin, D; Desbrieres, J

    2012-05-01

    Sodium salt of carboxymethylcellulose/poly(vinyl alcohol) particles suitable for application in ocular drug administration were prepared by crosslinking with epichlorohydrin in an alkaline medium, in reverse emulsion. The influence of parameters related with the particles elaboration process (ratio between polymer mixture and crosslinking agent, concentration of polymer solution, duration of crosslinking reaction, stirring intensity, etc.) based on their composition, size, and swelling ability was studied. Obtained microparticles fulfill the requirements for biomaterials-they are formed from biocompatible polymers; the acute toxicity value (LD(50)) is high enough to consider these materials as weakly toxic (hence able to introduce within the organism); they are able to include and release drugs in a controlled way. The in vivo adrenalin ocular delivery from the microparticles was tested on voluntary human patient. The particles showed good adhesion properties without irritation to the patient and proved the capability to treat the ocular congestion. Copyright © 2012 Wiley Periodicals, Inc.

  2. Synthetic Effect of Vivid Shark Skin and Polymer Additive on Drag Reduction Reinforcement

    OpenAIRE

    Huawei Chen; Xin Zhang; Da Che; Deyuan Zhang; Xiang Li; Yuanyue Li

    2014-01-01

    Natural shark skin has a well-demonstrated drag reduction function, which is mainly owing to its microscopic structure and mucus on the body surface. In order to improve drag reduction, it is necessary to integrate microscopic drag reduction structure and drag reduction agent. In this study, two hybrid approaches to synthetically combine vivid shark skin and polymer additive, namely, long-chain grafting and controllable polymer diffusion, were proposed and attempted to mimic such hierarchical...

  3. Influence of Natural, Synthetic Polymers and Fillers on sustained release matrix tablets of Pregabalin

    OpenAIRE

    Vijaya Durga. K; Ashok Kumar. P; Suresh V Kulkarni

    2013-01-01

    The objective of the present study was to develop sustained release matrix tablets of Pregabalin for the treatment of neuropathic pain and epilepsy. The tablets were prepared by wet granulation and formulated using drug with Hydrophilic, hydrophobic, synthetic, natural polymers and 4 different fillers were used. The effect of Polymer concentration, combination and fillers on drug release rate was analyzed for the formulations F-1 to F-17. The tablets were subjected to physicochemical studies,...

  4. Initial boost release of transforming growth factor-β3 and chondrogenesis by freeze-dried bioactive polymer scaffolds.

    Science.gov (United States)

    Krüger, Jan Philipp; Machens, Isabel; Lahner, Matthias; Endres, Michaela; Kaps, Christian

    2014-12-01

    In cartilage regeneration, bio-activated implants are used in stem and progenitor cell-based microfracture cartilage repair procedures. Our aim was to analyze the chondrogenic potential of freeze-dried resorbable polymer-based polyglycolic acid (PGA) scaffolds bio-activated with transforming growth factor-β3 (TGFB3) on human subchondral mesenchymal progenitor cells known from microfracture. Progenitor cells derived from femur heads were cultured in the presence of freeze-dried TGFB3 in high-density pellet culture and in freeze-dried TGFB3-PGA scaffolds for chondrogenic differentiation. Progenitor cell cultures in PGA scaffolds as well as pellet cultures with and without continuous application of TGFB3 served as controls. Release studies showed that freeze-dried TGFB3-PGA scaffolds facilitate a rapid, initial boost-like release of 71.5% of TGFB3 in the first 10 h. Gene expression analysis and histology showed induction of typical chondrogenic markers like type II collagen and formation of cartilaginous tissue in TGFB3-PGA scaffolds seeded with subchondral progenitor cells and in pellet cultures stimulated with freeze-dried TGFB3. Chondrogenic differentiation in freeze-dried TGFB3-PGA scaffolds was comparable to cultures receiving TGFB3 continuously, while non-stimulated controls did not show chondrogenesis during prolonged culture for 14 days. These results suggest that bio-activated, freeze-dried TGFB3-PGA scaffolds have chondrogenic potential and are a promising tool for stem cell-mediated cartilage regeneration.

  5. Conducting polymer scaffolds for electrical control of cellular functions (Conference Presentation)

    Science.gov (United States)

    Inal, Sahika; Wan, Alwin M.; Williams, Tiffany V.; Giannelis, Emmanuel P.; Fischbach-Teschl, Claudia; Gourdon, Delphine; Owens, Róisín. M.; Malliaras, George G.

    2016-09-01

    Considering the limited physiological relevance of 2D cell culture experiments, significant effort was devoted to the development of materials that could more accurately recreate the in vivo cellular microenvironment, and support 3D cell cultures in vitro. (1) One such class of materials is conducting polymers, which are promising due to their compliant mechanical properties, compatibility with biological systems, mixed electrical and ionic conductivity, and ability to form porous structures. (2) In this work, we report the fabrication of a single component, macroporous scaffold made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) via an ice-templating method. (3) PEDOT:PSS scaffolds offer tunable pore size, morphology and shape through facile changes in preparation conditions, and are capable of supporting 3D cell cultures due to their biocompatibility and tissue-like elasticity. Moreover, these materials are functional: they exhibit excellent electrochemical switching behavior and significantly lower impedance compared to films. Their electrochemical activity enables their use in the active channel of a state of the art diagnostic tool in the field of bioelectronics, i.e., the organic electrochemical transistor (OECT). The inclusion of cells within the porous architecture affects the impedance of the electrically-conducting polymer network and, thus, may be used as a method to quantify cell growth. The adhesion and pro-angiogenic secretions of mouse fibroblasts cultured within the scaffolds can be controlled by switching the electrochemical state of the polymer prior to cell-seeding. In summary, these smart materials hold promise not only as extracellular matrix-mimicking structures for cell culture, but also as high-performance bioelectronic tools for diagnostic and signaling applications. References [1] M. Holzwarth, P. X. Ma, Journal of Materials Chemistry, 21, 10243-10251 (2011). [2] L. H. Jimison, J. Rivnay, R. M. Owens, in Organic

  6. Data on bone marrow stem cells delivery using porous polymer scaffold

    Directory of Open Access Journals (Sweden)

    Ramasatyaveni Geesala

    2016-03-01

    Full Text Available Low bioavailability and/or survival at the injury site of transplanted stem cells necessitate its delivery using a biocompatible, biodegradable cell delivery vehicle. In this dataset, we report the application of a porous biocompatible, biodegradable polymer network that successfully delivers bone marrow stem cells (BMSCs at the wound site of a murine excisional splint wound model. In this data article, we are providing the additional data of the reference article “Porous polymer scaffold for on-site delivery of stem cells – protects from oxidative stress and potentiates wound tissue repair” (Ramasatyaveni et al., 2016 [1]. This data consists of the characterization of bone marrow stem cells (BMSCs showing the pluripotency and stem cell-specific surface markers. Image analysis of the cellular penetration into PEG–PU polymer network and the mechanism via enzymatic activation of MMP-2 and MMP-13 are reported. In addition, we provide a comparison of various routes of transplantation-mediated BMSCs engraftment in the murine model using bone marrow transplantation chimeras. Furthermore, we included in this dataset the engraftment of BMSCs expressing Sca-1+Lin−CD133+CD90.2+ in post-surgery day 10.

  7. Characterization of fabricated three dimensional scaffolds of bio ceramic-polymer composite via microstereolithography technique

    International Nuclear Information System (INIS)

    Marina Talib; Covington, J.A.; Bolarinwa, A.

    2013-01-01

    Full-text: Microstereolithography is a method used for rapid proto typing of polymeric and ceramic components. This technique converts a computer-aided design (CAD) to a three dimensional (3D) model, and enables layer per layer fabrication curing a liquid resin with UV-light or laser source. The aim of this project was to formulate photo curable polymer reinforced with synthesized calcium pyrophosphate (CPP), and to fabricate a 3D scaffolds with optimum mechanical properties for specific tissue engineering applications. The photo curable ceramic suspension was prepared with acrylate polyester, multifunctional acrylate monomer with the addition of 50-70 wt % of CPP, photo initiators and photo inhibitors. The 3D structure of disc (5 mm height x 4 mm diameter) was successfully fabricated using Envisiontec Perfactory3. They were then sintered at high temperature for polymer removal, to obtain a ceramic of the desired porosity. The density increased to more than 35 % and the dimensional shrinkage after sintering were 33 %. The discs were then subjected compressive measurement, biodegradation and bioactivity test. Morphology and CPP content of the sintered polymer was investigated with SEM and XRD, respectively. The addition of CPP coupled with high temperature sintering, had a significant effect on the compressive strength exhibited by the bio ceramic. The values are in the range of cancellous bone (2-4 MPa). In biodegradation and bioactivity test, the synthesized CPP induced the formation of apatite layer and its nucleation onto the composite surface. (author)

  8. Characterization of fabricated three dimensional scaffolds of bioceramic-polymer composite via microstereolithography technique

    Science.gov (United States)

    Talib, Marina; Covington, James A.; Bolarinwa, Aminat

    2014-02-01

    Microstereolithography is a method used for rapid prototyping of polymeric and ceramic components. This technique converts a computer-aided design (CAD) to a three dimensional (3D) model, and enables layer per layer fabrication curing a liquid resin with UV-light or laser source. The aim of this project was to formulate photocurable polymer reinforced with synthesized calcium pyrophosphate (CPP), and to fabricate a 3D scaffolds with optimum mechanical properties for specific tissue engineering applications. The photocurable ceramic suspension was prepared with acrylate polyester, multifunctional acrylate monomer with the addition of 50-70wt% of CPP, photoinitiators and photoinhibitors. The 3D structure of disc (5 mm height × 4 mm diameter) was successfully fabricated using Envisiontec Perfactory3® . They were then sintered at high temperature for polymer removal, to obtain a ceramic of the desired porosity. The density increased to more than 35% and the dimensional shrinkage after sintering were 33%. The discs were then subjected compressive measurement, biodegradation and bioactivity test. Morphology and CPP content of the sintered polymer was investigated with SEM and XRD, respectively. The addition of CPP coupled with high temperature sintering, had a significant effect on the compressive strength exhibited by the bioceramic. The values are in the range of cancellous bone (2-4 MPa). In biodegradation and bioactivity test, the synthesized CPP induced the formation of apatite layer and its nucleation onto the composite surface.

  9. Analytical and statistical approaches in the characterization of synthetic polymers

    NARCIS (Netherlands)

    Dimzon, I.K.

    2015-01-01

    Polymers vary in terms of the monomer/s used; the number, distribution and type of linkage of monomers per molecule; and the side chains and end groups attached. Given this diversity, traditional single-technique approaches to characterization often give limited and inadequate information about a

  10. Ferroelectric polymer scaffolds based on a copolymer of tetrafluoroethylene with vinylidene fluoride: Fabrication and properties

    International Nuclear Information System (INIS)

    Bolbasov, E.N.; Anissimov, Y.G.; Pustovoytov, A.V.; Khlusov, I.A.; Zaitsev, A.A.; Zaitsev, K.V.; Lapin, I.N.; Tverdokhlebov, S.I.

    2014-01-01

    A solution blow spinning technique is a method developed recently for making nonwoven webs of micro- and nanofibres. The principal advantage of this method compared to a more traditional electrospinning process is its significantly higher production rate. In this work, the solution blow spinning method was further developed to produce nonwoven polymeric scaffolds based on a copolymer of tetrafluoroethylene with vinylidene fluoride solution in acetone. A crucial feature of the proposed method is that high-voltage equipment is not required, which further improves the method's economics. Scanning electron microscopy analysis of the samples demonstrated that the surface morphology of the nonwoven materials is dependent on the polymer concentration in the spinning solution. It was concluded that an optimum morphology of the nonwoven scaffolds for medical applications is achieved by using a 5% solution of the copolymer. It was established that the scaffolds produced from the 5% solution have a fractal structure and anisotropic mechanical properties. X-ray diffraction, infrared spectroscopy, Raman spectroscopy and differential scanning calorimetry demonstrated that the fabricated nonwoven materials have crystal structures that exhibit ferroelectric properties. Gas chromatography has shown that the amount of acetone in the nonwoven material does not exceed the maximum allowable concentration of 0.5%. In vitro analysis, using the culture of motile cells, confirmed that the nonwoven material is non-toxic and does not alter the morpho-functional status of stem cells for short-term cultivation, and therefore can potentially be used in medical applications. - Highlights: • Solution blow spinning was used to fabricate nonwoven material based on VDF-TeFE. • The nonwoven material has complex spatial organization and high porosity. • It was established that the nonwoven material exhibits ferroelectric properties. • In vitro testing demonstrated that the material is non

  11. Ferroelectric polymer scaffolds based on a copolymer of tetrafluoroethylene with vinylidene fluoride: Fabrication and properties

    Energy Technology Data Exchange (ETDEWEB)

    Bolbasov, E.N., E-mail: ebolbasov@gmail.com [Tomsk Polytechnic University, 634050, 30, Lenin Avenue, Tomsk (Russian Federation); Anissimov, Y.G., E-mail: Y.Anissimov@Griffith.edu.au [Griffith University, School of Biomolecular and Physical Sciences, Brisbane, QLD (Australia); Pustovoytov, A.V., E-mail: andrius_222@mail.ru [Tomsk Polytechnic University, 634050, 30, Lenin Avenue, Tomsk (Russian Federation); Khlusov, I.A., E-mail: khlusov63@mail.ru [Tomsk Polytechnic University, 634050, 30, Lenin Avenue, Tomsk (Russian Federation); Tomsk Scientific Research Institute of Balneology and Physiotherapy, Tomsk (Russian Federation); Zaitsev, A.A., E-mail: prim@niikf.tomsk.ru [Tomsk Scientific Research Institute of Balneology and Physiotherapy, Tomsk (Russian Federation); Zaitsev, K.V., E-mail: zaitsev-kv@mail.ru [Tomsk Scientific Research Institute of Balneology and Physiotherapy, Tomsk (Russian Federation); Lapin, I.N., E-mail: 201kiop@mail.ru [Tomsk State University, 634050, 36, Lenin Avenue, Tomsk (Russian Federation); Tverdokhlebov, S.I., E-mail: tverd@tpu.ru [Tomsk Polytechnic University, 634050, 30, Lenin Avenue, Tomsk (Russian Federation)

    2014-07-01

    A solution blow spinning technique is a method developed recently for making nonwoven webs of micro- and nanofibres. The principal advantage of this method compared to a more traditional electrospinning process is its significantly higher production rate. In this work, the solution blow spinning method was further developed to produce nonwoven polymeric scaffolds based on a copolymer of tetrafluoroethylene with vinylidene fluoride solution in acetone. A crucial feature of the proposed method is that high-voltage equipment is not required, which further improves the method's economics. Scanning electron microscopy analysis of the samples demonstrated that the surface morphology of the nonwoven materials is dependent on the polymer concentration in the spinning solution. It was concluded that an optimum morphology of the nonwoven scaffolds for medical applications is achieved by using a 5% solution of the copolymer. It was established that the scaffolds produced from the 5% solution have a fractal structure and anisotropic mechanical properties. X-ray diffraction, infrared spectroscopy, Raman spectroscopy and differential scanning calorimetry demonstrated that the fabricated nonwoven materials have crystal structures that exhibit ferroelectric properties. Gas chromatography has shown that the amount of acetone in the nonwoven material does not exceed the maximum allowable concentration of 0.5%. In vitro analysis, using the culture of motile cells, confirmed that the nonwoven material is non-toxic and does not alter the morpho-functional status of stem cells for short-term cultivation, and therefore can potentially be used in medical applications. - Highlights: • Solution blow spinning was used to fabricate nonwoven material based on VDF-TeFE. • The nonwoven material has complex spatial organization and high porosity. • It was established that the nonwoven material exhibits ferroelectric properties. • In vitro testing demonstrated that the material is non

  12. Co(Salen Catalysed Oxidation of Synthetic Lignin-Like Polymer: Naoh Effects

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Fei

    2014-09-01

    Full Text Available Abstract An attempt has been made to selectively oxidise synthetic lignin-like polymer for fine chemicals. The G- and S-type polymers (G- and S- type lignin model polymers were synthesized using simple aromatic compounds as starting materials and then oxidised to benzaldehydes by reacting them with Co(salen catalytic system. The reaction was characterized by measuring the change of the polymer with FTIR, C-13 NMR and GC-MS spectroscopy. The results obtained by the FTIR and C-13 NMR showed that the effects of NaOH were important and higher yield of benzaldehydes characterized by GC-MS in the presence of NaOH in the course of catalytic oxidation of the polymer demonstrated these effects. From the results, the catalyst could suitably be used in green procedures for lignin transformation.

  13. Biopores/membrane proteins in synthetic polymer membranes.

    Science.gov (United States)

    Garni, Martina; Thamboo, Sagana; Schoenenberger, Cora-Ann; Palivan, Cornelia G

    2017-04-01

    Mimicking cell membranes by simple models based on the reconstitution of membrane proteins in lipid bilayers represents a straightforward approach to understand biological function of these proteins. This biomimetic strategy has been extended to synthetic membranes that have advantages in terms of chemical and mechanical stability, thus providing more robust hybrid membranes. We present here how membrane proteins and biopores have been inserted both in the membrane of nanosized and microsized compartments, and in planar membranes under various conditions. Such bio-hybrid membranes have new properties (as for example, permeability to ions/molecules), and functionality depending on the specificity of the inserted biomolecules. Interestingly, membrane proteins can be functionally inserted in synthetic membranes provided these have appropriate properties to overcome the high hydrophobic mismatch between the size of the biomolecule and the membrane thickness. Functional insertion of membrane proteins and biopores in synthetic membranes of compartments or in planar membranes is possible by an appropriate selection of the amphiphilic copolymers, and conditions of the self-assembly process. These hybrid membranes have new properties and functionality based on the specificity of the biomolecules and the nature of the synthetic membranes. Bio-hybrid membranes represent new solutions for the development of nanoreactors, artificial organelles or active surfaces/membranes that, by further gaining in complexity and functionality, will promote translational applications. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider. Copyright © 2016. Published by Elsevier B.V.

  14. New coupling strategy for radionuclide labeling of synthetic polymers

    Czech Academy of Sciences Publication Activity Database

    Hrubý, Martin; Kučka, Jan; Nováková, Michaela; Macková, Hana; Vetrík, Miroslav

    2010-01-01

    Roč. 68, č. 2 (2010), s. 334-339 ISSN 0969-8043 R&D Projects: GA AV ČR KAN200200651; GA ČR GA202/09/2078; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer * radionuclide * labeling Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.999, year: 2010

  15. Characterization of chitosan composites with synthetic polymers and inorganic additives.

    Science.gov (United States)

    Lewandowska, Katarzyna

    2015-11-01

    In the present study, the results from thermogravimetric analysis (TGA), contact angle measurements, tensile tests, scanning electron microscopy (SEM) and atomic force microscopy (AFM) of polymer composites containing chitosan (Ch) and montmorillonite (MMT) with and without poly(vinyl alcohol) (PVA) are presented. Measurements of the contact angles for diiodomethane (D) and glycerol (G) on the surfaces of chitosan films, Ch/MMT and Ch/PVA/MMT, were made and surface free energies were calculated. It was found that the wettability of the chitosan/MMT or Ch/PVA/MMT composite films decreased relative to the wettability of chitosan. The microstructure of unmodified polymers and their composites, as observed by SEM and AFM, showed particles that are relatively well dispersed in the polymer matrix. The TGA thermograms and mass loss percentages at different decomposition temperatures showed that the thermal stability of the binary composite slightly decreases upon the addition of PVA. The film mechanical properties such as tensile strength, Young's modulus and tensile strain at break depend on the composition and varied non-uniformly. Both composites possessed a tensile strength and Young's modulus of 27.6-94.3MPa and 1.5-3.5GPa, respectively. The addition of PVA to the composite led to a reduction in tensile strength by approximately 40%. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Synthetic Reference Materials Based on Polymer Films for the Control of Welding Fumes Composition

    Science.gov (United States)

    Kuznetsova, O. V.; Kuznetsova, A. N.; Begunova, L. A.

    2017-04-01

    Analysis of the current hygienic situation in the welding production showed that the intensification of welding processes involves the deterioration of air quality, which negatively affects the welders health. Welders are exposed to a variety of metal fumes, including manganese that may elevate the risk for neurological diseases. The control of metals concentration in the air of the working area is difficult due to the lack of reference materials. The creation of reference materials of welding fumes composition is a challenge due to chemical characteristics of their physical properties. Synthetic samples in a form of the polymer film containing powder particles of welding fumes were create. Studies on the selection of the polymer were done. Experiments proved that the qualitative materials of synthetic welding fumes are obtained by using polyvinyl alcohol. The metals concentration in the samples was determined by X-ray fluorescence analysis. The obtained data demonstrates indirectly the uniform distribution of welding fumes powder particles on the polymer film.

  17. 2.5D constructs for characterizing phase separated polymer blend surface morphology in tissue engineering scaffolds.

    Science.gov (United States)

    Marszalek, Jolanta E; Simon, Carl G; Thodeti, Charles; Adapala, Ravi Kumar; Murthy, Ananth; Karim, Alamgir

    2013-05-01

    Previously, we used 2D films to identify an annealed PCL-PDLLA phase-separated blend morphology which provided nanoscale surface texture and patterning that stimulated osteoblast differentiation. In order to translate these 2D surface nanopatterning effects to the walls of 3D salt-leached scaffolds, the blend phase morphology of scaffold walls must be characterized. For salt-leached scaffolds, NaCl is used as a porogen, which may affect phase separation in PCL-PDLLA blends. However, it is not possible to characterize the surface blend morphology of 3D scaffold walls using standard approaches such as AFM or optical microscopy, since scaffolds are too rough for AFM and do not transmit light for optical microscopy. We introduce a 2.5D approach that mimics the processing conditions of 3D salt-leached scaffolds, but has a geometry amenable to surface characterization by AFM and optical microscopy. For the 2.5D approach, PCL-PDLLA blend films were covered with NaCl crystals prior to annealing. The presence of NaCl significantly influenced blend morphology in PCL-PDLLA 2.5D constructs causing increased surface roughness, higher percent PCL area on the surface and a smaller PCL domain size. During cell culture on 2.5D constructs, osteoblast (MC3T3-E1) and dermal endothelial cell (MDEC) adhesion were enhanced on PCL-PDLLA blends that were annealed with NaCl while chondrogenic cell (ATDC5) adhesion was diminished. This work introduces a 2.5D approach that mimicked 3D salt-leached scaffold processing, but enabled characterization of scaffold surface properties by AFM and light microscopy, to demonstrate that the presence of NaCl during annealing strongly influenced polymer blend surface morphology and cell adhesion. Copyright © 2012 Wiley Periodicals, Inc.

  18. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds

    Science.gov (United States)

    Ishaug, S. L.; Crane, G. M.; Miller, M. J.; Yasko, A. W.; Yaszemski, M. J.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    1997-01-01

    Bone formation was investigated in vitro by culturing stromal osteoblasts in three-dimensional (3-D), biodegradable poly(DL-lactic-co-glycolic acid) foams. Three polymer foam pore sizes, ranging from 150-300, 300-500, and 500-710 microns, and two different cell seeding densities, 6.83 x 10(5) cells/cm2 and 22.1 x 10(5) cells/cm2, were examined over a 56-day culture period. The polymer foams supported the proliferation of seeded osteoblasts as well as their differentiated function, as demonstrated by high alkaline phosphatase activity and deposition of a mineralized matrix by the cells. Cell number, alkaline phosphatase activity, and mineral deposition increased significantly over time for all the polymer foams. Osteoblast foam constructs created by seeding 6.83 x 10(5) cells/cm2 on foams with 300-500 microns pores resulted in a cell density of 4.63 x 10(5) cells/cm2 after 1 day in culture; they had alkaline phosphatase activities of 4.28 x 10(-7) and 2.91 x 10(-6) mumol/cell/min on Days 7 and 28, respectively; and they had a cell density that increased to 18.7 x 10(5) cells/cm2 by Day 56. For the same constructs, the mineralized matrix reached a maximum penetration depth of 240 microns from the top surface of the foam and a value of 0.083 mm for mineralized tissue volume per unit of cross sectional area. Seeding density was an important parameter for the constructs, but pore size over the range tested did not affect cell proliferation or function. This study suggests the feasibility of using poly(alpha-hydroxy ester) foams as scaffolding materials for the transplantation of autogenous osteoblasts to regenerate bone tissue.

  19. Biocompatible, biodegradable polymer-based, lighter than or light as water scaffolds for tissue engineering and methods for preparation and use thereof

    Science.gov (United States)

    Laurencin, Cato T. (Inventor); Pollack, Solomon R. (Inventor); Levine, Elliot (Inventor); Botchwey, Edward (Inventor); Lu, Helen H. (Inventor); Khan, Mohammed Yusuf (Inventor)

    2012-01-01

    Scaffolds for tissue engineering prepared from biocompatible, biodegradable polymer-based, lighter than or light as water microcarriers and designed for cell culturing in vitro in a rotating bioreactor are provided. Methods for preparation and use of these scaffolds as tissue engineering devices are also provided.

  20. In vivo tissue response and durability of five novel synthetic polymers in a rabbit model.

    Science.gov (United States)

    Sahin, E; Cingi, C; Eskiizmir, G; Altintoprak, N; Calli, A; Calli, C; Yilgör, I; Yilgör, E

    2016-04-01

    Alloplastic materials are frequently used in facial plastic surgeries such as rhinoplasty and nasal reconstruction. Unfortunately, the ideal alloplastic material has not been found. This experimental study evaluates the tissue response and durability of five novel polymers developed as an alloplastic material. In this experimental study involving a tertiary university hospital, six subcuticular pockets were formed at the back of 10 rabbits for the implantation of each polymer and sham group. Each pocket was excised with its adjacent tissue after three months, and collected for histopathological examination. Semi-quantitative examination including neovascularisation, inflammation, fibrosis, abscess formation, multinucleated foreign body giant cells was performed, and integrity of polymer was evaluated. A statistical comparison was performed. No statically significant difference was detected in neovascularisation, inflammation, fibrosis, abscess formation and multinucleated foreign body giant cells when a paired comparison between sham and polymer II, III and IV groups was performed individually. Nevertheless, the degree of fibrosis was less than sham group in polymer I (p = .027) and V (p = .018), although the other variables were almost similar. The integrity of polymers III (9 intact, 1 fragmented) and IV (8 intact, 2 absent) was better than the other polymers. These novel synthetic polymers could be considered as good candidates for clinical applicability. All polymers provided satisfactory results in terms of tissue response; however, fibrovascular integration was higher in polymers II, III and IV. In addition, the durability of polymer III and IV was better than the others. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.

  1. Synthetic Effect of Vivid Shark Skin and Polymer Additive on Drag Reduction Reinforcement

    Directory of Open Access Journals (Sweden)

    Huawei Chen

    2014-06-01

    Full Text Available Natural shark skin has a well-demonstrated drag reduction function, which is mainly owing to its microscopic structure and mucus on the body surface. In order to improve drag reduction, it is necessary to integrate microscopic drag reduction structure and drag reduction agent. In this study, two hybrid approaches to synthetically combine vivid shark skin and polymer additive, namely, long-chain grafting and controllable polymer diffusion, were proposed and attempted to mimic such hierarchical topography of shark skin without waste of polymer additive. Grafting mechanism and optimization of diffusion port were investigated to improve the efficiency of the polymer additive. Superior drag reduction effects were validated, and the combined effect was also clarified through comparison between drag reduction experiments.

  2. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation

    International Nuclear Information System (INIS)

    Kasoju, Naresh; Kubies, Dana; Sedlačík, Tomáš; Kumorek, Marta M.; Rypáček, František; Janoušková, Olga; Koubková, Jana

    2016-01-01

    Thermally induced phase separation (TIPS) based methods are widely used for the fabrication of porous scaffolds for tissue engineering and related applications. However, formation of a less-/non-porous layer at the scaffold’s outer surface at the air–liquid interface, often known as the skin-effect, restricts the cell infiltration inside the scaffold and therefore limits its efficacy. To this end, we demonstrate a TIPS-based process involving the exposure of the just quenched poly(lactide-co-caprolactone):dioxane phases to the pure dioxane for a short time while still being under the quenching strength, herein after termed as the second quenching (2Q). Scanning electron microscopy, mercury intrusion porosimetry and contact angle analysis revealed a direct correlation between the time of 2Q and the gradual disappearance of the skin, followed by the widening of the outer pores and the formation of the fibrous filaments over the surface, with no effect on the internal pore architecture and the overall porosity of scaffolds. The experiments at various quenching temperatures and polymer concentrations revealed the versatility of 2Q in removing the skin. In addition, the in vitro cell culture studies with the human primary fibroblasts showed that the scaffolds prepared by the TIPS based 2Q process, with the optimal exposure time, resulted in a higher cell seeding and viability in contrast to the scaffolds prepared by the regular TIPS. Thus, TIPS including the 2Q step is a facile, versatile and innovative approach to fabricate the polymer scaffolds with a skin-free and fully open porous surface morphology for achieving a better cell response in tissue engineering and related applications. (paper)

  3. Mirror-Imaged Rapid Prototype Skull Model and Pre-Molded Synthetic Scaffold to Achieve Optimal Orbital Cavity Reconstruction.

    Science.gov (United States)

    Park, Sung Woo; Choi, Jong Woo; Koh, Kyung S; Oh, Tae Suk

    2015-08-01

    Reconstruction of traumatic orbital wall defects has evolved to restore the original complex anatomy with the rapidly growing use of computer-aided design and prototyping. This study evaluated a mirror-imaged rapid prototype skull model and a pre-molded synthetic scaffold for traumatic orbital wall reconstruction. A single-center retrospective review was performed of patients who underwent orbital wall reconstruction after trauma from 2012 to 2014. Patients were included by admission through the emergency department after facial trauma or by a tertiary referral for post-traumatic orbital deformity. Three-dimensional (3D) computed tomogram-based mirror-imaged reconstruction images of the orbit and an individually manufactured rapid prototype skull model by a 3D printing technique were obtained for each case. Synthetic scaffolds were anatomically pre-molded using the skull model as guide and inserted at the individual orbital defect. Postoperative complications were assessed and 3D volumetric measurements of the orbital cavity were performed. Paired samples t test was used for statistical analysis. One hundred four patients with immediate orbital defect reconstructions and 23 post-traumatic orbital deformity reconstructions were included in this study. All reconstructions were successful without immediate postoperative complications, although there were 10 cases with mild enophthalmos and 2 cases with persistent diplopia. Reoperations were performed for 2 cases of persistent diplopia and secondary touchup procedures were performed to contour soft tissue in 4 cases. Postoperative volumetric measurement of the orbital cavity showed nonsignificant volume differences between the damaged orbit and the reconstructed orbit (21.35 ± 1.93 vs 20.93 ± 2.07 cm(2); P = .98). This protocol was extended to severe cases in which more than 40% of the orbital frame was lost and combined with extensive soft tissue defects. Traumatic orbital reconstruction can be optimized and

  4. A comparison of polymer and polymer-hydroxyapatite composite tissue engineered scaffolds for use in bone regeneration. An in vitro and in vivo study.

    Science.gov (United States)

    Tayton, E; Purcell, M; Aarvold, A; Smith, J O; Briscoe, A; Kanczler, J M; Shakesheff, K M; Howdle, S M; Dunlop, D G; Oreffo, R O C

    2014-08-01

    Previous in vitro work demonstrated porous PLA and PLGA both had the mechanical strength and sustained the excellent skeletal stem cell (SSC) growth required of an osteogenic bonegraft substitute, for use in impaction bone grafting. The purpose of this investigation was to assess the effects of the addition of hydroxyapatite (HA) to the scaffolds before clinical translation. PLA, PLA+10% HA, PLGA, and PLGA+10% HA were milled and impacted into discs before undergoing a standardized shear test. Cellular compatibility analysis followed 14 days incubation with human skeletal stems cells (SSC). The best two performing polymers were taken forward for in vivo analysis. SSC seeded polymer discs were implanted subcutaneously in mice. All polymers had superior mechanical shear strength compared with allograft (p bone formation on the PLA HA (p bone formation. PLA HA showed both enhanced osteoinductive and osteogenic capacity. This polymer composite has been selected for scaled-up experimentation before clinical translation. © 2013 Wiley Periodicals, Inc.

  5. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Matveeva, V. G., E-mail: matveeva-vg@mail.ru; Antonova, L. V., E-mail: antonova.la@mail.ru; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S. [Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, 650002 (Russian Federation)

    2015-10-27

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  6. Surface-enrichment with hydroxyapatite nanoparticles in stereolithography-fabricated composite polymer scaffolds promotes bone repair

    NARCIS (Netherlands)

    Guillaume, O.; Geven, M. A.; Sprecher, C. M.; Stadelmann, V. A.; Grijpma, D. W.; Tang, T.T.; Qin, L.; Lai, Y.; Alini, M.; de Bruijn, J. D.; Yuan, H.; Richards, R.G.; Eglin, D.

    2017-01-01

    Fabrication of composite scaffolds using stereolithography (SLA) for bone tissue engineering has shown great promises. However, in order to trigger effective bone formation and implant integration, exogenous growth factors are commonly combined to scaffold materials. In this study, we fabricated

  7. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    Science.gov (United States)

    Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-10-01

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds.

  8. Influence of electrospun scaffolds prepared from distinct polymers on proliferation and viability of endothelial cells

    International Nuclear Information System (INIS)

    Matveeva, V. G.; Antonova, L. V.; Velikanova, E. A.; Sergeeva, E. A.; Krivkina, E. O.; Glushkova, T. V.; Kudryavtseva, Yu. A.; Barbarash, O. L.; Barbarash, L. S.

    2015-01-01

    We compared electrospun nonwoven scaffolds from polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate/valerate (PHBV)/polycaprolactone (PHBV/PCL). The surface of PHBV/PCL and PCL scaffolds was highly porous and consisted of randomly distributed fibers, whilst the surface of PLA scaffolds consisted of thin straight fibers, which located more sparsely, forming large pores. Culture of EA.hy 926 endothelial cells on these scaffolds during 7 days and further fluorescent microscopy demonstrated that the surface of PHBV/PCL scaffolds was most favorable for efficient adhesion, proliferation, and viability of endothelial cells. The lowest proliferation rate and cell viability were detected on PLA scaffolds. Therefore, PHBV/PCL electrospun nonwoven scaffolds demonstrated the best results regarding endothelial cell proliferation and viability as compared to PCL and PLA scaffolds

  9. Optimized polymer coating for magnesium alloy-based bioresorbable scaffolds for long-lasting drug release and corrosion resistance.

    Science.gov (United States)

    Xu, Wei; Yagoshi, Kai; Koga, Yuki; Sasaki, Makoto; Niidome, Takuro

    2018-03-01

    Magnesium (Mg) alloy-based bioresorbable scaffolds (BRSs) are attracting interest as next-generation stents. However, because medical Mg alloy materials degrade relatively quickly in physiological media, surface corrosion protection via biodegradable polymer coatings is important for clinical applications. Herein, the influence of biodegradable polymer coatings on the BRS corrosion was investigated. First, elution of the drug sirolimus (SRL) from various biodegradable polymers was estimated, including poly(d,l-lactic acid) (PDLLA), poly(d,l-lactic acid-co-ε-caprolactone) (PLCL) and poly(ε-caprolactone) (PCL). Among these, the PDLLA polymer exhibited the slowest release and the best character as a drug reservoir because of its slow degradation rate and semi-glass state in a biological environment. However, the corrosion rate of the PDLLA-coated Mg alloy (AZ31)-based platform was as rapid as the non-coated platform, while critical defects, cracking and desorption were observed in the PDLLA layer. Coatings comprising PCL and PLCL exhibited a prolonged platform corrosion resistance compared with that of PDLLA. To combine the advantages of each polymer, therefore, a pre-coating of PCL or PLCL was applied to the interface between the platform and the external SRL-loaded PDLLA layer. This layering exhibited an enhanced platform corrosion resistance, and will be an important foundational procedure for the development of a coronary scaffold comprising magnesium alloys. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Biocompatible synthetic and semi-synthetic polymers - A patent preliminary analysis.

    Science.gov (United States)

    Ranganathan, Balu; Miller, Charles; Sinskey, Anthony

    2017-10-23

    Bioengineering has come of ages by setting up spare parts manufacturing units to be used in human body such as invasive implants and interventional controlled drug delivery in vivo systems. As a matter of fact patients on basis of their fiscal strength have the option of undergoing prophylactic tactical manoeuvre for longevity. In this sphere of invasive implants, biocompatible polymer implants are a state of the art cutting edge technology with outstanding innovations leading to number of very successful start-up companies with a plethora of patent portfolios. From 2000 onwards, around fifteen years on patent filings and grants for biocompatible polymers are expanding. Pair Bulk Data (PBD) portal was used to mine patent portfolios. In this patent preliminary analysis report, patents from 2000 to 2015 were evaluated using 317(c) filings, grants and classifications data for poly(vinyl alcohol) (PVA), poly(glycolic acid) (PGA), poly(hydroxyalkanoates) (PHAs) and poly(lactic acid) (PLA). Patent portfolio of Commercial giant Thepa Inc. was analysed for Cooperative Patent Classification (CPC) sections. This patent portfolio preliminary analysis embarks into patent analysis for New Product Development (NPD) for corporate R&D investment managerial decisions and on government advocacy for federal funding which is decisive for developmental advances. An in-depth patent portfolio investigation with return of investment (RoI) is in the pipeline. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Embroidered polymer-collagen hybrid scaffold variants for ligament tissue engineering.

    Science.gov (United States)

    Hoyer, M; Drechsel, N; Meyer, M; Meier, C; Hinüber, C; Breier, A; Hahner, J; Heinrich, G; Rentsch, C; Garbe, L-A; Ertel, W; Schulze-Tanzil, G; Lohan, A

    2014-10-01

    Embroidery techniques and patterns used for scaffold production allow the adaption of biomechanical scaffold properties. The integration of collagen into embroidered polylactide-co-caprolactone [P(LA-CL)] and polydioxanone (PDS) scaffolds could stimulate neo-tissue formation by anterior cruciate ligament (ACL) cells. Therefore, the aim of this study was to test embroidered P(LA-CL) and PDS scaffolds as hybrid scaffolds in combination with collagen hydrogel, sponge or foam for ligament tissue engineering. ACL cells were cultured on embroidered P(LA-CL) and PDS scaffolds without or with collagen supplementation. Cell adherence, vitality, morphology and ECM synthesis were analyzed. Irrespective of thread size, ACL cells seeded on P(LA-CL) scaffolds without collagen adhered and spread over the threads, whereas the cells formed clusters on PDS and larger areas remained cell-free. Using the collagen hydrogel, the scaffold colonization was limited by the gel instability. The collagen sponge layers integrated into the scaffolds were hardly penetrated by the cells. Collagen foams increased scaffold colonization in P(LA-CL) but did not facilitate direct cell-thread contacts in the PDS scaffolds. The results suggest embroidered P(LA-CL) scaffolds as a more promising basis for tissue engineering an ACL substitute than PDS due to superior cell attachment. Supplementation with a collagen foam presents a promising functionalization strategy. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Biomedical applications of synthetic, biodegradable polymers for the development of anti-infective strategies.

    Science.gov (United States)

    Bertesteanu, Serban; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Printza, Atnanasia G; Marie-Paule, Thill; Grumezescu, Valentina; Mihaela, Vlad; Lazar, Veronica; Grigore, Raluca

    2014-01-01

    The emergence of antibiotic resistance in microbial strains is representing one of the major threats to public health worldwide, due to the decreased or total cancelling of the available antibiotics effectiveness, correlated with the slow development of novel antibiotics. Due to their excellent biodegradability and biocompatibility, the synthetic polymers could find a lot of biomedical applications, such as the development of biomaterials with optimized properties and of drug delivery systems. This review is focusing on the applications of synthetic, biodegradable polymers for the improvement of antiinfective therapeutic and prophylactic agents (i.e., antimicrobial and anti-inflammatory agents and vaccines) activity, as well as for the design of biomaterials with increased biocompatibility and resistance to microbial colonization.

  13. Perturbations of cellular membranes with synthetic polymers and ultrafast lasers

    Science.gov (United States)

    Kelly, Christopher Vaughn-Daigneau

    This dissertation examines the response of the plasma membrane to perturbations by synthetic nanoparticles and ultra-fast laser pulses. Both model membranes and living cells were examined in to characterize membrane disruption and the biological response to perturbation. These studies provide a deeper understanding of cell biology and guide the design of effective nanoparticle- or laser-based therapies, as well as warning about unintended exposure. In regards to membrane disruption by pulsed-laser irradiation, irradiation induced giant plasma membrane vesicles (GPMVs) on the surface of the living cell. This process involved the incorporation of material from the extracellular media into both the cytoplasm and the GPMV as the cell responded to the intense pressure and temperature gradients induced by irradiation and the subsequent cavitation. Further, the cell exposed phosphotidylserine to the exterior surface of the plasma membrane and GPMV and initiated caspase activity. Single particle tracking of 20 nm fluorescent beads within the GPMVs demonstrated a complex, gelatinous structure within the GPMV. In regards to nanoparticle-based perturbations, techniques such as isothermal titration calorimetry and molecular dynamics were used to investigate the relationship between nanoparticle properties and membrane disruption. Molecular dynamics simulations examined the binding of third-generation poly(amidoamine) dendrimers to phosphatidylcholine bilayers as a function on nanoparticle termination and membrane phase. A potential of mean force was calculated and demonstrated that the charged dendrimers bound to the zwitterionic phospholipids with approximately 50% more free energy release than uncharged dendrimers. Further, the difference in dendrimer binding to gel and fluid lipids was largely due to the hydrophobic interactions between the lipid tails and the non-polar dendrimer moieties. Isothermal titration calorimetry examined the heat release upon interaction between

  14. Synthetic microfluidic paper: high surface area and high porosity polymer micropillar arrays.

    Science.gov (United States)

    Hansson, Jonas; Yasuga, Hiroki; Haraldsson, Tommy; van der Wijngaart, Wouter

    2016-01-21

    We introduce Synthetic Microfluidic Paper, a novel porous material for microfluidic applications that consists of an OSTE polymer that is photostructured in a well-controlled geometry of slanted and interlocked micropillars. We demonstrate the distinct benefits of Synthetic Microfluidic Paper over other porous microfluidic materials, such as nitrocellulose, traditional paper and straight micropillar arrays: in contrast to straight micropillar arrays, the geometry of Synthetic Microfluidic Paper was miniaturized without suffering capillary collapse during manufacturing and fluidic operation, resulting in a six-fold increased internal surface area and a three-fold increased porous fraction. Compared to commercial nitrocellulose materials for capillary assays, Synthetic Microfluidic Paper shows a wider range of capillary pumping speed and four times lower device-to-device variation. Compared to the surfaces of the other porous microfluidic materials that are modified by adsorption, Synthetic Microfluidic Paper contains free thiol groups and has been shown to be suitable for covalent surface chemistry, demonstrated here for increasing the material hydrophilicity. These results illustrate the potential of Synthetic Microfluidic Paper as a porous microfluidic material with improved performance characteristics, especially for bioassay applications such as diagnostic tests.

  15. Dynamic diversity of synthetic supramolecular polymers in water as revealed by hydrogen/deuterium exchange

    Science.gov (United States)

    Lou, Xianwen; Lafleur, René P. M.; Leenders, Christianus M. A.; Schoenmakers, Sandra M. C.; Matsumoto, Nicholas M.; Baker, Matthew B.; van Dongen, Joost L. J.; Palmans, Anja R. A.; Meijer, E. W.

    2017-05-01

    Numerous self-assembling molecules have been synthesized aiming at mimicking both the structural and dynamic properties found in living systems. Here we show the application of hydrogen/deuterium exchange (HDX) mass spectrometry (MS) to unravel the nanoscale organization and the structural dynamics of synthetic supramolecular polymers in water. We select benzene-1,3,5-tricarboxamide (BTA) derivatives that self-assemble in H2O to illustrate the strength of this technique for supramolecular polymers. The BTA structure has six exchangeable hydrogen atoms and we follow their exchange as a function of time after diluting the H2O solution with a 100-fold excess of D2O. The kinetic H/D exchange profiles reveal that these supramolecular polymers in water are dynamically diverse; a notion that has previously not been observed using other techniques. In addition, we report that small changes in the molecular structure can be used to control the dynamics of synthetic supramolecular polymers in water.

  16. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.

    Science.gov (United States)

    Tabasum, Shazia; Noreen, Aqdas; Kanwal, Arooj; Zuber, Mohammad; Anjum, Muhammad Naveed; Zia, Khalid Mahmood

    2017-05-01

    Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. FORMULATION DEVELOPMENT OF MUCOADHESIVE MICROCAPSULES OF METFORMIN HYDROCHLORIDE USING NATURAL AND SYNTHETIC POLYMERS AND IN VITRO CHARACTERIZATION

    OpenAIRE

    Yellanki Shiva Kumar; Deb Sambit kumar; Goranti Sharada; Nerella Naveen kumar

    2010-01-01

    The objective of this work was to develop optimized and systematically evaluate performances of mucoadhesive microcapsules of antihyperglycemic agent drug Metformin. Alginate microcapsules coated with mucoadhesive natural or synthetic polymers were prepared by Orifice-Ionic Gelation technique utilizing calcium chloride as a cross linking agent. The effect of type (natural or synthetic) and concentration of coating polymers and concentration of alginate on formulation was investigated. Prepare...

  18. Increasing the strength and bioactivity of collagen scaffolds using customizable arrays of 3D-printed polymer fibers.

    Science.gov (United States)

    Mozdzen, Laura C; Rodgers, Ryan; Banks, Jessica M; Bailey, Ryan C; Harley, Brendan A C

    2016-03-01

    substrates have significant potential for addressing these defects. However, the high porosity required to facilitate cell infiltration and nutrient transport often dictates that the resultant biomaterials has insufficient biomechanical strength. Here we describe the use of three-dimensional printing techniques to generate customizable fiber arrays from ABS polymer that can be incorporated into a collagen scaffold under development for tendon repair applications. Notably, the mechanical performance of the fiber-scaffold composite can be defined by the fiber array independent of the bioactivity of the collagen scaffold design. Further, the fiber array provides a substrate for growth factor delivery to aid healing. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Recombinant protein scaffolds for tissue engineering

    International Nuclear Information System (INIS)

    Werkmeister, Jerome A; Ramshaw, John A M

    2012-01-01

    New biological materials for tissue engineering are now being developed using common genetic engineering capabilities to clone and express a variety of genetic elements that allow cost-effective purification and scaffold fabrication from these recombinant proteins, peptides or from chimeric combinations of these. The field is limitless as long as the gene sequences are known. The utility is dependent on the ease, product yield and adaptability of these protein products to the biomedical field. The development of recombinant proteins as scaffolds, while still an emerging technology with respect to commercial products, is scientifically superior to current use of natural materials or synthetic polymer scaffolds, in terms of designing specific structures with desired degrees of biological complexities and motifs. In the field of tissue engineering, next generation scaffolds will be the key to directing appropriate tissue regeneration. The initial period of biodegradable synthetic scaffolds that provided shape and mechanical integrity, but no biological information, is phasing out. The era of protein scaffolds offers distinct advantages, particularly with the combination of powerful tools of molecular biology. These include, for example, the production of human proteins of uniform quality that are free of infectious agents and the ability to make suitable quantities of proteins that are found in low quantity or are hard to isolate from tissue. For the particular needs of tissue engineering scaffolds, fibrous proteins like collagens, elastin, silks and combinations of these offer further advantages of natural well-defined structural scaffolds as well as endless possibilities of controlling functionality by genetic manipulation. (topical review)

  20. Influence of Controlled Cooling in Bimodal Scaffold Fabrication Using Polymers with Different Melting Temperatures

    OpenAIRE

    Lara-Padilla, Hernan; Mendoza-Buenrostro, Christian; Cardenas, Diego; Rodriguez-Garcia, Aida; Rodriguez, Ciro A.

    2017-01-01

    The combination of different materials and capabilities to manufacture at several scales open new possibilities in scaffold design for bone regeneration. This work is focused on bimodal scaffolds that combine polylactic acid (PLA) melt extruded strands with polycaprolactone (PCL) electrospun fibers. This type of bimodal scaffold offers better mechanical properties, compared to the use of PCL for the extruded strands, and provides potential a means for controlled drug and/or growth factor deli...

  1. Heterogeneity of Scaffold Biomaterials in Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Lauren Edgar

    2016-05-01

    Full Text Available Tissue engineering (TE offers a potential solution for the shortage of transplantable organs and the need for novel methods of tissue repair. Methods of TE have advanced significantly in recent years, but there are challenges to using engineered tissues and organs including but not limited to: biocompatibility, immunogenicity, biodegradation, and toxicity. Analysis of biomaterials used as scaffolds may, however, elucidate how TE can be enhanced. Ideally, biomaterials should closely mimic the characteristics of desired organ, their function and their in vivo environments. A review of biomaterials used in TE highlighted natural polymers, synthetic polymers, and decellularized organs as sources of scaffolding. Studies of discarded organs supported that decellularization offers a remedy to reducing waste of donor organs, but does not yet provide an effective solution to organ demand because it has shown varied success in vivo depending on organ complexity and physiological requirements. Review of polymer-based scaffolds revealed that a composite scaffold formed by copolymerization is more effective than single polymer scaffolds because it allows copolymers to offset disadvantages a single polymer may possess. Selection of biomaterials for use in TE is essential for transplant success. There is not, however, a singular biomaterial that is universally optimal.

  2. Synthetic, implantable polymers for local delivery of IUdR to experimental human malignant glioma

    International Nuclear Information System (INIS)

    Williams, Jeffery A.; Yuan Xuan; Dillehay, Larry E.; Shastri, Venkatram R.; Brem, Henry; Williams, Jerry R.

    1998-01-01

    Purpose: Recently, polymeric controlled delivery of chemotherapy has been shown to improve survival of patients with malignant glioma. We evaluated whether we could similarly deliver halogenated pyrimidines to experimental intracranial human malignant glioma. To address this issue we studied the in vitro release from polymers and the in vivo drug delivery of IUdR to experimental human U251 glioblastoma xenografts. Methods and Materials: In vitro: To measure release, increasing (10%, 30%, 50%) proportions of IUdR in synthetic [(poly(bis(p-carboxyphenoxy)-propane) (PCPP):sebacic acid (SA) polymer discs were serially incubated in buffered saline and the supernatant fractions were assayed. In vivo: To compare local versus systemic delivery, mice bearing flank xenografts had intratumoral or contralateral flank IUdR polymer (50% loading) treatments. Mice bearing intracranial (i.c.) xenografts had i.c. versus flank IUdR polymer treatments. Four or 8 days after implantation of polymers, mice were sacrificed and the percentage tumor cells that were labeled with IUdR was measured using quantitative microscopic immunohistochemistry. Results: In vitro: Increasing percentage loadings of IUdR resulted in higher percentages of release: 43.7 + 0.1, 70.0 + 0.2, and 90.2 + 0.2 (p < 0.001 ANOVA) for the 10%, 30%, and 50% loadings, respectively. In vivo: For the flank tumors, both the ipsilateral and contralateral IUdR polymers resulted in similarly high percentages labeling of the tumors versus time. For the ipsilateral IUdR polymers, the percentage of tumor cellular labeling after 4 days versus 8 days was 45.8 ± 7.0 versus 40.6 ± 3.9 (p = NS). For the contralateral polymer implants, the percentage of tumor cellular labeling were 43.9 ± 10.1 versus 35.9 ± 5.2 (p = NS) measured 4 days versus 8 days after implantation. For the i.c. tumors treated with extracranial IUdR polymers, the percentage of tumor cellular labeling was low: 13.9 ± 8.8 and 11.2 ± 5.7 measured 4 and 8 days

  3. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering

    NARCIS (Netherlands)

    Jansen, EJP; Sladek, REJ; Bahar, H; Yaffe, A; Gijbels, MJ; Kuijer, R; Bulstra, SK; Guldemond, NA; Binderman, [No Value; Koole, LH

    Porous polymeric scaffolds play a key role in most tissue-engineering strategies. A series of non-degrading porous scaffolds was prepared, based on bulk-copolymerisation of 1-vinyl-2-pyrrolidinone (NVP) and n-butyl methacrylate (BMA), followed by a particulate-leaching step to generate porosity.

  4. Self-assembly of silk-elastinlike protein polymers into three-dimensional scaffolds for biomedical applications

    Science.gov (United States)

    Zeng, Like

    Production of brand new protein-based materials with precise control over the amino acid sequences at single residue level has been made possible by genetic engineering, through which artificial genes can be developed that encode protein-based materials with desired features. As an example, silk-elastinlike protein polymers (SELPs), composed of tandem repeats of amino acid sequence motifs from Bombyx mori (silkworm) silk and mammalian elastin, have been produced in this approach. SELPs have been studied extensively in the past two decades, however, the fundamental mechanism governing the self-assembly process to date still remains largely unresolved. Further, regardless of the unprecedented success when exploited in areas including drug delivery, gene therapy, and tissue augmentation, SELPs scaffolds as a three-dimensional cell culture model system are complicated by the inability of SELPs to provide the embedded tissue cells with appropriate biochemical stimuli essential for cell survival and function. In this dissertation, it is reported that the self-assembly of silk-elastinlike protein polymers (SELPs) into nanofibers in aqueous solutions can be modulated by tuning the curing temperature, the size of the silk blocks, and the charge of the elastin blocks. A core-sheath model was proposed for nanofiber formation, with the silk blocks in the cores and the hydrated elastin blocks in the sheaths. The folding of the silk blocks into stable cores -- affected by the size of the silk blocks and the charge of the elastin blocks -- plays a critical role in the assembly of silk-elastin nanofibers. The assembled nanofibers further form nanofiber clusters on the microscale, and the nanofiber clusters then coalesce into nanofiber micro-assemblies, interconnection of which eventually leads to the formation of three-dimensional scaffolds with distinct nanoscale and microscale features. SELP-Collagen hybrid scaffolds were also fabricated to enable independent control over the

  5. Synthetic inhibitors of the fungal detoxifying enzyme brassinin oxidase based on the phytoalexin camalexin scaffold.

    Science.gov (United States)

    Pedras, M Soledade C; Minic, Zoran; Sarma-Mamillapalle, Vijay K

    2009-03-25

    Brassinin (1) is an essential phytoalexin produced in plants of the family Brassicaceae (common name crucifer) due to its role as a biosynthetic precursor of other phytoalexins and antimicrobial activity. The dithiocarbamate group of brassinin (1) is the toxophore responsible for its fairly broad antifungal activity. To the detriment of many agriculturally important crops, several pathogenic fungi of crucifers are able to overcome brassinin by detoxification. In this work, inhibitors of brassinin oxidase, a phytoalexin detoxifying enzyme produced by the plant pathogenic fungus Leptosphaeria maculans (asexual stage Phoma lingam ), were synthesized and evaluated. The camalexin scaffold was used for the design of brassinin oxidase inhibitors (i.e., paldoxins, phytoalexin detoxification inhibitors) because camalexin is a phytoalexin not produced by the Brassica species and L. maculans is unable to metabolize it. The inhibitory effect of camalexin and derivatives decreased as follows: 5-methoxycamalexin > 5-fluorocamalexin = 6-methoxycamalexin > camalexin > 6-fluorocamalexin; 5-methoxycamalexin was determined to be the best inhibitor of brassinin oxidase discovered to date. In addition, the results suggested that camalexin might induce fungal pathways protecting L. maculans against oxidative stress (induction of superoxide dismutase) as well as brassinin toxicity (induction of brassinin oxidase). Overall, these results revealed additional biological effects of camalexin and its natural derivatives and emphasized that different phytoalexins could have positive or negative impacts on plant resistance to different fungal pathogens.

  6. Effect of biological and synthetic polymers on BK virus infectivity and hemagglutination.

    Science.gov (United States)

    Sinibaldi, L; Pietropaolo, V; Goldoni, P; Di Taranto, C; Orsi, N

    1992-02-01

    The effect of several biological and synthetic polymers, chosen on the basis of different physical and chemical properties, was investigated on BK virus infectivity and hemagglutination. It was observed that polyanions like mucin, dextran sulfate and heparin depressed the viral binding, whereas polycations had no significant activity, with the exception of poly-L-lysine, which enhanced it. The effect of the active polymers was studied in different experimental conditions and the results obtained suggested that polyanions may act directly on the virus particle, whereas the target of polycations could be at the level of cell membranes. However, the effect shown by the active compounds did not appear to be simply related to the electric charge since neutral compounds, such as tamarind gum and locust bean gum, showed a marked inhibitory effect on BK virus binding to the cells.

  7. Recent trends on gellan gum blends with natural and synthetic polymers: A review.

    Science.gov (United States)

    Zia, Khalid Mahmood; Tabasum, Shazia; Khan, Muhammad Faris; Akram, Nadia; Akhter, Naheed; Noreen, Aqdas; Zuber, Mohammad

    2018-04-01

    Gellan gum (GG), a linear negatively charged exopolysaccharide,is biodegradable and non-toxic in nature. It produces hard and translucent gel in the presence of metallic ions which is stable at low pH. However, GG has poor mechanical strength, poor stability in physiological conditions, high gelling temperature and small temperature window.Therefore,it is blended with different polymers such as agar, chitosan, cellulose, sodium alginate, starch, pectin, polyanaline, pullulan, polyvinyl chloride, and xanthan gum. In this article, a comprehensive overview of combination of GG with natural and synthetic polymers/compounds and their applications in biomedical field involving drug delivery system, insulin delivery, wound healing and gene therapy, is presented. It also describes the utilization of GG based materials in food and petroleum industry. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The triazine-based porous organic polymer: Novel synthetic strategy for high specific surface area

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin Kuen [Dept. of Chemistry, Hankuk University of Foreign Studies, Yongin (Korea, Republic of)

    2017-02-15

    A new type of microporous polymer has been successively synthesized via a simple polycondensation reaction with the 2,4-diaminotriazine moiety and dianhydride monomer. Diaminotriazine moieties in M1 especially can provide effective branching sites, resulting in high surface areas up to 1150 m{sup 2} /g. In addition, the specific pore structure of the polyimide POP in its solid state can be modified by the surface activation method. Therefore, it can be expected that the resulting material will be a promising candidate for gas storage, and with this synthetic strategy, various type of derivatives will also be optimized.

  9. Removal of toxic uranium from synthetic nuclear power reactor effluents using uranyl ion imprinted polymer particles.

    Science.gov (United States)

    Preetha, Chandrika Ravindran; Gladis, Joseph Mary; Rao, Talasila Prasada; Venkateswaran, Gopala

    2006-05-01

    Major quantities of uranium find use as nuclear fuel in nuclear power reactors. In view of the extreme toxicity of uranium and consequent stringent limits fixed by WHO and various national governments, it is essential to remove uranium from nuclear power reactor effluents before discharge into environment. Ion imprinted polymer (IIP) materials have traditionally been used for the recovery of uranium from dilute aqueous solutions prior to detection or from seawater. We now describe the use of IIP materials for selective removal of uranium from a typical synthetic nuclear power reactor effluent. The IIP materials were prepared for uranyl ion (imprint ion) by forming binary salicylaldoxime (SALO) or 4-vinylpyridine (VP) or ternary SALO-VP complexes in 2-methoxyethanol (porogen) and copolymerizing in the presence of styrene (monomer), divinylbenzene (cross-linking monomer), and 2,2'-azobisisobutyronitrile (initiator). The resulting materials were then ground and sieved to obtain unleached polymer particles. Leached IIP particles were obtained by leaching the imprint ions with 6.0 M HCl. Control polymer particles were also prepared analogously without the imprint ion. The IIP particles obtained with ternary complex alone gave quantitative removal of uranyl ion in the pH range 3.5-5.0 with as low as 0.08 g. The retention capacity of uranyl IIP particles was found to be 98.50 mg/g of polymer. The present study successfully demonstrates the feasibility of removing uranyl ions selectively in the range 5 microg - 300 mg present in 500 mL of synthetic nuclear power reactor effluent containing a host of other inorganic species.

  10. Influence of natural humic acids and synthetic phenolic polymers on fibrinolysis

    Science.gov (United States)

    Klöcking, Hans-Peter

    The influence of synthetic and natural phenolic polymers on the release of plasminogen activator was studied in an isolated, perfused, vascular preparation (pig ear). Of the tested synthetic phenolic polymers, the oxidation products of caffeic acid (KOP) and 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), at a concentration of 50 µg/ml perfusate, were able to increase the plasminogen activator activity by 70%. The oxidation products of chlorogenic acid (CHOP), hydrocaffeic acid (HYKOP), pyrogallol (PYROP) and gallic acid (GALOP), at the same concentration, exerted no influence on the release of plasminogen activator. Of the naturally occurring humic acids, the influence of sodium humate was within the same order of magnitude as KOP and 3,4-DHPOP. Ammonium humate was able to increase the plasminogen activator release only at a concentration of 100 µg/ml perfusate. In rats, the t-PA activity increased after i.v. application of 10 mg/kg of KOP, Na-HS or NH4-HS.

  11. Calculating the vulnerability of synthetic polymers to autoignition during nuclear flash. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hickman, R.; Reitter, T.

    1985-01-01

    The purpose of our investigation was to determine if the rapid progression of fire to flashover conditions in a furnished room, observed in a 1953 nuclear weapons test at the Nevada Test Site (the Encore Event), might be typical behavior rather than an aberration. If flashover under such conditions is indeed likely, this phenomenon is worth pursuing in view of the increased threat to buildings and human life from possible large-scale fires. We placed special emphasis on fires that occurred in modern rooms, i.e., ones furnished with upholstery and drapery materials made from synthetic polymers. Examination of photochemical processes showed them to be an unlikely explanation, either in Encore or in the future. Our calculation of rapid radiant-heating behavior of a few materials demonstrated that fabrics and fabric-covered foams would exceed their autoignition temperature when exposed to a 25-cal/cm/sup 2/ fluence from a 1-Mt air burst weapon. Because synthetic polymers have higher heating values and release heat faster during combustion than do the cellulosics used in the Encore experiment, early flashover should not be unexpected in contemporary households. However, the far-field thermal fluence required would be higher because of the absorption of thermal energy by windows and window coverings. Because of the complexity of the problem, carefully planned, full-scale experiments will be needed to finally answer the question. 39 refs., 9 figs., 8 tabs.

  12. Calculating the vulnerability of synthetic polymers to autoignition during nuclear flash. Final report

    International Nuclear Information System (INIS)

    Hickman, R.; Reitter, T.

    1985-01-01

    The purpose of our investigation was to determine if the rapid progression of fire to flashover conditions in a furnished room, observed in a 1953 nuclear weapons test at the Nevada Test Site (the Encore Event), might be typical behavior rather than an aberration. If flashover under such conditions is indeed likely, this phenomenon is worth pursuing in view of the increased threat to buildings and human life from possible large-scale fires. We placed special emphasis on fires that occurred in modern rooms, i.e., ones furnished with upholstery and drapery materials made from synthetic polymers. Examination of photochemical processes showed them to be an unlikely explanation, either in Encore or in the future. Our calculation of rapid radiant-heating behavior of a few materials demonstrated that fabrics and fabric-covered foams would exceed their autoignition temperature when exposed to a 25-cal/cm 2 fluence from a 1-Mt air burst weapon. Because synthetic polymers have higher heating values and release heat faster during combustion than do the cellulosics used in the Encore experiment, early flashover should not be unexpected in contemporary households. However, the far-field thermal fluence required would be higher because of the absorption of thermal energy by windows and window coverings. Because of the complexity of the problem, carefully planned, full-scale experiments will be needed to finally answer the question. 39 refs., 9 figs., 8 tabs

  13. Compressive cyclic ratcheting and fatigue of synthetic, soft biomedical polymers in solution.

    Science.gov (United States)

    Miller, Andrew T; Safranski, David L; Smith, Kathryn E; Guldberg, Robert E; Gall, Ken

    2016-02-01

    The use of soft, synthetic materials for the replacement of soft, load-bearing tissues has been largely unsuccessful due to a lack of materials with sufficient fatigue and wear properties, as well as a lack of fundamental understanding on the relationship between material structure and behavior under cyclic loads. In this study, we investigated the response of several soft, biomedical polymers to cyclic compressive stresses under aqueous conditions and utilized dynamic mechanical analysis and differential scanning calorimetry to evaluate the role of thermo-mechanical transitions on such behavior. Studied materials include: polycarbonate urethane, polydimethylsiloxane, four acrylate copolymers with systematically varied thermo-mechanical transitions, as well as bovine meniscal tissue for comparison. Materials showed compressive moduli between 2.3 and 1900MPa, with polycarbonate urethane (27.3MPa) matching closest to meniscal tissue (37.0MPa), and also demonstrated a variety of thermo-mechanical transition behaviors. Cyclic testing resulted in distinct fatigue-life curves, with failure defined as either classic fatigue fracture or a defined increased in maximum strain due to ratcheting. Our study found that polymers with sufficient dissipation mechanisms at the testing temperature, as evidenced by tan delta values, were generally tougher than those with less dissipation and exhibited ratcheting rather than fatigue fracture much like meniscal tissue. Strain recovery tests indicated that, for some toughened polymers, the residual strain following our cyclic loading protocol could be fully recovered. The similarity in ratcheting behavior, and lack of fatigue fracture, between the meniscal tissue and toughened polymers indicates that such polymers may have potential as artificial soft tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Oral sustained release tablets of zidovudine using binary blends of natural and synthetic polymers.

    Science.gov (United States)

    Emeje, Martins; Olaleye, Olajide; Isimi, Christiana; Fortunak, Joseph; Byrn, Stephen; Kunle, Olobayo; Ofoefule, Sabinus

    2010-01-01

    Oral sustained release matrix tablets of zidovudine (ZDV) were prepared using different types, proportions and blends of carbopol 71G (C71) and a plant gum obtained from Abelmoschus esculentus (AEG). The effect of various formulation factors like polymer proportion, polymer type and pH of the dissolution medium on the in vitro release of the drug was studied, using the half change technique, in 900 ml of dissolution medium, at 100 rpm. Release kinetics were analyzed using Zero-order, Higuchi's square-root and Ritger-Peppas' empirical equations. In vitro release performance as revealed by the time taken for 70% of the drug to be released (t70%), showed that the release rate decreased with increase in polymer proportion. Matrix tablets containing 10 and 20% AEG were found to exhibit immediate-release characteristics. Matrix tablets containing 30% AEG showed t70% value of 204 min and extended the release up to 5 h, while matrix tablets containing 30% carbopol showed t70% value of 234 min and extended the release up to 6 h. Three blends of AEG and C71 at the ratio of 1:2, 2:1 and 1:3 showed t70% values of 132, 312 and 102 min respectively and extended the release up to 8 h. Mathematical analysis of the release kinetics indicated that the nature of drug release from the matrix tablets followed Fickian and anomalous release. Drug release from matrix tablets of zidovudine containing blends of AEG and C71 demonstrates the advantage of blending a natural and synthetic polymer over single polymer use.

  15. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.

    Science.gov (United States)

    Wulff, Günter; Liu, Junqiu

    2012-02-21

    The impressive efficiency and selectivity of biological catalysts has engendered a long-standing effort to understand the details of enzyme action. It is widely accepted that enzymes accelerate reactions through their steric and electronic complementarity to the reactants in the rate-determining transition states. Thus, tight binding to the transition state of a reactant (rather than to the corresponding substrate) lowers the activation energy of the reaction, providing strong catalytic activity. Debates concerning the fundamentals of enzyme catalysis continue, however, and non-natural enzyme mimics offer important additional insight in this area. Molecular structures that mimic enzymes through the design of a predetermined binding site that stabilizes the transition state of a desired reaction are invaluable in this regard. Catalytic antibodies, which can be quite active when raised against stable transition state analogues of the corresponding reaction, represent particularly successful examples. Recently, synthetic chemistry has begun to match nature's ability to produce antibody-like binding sites with high affinities for the transition state. Thus, synthetic, molecularly imprinted polymers have been engineered to provide enzyme-like specificity and activity, and they now represent a powerful tool for creating highly efficient catalysts. In this Account, we review recent efforts to develop enzyme models through the concept of transition state stabilization. In particular, models for carboxypeptidase A were prepared through the molecular imprinting of synthetic polymers. On the basis of successful experiments with phosphonic esters as templates to arrange amidinium groups in the active site, the method was further improved by combining the concept of transition state stabilization with the introduction of special catalytic moieties, such as metal ions in a defined orientation in the active site. In this way, the imprinted polymers were able to provide both an

  16. Mathematical modeling of degradation for bulk-erosive polymers: applications in tissue engineering scaffolds and drug delivery systems.

    Science.gov (United States)

    Chen, Yuhang; Zhou, Shiwei; Li, Qing

    2011-03-01

    The degradation of polymeric biomaterials, which are widely exploited in tissue engineering and drug delivery systems, has drawn significant attention in recent years. This paper aims to develop a mathematical model that combines stochastic hydrolysis and mass transport to simulate the polymeric degradation and erosion process. The hydrolysis reaction is modeled in a discrete fashion by a fundamental stochastic process and an additional autocatalytic effect induced by the local carboxylic acid concentration in terms of the continuous diffusion equation. Illustrative examples of microparticles and tissue scaffolds demonstrate the applicability of the model. It is found that diffusive transport plays a critical role in determining the degradation pathway, whilst autocatalysis makes the degradation size dependent. The modeling results show good agreement with experimental data in the literature, in which the hydrolysis rate, polymer architecture and matrix size actually work together to determine the characteristics of the degradation and erosion processes of bulk-erosive polymer devices. The proposed degradation model exhibits great potential for the design optimization of drug carriers and tissue scaffolds. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Highly structured and surface modified poly(epsilon-caprolactone) scaffolds derived from co-continuous polymer blends for bone tissue engineering

    Science.gov (United States)

    Mehr, Nima Ghavidel

    Chitosan, an important member of the polysaccharide family was used to alter the chemistry of PCL scaffolds and bring hydrophilicity to the surface. The deposition of a homogeneous chitosan layer on the surface of the PCL scaffolds was carried out using a Layer-by-Layer (LbL) selfassembly of poly(dialyldemethylammunium chloride) (PDADMAC) as cationic and poly(sodium 4-styrenesulfonate) (PSS) as anionic polyelectrolytes. The final negatively charged PSS layer allows for the addition of the positively charged chitosan as the outermost layer. Gravimetric measurements revealed that the addition of up to 3 layers leads to the formation of interdiffusing polyelectrolyte layers which do not allow for the formation of defined positive or negative charges. By increasing the number of polyelectrolyte layers with alternating charges, more welldefined layers are formed. Detailed analyses of O/C, N/C and S/C ratios by X-ray photoelectron spectroscopy (XPS) show that the PSS molecule dominates the surface as the last deposited polyelectrolyte layer at higher number of depositions (n=8), which can later be the surface for the deposition of chitosan. The LbL deposition of the chitosan layer on the LbL coating was then shown to be locally homogeneous at different depths within the scaffolds which also clarified that the LbL method is superior to the dip coating strategy. SEM analysis showed that there is a rough chitosan surface on the 2D solid PCL constructs whose thickness ranges from 550-700 nanometers. These results demonstrate that the application of LbL self-assembly of polyelectrolytes followed by the addition of chitosan as the outermost layer provides a route towards stable and homogeneous surface modification and has the potential to transform a classic fully interconnected porous synthetic polymer material to one with essentially complete chitosanlike surface characteristics. The osteogenic potential of PCL scaffolds with a chitosan coating using Layer-by-Layer (Lb

  18. A Comparison of Electrospun Polymers Reveals Poly(3-Hydroxybutyrate) Fiber as a Superior Scaffold for Cardiac Repair

    Science.gov (United States)

    Castellano, Delia; Blanes, María; Marco, Bruno; Cerrada, Inmaculada; Ruiz-Saurí, Amparo; Pelacho, Beatriz; Araña, Miriam; Montero, Jose A.; Cambra, Vicente; Prosper, Felipe

    2014-01-01

    The development of biomaterials for myocardial tissue engineering requires a careful assessment of their performance with regards to functionality and biocompatibility, including the immune response. Poly(3-hydroxybutyrate) (PHB), poly(e-caprolactone) (PCL), silk, poly-lactic acid (PLA), and polyamide (PA) scaffolds were generated by electrospinning, and cell compatibility in vitro, and immune response and cardiac function in vitro and in vivo were compared with a noncrosslinked collagen membrane (Col) control material. Results showed that cell adhesion and growth of mesenchymal stem cells, cardiomyocytes, and cardiac fibroblasts in vitro was dependent on the polymer substrate, with PHB and PCL polymers permitting the greatest adhesion/growth of cells. Additionally, polymer substrates triggered unique expression profiles of anti- and pro-inflammatory cytokines in human peripheral blood mononuclear cells. Implantation of PCL, silk, PLA, and PA patches on the epicardial surface of healthy rats induced a classical foreign body reaction pattern, with encapsulation of polymer fibers and induction of the nonspecific immune response, whereas Col and PHB patches were progressively degraded. When implanted on infarcted rat heart, Col, PCL, and PHB reduced negative remodeling, but only PHB induced significant angiogenesis. Importantly, Col and PHB modified the inflammatory response to an M2 macrophage phenotype in cardiac tissue, indicating a more beneficial reparative process and remodeling. Collectively, these results identify PHB as a superior substrate for cardiac repair. PMID:24564648

  19. A comparison of electrospun polymers reveals poly(3-hydroxybutyrate) fiber as a superior scaffold for cardiac repair.

    Science.gov (United States)

    Castellano, Delia; Blanes, María; Marco, Bruno; Cerrada, Inmaculada; Ruiz-Saurí, Amparo; Pelacho, Beatriz; Araña, Miriam; Montero, Jose A; Cambra, Vicente; Prosper, Felipe; Sepúlveda, Pilar

    2014-07-01

    The development of biomaterials for myocardial tissue engineering requires a careful assessment of their performance with regards to functionality and biocompatibility, including the immune response. Poly(3-hydroxybutyrate) (PHB), poly(e-caprolactone) (PCL), silk, poly-lactic acid (PLA), and polyamide (PA) scaffolds were generated by electrospinning, and cell compatibility in vitro, and immune response and cardiac function in vitro and in vivo were compared with a noncrosslinked collagen membrane (Col) control material. Results showed that cell adhesion and growth of mesenchymal stem cells, cardiomyocytes, and cardiac fibroblasts in vitro was dependent on the polymer substrate, with PHB and PCL polymers permitting the greatest adhesion/growth of cells. Additionally, polymer substrates triggered unique expression profiles of anti- and pro-inflammatory cytokines in human peripheral blood mononuclear cells. Implantation of PCL, silk, PLA, and PA patches on the epicardial surface of healthy rats induced a classical foreign body reaction pattern, with encapsulation of polymer fibers and induction of the nonspecific immune response, whereas Col and PHB patches were progressively degraded. When implanted on infarcted rat heart, Col, PCL, and PHB reduced negative remodeling, but only PHB induced significant angiogenesis. Importantly, Col and PHB modified the inflammatory response to an M2 macrophage phenotype in cardiac tissue, indicating a more beneficial reparative process and remodeling. Collectively, these results identify PHB as a superior substrate for cardiac repair.

  20. Chondrogenesis of adipose stem cells in a porous polymer scaffold: influence of the pore size.

    Science.gov (United States)

    Im, Gun-Ii; Ko, Ji-Yun; Lee, Jin Ho

    2012-01-01

    This study examined how the difference in pore size of porous scaffolds affected the in vitro chondrogenic differentiation of seeded adipose stem cells (ASCs) and the in vivo cartilage repair of ASC/scaffold construct. ASCs were isolated from 18 rabbits and seeded in a porous poly (ε-caprolactone) (PCL) scaffold with different pore sizes (100, 200, 400 μm). The ASCs underwent in vitro chondrogenic induction under TGF-β2 and BMP-7 for 21 days before analysis. The ASC/scaffold construct was also implanted on the osteochondral defect created on the distal femur of the same rabbits, and the quality of cartilage regeneration was analyzed after 8 weeks. At day 21, the ASCs proliferated and spread on the surface of the scaffolds with a pore size 100 and 200 μm, whereas there were many lumps of conglomerated ASCs on those with a pore size of 400 μm. The DNA content was significantly lower in the scaffold with a pore size of 400 μm than in that with a pore size of 100 or 200 μm. Proteoglycan production was significantly greater in the scaffold with a pore size of 400 and 200 μm than in that with a pore size of 100 μm. The chondrogenic marker gene expression including SOX9 and COL2A1 was greatest in the scaffold with a pore size of 400 μm followed by 200 μm. Immunofluorescent imaging showed that, while SOX9 was localized to nucleus, type II collagen was observed on the cytoplasm and secreted matrix around the cells most abundantly in the scaffold with a pore size of 400 μm followed by 200 μm. The gross and histological findings from the osteochondral defects showed that the cartilage repair was better in the scaffold with a pore size of 400 and 200 μm than in that with a pore size of 100 μm.

  1. Large accumulation of micro-sized synthetic polymer particles in the sea surface microlayer.

    Science.gov (United States)

    Song, Young Kyoung; Hong, Sang Hee; Jang, Mi; Kang, Jung-Hoon; Kwon, Oh Youn; Han, Gi Myung; Shim, Won Joon

    2014-08-19

    Determining the exact abundance of microplastics on the sea surface can be susceptible to the sampling method used. The sea surface microlayer (SML) can accumulate light plastic particles, but this has not yet been sampled. The abundance of microplastics in the SML was evaluated off the southern coast of Korea. The SML sampling method was then compared to bulk surface water filtering, a hand net (50 μm mesh), and a Manta trawl net (330 μm mesh). The mean abundances were in the order of SML water > hand net > bulk water > Manta trawl net. Fourier transform infrared spectroscopy (FTIR) identified that alkyds and poly(acrylate/styrene) accounted for 81 and 11%, respectively, of the total polymer content of the SML samples. These polymers originated from paints and the fiber-reinforced plastic (FRP) matrix used on ships. Synthetic polymers from ship coatings should be considered to be a source of microplastics. Selecting a suitable sampling method is crucial for evaluating microplastic pollution.

  2. Efficient Switching of RAFT to Hydroxyl Capped Polymers as a Versatile Scaffold for Block Copolymer Synthesis

    OpenAIRE

    Schmid, Christina Maria

    2012-01-01

    The RAFT polymerization is a versatile technique to synthesize polymers with narrow dispersity and high chain-end functionality. To enable a switch from RAFT to other polymerization protocols, the RAFT polymers were transformed via a novel end-group conversion into OH functional polymers. The procedure was employed to synthesize a variety of sulfur-free (multi-) block (star) copolymers. The complex polymers were analyzed via LCCC-SEC, SEC/ESI-MS, and SEC/FT-IR.

  3. Multiple Gas-Phase Conformations of a Synthetic Linear Poly(acrylamide) Polymer Observed Using Ion Mobility-Mass Spectrometry

    Science.gov (United States)

    Haler, Jean R. N.; Far, Johann; Aqil, Abdelhafid; Claereboudt, Jan; Tomczyk, Nick; Giles, Kevin; Jérôme, Christine; De Pauw, Edwin

    2017-08-01

    Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful separation and identification tool to characterize synthetic polymer mixtures and topologies (linear, cyclic, star-shaped,…). Electrospray coupled to IM-MS already revealed the coexistence of several charge state-dependent conformations for a single charge state of biomolecules with strong intramolecular interactions, even when limited resolving power IM-MS instruments were used. For synthetic polymers, the sample's polydispersity allows the observation of several chain lengths. A unique collision cross-section (CCS) trend is usually observed when increasing the degree of polymerization (DP) at constant charge state, allowing the deciphering of different polymer topologies. In this paper, we report multiple coexisting CCS trends when increasing the DP at constant charge state for linear poly(acrylamide) PAAm in the gas phase. This is similar to observations on peptides and proteins. Biomolecules show in addition population changes when collisionally heating the ions. In the case of synthetic PAAm, fragmentation occurred before reaching the energy for conformation conversion. These observations, which were made on two different IM-MS instruments (SYNAPT G2 HDMS and high resolution multi-pass cyclic T-Wave prototype from Waters), limit the use of ion mobility for synthetic polymer topology interpretations to polymers where unique CCS values are observed for each DP at constant charge state. [Figure not available: see fulltext.

  4. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    Science.gov (United States)

    Cardoso, Elisabeth C. L.; Scagliusi, Sandra R.; Lima, Luis F. C. P.; Bueno, Nelson R.; Brant, Antonio J. C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT).

  5. Biphasic calcium phosphate nano-composite scaffolds reinforced with bioglass provide a synthetic alternative to autografts in a canine tibiofibula defect model.

    Science.gov (United States)

    Tang, Dezhi; Xu, Guohua; Yang, Zhou; Holz, Jonathan; Ye, Xiaojian; Cai, Shu; Yuan, Wen; Wang, Yongjun

    2014-01-01

    Bone grafting is commonly used to repair bone defects. As the porosity of the graft scaffold increases, bone formation increases, but the strength decreases. Early attempts to engineer materials were not able to resolve this problem. In recent years, nanomaterials have demonstrated the unique ability to improve the material strength and toughness while stimulating new bone formation. In our previous studies, we synthesized a nano-scale material by reinforcing a porous β-tricalcium phosphate (β-TCP) ceramic scaffold with Na2O-MgO-P2O5-CaO bioglass (β-TCP/BG). However, the in vivo effects of the β-TCP/BG scaffold on bone repair remain unknown. We investigated the efficacy of β-TCP/BG scaffolds compared to autografts in a canine tibiofibula defect model. The tibiofibula defects were created in the right legs of 12 dogs, which were randomly assigned to either the scaffold group or the autograft group (six dogs per group). Radiographic evaluation was performed at 0, 4, 8, and 12 weeks post-surgery. The involved tibias were extracted at 12 weeks and were tested to failure via a three-point bending. After the biomechanical analysis, specimens were subsequently processed for scanning electron microscopy analysis and histological evaluations. Radiographic evaluation at 12 weeks post-operation revealed many newly formed osseous calluses and bony unions in both groups. Both the maximum force and break force in the scaffold group (n = 6) were comparable to those in the autograft group (n = 6, P > 0.05), suggesting that the tissue-engineered bone repair achieved similar biomechanical properties to autograft bone repair. At 12 weeks post-operation, obvious new bone and blood vessel formations were observed in the artificial bone of the experimental group. The results demonstrated that new bone formation and high bone strength were achieved in the β-TCP/BG scaffold group, and suggested that the β-TCP/BG scaffold could be used as a synthetic alternative to autografts for

  6. Alveolar bone tissue engineering using composite scaffolds for drug delivery

    Directory of Open Access Journals (Sweden)

    Tomonori Matsuno

    2010-08-01

    Full Text Available For many years, bone graft substitutes have been used to reconstruct bone defects in orthopedic and dental fields. However, synthetic bone substitutes such as hydroxyapatite or β-tricalcium phosphate have no osteoinductive or osteogenic abilities. Bone tissue engineering has also been promoted as an alternative approach to regenerating bone tissue. To succeed in bone tissue engineering, osteoconductive scaffolding biomaterials should provide a suitable environment for osteogenic cells and provide local controlled release of osteogenic growth factors. In addition, the scaffold for the bone graft substitute should biodegrade to replace the newly formed bone. Recent advances in bone tissue engineering have allowed the creation of composite scaffolds with tailored functional properties. This review focuses on composite scaffolds that consist of synthetic ceramics and natural polymers as drug delivery carriers for alveolar bone tissue engineering.

  7. Bioactive stratified polymer ceramic-hydrogel scaffold for integrative osteochondral repair.

    Science.gov (United States)

    Jiang, Jie; Tang, Amy; Ateshian, Gerard A; Guo, X Edward; Hung, Clark T; Lu, Helen H

    2010-06-01

    Due to the intrinsically poor repair potential of articular cartilage, injuries to this soft tissue do not heal and require clinical intervention. Tissue engineered osteochondral grafts offer a promising alternative for cartilage repair. The functionality and integration potential of these grafts can be further improved by the regeneration of a stable calcified cartilage interface. This study focuses on the design and optimization of a stratified osteochondral graft with biomimetic multi-tissue regions, including a pre-designed and pre-integrated interface region. Specifically, the scaffold based on agarose hydrogel and composite microspheres of polylactide-co-glycolide (PLGA) and 45S5 bioactive glass (BG) was fabricated and optimized for chondrocyte density and microsphere composition. It was observed that the stratified scaffold supported the region-specific co-culture of chondrocytes and osteoblasts which can lead to the production of three distinct yet continuous regions of cartilage, calcified cartilage and bone-like matrices. Moreover, higher cell density enhanced chondrogenesis and improved graft mechanical property over time. The PLGA-BG phase promoted chondrocyte mineralization potential and is required for the formation of a calcified interface and bone regions on the osteochondral graft. These results demonstrate the potential of the stratified scaffold for integrative cartilage repair and future studies will focus on scaffold optimization and in vivo evaluations.

  8. Improving the Compatibility of Natural and Synthetic Polymer Blends by Radiation Treatments for Using in Practical Application

    International Nuclear Information System (INIS)

    Abu-El Fadle, F.I.

    2011-01-01

    Different polymer blends based on the natural polymers carboxymethyl cellulose (CMC) and sodium alginate as well as the synthetic polymers poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO) and poly acrylamide (PAM) were prepared by solution casting in the form of films. The common solvent used was water. The different blends prepared in this study were subjected to gamma radiation. The compatibility and structure-property behaviour of these blends was studied by differential scanning calorimetry (DSC), Fourier-Transform Infrared (FTIR) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile mechanical testing before and after irradiation. In addition, the swelling properties of different polymer blends were studied at different conditions of temperature and ph. The controlled release characters of the different blends of different drugs were investigated. In addition, the different polymer blends were used for the removal of heavy metals and dyes waste.

  9. Desorption ElectroSpray Ionization - Orbitrap Mass Spectrometry of synthetic polymers and copolymers.

    Science.gov (United States)

    Friia, Manel; Legros, Véronique; Tortajada, Jeanine; Buchmann, William

    2012-08-01

    Desorption ElectroSpray Ionization (DESI) - Orbitrap Mass Spectrometry (MS) was evaluated as a new tool for the characterization of various industrial synthetic polymers (poly(ethylene glycol), poly(propylene glycol), poly(methylmethacrylate), poly(dimethylsiloxane)) and copolymers, with masses ranging from 500 g.mol(-1) up to more than 20 000 g.mol(-1) . Satisfying results in terms of signal stability and sensitivity were obtained from hydrophobic surfaces (HTC Prosolia) with a mixture water/methanol (10/90) as spray solvent in the presence of sodium salt. Taking into account the formation of multiplied charged species by DESI-MS, a strategy based on the use of a deconvolution software followed by the automatic assignment of the ions was described allowing the rapid determination of M(n) , M(w) and PDI values. DESI-Orbitrap MS results were compared to those obtained from matrix-assisted laser desorption/ionization- time-of-flight MS and gel permeation chromatography. An application of DESI-Orbitrap MS for the detection and identification of polymers directly from cosmetics was described. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Desorption electro-spray ionization - orbitrap mass spectrometry of synthetic polymers and copolymers

    International Nuclear Information System (INIS)

    Friia, Manel; Legros, Veronique; Tortajada, Jeanine; Buchmann, William

    2012-01-01

    Desorption Electro-Spray Ionization (DESI) - Orbitrap Mass Spectrometry (MS) was evaluated as a new tool for the characterization of various industrial synthetic polymers (poly(ethylene glycol), poly(propylene glycol), poly(methylmethacrylate), poly(dimethylsiloxane)) and copolymers, with masses ranging from 500 g.mol -1 up to more than 20000 g.mol -1 . Satisfying results in terms of signal stability and sensitivity were obtained from hydrophobic surfaces (HTC Prosolia) with a mixture water/methanol (10/90) as spray solvent in the presence of sodium salt. Taking into account the formation of multiplied charged species by DESI-MS, a strategy based on the use of a deconvolution software followed by the automatic assignment of the ions was described allowing the rapid determination of Mn, Mw and PDI values. DESI-Orbitrap MS results were compared to those obtained from matrix-assisted laser desorption/ionization- time-of-flight MS and gel permeation chromatography. An application of DESI-Orbitrap MS for the detection and identification of polymers directly from cosmetics was described. (authors)

  11. Gamma irradiated micro system for long-term parenteral contraception: An alternative to synthetic polymers.

    Science.gov (United States)

    Puthli, S; Vavia, P

    2008-11-15

    An injectable system of levonorgestrel (LNG) was developed using biodegradable polymer of natural origin. The parenteral system was optimized for particle size and higher drug loading. The microparticulate system was characterised by scanning electron microscopy, encapsulation efficiency, moisture content, IR, DSC, XRD, residual solvent content, sterility testing, test of abnormal toxicity and test for pyrogens. The microparticles were sterilised by gamma irradiation (2.5Mrad). The system was injected intramuscularly in rabbits and the blood levels of LNG were determined using radioimmunoassay technique. An optimized drug to polymer ratio of 0.3-1.0 (w/w ratio) gave improved drug loading of about 52%. In vivo studies in rabbits showed that the drug was released in a sustained manner for a period of 1 month. The AUC(0-t) was found to be 9363.6+/-2340pg/mLday(-1) with MRT calculated to be about 16 days and Kel of 0.01day(-1). LNG levels were maintained between 200 and 400pg/mL. In vivo release exhibited an initial burst effect which was not observed in the in vitro dissolution. This promising "Progestin-only" long-term contraceptive with improved user compliance is an alternative to the synthetic expensive polymeric carriers.

  12. Hepatic Differentiation of Human Induced Pluripotent Stem Cells in a Perfused 3D Porous Polymer Scaffold for Liver Tissue Engineering

    DEFF Research Database (Denmark)

    Hemmingsen, Mette; Muhammad, Haseena Bashir; Mohanty, Soumyaranjan

    A huge shortage of liver organs for transplantation has motivated the research field of tissue engineering to develop bioartificial liver tissue and even a whole liver. The goal of NanoBio4Trans is to create a vascularized bioartificial liver tissue, initially as a liver-support system. Due...... to limitations of primary hepatocytes regarding availability and maintenance of functionality, stem cells and especially human induced pluripotent stem cells (hIPS cells) are an attractive cell source for liver tissue engineering. The aim of this part of NanoBio4Trans is to optimize culture and hepatic...... differentiation of hIPS-derived definitive endoderm (DE) cells in a 3D porous polymer scaffold built-in a perfusable bioreactor. The use of a microfluidic bioreactor array enables the culture of 16 independent tissues in one experimental run and thereby an optimization study to be performed....

  13. In vitro culture and characterization of enteric neural precursor cells from human gut biopsy specimens using polymer scaffold.

    Science.gov (United States)

    Krishnamohan, Janardhanam; Senthilnathan, Venugopal S; Vaikundaraman, Tirunelveli Muthiah; Srinivasan, Thangavelu; Balamurugan, Madasamy; Iwasaki, Masaru; Preethy, Senthilkumar; Abraham, Samuel Jk

    2013-08-01

    In vitro expansion and characterization of neural precursor cells from human gut biopsy specimens with or without Hirschsprung's disease using a novel thermoreversible gelation polymer (TGP) is reported aiming at a possible future treatment. Gut biopsy samples were obtained from five patients undergoing gut resection for Hirschsprung's disease (n = 1) or gastrointestinal disorders (n = 4). Cells isolated from the smooth muscle layer and the myenteric plexus were cultured in two groups for 18 to 28 days; Group I: conventional culture as earlier reported and Group II: using TGP scaffold. Neurosphere like bodies (NLBs) were observed in the cultures between 8th to 12th day and H & E staining was positive for neural cells in both groups including aganglionic gut portion from the Hirschsprung's disease patient. Immunohistochemistry using S-100 and neuron specific enolase (NSE) was positive in both groups but the TGP group (Group II) showed more number of cells with intense cytoplasmic granular positivity for both NSE and S-100 compared to Group I. TGP supports the in vitro expansion of human gut derived neuronal cells with seemingly better quality NLBs. Animal Studies can be tried to validate their functional outcome by transplanting the NLBs with TGP scaffolds to see whether this can enhance the outcome of cell based therapies for Hirschsprung's disease.

  14. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Brant, Antonio J.C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT). - Highlights: • Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. • Landfills will not be enough for an estimated accumulation of 25 million tons per year of plastics. • Incorporation of natural/synthetic polymers in PP/HMSPP to reduce

  15. First Human Implantation of a Bioresorbable Polymer Scaffold for Acute Traumatic Spinal Cord Injury: A Clinical Pilot Study for Safety and Feasibility.

    Science.gov (United States)

    Theodore, Nicholas; Hlubek, Randall; Danielson, Jill; Neff, Kristin; Vaickus, Lou; Ulich, Thomas R; Ropper, Alexander E

    2016-08-01

    A porous bioresorbable polymer scaffold has previously been tested in preclinical animal models of spinal cord contusion injury to promote appositional healing, spare white matter, decrease posttraumatic cysts, and normalize intraparenchymal tissue pressure. This is the first report of its human implantation in a spinal cord injury patient during a pilot study testing the safety and feasibility of this technique (ClinicalTrials.gov Identifier: NCT02138110). A 25-year-old man had a T11-12 fracture dislocation sustained in a motocross accident that resulted in a T11 American Spinal Injury Association Impairment Scale (AIS) grade A traumatic spinal cord injury. He was treated with acute surgical decompression and spinal fixation with fusion, and enrolled in the spinal scaffold study. A 2 × 10 mm bioresorbable scaffold was placed in the spinal cord parenchyma at T12. The scaffold was implanted directly into the traumatic cavity within the spinal cord through a dorsal root entry zone myelotomy at the caudal extent of the contused area. By 3 months, his neurological examination improved to an L1 AIS grade C incomplete injury. At 6-month postoperative follow-up, there were no procedural complications or apparent safety issues related to the scaffold implantation. Although longer-term follow-up and investigation are required, this case demonstrates that a polymer scaffold can be safely implanted into an acutely contused spinal cord. This is the first human surgical implantation, and future outcomes of other patients in this clinical trial will better elucidate the safety and possible efficacy profile of the scaffold. AIS, American Spinal Injury Association Impairment ScaleSCI, spinal cord injurytSCI, traumatic spinal cord injury.

  16. In Vitro Biological Evaluation of Electrospun Polycaprolactone/Gelatine Nanofibrous Scaffold for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Mim Mim Lim

    2015-01-01

    Full Text Available The fabrication of biocompatible and biodegradable scaffolds which mimic the native extracellular matrix of tissues to promote cell adhesion and growth is emphasized recently. Many polymers have been utilized in scaffold fabrication, but there is still a need to fabricate hydrophilic nanosized fibrous scaffolds with an appropriate degradation rate for skin tissue engineering applications. In this study, nanofibrous scaffolds of a biodegradable synthetic polymer, polycaprolactone (PCL, and blends of PCL with a natural polymer, gelatine (Ge, in three different compositions: 85 : 15, 70 : 30, and 50 : 50 were fabricated via an electrospinning technique. The nanofibrous scaffold prepared from 14% w/v PCL/Ge (70 : 30 exhibited more balanced properties of homogeneous nanofibres with an average fibre diameter of 155.60 ± 41.13 nm, 83% porosity, and surface roughness of 176.27 ± 2.53 nm. In vitro cell culture study using human skin fibroblasts (HSF demonstrated improved cell attachment with a flattened morphology on the PCL/Ge (70 : 30 nanofibrous scaffold and accelerated proliferation on day 3 compared to the PCL nanofibrous scaffold. These results show that the PCL/Ge (70 : 30 nanofibrous scaffold was more favourable and has the potential to be a promising scaffold for skin tissue engineering applications.

  17. A simple method for deriving functional MSCs and applied for osteogenesis in 3D scaffolds

    DEFF Research Database (Denmark)

    Zou, Lijin; Luo, Yonglun; Chen, Muwan

    2013-01-01

    polycaprolactone (PCL) scaffolds or PCL scaffolds functionalized with natural polymer hyaluronan and ceramic TCP (PHT) both in vitro and in vivo. Our results showed that these iPS-MSCs are functionally compatible with the two 3D scaffolds tested and formed typically calcified structure in the scaffolds. Overall......We describe a simple method for bone engineering using biodegradable scaffolds with mesenchymal stem cells derived from human induced-pluripotent stem cells (hiPS-MSCs). The hiPS-MSCs expressed mesenchymal markers (CD90, CD73, and CD105), possessed multipotency characterized by tri......-lineages differentiation: osteogenic, adipogenic, and chondrogenic, and lost pluripotency - as seen with the loss of markers OCT3/4 and TRA-1-81 - and tumorigenicity. However, these iPS-MSCs are still positive for marker NANOG. We further explored the osteogenic potential of the hiPS-MSCs in synthetic polymer...

  18. Electrospun Fibrous Scaffolds for Small-Diameter Blood Vessels: A Review

    Directory of Open Access Journals (Sweden)

    Nasser K. Awad

    2018-03-01

    Full Text Available Small-diameter blood vessels (SDBVs are still a challenging task to prepare due to the occurrence of thrombosis formation, intimal hyperplasia, and aneurysmal dilation. Electrospinning technique, as a promising tissue engineering approach, can fabricate polymer fibrous scaffolds that satisfy requirements on the construction of extracellular matrix (ECM of native blood vessel and promote the adhesion, proliferation, and growth of cells. In this review, we summarize the polymers that are deployed for the fabrication of SDBVs and classify them into three categories, synthetic polymers, natural polymers, and hybrid polymers. Furthermore, the biomechanical properties and the biological activities of the electrospun SBVs including anti-thrombogenic ability and cell response are discussed. Polymer blends seem to be a strategic way to fabricate SDBVs because it combines both suitable biomechanical properties coming from synthetic polymers and favorable sites to cell attachment coming from natural polymers.

  19. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds

    Science.gov (United States)

    Goldstein, A. S.; Juarez, T. M.; Helmke, C. D.; Gustin, M. C.; Mikos, A. G.; McIntire, L. V. (Principal Investigator)

    2001-01-01

    Culture of seeded osteoblastic cells in three-dimensional osteoconductive scaffolds in vitro is a promising approach to produce an osteoinductive material for repair of bone defects. However, culture of cells in scaffolds sufficiently large to bridge critical-sized defects is a challenge for tissue engineers. Diffusion may not be sufficient to supply nutrients into large scaffolds and consequently cells may grow preferentially at the periphery under static culture conditions. Three alternative culturing schemes that convect media were considered: a spinner flask, a rotary vessel, and a perfusion flow system. Poly(DL-lactic-co-glycolic acid) (PLGA) foam discs (12.7 mm diameter, 6.0 mm thick, 78.8% porous) were seeded with osteoblastic marrow stromal cells and cultured in the presence of dexamethasone and L-ascorbic acid for 7 and 14 days. Cell numbers per foam were found to be similar with all culturing schemes indicating that cell growth could not be enhanced by convection, but histological analysis indicated that the rotary vessel and flow system produced a more uniform distribution of cells throughout the foams. Alkaline phosphatase (ALP) activity per cell was higher with culture in the flow system and spinner flask after 7 days, while no differences in osteocalcin (OC) activity per cell were observed among culturing methods after 14 days in culture. Based on the higher ALP activity and better cell uniformity throughout the cultured foams, the flow system appears to be the superior culturing method, although equally important is the fact that in none of the tests did any of the alternative culturing techniques underperform the static controls. Thus, this study demonstrates that culturing techniques that utilize fluid flow, and in particular the flow perfusion system, improve the properties of the seeded cells over those maintained in static culture.

  20. A porous polymer scaffold for meniscal lesion repair--a study in dogs.

    Science.gov (United States)

    Tienen, T G; Heijkants, R G J C; Buma, P; De Groot, J H; Pennings, A J; Veth, R P H

    2003-06-01

    Meniscal lesions often occur in the avascular area of the meniscus with little chance of spontaneous repair. An access channel in the meniscal tissue can function as an entrance for ingrowing repair tissue from the vascular periphery of the meniscus to the lesion in the avascular zone which again induced healing of the lesion. Implantation of a porous polymer in a full-thickness access channel induced healing. However, a better integration between meniscal tissue and the implant might be achieved with the combination of the newly developed porous polymers and a modified surgical technique. This might improve meniscal lesion healing and the repair of the access channel with neo-meniscal tissue. Longitudinal lesions were created in the avascular part of 24 canine lateral menisci and a partial-thickness access channel was formed to connect the lesion with the meniscal periphery. In 12 menisci, the access channel was left empty (control group), while in the remaining 12 menisci the polymer implant was sutured into the access channel. Repair of the longitudinal lesions was achieved with and without polymer implantation in the partial-thickness access channel. Polymer implants induced fibrous ingrowth with cartilaginous areas, which resembled neo-meniscal tissue. Implantation did not prevent articular cartilage degeneration.

  1. Electrospinning of fibrous polymer scaffolds using positive voltage or negative voltage: a comparative study

    International Nuclear Information System (INIS)

    Tong Howang; Wang Min

    2010-01-01

    Electrospinning of fibrous tissue engineering scaffolds has been traditionally conducted using positive voltages. In the current study, positive voltage (PV) electrospinning and negative voltage (NV) electrospinning were investigated for forming fibrous membranes of poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV). In both PV-electrospinning and NV-electrospinning, the fiber diameter generally increased with increasing needle inner diameter and PHBV concentration but decreased with increasing working distance. The use of a conductivity-enhancing surfactant, benzyl triethylammonium chloride (BTEAC), significantly reduced PHBV fiber diameters from the micron scale to the sub-micron scale. Interestingly, with increasing applied voltage, the fiber diameter increased for PV-electrospinning but decreased for NV-electrospinning. The PV-electrospun fibrous membranes from solutions without BTEAC (PVEfm) and with BTEAC (PVEfm-B) and NV-electrospun membranes from solutions without BTEAC (NVEfm) and with BTEAC (NVEfm-B) were characterized in terms of their structure, wettability, thermal properties and tensile properties. Both PVEfm and NVEfm exhibited similar water contact angles (∼104 0 ) but the contact angle of PVEfm-B or NVEfm-B was not measurable. The elongation at break of PVEfm-B or NVEfm-B was significantly higher than that of PVEfm or NVEfm. Using NV-electrospinning or a combination of NV- and PV-electrospinning may be very useful for developing suitable scaffolds for tissue engineering applications.

  2. [The Use of Synthetic Polymers (Superdisintegrants) in Technology Tablets Containing Ethanol Dry Extract from Asparagus officinalis].

    Science.gov (United States)

    Linka, Wojciech Andrzej; Wojtaszek, Ilona; Zgoda, Marian Mikołaj; Kołodziejczyk, Michał Krzysztof

    2015-01-01

    Dry extracts are now frequently used in medicine as an alternative to synthetic drugs. In the case of tablet technology with dry plant extracts, the proper selection of disintegrants (superdisintegrants) is particularly important. Objectives. The aim of this study was to evaluate the usefulness of the polymers constituting superdisintegrants (Vivasol®, Vivastar®, Polyplasdone XL) in uncoated tablet formulation of alcoholic extracted from Asparagus officinalis. Dry the ethanol extract of Asparagus officinalis, Vivasol®, Vivastar®, Vivapur®, Kollidon VA64, Polyplasdone XL, magnesium stearate. Direct compression. Paddle method was carried out to study pharmacopoeial parameters and pharmaceutical availability. The calculation of equivalency factors: similarity [f2] and the difference [f1]. Approximation results. Tablets brownish-green, with a smooth and uniform surface, without stains, chipping and damage. The determined average weight of the tablets compiled with the standards. The test friability and crushing strength revealed that the most mechanically strong tablets contained Vivasol, Vivastar, Polyplasdone XL. These tablets also have a longer disintegration and dissolution time compared with tablets containing only Vivasol. These differences are also confirmed by the calculated f2 and f1. The addition of a mixture of Polyplasdone XL and Vivastar to Vivasol significantly increases the mechanical strength of the tablets (crushing strength, resistance to crushing). The addition of a mixture of Polyplasdone XL and Vivastar to Vivasol paradoxically increases the disintegration time of tablets (11.1 min). Single superdisintegrant breaks up the tablet more effectively than a mixture of superdisintegrants.

  3. Synthetic

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2010-06-01

    Full Text Available Traditionally materials have been associated with a series of physical properties that can be used as inputs to production and manufacturing. Recently we witnessed an interest in materials considered not only as ‘true matter’, but also as new breeds where geometry, texture, tooling and finish are able to provoke new sensations when they are applied to a substance. These artificial materials can be described as synthetic because they are the outcome of various qualities that are not necessarily true to the original matter, but they are the combination of two or more parts, whether by design or by natural processes. The aim of this paper is to investigate the potential of architectural surfaces to produce effects through the invention of new breeds of artificial matter, using micro-scale details derived from Nature as an inspiration.

  4. Natural-Synthetic Hybrid Polymers Developed via Electrospinning: The Effect of PET in Chitosan/Starch System

    Science.gov (United States)

    Espíndola-González, Adolfo; Martínez-Hernández, Ana Laura; Fernández-Escobar, Francisco; Castaño, Victor Manuel; Brostow, Witold; Datashvili, Tea; Velasco-Santos, Carlos

    2011-01-01

    Chitosan is an amino polysaccharide found in nature, which is biodegradable, nontoxic and biocompatible. It has versatile features and can be used in a variety of applications including films, packaging, and also in medical surgery. Recently a possibility to diversify chitosan properties has emerged by combining it with synthetic materials to produce novel natural-synthetic hybrid polymers. We have studied structural and thermophysical properties of chitosan + starch + poly(ethylene terephthalate) (Ch + S + PET) fibers developed via electrospinning. Properties of these hybrids polymers are compared with extant chitosan containing hybrids synthesized by electrospinning. Molecular interactions and orientation in the fibers are analyzed by infrared and Raman spectroscopies respectively, morphology by scanning electron microscopy and thermophysical properties by thermogravimetric analysis and differential scanning calorimetry. Addition of PET to Ch + S systems results in improved thermal stability at elevated temperatures. PMID:21673930

  5. Cytocompatibility and biologic characteristics of synthetic scaffold materials of rabbit acellular vascular matrix combining with human-like collagen I.

    Science.gov (United States)

    Liu, Xuqian; Wang, Jie; Dong, Fusheng; Song, Peng; Tian, Songbo; Li, Hexiang; Hou, Yali

    2017-10-01

    Scaffold material provides a three-dimensional growing environment for seed cells in the research field of tissue engineering. In the present study, rabbit arterial blood vessel cells were chemically removed with trypsin and Triton X-100 to prepare rabbit acellular vascular matrix scaffold material. Observation by He&Masson staining revealed that no cellular components or nuclei existed in the vascular intima and media after decellularization. Human-like collagen I was combined with acellular vascular matrix by freeze-drying to prepare an acellular vascular matrix-0.25% human-like collagen I scaffold to compensate for the extracellular matrix loss during the decellularization process. We next performed a series of experiments to test the water absorbing quality, biomechanics, pressure resistance, cytotoxicity, and ultra-micro structure of the acellular vascular matrix composite material and natural rabbit artery and found that the acellular vascular matrix-0.25% human-like collagen I material behaved similarly to natural rabbit artery. In conclusion, the acellular vascular matrix-0.25% human-like collagen I composite material provides a new approach and lays the foundation for novel scaffold material research into tissue engineering of blood vessels.

  6. Bioresorbable Ca-phosphate-polymer/metal and Fe-Ag nanocomposites for macro-porous scaffolds with tunable degradation and drug release

    Science.gov (United States)

    Gotman, I.; Swain, S. K.; Sharipova, A.; Gutmanas, E. Y.

    2016-11-01

    Bioresorbable implants are increasingly gaining popularity as an attractive alternative to traditional permanent bone healing devices. The advantage of bioresorbable implantable devices is that they slowly degrade over time and disappear once their "mission" is accomplished. Thus, no foreign material is left behind that can cause adverse effects on the host, such as long term local or systemic immune response and stress-shielding related bone atrophy. Resorbable materials considered for surgical implant applications include degradable polymers, Ca phosphate ceramics (CaP) and corrodible metals. Degradable polymers, such as polycaprolactone and lactic acid are weak, lack osteoconductivity and degrade to acidic products that can cause late inflammation. Resorbable CaP ceramics (e.g., β-TCP) are attractive materials for bone regeneration bear close resemblance to the bone mineral, however they are intrinsically brittle and thus unsuitable for use in load-bearing sites. Moreover, introducing high porosity required to encourage better cellular ingrowth into bone regeneration scaffolds is detrimental to the mechanical strength of the material. In present work we review and discuss our results on development of strong bioresorbable Ca-phosphate-polymer/metal nanonocomposites and highly porous scaffolds from them. By introduction of nanoscale ductile polymer or metal phase into CaP ceramic an attempt was made to mimic structure of natural bone, where nanocrystallites of CaP ceramic are bonded by thin collagen layers. Recent results on development of high strength scaffolds from Fe-Ag nanocomposites are also reported. High energy milling of powders followed by cold sintering—high pressure consolidation at ambient temperature in combination with modified porogen leaching method was employed for processing. The developed nanocomposites and scaffolds exhibited high mechanical strength coupled with measurable ductility, gradual lost weight and strength during immersion in

  7. Formation of stable cell-cell contact without a solid/gel scaffold: Non-invasive manipulation by laser under depletion interaction with a polymer

    Science.gov (United States)

    Hashimoto, Shu; Yoshida, Aoi; Ohta, Taeko; Taniguchi, Hiroaki; Sadakane, Koichiro; Yoshikawa, Kenichi

    2016-07-01

    We report a novel method for constructing a stable three-dimensional cellular assembly in the absence of a solid or gel scaffold. A targeted cell was transferred to another cell, and the two were kept in contact for a few minutes by optical manipulation in an aqueous medium containing a hydrophilic polymer. Interestingly, this cell-cell adhesion was maintained even after elimination of the polymer. We discuss the mechanism of the formation of stable multi-cellular adhesion in terms of spontaneous rearrangement of the components embedded in the pair of facing membranes.

  8. Activity and Safety of Synthetic Lectins Based on Benzoboroxole-Functionalized Polymers for Inhibition of HIV Entry

    Science.gov (United States)

    Mahalingam, Alamelu; Geonnotti, Anthony R.; Balzarini, Jan; Kiser, Patrick F.

    2011-01-01

    Lectins derived from plant and microbial sources constitute a vital class of entry inhibitors that target the oligomannose residues on the HIV envelope gp120. Despite their potency and specificity, success of lectin-based entry inhibitors may be impeded by issues in regards to economical production, formulation and potential mitogenicity. Therefore, there exists a gap in the HIV therapeutics pipeline that underscores the need for mass producible, synthetic, broad-spectrum, and biocomptabile inhibitors of HIV entry. Here, we present the development of a polymeric synthetic lectin, based on benzoboroxole (BzB), which exhibits weak affinity (~25 M−1) for non-reducing sugars, similar to those found on the HIV envelope. High molecular weight BzB-functionalized polymers demonstrated antiviral activity that increased with an increase in ligand density and molecular weight of the polymer construct; revealing that polyvalency improves activity. Polymers showed significant increase in activity from 25 to 75 mol% BzB functionalization with EC50 of 15 μM and 15 nM, respectively. A further increase in mole functionalization to 90% resulted in an increase of the EC50 (59 ± 5 nM), likely due to the elongated rigid structure of the polymer chain compelled by electrostatic repulsion between the boronic acid groups. An increase in molecular weight of the polymer at 50 mol% BzB functionalization showed a gradual but significant increase in antiviral activity, with the highest activity seen with the 382 kDa polymer (EC50 of 1.1 ± 0.5 nM in CEM cells and 11 ± 3 nM in TZM-bl cells). Supplementing the polymer backbone with 10 mol% sulfonic acid not only increased the aqueous solubility of the polymers by at least 50-fold, but also demonstrated a synergistic increase in anti-HIV activity (4.0 ± 1.5 nM in TZM-bl cells), possibly due to electrostatic interactions between the negatively charged polymer backbone and the positively charged V3-loop in the gp120. The benzoboroxole

  9. ROMP- and RAFT-Based Guanidinium-Containing Polymers as Scaffolds for Protein Mimic Synthesis.

    Science.gov (United States)

    Sarapas, Joel M; Backlund, Coralie M; deRonde, Brittany M; Minter, Lisa M; Tew, Gregory N

    2017-05-17

    Cell-penetrating peptides are an important class of molecules with promising applications in bioactive cargo delivery. A diverse series of guanidinium-containing polymeric cell-penetrating peptide mimics (CPPMs) with varying backbone chemistries was synthesized and assessed for delivery of both GFP and fluorescently tagged siRNA. Specifically, we examined CPPMs based on norbornene, methacrylate, and styrene backbones to determine how backbone structure impacted internalization of these two cargoes. Either charge content or degree of polymerization was held constant at 20, with diguanidinium norbornene molecules being polymerized to both 10 and 20 repeat units. Generally, homopolymer CPPMs delivered low amounts of siRNA into Jurkat T cells, with no apparent backbone dependence; however, by adding a short hydrophobic methyl methacrylate block to the guanidinium-rich methacrylate polymer, siRNA delivery to nearly the entire cell population was achieved. Protein internalization yielded similar results for most of the CPPMs, though the block polymer was unable to deliver proteins. In contrast, the styrene-based CPPM yielded the highest internalization for GFP (≈40 % of cells affected), showing that indeed backbone chemistry impacts protein delivery, specifically through the incorporation of an aromatic group. These results demonstrate that an understanding of how polymer structure affects cargo-dependent internalization is critical to designing new, more effective CPPMs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Preparation and characterization of polymers based on PDMS and PEG-DMA as potential scaffold for cell growth.

    Science.gov (United States)

    Adiguzel, Zelal; Sagnic, Servet A; Aroguz, Ayse Z

    2017-09-01

    This work describes a soft lithographic method for the generation of patterned both biopolymer and silver with each covered on microscope glass. Because of their biocompatible nature and permeability to gases the biopolymers are convenient for cell culture studies. The microscope glass was covered by polyethylene glycol dimethyl acrylate (PEG-DMA), as biopolymer and patterned by the UV light passing through the printed photomask for the preparation of the PDMS stamps. PDMS stamps were originally fabricated in this work for pattern transfer. Ag and polymer covered on the microscope glass were patterned by using these PDMS stamps. The patterned Ag, PDMS mold and PEG-DMA biopolymer were used as scaffolds and cell growth experiments have been performed on these materials. The degree of cell viability was measured by seeding them with L929 mouse fibroblasts and the number of the cells was measured by neutral red uptake assay. An increase in the number of cells on the material surfaces was observed. The pattern and the cell growth properties were followed by optic microscope. The results obtained from the cell growth was subjected to student's t-test. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Branched poly(ethyleneimine): a versatile scaffold for patterning polymer brushes by means of remote photocatalytic lithography

    Science.gov (United States)

    Panzarasa, Guido; Dübner, Matthias; Soliveri, Guido; Edler, Matthias; Griesser, Thomas

    2017-09-01

    Patterning of functional surfaces is one of the cornerstones of nanotechnology as it allows the fabrication of sensors and lab-on-a-chip devices. Here, the patterning of self-assembled monolayers of branched poly(ethyleneimine) (bPEI) on silica was achieved by means of remote photocatalytic lithography. Moreover, when 2-bromoisobutyryl-modified bPEI was used, the resulting pattern could be amplified by grafting polymer brushes by means of surface-initiated atom transfer radical polymerization. In contrast to previous reports for the patterning of bPEI, the present approach can be conducted in minutes instead of hours, reducing the exposure time to UV radiation and enhancing the overall efficiency. Furthermore, our approach is much more user-friendly, allowing a facile fabrication of patterned initiator-modified surfaces and the use of inexpensive instrumentation such as a low-power UV source and a simple photomask. Considering the versatility of bPEI as a scaffold for the development of biosensors, patterning by means of remote photocatalytic lithography will open new opportunities in a broad field of applications.

  12. Inhibition of PrPSc formation by synthetic O-sulfated glycopyranosides and their polymers.

    Science.gov (United States)

    Yamaguchi, Satoko; Nishida, Yoshihiro; Sasaki, Kenji; Kambara, Mikie; Kim, Chan-Lan; Ishiguro, Naotaka; Nagatsuka, Takehiro; Uzawa, Hirotaka; Horiuchi, Motohiro

    2006-10-20

    Sulfated glycosaminoglycans (GAGs) and sulfated glycans inhibit formation of the abnormal isoform of prion protein (PrPSc) in prion-infected cells and prolong the incubation time of scrapie-infected animals. Sulfation of GAGs is not tightly regulated and possible sites of sulfation are randomly modified, which complicates elucidation of the fundamental structures of GAGs that mediate the inhibition of PrPSc formation. To address the structure-activity relationship of GAGs in the inhibition of PrPSc formation, we screened the ability of various regioselectively O-sulfated glycopyranosides to inhibit PrPSc formation in prion-infected cells. Among the glycopyranosides and their polymers examined, monomeric 4-sulfo-N-acetyl-glucosamine (4SGN), and two glycopolymers, poly-4SGN and poly-6-sulfo-N-acetyl-glucosamine (poly-6SGN), inhibited PrPSc formation with 50% effective doses below 20 microg/ml, and their inhibitory effect became more evident with consecutive treatments. Structural comparisons suggested that a combination of an N-acetyl group at C-2 and an O-sulfate group at either O-4 or O-6 on glucopyranoside might be involved in the inhibition of PrPSc formation. Furthermore, polymeric but not monomeric 6SGN inhibited PrPSc formation, suggesting the importance of a polyvalent configuration in its effect. These results indicate that the synthetic sulfated glycosides are useful not only for the analysis of structure-activity relationship of GAGs but also for the development of therapeutics for prion diseases.

  13. Synthesis of polymer/inorganic nanocomposite films using highly porous inorganic scaffolds.

    Science.gov (United States)

    Zhang, Huanjun; Popp, Matthias; Hartwig, Andreas; Mädler, Lutz

    2012-04-07

    Polymeric/inorganic nanocomposite films have been fabricated through a combination of flame-spray-pyrolysis (FSP) made inorganic scaffold and surface initiated polymerization of cyanoacrylate. The highly porous structure of pristine SnO(2) films allows the uptake of cyanoacrylate and the polymerization is surface initiated by the water adsorbed onto the SnO(2) surface. Scanning electron microscopy study reveals a nonlinear increase in the composite particle size and the film thickness with polymerization time. The structural change is rather homogeneous throughout the whole layer. The composite is formed mainly by an increase of the particle size and not by just filling the existing pores. High-resolution transmission electron microscopy imaging shows SnO(2) nanoparticles embedded in the polymeric matrix, constituting the nanocomposite material. Thermogravimetric analysis indicates that the porosity of the nanocomposite films decreases from 98% to 75%, resulting in a significant enhancement of the hardness of the films. DC conductivity measurements conducted in situ on the nanocomposite layer suggest a gradual increase in the layer resistance, pointing to a loss of connectivity between the SnO(2) primary particles as the polymerization proceeds. This journal is © The Royal Society of Chemistry 2012

  14. Preparation and characterization of collagen/PLA, chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds for cartilage tissue engineering.

    Science.gov (United States)

    Haaparanta, Anne-Marie; Järvinen, Elina; Cengiz, Ibrahim Fatih; Ellä, Ville; Kokkonen, Harri T; Kiviranta, Ilkka; Kellomäki, Minna

    2014-04-01

    In this study, three-dimensional (3D) porous scaffolds were developed for the repair of articular cartilage defects. Novel collagen/polylactide (PLA), chitosan/PLA, and collagen/chitosan/PLA hybrid scaffolds were fabricated by combining freeze-dried natural components and synthetic PLA mesh, where the 3D PLA mesh gives mechanical strength, and the natural polymers, collagen and/or chitosan, mimic the natural cartilage tissue environment of chondrocytes. In total, eight scaffold types were studied: four hybrid structures containing collagen and/or chitosan with PLA, and four parallel plain scaffolds with only collagen and/or chitosan. The potential of these types of scaffolds for cartilage tissue engineering applications were determined by the analysis of the microstructure, water uptake, mechanical strength, and the viability and attachment of adult bovine chondrocytes to the scaffolds. The manufacturing method used was found to be applicable for the manufacturing of hybrid scaffolds with highly porous 3D structures. All the hybrid scaffolds showed a highly porous structure with open pores throughout the scaffold. Collagen was found to bind water inside the structure in all collagen-containing scaffolds better than the chitosan-containing scaffolds, and the plain collagen scaffolds had the highest water absorption. The stiffness of the scaffold was improved by the hybrid structure compared to plain scaffolds. The cell viability and attachment was good in all scaffolds, however, the collagen hybrid scaffolds showed the best penetration of cells into the scaffold. Our results show that from the studied scaffolds the collagen/PLA hybrids are the most promising scaffolds from this group for cartilage tissue engineering.

  15. Enzymatic modification of natural and synthetic polymers using lipases and proteases

    Science.gov (United States)

    Chakraborty, Soma

    Enzymatic modification of natural/synthetic polymers [starch nanoparticles, poly (n-alkyl acrylates) and poly(vinyl formamide)] was studied. Enzymes used for catalysis were lipases and proteases. Starch nanoparticles (40nm diameter) were incorporated into AOT-coated reverse micelles. Reactions performed with the acylating agents vinyl stearate, epsilon-caprolactone and maleic anhydride in toluene in presence of Novozyme-435 at 40°C for 36h gave products with degrees of substitution of 0.8, 0.6 and 0.4 respectively. DEPT-135 NMR spectra revealed that the modification occurred regioselectively at the C-6 position of the glucose units. Infrared microspectroscopy showed that the surfactant coated starch nanoparticles diffuse into pores of Novozyme-435 beads, coming in close proximity with CALB to promote modification. The modified products retained nanoscale dimensions. Catalysis of amide bond formation between a low molar mass amine and ester side groups of poly(n-alkyl acrylates)[poly(ethyl acrylate), poly(methyl acrylate) and poly(butyl acrylate)] was also examined. The nucleophiles were mono and diamines. Among the poly(n-alkyl acrylates) and the lipases studied, poly(ethyl acrylate) was the preferred substrate and Novozyme-435 the most active lipase. Poly(ethyl acrylate) in 80% by-volume toluene was reacted with 1 equivalent per repeat unit of hexyl amine at 70°C in presence of Novozyme-435. The product contained 10.6 mol% amide groups. Attempts to increase the amidation beyond 10--11 mol% by increasing the reaction time or use of fresh enzyme were unsuccessful, showing that poly(ethylacrylate-co-10mol%hexylacrylamide) is a poor substrate for further acylation. When chiral amines ([R,S]-alpha-methyl benzylamine, [R,S]-beta-methyl phenyl amine) were used as nucleophiles, Novozyme-435 enantioselectively catalyzed amidation of poly(ethyl acrylate). Poly(vinyl formamide), P(VfAm) by acid or base-catalyzed hydrolysis leads to poly(vinylamine), P(VAm), and

  16. Polymer Vesicles as Robust Scaffolds for the Directed Assembly of Highly Crystalline Nanocrystals †

    KAUST Repository

    Wang, Mingfeng

    2009-12-15

    We report the incorporation of various inorganic nanoparticles (NPs) (PbS, LaOF, LaF3, and TiO2, each capped by oleic acid, and CdSe/ZnS core/shell QDs capped by trioctylphosphine oxide) into vesicles (d = 70-150 nm) formed by a sample of poly(styrene-b-acrylic acid) (PS4o4-b-PAA 62, where the subscripts refer to the degree of polymerization) in mixtures of tetrahydrofuran (THF), dioxane, and water. The block copolymer formed mixtures of crew-cut micelles and vesicles with some enhancement of the vesicle population when the NPs were present. The vesicle fraction could be isolated by selective sedimentation via centrifugation, followed by redispersion in water. The NPs appeared to be incorporated into the PAA layers on the internal and external walls of the vesicles (strongly favoring the former). NPs on the exterior surface of the vesicles could be removed completely by treating the samples with a solution of ethylenediaminetetraacetate (EDTA) in water. The triangular nanoplatelets of LaF3 behaved differently. Stacks of these platelets were incorporated into solid colloidal entities, similar in size to the empty vesicles that accompanied them, during the coassembly as water was added to the polymer/LaF3/THF/ dioxane mixture. © 2009 American Chemical Society.

  17. Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG Polymer Scaffolds Using Oxygen Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Rok Zaplotnik

    2016-04-01

    Full Text Available Polyurethane/urea copolymers based on poly(ethylene glycol (PURPEG were exposed to weakly ionized, highly reactive low-pressure oxygen plasma to improve their sorption kinetics. The plasma was sustained with an inductively coupled radiofrequency generator operating at various power levels in either E-mode (up to the forward power of 300 W or H-mode (above 500 W. The treatments that used H-mode caused nearly instant thermal degradation of the polymer samples. The density of the charged particles in E-mode was on the order of 1016 m−3, which prevented material destruction upon plasma treatment, but the density of neutral O-atoms in the ground state was on the order of 1021 m−3. The evolution of plasma characteristics during sample treatment in E-mode was determined by optical emission spectroscopy; surface modifications were determined by water adsorption kinetics and X-ray photoelectron spectroscopy; and etching intensity was determined by residual gas analysis. The results showed moderate surface functionalization with hydroxyl and carboxyl/ester groups, weak etching at a rate of several nm/s, rather slow activation down to a water contact angle of 30° and an ability to rapidly absorb water.

  18. [Research progress on application of carbon nanotubes in bone tissue engineering scaffold].

    Science.gov (United States)

    Yao, Mengzhu; Sheng, Xiaoxia; Lin, Jun; Gao, Jianqing

    2016-03-01

    Carbon nanotubes possess excellent mechanical and electrical properties and demonstrate broad application prospects in medical fields. Carbon nanotubes are composed of inorganic materials, natural biodegradable polymer or synthetic biodegradable polymer. The composite bone tissue engineering scaffolds are constructed by particle-hole method, lyophilization, microsphere aggregation method, electrostatic spinning or three-dimensional printing. Composite scaffolds overcome the shortcomings of single material and have good biocompatibility, osteoconduction and osteoinduction. With the study of surface chemistry, toxicology, and biocompatibility, a degradable "human-friendly" carbon nanotubes composite bone tissue scaffold will be available; and under the drive of new fabrication techniques, the clinical application of carbon nanotubes composite bone tissue engineering scaffolds will be better developed.

  19. Development of PVA/gelatin nanofibrous scaffolds for Tissue Engineering via electrospinning

    Science.gov (United States)

    Perez-Puyana, V.; Jiménez-Rosado, M.; Romero, A.; Guerrero, A.

    2018-03-01

    The electrospinning process is an emerging and relatively easy technique to prepare three-dimensional matrices with micro- and nanofibers. To achieve it, aqueous polymer solutions from synthetic or natural polymers are used. PVA was selected as polymer and gelatin because of its biocompatibility and biodegradability. A complete characterization of the polymeric solutions (density, surface tension, etc) was previously performed. Subsequently, a standard electrospinning process (15 kV, 0.4 ml h-1 and 10 cm) was carried out to obtain scaffolds. The influence of the polymer concentration and the protein addition was observed by performing FTIR analyses and studied by analyzing the water contact angle and SEM images.

  20. Potency of Fish Collagen as a Scaffold for Regenerative Medicine

    Directory of Open Access Journals (Sweden)

    Shizuka Yamada

    2014-01-01

    Full Text Available Cells, growth factors, and scaffold are the crucial factors for tissue engineering. Recently, scaffolds consisting of natural polymers, such as collagen and gelatin, bioabsorbable synthetic polymers, such as polylactic acid and polyglycolic acid, and inorganic materials, such as hydroxyapatite, as well as composite materials have been rapidly developed. In particular, collagen is the most promising material for tissue engineering due to its biocompatibility and biodegradability. Collagen contains specific cell adhesion domains, including the arginine-glycine-aspartic acid (RGD motif. After the integrin receptor on the cell surface binds to the RGD motif on the collagen molecule, cell adhesion is actively induced. This interaction contributes to the promotion of cell growth and differentiation and the regulation of various cell functions. However, it is difficult to use a pure collagen scaffold as a tissue engineering material due to its low mechanical strength. In order to make up for this disadvantage, collagen scaffolds are often modified using a cross-linker, such as gamma irradiation and carbodiimide. Taking into account the possibility of zoonosis, a variety of recent reports have been documented using fish collagen scaffolds. We herein review the potency of fish collagen scaffolds as well as associated problems to be addressed for use in regenerative medicine.

  1. Potency of Fish Collagen as a Scaffold for Regenerative Medicine

    Science.gov (United States)

    Yamamoto, Kohei; Yanagiguchi, Kajiro

    2014-01-01

    Cells, growth factors, and scaffold are the crucial factors for tissue engineering. Recently, scaffolds consisting of natural polymers, such as collagen and gelatin, bioabsorbable synthetic polymers, such as polylactic acid and polyglycolic acid, and inorganic materials, such as hydroxyapatite, as well as composite materials have been rapidly developed. In particular, collagen is the most promising material for tissue engineering due to its biocompatibility and biodegradability. Collagen contains specific cell adhesion domains, including the arginine-glycine-aspartic acid (RGD) motif. After the integrin receptor on the cell surface binds to the RGD motif on the collagen molecule, cell adhesion is actively induced. This interaction contributes to the promotion of cell growth and differentiation and the regulation of various cell functions. However, it is difficult to use a pure collagen scaffold as a tissue engineering material due to its low mechanical strength. In order to make up for this disadvantage, collagen scaffolds are often modified using a cross-linker, such as gamma irradiation and carbodiimide. Taking into account the possibility of zoonosis, a variety of recent reports have been documented using fish collagen scaffolds. We herein review the potency of fish collagen scaffolds as well as associated problems to be addressed for use in regenerative medicine. PMID:24982861

  2. Effect of surfactant species and electrophoretic medium composition on the electrophoretic behavior of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis.

    Science.gov (United States)

    Fukai, Nao; Kitagawa, Shinya; Ohtani, Hajime

    2017-07-01

    We have recently demonstrated the separation of neutral and water-insoluble linear synthetic polymers in nonaqueous capillary zone electrophoresis (NACZE) using a cationic surfactant of cetyltrimethylammonium chloride (CTAC). In this study, eight ionic surfactants were investigated for the separation of four synthetic polymers (polystyrene, polymethylmethacrylates, polybutadiene, and polycarbonate); only three surfactants (CTAC, dimethyldioctadecylammonium bromide, and sodium dodecylsulfate) caused their separation. The order of the interaction between the polymers and the surfactants depended on both the surfactant species and the composition of the electrophoretic medium. Their investigation revealed that the separation is majorly affected by the hydrophobic interactions between the polymers and the ionic surfactants. In addition, the electrophoretic behavior of polycarbonate suggested that electrostatic interaction also affects the selectivity of the polymers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A study of a three-dimensional PLGA sponge containing natural polymers co-cultured with endothelial and mesenchymal stem cells as a tissue engineering scaffold.

    Science.gov (United States)

    Shim, Jung Bo; Ankeny, Randall F; Kim, Hyeongseok; Nerem, Robert M; Khang, Gilson

    2014-08-01

    The interaction between vascular endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) in a complex hemodynamic and mechanical environment plays an important role in the control of blood vessel growth and function. Despite the importance of VSMCs, substitutes are needed for vascular therapies. A potential VSMC substitute is human adult bone marrow derived mesenchymal stem cells (hMSCs). In this study, the effect of poly(lactic-co-glycolic acid) (PLGA) scaffolds containing three natural polymers (demineralized bone particles, silk, and small intestine submucosa) on the phenotype of MSCs and SMCs cultured with or without ECs was investigated. The study objective was to create a media equivalent for a tissue engineered blood vessel using PLGA, natural polymers, and MSCs co-cultured with ECs. The PLGA containing the natural polymers silk and SIS showed increased proliferation and cell adhesion. The presence of silk and DBP promoted a MSC phenotype change into a SMC-like phenotype at the mRNA level; however these differences at the protein level were not seen. Additionally, PLGA containing SIS did not induce SMC gene or protein upregulation. Finally, the effect of ECs in combination with the natural polymers was tested. When co-cultured with ECs, the mRNA of SMC specific markers in MSCs and SMCs were increased when compared to SMCs or MSCs alone. However, MSCs, when co-cultured with ECs on PLGA containing silk, exhibited significantly increased α-SMA and calponin expression when compared to PLGA only scaffolds. These results indicate that the natural polymer silk in combination with the co-culture of endothelial cells was most effective at increasing cell viability and inducing a SMC-like phenotype at the mRNA and protein level in MSCs.

  4. Arterial healing following primary PCI using the Absorb everolimus-eluting bioresorbable vascular scaffold (Absorb BVS) versus the durable polymer everolimus-eluting metallic stent (XIENCE) in patients with acute ST-elevation myocardial infarction

    DEFF Research Database (Denmark)

    Raber, L.; Onuma, Yoshinobu; Brugaletta, Salvatore

    2016-01-01

    Aims: The Absorb bioresorbable vascular scaffold (Absorb BVS) provides similar clinical outcomes compared with a durable polymer-based everolimus-eluting metallic stent (EES) in stable coronary artery disease patients. ST-elevation myocardial infarction (STEMI) lesions have been associated...... implantation of the Absorb BVS compared with the EES. The healing response assessed by a novel NIH score in conjunction with results on angiographic efficacy parameters and device-oriented events will elucidate disease-specific applications of bioresorbable scaffolds....

  5. Enzyme-Mediated Ring-Opening Polymerization of Pentadecalactone to Obtain Biodegradable Polymer for Fabrication of Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    V. A. Korzhikov

    2013-01-01

    Full Text Available The optimization of enzyme-mediated polymerization of pentadecalactone (PDL was performed to obtain macromolecular products suitable for generation of 3D cell supports (scaffolds for bone tissue engineering. Such parameters as temperature, monomer/enzyme ratio, and monomer concentration were studied. The maximum molecular weight of synthesized polymers was about 90,000. Methods allowing the introduction of reactive double bonds into polypentadecalactone (polyPDL structure were developed. The macroporous matrices were obtained by modification of thermoinduced phase separation method.

  6. Development of Composite Scaffolds for Load-Bearing Segmental Bone Defects

    Directory of Open Access Journals (Sweden)

    Marcello Pilia

    2013-01-01

    Full Text Available The need for a suitable tissue-engineered scaffold that can be used to heal load-bearing segmental bone defects (SBDs is both immediate and increasing. During the past 30 years, various ceramic and polymer scaffolds have been investigated for this application. More recently, while composite scaffolds built using a combination of ceramics and polymeric materials are being investigated in a greater number, very few products have progressed from laboratory benchtop studies to preclinical testing in animals. This review is based on an exhaustive literature search of various composite scaffolds designed to serve as bone regenerative therapies. We analyzed the benefits and drawbacks of different composite scaffold manufacturing techniques, the properties of commonly used ceramics and polymers, and the properties of currently investigated synthetic composite grafts. To follow, a comprehensive review of in vivo models used to test composite scaffolds in SBDs is detailed to serve as a guide to design appropriate translational studies and to identify the challenges that need to be overcome in scaffold design for successful translation. This includes selecting the animal type, determining the anatomical location within the animals, choosing the correct study duration, and finally, an overview of scaffold performance assessment.

  7. Synthetic polymers blend used in the production of high activated carbon for pesticides removals from liquid phase.

    Science.gov (United States)

    Belo, Cristóvão Ramiro; Cansado, Isabel Pestana da Paixão; Mourão, Paulo Alexandre Mira

    2017-02-01

    For the activated carbon (AC) production, we used the most common industrial and consumer solid waste, namely polyethyleneterephthalate (PET), alone or blended with other synthetic polymer such polyacrylonitrile (PAN). By mixing PET, with PAN, an improvement in the yield of the AC production was found and the basic character and some textural and chemical properties were enhanced. The PET-PAN mixture was subjected to carbonisation, with a pyrolysis yield of 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. The AC revealed a high surface area (1400, 1230 and 1117 m 2  g -1 ) and pore volume (0.46, 0.56 and 0.50 cm 3  g -1 ), respectively, for PET, PAN and PET-PAN precursors. Selected ACs were successfully tested for 4-chloro-2-methylphenoxyacetic acid (MCPA) and diuron removal from the liquid phase, showing a higher adsorption capacity (1.7 and 1.2 mmol g -1 , respectively, for MCPA and diuron) and good fits with the Langmuir (PET) and Freundlich equation (PAN and PET-PAN blend). With MCPA, the controlling factor to the adsorption capacity was the porous volume and the average pore size. Concerning diuron, the adsorption was controlled essentially by the external diffusion. A remarkable result is the use of different synthetic polymers wastes, as precursors for the production of carbon materials, with high potential application on the pesticides removals from the liquid phase.

  8. Fabrication of Three Dimensional Tissue Engineering Polydimethylsiloxane ( PDMS) Microporous Scaffolds Integrated in a Bioreactor Using a 3D Printed Water Dissolvable Sacrificial Mould

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Mantis, Ioannis; Chetan, Aradhya Mallikarjunaiah

    2015-01-01

    We present a new scalable and general approach for manufacturing structured pores/channels in 3D polymer based scaffolds. The method involves 3D printing of a sacrificial polyvinyl alcohol (PVA) mould whose geometrical features are designed according to the required vascular channel network....... Polydimethylsiloxane (PDMS) polymer is cast around the PVA mould, cross-linked and then the mould is dissolved, leaving behind a structured porous PDMS scaffold. The fabrication method described here is demonstrated with silicone elastomer but various other natural and synthetic polymers are compatible...

  9. Adsorption of Synthetic Cationic Polymers on Model Phospholipid Membranes: Insight from Atomic-Scale Molecular Dynamics Simulations.

    Science.gov (United States)

    Kostritskii, Andrei Yu; Kondinskaia, Diana A; Nesterenko, Alexey M; Gurtovenko, Andrey A

    2016-10-11

    Although synthetic cationic polymers represent a promising class of effective antibacterial agents, the molecular mechanisms behind their antimicrobial activity remain poorly understood. To this end, we employ atomic-scale molecular dynamics simulations to explore adsorption of several linear cationic polymers of different chemical structure and protonation (polyallylamine (PAA), polyethylenimine (PEI), polyvinylamine (PVA), and poly-l-lysine (PLL)) on model bacterial membranes (4:1 mixture of zwitterionic phosphatidylethanolamine (PE) and anionic phosphatidylglycerol (PG) lipids). Overall, our findings show that binding of polycations to the anionic membrane surface effectively neutralizes its charge, leading to the reorientation of water molecules close to the lipid/water interface and to the partial release of counterions to the water phase. In certain cases, one has even an overcharging of the membrane, which was shown to be a cooperative effect of polymer charges and lipid counterions. Protonated amine groups of polycations are found to interact preferably with head groups of anionic lipids, giving rise to formation of hydrogen bonds and to a noticeable lateral immobilization of the lipids. While all the above findings are mostly defined by the overall charge of a polymer, we found that the polymer architecture also matters. In particular, PVA and PEI are able to accumulate anionic PG lipids on the membrane surface, leading to lipid segregation. In turn, PLL whose charge twice exceeds charges of PVA/PEI does not induce such lipid segregation due to its considerably less compact architecture and relatively long side chains. We also show that partitioning of a polycation into the lipid/water interface is an interplay between its protonation level (the overall charge) and hydrophobicity of the backbone. Therefore, a possible strategy in creating highly efficient antimicrobial polymeric agents could be in tuning these polycation's properties through proper

  10. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat.

    Science.gov (United States)

    Moore, Charles James

    2008-10-01

    Synthetic polymers, commonly known as plastics, have been entering the marine environment in quantities paralleling their level of production over the last half century. However, in the last two decades of the 20th Century, the deposition rate accelerated past the rate of production, and plastics are now one of the most common and persistent pollutants in ocean waters and beaches worldwide. Thirty years ago the prevailing attitude of the plastic industry was that "plastic litter is a very small proportion of all litter and causes no harm to the environment except as an eyesore" [Derraik, J.G.B., 2002. The pollution of the marine environment by plastic debris: a review. Mar. Pollut. Bull. 44(9), 842-852]. Between 1960 and 2000, the world production of plastic resins increased 25-fold, while recovery of the material remained below 5%. Between 1970 and 2003, plastics became the fastest growing segment of the US municipal waste stream, increasing nine-fold, and marine litter is now 60-80% plastic, reaching 90-95% in some areas. While undoubtedly still an eyesore, plastic debris today is having significant harmful effects on marine biota. Albatross, fulmars, shearwaters and petrels mistake floating plastics for food, and many individuals of these species are affected; in fact, 44% of all seabird species are known to ingest plastic. Sea turtles ingest plastic bags, fishing line and other plastics, as do 26 species of cetaceans. In all, 267 species of marine organisms worldwide are known to have been affected by plastic debris, a number that will increase as smaller organisms are assessed. The number of fish, birds, and mammals that succumb each year to derelict fishing nets and lines in which they become entangled cannot be reliably known; but estimates are in the millions. We divide marine plastic debris into two categories: macro, >5 mm and micro, plastic micro-debris by filter feeders at the base of the food web is known to occur, but has not been quantified

  11. Amorphous blue phase III polymer scaffold as a sub-millisecond switching electro-optical memory device

    Science.gov (United States)

    Gandhi, Sahil Sandesh; Kim, Min Su; Hwang, Jeoung-Yeon; Chien, Liang-Chy

    2017-02-01

    We demonstrate the application of the nanostructured scaffold of BPIII as a resuable EO device that retains the BPIII ordering and sub-millisecond EO switching characteristics, that is, "EO-memory" of the original BPIII even after removal of the cholesteric blue phase liquid crystal (LC) and subsequent refilling with different nematic LCs. We also fabricate scaffolds mimicking the isotropic phase and cubic blue phase I (BPI) to demonstrate the versatility of our material system to nano-engineer EO-memory scaffolds of various structures. We envisage that this work will promote new experimental investigations of the mysterious BPIII and the development of novel device architectures and optically functional nanomaterials.

  12. Convergent synthetic methodology for the construction of self-adjuvanting lipopeptide vaccines using a novel carbohydrate scaffold

    Directory of Open Access Journals (Sweden)

    Vincent Fagan

    2014-07-01

    Full Text Available A novel convergent synthetic strategy for the construction of multicomponent self-adjuvanting lipopeptide vaccines was developed. A tetraalkyne-functionalized glucose derivative and lipidated Fmoc-lysine were prepared by novel efficient and convenient syntheses. The carbohydrate building block was coupled to the self-adjuvanting lipidic moiety (three lipidated Fmoc-lysines on solid support. Four copies of a group A streptococcal B cell epitope (J8 were then conjugated to the glyco-lipopeptide using a copper-catalyzed cycloaddition reaction. The approach was elaborated by the preparation of a second vaccine candidate which incorporated an additional promiscuous T-helper epitope.

  13. Biodegradable Polymers

    OpenAIRE

    Vroman, Isabelle; Tighzert, Lan

    2009-01-01

    Biodegradable materials are used in packaging, agriculture, medicine and other areas. In recent years there has been an increase in interest in biodegradable polymers. Two classes of biodegradable polymers can be distinguished: synthetic or natural polymers. There are polymers produced from feedstocks derived either from petroleum resources (non renewable resources) or from biological resources (renewable resources). In general natural polymers offer fewer advantages than synthetic polymers. ...

  14. Characterization of tissue scaffolds using optics and ultrasound

    Science.gov (United States)

    Huynh, N. T.; Parker, N. G.; He, D.; Ruan, H.; Hayes-Gill, B. R.; Mather, M. L.; Crowe, J. A.; Rose, F. R. A. J.; Povey, M. J. W.; Morgan, S. P.

    2011-03-01

    Tissue scaffolds are an integral part of the tissue engineering process, assisting in the culturing of cells in three dimensions. It is important to understand both the properties of the scaffold and the growth of cells within the scaffold. This paper describes a system to characterise scaffolds using acoustic techniques alone and the development of an ultrasound modulated optical tomography system to study the growth of cells within the scaffolds. Our interest is in characterising the properties of gel-based and polymer foam-based scaffolds. Results from a purely acoustic system have been used to investigate the properties of foam scaffolds manufactured from synthetic polyesters poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) via a supercritical fluid process. As these are porous materials, they are particularly challenging acoustically as the pores scatter sound significantly. However, it is demonstrated that acoustic signals are detectable through a 6mm thick scaffold. Although acoustics alone can be used to characterize many properties of the scaffolds, useful information can also be obtained from optical techniques e.g. monitoring the growth of cells within the scaffold via optical absorption or fluorescence techniques. Light scattering is of course a significant problem for relatively thick engineered tissue (~5mm). The acoustic approach has been extended to include laser illumination and detection of the ultrasound modulated optical pulse. Images of optically-absorbing materials embedded in gel-based tissue phantoms will be presented demonstrating that a lateral resolution of 250μm and an axial resolution of ~90μm can be achieved in scattering samples.

  15. A Tailor-Made Synthetic Polymer for Cell Encapsulation: Design Rationale, Synthesis, Chemical-Physics and Biological Characterizations.

    Science.gov (United States)

    Gerges, Irini; Tamplenizza, Margherita; Rossi, Eleonora; Tocchio, Alessandro; Martello, Federico; Recordati, Camilla; Kumar, Deepak; Forsyth, Nicholas R; Liu, Yang; Lenardi, Cristina

    2016-06-01

    This study presents a custom-made in situ gelling polymeric precursor for cell encapsulation. Composed of poly((2-hydroxyethyl)methacrylate-co-(3-aminopropyl)methacrylamide) (P(HEMA-co-APM) mother backbone and RGD-mimicking poly(amidoamine) (PAA) moiteis, the comb-like structured polymeric precursor is tailored to gather the advantages of the two families of synthetic polymers, i.e., the good mechanical integrity of PHEMA-based polymers and the biocompatibility and biodegradability of PAAs. The role of P(HEMA-co-APM) in the regulation of the chemico-physical properties of P(HEMA-co-APM)/PAA hydrogels is thoroughly investigated. On the basis of obtained results, namely the capability of maintaining vital NIH3T3 cell line in vitro for 2 d in a 3D cell culture, the in vivo biocompatibility in murine model for 16 d, and the ability of finely tuning mechanical properties and degradation kinetics, it can be assessed that P(HEMA-co-APM)/PAAs offer a cost-effective valid alternative to the so far studied natural polymer-based systems for cell encapsulation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Role of various natural, synthetic and semi-synthetic polymers on drug release kinetics of losartan potassium oral controlled release tablets.

    Science.gov (United States)

    Jayasree, J; Sivaneswari, S; Hemalatha, G; Preethi, N; Mounika, B; Murthy, S Vasudeva

    2014-10-01

    The objective of the present work was to formulate and to characterize controlled release matrix tablets of losartan potassium in order to improve bioavailability and to minimize the frequency of administration and increase the patient compliance. Losartan potassium controlled release matrix tablets were prepared by direct compression technique by the use of different natural, synthetic and semisynthetic polymers such as gum copal, gum acacia, hydroxypropyl methyl cellulose K100 (HPMC K100), eudragit RL 100 and carboxy methyl ethyl cellulose (CMEC) individually and also in combination. Studies were carried out to study the influence of type of polymer on drug release rate. All the formulations were subjected to physiochemical characterization such as weight variation, hardness, thickness, friability, drug content, and swelling index. In vitro dissolution studies were carried out simulated gastric fluid (pH 1.2) for first 2 h and followed by simulated intestinal fluid (pH 6.8) up to 24 h, and obtained dissolution data were fitted to in vitro release kinetic equations in order to know the order of kinetics and mechanism of drug release. Results of physiochemical characterization of losartan potassium matrix tablets were within acceptable limits. Formulation containing HPMC K100 and CMEC achieved the desired drug release profile up to 24 h followed zero order kinetics, release pattern dominated by Korsmeyer - Peppas model and mechanism of drug release by nonfickian diffusion. The good correlation obtained from Hixson-Crowell model indicates that changes in surface area of the tablet also influences the drug release. Based on the results, losartan potassium controlled release matrix tablets prepared by employing HPMC K100 and CMEC can attain the desired drug release up to 24 h, which results in maintaining steady state concentration and improving bioavailability.

  17. Assessment of Some Synthetic Polymers for the Removal of Pollutants from Waste Solutions

    International Nuclear Information System (INIS)

    Ayoub, R.; El-Naggar, H.A.; Ezz EL-Din, M.R.; Moussa, A.R.

    1999-01-01

    The sorption capacity of 134 Cs, 60 Co, 152+154 Eu and Cu (II) by three prepared has been studied using batch and column techniques. The three polymers are polyacrylic acid (PAA), polyacrylamide-acrylic acid (PAM-AA) and polyacrylamide-N-vinyl-2-pyrraldone (PAM-NVP). These polymers were prepared by gamma radiation initiated polymerization of their corresponding monomer solutions. The appropriate value for V/m ratio (volume of solution to mass of polymer) that can result in reasonably high distribution coefficient, Kd, was determined. The variation of the amount sorbed of the isotope per gram polymer (X/m) with concentration of the relevant element was found to follow a Frendlich type isotherm. The distribution coefficient, Kd, of the studied element was found to be affected by the ph of the solution. The desorption of the investigated metal ions is also studied at different ph. For column studies, the percent removed of the radioisotopes 134 Cs, 60 Co, ( 152+154 )Eu in addition to some heavy metals ions such as Pb, Cd, Zn and Cu(II) was determined. More than 95% of these elements were removed when 3 beds column of PAA or PAM-AA was used. From the data obtained we can conclude that the polymer PAA or PAM-AA can considered as an efficient sorbent for metal cations from their aqueous solution

  18. Four-year polymer biocompatibility and vascular healing profile of a novel ultrahigh molecular weight amorphous PLLA bioresorbable vascular scaffold: an OCT study in healthy porcine coronary arteries.

    Science.gov (United States)

    Vahl, Torsten P; Gasior, Pawel; Gongora, Carlos A; Ramzipoor, Kamal; Lee, Chang; Cheng, Yanping; McGregor, Jenn; Shibuya, Masahiko; Estrada, Edward A; Conditt, Gerard B; Kaluza, Greg L; Granada, Juan F

    2016-12-20

    The vascular healing profile of polymers used in bioresorbable vascular scaffolds (BRS) has not been fully characterised in the absence of antiproliferative drugs. In this study, we aimed to compare the polymer biocompatibility profile and vascular healing response of a novel ultrahigh molecular weight amorphous PLLA BRS (FORTITUDE®; Amaranth Medical, Mountain View, CA, USA) against bare metal stent (BMS) controls in porcine coronary arteries. Following device implantation, optical coherence tomography (OCT) evaluation was performed at 0 and 28 days, and at one, two, three and four years. A second group of animals underwent histomorphometric evaluation at 28 and 90 days. At four years, both lumen (BRS 13.19±1.50 mm2 vs. BMS 7.69±2.41 mm2) and scaffold areas (BRS 15.62±1.95 mm2 vs. BMS 8.65±2.37 mm2) were significantly greater for BRS than BMS controls. The degree of neointimal proliferation was comparable between groups. Histology up to 90 days showed comparable healing and inflammation profiles for both devices. At four years, the novel PLLA BRS elicited a vascular healing response comparable to BMS in healthy pigs. Expansive vascular remodelling was evident only in the BRS group, a biological phenomenon that appears to be independent of the presence of antiproliferative drugs.

  19. Mechanical properties and cell-culture characteristics of a polycaprolactone kagome-structure scaffold fabricated by a precision extruding deposition system.

    Science.gov (United States)

    Lee, Se-Hwan; Cho, Yong Sang; Hong, Myoung Wha; Lee, Bu-Kyu; Park, Yongdoo; Park, Sang-Hyug; Kim, Young Yul; Cho, Young-Sam

    2017-09-13

    To enhance the mechanical properties of three-dimensional (3D) scaffolds used for bone regeneration in tissue engineering, many researchers have studied their structure and chemistry. In the structural engineering field, the kagome structure has been known to have an excellent relative strength. In this study, to enhance the mechanical properties of a synthetic polymer scaffold used for tissue engineering, we applied the 3D kagome structure to a porous scaffold for bone regeneration. Prior to fabricating the biocompatible-polymer scaffold, the ideal kagome structure, which was manufactured by a 3D printer of the digital light processing type, was compared with a grid-structure, which was used as the control group, using a compressive experiment. A polycaprolactone (PCL) kagome-structure scaffold was successfully fabricated by additive manufacturing using a 3D printer with a precision extruding deposition head. To assess the physical characteristics of the fabricated PCL-kagome-structure scaffold, we analyzed its porosity, pore size, morphological structure, surface roughness, compressive stiffness, and mechanical bending properties. The results showed that, the mechanical properties of proposed kagome-structure scaffold were superior to those of a grid-structure scaffold. Moreover, Sarcoma osteogenic (Saos-2) cells were used to evaluate the characteristics of in vitro cell proliferation. We carried out cell counting kit-8 (CCK-8) and DNA contents assays. Consequently, the cell proliferation of the kagome-structure scaffold was increased; this could be because the surface roughness of the kagome-structure scaffold enhances initial cell attachment.

  20. Research on the structure in solution of optically active synthetic polymers (propylene polysulphide, propylene polyoxide, tertio-butyl polysulphide)

    International Nuclear Information System (INIS)

    Sarrazin, Brigitte

    1971-03-01

    It was proposed to study the structure of sulphur-containing synthetic polymers, stereo-regular, optically active in solution and able to adopt a spiral conformation, with special reference to propylene polysulphide. Two methods were used, the first mathematical (conformational energy calculations) and the second physico-chemical, essentially spectroscopic. By conformational analysis it is possible to choose the most probable structures liable to be adopted by a given polymer in solution while the spectro-polarimetric study should, in principle, invalidate or confirm certain of these hypotheses. The conformational energy calculations showed that in fact there is no energy conformation low enough to be stable in solution. Strictly speaking however we can refer to a region of stability in which steric hindrance is low and many energy minima exist. These minima are indistinguishable both by their energy values and by their spatial localizations and are all enclosed in the region bounded by the barriers due to steric hindrance. This uncertainty does not arise from approximations made in the calculations, but from the multitude of stereochemical structure possible. Investigations into the variation of the optical rotary dispersion and the circular dichroism as a function of temperature indicated the existence of three or more equilibrium states in the dioxane. The spectra appear to be the summation of the optical activities of the numerous simultaneously possible conformations. It appears that polymers, such as propylene polysulphide or propylene polyoxide do not have stable structures in solution. These are molecules of great flexibility possessing a large number of degrees of freedom. These properties distinguish them from the natural polymers, carrying precise information, such as DNA which must consequently have stable conformations. (author) [fr

  1. Magnetic polymer beads: Recent trends and developments in synthetic design and applications

    KAUST Repository

    Philippova, Olga

    2011-04-01

    The paper describes the synthesis, properties and applications of magnetic polymer beads. State-of-the-art, future challenges, and promising trends in this field are analyzed. New applications in oil recovery are described. © 2010 Elsevier Ltd. All rights reserved.

  2. Soft X-ray spectromicroscopy of biological and synthetic polymer systems

    International Nuclear Information System (INIS)

    Hitchcock, A.; Morin, C.; Araki, T.; Zhang, X.; Dynes, J.; Stover, H.; Brash, J.

    2004-01-01

    Full text: Scanning transmission X-ray microscopy (STXM) and X-ray photoemission electron microscopy (X-PEEM) are synchrotron based, soft X-ray spectromicroscopy techniques which provide chemical speciation at 50 nm spatial resolution based on near edge X-ray absorption spectral (NEXAFS) contrast. The instrumentation and techniques of soft X-ray spectro- microscopy will be described and illustrated with applications to wet biofilms, protein interactions with patterned polymer surfaces, and polymer microstructure optimization. STXM can be applied to samples in air, He, vacuum, or a fully hydrated environment. With many collaborators, my group is using STXM to study fundamental and applied aspects of polymer microstructure, to map metal ions and anti-microbial agents in wet biofilms, and to identify sites of selective adsorption of proteins on phase separated polymer thin films in the presence of an overlayer of protein solution. X-PEEM has greater surface sensitivity than STXM but requires a flat, conductive, and vacuum-compatible sample. Comparison of X-PEEM and STXM for the same system - fibrinogen adsorption on a PS:PMMA blend, will be used to illustrate advantages and limitations of each technique. Measurements at 5.3.2 STXM and 7.3.1 PEEM at the Advanced Light Source, funded by DoE under contract DE-AC03- 76SF00098. Research supported by NSERC (Canada), AFMnet (Advanced Food and Biomaterials Network) and the Canada Research Chair program

  3. Bioactivity, mechanical properties and drug delivery ability of bioactive glass-ceramic scaffolds coated with a natural-derived polymer.

    Science.gov (United States)

    Araújo, M; Viveiros, R; Philippart, A; Miola, M; Doumett, S; Baldi, G; Perez, J; Boccaccini, A R; Aguiar-Ricardo, A; Verné, E

    2017-08-01

    In this work, hybrid melanin-coated bioactive glass-ceramic multifunctional scaffolds were developed and characterized in terms of mechanical strength, in vitro bioactivity in simulated body fluid (SBF) and ability to load ibuprofen. The coated scaffolds exhibited an accelerated bioactivity in comparison with the uncoated ones, being able of developing hydroxyapatite-like crystals after 7days soaking in simulated body fluid (SBF). Besides its positive influence on the scaffolds bioactivity, the melanin coating was able to enhance their mechanical properties, increasing the initial compressive strength by a factor of >2.5. Furthermore, ibuprofen was successfully loaded on this coating, allowing a controlled drug release of the anti-inflammatory agent. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Silver nanoparticles influence on the blood activation process and their release to blood plasma from synthetic polymer scaffold

    Science.gov (United States)

    Major, R.; Lackner, J. M.; Sanak, M.; Major, B.

    2016-03-01

    In the present work, blood and blood plasma interaction to silver stabilised polyelectrolytes was investigated in vitro. The designed materials are dedicated for regeneration of the cardiovascular system. Silver nanoparticles were introduced into the polyelectrolyte structure in order to reduce the risk of bacterial biofilm formation. The introduction of Ag nanoparticles occurred by deposition at high vacuum by magnetron sputtering. The analysis of blood-materials interactions were performed by using commercially available tester, Impact-R (Diamed). The assessment of silver ion nanoparticles release into the plasma consisted in determining the Prothrombin Time (PT) and Activated Partial Thromboplastin Time (APTT). Unmodified surface of polyelectrolytes is a strong activator for blood elements. The introduction of silver nanoparticles resulted in a significant reduction in the probability of clotting. The extrinsic pathway of coagulation determined on the basis of the PT and the intrinsic and common pathways of coagulation measured by the APTT did not indicate the danger out of range. Microstructure was studied using TEM on thin foils prepared from the cross-section of samples subjected to biomedical treatments. The observations revealed hetero- interface between two different crystalline solids.

  5. [Biodegradable synthetic polymers for the design of implantable medical devices: the ligamentoplasty case].

    Science.gov (United States)

    Garric, Xavier; Nottelet, Benjamin; Pinese, Coline; Leroy, Adrien; Coudane, Jean

    2017-01-01

    The sector of implantable medical devices is a growing sector of health products especially dynamic in the field of research. To improve the management of patients and to meet clinical requirements, researchers are developing new types of medical devices. They use different families of biomaterials presenting various chemical and physical characteristics in order for providing clinicians with health products optimized for biomedical applications. In this article, we aim to show how, starting from a family of biomaterials (degradable polymers), it is possible to design an implantable medical device for the therapeutic management of the failure of anterior cruciate ligament. The main steps leading to the design of a total ligament reinforcement are detailed. They range from the synthesis and characterization of degradable polymer to the shaping of the knitted implant, through the assessment of the study of the impact of sterilization on mechanical properties and checking cytocompatibility. © 2017 médecine/sciences – Inserm.

  6. Synthetic investigation of glycine catalyzed triarylimidazole based organophosphorous heterocyclic functionalized vinyl polymer - A green approach.

    Science.gov (United States)

    Elumalai, S; Somasundaran, D; Guhanathan, S

    2015-11-01

    In the present investigation, an efficient and environmentally adopted synthesis of triaryl substituted imidazole in one-pot was reported. The multicomponent reaction between various aldehydes, benzil, benzoin, ammonium acetate and glycine under solvent free condition has been explained. Instead of using toxic reagents for the synthesis of heterocyclic compounds, Glycine has been selected as a green catalyst due to simple work-up procedure, shorter reaction time and high yield. The synthesized imidazole derivatives on further treatment with phosphorous oxychloride resulted in an organophosphorous containing N-heterocyclic compound (N-P) thus by altering acidic hydrogen of imidazole. Further, N-P was reacted with polyvinyl alcohol resulted into organophosphorous N-heterocyclic vinyl polymers. The synthesized vinyl polymers were characterized using, FTIR, NMR and Mass spectral studies. Results of the spectral studies were well supported the formation of the compounds. Thermal stability have also been studied using TGA. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Studies in Finishing Effects of Clay Mineral in Polymers and Synthetic Fibers

    Directory of Open Access Journals (Sweden)

    Faheem Uddin

    2013-01-01

    Full Text Available The use of clay mineral in modifying the properties of polymeric material is improved in application. The current interest in modifying the polymeric materials, particularly polyethylene, polypropylene, polystyrene, and nylon using clay mineral for improved flame retardancy, thermal stability, peak heat release rate, fracture, and strength properties generated significant research literature. This paper aims to review some of the important recent modification achieved in the performance of polymeric materials using organoclay mineral. Degradation of clay mineral-polymer (nm composite is discussed with appropriate known examples. Clay mineral (nm loading of 5 wt.% to 7 wt.% that was significantly smaller than the percent loading of conventional fillers in polymeric materials introduced significant improvement in terms of thermal and physical stability. An attempt is made to emphasize flammability and thermal stability and to indicate the areas that are relatively little explored in modification of fiber-forming polymers to enhance further research interest.

  8. Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds.

    Science.gov (United States)

    Kutikov, Artem B; Skelly, Jordan D; Ayers, David C; Song, Jie

    2015-03-04

    Effective repair of critical-size long bone defects presents a significant clinical challenge. Electrospun scaffolds can be exploited to deliver protein therapeutics and progenitor cells, but their standalone application for long bone repair has not been explored. We have previously shown that electrospun composites of amphiphilic poly(d,l-lactic acid)-co-poly(ethylene glycol)-co-poly(d,l-lactic acid) (PELA) and hydroxyapatite (HA) guide the osteogenic differentiation of bone marrow stromal cells (MSCs), making these scaffolds uniquely suited for evaluating cell-based bone regeneration approaches. Here we examine whether the in vitro bioactivity of these electrospun scaffolds can be exploited for long bone defect repair, either through the participation of exogenous MSCs or through the activation of endogenous cells by a low dose of recombinant human bone morphogenetic protein-2 (rhBMP-2). In critical-size rat femoral segmental defects, spiral-wrapped electrospun HA-PELA with preseeded MSCs resulted in laminated endochondral ossification templated by the scaffold across the longitudinal span of the defect. Using GFP labeling, we confirmed that the exogenous MSCs adhered to HA-PELA survived at least 7 days postimplantation, suggesting direct participation of these exogenous cells in templated bone formation. When loaded with 500 ng of rhBMP-2, HA-PELA spirals led to more robust but less clearly templated bone formation than MSC-bearing scaffolds. Both treatment groups resulted in new bone bridging over the majority of the defect by 12 weeks. This study is the first demonstration of a standalone bioactive electrospun scaffold for templated bone formation in critical-size long bone defects.

  9. iBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Polymers Decorated with Functional Moieties

    Czech Academy of Sciences Publication Activity Database

    Šácha, Pavel; Knedlík, Tomáš; Schimer, Jiří; Tykvart, Jan; Parolek, Jan; Navrátil, Václav; Dvořáková, Petra; Sedlák, František; Ulbrich, Karel; Strohalm, Jiří; Majer, Pavel; Šubr, Vladimír; Konvalinka, Jan

    2016-01-01

    Roč. 55, č. 7 (2016), s. 2356-2360 ISSN 1433-7851 R&D Projects: GA ČR GBP208/12/G016; GA MŠk LO1302 Institutional support: RVO:61388963 ; RVO:61389013 Keywords : antibody mimetics * HPMA * molecular recognition * polymer conjugates * protein targeting Subject RIV: CE - Biochemistry; CD - Macromolecular Chemistry (UMCH-V) Impact factor: 11.994, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/anie.201508642/full

  10. The synthesis and characterisation of mucoadhesive polymeric systems using synthetic and natural polymers

    OpenAIRE

    Sarah, Duggan

    2015-01-01

    Mucoadhesion is the binding of a material to a mucosal surface. The mucosal surface has a rate of absorption of up to four times that of the skin and, therefore, has great potential as a route of drug administration. Mucoadhesive polymeric drug delivery devices have been designed to allow for the slow and controlled release of a drug to a specific site, with fewer side effects and greater bioavailability in comparison to other methods of administration. In this project, mucoadhesive polyme...

  11. S-Layer Based Bio-Imprinting - Synthetic S-Layer Polymers

    Science.gov (United States)

    2015-07-09

    Crystal  Microbalance  ( QCM )  studies...higher   compared  to  that  of  the  polymer.   Quartz  crystal  microbalance  ( QCM )  and  Surface  Plasmon  Resonance...as   determined   by   Quartz   Crystal   Microbalance   ( QCM )   measurements.   In   the   following,   one   electrode

  12. Development of partially biodegradable foams from PP/HMSPP blends with natural and synthetic polymers

    International Nuclear Information System (INIS)

    Cardoso, Elizabeth Carvalho Leite

    2014-01-01

    Polymers are used in various application and in different industrial areas providing enormous quantities of wastes in environment. Among diverse components of residues in landfills are polymeric materials, including Polypropylene, which contribute with 20 to 30% of total volume of solid residues. As polymeric materials are immune to microbial degradation, they remain in soil and in landfills as a semi-permanent residue. Environmental concerning in litter reduction is being directed to renewable polymers development for manufacturing of polymeric foams. Foamed polymers are considered future materials, with a wide range of applications; high density structural foams are specially used in civil construction, in replacement of metal, woods and concrete with a final purpose of reducing materials costs. At present development, it was possible the incorporation of PP/HMSPP polymeric matrix blends with sugarcane bagasse, PHB and PLA, in structural foams production. Thermal degradation at 100, 120 and 160 deg C temperatures was not enough to induce biodegradability. Gamma irradiation degradation, at 50, 100, 200 and 500 kGy showed effective for biodegradability induction. Irradiated bagasse blends suffered surface erosion, in favor of water uptake and consequently, a higher biodegradation in bulk structure. (author)

  13. Preparation, Characterization and Efficacy Evaluation of Synthetic Biocompatible Polymers Linking Natural Antioxidants

    Directory of Open Access Journals (Sweden)

    Nevio Picci

    2012-10-01

    Full Text Available The purpose of this work was the synthesis, characterization and efficacy evaluation of new biocompatible antioxidant polymers linking trans-ferulic acid or a-lipoic acid. In particular, ferulic or lipoic acid were introduced in the preformed polymeric backbone. The new antioxidant biopolymers were characterized by Fourier transform infrared spectroscopy and gel permeation chromatography. The degree of functionalization (moles of antioxidant per gram of polymer was determined by the Gaur-Gupta method for free amino group determination and by the Folin method for the phenolic groups. Their ability to inhibit lipid peroxidation were estimated in rat liver microsomal membranes induced in vitro by tert-BOOH (tert-butyl hydroperoxide, as a source of free radicals. The DPPH (1,1-diphenyl-2-picrylhydrazyl radical-scavenging effect was also evaluated. The obtained systems, with different solubility, showed strong antioxidant and antiradical activities, suggesting potential use as packaging materials for foods, cosmetics, pharmaceuticals and personal care products. Moreover, the cytotoxicity of the synthesized polymers was also evaluated on Caco-2 cell cultures in order to verify their biocompatibility when exposed to an absorptive epithelial cell line.

  14. Porous organic polymers with anchored aldehydes: A new platform for post-synthetic amine functionalization en route for enhanced CO2 adsorption properties

    KAUST Repository

    Guillerm, Vincent

    2014-01-01

    A novel porous organic polymer has been synthesized using the molecular building block approach to deliberately encompass aldehyde functionalities amenable to post functionalization. The resultant porous framework allows a facile, one-step quantitative and post-synthetic functionalization by amines, permitting enhanced CO2 sorption properties. © 2014 The Royal Society of Chemistry.

  15. Microporous dermal-like electrospun scaffolds promote accelerated skin regeneration.

    Science.gov (United States)

    Bonvallet, Paul P; Culpepper, Bonnie K; Bain, Jennifer L; Schultz, Matthew J; Thomas, Steven J; Bellis, Susan L

    2014-09-01

    The goal of this study was to synthesize skin substitutes that blend native extracellular matrix (ECM) molecules with synthetic polymers which have favorable mechanical properties. To this end, scaffolds were electrospun from collagen I (col) and poly(ɛ-caprolactone) (PCL), and then pores were introduced mechanically to promote fibroblast infiltration, and subsequent filling of the pores with ECM. A 70:30 col/PCL ratio was determined to provide optimal support for dermal fibroblast growth, and a pore diameter, 160 μm, was identified that enabled fibroblasts to infiltrate and fill pores with native matrix molecules, including fibronectin and collagen I. Mechanical testing of 70:30 col/PCL scaffolds with 160 μm pores revealed a tensile strength of 1.4 MPa, and the scaffolds also exhibited a low rate of contraction (pores. Keratinocytes formed a stratified layer on the surface of fibroblast-remodeled scaffolds, and staining for cytokeratin 10 revealed terminally differentiated keratinocytes at the apical surface. When implanted, 70:30 col/PCL scaffolds degraded within 3-4 weeks, an optimal time frame for degradation in vivo. Finally, 70:30 col/PCL scaffolds with or without 160 μm pores were implanted into full-thickness critical-sized skin defects. Relative to nonporous scaffolds or sham wounds, scaffolds with 160 μm pores induced accelerated wound closure, and stimulated regeneration of healthy dermal tissue, evidenced by a more normal-appearing matrix architecture, blood vessel in-growth, and hair follicle development. Collectively, these results suggest that microporous electrospun scaffolds are effective substrates for skin regeneration.

  16. Reverse adhesion of a gecko-inspired synthetic adhesive switched by an ion-exchange polymer-metal composite actuator.

    Science.gov (United States)

    Guo, Dong-Jie; Liu, Rui; Cheng, Yu; Zhang, Hao; Zhou, Li-Ming; Fang, Shao-Ming; Elliott, Winston Howard; Tan, Wei

    2015-03-11

    Inspired by how geckos abduct, rotate, and adduct their setal foot toes to adhere to different surfaces, we have developed an artificial muscle material called ion-exchange polymer-metal composite (IPMC), which, as a synthetic adhesive, is capable of changing its adhesion properties. The synthetic adhesive was cast from a Si template through a sticky colloid precursor of poly(methylvinylsiloxane) (PMVS). The PMVS array of setal micropillars had a high density of pillars (3.8 × 10(3) pillars/mm(2)) with a mean diameter of 3 μm and a pore thickness of 10 μm. A graphene oxide monolayer containing Ag globular nanoparticles (GO/Ag NPs) with diameters of 5-30 nm was fabricated and doped in an ion-exchanging Nafion membrane to improve its carrier transfer, water-saving, and ion-exchange capabilities, which thus enhanced the electromechanical response of IPMC. After being attached to PMVS micropillars, IPMC was actuated by square wave inputs at 1.0, 1.5, or 2.0 V to bend back and forth, driving the micropillars to actively grip or release the surface. To determine the adhesion of the micropillars, the normal adsorption and desorption forces were measured as the IPMC drives the setal micropillars to grip and release, respectively. Adhesion results demonstrated that the normal adsorption forces were 5.54-, 14.20-, and 23.13-fold higher than the normal desorption forces under 1.0, 1.5, or 2.0 V, respectively. In addition, shear adhesion or friction increased by 98, 219, and 245%, respectively. Our new technique provides advanced design strategies for reversible gecko-inspired synthetic adhesives, which might be used for spiderman-like wall-climbing devices with unprecedented performance.

  17. Biocompatibility properties of polyamide 6/PCL blends composite textile scaffold using EA.hy926 human endothelial cells.

    Science.gov (United States)

    Abdal-Hay, Abdalla; Abdelrazek Khalil, Khalil; Al-Jassir, Fawzi F; Gamal-Eldeen, Amira M

    2017-05-10

    Enhancing the cytocompatibility profiles, including cell attachment, growth and viability, of designed synthetic scaffolds, has a pivotal role in tissue engineering applications. Polymer blending is one of the most effective methods for providing new desirable biomaterials for tissue scaffolds. This article reports a novel polyamide 6/poly(ε-caprolactone) (PA6/PCL) blends solution which was fabricated to create composite fibrous tissue scaffolds by varying the concentration ratios of PA6 and PCL. Highly porous blends of fibrous scaffold were fabricated and their suitability as cell-support for EA.hy926 human endothelial cells was studied. Our results demonstrated that the unique nanoscale morphological properties and tune porosity of the blends scaffold were controlled. We found that these properties are mainly dependent on the PA6/PCL blending viscosity value, and the viscosity of the blending solution has an intense effect on the properties of the blends scaffold. The influence of the scaffolds extraction fluids and the scaffold direct contact of both the metabolic viability and the DNA integrity of EA.hy926 endothelial cells, as well as the cell/scaffold interaction analysis by scanning electron microscope, after different co-culturing intervals, demonstrated that PA6/PCL blend scaffolds showed different behaviors. Blend scaffolds of PA6/PCL of 90:10 ratio proved to be excellent endothelial cell carriers, which provided a good cell morphology, DNA integrity and viability, induced DNA synthesis/replication, and enhanced cell proliferation, attachment, and invasion. These results indicate that blends of PA6/PCL composite fibers are a promising 3D substitute for the next generation of synthetic tissue scaffolds that could soon find clinical applications.

  18. Light-emitting conjugated polymers with microporous network architecture: interweaving scaffold promotes electronic conjugation, facilitates exciton migration, and improves luminescence.

    Science.gov (United States)

    Xu, Yanhong; Chen, Long; Guo, Zhaoqi; Nagai, Atsushi; Jiang, Donglin

    2011-11-09

    Herein we report a strategy for the design of highly luminescent conjugated polymers by restricting rotation of the polymer building blocks through a microporous network architecture. We demonstrate this concept using tetraphenylethene (TPE) as a building block to construct a light-emitting conjugated microporous polymer. The interlocked network successfully restricted the rotation of the phenyl units, which are the major cause of fluorescence deactivation in TPE, thus providing intrinsic luminescence activity for the polymers. We show positive "CMP effects" that the network promotes π-conjugation, facilitates exciton migration, and improves luminescence activity. Although the monomer and linear polymer analogue in solvents are nonemissive, the network polymers are highly luminescent in various solvents and the solid state. Because emission losses due to rotation are ubiquitous among small chromophores, this strategy can be generalized for the de novo design of light-emitting materials by integrating the chromophores into an interlocked network architecture.

  19. PECTIN MICROGELS CONTAINING SYNTHETIC POLYMERS BASED ON NANOCAPSULES FOR THE CONTROLLED RELEASE OF INDOMETHACIN

    Directory of Open Access Journals (Sweden)

    Mihaela HOLBAN

    2015-12-01

    Full Text Available Nanocapsule-based Eudragit RS100 and Eudragit E100 containing indomethacin have been prepared. The nanosuspensions have been included into pectin microgels of different polysaccharide concentrations, 28-61 µm-ranged polymer microgels with size and size polydispersity highly depending on the pectin amount being thus obtained. Study of the drug release revealed that indomethacin was released at a slower and more controlled rate from the microgels containing nanocapsules than from the empty pectin microgels. Also, the rate of released indomethacin increased with the augmentation of pectin amount into the microgels.

  20. Synthetic approaches towards new polymer systems by the combination of living carbocationic and anionic polymerizations

    DEFF Research Database (Denmark)

    Feldthusen, Jesper; Ivan, Bela; Muller, Axel. H.E.

    1996-01-01

    Recent efforts to obtain block copolymers by combination of living carbocationic and anionic polymerizations are presented.When tolyl-ended polyisobutylene was used as macroinitiator of anionic polymerization of methacrylate derivatives mixtures of homopolymers and block copolymers were formed due...... to incomplete lithiation of this chain end.In another approach a new functionalization method was developed by end-quenching living polyisobutylene with 1,1-diphenylethylene. After transformation of the groups into 2,2-diphenylvinyl end groups and lithiation polymers were synthesized from protected acrylate...

  1. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering.

    Science.gov (United States)

    Bao, Min; Lou, Xiangxin; Zhou, Qihui; Dong, Wen; Yuan, Huihua; Zhang, Yanzhong

    2014-02-26

    Multifunctional fibrous scaffolds, which combine the capabilities of biomimicry to the native tissue architecture and shape memory effect (SME), are highly promising for the realization of functional tissue-engineered products with minimally invasive surgical implantation possibility. In this study, fibrous scaffolds of biodegradable poly(d,l-lactide-co-trimethylene carbonate) (denoted as PDLLA-co-TMC, or PLMC) with shape memory properties were fabricated by electrospinning. Morphology, thermal and mechanical properties as well as SME of the resultant fibrous structure were characterized using different techniques. And rat calvarial osteoblasts were cultured on the fibrous PLMC scaffolds to assess their suitability for bone tissue engineering. It is found that by varying the monomer ratio of DLLA:TMC from 5:5 to 9:1, fineness of the resultant PLMC fibers was attenuated from ca. 1500 down to 680 nm. This also allowed for readily modulating the glass transition temperature Tg (i.e., the switching temperature for actuating shape recovery) of the fibrous PLMC to fall between 19.2 and 44.2 °C, a temperature range relevant for biomedical applications in the human body. The PLMC fibers exhibited excellent shape memory properties with shape recovery ratios of Rr > 94% and shape fixity ratios of Rf > 98%, and macroscopically demonstrated a fast shape recovery (∼10 s at 39 °C) in the pre-deformed configurations. Biological assay results corroborated that the fibrous PLMC scaffolds were cytocompatible by supporting osteoblast adhesion and proliferation, and functionally promoted biomineralization-relevant alkaline phosphatase expression and mineral deposition. We envision the wide applicability of using the SME-capable biomimetic scaffolds for achieving enhanced efficacy in repairing various bone defects (e.g., as implants for healing bone screw holes or as barrier membranes for guided bone regeneration).

  2. Organizing DNA origami tiles into larger structures using preformed scaffold frames.

    Science.gov (United States)

    Zhao, Zhao; Liu, Yan; Yan, Hao

    2011-07-13

    Structural DNA nanotechnology utilizes DNA molecules as programmable information-coding polymers to create higher order structures at the nanometer scale. An important milestone in structural DNA nanotechnology was the development of scaffolded DNA origami in which a long single-stranded viral genome (scaffold strand) is folded into arbitrary shapes by hundreds of short synthetic oligonucleotides (staple strands). The achievable dimensions of the DNA origami tile units are currently limited by the length of the scaffold strand. Here we demonstrate a strategy referred to as "superorigami" or "origami of origami" to scale up DNA origami technology. First, this method uses a collection of bridge strands to prefold a single-stranded DNA scaffold into a loose framework. Subsequently, preformed individual DNA origami tiles are directed onto the loose framework so that each origami tile serves as a large staple. Using this strategy, we demonstrate the ability to organize DNA origami nanostructures into larger spatially addressable architectures.

  3. RELEASE AND MUCOADHESION PROPERTIES OF DICLOFENAC MATRIX TABLETS FROM NATURAL AND SYNTHETIC POLYMER BLENDS.

    Science.gov (United States)

    Odeniyi, Michael A; Khan, Nasir H; Peh, Kok K

    2015-01-01

    The delayed release and mucoadhesive properties of Cedrela gum and hydroxypropylmethylcellulose blend in diclofenac sodium tablet formulations were evaluated. Tablets were prepared by direct compression and the crushing strength and detachment force were found to increase from 74.49 ± 1.22 to 147.25 ± 2.57 N and 0.302 ± 0.36 to 1.141 ± 0.05 N from low to high level of polymers, respectively. The release kinetics followed Korsmeyer-Peppas release and the n varied between 0.834 and 1.273, indicating that the release mechanism shifts from Fickian to super case I (anomalous release). The drug release profile fits a pulsatile-release pattern characterized by a lag time followed by a more or less rapid and complete drug release. The Cedrela gum-hydroxypropylmethylcelluse blend tablets delayed diclofenac release for 2 h and sustained the release for 12 h. The polymer blend delayed drug release in the 0.1 M HCl simulating gastric environment and subsequent release pH 6.8 phosphate buffer.

  4. Co(salen catalysed oxidation of synthetic lignin-like polymer: Co(salen effects

    Directory of Open Access Journals (Sweden)

    Liu Jing

    2012-01-01

    Full Text Available In this paper, Co(salen [salen = N, N’-bis(salicylideneethylenediamine] complex was studied as oxygen activators for the catalytic oxidation of a lignin model polymer using water as the solvent, with molecular oxygen and hydrogen peroxide as the oxidants. The effect of Co(salen on oxidation was tested by spectroscopic methods (FTIR, 13C-NMR and GC-MS. The reactions catalysed by Co(salen included Cα-alcohol oxidation, Cα-Cβ side chain cleavage, demethoxylation, aromatic ring cleavage, and β-O-4 cleavage. In addition to the mechanistic information obtained, the effect of Co(salen suggests that Co(salen can be important for the catalytic oxidation, as they affect the oxidation of lignin model polymer. The reaction performed in the presence of Co(salen was more efficient than without it. The formation of aldehyde in the catalytic oxidation, as shown by GC-MS, could be identified as the mechanism of oxidative cleavage of the β-O-4 bonds.

  5. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation

    International Nuclear Information System (INIS)

    Ganji, Yasaman; Li, Qian; Quabius, Elgar Susanne; Böttner, Martina; Selhuber-Unkel, Christine; Kasra, Mehran

    2016-01-01

    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation. - Highlights: • Biodegradable polyurethane/gold nanocomposites for cardiomyocyte adhesion are proposed. • The nanocomposite scaffolds are porous and electrical stimulation enhances cell adhesion. • Expression levels of functional myocardium genes were upregulated after electrical stimulation.

  6. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Li, Qian [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Quabius, Elgar Susanne [Dept. of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel (Germany); Institute of Immunology, University of Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel (Germany); Böttner, Martina [Department of Anatomy, University of Kiel, Otto-Hahn-Platz 8, 24118 Kiel (Germany); Selhuber-Unkel, Christine, E-mail: cse@tf.uni-kiel.de [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Kasra, Mehran [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation. - Highlights: • Biodegradable polyurethane/gold nanocomposites for cardiomyocyte adhesion are proposed. • The nanocomposite scaffolds are porous and electrical stimulation enhances cell adhesion. • Expression levels of functional myocardium genes were upregulated after electrical stimulation.

  7. A Comprehensive Study on Fast Dispersible and Slow-Releasing Characteristic of Orange Peel Pectin in Relation to Established Synthetic Polymer.

    Science.gov (United States)

    Srivastava, Pranati; Singh, Mahendra; Bhargava, Shilpi

    2017-10-01

    In the present work, the method to extract, isolate, and characterize orange peel pectin using soxhlation, and thereafter, the use of this polymer-polymer in the formulation of fast dispersable and slow-releasing tablet has been studied. Thereafter, the evaluation and comparison of fast dispersible/slow-releasing tablets using orange peel pectin versus prepared using sodium starch glycolate (SSG) were carried out. In the present investigation, extraction methodology was employed for isolation of pectin from orange peels. Four different batches with each polymer were prepared with varying concentration of superdisintegrant and bulking agent using diclofenac sodium as model drug. Diclofenac sodium stands as easily available, cheap, and good candidate to demonstrate disintegrant property. The formulation involved wet granulation method for the preparation of tablets of each batch. The tablets were evaluated for hardness, friability, thickness, wetting time, deaggregation time, and in vitro release characteristic data. It was observed that parameters for batch O2* were comparable with that of synthetic superdisintegrant. This batch gave around 92.12% drug release in period of 90 min. The study showed that orange peel pectin could be a potential candidate for formulation of orodispersible dosage forms in competence to SSG, which is established superdisintegrant. The results led to the conclusion that the use of natural polymers in formulation of pharmaceutical dosage form can be put into practice on industrial scale meeting the similar requirements as done by synthetic polymers. The present work aims to demonstrate and establish the use of naturally derived polymer, i.e., orange peel pectin as a superdisintegrant. The extraction methodology has been discussed followed by comparative analysis with a synthetic polymer. Abbreviations used: O1-O2: Batches Containing Orange peel pectin, S1-S2: Batches containing SSG, SSG: Sodium starch glycolate, NDDS: Novel drug delivery

  8. Scaffold: a novel carrier for cell and drug delivery.

    Science.gov (United States)

    Garg, Tarun; Singh, Onkar; Arora, Saahil; Murthy, R

    2012-01-01

    Scaffolds are implants or injects, which are used to deliver cells, drugs, and genes into the body. Different forms of polymeric scaffolds for cell/drug delivery are available: (1) a typical three-dimensional porous matrix, (2) a nanofibrous matrix, (3) a thermosensitive sol-gel transition hydrogel, and (4) a porous microsphere. A scaffold provides a suitable substrate for cell attachment, cell proliferation, differentiated function, and cell migration. Scaffold matrices can be used to achieve drug delivery with high loading and efficiency to specific sites. Biomaterials used for fabrication of scaffold may be natural polymers such as alginate, proteins, collagens, gelatin, fibrins, and albumin, or synthetic polymers such as polyvinyl alcohol and polyglycolide. Bioceramics such as hydroxyapatites and tricalcium phosphates also are used. Techniques used for fabrication of a scaffold include particulate leaching, freeze-drying, supercritical fluid technology, thermally induced phase separation, rapid prototyping, powder compaction, sol-gel, and melt moulding. These techniques allow the preparation of porous structures with regular porosity. Scaffold are used successfully in various fields of tissue engineering such as bone formation, periodontal regeneration, repair of nasal and auricular malformations, cartilage development, as artificial corneas, as heart valves, in tendon repair ,in ligament replacement, and in tumors. They also are used in joint pain inflammation, diabetes, heart disease, osteochondrogenesis, and wound dressings. Their application of late has extended to delivery of drugs and genetic materials, including plasmid DNA, at a controlled rate over a long period of time. In addition, the incorporation of drugs (i.e., inflammatory inhibitors and/or antibiotics) into scaffolds may be used to prevent infection after surgery and other disease for longer duration. Scaffold also can be used to provide adequate signals (e.g., through the use of adhesion

  9. Fabrication and characterization of PCL/gelatin composite nanofibrous scaffold for tissue engineering applications by electrospinning method

    International Nuclear Information System (INIS)

    Gautam, Sneh; Dinda, Amit Kumar; Mishra, Narayan Chandra

    2013-01-01

    In the present study, composite nanofibrous tissue engineering-scaffold consisting of polycaprolactone and gelatin, was fabricated by electrospinning method, using a new cost-effective solvent mixture: chloroform/methanol for polycaprolactone (PCL) and acetic acid for gelatin. The morphology of the nanofibrous scaffold was investigated by using field emission scanning electron microscopy (FE-SEM) which clearly indicates that the morphology of nanofibers was influenced by the weight ratio of PCL to gelatin in the solution. Uniform fibers were produced only when the weight ratio of PCL/gelatin is sufficiently high (10:1). The scaffold was further characterized by Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric (TG) analysis, and X-ray diffraction (XRD). FT-IR and TG analysis indicated some interactions between PCL and gelatin molecules within the scaffold, while XRD results demonstrated crystalline nature of PCL/gelatin composite scaffold. Cytotoxicity effect of scaffold on L929 mouse fibroblast cells was evaluated by MTT assay and cell proliferation on the scaffold was confirmed by DNA quantification. Positive results of MTT assay and DNA quantification L929 mouse fibroblast cells indicated that the scaffold made from the combination of natural polymer (gelatin) and synthetic polymer (PCL) may serve as a good candidate for tissue engineering applications. - Highlights: ► PCL/Gelatin scaffold was successfully fabricated by electrospinning method. ► PCL in CHCl 3 /CH 3 OH and gelatin in acetic acid: a novel polymer-solvent system. ► The morphology of nanofibers was influenced by the weight ratio of PCL/gelatin. ► Chemical interactions between PCL and gelatin molecules enhanced cell growth. ► Cell culture studies indicate the suitability of scaffold for tissue regeneration

  10. Dynamics of Membrane Proteins within Synthetic Polymer Membranes with Large Hydrophobic Mismatch.

    Science.gov (United States)

    Itel, Fabian; Najer, Adrian; Palivan, Cornelia G; Meier, Wolfgang

    2015-06-10

    The functioning of biological membrane proteins (MPs) within synthetic block copolymer membranes is an intriguing phenomenon that is believed to offer great potential for applications in life and medical sciences and engineering. The question why biological MPs are able to function in this completely artificial environment is still unresolved by any experimental data. Here, we have analyzed the lateral diffusion properties of different sized MPs within poly(dimethylsiloxane) (PDMS)-containing amphiphilic block copolymer membranes of membrane thicknesses between 9 and 13 nm, which results in a hydrophobic mismatch between the membrane thickness and the size of the proteins of 3.3-7.1 nm (3.5-5 times). We show that the high flexibility of PDMS, which provides membrane fluidities similar to phospholipid bilayers, is the key-factor for MP incorporation.

  11. Polymer scaffolds with no skin-effect for tissue engineering applications fabricated by thermally induced phase separation

    Czech Academy of Sciences Publication Activity Database

    Kasoju, Naresh; Kubies, Dana; Sedlačík, Tomáš; Janoušková, Olga; Koubková, Jana; Kumorek, Marta M.; Rypáček, František

    2016-01-01

    Roč. 11, č. 1 (2016), 015002_1-015002_13 ISSN 1748-6041 R&D Projects: GA MŠk(CZ) EE2.3.30.0029; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : tissue engineering * porous scaffolds * thermally induced phase separation Subject RIV: CE - Biochemistry Impact factor: 2.469, year: 2016

  12. Biocompatible electrospun polymer blends for biomedical applications.

    Science.gov (United States)

    Munj, Hrishikesh Ramesh; Nelson, M Tyler; Karandikar, Prathamesh Sadanand; Lannutti, John Joseph; Tomasko, David Lane

    2014-10-01

    Blends of natural and synthetic polymers have received considerable attention as biomaterials due to the potential to optimize both mechanical and bioactive properties. Electrospinning of biocompatible polymers is an efficient method producing biomimetic topographies suited to various applications. In the ultimate application, electrospun scaffolds must also incorporate drug/protein delivery for effective cell growth and tissue repair. This study explored the suitability of a ternary Polymethylmethacrylate-Polycaprolactone-gelatin blend in the preparation of electrospun scaffolds for biomedical applications. Tuning the blend composition allows control over scaffold mechanical properties and degradation rate. Significant improvements were observed in the mechanical properties of the blend compared with the individual components. In order to study drug delivery potential, triblends were impregnated with the model compound Rhodamine-B using sub/supercritical CO₂ infusion under benign conditions. Results show significantly distinct release profiles of the impregnated dye from the triblends. Specific factors such as porosity, degradation rate, stress relaxation, dye-polymer interactions, play key roles in impregnation and release. Each polymer component of the triblends shows distinct behavior during impregnation and release process. This affects the aforementioned factors and the release profiles of the dye. Careful control over blend composition and infusion conditions creates the flexibility needed to produce biocompatible electrospun scaffolds for a variety of biomedical applications. © 2014 Wiley Periodicals, Inc.

  13. Development of a one-step approach for the reconstruction of full thickness skin defects using minced split thickness skin grafts and biodegradable synthetic scaffolds as a dermal substitute.

    Science.gov (United States)

    Sharma, Kavita; Bullock, Anthony; Ralston, David; MacNeil, Sheila

    2014-08-01

    Tissue engineering has progressed in delivering laboratory-expanded keratinocytes to the clinic; however the production of a suitable alternative to a skin graft, containing both epidermis and dermis still remains a challenge. To develop a one-step approach to wound reconstruction using finely minced split thickness skin and a biodegradable synthetic dermal substitute. This was explored in vitro using scalpel diced pieces of split thickness human skin combined with synthetic electrospun polylactide (PLA) scaffolds. To aid the spreading of tissue, 1% methylcellulose was used and platelet releasate was examined for its effect on cellular outgrowth from tissue explants. The outcome parameters included the metabolic activity of the migrating cells and their ability to produce collagen. Cell presence and migration on the scaffolds were assessed using fluorescence microscopy and SEM. Cells were identified as keratinocytes by immunostaining for pan-cytokeratin. Collagen deposition was quantified by using Sirius red. Skin cells migrated along the fibers of the scaffold and formed new collagen. 1% methylcellulose improved the tissue handling properties of the minced skin. Platelet releasate did not stimulate the migration of skin cells along scaffold fibers. Immunohistochemistry and SEM confirmed the presence of both epithelial and stromal cells in the new tissue. We describe the first key steps in the production of a skin substitute to be assembled in theatre eliminating the need for cell culture. Whilst further experiments are needed to develop this technique it can be a useful addition to armamentarium of the reconstructive surgeon. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  14. Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers

    International Nuclear Information System (INIS)

    Şen, Murat; Hayrabolulu, Hande

    2012-01-01

    In this study radiation synthesis and characterisation of the network structure of acrylic acid sodium salt/locust bean gum, (AAcNa/LBG) natural/synthetic double-network super absorbent polymers were investigated. Quartet systems composed of acrylic acid sodium salt/locust bean gum/N,N methylene bis acrylamide/water (AAcNa/LBG/MBAAm/water) were prepared at varying degree of neutralisations (DN) by controlling the DN value of AAc and irradiated with gamma rays at ambient temperature at a very low dose rate. The influences of the DN on the swelling and network properties were examined. It was observed that the DN strongly affected the gelation and super absorption properties of the gels. Molecular weight between crosslinks (M ¯ c ), effective crosslink density (ν e ) and mesh size (ξ) of SAPs were calculated from swelling and shear modules data obtained from compression and oscillatory frequency sweep tests. M ¯ c values obtained from the uniaxial deformation experiments were very close to those obtained from the oscillatory shear experiments excluding the completely neutralised gel system. It was concluded that the uniaxial compression technique could be used for the characterisation of the network structure of a hydrogel as along with the rheological analyses; however, a very precise control of the gel size was also needed. - Highlights: ► Radiation synthesis and characterisation of AAcNa/LBG super absorbent polymers described. ► Influences of the DN on the swelling and network properties were examined. ► Molecular weight between crosslinks and effective crosslink density of SAPs were calculated. ► Suitability of rheology technique for the characterisation of hydrogels were demonstrated.

  15. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the “one-pot” synthetic approach of single-electron-transfer living radical polymerization

    International Nuclear Information System (INIS)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie; Wang, Ke; Xu, Dazhuang; Liu, Liangji; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Graphical abstract: The PEGylated graphene oxides with high water dispersibility, good biocompatibility as well as high drug loading capability were fabricated via “one-pot” SET-LRP. - Highlights: • Surface modification of graphene oxide with polymers. • One-pot single-electron-transfer living radical polymerization. • Improving drug delivery characteristics. • The synthetic approach is rather simple, universal and effective. - Abstract: Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient “one-pot” strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as 1 H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  16. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the “one-pot” synthetic approach of single-electron-transfer living radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Xu, Dazhuang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Liu, Liangji [Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Graphical abstract: The PEGylated graphene oxides with high water dispersibility, good biocompatibility as well as high drug loading capability were fabricated via “one-pot” SET-LRP. - Highlights: • Surface modification of graphene oxide with polymers. • One-pot single-electron-transfer living radical polymerization. • Improving drug delivery characteristics. • The synthetic approach is rather simple, universal and effective. - Abstract: Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient “one-pot” strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  17. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the "one-pot" synthetic approach of single-electron-transfer living radical polymerization

    Science.gov (United States)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie; Wang, Ke; Xu, Dazhuang; Liu, Liangji; Zhang, Xiaoyong; Wei, Yen

    2016-08-01

    Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient ;one-pot; strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as 1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  18. Oxidative degradation processes in synthetic and biological polymers as studied by pulse radiolysis experiments

    International Nuclear Information System (INIS)

    Schnabel, W.

    1986-01-01

    On the basis of pulse radiolysis experiments carried out with various polymers in dilute solution three modes of action of molecular oxygen, O 2 can be discriminated with respect to main-chain scission: (a) O 2 acts as a promoter, (b) O 2 acts as an inhibitor, and (c) O 2 acts as a fixing agent for main-chain breaks. The promoting mode of action (a) is due to the inhibition of simultaneously occurring intermolecular crosslinking and/or to the combination of peroxyl radicals with the subsequent formation of readily decomposing oxyl radicals. The inhibiting mode of action (b) pertains to the reaction of O 2 with macroradicals that otherwise undergo main-chain rupture. Fixing of main-chain ruptures (mode c) becomes important if macroradicals generated by a very fast rupture of bonds in the main chain are prone to recombine quickly. This mode of action was evidenced in the case of polybutenesulfone, where main-chain scission involves the extrusion of small segments of the chain. (author)

  19. Electrospun gelatin/PCL and collagen/PLCL scaffolds for vascular tissue engineering

    Directory of Open Access Journals (Sweden)

    Fu W

    2014-05-01

    Full Text Available Wei Fu,1,2,* Zhenling Liu,1,* Bei Feng,1,2 Renjie Hu,1 Xiaomin He,1 Hao Wang,1 Meng Yin,1 Huimin Huang,1 Haibo Zhang,1 Wei Wang11Department of Pediatric Cardiothoracic Surgery, 2Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China*These authors contributed equally to this workAbstract: Electrospun hybrid nanofibers prepared using combinations of natural and synthetic polymers have been widely investigated in cardiovascular tissue engineering. In this study, electrospun gelatin/polycaprolactone (PCL and collagen/poly(l-lactic acid-co-ε-caprolactone (PLCL scaffolds were successfully produced. Scanning electron micrographs showed that fibers of both membranes were smooth and homogeneous. Water contact angle measurements further demonstrated that both scaffolds were hydrophilic. To determine cell attachment and migration on the scaffolds, both hybrid scaffolds were seeded with human umbilical arterial smooth muscle cells. Scanning electron micrographs and MTT assays showed that the cells grew and proliferated well on both hybrid scaffolds. Gross observation of the transplanted scaffolds revealed that the engineered collagen/PLCL scaffolds were smoother and brighter than the gelatin/PCL scaffolds. Hematoxylin and eosin staining showed that the engineered blood vessels constructed by collagen/PLCL electrospun membranes formed relatively homogenous vessel-like tissues. Interestingly, Young's modulus for the engineered collagen/PLCL scaffolds was greater than for the gelatin/PCL scaffolds. Together, these results indicate that nanofibrous collagen/PLCL membranes with favorable mechanical and biological properties may be a desirable scaffold for vascular tissue engineering.Keywords: electrospinning, gelatin, collagen, polycaprolactone, poly(l-lactic acid-co-ε-caprolactone

  20. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers

    Science.gov (United States)

    Luu, Y. K.; Kim, K.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M.; Hadjiargyou, M. (Principal Investigator)

    2003-01-01

    The present work utilizes electrospinning to fabricate synthetic polymer/DNA composite scaffolds for therapeutic application in gene delivery for tissue engineering. The scaffolds are non-woven, nano-fibered, membranous structures composed predominantly of poly(lactide-co-glycolide) (PLGA) random copolymer and a poly(D,L-lactide)-poly(ethylene glycol) (PLA-PEG) block copolymer. Release of plasmid DNA from the scaffolds was sustained over a 20-day study period, with maximum release occurring at approximately 2 h. Cumulative release profiles indicated amounts released were approximately 68-80% of the initially loaded DNA. Variations in the PLGA to PLA-PEG block copolymer ratio vastly affected the overall structural morphology, as well as both the rate and efficiency of DNA release. Results indicated that DNA released directly from these electrospun scaffolds was indeed intact, capable of cellular transfection, and successfully encoded the protein beta-galactosidase. When tested under tensile loads, the electrospun polymer/DNA composite scaffolds exhibited tensile moduli of approximately 35 MPa, with approximately 45% strain initially. These values approximate those of skin and cartilage. Taken together, this work represents the first successful demonstration of plasmid DNA incorporation into a polymer scaffold using electrospinning.

  1. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    Science.gov (United States)

    Sun, Guanqing

    The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the

  2. Surface patterning with natural and synthetic polymers via an inverse electron demand Diels-Alder reaction employing microcontact chemistry.

    Science.gov (United States)

    Roling, Oliver; Mardyukov, Artur; Lamping, Sebastian; Vonhören, Benjamin; Rinnen, Stefan; Arlinghaus, Heinrich F; Studer, Armido; Ravoo, Bart Jan

    2014-10-21

    Bioorthogonal ligation methods are the focus of current research due to their versatile applications in biotechnology and materials science for post-functionalization and immobilization of biomolecules. Recently, inverse electron demand Diels-Alder (iEDDA) reactions employing 1,2,4,5-tetrazines as electron deficient dienes emerged as powerful tools in this field. We adapted iEDDA in microcontact chemistry (μCC) in order to create enhanced surface functions. μCC is a straightforward soft-lithography technique which enables fast and large area patterning with high pattern resolutions. In this work, tetrazine functionalized surfaces were reacted with carbohydrates conjugated with norbornene or cyclooctyne acting as strained electron rich dienophiles employing μCC. It was possible to create monofunctional as well as bifunctional substrates which were specifically addressable by proteins. Furthermore we structured glass supported alkene terminated self-assembled monolayers with a tetrazine conjugated atom transfer radical polymerization (ATRP) initiator enabling surface grafted polymerizations of poly(methylacrylate) brushes. The success of the surface initiated iEDDA via μCC as well as the functionalization with natural and synthetic polymers was verified via fluorescence and optical microscopy, X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).

  3. Radiation synthesis and characterisation of the network structure of natural/synthetic double-network superabsorbent polymers

    Science.gov (United States)

    Şen, Murat; Hayrabolulu, Hande

    2012-09-01

    In this study radiation synthesis and characterisation of the network structure of acrylic acid sodium salt/locust bean gum, (AAcNa/LBG) natural/synthetic double-network super absorbent polymers were investigated. Quartet systems composed of acrylic acid sodium salt/locust bean gum/N,N methylene bis acrylamide/water (AAcNa/LBG/MBAAm/water) were prepared at varying degree of neutralisations (DN) by controlling the DN value of AAc and irradiated with gamma rays at ambient temperature at a very low dose rate. The influences of the DN on the swelling and network properties were examined. It was observed that the DN strongly affected the gelation and super absorption properties of the gels. Molecular weight between crosslinks (M), effective crosslink density (νe) and mesh size (ξ) of SAPs were calculated from swelling and shear modules data obtained from compression and oscillatory frequency sweep tests. M values obtained from the uniaxial deformation experiments were very close to those obtained from the oscillatory shear experiments excluding the completely neutralised gel system. It was concluded that the uniaxial compression technique could be used for the characterisation of the network structure of a hydrogel as along with the rheological analyses; however, a very precise control of the gel size was also needed.

  4. Enhancement of cell-based therapeutic angiogenesis using a novel type of injectable scaffolds of hydroxyapatite-polymer nanocomposite microspheres.

    Directory of Open Access Journals (Sweden)

    Yohei Mima

    Full Text Available BACKGROUND: Clinical trials demonstrate the effectiveness of cell-based therapeutic angiogenesis in patients with severe ischemic diseases; however, their success remains limited. Maintaining transplanted cells in place are expected to augment the cell-based therapeutic angiogenesis. We have reported that nano-hydroxyapatite (HAp coating on medical devices shows marked cell adhesiveness. Using this nanotechnology, HAp-coated poly(l-lactic acid (PLLA microspheres, named nano-scaffold (NS, were generated as a non-biological, biodegradable and injectable cell scaffold. We investigate the effectiveness of NS on cell-based therapeutic angiogenesis. METHODS AND RESULTS: Bone marrow mononuclear cells (BMNC and NS or control PLLA microspheres (LA were intramuscularly co-implanted into mice ischemic hindlimbs. When BMNC derived from enhanced green fluorescent protein (EGFP-transgenic mice were injected into ischemic muscle, the muscle GFP level in NS+BMNC group was approximate fivefold higher than that in BMNC or LA+BMNC groups seven days after operation. Kaplan-Meier analysis demonstrated that NS+BMNC markedly prevented hindlimb necrosis (P<0.05 vs. BMNC or LA+BMNC. NS+BMNC revealed much higher induction of angiogenesis in ischemic tissues and collateral blood flow confirmed by three-dimensional computed tomography angiography than those of BMNC or LA+BMNC groups. NS-enhanced therapeutic angiogenesis and arteriogenesis showed good correlations with increased intramuscular levels of vascular endothelial growth factor and fibroblast growth factor-2. NS co-implantation also prevented apoptotic cell death of transplanted cells, resulting in prolonged cell retention. CONCLUSION: A novel and feasible injectable cell scaffold potentiates cell-based therapeutic angiogenesis, which could be extremely useful for the treatment of severe ischemic disorders.

  5. Multivalent Polymers for Drug Delivery and Imaging: The Challenges of Conjugation

    Science.gov (United States)

    2015-01-01

    Multivalent polymers offer a powerful opportunity to develop theranostic materials on the size scale of proteins that can provide targeting, imaging, and therapeutic functionality. Achieving this goal requires the presence of multiple targeting molecules, dyes, and/or drugs on the polymer scaffold. This critical review examines the synthetic, analytical, and functional challenges associated with the heterogeneity introduced by conjugation reactions as well as polymer scaffold design. First, approaches to making multivalent polymer conjugations are discussed followed by an analysis of materials that have shown particular promise biologically. Challenges in characterizing the mixed ligand distributions and the impact of these distributions on biological applications are then discussed. Where possible, molecular-level interpretations are provided for the structures that give rise to the functional ligand and molecular weight distributions present in the polymer scaffolds. Lastly, recent strategies employed for overcoming or minimizing the presence of ligand distributions are discussed. This review focuses on multivalent polymer scaffolds where average stoichiometry and/or the distribution of products have been characterized by at least one experimental technique. Key illustrative examples are provided for scaffolds that have been carried forward to in vitro and in vivo testing with significant biological results. PMID:25120091

  6. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.

    Science.gov (United States)

    Brugmans, Marieke M C P; Soekhradj-Soechit, R Sarita; van Geemen, Daphne; Cox, Martijn; Bouten, Carlijn V C; Baaijens, Frank P T; Driessen-Mol, Anita

    2016-01-01

    Synthetic polymers are widely used to fabricate porous scaffolds for the regeneration of cardiovascular tissues. To ensure mechanical integrity, a balance between the rate of scaffold absorption and tissue formation is of high importance. A higher rate of tissue formation is expected in fast-degrading materials than in slow-degrading materials. This could be a result of synthetic cells, which aim to compensate for the fast loss of mechanical integrity of the scaffold by deposition of collagen fibers. Here, we studied the effect of fast-degrading polyglycolic acid scaffolds coated with poly-4-hydroxybutyrate (PGA-P4HB) and slow-degrading poly-ɛ-caprolactone (PCL) scaffolds on amount of tissue, composition, and mechanical characteristics in time, and compared these engineered values with values for native human heart valves. Electrospun PGA-P4HB and PCL scaffolds were either kept unseeded in culture or were seeded with human vascular-derived cells. Tissue formation, extracellular matrix (ECM) composition, remaining scaffold weight, tissue-to-scaffold weight ratio, and mechanical properties were analyzed every week up to 6 weeks. Mass of unseeded PCL scaffolds remained stable during culture, whereas PGA-P4HB scaffolds degraded rapidly. When seeded with cells, both scaffold types demonstrated increasing amounts of tissue with time, which was more pronounced for PGA-P4HB-based tissues during the first 2 weeks; however, PCL-based tissues resulted in the highest amount of tissue after 6 weeks. This study is the first to provide insight into the tissue-to-scaffold weight ratio, therewith allowing for a fair comparison between engineered tissues cultured on scaffolds as well as between native heart valve tissues. Although the absolute amount of ECM components differed between the engineered tissues, the ratio between ECM components was similar after 6 weeks. PCL-based tissues maintained their shape, whereas the PGA-P4HB-based tissues deformed during culture. After 6 weeks

  7. Polymers All Around You!

    Science.gov (United States)

    Gertz, Susan

    Background information on natural polymers, synthetic polymers, and the properties of polymers is presented as an introduction to this curriculum guide. Details are provided on the use of polymer products in consumer goods, polymer recycling, polymer densities, the making of a polymer such as GLUEP, polyvinyl alcohol, dissolving plastics, polymers…

  8. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients.

    Science.gov (United States)

    Trachtenberg, Jordan E; Placone, Jesse K; Smith, Brandon T; Fisher, John P; Mikos, Antonios G

    2017-04-01

    The primary focus of this work is to present the current challenges of printing scaffolds with concentration gradients of nanoparticles with an aim to improve the processing of these scaffolds. Furthermore, we address how print fidelity is related to material composition and emphasize the importance of considering this relationship when developing complex scaffolds for bone implants. The ability to create complex tissues is becoming increasingly relevant in the tissue engineering community. For bone tissue engineering applications, this work demonstrates the ability to use extrusion-based printing techniques to control the spatial deposition of hydroxyapatite (HA) nanoparticles in a 3D composite scaffold. In doing so, we combined the benefits of synthetic, degradable polymers, such as poly(propylene fumarate) (PPF), with osteoconductive HA nanoparticles that provide robust compressive mechanical properties. Furthermore, the final 3D printed scaffolds consisted of well-defined layers with interconnected pores, two critical features for a successful bone implant. To demonstrate a controlled gradient of HA, thermogravimetric analysis was carried out to quantify HA on a per-layer basis. Moreover, we non-destructively evaluated the tendency of HA particles to aggregate within PPF using micro-computed tomography (μCT). This work provides insight for proper fabrication and characterization of composite scaffolds containing particle gradients and has broad applicability for future efforts in fabricating complex scaffolds for tissue engineering applications.

  9. Hyaluronic Acid (HA) Scaffolds and Multipotent Stromal Cells (MSCs) in Regenerative Medicine.

    Science.gov (United States)

    Prè, Elena Dai; Conti, Giamaica; Sbarbati, Andrea

    2016-12-01

    Traditional methods for tissue regeneration commonly used synthetic scaffolds to regenerate human tissues. However, they had several limitations, such as foreign body reactions and short time duration. In order to overcome these problems, scaffolds made of natural polymers are preferred. One of the most suitable and widely used materials to fabricate these scaffolds is hyaluronic acid. Hyaluronic acid is the primary component of the extracellular matrix of the human connective tissue. It is an ideal material for scaffolds used in tissue regeneration, thanks to its properties of biocompatibility, ease of chemical functionalization and degradability. In the last few years, especially from 2010, scientists have seen that the cell-based engineering of these natural scaffolds allows obtaining even better results in terms of tissue regeneration and the research started to grow in this direction. Multipotent stromal cells, also known as mesenchymal stem cells, plastic-adherent cells isolated from bone marrow and other mesenchymal tissues, with self-renew and multi-potency properties are ideal candidates for this aim. Normally, they are pre-seeded onto these scaffolds before their implantation in vivo. This review discusses the use of hyaluronic acid-based scaffolds together with multipotent stromal cells, as a very promising tool in regenerative medicine.

  10. Extrusion-based 3D printing of poly(propylene fumarate) scaffolds with hydroxyapatite gradients

    Science.gov (United States)

    Trachtenberg, Jordan E.; Placone, Jesse K.; Smith, Brandon T.; Fisher, John P.; Mikos, Antonios G.

    2017-01-01

    The primary focus of this work is to present the current challenges of printing scaffolds with concentration gradients of nanoparticles with an aim to improve the processing of these scaffolds. Furthermore, we address how print fidelity is related to material composition and emphasize the importance of considering this relationship when developing complex scaffolds for bone implants. The ability to create complex tissues is becoming increasingly relevant in the tissue engineering community. For bone tissue engineering applications, this work demonstrates the ability to use extrusion-based printing techniques to control the spatial deposition of hydroxyapatite (HA) nanoparticles in a 3D composite scaffold. In doing so, we combined the benefits of synthetic, degradable polymers, such as poly(propylene fumarate) (PPF), with osteoconductive HA nanoparticles that provide robust compressive mechanical properties. Furthermore, the final 3D printed scaffolds consisted of well-defined layers with interconnected pores, two critical features for a successful bone implant. To demonstrate a controlled gradient of HA, thermogravimetric analysis was carried out to quantify HA on a per-layer basis. Moreover, we non-destructively evaluated the tendency of HA particles to aggregate within PPF using micro-computed tomography (µCT). This work provides insight for proper fabrication and characterization of composite scaffolds containing particle gradients and has broad applicability for future efforts in fabricating complex scaffolds for tissue engineering applications. PMID:28125380

  11. Experimental research of ZrO{sub 2}/BCP/PCL scaffold with complex pore pattern for bone tissue

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Min Woo; Shin, Hae Ri; Kim, Jong Young [Dept. of Mechanical Engineering, Andong National University, Andong (Korea, Republic of)

    2015-11-15

    Recently, synthetic biopolymers and bioceramics such as poly (-caprolactone)(PCL), hydroxyapatite, tricalcium phosphate, biphasic calcium phosphate(BCP), and zirconia have been used as substrates to generate various tissues or organs in tissue engineering. Thus, the purpose of this study was the characterization of ZrO{sub 2}/BCP/PCL(ZBP) scaffold for bone tissue regeneration. Based on the result of single-line test, blended 3D ZBP scaffolds with fully interconnected pores and new complex pore pattern of -type and staggered-type were successfully fabricated using a polymer deposition system. Furthermore, the effect of ZBP scaffold on mechanical property was analyzed. In addition, in vitro cell interaction of ZBP scaffold on MG63 cells was evaluated using a cell counting kit-8(CCK-8) assay.

  12. Fabrication of a Highly Aligned Neural Scaffold via a Table Top Stereolithography 3D Printing and Electrospinning.

    Science.gov (United States)

    Lee, Se-Jun; Nowicki, Margaret; Harris, Brent; Zhang, Lijie Grace

    2017-06-01

    Three-dimensional (3D) bioprinting is a rapidly emerging technique in the field of tissue engineering to fabricate extremely intricate and complex biomimetic scaffolds in the range of micrometers. Such customized 3D printed constructs can be used for the regeneration of complex tissues such as cartilage, vessels, and nerves. However, the 3D printing techniques often offer limited control over the resolution and compromised mechanical properties due to short selection of printable inks. To address these limitations, we combined stereolithography and electrospinning techniques to fabricate a novel 3D biomimetic neural scaffold with a tunable porous structure and embedded aligned fibers. By employing two different types of biofabrication methods, we successfully utilized both synthetic and natural materials with varying chemical composition as bioink to enhance biocompatibilities and mechanical properties of the scaffold. The resulting microfibers composed of polycaprolactone (PCL) polymer and PCL mixed with gelatin were embedded in 3D printed hydrogel scaffold. Our results showed that 3D printed scaffolds with electrospun fibers significantly improve neural stem cell adhesion when compared to those without the fibers. Furthermore, 3D scaffolds embedded with aligned fibers showed an enhancement in cell proliferation relative to bare control scaffolds. More importantly, confocal microscopy images illustrated that the scaffold with PCL/gelatin fibers greatly increased the average neurite length and directed neurite extension of primary cortical neurons along the fiber. The results of this study demonstrate the potential to create unique 3D neural tissue constructs by combining 3D bioprinting and electrospinning techniques.

  13. Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration.

    Science.gov (United States)

    Sehgal, Rekha R; Roohani-Esfahani, S I; Zreiqat, Hala; Banerjee, Rinti

    2017-04-01

    Controlled delivery of biological cues through synthetic scaffolds to enhance the healing capacity of bone defects is yet to be realized clinically. The purpose of this study was development of a bioactive tissue-engineered scaffold providing the sustained delivery of an osteoinductive drug, dexamethasone disodium phosphate (DXP), encapsulated within chitosan nanoparticles (CN). Porous baghdadite (BD; Ca 3 ZrSi 2 O 9 ) scaffolds, a zirconia-modified calcium silicate ceramic, was coated with DXP-encapsulated CN nanoparticles (DXP-CN) using nanostructured gellan and xanthan hydrogel (GX). Crosslinker and GX polymer concentrations were optimized to achieve a homogeneous distribution of hydrogel coating within BD scaffolds. Dynamic laser scattering indicated an average size of 521 ± 21 nm for the DXP-CN nanoparticles. In vitro drug-release studies demonstrated that the developed DXP-CN-GX hydrogel-coated BD scaffolds (DXP-CN-GX-BD) resulted in a sustained delivery of DXP over the 5 days (78 ± 6% of drug release) compared with burst release over 1 h, seen from free DXP loaded in uncoated BD scaffolds (92 ± 8% release in 1 h). To estimate the influence of controlled delivery of DXP from the developed scaffolds, the effect on MG 63 cells was evaluated using various bone differentiation assays. Cell culture within DXP-CN-GX-BD scaffolds demonstrated a significant increase in the expression of early and late osteogenic markers of alkaline phosphatase activity, collagen type 1 and osteocalcin, compared to the uncoated BD scaffold. The results suggest that the DXP-releasing nanostructured hydrogel integrated within the BD scaffold caused sustained release of DXP, improving the potential for osteogenic differentiation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  14. Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect.

    Science.gov (United States)

    Ming, Li; Zhipeng, Yuan; Fei, Yu; Feng, Rao; Jian, Weng; Baoguo, Jiang; Yongqiang, Wen; Peixun, Zhang

    2018-03-26

    Cartilage defect is common in clinical but notoriously difficult to treat for low regenerative and migratory capacity of chondrocytes. Biodegradable tissue engineering nano-scaffold with a lot of advantages has been the direction of material to repair cartilage defect in recent years. The objective of our study is to establish a biodegradable drug-loading synthetic polymer (PLA) and biopolymer (Gelatine) composite 3D nano-scaffold to support the treatment of cartilage defect. We designed a microfluidic chip-based drug-screening device to select the optimum concentration of resveratrol, which has strong protective capability for chondrocyte. Then biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds were fabricated and used to repair the cartilage defects. As a result, we successfully cultured primary chondrocytes and screened the appropriate concentrations of resveratrol by the microfluidic device. We also smoothly obtained superior biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds and compared the properties and therapeutic effects of cartilage defect in rats. In summary, our microfluidic device is a simple but efficient platform for drug screening and resveratrol-loading PLA/Gelatine 3D nano-scaffolds could greatly promote the cartilage formation. It would be possible for materials and medical researchers to explore individualized pharmacotherapy and drug-loading synthetic polymer and biopolymer composite tissue engineering scaffolds for the repair of cartilage defect in future.

  15. Novel poly(L-lactic acid)/hyaluronic acid macroporous hybrid scaffolds : characterization and assessment of cytotoxicity

    OpenAIRE

    Antunes, Joana Costa; Oliveira, Joaquim M.; Reis, R. L.; Soria, Jose Miguel; Gómez Ribelles, J. L.; Mano, J. F.

    2010-01-01

    Poly(L-lactic acid), PLLA, a synthetic biodegradable polyester, is widely accepted in tissue engineering. Hyaluronic acid (HA), a natural polymer, exhibits an excellent biocompatibility, influences cell signaling, proliferation, and differentiation. In this study, HA crosslinking was performed by immersion of the polysaccharide in water-acetone mixtures containing glutaraldehyde (GA). The objective of this work is to produce PLLA scaffolds with the pores coated with HA, that could be benefici...

  16. Robust formulation for the design of tissue engineering scaffolds: A comprehensive study on structural anisotropy, viscoelasticity and degradation of 3D scaffolds fabricated with customized desktop robot based rapid prototyping (DRBRP) system.

    Science.gov (United States)

    Hoque, M Enamul

    2017-03-01

    This study investigates the scaffolds' structural anisotropy (i.e. the effect of loading direction), viscoelasticity (i.e. the effect of cross head speed or strain rate), and the influence of simulated physiological environment (PBS solution at 37°C) on the mechanical properties. Besides, the in vitro degradation study has also been performed that evaluates the effect of variation in material and lay-down pattern on the scaffolds' degradation kinetics in terms of mass loss, and change in morphological and mechanical properties. Porous three dimensional (3D) scaffolds of polycarprolactone (PCL) and polycarprolactone-polyethylene glycol (PCL-PEG) were developed by laying down the microfilaments directionally layer-by-layer using an in-house built computer-controlled extrusion and deposition process, called desktop robot based rapid prototyping (DRBRP) system. The loading direction, strain rate and physiological environment directly influenced the mechanical properties of the scaffolds. In vitro degradation study demonstrated that both PCL and PCL-PEG scaffolds realized homogeneous hydrolytic degradation via surface erosion resulting in a consistent and predictable mass loss. The linear mass loss caused uniform and linear increase in porosity that accordingly led to the decrease in mechanical properties. The synthetic polymer had the potential to modulate hydrophilicity and/or degradability and consequently, the biomechanical properties of the scaffolds by varying the polymer constituents. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    Science.gov (United States)

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  18. In vitro evaluation of elastic multiblock co-polymers as a scaffold material for reconstruction of blood vessels.

    Science.gov (United States)

    Tzoneva, Rumiana; Weckwerth, Claudia; Seifert, Barbara; Behl, Marc; Heuchel, Matthias; Tsoneva, Iana; Lendlein, Andreas

    2011-01-01

    There is a need to create cell- and histocompatible implant materials, which might temporarily replace the mechanical function of a native tissue for regenerative therapies. To match the elastic behavior of the native tissue two different multiblock co-polymers were investigated: PDC, consisting of poly(p-dioxanone) (PPDO)/poly(ε-caprolactone) (PCL), and PDD, based on PPDO/poly((adipinate-alt-1,4-butanediol)-co-(adipinate-alt-ethylene glycol)-co-adipinate-alt-diethylene glycol) (Diorez). PDC is capable of a shapememory effect. Both multiblock co-polymers show an improved elasticity compared to materials applied in established vascular prosthesis. PDD is softer than PDC at 20°C, while PDC maintains its elasticity at 37°C. Thermodynamic characteristics indicate a more polar surface of PDD. Low cell adhesion was found on surfaces with low molar free energy of hysteresis (ΔG) derived from contact angle measurements in wetting and dewetting mode and high cell adhesion on high-ΔG surfaces. An increasing content of PCL in PDC improved cell adhesion and spreading of human umbilical vein endothelial cells. The prothrombotic potential of PDD is higher than PDC. Finally, it is concluded that PDC is a promising material for vascular tissue engineering because of its improved elastic properties, as well as balanced prothrombotic and anti-thrombotic properties with endothelial cells.

  19. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Soumyaranjan; Sanger, Kuldeep; Heiskanen, Arto [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby (Denmark); Trifol, Jon; Szabo, Peter [Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Søltofts Plads, Building 229, DK-2800 Kgs. Lyngby (Denmark); Dufva, Marin; Emnéus, Jenny [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby (Denmark); Wolff, Anders, E-mail: anders.wolff@nanotech.dtu.dk [DTU Nanotech, Department of Micro- and Nanotechnology, Technical University of Denmark, Ørsteds Plads, DK-2800 Kgs. Lyngby (Denmark)

    2016-04-01

    with different polymers, making it suitable for engineering various large scale organs/tissues. - Highlights: • Fabrication of tissue engineering scaffolds with dual-pore architecture • The method combines both sacrificial 3D printing and practice leaching process. • Synthetic silicone elastomer and biodegradable poly(ϵ-caprolactone) scaffolds were fabricated. • Dual-pore scaffold can support high cell viability, distribution and functionality. • The scaffold fabrication method can be scaled up to the size of real organs.

  20. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching

    International Nuclear Information System (INIS)

    Mohanty, Soumyaranjan; Sanger, Kuldeep; Heiskanen, Arto; Trifol, Jon; Szabo, Peter; Dufva, Marin; Emnéus, Jenny; Wolff, Anders

    2016-01-01

    with different polymers, making it suitable for engineering various large scale organs/tissues. - Highlights: • Fabrication of tissue engineering scaffolds with dual-pore architecture • The method combines both sacrificial 3D printing and practice leaching process. • Synthetic silicone elastomer and biodegradable poly(ϵ-caprolactone) scaffolds were fabricated. • Dual-pore scaffold can support high cell viability, distribution and functionality. • The scaffold fabrication method can be scaled up to the size of real organs.

  1. Synthetic niches for differentiation of human embryonic stem cells bypassing embryoid body formation.

    Science.gov (United States)

    Liu, Yarong; Fox, Victoria; Lei, Yuning; Hu, Biliang; Joo, Kye-Il; Wang, Pin

    2014-07-01

    The unique self-renewal and pluripotency features of human embryonic stem cells (hESCs) offer the potential for unlimited development of novel cell therapies. Currently, hESCs are cultured and differentiated using methods, such as monolayer culture and embryoid body (EB) formation. As such, achieving efficient differentiation into higher order structures remains a challenge, as well as maintaining cell viability during differentiation into homogeneous cell populations. Here, we describe the application of highly porous polymer scaffolds as synthetic stem cell niches. Bypassing the EB formation step, these scaffolds are capable of three-dimensional culture of undifferentiated hESCs and subsequent directed differentiation into three primary germ layers. H9 hESCs were successfully maintained and proliferated in biodegradable polymer scaffolds based on poly (lactic-co-glycolic acid) (PLGA). The results showed that cells within PLGA scaffolds retained characteristics of undifferentiated pluripotent stem cells. Moreover, the scaffolds allowed differentiation towards the lineage of interest by the addition of growth factors to the culture system. The in vivo transplantation study revealed that the scaffolds could provide a microenvironment that enabled hESCs to interact with their surroundings, thereby promoting cell differentiation. Therefore, this approach, which provides a unique culture/differentiation system for hESCs, will find its utility in various stem cell-based tissue-engineering applications. © 2013 Wiley Periodicals, Inc.

  2. Polymères hydrosolubles d'origine naturelle et synthétique Relation structure/propriétés en solution Water-Soluble Polymers of Natural and Synthetic Origin. Structure/Property Relations in Solution

    Directory of Open Access Journals (Sweden)

    Muller G.

    2006-11-01

    Full Text Available Les polymères hydrosolubles utilisés dans les opérations pétrolières (forage, cimentation, stimulation, récupération assistée peuvent être d'origine très variée (polymères naturels, de fermentation, semi-synthétiques et synthétiques. Leur utilisation et leur efficacité sont directement liées à la connaissance de la relation existant entre leur structure chimique (macrostructure et microstructure et leurs propriétés en solution. Ce rapport fait la synthèse des divers types de polymères hydrosolubles qui ont un intérêt pratique et définit les paramètres structuraux et fonctionnels gouvernant leur efficacité en fonction d'un certain nombre de paramètres extérieurs (pH, salinité, température. The capacity of water-soluble polymers to modify the rheology of aqueous solutions explains their importance for various oil-recovery operations. The choice of the most appropriate polymer depends on its molecular and macromolecular properties in solution, which are closely related to the nature of their primary, secondary and tertiary structures and of their microstructure. This article describes the different types of water-soluble polymers that are of practical interest, and it defines the structural and functional parameters that govern their efficacy as a function of external parameters (pH, salinity and temperature. There are four main types of polymers, depending on their origin. They are :(a Natural biopolymers (of vegetable origin and biotechnological biopolymers (produced by microorganisms, i. e. neutral and/or charged polysaccharides. (b Modified biopolymers having synthetic side chains. (c Polyvinylsaccharides (synthetic side chains. (d Synthetic polymers. For all of them, it is indispensable to know the relationship between structure, conformation and functional properties. The solubility in water and the properties in solution of polysaccharides depend on four main factors: (i the presence of branched chains, (ii the

  3. A new biotechnology for articular cartilage repair: subchondral implantation of a composite of interconnected porous hydroxyapatite, synthetic polymer (PLA-PEG), and bone morphogenetic protein-2 (rhBMP-2).

    Science.gov (United States)

    Tamai, Noriyuki; Myoui, Akira; Hirao, Makoto; Kaito, Takashi; Ochi, Takahiro; Tanaka, Junzo; Takaoka, Kunio; Yoshikawa, Hideki

    2005-05-01

    Articular cartilage repair remains a major obstacle in tissue engineering. We recently developed a novel tool for articular cartilage repair, consisting of a triple composite of an interconnected porous hydroxyapatite (IP-CHA), recombinant human bone morphogenetic protein-2 (rhBMP-2), and a synthetic biodegradable polymer [poly-d,l-lactic acid/polyethylene glycol (PLA-PEG)] as a carrier for rhBMP-2. In the present study, we evaluated the capacity of the triple composite to induce the regeneration of articular cartilage. Full-thickness cartilage defects were created in the trochlear groove of 52 New Zealand White rabbits. Sixteen defects were filled with the bone morphogenetic protein (BMP)/PLA-PEG/IP-CHA composite (group I), 12 with PLA-PEG/IP-CHA (group II), 12 with IP-CHA alone (group III), and 12 were left empty (group IV). The animals were killed 1, 3, and 6 weeks after surgery, and the gross appearance of the defect sites was assessed. The harvested tissues were examined radiographically and histologically. One week after implantation with the BMP/PLA-PEG/IP-CHA composite (group I), vigorous repair had occurred in the subchondral defect. It contained an agglomeration of mesenchymal cells which had migrated from the surrounding bone marrow either directly, or indirectly via the interconnecting pores of the IP-CHA scaffold. At 6 weeks, these defects were completely repaired. The regenerated cartilage manifested a hyaline-like appearance, with a mature matrix and a columnar organization of chondrocytes. The triple composite of rhBMP-2, PLA-PEG, and IP-CHA promotes the repair of full-thickness articular cartilage defects within as short a period as 3 weeks in the rabbit model. Hence, this novel cell-free implant biotechnology could mark a new development in the field of articular cartilage repair.

  4. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives

    Directory of Open Access Journals (Sweden)

    Chanjuan Dong

    2016-02-01

    Full Text Available Collagen is the main structural protein of most hard and soft tissues in animals and the human body, which plays an important role in maintaining the biological and structural integrity of the extracellular matrix (ECM and provides physical support to tissues. Collagen can be extracted and purified from a variety of sources and offers low immunogenicity, a porous structure, good permeability, biocompatibility and biodegradability. Collagen scaffolds have been widely used in tissue engineering due to these excellent properties. However, the poor mechanical property of collagen scaffolds limits their applications to some extent. To overcome this shortcoming, collagen scaffolds can be cross-linked by chemical or physical methods or modified with natural/synthetic polymers or inorganic materials. Biochemical factors can also be introduced to the scaffold to further improve its biological activity. This review will summarize the structure and biological characteristics of collagen and introduce the preparation methods and modification strategies of collagen scaffolds. The typical application of a collagen scaffold in tissue engineering (including nerve, bone, cartilage, tendon, ligament, blood vessel and skin will be further provided. The prospects and challenges about their future research and application will also be pointed out.

  5. Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging.

    Science.gov (United States)

    Torres-Giner, Sergio; Wilkanowicz, Sabina; Melendez-Rodriguez, Beatriz; Lagaron, Jose M

    2017-06-07

    This work originally reports on the use of electrohydrodynamic processing (EHDP) to encapsulate Aloe vera (AV, Aloe barbadensis Miller) using both synthetic polymers, i.e., polyvinylpyrrolidone (PVP) and poly(vinyl alcohol) (PVOH), and naturally occurring polymers, i.e., barley starch (BS), whey protein concentrate (WPC), and maltodextrin. The AV leaf juice was used as the water-based solvent for EHDP, and the resultant biopolymer solution properties were evaluated to determine their effect on the process. Morphological analysis revealed that, at the optimal processing conditions, synthetic polymers mainly produced fiber-like structures, while naturally occurring polymers generated capsules. Average sizes ranged from 100 nm to above 3 μm. As a result of their different and optimal morphology and, hence, higher AV content, PVP, in the form of nanofibers, and WPC, of nanocapsules, were further selected to study the AV stability against ultraviolet (UV) light exposure. Fourier transform infrared (FTIR) spectroscopy confirmed the successful encapsulation of AV in the biopolymer matrices, presenting both encapsulants a high chemical interaction with the bioactive components. Ultraviolet-visible (UV-vis) spectroscopy showed that, while PVP nanofibers offered a poor effect on the AV degradation during UV light exposure (∼10% of stability after 5 h), WPC nanobeads delivered excellent protection (stability of >95% after 6 h). This was ascribed to positive interactions between WPC and the hydrophilic components of AV and the inherent UV-blocking and oxygen barrier properties provided by the protein. Therefore, electrospraying of food hydrocolloids interestingly appears as a novel potential nanotechnology tool toward the formulation of more stable functional foods and nutraceuticals.

  6. The scale-up of a tissue engineered porous hydroxyapatite polymer composite scaffold for use in bone repair: an ovine femoral condyle defect study.

    Science.gov (United States)

    Tayton, Edward; Purcell, Matthew; Smith, James O; Lanham, Stuart; Howdle, Steven M; Shakesheff, Kevin M; Goodship, Allen; Blunn, Gordon; Fowler, Darren; Dunlop, Douglas G; Oreffo, Richard O C

    2015-04-01

    The development of an osteogenic bone graft substitute has important practical and cost implications in many branches of medicine where bone regeneration is required. Previous in vitro and small animal (murine) in vivo studies highlighted a porous hydroxyapatite/poly (DL-lactic acid) composite scaffold in combination with skeletal stem cells (SSCs) as a potential bone graft substitute candidate. The aim of the current study was to scale up the bone cell-scaffold construct to large animals and examine the potential for repair of a critical-sized defect via an ovine model. SSC seeded scaffolds (and unseeded scaffold controls) were implanted bilaterally into ovine femoral condyle critical defects for 3 months. A parallel in vitro analysis of ovine SSC seeded scaffolds was also performed. Post mortem mechanical indentation testing showed the bone strengths of the defect sites were 20% (controls) and 11% (SSC seeded scaffolds) those of normal cancellous bone (p scaffolds over the SSC seeded scaffolds (p = 0.14). Histological examination confirmed these findings, with enhanced quality new bone within the control defects. This study highlights important issues and steps to overcome in scale-up and translation of tissue engineered products. The scaffold demonstrated encouraging results as an osteoconductive matrix; however, further work is required with cellular protocols before any human trials. © 2014 Wiley Periodicals, Inc.

  7. Fabrication of Chitin/Poly(butylene succinate/Chondroitin Sulfate Nanoparticles Ternary Composite Hydrogel Scaffold for Skin Tissue Engineering

    Directory of Open Access Journals (Sweden)

    S. Deepthi

    2014-12-01

    Full Text Available Skin loss is one of the oldest and still not totally resolved problems in the medical field. Since spontaneous healing of the dermal defects would not occur, the regeneration of full thickness of skin requires skin substitutes. Tissue engineering constructs would provide a three dimensional matrix for the reconstruction of skin tissue and the repair of damage. The aim of the present work is to develop a chitin based scaffold, by blending it with poly(butylene succinate (PBS, an aliphatic, biodegradable and biocompatible synthetic polymer with excellent mechanical properties. The presence of chondroitin sulfate nanoparticles (CSnp in the scaffold would favor cell adhesion. A chitin/PBS/CSnp composite hydrogel scaffold was developed and characterized by SEM (Scanning Electron Microscope, FTIR (Fourier Transform Infrared Spectroscopy, and swelling ratio of scaffolds were analyzed. The scaffolds were evaluated for the suitability for skin tissue engineering application by cytotoxicity, cell attachment, and cell proliferation studies using human dermal fibroblasts (HDF. The cytotoxicity and cell proliferation studies using HDF confirm the suitability of the scaffold for skin regeneration. In short, these results show promising applicability of the developed chitin/PBS/CSnps ternary composite hydrogel scaffolds for skin tissue regeneration.

  8. Neutral and anionic duality of 1,2,4-triazole α-amino acid scaffold in 1D coordination polymers

    International Nuclear Information System (INIS)

    Naik, Anil D.; Dîrtu, Marinela M.; Garcia, Yann

    2012-01-01

    A tiny supramolecular synthon, 4H-1,2,4-triazol-4-yl acetic acid (HGlytrz) which is bifunctional by design having an electronic asymmetry and conformational flexibility has been introduced to synthesize iron(II) complexes. Having 1,2,4-triazole or carboxylic extremities on the same framework HGlytrz could display dual functionality by acting as a neutral as well as anionic ligand based on the possibility of deprotonation of carboxylic group. Four new iron(II) HGlytrz complexes with ClO 4 - (1), NO 3 -bar (2), BF 4 - (3) and CF 3 SO 3b ar (4) anions were prepared. Formulation of their composition which is complicated due to ligand deprotonation is discussed. Unlike its ester protected counterpart ethyl-4H-1,2,4-triazol-4-yl-acetate (αGlytrz) which show hysteretic room temperature spin crossover, 1–4 remain in the high-spin state as revealed by 57 Mössbauer spectroscopy. Prospects of such 1D coordination polymers with dangling unbounded carboxylic entities in the realm of self-assembled monolayer (SAM) are discussed.

  9. Neutral and anionic duality of 1,2,4-triazole {alpha}-amino acid scaffold in 1D coordination polymers

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Anil D.; Dirtu, Marinela M.; Garcia, Yann, E-mail: yann.garcia@uclouvain.be [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, MOST - Inorganic Chemistry (Belgium)

    2012-03-15

    A tiny supramolecular synthon, 4H-1,2,4-triazol-4-yl acetic acid (HGlytrz) which is bifunctional by design having an electronic asymmetry and conformational flexibility has been introduced to synthesize iron(II) complexes. Having 1,2,4-triazole or carboxylic extremities on the same framework HGlytrz could display dual functionality by acting as a neutral as well as anionic ligand based on the possibility of deprotonation of carboxylic group. Four new iron(II) HGlytrz complexes with ClO{sub 4{sup -}} (1), NO{sub 3}-bar (2), BF{sub 4{sup -}} (3) and CF{sub 3}SO{sub 3b}ar (4) anions were prepared. Formulation of their composition which is complicated due to ligand deprotonation is discussed. Unlike its ester protected counterpart ethyl-4H-1,2,4-triazol-4-yl-acetate ({alpha}Glytrz) which show hysteretic room temperature spin crossover, 1-4 remain in the high-spin state as revealed by {sup 57}Moessbauer spectroscopy. Prospects of such 1D coordination polymers with dangling unbounded carboxylic entities in the realm of self-assembled monolayer (SAM) are discussed.

  10. A Metathesis Route to Light Harvesting Polymers for Organic Solar Cells

    Science.gov (United States)

    Speros, Joshua Cole

    Conjugated polymers (CPs), macromolecules consisting of alternating single and double bonds, are of tremendous interest to the scientific community considering their applications in field-effect transistors, light-emitting diodes, sensors, and organic photovoltaics (OPVs). OPVs are an area of particular interest because cost-effective solution processing techniques can be employed to prepare flexible large-area light harvesting devices. In addition, light absorption and charge transport characteristics may be tuned by synthetically altering the CP scaffold. This dissertation describes the synthesis of a variety of CPs prepared by acyclic diene metathesis (ADMET) polymerization using versatile ruthenium-based Grubbs catalysts. All polymers were based on the low band gap poly(thienylene vinylene) (PTV) scaffold. The influence of polymer molecular weight, composition, and repeat unit architecture on both individual polymer behavior and OPV performance was investigated systematically.

  11. Polymeric scaffolds as stem cell carriers in bone repair.

    Science.gov (United States)

    Rossi, Filippo; Santoro, Marco; Perale, Giuseppe

    2015-10-01

    Although bone has a high potential to regenerate itself after damage and injury, the efficacious repair of large bone defects resulting from resection, trauma or non-union fractures still requires the implantation of bone grafts. Materials science, in conjunction with biotechnology, can satisfy these needs by developing artificial bones, synthetic substitutes and organ implants. In particular, recent advances in polymer science have provided several innovations, underlying the increasing importance of macromolecules in this field. To address the increasing need for improved bone substitutes, tissue engineering seeks to create synthetic, three-dimensional scaffolds made from polymeric materials, incorporating stem cells and growth factors, to induce new bone tissue formation. Polymeric materials have shown a great affinity for cell transplantation and differentiation and, moreover, their structure can be tuned in order to maintain an adequate mechanical resistance and contemporarily be fully bioresorbable. This review emphasizes recent progress in polymer science that allows relaible polymeric scaffolds to be synthesized for stem cell growth in bone regeneration. Copyright © 2013 John Wiley & Sons, Ltd.

  12. A General Synthetic Procedure for 2-chloromethyl-4(3H-quinazolinone Derivatives and Their Utilization in the Preparation of Novel Anticancer Agents with 4-Anilinoquinazoline Scaffolds

    Directory of Open Access Journals (Sweden)

    Ying-Lan Zhao

    2010-12-01

    Full Text Available In our ongoing research on novel anticancer agents with 4-anilinoquinazoline scaffolds, a series of novel 2-chloromethyl-4(3H-quinazolinones were needed as key intermediates. An improved one-step synthesis of 2-chloromethyl-4(3H-quinazolinones utilizing o-anthranilic acids as starting materials was described. Based on it, 2-hydroxy-methyl-4(3H-quinazolinones were conveniently prepared in one pot. Moreover, two novel 4-anilinoquinazoline derivatives substituted with chloromethyl groups at the 2-position were synthesized and showed promising anticancer activity in vitro.

  13. A three-dimensional multiporous fibrous scaffold fabricated with regenerated spider silk protein/poly(l-lactic acid) for tissue engineering.

    Science.gov (United States)

    Yu, Qiaozhen; Sun, Chengjun

    2015-02-01

    An axially aligned three-dimensional (3-D) fibrous scaffold was fabricated with regenerated spider silk protein (RSSP)/poly (l-lactic acid) (PLLA) through electrospinning and post treatment. The morphology, mechanical and degradation properties of the scaffold were controlled through the weight ratio of RSSP to PLLA, the thickness of the scaffold and the treatment time. The scaffold with a weight ratio of 2:3 (RSSP:PLLA) had a nanoleaves-on-nanofibers hierarchical nanostructure; the length and thickness of the nanoleaves were about 400 and 30 nm, respectively. The holes of the scaffolds ranged from hundreds of nanometers to several microns. The scaffold showed an ideal mechanical property that it was stiff when dry, but became soft once hydrated in the culture medium. Its degradation rate was very slow in the first 2 months, and then accelerated in the following 2 months. The pH values of the degradation mediums of all the samples remained in the range of 7.40-7.12 during degradation for 6 months. It had good biocompatibility with PC 12 cells. The aligned hierarchical nanostructure could guide the directions of the axon extension. This scaffold has a potential application in Tissue Engineering and controlled release. This study provides a method to produce synthetic or natural biodegradable polymer scaffold with tailored morphology, mechanical, and degradation properties. © 2014 Wiley Periodicals, Inc.

  14. Formation of Nanofibrous Matrices, Three-Dimensional Scaffolds, and Microspheres: From Theory to Practice

    Science.gov (United States)

    Ma, Chi

    2017-01-01

    Nanofibrous architecture presents unique biophysical cues to facilitate cellular responses and is considered an indispensable feature of a biomimetic three-dimensional (3D) scaffold and cell carrier. While electrospinning is a widely used method to prepare natural extracellular matrix-like nanofibers, it faces significant challenges to incorporate nanofibrous architecture into well-defined macroporous 3D scaffolds or injectable microspheres. Here we report a nonelectrospinning approach that is effective at generating nanofibers from a variety of synthetic and natural biodegradable polymers and integrating these nanofibers into (1) 3D scaffolds with constructive geometry and designed internal macropore structures; and (2) injectable microspheres. Our approach to generating polymer nanofibers is based on the control of polymer–solvent interaction parameter χp-s. We obtained the χp-s and solvent composition phase diagrams of different temperatures according to the Flory–Huggins classic lattice model and the Hildebrand-Scott solubility parameter equation. A critical polymer–solvent interaction parameter χcrit was introduced as a criterion to predict phase separation and nanofiber formation. To test the effectiveness of our approach, a total of 15 widely used biodegradable polymers were selected and successfully fabricated into nanofibrous matrices. Furthermore, macroporous nanofibrous 3D scaffolds with complex architecture and nanofibrous injectable microspheres were generated from those biodegradable polymers by combining our method with other processes. Our approach is universally effective to fabricate nanofibrous matrices from any polymeric materials. This work, therefore, greatly expands our ability to design appropriate biomimetic 3D scaffolds and injectable cell carriers for advanced regenerative therapies. PMID:27923327

  15. Molecularly imprinted polymers with synthetic dummy templates for the preparation of capsaicin and dihydrocapsaicin from chili peppers.

    Science.gov (United States)

    Ma, Xiuli; Ji, Wenhua; Chen, Lingxiao; Wang, Xiao; Liu, Jianhua; Wang, Xueyong

    2015-01-01

    In this work, dummy molecularly imprinted polymers with high selectivity and affinity to capsaicin and dihydrocapsaicin are designed using N-vanillylnonanamide as a dummy template. The performance of dummy molecularly imprinted polymers and nonimprinted polymers was evaluated using adsorption isotherms, adsorption kinetics, and selective recognition capacity. Dummy molecularly imprinted polymers were found to exhibit good site accessibility, taking just 20 min to achieve adsorption equilibrium; they were also highly selective toward capsaicin and dihydrocapsaicin. We successfully used dummy molecularly imprinted polymers as a specific sorbent for selectively enriching capsaicin and dihydrocapsaicin from chili pepper samples. In a scaled-up experiment, the selective recovery of capsaicinoids was calculated to be 77.8% using solid-phase extraction. To the best of our knowledge, this is the first example of the use of N-vanillylnonanamide as a dummy template in molecularly imprinted polymers to simultaneously enrich capsaicin and dihydrocapsaicin. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering.

    Science.gov (United States)

    Yang, Kai; Zhang, Jing; Ma, Xiaoyu; Ma, Yifan; Kan, Chao; Ma, Haiyan; Li, Yulin; Yuan, Yuan; Liu, Changsheng

    2015-11-01

    Despite good biocompatibility and osteoconductivity, porous β-TCP scaffolds still lack the structural stability and mechanical robustness, which greatly limit their application in the field of bone regeneration. The hybridization of β-TCP with conventional synthetic biodegradable PLA and PCL only produced a limited toughening effect due to the plasticity of the polymers in nature. In this study, a β-TCP/poly(glycerol sebacate) scaffold (β-TCP/PGS) with well interconnected porous structure and robust mechanical property was prepared. Porous β-TCP scaffold was first prepared with polyurethane sponge as template and then impregnated into PGS pre-polymer solution with moderate viscosity, followed by in situ heat crosslinking and freezing-drying process. The results indicated that the freezing-drying under vacuum process could further facilitate crosslinking of PGS and formation of Ca(2+)-COO(-) ionic complexing and thus synergistically improved the mechanical strength of the β-TCP/PGS with in situ heat crosslinking. Particularly, the β-TCP/PGS with 15% PGS content after heat crosslinking at 130°C and freezing-drying at -50°C under vacuum exhibited an elongation at break of 375±25% and a compressive strength of 1.73MPa, 3.7-fold and 200-fold enhancement compared to the β-TCP, respectively. After the abrupt drop of compressive load, the β-TCP/PGS scaffolds exhibited a full recovery of their original shape. More importantly, the PGS polymer in the β-TCP/PGS scaffolds could direct the biomineralization of Ca/P from particulate shape into a nanofiber-interweaved structure. Furthermore, the β-TCP/PGS scaffolds allowed for cell penetration and proliferation, indicating a good cytobiocompatibility. It is believed that β-TCP/PGS scaffolds have great potential application in rigid tissue regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Optimization of a synthetic receptor for dimethyllysine using a biphenyl-2,6-dicarboxylic acid scaffold: insights into selective recognition of hydrophilic guests in water.

    Science.gov (United States)

    Gober, Isaiah N; Waters, Marcey L

    2017-09-26

    In the design of small molecule receptors for polar guests, much inspiration has been taken from proteins that have adapted effective ways to selectively bind polar molecules in aqueous environments. Nonetheless, molecular recognition of hydrophilic guests in water by synthetic receptors remains a challenging task. Here we report a new synthetic receptor, A2I, with improved affinity and selectivity for a biologically important polar guest, dimethyllysine (Kme2). A2I was prepared via redesign of a small molecule receptor (A2B) that preferentially binds trimethyllysine (Kme3) using dynamic combinatorial chemistry (DCC). We designed a new biphenyl-2,6-dicarboxylate monomer, I, with the goal of creating a buried salt bridge with Kme2 inside a synthetic receptor. Indeed, incorporation of I into the receptor A2I resulted in a receptor with 32-fold enhancement in binding affinity, which represents the highest affinity receptor for Kme2 in the context of a peptide to date and is tighter than most Kme2 reader proteins. It also exhibits a ∼2.5-fold increase in preference for Kme2 vs. Kme3 relative to the parent receptor, A2B. This work provides insight into effective strategies for binding hydrophilic, cationic guests in water and is an encouraging result toward a synthetic receptor that selectively binds Kme2 over other methylation states of lysine.

  18. Direct observation of the ultrafast electron transfer process in a polymer/fullerene blend. : Section Title: Physical Properties of Synthetic High Polymers

    NARCIS (Netherlands)

    Brabec, Ch J.; Zerza, G.; Sariciftci, N. S.; Cerullo, G.; Lanzani, G.; De Silvestri, S.; Hummelen, J. C.

    2001-01-01

    Optical studies on conjugated polymer-fullerene blends are performed with sub-10-fs temporal resoln. The photoinduced electron transfer process is directly monitored in the time domain, obtaining a forward electron transfer time const. of 45 fs. [on SciFinder(R)

  19. Electrospun nanofiber scaffolds: engineering soft tissues

    International Nuclear Information System (INIS)

    Kumbar, S G; Nukavarapu, S P; Laurencin, C T; James, R

    2008-01-01

    Electrospinning has emerged to be a simple, elegant and scalable technique to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetics have been successfully electrospun into nanofiber matrices. Physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters to meet the requirements of a specific application. Such efforts include the fabrication of fiber matrices containing nanofibers, microfibers, combination of nano-microfibers and also different fiber orientation/alignments. Polymeric nanofiber matrices have been extensively investigated for diversified uses such as filtration, barrier fabrics, wipes, personal care, biomedical and pharmaceutical applications. Recently electrospun nanofiber matrices have gained a lot of attention, and are being explored as scaffolds in tissue engineering due to their properties that can modulate cellular behavior. Electrospun nanofiber matrices show morphological similarities to the natural extra-cellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratio, high porosity and variable pore-size distribution. Efforts have been made to modify nanofiber surfaces with several bioactive molecules to provide cells with the necessary chemical cues and a more in vivo like environment. The current paper provides an overlook on such efforts in designing nanofiber matrices as scaffolds in the regeneration of various soft tissues including skin, blood vessel, tendon/ligament, cardiac patch, nerve and skeletal muscle

  20. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Kai [The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Zhang, Jing; Ma, Xiaoyu; Ma, Yifan; Kan, Chao [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Ma, Haiyan [Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Li, Yulin, E-mail: yulinli@ecust.edu.cn [Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Yuan, Yuan, E-mail: yyuan@ecust.edu.cn [The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Liu, Changsheng, E-mail: liucs@ecust.edu.cn [The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China)

    2015-11-01

    Despite good biocompatibility and osteoconductivity, porous β-TCP scaffolds still lack the structural stability and mechanical robustness, which greatly limit their application in the field of bone regeneration. The hybridization of β-TCP with conventional synthetic biodegradable PLA and PCL only produced a limited toughening effect due to the plasticity of the polymers in nature. In this study, a β-TCP/poly(glycerol sebacate) scaffold (β-TCP/PGS) with well interconnected porous structure and robust mechanical property was prepared. Porous β-TCP scaffold was first prepared with polyurethane sponge as template and then impregnated into PGS pre-polymer solution with moderate viscosity, followed by in situ heat crosslinking and freezing–drying process. The results indicated that the freezing–drying under vacuum process could further facilitate crosslinking of PGS and formation of Ca{sup 2+}–COO{sup −} ionic complexing and thus synergistically improved the mechanical strength of the β-TCP/PGS with in situ heat crosslinking. Particularly, the β-TCP/PGS with 15% PGS content after heat crosslinking at 130 °C and freezing–drying at − 50 °C under vacuum exhibited an elongation at break of 375 ± 25% and a compressive strength of 1.73 MPa, 3.7-fold and 200-fold enhancement compared to the β-TCP, respectively. After the abrupt drop of compressive load, the β-TCP/PGS scaffolds exhibited a full recovery of their original shape. More importantly, the PGS polymer in the β-TCP/PGS scaffolds could direct the biomineralization of Ca/P from particulate shape into a nanofiber-interweaved structure. Furthermore, the β-TCP/PGS scaffolds allowed for cell penetration and proliferation, indicating a good cytobiocompatibility. It is believed that β-TCP/PGS scaffolds have great potential application in rigid tissue regeneration. - Graphical abstract: Robust β-TCP/PGS porous scaffolds are developed by incorporation of poly(glycerol sebacate) (PGS, a flexible

  1. What Makes the Optimal Wound Healing Material? A Review of Current Science and Introduction of a Synthetic Nanofabricated Wound Care Scaffold.

    Science.gov (United States)

    MacEwan, Matthew R; MacEwan, Sarah; Kovacs, Tamas R; Batts, Joel

    2017-10-02

    Wound matrix materials are used to improve the regeneration of dermal and epidermal layers in both acute and chronic wounds. Contemporary wound matrices are primarily composed of biologic materials such as processed xenogeneic and allogeneic tissues. Unfortunately, existing biologic wound matrices possess multiple limitations including poor longevity, durability, strength, and enzymatic resistance required for persistent support for new tissue formation. A fully-synthetic, resorbable electrospun material (Restrata Wound Matrix, Acera, St.Louis, Missouri ) that exhibits structural similarities to the native extracellular matrix offers a new approach to the treatment of acute and chronic wounds. This novel matrix is the first product to combine the advantages of synthetic construction (e.g. resistance to enzymatic degradation, excellent biocompatibility, strength/durability and controlled degradation) with the positive attributes of biologic materials (e.g. biomimetic architecture similar to human extracellular matrix (ECM), fibrous architecture optimized to support cellular migration and proliferation, engineered porosity to encourage tissue ingrowth and vascularization). These features allow RWM to achieve rapid and complete healing of full-thickness wounds that, in preclinical studies, is comparable to Integra Bilayer Wound Matrix (Integra LifeSciences, Plainsboro, New Jersey), a gold standard biologic material with diverse clinical indications in the wound care. Together, this review suggests that the RWM offers a unique fully-synthetic alternative to existing biologic matrices that is effective, widely available, easy to store, simple to apply and low cost.

  2. In vitro chondrogenesis with lysozyme susceptible bacterial cellulose as a scaffold.

    Science.gov (United States)

    Yadav, Vikas; Sun, Lin; Panilaitis, Bruce; Kaplan, David L

    2015-12-01

    A current focus of tissue engineering is the use of adult human mesenchymal stem cells (hMSCs) as an alternative to autologous chondrocytes for cartilage repair. Several natural and synthetic polymers (including cellulose) have been explored as a biomaterial scaffold for cartilage tissue engineering. While bacterial cellulose (BC) has been used in tissue engineering, its lack of degradability in vivo and high crystallinity restricts widespread applications in the field. Recently we reported the formation of a novel bacterial cellulose that is lysozyme-susceptible and -degradable in vivo from metabolically engineered Gluconacetobacter xylinus. Here we report the use of this modified bacterial cellulose (MBC) for cartilage tissue engineering using hMSCs. MBC's glucosaminoglycan-like chemistry, combined with in vivo degradability, suggested opportunities to exploit this novel polymer in cartilage tissue engineering. We have observed that, like BC, MBC scaffolds support cell attachment and proliferation. Chondrogenesis of hMSCs in the MBC scaffolds was demonstrated by real-time RT-PCR analysis for cartilage-specific extracellular matrix (ECM) markers (collagen type II, aggrecan and SOX9) as well as histological and immunohistochemical evaluations of cartilage-specific ECM markers. Further, the attachment, proliferation, and differentiation of hMSCs in MBC showed unique characteristics. For example, after 4 weeks of cultivation, the spatial cell arrangement and collagen type-II and ACAN distribution resembled those in native articular cartilage tissue, suggesting promise for these novel in vivo degradable scaffolds for chondrogenesis. Copyright © 2013 John Wiley & Sons, Ltd.

  3. Synthetic biocompatible polymers are an effective delivery platform that elicits potent antibody responses against HIV-1 glycopeptide immunogens

    Czech Academy of Sciences Publication Activity Database

    Francica, J.; Lynn, G.; Laga, Richard; Aussedat, B.; Meyerhoff, R.; Alam, M.; Danishefsky, S.; Haynes, B.; Seder, R.

    2016-01-01

    Roč. 32, Supplement 1 (2016), s. 221-P07.27 ISSN 0889-2229. [Conference on HIV Research for Prevention - HIV R4P. 17.10.2016-21.10.2016, Chicago] Institutional support: RVO:61389013 Keywords : biocompatible polymers * druh delivery Subject RIV: CD - Macromolecular Chemistry

  4. Design, fabrication and perivascular implantation of bioactive scaffolds engineered with human adventitial progenitor cells for stimulation of arteriogenesis in peripheral ischemia

    International Nuclear Information System (INIS)

    Carrabba, M; De Maria, C; Vozzi, G; Oikawa, A; Reni, C; Rodriguez-Arabaolaza, I; Spencer, H; Slater, S; Avolio, E; Dang, Z; Madeddu, P; Spinetti, G

    2016-01-01

    Cell therapy represents a promising option for revascularization of ischemic tissues. However, injection of dispersed cells is not optimal to ensure precise homing into the recipient’s vasculature. Implantation of cell-engineered scaffolds around the occluded artery may obviate these limitations. Here, we employed the synthetic polymer polycaprolactone for fabrication of 3D woodpile- or channel-shaped scaffolds by a computer-assisted writing system (pressure assisted micro-syringe square), followed by deposition of gelatin (GL) nanofibers by electro-spinning. Scaffolds were then cross-linked with natural (genipin, GP) or synthetic (3-glycidyloxy-propyl-trimethoxy-silane, GPTMS) agents to improve mechanical properties and durability in vivo. The composite scaffolds were next fixed by crown inserts in each well of a multi-well plate and seeded with adventitial progenitor cells (APCs, 3 cell lines in duplicate), which were isolated/expanded from human saphenous vein surgical leftovers. Cell density, alignment, proliferation and viability were assessed 1 week later. Data from in vitro assays showed channel-shaped/GPTMS-crosslinked scaffolds confer APCs with best alignment and survival/growth characteristics. Based on these results, channel-shaped/GPTMS-crosslinked scaffolds with or without APCs were implanted around the femoral artery of mice with unilateral limb ischemia. Perivascular implantation of scaffolds accelerated limb blood flow recovery, as assessed by laser Doppler or fluorescent microspheres, and increased arterial collaterals around the femoral artery and in limb muscles compared with non-implanted controls. Blood flow recovery and perivascular arteriogenesis were additionally incremented by APC-engineered scaffolds. In conclusion, perivascular application of human APC-engineered scaffolds may represent a novel option for targeted delivery of therapeutic cells in patients with critical limb ischemia. (paper)

  5. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Chia-Tze [School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan (China); Department of Stomatology, Chung Shan Medical University Hospital, Taichung City, Taiwan (China); Lin, Chi-Chang [Department of Chemical and Materials Engineering, Tunghai University, Taichung City, Taiwan (China); Chen, Yi-Wen; Yeh, Chia-Hung [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China); Fang, Hsin-Yuan [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China); Department of Thoracic Surgery, China Medical University Hospital, Taichung City, Taiwan (China); School of Medicine, College of Medicine, College of Public Health, Taichung City, Taiwan (China); Shie, Ming-You, E-mail: eviltacasi@gmail.com [3D Printing Medical Research Center, China Medical University Hospital, Taichung City, Taiwan (China)

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. - Highlights: • A simple method of 3D printed poly(lactic acid) scaffold coated with PDA • Promoted proliferation of hADSCs on PDA/PLA scaffolds • Increased collagen I, cell cycle, and cell adhesion with a high PDA content • Up-regulation of angiogenic and osteogenic of hADSCs • A promising method for bioinspired surface modification on PLA using PDA.

  6. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering

    International Nuclear Information System (INIS)

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-01-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. - Highlights: • A simple method of 3D printed poly(lactic acid) scaffold coated with PDA • Promoted proliferation of hADSCs on PDA/PLA scaffolds • Increased collagen I, cell cycle, and cell adhesion with a high PDA content • Up-regulation of angiogenic and osteogenic of hADSCs • A promising method for bioinspired surface modification on PLA using PDA

  7. Functionalisation and surface modification of electrospun polylactic acid scaffold for tissue engineering.

    Science.gov (United States)

    Hoveizi, Elham; Nabiuni, Mohammad; Parivar, Kazem; Rajabi-Zeleti, Sareh; Tavakol, Shima

    2014-01-01

    Repair or replacement of damaged tissues using tissue engineering technology is considered to be a fine solution for enhanced treatment of different diseases such as skin diseases. Although the nanofibers made of synthetic degradable polymers, such as polylactic acid (PLA), have been widely used in the medical field, they do not favour cellular adhesion and proliferation. To enhance cell adherence on scaffold and improve biocompatibility, the surface of PLA scaffold was modified by gelatin in our experiments. For electrospinning, PLA and gelatin were dissolved in hexafluoroisopropanol (HFIP) solvent at varying compositions (PLA:gelatin at 3:7 and 7:3). The properties of the blending nanofiber scaffold were investigated by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Modified PLA/gelatin 7/3 scaffold is more suitable for fibroblasts attachment and viability than the PLA or gelatin nanofiber alone. Thus fibroblast cultured on PLA/gelatin scaffold could be an alternative way to improve skin wound healing. © 2013 International Federation for Cell Biology.

  8. Direct Ink Writing of Highly Porous and Strong Glass Scaffolds for Load-bearing Bone Defects Repair and Regeneration

    Science.gov (United States)

    Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P.

    2011-01-01

    The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires development of porous and high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work, bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inkswere optimized for the printing of features as fine as 30 μm and of the three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds show a compressive strength (136 ± 22 MPa) comparable to that of human cortical bone (100-150 MPa), while the porosity (60%) is in the range of that of trabecular bone (50-90%).The strength is ~100 times that of polymer scaffolds and 4–5 times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in an SBF, the value (77 MPa) is still far above that of trabecular bone after three weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. PMID:21745606

  9. Direct ink writing of highly porous and strong glass scaffolds for load-bearing bone defects repair and regeneration.

    Science.gov (United States)

    Fu, Qiang; Saiz, Eduardo; Tomsia, Antoni P

    2011-10-01

    The quest for synthetic materials to repair load-bearing bone lost because of trauma, cancer, or congenital bone defects requires the development of porous, high-performance scaffolds with exceptional mechanical strength. However, the low mechanical strength of porous bioactive ceramic and glass scaffolds, compared with that of human cortical bone, has limited their use for these applications. In the present work bioactive 6P53B glass scaffolds with superior mechanical strength were fabricated using a direct ink writing technique. The rheological properties of Pluronic® F-127 (referred to hereafter simply as F-127) hydrogel-based inks were optimized for the printing of features as fine as 30 μm and of three-dimensional scaffolds. The mechanical strength and in vitro degradation of the scaffolds were assessed in a simulated body fluid (SBF). The sintered glass scaffolds showed a compressive strength (136 ± 22 MPa) comparable with that of human cortical bone (100-150 MPa), while the porosity (60%) was in the range of that of trabecular bone (50-90%). The strength is ~100-times that of polymer scaffolds and 4-5-times that of ceramic and glass scaffolds with comparable porosities. Despite the strength decrease resulting from weight loss during immersion in SBF, the value (77 MPa) is still far above that of trabecular bone after 3 weeks. The ability to create both porous and strong structures opens a new avenue for fabricating scaffolds for load-bearing bone defect repair and regeneration. Published by Elsevier Ltd.

  10. Synthetic sustained gene delivery systems.

    Science.gov (United States)

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  11. Single-Molecule Luminescence and High Efficiency Photovoltaic Cells Based on Percolated Conducting Carbon Nanotubes Scaffolds Templated with Light-Harvesting Conjugated Polymers and Nanohybrids

    National Research Council Canada - National Science Library

    Yang, Arnold C

    2009-01-01

    .... Nanocomposites constructed by surface-grafted multiwall carbon nanotubes (CNTs) with conjugated polymers dispersed in a polymer matrix were synthesized to form novel optoelectronic materials that exploit single-molecule effects...

  12. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    Energy Technology Data Exchange (ETDEWEB)

    Papa, Antonio [Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), V.le Kennedy 54, Naples 80125 (Italy); IMAST SCaRL, Piazza Bovio 22, 80133 Naples (Italy); Guarino, Vincenzo, E-mail: vincenzo.guarino@cnr.it; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi [Institute for Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), V.le Kennedy 54, Naples 80125 (Italy)

    2015-12-17

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  13. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    International Nuclear Information System (INIS)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-01-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response

  14. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    Science.gov (United States)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-12-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  15. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering.

    Science.gov (United States)

    Zhu, Congcong; Ninh, Chi; Bettinger, Christopher J

    2014-10-13

    Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.

  16. Evaluation of bone marrow stem cell response to PLA scaffolds manufactured by 3D printing and coated with polydopamine and type I collagen.

    Science.gov (United States)

    Teixeira, Bruna Nunes; Aprile, Paola; Mendonça, Roberta H; Kelly, Daniel J; Thiré, Rossana Mara da Silva Moreira

    2018-02-26

    The majority of synthetic polymers used in 3 D printing are not designed to promote specific cellular interactions and hence possess limited bioactivity. Most of the strategies proposed to overcome this limitation demand multiple and expensive processing steps. This study aimed to evaluate the surface modification of 3D-printed poly(lactic acid) (PLA) scaffolds with polydopamine (PDA) coating as an alternative strategy to enhance their bioactivity and to facilitate the immobilization of type I collagen (COL I) onto the implant surface. Physical and chemical properties of PLA scaffolds coated with PDA, COL I or both were evaluated. The response of porcine bone marrow stem cells (MSCs) to the coatings was also investigated. The PDA layer improved COL immobilization onto the surface of the PLA scaffolds by 92%. The combination of PDA and COL functionalizations provided the best conditions for early-stage (PLA and PDA plus COL-coated scaffolds by day 21, cells seeded onto PDA plus COL scaffolds produced substantially higher amounts of alkaline phosphatase. These results indicate that the osteoinductivity of 3D-printed PLA scaffolds can be enhanced by PDA and type I collagen coatings. This surface modification of polymeric scaffolds represents a promising strategy for bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  17. Synthetic approaches to parabens molecularly imprinted polymers and their applications to the solid-phase extraction of river water samples.

    Science.gov (United States)

    Beltran, A; Marcé, R M; Cormack, P A G; Borrull, F

    2010-09-10

    In this paper we describe the synthesis, characterisation and use of two distinct molecularly imprinted polymers (MIPs) prepared using esters of p-hydroxybenzoic acid (parabens) as templates: one MIP was synthesised by precipitation polymerisation using a semi-covalent molecularly imprinting strategy with methyl paraben as the template/target (MIP 1); the second MIP was prepared in monolithic form through a conventional non-covalent molecular imprinting strategy, with butyl paraben as the template (MIP 2). MIP 1 recognized methyl paraben, showed cross-selectivity for other parabens analytes used in the study and higher affinity towards these compounds than did a non-imprinted control polymer. Similarly, MIP 2 demonstrated higher affinity towards paraben analytes than a non-imprinted control polymer. For the analysis of environmental water samples, a solid-phase extraction (SPE) protocol was developed using MIP 2 as sorbent, and results were compared to a SPE using a commercial sorbent (Oasis HLB). With MIP 2 as sorbent and butyl paraben as target, when percolating 500 mL of river water spiked at 1 μg L(-1) through the SPE cartridge, and using 1 mL of isopropanol as cleaning solvent, a higher recovery of butyl 4-hydroxybenzoate (butyl paraben) and a cleaner chromatogram where achievable when using the MIP compared to the commercial sorbent. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Designing polymers with sugar-based advantages for bioactive delivery applications.

    Science.gov (United States)

    Zhang, Yingyue; Chan, Jennifer W; Moretti, Alysha; Uhrich, Kathryn E

    2015-12-10

    Sugar-based polymers have been extensively explored as a means to increase drug delivery systems' biocompatibility and biodegradation. Here,we review he use of sugar-based polymers for drug delivery applications, with a particular focus on the utility of the sugar component(s) to provide benefits for drug targeting and stimuli responsive systems. Specifically, numerous synthetic methods have been developed to reliably modify naturally-occurring polysaccharides, conjugate sugar moieties to synthetic polymer scaffolds to generate glycopolymers, and utilize sugars as a multifunctional building block to develop sugar-linked polymers. The design of sugar-based polymer systems has tremendous implications on both the physiological and biological properties imparted by the saccharide units and are unique from synthetic polymers. These features include the ability of glycopolymers to preferentially target various cell types and tissues through receptor interactions, exhibit bioadhesion for prolonged residence time, and be rapidly recognized and internalized by cancer cells. Also discussed are the distinct stimuli-sensitive properties of saccharide-modified polymers to mediate drug release under desired conditions. Saccharide-based systems with inherent pH- and temperature-sensitive properties, as well as enzyme-cleavable polysaccharides for targeted bioactive delivery, are covered. Overall, this work emphasizes inherent benefits of sugar-containing polymer systems for bioactive delivery.

  19. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering.

    Science.gov (United States)

    Storrie, Hannah; Mooney, David J

    2006-07-07

    The encapsulation of DNA into polymeric depot systems can be used to spatially and temporally control DNA release, leading to a sustained, local delivery of therapeutic factors for tissue regeneration. Prior to encapsulation, DNA may be condensed with cationic polymers to decrease particle size, protect DNA from degradation, promote interaction with cell membranes, and facilitate endosomal release via the proton sponge effect. DNA has been encapsulated with either natural or synthetic polymers to form micro- and nanospheres, porous scaffolds and hydrogels for sustained DNA release and the polymer physical and chemical properties have been shown to influence transfection efficiency. Polymeric depot systems have been applied for bone, skin, and nerve regeneration as well as therapeutic angiogenesis, indicating the broad applicability of these systems for tissue engineering.

  20. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality : Effect of sample preparation on MALDI-MS of synthetic polymers

    NARCIS (Netherlands)

    Kooijman, Pieter C.; Kok, Sander; Honing, Maarten

    2017-01-01

    Rationale: Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the

  1. A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods.

    Science.gov (United States)

    Namini, Mojdeh Salehi; Bayat, Neda; Tajerian, Roxana; Ebrahimi-Barough, Somayeh; Azami, Mahmoud; Irani, Shiva; Jangjoo, Saranaz; Shirian, Sadegh; Ai, Jafar

    2018-03-27

    An engineered tissue structure is an artificial scaffold combined with cells and signaling factors. Among various polymers, the polylactide-co-glycolide/hydroxyapatite (PLGA/HA) has attracted much attention due to their optimal properties. The aim of this study was to study the behavior of human endometrial stem cell (hEnSC)-derived osteoblast cells cultured on PLGA/HA nanocomposite scaffolds. hEnSCs were isolated and exposed to osteogenic media for 21 days. Differentiated cells were cultured on PLGA/HA synthetic scaffolds. The PLGA/HA-based nanocomposite scaffolds were fabricated using either electrospinning or freeze-drying methods. Behavior of the cells was evaluated a week after seeding hEnSC-derived osteoblast-like cells on these scaffolds. Osteogenesis was investigated in terms of alkaline phosphatase activity, gene expression, immunocytochemistry (ICC), proliferation, and scanning electron microscopy (SEM). Moreover, scaffold properties, such as pore size and morphology of the cells, onto the scaffolds were evaluated using SEM. Furthermore, biocompatibility of these scaffolds was confirmed by 3-(4,5-dimethylthiazoyl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The matrix mineralization was proved by alizarin red staining, and the osteogenic media-treated cultures positively expressed osteocalcin and osteopontin markers. Moreover, qRT-PCR results confirmed the positive gene expression of osteopontin and osteonectin in the differentiated osteoblast-like cells. The results of behavior assessment of the cultured cells on electrospinning and freeze-dried scaffolds showed that the behavior of the cultured cells on the freeze-dried PLGA/HA scaffolds was significantly better than the electrospinning PLGA/HA scaffolds. It has been shown that the freeze-dried PLGA/HA nanocomposite scaffolds can appropriately support the attachment and proliferation of the differentiated osteoblast cells and are a suitable candidate for bone tissue engineering.

  2. Edible Polymers: Challenges and Opportunities

    OpenAIRE

    Subhas C. Shit; Pathik M. Shah

    2014-01-01

    Edible polymers have established substantial deliberation in modern eons because of their benefits comprising use as edible materials over synthetic polymers. This could contribute to the reduction of environmental contamination. Edible polymers can practically diminish the complexity and thus improve the recyclability of materials, compared to the more traditional non-environmentally friendly materials and may be able to substitute such synthetic polymers. A synthetic hydrogel polymer unlock...

  3. Rapid, nondestructive estimation of surface polymer layer thickness using attenuated total reflection fourier transform infrared (ATR FT-IR) spectroscopy and synthetic spectra derived from optical principles.

    Science.gov (United States)

    Weinstock, B André; Guiney, Linda M; Loose, Christopher

    2012-11-01

    We have developed a rapid, nondestructive analytical method that estimates the thickness of a surface polymer layer with high precision but unknown accuracy using a single attenuated total reflection Fourier transform infrared (ATR FT-IR) measurement. Because the method is rapid, nondestructive, and requires no sample preparation, it is ideal as a process analytical technique. Prior to implementation, the ATR FT-IR spectrum of the substrate layer pure component and the ATR FT-IR and real refractive index spectra of the surface layer pure component must be known. From these three input spectra a synthetic mid-infrared spectral matrix of surface layers 0 nm to 10,000 nm thick on substrate is created de novo. A minimum statistical distance match between a process sample's ATR FT-IR spectrum and the synthetic spectral matrix provides the thickness of that sample. We show that this method can be used to successfully estimate the thickness of polysulfobetaine surface modification, a hydrated polymeric surface layer covalently bonded onto a polyetherurethane substrate. A database of 1850 sample spectra was examined. Spectrochemical matrix-effect unknowns, such as the nonuniform and molecularly novel polysulfobetaine-polyetherurethane interface, were found to be minimal. A partial least squares regression analysis of the database spectra versus their thicknesses as calculated by the method described yielded an estimate of precision of ±52 nm.

  4. Semiotic scaffolding

    DEFF Research Database (Denmark)

    Hoffmeyer, Jesper

    2015-01-01

    Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings impl...... semiotic scaffolding is not, of course, exclusive for phylogenetic and ontogenetic development, it is also an important dynamical element in cultural evolution.......Life processes at all levels (from the genetic to the behavioral) are coordinated by semiotic interactions between cells, tissues, membranes, organs, or individuals and tuned through evolution to stabilize important functions. A stabilizing dynamics based on a system of semiotic scaffoldings...... implies that genes do not control the life of organisms, they merely scaffold it. The nature-nurture dynamics is thus far more complex and open than is often claimed. Contrary to physically based interactions, semiotic interactions do not depend on any direct causal connection between the sign vehicle...

  5. Biologic Scaffolds.

    Science.gov (United States)

    Costa, Alessandra; Naranjo, Juan Diego; Londono, Ricardo; Badylak, Stephen F

    2017-09-01

    Biologic scaffold materials composed of allogeneic or xenogeneic extracellular matrix are commonly used for the repair and functional reconstruction of injured and missing tissues. These naturally occurring bioscaffolds are manufactured by the removal of the cellular content from source tissues while preserving the structural and functional molecular units of the remaining extracellular matrix (ECM). The mechanisms by which these bioscaffolds facilitate constructive remodeling and favorable clinical outcomes include release or creation of effector molecules that recruit endogenous stem/progenitor cells to the site of scaffold placement and modulation of the innate immune response, specifically the activation of an anti-inflammatory macrophage phenotype. The methods by which ECM biologic scaffolds are prepared, the current understanding of in vivo scaffold remodeling, and the associated clinical outcomes are discussed in this article. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  6. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering.

    Science.gov (United States)

    Generali, Melanie; Kehl, Debora; Capulli, Andrew K; Parker, Kevin K; Hoerstrup, Simon P; Weber, Benedikt

    2017-10-01

    Biodegradable scaffold matrixes form the basis of any in vitro tissue engineering approach by acting as a temporary matrix for cell proliferation and extracellular matrix deposition until the scaffold is replaced by neo-tissue. In this context several synthetic polymers have been investigated, however a concise systematic comparative analyses is missing. Therefore, the present study systematically compares three frequently used polymers for the in vitro engineering of extracellular matrix based on poly-glycolic acid (PGA) under static as well as dynamic conditions. Ultra-structural analysis was used to examine the polymers structure. For tissue engineering (TE) three human fibroblast cell lines were seeded on either PGA-poly-4-hydroxybutyrate (P4HB), PGA-poly-lactic acid (PLA) or PGA-poly-caprolactone (PCL) patches. These patches were analyzed after 21days of culture qualitative by histology and quantitative by determining the amount of DNA, glycosaminoglycan and hydroxyproline. We found that PGA-P4HB and PGA-PLA scaffolds enhance tissue formation significantly higher than PGA-PCL scaffolds (p<0.05). Polymer remnants were visualized by polarization microscopy. In addition, biomechanical properties of the tissue engineered patches were determined in comparison to native tissue. This study may allow future studies to specifically select certain polymer starter matrices aiming at specific tissue properties of the bioengineered constructs in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration

    DEFF Research Database (Denmark)

    Zanjanizadeh Ezazi, Nazanin; Shahbazi, Mohammad-Ali; Shatalin, Yuri V.

    2018-01-01

    engineering due to favorable biocompatibility, osteoconductivity and drug delivery potential, respectively. These materials were coupled with conductive polypyrrole (PPy) polymer to create a novel bone scaffold for regenerative medicine. Conductive and non-conductive scaffolds were made by slurry casting...

  8. Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3-hydroxybutyrate) and micro-fibrillated bacterial cellulose

    Czech Academy of Sciences Publication Activity Database

    Akaraonye, E.; Filip, J.; Šafaříková, Miroslava; Salih, V.; Keshavarz, T.; Knowles, J.C.; Roy, I.

    2016-01-01

    Roč. 65, č. 7 (2016), s. 780-791 ISSN 0959-8103 Institutional support: RVO:60077344 Keywords : polyhydroxyalkanoates * poly(3-hydroxybutyrate) * bacterial cellulose * micro-fibrillated cellulose * tissue engineering scaffold * composite materials Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.070, year: 2016

  9. Bioactive polymeric scaffolds for tissue engineering

    Science.gov (United States)

    Stratton, Scott; Shelke, Namdev B.; Hoshino, Kazunori; Rudraiah, Swetha; Kumbar, Sangamesh G.

    2016-01-01

    A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D) scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined. PMID:28653043

  10. Bioactive polymeric scaffolds for tissue engineering

    Directory of Open Access Journals (Sweden)

    Scott Stratton

    2016-12-01

    Full Text Available A variety of engineered scaffolds have been created for tissue engineering using polymers, ceramics and their composites. Biomimicry has been adopted for majority of the three-dimensional (3D scaffold design both in terms of physicochemical properties, as well as bioactivity for superior tissue regeneration. Scaffolds fabricated via salt leaching, particle sintering, hydrogels and lithography have been successful in promoting cell growth in vitro and tissue regeneration in vivo. Scaffold systems derived from decellularization of whole organs or tissues has been popular due to their assured biocompatibility and bioactivity. Traditional scaffold fabrication techniques often failed to create intricate structures with greater resolution, not reproducible and involved multiple steps. The 3D printing technology overcome several limitations of the traditional techniques and made it easier to adopt several thermoplastics and hydrogels to create micro-nanostructured scaffolds and devices for tissue engineering and drug delivery. This review highlights scaffold fabrication methodologies with a focus on optimizing scaffold performance through the matrix pores, bioactivity and degradation rate to enable tissue regeneration. Review highlights few examples of bioactive scaffold mediated nerve, muscle, tendon/ligament and bone regeneration. Regardless of the efforts required for optimization, a shift in 3D scaffold uses from the laboratory into everyday life is expected in the near future as some of the methods discussed in this review become more streamlined.

  11. Effect of in vitro enzymatic degradation on 3D printed poly(ε-caprolactone) scaffolds: morphological, chemical and mechanical properties.

    Science.gov (United States)

    Ferreira, Joana; Gloria, Antonio; Cometa, Stefania; Coelho, Jorge F J; Domingos, Marco

    2017-07-27

    In recent years, the tissue engineering (TE) field has significantly benefited from advanced techniques such as additive manufacturing (AM), for the design of customized 3D scaffolds with the aim of guided tissue repair. Among the wide range of materials available to biomanufacture 3D scaffolds, poly(ε-caprolactone) (PCL) clearly arises as the synthetic polymer with the greatest potential, due to its unique properties - namely, biocompatibility, biodegradability, thermal and chemical stability and processability. This study aimed for the first time to investigate the effect of pore geometry on the in vitro enzymatic chain cleavage mechanism of PCL scaffolds manufactured by the AM extrusion process. Methods: Morphological properties of 3D printed PCL scaffolds before and after degradation were evaluated using Scanning Electron Microscopy (SEM) and micro-computed tomography (μ-CT). Differential Scanning Calorimetry (DSC) was employed to determine possible variations in the crystallinity of the scaffolds during the degradation period. The molecular weight was assessed using Size Exclusion Chromatography (SEC) while the mechanical properties were investigated under static compression conditions. Morphological results suggested a uniform reduction of filament diameter, while increasing the scaffolds' porosity. DSC analysis revealed and increment in the crystallinity degree while the molecular weight, evaluated through SEC, remained almost constant during the incubation period (25 days). Mechanical analysis highlighted a decrease in the compressive modulus and maximum stress over time, probably related to the significant weight loss of the scaffolds. All of these results suggest that PCL scaffolds undergo enzymatic degradation through a surface erosion mechanism, which leads to significant variations in mechanical, physical and chemical properties, but which has little influence on pore geometry.

  12. In Vitro Degradation of PHBV Scaffolds and nHA/PHBV Composite Scaffolds Containing Hydroxyapatite Nanoparticles for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Naznin Sultana

    2012-01-01

    Full Text Available This paper investigated the long-term in vitro degradation properties of scaffolds based on biodegradable polymers and osteoconductive bioceramic/polymer composite materials for the application of bone tissue engineering. The three-dimensional porous scaffolds were fabricated using emulsion-freezing/freeze-drying technique using poly(hydroxybutyrate-co-hydroxyvalerate (PHBV which is a natural biodegradable and biocompatible polymer. Nanosized hydroxyapatite (nHA particles were successfully incorporated into the PHBV scaffolds to render the scaffolds osteoconductive. The PHBV and nHA/PHBV scaffolds were systematically evaluated using various techniques in terms of mechanical strength, porosity, porous morphology, and in vitro degradation. PHBV and nHA/PHBV scaffolds degraded over time in phosphate-buffered saline at 37°C. PHBV polymer scaffolds exhibited slow molecular weight loss and weight loss in the in vitro physiological environment. Accelerated weight loss was observed in nHA incorporated PHBV composite scaffolds. An increasing trend of crystallinity was observed during the initial period of degradation time. The compressive properties decreased more than 40% after 5-month in vitro degradation. Together with interconnected pores, high porosity, suitable mechanical properties, and slow degradation profile obtained from long-term degradation studies, the PHBV scaffolds and osteoconductive nHA/PHBV composite scaffolds showed promises for bone tissue engineering application.

  13. Scaffolded biology.

    Science.gov (United States)

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  14. The anti-calcification potential of a silsesquioxane nanocomposite polymer under in vitro conditions: potential material for synthetic leaflet heart valve.

    Science.gov (United States)

    Ghanbari, Hossein; Kidane, Asmeret G; Burriesci, Gaetano; Ramesh, Bala; Darbyshire, Arnold; Seifalian, Alexander M

    2010-11-01

    Calcification currently represents a major cause of failure of biological tissue heart valves. It is a complex phenomenon influenced by a number of biochemical and mechanical factors. Recent advances in material science offer new polymers with improved properties, potentially suitable for synthetic leaflets heart valves manufacturing. In this study, the calcification-resistance efficacy and mechanical and surface properties of a new nanocomposite polymeric material (polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane; POSS-PCU) which has been developed by our group are assessed by means of in vitro testing. In particular, thin sheets of nanocomposite, glutaraldehyde-fixed bovine pericardium (BP) and polyurethane (PU) were exposed to a calcium solution into a specially designed in vitro accelerated physiological pulsatile pressure system for a period of 31days and a total of 4×10(7) cycles. The samples were investigated for signs of calcification after exposure to calcium solution by means of X-ray, microscopic and chemical inspections. Mechanical and surface properties were also studied using stress-strain behaviour and surface morphology and hydrophobicity. Comparison shows that, in the experimental conditions, the level of calcification for the nanocomposite is considerably lower than for the fixed BP (p=0.008) and PU samples (p=0.015). Also, mechanical properties were unchanged in POSS-PCU, while there was a significant deterioration in PU samples (pnanocomposite remained more hydrophobic than the PU sample (pnanocomposite in synthetic leaflets heart valves may lead to potential advantages in terms of long-term performances and durability. Copyright © 2010. Published by Elsevier Ltd.

  15. Chondrogenic potential of bone marrow–derived mesenchymal stem cells on a novel, auricular-shaped, nanocomposite scaffold

    Directory of Open Access Journals (Sweden)

    Kavi H Patel

    2013-12-01

    Full Text Available Reconstruction of the human auricle remains a challenge to plastic surgeons, and current approaches are not ideal. Tissue engineering provides a promising alternative. This study aims to evaluate the chondrogenic potential of bone marrow–derived mesenchymal stem cells on a novel, auricular-shaped polymer. The proposed polyhedral oligomeric silsesquioxane-modified poly(hexanolactone/carbonateurethane/urea nanocomposite polymer has already been transplanted in patients as the world’s first synthetic trachea, tear duct and vascular bypass graft. The nanocomposite scaffold was fabricated via a coagulation/salt-leaching method and shaped into an auricle. Adult bone marrow–derived mesenchymal stem cells were isolated, cultured and seeded onto the scaffold. On day 21, samples were sent for scanning electron microscopy, histology and immunofluorescence to assess for neocartilage formation. Cell viability assay confirmed cytocompatability and normal patterns of cellular growth at 7, 14 and 21 days after culture. This study demonstrates the potential of a novel polyhedral oligomeric silsesquioxane-modified poly(hexanolactone/carbonateurethane/urea scaffold for culturing bone marrow–derived mesenchymal stem cells in chondrogenic medium to produce an auricular-shaped construct. This is supported by scanning electron microscopy, histological and immunofluorescence analysis revealing markers of chondrogenesis including collagen type II, SOX-9, glycosaminoglycan and elastin. To the best of our knowledge, this is the first report of stem cell application on an auricular-shaped scaffold for tissue engineering purposes. Although many obstacles remain in producing a functional auricle, this is a promising step forward.

  16. Experimental Study of Rheological Properties and Oil Displacement Efficiency in Oilfields for a Synthetic Hydrophobically Modified Polymer.

    Science.gov (United States)

    Liu, Pengcheng; Mu, Zhenbao; Wang, Chao; Wang, Yanling

    2017-08-18

    In a previous study, we developed a synthetic hydrophobically modified hydroxyethyl cellulose (HEC) using bromododecane (BD), which we denote as BD-HMHEC. In this work, we continually investigate the rheological properties and its oil displacement efficiency in PuTao well area in Daqing oilfields, China. Results show that BD-HMHEC solution has good viscosification, thermal-resistance, salt-tolerance, shear resistance, and acid/alkali resistance. The storage modulus (G') and the loose modulus (G") of the BD-HMHEC solutions increase significantly with increasing BD-HMHEC concentration, and the solution becomes viscoelastic at a sufficiently high BD-HMHEC concentration. The core flooding results showed BD-HMHEC flooding improves oil recovery by 7-14% in comparison with HEC flooding at concentrations of 4,000 mg/L under equivalent conditions. Moreover, BD-HMHEC flooding improves oil recovery by 7-8% after conducting water and hydrolyzed polyacrylamide (HPAM) flooding. The oil displacement mechanism of BD-HMHEC solutions is discussed based on a visual evaluation. The results indicate that BD-HMHEC flooding is a feasible means for improving oil recovery after water/HPAM flooding.

  17. A novel synthetic peptide polymer with cyclic RGD motifs supports serum-free attachment of anchorage-dependent cells.

    Science.gov (United States)

    Markó, K; Ligeti, M; Mezo, G; Mihala, N; Kutnyánszky, E; Kiss, E; Hudecz, F; Madarász, E

    2008-09-01

    Cell adhesivity is a basic biological principle, which provides mechanisms for construction of multicellular organisms, tissue genesis, migration and individual cell survival. In vivo, the cell adhesive environment is provided by extracellular matrix molecules, neighboring cell surfaces and soluble factors delivered either by tissue cells or by blood circulation. The exact molecular composition of the microenvironment of a cell is not properly understood. The nondefined molecular composition of "native" adhesive components hinders their application when defined culture conditions are necessary, as, for an example, growing human cells for further clinical application. Applying large, substrate-coating molecules as backbones for carrying specific adhesive peptide motifs provides a relatively cheap, reproducible, and chemically defined group of synthetic adhesion molecules. Here, we report on the design, synthesis, and testing of a novel cyclic RGD-containing coating material, which promotes initial attachment, spreading, survival, and proliferation of a number of different cell types. The potent adhesive polypeptide-brush, composed of poly[Lys(DL-Ala(m))] branched chain polypeptide (AK) and multiple copies of cyclic(arginyl-glycyl-aspartyl-D-phenylalanyl-cysteine) pentapeptide prevents anoikis and supports cell attachment in the absence of serum or other biological additives. The defined conditions for cell maintenance make this material a promising candidate for coating artificial cell substrates even for therapeutic applications.

  18. Combined Effect of Synthetic and Natural Polymers in Preparation of Cetirizine Hydrochloride Oral Disintegrating Tablets: Optimization by Central Composite Design.

    Science.gov (United States)

    Patro, Chandra Sekhar; Sahu, Prafulla Kumar

    2017-01-01

    Our aim was to employ experimental design to formulate and optimize cetirizine hydrochloride oral disintegrating tablets (ODTs) by direct compression technique, using the mutual effect of synthetic croscarmellose sodium (CCS) and natural Hibiscus rosa-sinensis mucilage (HRM) as disintegrants in the formulation. Central composite design (CCD) was applied to optimize the influence of three levels each of CCS ( X 1 ) and HRM ( X 2 ) concentrations (independent variables) for investigated responses: disintegration time (DT) ( Y 1 ), % friability ( F ) ( Y 2 ), and % cumulative drug release (DR) ( Y 3 ) (dependent variables). This face-centered second-order model's reliability was verified by the probability and adequate precision values from the analysis of variance, while the significant factor effects influencing the studied responses were identified using multiple linear regression analysis. Perturbation and response surface plots were interpreted to evaluate the responses' sensitivity towards the variables. During optimization, the concentrations of the processed factors were evaluated, and the resulting values were in good agreement with predicted estimates endorsing the validity. Spectral study by Fourier Transform Infrared Spectroscopy (FTIR) and thermograms from Differential Scanning Calorimetry (DSC) demonstrated the drug-excipients compatibility of the optimized formulation. The optimized formulation has concentrations of 9.05 mg and 16.04 mg of CCS and HRM each, respectively, and the model predicted DT of 13.271 sec, F of 0.498, and DR of 99.768%.

  19. Combined Effect of Synthetic and Natural Polymers in Preparation of Cetirizine Hydrochloride Oral Disintegrating Tablets: Optimization by Central Composite Design

    Directory of Open Access Journals (Sweden)

    Chandra Sekhar Patro

    2017-01-01

    Full Text Available Our aim was to employ experimental design to formulate and optimize cetirizine hydrochloride oral disintegrating tablets (ODTs by direct compression technique, using the mutual effect of synthetic croscarmellose sodium (CCS and natural Hibiscus rosa-sinensis mucilage (HRM as disintegrants in the formulation. Central composite design (CCD was applied to optimize the influence of three levels each of CCS (X1 and HRM (X2 concentrations (independent variables for investigated responses: disintegration time (DT (Y1, % friability (F (Y2, and % cumulative drug release (DR (Y3 (dependent variables. This face-centered second-order model’s reliability was verified by the probability and adequate precision values from the analysis of variance, while the significant factor effects influencing the studied responses were identified using multiple linear regression analysis. Perturbation and response surface plots were interpreted to evaluate the responses’ sensitivity towards the variables. During optimization, the concentrations of the processed factors were evaluated, and the resulting values were in good agreement with predicted estimates endorsing the validity. Spectral study by Fourier Transform Infrared Spectroscopy (FTIR and thermograms from Differential Scanning Calorimetry (DSC demonstrated the drug-excipients compatibility of the optimized formulation. The optimized formulation has concentrations of 9.05 mg and 16.04 mg of CCS and HRM each, respectively, and the model predicted DT of 13.271 sec, F of 0.498, and DR of 99.768%.

  20. Formulation and evaluation of a sustained-release tablets of metformin hydrochloride using hydrophilic synthetic and hydrophobic natural polymers.

    Science.gov (United States)

    Wadher, K J; Kakde, R B; Umekar, M J

    2011-03-01

    Metformin hydrochloride has relatively short plasma half-life, low absolute bioavailability. The need for the administration two to three times a day when larger doses are required can decrease patient compliance. Sustained release formulation that would maintain plasma level for 8-12 h might be sufficient for daily dosing of metformin. Sustained release products are needed for metformin to prolong its duration of action and to improve patient compliances. The overall objective of this study was to develop an oral sustained release metformin hydrochloride tablet by using hydrophilic Eudragit RSPO alone or its combination with hydrophobic natural polymers Gum copal and gum damar as rate controlling factor. The tablets were prepared by wet granulation method. The in vitro dissolution study was carried out using USP 22 apparatus I, paddle method and the data was analysed using zero order, first order, Higuchi, Korsmeyer and Hixson-Crowell equations. The drug release study revealed that Eudragit RSPO alone was unable to sustain the drug release. Combining Eudragit with gum Copal and gum Damar sustained the drug release for more than 12 h. Kinetic modeling of in vitro dissolution profiles revealed the drug release mechanism ranges from diffusion controlled or Fickian transport to anomalous type or non-Fickian transport. Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism of drug release.

  1. High-resolution direct 3D printed PLGA scaffolds: print and shrink

    International Nuclear Information System (INIS)

    Chia, Helena N; Wu, Benjamin M

    2015-01-01

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds. (paper)

  2. High-resolution direct 3D printed PLGA scaffolds: print and shrink.

    Science.gov (United States)

    Chia, Helena N; Wu, Benjamin M

    2014-12-17

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds.

  3. Electrospun Nanofiber Scaffolds and Their Hydrogel Composites for the Engineering and Regeneration of Soft Tissues.

    Science.gov (United States)

    Manoukian, Ohan S; Matta, Rita; Letendre, Justin; Collins, Paige; Mazzocca, Augustus D; Kumbar, Sangamesh G

    2017-01-01

    Electrospinning has emerged as a simple, elegant, and scalable technique that can be used to fabricate polymeric nanofibers. Pure polymers as well as blends and composites of both natural and synthetic ones have been successfully electrospun into nanofiber matrices for many biomedical applications. Tissue-engineered medical implants, such as polymeric nanofiber scaffolds, are potential alternatives to autografts and allografts, which are short in supply and carry risks of disease transmission. These scaffolds have been used to engineer various soft tissues, including connective tissues, such as skin, ligament, and tendon, as well as nonconnective ones, such as vascular, muscle, and neural tissue. Electrospun nanofiber matrices show morphological similarities to the natural extracellular matrix (ECM), characterized by ultrafine continuous fibers, high surface-to-volume ratios, high porosities, and variable pore-size distributions. The physiochemical properties of nanofiber matrices can be controlled by manipulating electrospinning parameters so that they meet the requirements of a specific application.Nanostructured implants show improved biological performance over bulk materials in aspects of cellular infiltration and in vivo integration, taking advantage of unique quantum, physical, and atomic properties. Furthermore, the topographies of such scaffolds has been shown to dictate cellular attachment, migration, proliferation, and differentiation, which are critical in engineering complex functional tissues with improved biocompatibility and functional performance. This chapter discusses the use of the electrospinning technique in the fabrication of polymer nanofiber scaffolds utilized for the regeneration of soft tissues. Selected scaffolds will be seeded with human mesenchymal stem cells (hMSCs), imaged using scanning electron and confocal microscopy, and then evaluated for their mechanical properties as well as their abilities to promote cell adhesion

  4. Mechanical induction of dentin-like differentiation by adult mouse bone marrow stromal cells using compressive scaffolds

    Directory of Open Access Journals (Sweden)

    Basma Hashmi

    2017-10-01

    Full Text Available Tooth formation during embryogenesis is controlled through a complex interplay between mechanical and chemical cues. We have previously shown that physical cell compaction of dental mesenchyme cells during mesenchymal condensation is responsible for triggering odontogenic differentiation during embryogenesis, and that expression of Collagen VI stabilizes this induction. In addition, we have shown that synthetic polymer scaffolds that artificially induce cell compaction can induce embryonic mandible mesenchymal cells to initiate tooth differentiation both in vitro and in vivo. As embryonic cells would be difficult to use for regenerative medicine applications, here we explored whether compressive scaffolds coated with Collagen VI can be used to induce adult bone marrow stromal cells (BMSCs to undergo an odontogenic lineage switch. These studies revealed that when mouse BMSCs are compressed using these scaffolds they increase expression of critical markers of tooth differentiation in vitro, including the key transcription factors Pax9 and Msx1. Implantation under the kidney capsule of contracting scaffolds bearing these cells in mice also resulted in local mineralization, calcification and production of dentin-like tissue. These findings show that these chemically-primed compressive scaffolds can be used to induce adult BMSCs to undergo a lineage switch and begin to form dentin-like tissue, thus raising the possibility of using adult BMSCs for future tooth regeneration applications.

  5. Hyaluronic Acid Coating Enhances Biocompatibility of Nonwoven PGA Scaffold and Cartilage Formation.

    Science.gov (United States)

    Lin, Xunxun; Wang, Wenbo; Zhang, Wenjie; Zhang, Zhiyong; Zhou, Guangdong; Cao, Yilin; Liu, Wei

    2017-02-01

    Synthetic polymers such as polyglycolic acid (PGA) fibers are the traditional tissue engineering scaffolds that are widely used for engineering a variety of soft tissues. However, the major disadvantage of this polymer material is its released acidic degradation products that trigger inflammatory response and fibrotic process, which affects the biocompatibility and the quality of the engineered tissues. In this study, the effect of hyaluronic acid (HA) coating on improving PGA biocompatibility was explored. The results showed that 1% HA solution could better coat PGA fibers than other tested concentrations of HA, and coated PGA exhibited less inflammatory reaction upon in vivo subcutaneous implantation. In vitro characterization demonstrated that HA coating could enhance cell adhesion to the scaffold and reduce gene expression of IL-1, IL-6, IL-8, and α-SMA. It also decreased the acidity of degradation products in vitro. Furthermore, coated PGA could engineer better cartilages in vitro with higher content of total collagen and glycosaminoglycan, as well as higher gene expression levels of collagen II, aggrecan, and Sox9. Collectively, the data indicate that HA coating can significantly enhance the biocompatibility of this traditional scaffold material, which also enhances the quality of engineered tissues.

  6. Impedance Biosensors and Deep Crater Salivary Gland Scaffolds for Tissue Engineering

    Science.gov (United States)

    Schramm, Robert A.

    The salivary gland is a complex, branching organ whose primary biological function is the production of the fluid critical to alimentary function and the lubrication and maintenance of the oral cavity, saliva. The most frequent disruption of the salivary organ system is one in which the rate of supply of saliva into the oral cavity is diminished, and this may vary from a minor reduction, to near cessation. Regenerative medicine is a field which seeks to find ways to overcome the symptoms of organ malfunction or damage by inducing regrowth, repair and replacement of partial or whole organ function. Historically, the only methods available to medical experts were certain chemical drugs and transplantation, each of which suffers from significant risks and drawbacks. Tissue Engineering arose in the past few decades thanks to the seminal work of Robert Langer with the charter mission of finding new biomaterials and techniques to achieve these ends. The original concept of tissue engineering was the cell or tissue scaffold, which is supports the regrowth of cells by making intimate contact with adherent cells, and induces improved regrowth in vitro or in vivo by providing mechanical or chemical signaling cues. Epithelial cell types such as salivary glands have structural functional polarity at the cellular level, an apical side which faces a void, and a basal side which faces the support substrate. While 3D scaffolds such as hydrogels maximize interaction area between cells and substrate, they struggle to develop cohesive tissues beyond the scale of small cellular clusters . 2D scaffolds enforce a defined polarity by allowing cell interaction at only one side of the cell. Langer pioneered the use of polymer nanofibers as the premier synthetic 2D scaffold biomaterial, due to their exceptionally high nano-scale surface area, and collagen-imitating structure. Prior work has established PLGA nanofibers, which allow salivary cells to attach, proliferate, and generate a

  7. Molecularly imprinted polymers as synthetic receptors for the QCM-D-based detection of L-nicotine in diluted saliva and urine samples.

    Science.gov (United States)

    Alenus, J; Ethirajan, A; Horemans, F; Weustenraed, A; Csipai, P; Gruber, J; Peeters, M; Cleij, T J; Wagner, P

    2013-08-01

    Molecularly imprinted polymers (MIPs) are synthetic receptors that are able to specifically bind their target molecules in complex samples, making them a versatile tool in biosensor technology. The combination of MIPs as a recognition element with quartz crystal microbalances (QCM-D with dissipation monitoring) gives a straightforward and sensitive device, which can simultaneously measure frequency and dissipation changes. In this work, bulk-polymerized L-nicotine MIPs were used to test the feasibility of L-nicotine detection in saliva and urine samples. First, L-nicotine-spiked saliva and urine were measured after dilution in demineralized water and 0.1× phosphate-buffered saline solution for proof-of-concept purposes. L-nicotine could indeed be detected specifically in the biologically relevant micromolar concentration range. After successfully testing on spiked samples, saliva was analyzed, which was collected during chewing of either nicotine tablets with different concentrations or of smokeless tobacco. The MIPs in combination with QCM-D were able to distinguish clearly between these samples: This proves the functioning of the concept with saliva, which mediates the oral uptake of nicotine as an alternative to the consumption of cigarettes.

  8. Fluorescent composite scaffolds made of nanodiamonds/polycaprolactone

    Science.gov (United States)

    Cao, Li; Hou, Yanwen; Lafdi, Khalid; Urmey, Kirk

    2015-11-01

    Polycaprolactone (PCL) has been widely studied for biological applications. Biodegradable PCL fibrous scaffold can work as an appropriate substrate for tissue regeneration. In this letter, fluorescent nanodiamonds (FNDs) were prepared after surface passivation with octadecylamine. The FNDs were then mixed with PCL polymer and subsequently electrospun into FNDs/PCL fibrous scaffolds. The obtained scaffolds not only exhibited photoluminescence, but also showed reinforced mechanical strength. Toxicity study indicated FNDs/PCL scaffolds were nontoxic. This biocompatible fluorescent composite fibrous scaffold can support in vitro cell growth and also has the potential to act as an optical probe for tissue engineering application in vitro and in vivo.

  9. Organizing DNA Origami Tiles Into Larger Structures Using Pre-formed Scaffold Frames

    Science.gov (United States)

    Zhao, Zhao; Liu, Yan; Yan, Hao

    2012-01-01

    Structural DNA nanotechnology utilizes DNA molecules as programmable information-coding polymers to create higher order structures at the nanometer scale. An important milestone in structural DNA nanotechnology was the development of scaffolded DNA origami in which a long single-stranded viral genome (scaffold strand) is folded into arbitrary shapes by hundreds of short synthetic oligonucleotides (staple strands). The achievable dimensions of the DNA origami tiles units are currently limited by the length of the scaffold strand. Here we demonstrate a strategy referred to as ‘super-origami’ or ‘origami of origami’ to scale up DNA origami technology. First, this method uses a collection of bridge strands to pre-fold a single stranded DNA scaffold into a loose framework. Subsequently, pre-formed individual DNA origami tiles are directed onto the loose framework so that each origami tile serves as a large staple. Using this strategy, we demonstrate the ability to organize DNA origami nanostructures into larger spatially addressable architectures. PMID:21682348

  10. Supramolecular coordination polymers using a close to 'V-shaped' fluorescent 4-amino-1,8-naphthalimide Tröger's base scaffold.

    Science.gov (United States)

    Shanmugaraju, Sankarasekaran; Hawes, Chris S; Savyasachi, Aramballi J; Blasco, Salvador; Kitchen, Jonathan A; Gunnlaugsson, Thorfinnur

    2017-11-21

    A V-shaped 4-amino-1,8-naphthalimide derived dipyridyl ligand comprising the Tröger's base structural motif has been synthesised and subsequently used in the formation of two new supramolecular coordination polymers.

  11. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering.

    Science.gov (United States)

    Guex, Anne Géraldine; Puetzer, Jennifer L; Armgarth, Astrid; Littmann, Elena; Stavrinidou, Eleni; Giannelis, Emmanuel P; Malliaras, George G; Stevens, Molly M

    2017-10-15

    Conjugated polymers have been increasingly considered for the design of conductive materials in the field of regenerative medicine. However, optimal scaffold properties addressing the complexity of the desired tissue still need to be developed. The focus of this study lies in the development and evaluation of a conductive scaffold for bone tissue engineering. In this study PEDOT:PSS scaffolds were designed and evaluated in vitro using MC3T3-E1 osteogenic precursor cells, and the cells were assessed for distinct differentiation stages and the expression of an osteogenic phenotype. Ice-templated PEDOT:PSS scaffolds presented high pore interconnectivity with a median pore diameter of 53.6±5.9µm and a total pore surface area of 7.72±1.7m 2 ·g -1 . The electrical conductivity, based on I-V curves, was measured to be 140µS·cm -1 with a reduced, but stable conductivity of 6.1µS·cm -1 after 28days in cell culture media. MC3T3-E1 gene expression levels of ALPL, COL1A1 and RUNX2 were significantly enhanced after 4weeks, in line with increased extracellular matrix mineralisation, and osteocalcin deposition. These results demonstrate that a porous material, based purely on PEDOT:PSS, is suitable as a scaffold for bone tissue engineering and thus represents a promising candidate for regenerative medicine. Tissue engineering approaches have been increasingly considered for the repair of non-union fractions, craniofacial reconstruction or large bone defect replacements. The design of complex biomaterials and successful engineering of 3-dimensional tissue constructs is of paramount importance to meet this clinical need. Conductive scaffolds, based on conjugated polymers, present interesting candidates to address the piezoelectric properties of bone tissue and to induce enhanced osteogenesis upon implantation. However, conductive scaffolds have not been investigated in vitro in great measure. To this end, we have developed a highly porous, electrically conductive scaffold

  12. [The use of natural and synthetic hydrophilic polymers in the formulation of metformin hydrochloride tablets with different profile release].

    Science.gov (United States)

    Kołodziejczyk, Michał Krzysztof; Kołodziejska, Justyna; Zgoda, Marian Mikołaj

    2012-01-01

    Metformin hydrochloride after buformin and phenformin belongs to the group of biguanid derivatives used as oral anti-diabetic drugs. The object of the study is the technological analysis and the potential effect of biodegradable macromolecular polymers on the technological and therapeutic parameters of oral anti-diabetic medicinal products with metformin hydrochloride: Siofor, Formetic, Glucophage, Metformax in doses of 500mg and 1000mg and Glucophage XR in a dose of 500 mg of modified release. Market therapeutic products containing 500 and 1000 mg of metformin hydrochloride in a normal formulation and 500 mg of metformin hydrochloride in a formulation of modified release were analyzed. Following research methods were used: technological analysis of tablets, study of disintegration time of tablets, evaluation of pharmaceutical availability of metformin hydrochloride from tested therapeutic products, mathematical and kinetic analysis of release profiles of metformin hydrochloride, statistical analysis of mean differences of release coefficients. The percentage of excipients in the XR formulation is higher and constitutes 50.5% of a tablet mass. However, in standard formulations the percentage is lower, between 5.5% and 12.76%. On the basis of the results of disintegration time studies, the analysed therapeutic products can be divided into two groups, regardless the dose. The first one are preparations with faster (not fast!) disintegration: Glucophage i Metformax. The second group are preparations with slower disintegration, more balanced in the aspect of a high dose of the biologically active substance: Formetic and Siofor. Products with a lower content of excipients (Metformax, Glucophage) disintegrate in a faster way. The disintegration rate of the products with a higher content of excipients (Formetic, Siofor) is slower. The appearance of metformin hydrochloride concentration in the gastrointestinal contents, balanced in time, caused by a slower disintegration

  13. Partially nanofibrous architecture of 3D tissue engineering scaffolds.

    Science.gov (United States)

    Wei, Guobao; Ma, Peter X

    2009-11-01

    An ideal tissue-engineering scaffold should provide suitable pores and appropriate pore surface to induce desired cellular activities and to guide 3D tissue regeneration. In the present work, we have developed macroporous polymer scaffolds with varying pore wall architectures from smooth (solid), microporous, partially nanofibrous, to entirely nanofibrous ones. All scaffolds are designed to have well-controlled interconnected macropores, resulting from leaching sugar sphere template. We examine the effects of material composition, solvent, and phase separation temperature on the pore surface architecture of 3D scaffolds. In particular, phase separation of PLLA/PDLLA or PLLA/PLGA blends leads to partially nanofibrous scaffolds, in which PLLA forms nanofibers and PDLLA or PLGA forms the smooth (solid) surfaces on macropore walls, respectively. Specific surface areas are measured for scaffolds with similar macroporosity but different macropore wall architectures. It is found that the pore wall architecture predominates the total surface area of the scaffolds. The surface area of a partially nanofibrous scaffold increases linearly with the PLLA content in the polymer blend. The amounts of adsorbed proteins from serum increase with the surface area of the scaffolds. These macroporous scaffolds with adjustable pore wall surface architectures may provide a platform for investigating the cellular responses to pore surface architecture, and provide us with a powerful tool to develop superior scaffolds for various tissue-engineering applications.

  14. Bioresorbable scaffolds on the bench.

    Science.gov (United States)

    Ormiston, John; Motreff, Pascal; Darremont, Olivier; Webber, Bruce; Guerin, Patrice; Webster, Mark

    2015-01-01

    Bioresorbable scaffolds (BRS) in bifurcations have all of the potential advantages of BRS in non-bifurcating lesions and, in addition, the absorption of side branch (SB) ostial struts may at least partially release the branch from "jail". Polymeric BRS struts may break when post-dilated beyond their safe limits and multiple fractures may lead to adverse clinical events. Bench testing provides insights into the behaviour of different BRS in bifurcations and helps the interventional cardiologist to choose, deliver and post-dilate appropriately. Bench testing of polymeric BRS must be in a water bath at 37ºC as polymer performance is temperature sensitive. Balloon dilatation through the side of a BRS or a durable metallic stent causes distortion corrected by mini-kissing balloon post-dilatation (mini-KBPD) where the SB balloon extends only a short distance into the main branch (MB), limiting the length of MB scaffold exposed to the inflation of two balloons. The safe pressure threshold for SB dilatation of a 3.0 mm Absorb scaffold with a 3.0 mm non-compliant balloon is 10 atm and for mini-KBPD with two 3.0 mm balloons it is 5 atm. Strategies such as culotte, crush and simultaneous kissing scaffolds (SKS) may not be appropriate for the current Absorb scaffold.

  15. Controlled drug release from a novel injectable biodegradable microsphere/scaffold composite based on poly(propylene fumarate).

    Science.gov (United States)

    Kempen, Diederik H R; Lu, Lichun; Kim, Choll; Zhu, Xun; Dhert, Wouter J A; Currier, Bradford L; Yaszemski, Michael J

    2006-04-01

    The ideal biomaterial for the repair of bone defects is expected to have good mechanical properties, be fabricated easily into a desired shape, support cell attachment, allow controlled release of bioactive factors to induce bone formation, and biodegrade into nontoxic products to permit natural bone formation and remodeling. The synthetic polymer poly(propylene fumarate) (PPF) holds great promise as such a biomaterial. In previous work we developed poly(DL-lactic-co-glycolic acid) (PLGA) and PPF microspheres for the controlled delivery of bioactive molecules. This study presents an approach to incorporate these microspheres into an injectable, porous PPF scaffold. Model drug Texas red dextran (TRD) was encapsulated into biodegradable PLGA and PPF microspheres at 2 microg/mg microsphere. Five porous composite formulations were fabricated via a gas foaming technique by combining the injectable PPF paste with the PLGA or PPF microspheres at 100 or 250 mg microsphere per composite formulation, or a control aqueous TRD solution (200 microg per composite). All scaffolds had an interconnected pore network with an average porosity of 64.8 +/- 3.6%. The presence of microspheres in the composite scaffolds was confirmed by scanning electron microscopy and confocal microscopy. The composite scaffolds exhibited a sustained release of the model drug for at least 28 days and had minimal burst release during the initial phase of release, as compared to drug release from microspheres alone. The compressive moduli of the scaffolds were between 2.4 and 26.2 MPa after fabrication, and between 14.9 and 62.8 MPa after 28 days in PBS. The scaffolds containing PPF microspheres exhibited a significantly higher initial compressive modulus than those containing PLGA microspheres. Increasing the amount of microspheres in the composites was found to significantly decrease the initial compressive modulus. The novel injectable PPF-based microsphere/scaffold composites developed in this study

  16. Bioresorbable Scaffolds.

    Science.gov (United States)

    Panaich, Sidakpal; Schreiber, Theodore; Grines, Cindy

    2014-08-01

    Percutaneous coronary intervention (PCI) has undergone major advances including the evolution in stent technology, from bare metal stents (BMS), to their drug eluting counterparts, to the development of bioresorbable scaffolds (BRS). The primary notion of BRS was to facilitate complete vascular healing and restore normal endothelial function following the resorption of stent scaffold while providing equivalent mechanical properties of a metallic drug eluting stents (DES) in the earlier stages. BRS provide attractive physiologic advancements over the existing DES and have shown promising results in initial clinical studies albeit with small sample sizes. Their use has been primarily restricted to patients recruited in clinical trials with limited real-world applicability. Thus, data from larger randomised control trials is awaited. The major objective of this article is to review the evidence on BRS and identify their clinical applicability in current interventional practice.

  17. Electrospun PCL/Gelatin composite fibrous scaffolds: mechanical properties and cellular responses.

    Science.gov (United States)

    Yao, Ruijuan; He, Jing; Meng, Guolong; Jiang, Bo; Wu, Fang

    2016-06-01

    Electrospinning of hybrid polymer has gained widespread interest by taking advantages of the biological property of the natural polymer and the mechanical property of the synthetic polymer. However, the effect of the blend ratio on the above two properties has been less reported despite the importance to balance these two properties in various tissue engineering applications. To this aim, we investigated the electrospun PCL/Gelatin composite fibrous scaffolds with different blend ratios of 4:1, 2:1, 1:1, 1:2, 1:4, respectively. The morphology of the electrospun samples was observed by SEM and the result showed that the fiber diameter distribution became more uniform with the increase of the gelatin content. The mechanical testing results indicated that the 2:1 PCL/Gelatin sample had both the highest tensile strength of 3.7 MPa and the highest elongation rate of about 90%. Surprisingly, the 2:1 PCL/Gelatin sample also showed the best mesenchymal stem cell responses in terms of attachment, spreading, and cytoskeleton organization. Such correlation might be partly due to the fact that the enhanced mechanical property, an integral part of the physical microenvironment, likely played an important role in regulating the cellular functions. Overall, our results indicated that the PCL/Gelatin sample with the blend ratio of 2:1 was a superior candidate for scaffolds for tissue engineering applications.

  18. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    systems. We touch the role of topological confinement as expressed in the reptation model and discuss in some more detail processes limiting the confinement. In the second part we relate to some new developments concerning the measurement of large-scale internal dynamics of proteins by neutron spin echo. Keywords.

  19. Polymer dynamics from synthetic polymers to proteins

    Indian Academy of Sciences (India)

    mental temperature, on average on each side 220 monomers are released during an observation time of 190 ns. ... In yeast it is at the basis of the fermentation process and converts acetaldehyde into ethanol. In the process ... In our studies we used ADH from yeast which forms a tetramer structure. The crystallographic data ...

  20. Biomaterial scaffolds for treating osteoporotic bone

    Science.gov (United States)

    Sterling, Julie A.

    2014-01-01

    Healing fractures resulting from osteoporosis or cancer remains a significant clinical challenge. In these populations, healing is often impaired not only due to age and disease, but also by other therapeutic interventions such as radiation, steroids, and chemotherapy. Despite substantial improvements in the treatment of osteoporosis over the few decades, osteoporotic fractures are still a major clinical challenge in the elderly population due to impaired healing. Similar fractures with impaired healing are also prevalent in cancer patients, especially those with tumor growing in bone. Treatment options for cancer patients are further complicated by the fact that bone anabolic therapies are contraindicated in patients with tumors. Therefore, many patients undergo surgery to repair the fracture, and bone grafts are often used to stabilize orthopaedic implants and provide a scaffold for ingrowth of new bone. Both synthetic and naturally occurring biomaterials have been investigated as bone grafts for repair of osteoporotic fractures, including calcium phosphate bone cements, resorbable polymers, and allograft or autograft bone. In order to re-establish normal bone repair, bone grafts have been augmented with anabolic agents, such as mesenchymal stem cells (MSC) or recombinant human bone morphogenetic protein-2 (rhBMP2). These developing approaches to bone grafting are anticipated to improve the clinical management of osteoporotic and cancer-induced fractures. PMID:24458428

  1. Poly(Dopamine-Assisted Immobilization of Xu Duan on 3D Printed Poly(Lactic Acid Scaffolds to Up-Regulate Osteogenic and Angiogenic Markers of Bone Marrow Stem Cells

    Directory of Open Access Journals (Sweden)

    Chia-Hung Yeh

    2015-07-01

    Full Text Available Three-dimensional printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid (PLA scaffolds and use a mussel-inspired surface coating and Xu Duan (XD immobilization to regulate cell adhesion, proliferation and differentiation of human bone-marrow mesenchymal stem cells (hBMSCs. We prepared PLA scaffolds and coated with polydopamine (PDA. The chemical composition and surface properties of PLA/PDA/XD were characterized by XPS. PLA/PDA/XD controlled hBMSCs’ responses in several ways. Firstly, adhesion and proliferation of hBMSCs cultured on PLA/PDA/XD were significantly enhanced relative to those on PLA. In addition, the focal adhesion kinase (FAK expression of cells was increased and promoted cell attachment depended on the XD content. In osteogenesis assay, the osteogenesis markers of hBMSCs cultured on PLA/PDA/XD were significantly higher than seen in those cultured on a pure PLA/PDA scaffolds. Moreover, hBMSCs cultured on PLA/PDA/XD showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hBMSCs.

  2. The Use of Natural Polymers in Tissue Engineering: A Focus on Electrospun Extracellular Matrix Analogues

    Directory of Open Access Journals (Sweden)

    Gary L. Bowlin

    2010-11-01

    Full Text Available Natural polymers such as collagens, elastin, and fibrinogen make up much of the body’s native extracellular matrix (ECM. This ECM provides structure and mechanical integrity to tissues, as well as communicating with the cellular components it supports to help facilitate and regulate daily cellular processes and wound healing. An ideal tissue engineering scaffold would not only replicate the structure of this ECM, but would also replicate the many functions that the ECM performs. In the past decade, the process of electrospinning has proven effective in creating non-woven ECM analogue scaffolds of micro to nanoscale diameter fibers from an array of synthetic and natural polymers. The ability of this fabrication technique to utilize the aforementioned natural polymers to create tissue engineering scaffolds has yielded promising results, both in vitro and in vivo, due in part to the enhanced bioactivity afforded by materials normally found within the human body. This review will present the process of electrospinning and describe the use of natural polymers in the creation of bioactive ECM analogues in tissue engineering.

  3. Rambutan-like CNT-Al2O3 scaffolds for high-performance cathode catalyst layers of polymer electrolyte fuel cells

    Science.gov (United States)

    Chang, KwangHyun; Cho, Seonghun; Lim, Eun Ja; Park, Seok-Hee; Yim, Sung-Dae

    2018-03-01

    Rambutan-like CNT-Al2O3 scaffolds are introduced as a potential candidate for CNT-based catalyst supports to overcome the CNT issues, such as the easy bundling in catalyst ink and the poor pore structure of the CNT-based catalyst layers, and to achieve high MEA performance in PEFCs. Non-porous α-phase Al2O3 balls are introduced to enable the growth of multiwalled CNTs, and Pt nanoparticles are loaded onto the CNT surfaces. In a half-cell, the Pt/CNT-Al2O3 catalyst shows much higher durability than those of a commercial Pt/C catalyst even though it shows lower oxygen reduction reaction (ORR) activity than Pt/C. After using the decal process for MEA formation, the Pt/CNT-Al2O3 shows comparable initial performance characteristics to Pt/C, overcoming the lower ORR activity, mainly due to the facile oxygen transport in the cathode catalyst layers fabricated with the CNT-Al2O3 scaffolds. The Pt/CNT-Al2O3 also exhibits much higher durability against carbon corrosion than Pt/C owing to the durable characteristics of CNTs. Systematic analysis of single cell performance for both initial and after degradation is provided to understand the origin of the high initial performance and durable behavior of Pt/CNT-Al2O3-based catalyst layers. This will provide insights into the design of electrocatalysts for high-performance MEAs in PEFCs.

  4. 3D nanocomposite chitosan/bioactive glass scaffolds obtained using two different routes: an evaluation of the porous structure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Elke M. F. Lemos

    2016-05-01

    Full Text Available Porous synthetic substrates are developed through tissue engineering technologies to grow new tissue, restoring the function of tissue or an organ. For bone regeneration, these scaffolds must support the dynamic load exerted on this tissue, achieved primarily by increasing their compression strength, as established in the literature. The aim of this paper was to incorporate an inorganic composite bioactive glass (60%SiO2 - 36%CaO - 4%P2O5 as a reinforcing agent in mechanical 3D scaffolds that must remain porous. Two strategies were adopted: a co-precipitation method to obtain a nanoparticulate dispersion of bioactive glass (BGNP and a sol-gel method to combine a bioactive glass solution (BG with a previously prepared chitosan polymer solution. Moreover, a lyophilization process was also used, generating highly porous scaffolds. Various aspects of the scaffold were evaluated, including the morphology, orientation and size of the pores, and mechanical strength, as obtained using the two synthetic methods. The data for compressive strength revealed increased strength after the incorporation of bioactive glass, which was more pronounced when utilizing the nanoscale bioactive glass.

  5. Developmental Scaffolding

    DEFF Research Database (Denmark)

    Giorgi, Franco; Bruni, Luis Emilio

    2015-01-01

    . As this boundary is gradually defined during development, cells enter into new functional relationships, while, at the same time, are relieved from their physical determinism. The resulting constraints can thus become the driving forces that upgrade embryonic scaffolding from the simple molecular signalling...... to the complexity of sign recognition proper of a cellular community. In this semiotic perspective, the apparent goal directness of any developmental strategy should no longer be accounted for by a predetermined genetic program, but by the gradual definition of the relationships selected amongst the ones...

  6. Fresh muscle fiber fragments on a scaffold in rats-a new concept in urogynecology?

    DEFF Research Database (Denmark)

    Boennelycke, Marie; Christensen, Lise; Nielsen, Lene F

    2011-01-01

    To investigate if a synthetic, biodegradable scaffold with either autologous in vitro cultured muscle-derived cells or autologous fresh muscle fiber fragments could be used for tissue repair.......To investigate if a synthetic, biodegradable scaffold with either autologous in vitro cultured muscle-derived cells or autologous fresh muscle fiber fragments could be used for tissue repair....

  7. Star Polymers.

    Science.gov (United States)

    Ren, Jing M; McKenzie, Thomas G; Fu, Qiang; Wong, Edgar H H; Xu, Jiangtao; An, Zesheng; Shanmugam, Sivaprakash; Davis, Thomas P; Boyer, Cyrille; Qiao, Greg G

    2016-06-22

    Recent advances in controlled/living polymerization techniques and highly efficient coupling chemistries have enabled the facile synthesis of complex polymer architectures with controlled dimensions and functionality. As an example, star polymers consist of many linear polymers fused at a central point with a large number of chain end functionalities. Owing to this exclusive structure, star polymers exhibit some remarkable characteristics and properties unattainable by simple linear polymers. Hence, they constitute a unique class of technologically important nanomaterials that have been utilized or are currently under audition for many applications in life sciences and nanotechnologies. This article first provides a comprehensive summary of synthetic strategies towards star polymers, then reviews the latest developments in the synthesis and characterization methods of star macromolecules, and lastly outlines emerging applications and current commercial use of star-shaped polymers. The aim of this work is to promote star polymer research, generate new avenues of scientific investigation, and provide contemporary perspectives on chemical innovation that may expedite the commercialization of new star nanomaterials. We envision in the not-too-distant future star polymers will play an increasingly important role in materials science and nanotechnology in both academic and industrial settings.

  8. A review: fabrication of porous polyurethane scaffolds.

    Science.gov (United States)

    Janik, H; Marzec, M

    2015-03-01

    The aim of tissue engineering is the fabrication of three-dimensional scaffolds that can be used for the reconstruction and regeneration of damaged or deformed tissues and organs. A wide variety of techniques have been developed to create either fibrous or porous scaffolds from polymers, metals, composite materials and ceramics. However, the most promising materials are biodegradable polymers due to their comprehensive mechanical properties, ability to control the rate of degradation and similarities to natural tissue structures. Polyurethanes (PUs) are attractive candidates for scaffold fabrication, since they are biocompatible, and have excellent mechanical properties and mechanical flexibility. PU can be applied to various methods of porous scaffold fabrication, among which are solvent casting/particulate leaching, thermally induced phase separation, gas foaming, emulsion freeze-drying and melt moulding. Scaffold properties obtained by these techniques, including pore size, interconnectivity and total porosity, all depend on the thermal processing parameters, and the porogen agent and solvents used. In this review, various polyurethane systems for scaffolds are discussed, as well as methods of fabrication, including the latest developments, and their advantages and disadvantages. Copyright © 2014. Published by Elsevier B.V.

  9. Single-Step Arthroscopic Repair With Cell-Free Polymer-Based Scaffold in Osteochondral Lesions of the Talus: Clinical and Radiological Results.

    Science.gov (United States)

    Kanatlı, Ulunay; Eren, Ali; Eren, Toygun Kağan; Vural, Abdurrahman; Geylan, Dilan Ece; Öner, Ali Yusuf

    2017-09-01

    To report the clinical and radiological results of patients with talar osteochondral lesions who were treated by microfracture and cell-free scaffold implantation in a single-step arthroscopic surgery. Forty patients, treated with a single-step arthroscopic surgery, were evaluated in this single-center-based retrospective study. Patients with degenerative arthritis (n = 1), history of ankle fracture (n = 1), kissing lesions (n = 1), lower extremity deformity (n = 1), and lesions 10 mm depth) bone cysts were additionally treated with bone graft. Patients were evaluated clinically, using the American Orthopedic Foot and Ankle Society (AOFAS) hindfoot score. Radiological assessment was performed with magnetic resonance imaging, using the magnetic resonance observation of cartilage repair tissue (MOCART) score. Thirty-two patients with a mean age of 38 ± 12 years were evaluated. The mean defect size was 2.5 ± 0.8 cm 2 and the mean defect volume was 2.4 ± 1.9 cm 3 . The mean preoperative AOFAS score was 52.8 ± 13.9 and increased to 87.1 ± 11.1 postoperatively at the mean follow-up of 33.8 ± 14.0 months (P = .0001). A total of 84.4% of patients had good to excellent clinical scores. Clinical scores had no significant relation with age, lesion size, depth, or body mass index. The mean MOCART score was 64.2 ± 12.0. There was no significant correlation between the total MOCART and AOFAS scores (P = .123). A significant relation was found between the defect filling (the subgroup of the MOCART score) and the clinical outcomes (P = .0001, rho = 0.731). The arthroscopic scaffold implantation technique is a single-step, safe, and effective method for the treatment of talar osteochondral lesions with satisfactory clinical and radiological outcomes. Level IV, therapeutic case series. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  10. Electrospun poly(L-lactide/poly(ε-caprolactone blend nanofibrous scaffold: characterization and biocompatibility with human adipose-derived stem cells.

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available The essence of tissue engineering is the fabrication of autologous cells or induced stem cells in naturally derived or synthetic scaffolds to form specific tissues. Polymer is thought as an appealing source of cell-seeded scaffold owing to the diversity of its physicochemical property and can be electrospun into nano-size to mimic natural structure. Poly (L-lactic acid (PLLA and poly (ε-caprolactone (PCL are both excellent aliphatic polyester with almost "opposite" characteristics. The controlling combination of PLLA and PCL provides varying properties and makes diverse applications. Compared with the copolymers of the same components, PLLA/PCL blend demonstrates its potential in regenerative medicine as a simple, efficient and scalable alternative. In this study, we electrospun PLLA/PCL blends of different weight ratios into nanofibrous scaffolds (NFS and their properties were detected including morphology, porosity, degradation, ATR-FTIR analysis, stress-stain assay, and inflammatory reaction. To explore the biocompatibility of the NFS we synthesized, human adipose-derived stem cells (hASCs were used to evaluate proliferation, attachment, viability and multi-lineage differentiation. In conclusion, the electrospun PLLA/PCL blend nanofibrous scaffold with the indicated weight ratios all supported hASCs well. However, the NFS of 1/1 weight ratio showed better properties and cellular responses in all assessments, implying it a biocompatible scaffold for tissue engineering.

  11. Procedural resources utilization and clinical outcomes with bioresorbable everolimus-eluting scaffolds and Pt-Cr everolimus-eluting stent with resorbable abluminal polymer in clinical practice. A randomized trial.

    Science.gov (United States)

    de la Torre Hernandez, Jose M; Garcia Camarero, Tamara; Lee, Dae-Hyun; Sainz Laso, Fermin; Veiga Fernandez, Gabriela; Pino, Tania; Rubio, Silvia; Legarra, Pablo; Valdivia, Jorge R; Zueco Gil, Javier

    2017-08-01

    We sought to compare the procedural implications of using bioresorbable everolimus-eluting scaffolds (BVS) and Pt-Cr everolimus-eluting stent with abluminal bioabsorbable polymer (Synergy). There are important differences in the respective platforms, which could impact on procedural performance, complications and outcomes. A prospective, randomized single center study including consecutive patients in stable clinical condition and with lesions amenable to be treated with BVS according to predefined criteria. Patients were randomized to either treatment with BVS or Synergy. All procedural data were collected and 12 months clinical follow up conducted. Primary objectives were fluoroscopy time, median dose-area product, contras agent volumen, and peri-procedural troponin release. A total of 200 patients were included, 100 in BVS group and 100 in Synergy group. No significant differences were observed in baseline clinical and angiographic characteristics. Predilatation (97.6 vs. 25.4%; P procedural increase of creatinine was similar and amount of TnI release was significantly higher with BVS but incidence of peri-procedural infarction was comparable. Clinical outcomes at 12 months were similar with definite thrombosis being 1% with BVS and 0% with Synergy. The use of BVS in comparison with the Synergy stent in a similar lesional setting is associated with a higher use of resources in the procedure, more radiation, and higher TnI release. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. Edible Polymers: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Subhas C. Shit

    2014-01-01

    Full Text Available Edible polymers have established substantial deliberation in modern eons because of their benefits comprising use as edible materials over synthetic polymers. This could contribute to the reduction of environmental contamination. Edible polymers can practically diminish the complexity and thus improve the recyclability of materials, compared to the more traditional non-environmentally friendly materials and may be able to substitute such synthetic polymers. A synthetic hydrogel polymer unlocked a new possibility for development of films, coatings, extrudable pellets, and synthetic nanopolymers, particularly designed for medical, agricultural, and industrial fields. Edible polymers offer many advantages for delivering drugs and tissue engineering. Edible polymer technology helps food industries to make their products more attractive and safe to use. Novel edible materials have been derived from many natural sources that have conventionally been regarded as discarded materials. The objective of this review is to provide a comprehensive introduction to edible polymers by providing descriptions in terms of their origin, properties, and potential uses.

  13. A Novel Albumin-Based Tissue Scaffold for Autogenic Tissue Engineering Applications

    OpenAIRE

    Li, Pei-Shan; -Liang Lee, I.; Yu, Wei-Lin; Sun, Jui-Sheng; Jane, Wann-Neng; Shen, Hsin-Hsin

    2014-01-01

    Tissue scaffolds provide a framework for living tissue regeneration. However, traditional tissue scaffolds are exogenous, composed of metals, ceramics, polymers, and animal tissues, and have a defined biocompatibility and application. This study presents a new method for obtaining a tissue scaffold from blood albumin, the major protein in mammalian blood. Human, bovine, and porcine albumin was polymerised into albumin polymers by microbial transglutaminase and was then cast by freeze-drying-b...

  14. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Science.gov (United States)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2015-07-21

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  15. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Worsley, Marcus A.; Kucheyev, Sergei O.; Baumann, Theodore F.; Kuntz, Joshua D.; Satcher, Jr., Joe H.; Hamza, Alex V.

    2017-10-17

    Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

  16. Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds

    OpenAIRE

    Motamedi, Asma Sadat; Mirzadeh, Hamid; Hajiesmaeilbaigi, Fereshteh; Bagheri-Khoulenjani, Shadab; Shokrgozar, MohammadAli

    2017-01-01

    Smart materials like piezoelectric polymers represent a new class of promising scaffold in neural tissue engineering. In the current study, the fabrication processing parameters of polyvinylidine fluoride (PVDF) nanofibrous scaffold are found as a potential scaffold with nanoscale morphology and microscale alignment. Electrospinning technique with the ability to mimic the structure and function of an extracellular matrix is a preferable method to customize the scaffold features. PVDF nanofibr...

  17. Regeneration of damaged osteoporotic bone tissue with synthetic biomaterials

    Directory of Open Access Journals (Sweden)

    Petrović Nenad D.

    2014-01-01

    Full Text Available In some cases in oral and maxillofacial surgery, bone regeneration is required in large quantities. One of these cases is osteoporosis. This paper aims to show the new approach to solving this problem of impaired healing of bone defects in the jaw, as well as in other bones, with the use of synthetic biomaterials whose properties resemble the natural bone. Latest development in this area present an effort to create local drug-delivery systems for BMPs and growth factors, direct delivery of MSCs, as well as scaffolds for osteoconduction and also to utilize nanotechnology to synthesize composite biomaterials, predominantly based on HAp and polymers, that would mimic the natural bone nanocomposite architecture. There is also a tendency to create injectable biomaterials for simplified application.

  18. Polymer-Derived Silicoboron Carbonitride Foams for CO2 Capture: From Design to Application as Scaffolds for the in Situ Growth of Metal-Organic Frameworks.

    Science.gov (United States)

    Sandra, Fabien; Depardieu, Martin; Mouline, Zineb; Vignoles, Gérard L; Iwamoto, Yuji; Miele, Philippe; Backov, Rénal; Bernard, Samuel

    2016-06-06

    A template-assisted polymer-derived ceramic route is investigated for preparing a series of silicoboron carbonitride (Si/B/C/N) foams with a hierarchical pore size distribution and tailorable interconnected porosity. A boron-modified polycarbosilazane was selected to impregnate monolithic silica and carbonaceous templates and form after pyrolysis and template removal Si/B/C/N foams. By changing the hard template nature and controlling the quantity of polymer to be impregnated, controlled micropore/macropore distributions with mesoscopic cell windows are generated. Specific surface areas from 29 to 239 m(2)  g(-1) and porosities from 51 to 77 % are achieved. These foams combine a low density with a thermal insulation and a relatively good thermostructural stability. Their particular structure allowed the in situ growth of metal-organic frameworks (MOFs) directly within the open-cell structure. MOFs offered a microporosity feature to the resulting Si/B/C/N@MOF composite foams that allowed increasing the specific surface area to provide CO2 uptake of 2.2 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Biological Effects of Spirulina (Arthrospira Biopolymers and Biomass in the Development of Nanostructured Scaffolds

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2014-01-01

    Full Text Available Spirulina is produced from pure cultures of the photosynthetic prokaryotic cyanobacteria Arthrospira. For many years research centers throughout the world have studied its application in various scientific fields, especially in foods and medicine. The biomass produced from Spirulina cultivation contains a variety of biocompounds, including biopeptides, biopolymers, carbohydrates, essential fatty acids, minerals, oligoelements, and sterols. Some of these compounds are bioactive and have anti-inflammatory, antibacterial, antioxidant, and antifungal properties. These compounds can be used in tissue engineering, the interdisciplinary field that combines techniques from cell science, engineering, and materials science and which has grown in importance over the past few decades. Spirulina biomass can be used to produce polyhydroxyalkanoates (PHAs, biopolymers that can substitute synthetic polymers in the construction of engineered extracellular matrices (scaffolds for use in tissue cultures or bioactive molecule construction. This review describes the development of nanostructured scaffolds based on biopolymers extracted from microalgae and biomass from Spirulina production. These scaffolds have the potential to encourage cell growth while reducing the risk of organ or tissue rejection.

  20. Biological Effects of Spirulina (Arthrospira) Biopolymers and Biomass in the Development of Nanostructured Scaffolds

    Science.gov (United States)

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2014-01-01

    Spirulina is produced from pure cultures of the photosynthetic prokaryotic cyanobacteria Arthrospira. For many years research centers throughout the world have studied its application in various scientific fields, especially in foods and medicine. The biomass produced from Spirulina cultivation contains a variety of biocompounds, including biopeptides, biopolymers, carbohydrates, essential fatty acids, minerals, oligoelements, and sterols. Some of these compounds are bioactive and have anti-inflammatory, antibacterial, antioxidant, and antifungal properties. These compounds can be used in tissue engineering, the interdisciplinary field that combines techniques from cell science, engineering, and materials science and which has grown in importance over the past few decades. Spirulina biomass can be used to produce polyhydroxyalkanoates (PHAs), biopolymers that can substitute synthetic polymers in the construction of engineered extracellular matrices (scaffolds) for use in tissue cultures or bioactive molecule construction. This review describes the development of nanostructured scaffolds based on biopolymers extracted from microalgae and biomass from Spirulina production. These scaffolds have the potential to encourage cell growth while reducing the risk of organ or tissue rejection. PMID:25157367

  1. Low elastic modulus titanium–nickel scaffolds for bone implants

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing; Yang, Hailin; Wang, Huifeng; Ruan, Jianming, E-mail: jianming@csu.edu.cn

    2014-01-01

    The superelastic nature of repeating the human bones is crucial to the ideal artificial biomedical implants to ensure smooth load transfer and foster the ingrowth of new bone tissues. Three dimensional interconnected porous TiNi scaffolds, which have the tailorable porous structures with micro-hole, were fabricated by slurry immersing with polymer sponge and sintering method. The crystallinity and phase composition of scaffolds were studied by X-ray diffraction. The pore morphology, size and distribution in the scaffolds were characterized by scanning electron microscopy. The porosity ranged from 65 to 72%, pore size was 250–500 μm. Compressive strength and elastic modulus of the scaffolds were ∼ 73 MPa and ∼ 3GPa respectively. The above pore structural and mechanical properties are similar to those of cancellous bone. In the initial cell culture test, osteoblasts adhered well to the scaffold surface during a short time, and then grew smoothly into the interconnected pore channels. These results indicate that the porous TiNi scaffolds fabricated by this method could be bone substitute materials. - Highlights: • A novel approach for the fabrication of porous TiNi scaffolds • Macroporous structures are replicated from the polymer sponge template. • The pore characteristics and mechanical properties of TiNi scaffolds agree well with the requirement of trabecular bone. • Cytocompatibility of TiNi scaffolds is assessed, and it closely associated with pore property.

  2. Melt electrospinning of biodegradable polyurethane scaffolds.

    Science.gov (United States)

    Karchin, Ari; Simonovsky, Felix I; Ratner, Buddy D; Sanders, Joan E

    2011-09-01

    Electrospinning from a melt, in contrast to from a solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high-temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH(2))(4)-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3M ratio with a weight-average molecular weight of about 40kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Evaluation of an air spinning process to produce tailored biosynthetic nanofibre scaffolds

    International Nuclear Information System (INIS)

    Sabbatier, Gad

    2014-01-01

    We optimised the working parameters of an innovative air spinning device to produce nanofibrous polymer scaffolds for tissue engineering applications. Scanning electron microscopy was performed on the fibre scaffolds which were then used to identify various scaffold morphologies based on the ratio of surface occupied by the polymer fibres on that covered by the entire polymer scaffold assembly. Scaffolds were then produced with the spinning experimental parameters, resulting in 90% of fibres in the overall polymer construct, and were subsequently used to perform a multiple linear regression analysis to highlight the relationship between nanofibre diameter and the air spinning parameters. Polymer solution concentration was deemed as the most significant parameter to control fibre diameter during the spinning process, despite interactions between experimental parameters. Based on these findings, viscosity measurements were performed to clarify the effect of the polymer solution property on scaffold morphology. - Highlights: • An air spinning device for nanofibre scaffold production was optimised. • Relationships between fibre diameter and spinning parameters were established. • Polymer solution concentration was the most significant parameter. • Interactions between experimental parameters also influence the spinning process. • Nanofibres were formed due to polymer chain entanglements

  4. Electroactive Tissue Scaffolds with Aligned Pores as Instructive Platforms for Biomimetic Tissue Engineering

    Directory of Open Access Journals (Sweden)

    John G. Hardy

    2015-01-01

    Full Text Available Tissues in the body are hierarchically structured composite materials with tissue-specific chemical and topographical properties. Here we report the preparation of tissue scaffolds with macroscopic pores generated via the dissolution of a sacrificial supramolecular polymer-based crystal template (urea from a biodegradable polymer-based scaffold (polycaprolactone, PCL. Furthermore, we report a method of aligning the supramolecular polymer-based crystals within the PCL, and that the dissolution of the sacrificial urea yields scaffolds with macroscopic pores that are aligned over long, clinically-relevant distances (i.e., centimeter scale. The pores act as topographical cues to which rat Schwann cells respond by aligning with the long axis of the pores. Generation of an interpenetrating network of polypyrrole (PPy and poly(styrene sulfonate (PSS in the scaffolds yields electroactive tissue scaffolds that allow the electrical stimulation of Schwann cells cultured on the scaffolds which increases the production of nerve growth factor (NGF.

  5. 3D Printing of Scaffolds for Tissue Regeneration Applications

    Science.gov (United States)

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  6. Effects of pH, salinity, biomass concentration, and algal organic matter on flocculant efficiency of synthetic versus natural polymers for harvesting microalgae biomass

    OpenAIRE

    Roselet, Fabio; Vandamme, Dries; Roselet, Milene; Muylaert, Koenraad; Abreu, Paulo Cesar

    2017-01-01

    This study investigated the effects of pH, salinity, biomass concentration, and algal organic matter (AOM) on the efficiency of four commercial cationic flocculants. The tannin-based biopolymers Tanfloc SG and SL and the polyacrylamide polymers Flopam FO 4800 SH and FO 4990 SH were tested for flocculation of two microalgae models, the freshwater Chlorella vulgaris and the marine Nannochloropsis oculata. Both biomass concentration and AOM presence affected all polymers evaluated whereas salini...

  7. Independent assessment of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) sample preparation quality: Effect of sample preparation on MALDI-MS of synthetic polymers.

    Science.gov (United States)

    Kooijman, Pieter C; Kok, Sander; Honing, Maarten

    2017-02-28

    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) provides detailed and in-depth information about the molecular characteristics of synthetic polymers. To obtain the most accurate results the sample preparation parameters should be chosen to suit the sample and the aim of the experiment. Because the underlying principles of MALDI are still not fully known, a priori determination of optimal sample preparation protocols is often not possible. Employing an automated sample preparation quality assessment method recently presented by us we quantified the sample preparation quality obtained using various sample preparation protocols. Six conventional matrices with and without added potassium as a cationization agent and six ionic liquid matrices (ILMs) were assessed using poly(ethylene glycol) (PEG), polytetrahydrofuran (PTHF) and poly(methyl methacrylate) (PMMA) as samples. All sample preparation protocols were scored and ranked based on predefined quality parameters and spot-to-spot repeatability. Clearly distinctive preferences were observed in matrix identity and cationization agent for PEG, PTHF and PMMA, as the addition of an excess of potassium cationization agent results in an increased score for PMMA and a contrasting matrix-dependent effect for PTHF and PEG. The addition of excess cationization agent to sample mixtures dissipates any overrepresentation of high molecular weight polymer species. Our results show reduced ionization efficiency and similar sample deposit homogeneity for all tested ILMs, compared with well-performing conventional MALDI matrices. The results published here represent a start in the unsupervised quantification of sample preparation quality for MALDI samples. This method can select the best sample preparation parameters for any synthetic polymer sample and the results can be used to formulate hypotheses on MALDI principles. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  8. Water Soluble Polymers for Pharmaceutical Applications

    OpenAIRE

    Veeran Gowda Kadajji; Guru V. Betageri

    2011-01-01

    Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1) synthetic and (2) natural. Drug polymer conjugates, block copolymers, hydrogel...

  9. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    Directory of Open Access Journals (Sweden)

    Daniel J Modulevsky

    Full Text Available There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  10. Fabrication of Nanostructured Poly-ε-caprolactone 3D Scaffolds for 3D Cell Culture Technology

    KAUST Repository

    Schipani, Rossana

    2015-04-21

    Tissue engineering is receiving tremendous attention due to the necessity to overcome the limitations related to injured or diseased tissues or organs. It is the perfect combination of cells and biomimetic-engineered materials. With the appropriate biochemical factors, it is possible to develop new effective bio-devices that are capable to improve or replace biological functions. Latest developments in microfabrication methods, employing mostly synthetic biomaterials, allow the production of three-dimensional (3D) scaffolds that are able to direct cell-to-cell interactions and specific cellular functions in order to drive tissue regeneration or cell transplantation. The presented work offers a rapid and efficient method of 3D scaffolds fabrication by using optical lithography and micro-molding techniques. Bioresorbable polymer poly-ε-caprolactone (PCL) was the material used thanks to its high biocompatibility and ability to naturally degrade in tissues. 3D PCL substrates show a particular combination in the designed length scale: cylindrical shaped pillars with 10μm diameter, 10μm height, arranged in a hexagonal lattice with spacing of 20μm were obtained. The sidewalls of the pillars were nanostructured by attributing a 3D architecture to the scaffold. The suitability of these devices as cell culture technology supports was evaluated by plating NIH/3T3 mouse embryonic fibroblasts and human Neural Stem Cells (hNSC) on them. Scanning Electron Microscopy (SEM) analysis was carried out in order to examine the micro- and nano-patterns on the surface of the supports. In addition, after seeding of cells, SEM and immunofluorescence characterization of the fabricated systems were performed to check adhesion, growth and proliferation. It was observed that cells grow and develop healthy on the bio-polymeric devices by giving rise to well-interconnected networks. 3D PCL nano-patterned pillared scaffold therefore may have considerable potential as effective tool for

  11. Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Nadeem, Danish [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom); Kiamehr, Mostafa [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); Yang, Xuebin [Biomaterials and Tissue Engineering Group, Leeds Dental Institute, University of Leeds, LS2 9LU (United Kingdom); NIHR Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, Leeds LS7 4SA (United Kingdom); Su, Bo, E-mail: b.su@bristol.ac.uk [Biomaterials Engineering Group, School of Oral and Dental Sciences, University of Bristol, BS1 2LY (United Kingdom)

    2013-07-01

    In this work a bioactive composite scaffold, comprised of bioactive-glass and gelatin, is introduced. Through direct foaming a sponge-like composite of a sol–gel derived bioactive-glass (70S30C; 70% SiO{sub 2}, 30% CaO) and porcine gelatin was developed for use as a biodegradable scaffold for bone tissue engineering. The composite was developed to provide a suitable alternative to synthetic polymer based scaffolds, allowing directed regeneration of bone tissue. The fabricated scaffold was characterised through X-ray microtomography, scanning electron and light microscopy demonstrating a three dimensionally porous and interconnected structure, with an average pore size (170 μm) suitable for successful cell proliferation and tissue ingrowth. Acellular bioactivity was assessed through apatite formation during submersion in simulated body fluid (SBF) whereby the rate and onset of apatite nucleation was found to be comparable to that of bioactive-glass. Modification of dehydrothermal treatment parameters induced varying degrees of crosslinking, allowing the degradation of the composite to be tailored to suit specific applications and establishing its potential for a wide range of applications. Use of genipin to supplement crosslinking by dehydrothermal treatment provided further means of modifying degradability. Biocompatibility of the composite was qualified through successful cultures of human dental pulp stem cells (HDPSCs) on samples of the composite scaffold. Osteogenic differentiation of HDPSCs and extracellular matrix deposition were confirmed through positive alkaline phosphatase staining and immunohistochemistry. - Highlights: ► Optimised composition and fabrication produced sponge-like porosity (pore size ∼ 170 μm). ► Maximum aqueous stability via dehydrothermal treatment at 145 °C, for 48 h ► Biocompatibility and osteogenic potential confirmed via successful HDPSC cultures. ► Minimal toxicity exhibited in optimally crosslinked samples (10 m

  12. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  13. Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds☆

    Science.gov (United States)

    Madigan, Nicolas N.; McMahon, Siobhan; O’Brien, Timothy; Yaszemski, Michael J.; Windebank, Anthony J.

    2010-01-01

    This review highlights current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury. The concept of developing 3-dimensional polymer scaffolds for placement into a spinal cord transection model has recently been more extensively explored as a solution for restoring neurologic function after injury. Given the patient morbidity associated with respiratory compromise, the discrete tracts in the spinal cord conveying innervation for breathing represent an important and achievable therapeutic target. The aim is to derive new neuronal tissue from the surrounding, healthy cord that will be guided by the polymer implant through the injured area to make functional reconnections. A variety of naturally derived and synthetic biomaterial polymers have been developed for placement in the injured spinal cord. Axonal growth is supported by inherent properties of the selected polymer, the architecture of the scaffold, permissive microstructures such as pores, grooves or polymer fibres, and surface modifications to provide improved adherence and growth directionality. Structural support of axonal regeneration is combined with integrated polymeric and cellular delivery systems for therapeutic drugs and for neurotrophic molecules to regionalize growth of specific nerve populations. PMID:19737633

  14. Rapid identification of synthetic colorants in food samples by using indium oxide nanoparticle-functionalized porous polymer monolith coupled with HPLC-MS/MS.

    Science.gov (United States)

    Qi, Ruifang; Zhou, Xiao; Li, Xiqian; Ma, Jiutong; Lu, Chunmei; Mu, Jun; Zhang, Xuguang; Jia, Qiong

    2014-12-07

    A synthetic protocol for the preparation of an indium oxide nanoparticle-functionalized poly(methacrylic acid-glycidyl methacrylate-ethylene dimethacrylate-ethanediamine) monolithic column is reported. Various techniques, including scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermal gravimetric analysis-derivative thermogravimetric analysis were employed to characterize the synthesized monolith. The modified monolithic column was coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for determining synthetic colorants in various food samples. Under optimized conditions, good linearity was obtained for all the targets with squared regression coefficients greater than 0.9982. The limits of detection (S/N = 3) for 12 synthetic colorants were in the range of 0.012-2.97 μg kg(-1). The intra-day and inter-day relative standard deviations, ranging from 2.7% to 8.5%, were within the acceptable range. The developed method was successfully applied to the determination of synthetic colorants in food samples (candy, milk, jelly, jam, canned food, juice, and carbonated drink). Target recoveries at different spiked levels ranged from 73.5% to 112.1% with relative standard deviations of less than 10.3%.

  15. Manufacture of degradable polymeric scaffolds for bone regeneration.

    Science.gov (United States)

    Ge, Zigang; Jin, Zhaoxia; Cao, Tong

    2008-06-01

    Many innovative technology platforms for promoting bone regeneration have been developed. A common theme among these is the use of scaffolds to provide mechanical support and osteoconduction. Scaffolds can be either ceramic or polymer-based, or composites of both classes of material. Both ceramics and polymers have their own merits and drawbacks, and a better solution may be to synergize the advantageous properties of both materials within composite scaffolds. In this current review, after a brief introduction of the anatomy and physiology of bone, different strategies of fabricating polymeric scaffolds for bone regeneration, including traditional and solid free-form fabrication, are critically discussed and compared, while focusing on the advantages and disadvantages of individual techniques.

  16. Manufacture of degradable polymeric scaffolds for bone regeneration

    International Nuclear Information System (INIS)

    Ge Zigang; Jin Zhaoxia; Cao Tong

    2008-01-01

    Many innovative technology platforms for promoting bone regeneration have been developed. A common theme among these is the use of scaffolds to provide mechanical support and osteoconduction. Scaffolds can be either ceramic or polymer-based, or composites of both classes of material. Both ceramics and polymers have their own merits and drawbacks, and a better solution may be to synergize the advantageous properties of both materials within composite scaffolds. In this current review, after a brief introduction of the anatomy and physiology of bone, different strategies of fabricating polymeric scaffolds for bone regeneration, including traditional and solid free-form fabrication, are critically discussed and compared, while focusing on the advantages and disadvantages of individual techniques. (topical review)

  17. iBodies: modular synthetic antibody mimetics based on hydrophilic polymers decorated with functional moieties as tools for molecular recognition, imaging and specific drug delivery

    Czech Academy of Sciences Publication Activity Database

    Šácha, Pavel; Dvořáková, Petra; Knedlík, Tomáš; Schimer, Jiří; Šubr, Vladimír; Ulbrich, Karel; Bušek, P.; Navrátil, Václav; Sedlák, František; Majer, Pavel; Šedo, A.; Konvalinka, Jan

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 340 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] Institutional support: RVO:61388963 ; RVO:61389013 Keywords : antibody mimetics * molecular recognition * polymer conjugates Subject RIV: CE - Biochemistry

  18. 3D printed porous polycaprolactone/oyster shell powder (PCL/OSP) scaffolds for bone tissue engineering

    Science.gov (United States)

    Luo, Wenfeng; Zhang, Shuangying; Lan, Yuewei; Huang, Chen; Wang, Chao; Lai, Xuexu; Chen, Hanwei; Ao, Ningjian

    2018-04-01

    In this work, oyster shell powder (OSP) was used as the bio-filler and combined with polycaprolactone (PCL) through melt blending methodology. The PCL and PCL/OSP scaffolds were prepared using additive manufacturing process. All the 3D printed scaffolds hold a highly porosity and interconnected pore structures. OSP particles are dispersed in the polymer matrix, which helped to improve the degree of crystallinity and mineralization ability of the scaffolds. There was no significant cytotoxicity of the prepared scaffolds towards MG-63 cells, and all the scaffolds showed a well ALP activity. Therefore, PCL/OSP scaffolds had a high potential to be employed in the bone tissue engineering.

  19. A fresh look at bioresorbable scaffold technology: Intuition pumps

    Directory of Open Access Journals (Sweden)

    Sundeep Mishra

    2017-01-01

    Full Text Available Bioresorbable scaffolds (BRS are a new enticing treatment option in coronary interventions. Absorb BVS™ Is the most widely used and researched polymer based BRS, eluting everolimus. However currently it has several technical limitations; low radial support, larger strut size, poor visualization, poor deliverability and complex implantation technique. Magnesium based BRS are an alternate but they are also limited not only by lower radial support and poor visualization but also earlier bio-absorption. Material processing: blow-molding, annealing, polymer orientation, change in composition and use of higher molecular weight polymer, as well new polymers like tyrosine or salicyclate analogs and even hybrid (polymer and metallic combined with intelligent cell design has led to evolution of BRS technology. Newer BRS has higher radial strength, lower strut thickness, improved visualization, ease of scaffold implantation as also optimal bio-resorption time.

  20. Bionic Design, Materials and Performance of Bone Tissue Scaffolds

    Directory of Open Access Journals (Sweden)

    Tong Wu

    2017-10-01

    Full Text Available Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure and the bionic performance design (mechanical performance and biological performance. Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  1. Bionic Design, Materials and Performance of Bone Tissue Scaffolds.

    Science.gov (United States)

    Wu, Tong; Yu, Suihuai; Chen, Dengkai; Wang, Yanen

    2017-10-17

    Design, materials, and performance are important factors in the research of bone tissue scaffolds. This work briefly describes the bone scaffolds and their anatomic structure, as well as their biological and mechanical characteristics. Furthermore, we reviewed the characteristics of metal materials, inorganic materials, organic polymer materials, and composite materials. The importance of the bionic design in preoperative diagnosis models and customized bone scaffolds was also discussed, addressing both the bionic structure design (macro and micro structure) and the bionic performance design (mechanical performance and biological performance). Materials and performance are the two main problems in the development of customized bone scaffolds. Bionic design is an effective way to solve these problems, which could improve the clinical application of bone scaffolds, by creating a balance between mechanical performance and biological performance.

  2. Engineered biopolymeric scaffolds for chronic wound healing

    Directory of Open Access Journals (Sweden)

    Laura E Dickinson

    2016-08-01

    Full Text Available Skin regeneration requires the coordinated integration of concomitant biological and molecular events in the extracellular wound environment during overlapping phases of inflammation, proliferation, and matrix remodeling. This process is highly efficient during normal wound healing. However, chronic wounds fail to progress through the ordered and reparative wound healing process and are unable to heal, requiring long-term treatment at high costs. There are many advanced skin substitutes, which mostly comprise bioactive dressings containing mammalian derived matrix components and/or human cells, in clinical use. However, it is presently hypothesized that no treatment significantly outperforms the others. To address this unmet challenge, recent research has focused on developing innovative acellular biopolymeric scaffolds as more efficacious wound healing therapies. These biomaterial-based skin substitutes are precisely engineered and fine-tuned to recapitulate aspects of the wound healing milieu and target specific events in the wound healing cascade to facilitate complete skin repair with restored function and tissue integrity. This mini-review will provide a brief overview of chronic wound healing and current skin substitute treatment strategies while focusing on recent engineering approaches that regenerate skin using synthetic, biopolymeric scaffolds. We discuss key polymeric scaffold design criteria, including degradation, biocompatibility, and microstructure, and how they translate to inductive microenvironments that stimulate cell infiltration and vascularization to enhance chronic wound healing. As healthcare moves towards precision medicine-based strategies, the potential and therapeutic implications of synthetic, biopolymeric scaffolds as tunable treatment modalities for chronic wounds will be considered.

  3. Engineered Biopolymeric Scaffolds for Chronic Wound Healing.

    Science.gov (United States)

    Dickinson, Laura E; Gerecht, Sharon

    2016-01-01

    Skin regeneration requires the coordinated integration of concomitant biological and molecular events in the extracellular wound environment during overlapping phases of inflammation, proliferation, and matrix remodeling. This process is highly efficient during normal wound healing. However, chronic wounds fail to progress through the ordered and reparative wound healing process and are unable to heal, requiring long-term treatment at high costs. There are many advanced skin substitutes, which mostly comprise bioactive dressings containing mammalian derived matrix components, and/or human cells, in clinical use. However, it is presently hypothesized that no treatment significantly outperforms the others. To address this unmet challenge, recent research has focused on developing innovative acellular biopolymeric scaffolds as more efficacious wound healing therapies. These biomaterial-based skin substitutes are precisely engineered and fine-tuned to recapitulate aspects of the wound healing milieu and target specific events in the wound healing cascade to facilitate complete skin repair with restored function and tissue integrity. This mini-review will provide a brief overview of chronic wound healing and current skin substitute treatment strategies while focusing on recent engineering approaches that regenerate skin using synthetic, biopolymeric scaffolds. We discuss key polymeric scaffold design criteria, including degradation, biocompatibility, and microstructure, and how they translate to inductive microenvironments that stimulate cell infiltration and vascularization to enhance chronic wound healing. As healthcare moves toward precision medicine-based strategies, the potential and therapeutic implications of synthetic, biopolymeric scaffolds as tunable treatment modalities for chronic wounds will be considered.

  4. Assembly of Zn(II) and Cd(II) coordination polymers based on a flexible multicarboxylate ligand and nitrogen-containing auxiliary ligands through a mixed-ligand synthetic strategy: syntheses, structures and fluorescence properties.

    Science.gov (United States)

    Lu, Ji Tao; Meng, Dan Dan; Meng, Qing-Guo

    2016-02-01

    The structures of coordination polymers are strongly influenced by the organic ligands and metal ions used for their construction, so it is important to choose suitable ligands and metal ions and appropriate synthetic processes. Two novel d(10) coordination polymers, namely poly[[diaquabis(2,2'-bipyridine)[μ4-4,4'-(1,4-phenylenedioxy)bis(benzene-1,2-dicarboxylato)]dizinc(II)] dihydrate], {[Zn2(C22H10O10)(C10H8N2)2(H2O)2]·2H2O}n, (1), and poly[[diaquabis(1,10-phenanthroline)[μ4-4,4'-(1,4-phenylenedioxy)bis(benzene-1,2-dicarboxylato)]dicadmium(II)] dimethylformamide disolvate], {[Cd2(C22H10O10)(C12H8N2)2(H2O)2]·2C3H7NO}n, (2), have been synthesized from 4,4'-(1,4-phenylenedioxy)bis(benzene-1,2-dicarboxylic acid) (H4L) and two different N-containing auxiliary ligands through a mixed-ligand synthetic strategy under a solvothermal environment. The structures were characterized by single-crystal X-ray diffraction, powder X-ray diffraction, elemental analysis and IR spectroscopy. Compounds (1) and (2) both present one-dimensional chain structures and two-dimensional supramolecular layer structures constructed by weak hydrogen bonds. It is interesting to note that the carboxylate ligands reveal stable trans configurations in both compounds. The fluorescence properties of (1) and (2) in the solid state were also investigated.

  5. Polymers – A New Open Access Scientific Journal on Polymer Science

    Directory of Open Access Journals (Sweden)

    Shu-Kun Lin

    2009-12-01

    Full Text Available Polymers is a new interdisciplinary, Open Access scientific journal on polymer science, published by Molecular Diversity Preservation International (MDPI. This journal welcomes manuscript submissions on polymer chemistry, macromolecular chemistry, polymer physics, polymer characterization and all related topics. Both synthetic polymers and natural polymers, including biopolymers, are considered. Manuscripts will be thoroughly peer-reviewed in a timely fashion, and papers will be published, if accepted, within 6 to 8 weeks after submission. [...

  6. Polymers in cell encapsulation from an enveloped cell perspective

    NARCIS (Netherlands)

    de Vos, Paul; Lazarjani, Hamideh Aghajani; Poncelet, Denis; Faas, Marijke M.

    2014-01-01

    In the past two decades, many polymers have been proposed for producing immunoprotective capsules. Examples include the natural polymers alginate, agarose, chitosan, cellulose, collagen, and xanthan and synthetic polymers poly(ethylene glycol), polyvinyl alcohol, polyurethane, poly(ether-sulfone),

  7. Regeneration of musculoskeletal injuries using mesenchymal stem cells loaded scaffolds: review article

    Directory of Open Access Journals (Sweden)

    Maryam Ataie

    2017-07-01

    Full Text Available An increase in the average age of the population and physical activities where the musculoskeletal system is involved as well as large number of people suffering from skeletal injuries which impose high costs on the society. Bone grafting is currently a standard clinical approach to treat or replace lost tissues. Autografts are the most common grafts, but they can lead to complications such as pain, infection, scarring and donor site morbidity. The alternative is allografts, but they also carry the risk of carrying infectious agents or immune rejection. Therefore, surgeons and researchers are looking for new therapeutic methods to improve bone tissue repair. The field of tissue engineering and the use of stem cells as an ideal cell source have emerged as a promising approach in recent years. Three main components in the field of tissue engineering include proper scaffolds, cells and growth factors that their combination leads to formation of tissue-engineered constructs, resulting in tissue repair and regeneration. The use of scaffolds with suitable properties could effectively improve the tissue function or even regenerate the damaged tissue. The main idea of tissue engineering is to design and fabricate an appropriate scaffold which can support cell attachment, proliferation, migration and differentiation to relevant tissue. Scaffold gives the tissue its structural and mechanical properties, for instance flexibility and stiffness that is related with the tissue functions. Biomaterials used to fabricate scaffolds can be categorized into natural or synthetic biodegradable or non-biodegradable materials. Polymers are the most widely used materials in tissue engineering. Growth factors are a group of proteins that cause cell proliferation and differentiation. Two main cell sources are specialized cells of desired tissue and stem cells. However, according to the low proliferation and limited accessibility to the cells of desired tissue, stem cells

  8. Versatile synthetic strategy for coating upconverting nanoparticles with polymer shells through localized photopolymerization by using the particles as internal light sources.

    Science.gov (United States)

    Beyazit, Selim; Ambrosini, Serena; Marchyk, Nataliya; Palo, Emilia; Kale, Vishal; Soukka, Tero; Tse Sum Bui, Bernadette; Haupt, Karsten

    2014-08-18

    We present a straightforward and generic strategy for coating upconverting nanoparticles (UCPs) with polymer shells for their protection, functionalization, conjugation, and for biocompatibility. UCPs are attracting much attention for their potential use as fluorescent labels in biological applications. However, they are hydrophobic and non-compatible with aqueous media; thus prior surface modification is essential. Our method uses the internal UV or visible light emitted from UCPs upon photoexcitation with near-infrared radiation, to locally photopolymerize a thin polymer shell around the UCPs. In this way, a large variety of monomers with different chemical functionalities can be incorporated. If required, a second layer can be added on top of the first. Our method can provide a large spectrum of surface functional groups rapidly and in one pot, hence offering a platform for the preparation of libraries of functional polymer-encapsulated UCPs for applications in bioassays, biosensing, optical imaging, and theranostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometric imaging of synthetic polymer sample spots prepared using ionic liquid matrices.

    Science.gov (United States)

    Gabriel, Stefan J; Pfeifer, Dietmar; Schwarzinger, Clemens; Panne, Ulrich; Weidner, Steffen M

    2014-03-15

    Polymer sample spots for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) prepared by the dried-droplet method often reveal ring formation accompanied by possible segregation of matrix and sample molecules as well as of the polymer homologs itself. Since the majority of sample spots are prepared by this simple and fast method, a matrix or sample preparation method that excludes such segregation has to be found. Three different ionic liquid matrices based on conventionally used aromatic compounds for MALDI-TOF MS were prepared. The formation of ionic liquids was proven by (1) H NMR spectroscopy. MALDI-Imaging mass spectrometry was applied to monitor the homogeneity. Our results show a superior sample spot homogeneity using ionic liquid matrices. Spots could be sampled several times without visible differences in the mass spectra. A frequently observed loss of matrix in the mass spectrometer vacuum was not observed. The necessary laser irradiance was reduced, which resulted in less polymer fragmentation. Ionic liquid matrices can be used to overcome segregation, a typical drawback of conventional MALDI dried-droplet preparations. Homogeneous sample spots are easy to prepare, stable in the MS vacuum and, thereby, improve the reproducibility of MALDI. Copyright © 2014 John Wiley & Sons, Ltd.

  10. 3D conductive nanocomposite scaffold for bone tissue engineering.

    Science.gov (United States)

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli.

  11. Water Soluble Polymers for Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Veeran Gowda Kadajji

    2011-11-01

    Full Text Available Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1 synthetic and (2 natural. Drug polymer conjugates, block copolymers, hydrogels and other water soluble drug polymer complexes have also been explained. The general properties and applications of different water soluble polymers in the formulation of different dosage forms, novel delivery systems and biomedical applications will be discussed.

  12. Stratified scaffold design for engineering composite tissues.

    Science.gov (United States)

    Mosher, Christopher Z; Spalazzi, Jeffrey P; Lu, Helen H

    2015-08-01

    A significant challenge to orthopaedic soft tissue repair is the biological fixation of autologous or allogeneic grafts with bone, whereby the lack of functional integration between such grafts and host bone has limited the clinical success of anterior cruciate ligament (ACL) and other common soft tissue-based reconstructive grafts. The inability of current surgical reconstruction to restore the native fibrocartilaginous insertion between the ACL and the femur or tibia, which minimizes stress concentration and facilitates load transfer between the soft and hard tissues, compromises the long-term clinical functionality of these grafts. To enable integration, a stratified scaffold design that mimics the multiple tissue regions of the ACL interface (ligament-fibrocartilage-bone) represents a promising strategy for composite tissue formation. Moreover, distinct cellular organization and phase-specific matrix heterogeneity achieved through co- or tri-culture within the scaffold system can promote biomimetic multi-tissue regeneration. Here, we describe the methods for fabricating a tri-phasic scaffold intended for ligament-bone integration, as well as the tri-culture of fibroblasts, chondrocytes, and osteoblasts on the stratified scaffold for the formation of structurally contiguous and compositionally distinct regions of ligament, fibrocartilage and bone. The primary advantage of the tri-phasic scaffold is the recapitulation of the multi-tissue organization across the native interface through the layered design. Moreover, in addition to ease of fabrication, each scaffold phase is similar in polymer composition and therefore can be joined together by sintering, enabling the seamless integration of each region and avoiding delamination between scaffold layers. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Surface-assisted laser desorption/ionization time-of-flight mass spectrometry of small drug molecules and high molecular weight synthetic/biological polymers using electrospun composite nanofibers.

    Science.gov (United States)

    Bian, Juan; Olesik, Susan V

    2017-03-27

    Polyacrylonitrile/Nafion®/carbon nanotube (PAN/Nafion®/CNT) composite nanofibers were prepared using electrospinning. These electrospun nanofibers were studied as possible substrates for surface-assisted laser desorption/ionization (SALDI) and matrix-enhanced surface-assisted laser desorption/ionization time-of-flight mass spectrometry (ME-SALDI/TOF-MS) for the first time in this paper. Electrospinning provides this novel substrate with a uniform morphology and a narrow size distribution, where CNTs were evenly and firmly immobilized on polymeric nanofibers. The results show that PAN/Nafion®/CNT nanofibrous mats are good substrates for the analysis of both small drug molecules and high molecular weight polymers with high sensitivity. Markedly improved reproducibility was observed relative to MALDI. Due to the composite formation between the polymers and the CNTs, no contamination of the carbon nanotubes to the mass spectrometer was observed. Furthermore, electrospun nanofibers used as SALDI substrates greatly extended the duration of ion signals of target analytes compared to the MALDI matrix. The proposed SALDI approach was successfully used to quantify small drug molecules with no interference in the low mass range. The results show that verapamil could be detected with a surface concentration of 220 femtomoles, indicating the high detection sensitivity of this method. Analysis of peptides and proteins with the electrospun composite substrate using matrix assisted-SALDI was improved and a low limit of detection of approximately 6 femtomoles was obtained for IgG. Both SALDI and ME-SALDI analyses displayed high reproducibility with %RSD ≤ 9% for small drug molecules and %RSD ≤ 14% for synthetic polymers and proteins.

  14. Peptides, polypeptides and peptide-polymer hybrids as nucleic acid carriers.

    Science.gov (United States)

    Ahmed, Marya

    2017-10-24

    Cell penetrating peptides (CPPs), and protein transduction domains (PTDs) of viruses and other natural proteins serve as a template for the development of efficient peptide based gene delivery vectors. PTDs are sequences of acidic or basic amphipathic amino acids, with superior membrane trespassing efficacies. Gene delivery vectors derived from these natural, cationic and cationic amphipathic peptides, however, offer little flexibility in tailoring the physicochemical properties of single chain peptide based systems. Owing to significant advances in the field of peptide chemistry, synthetic mimics of natural peptides are often prepared and have been evaluated for their gene expression, as a function of amino acid functionalities, architecture and net cationic content of peptide chains. Moreover, chimeric single polypeptide chains are prepared by a combination of multiple small natural or synthetic peptides, which imparts distinct physiological properties to peptide based gene delivery therapeutics. In order to obtain multivalency and improve the gene delivery efficacies of low molecular weight cationic peptides, bioactive peptides are often incorporated into a polymeric architecture to obtain novel 'polymer-peptide hybrids' with improved gene delivery efficacies. Peptide modified polymers prepared by physical or chemical modifications exhibit enhanced endosomal escape, stimuli responsive degradation and targeting efficacies, as a function of physicochemical and biological activities of peptides attached onto a polymeric scaffold. The focus of this review is to provide comprehensive and step-wise progress in major natural and synthetic peptides, chimeric polypeptides, and peptide-polymer hybrids for nucleic acid delivery applications.

  15. Polymer architecture and drug delivery.

    Science.gov (United States)

    Qiu, Li Yan; Bae, You Han

    2006-01-01

    Polymers occupy a major portion of materials used for controlled release formulations and drug-targeting systems because this class of materials presents seemingly endless diversity in topology and chemistry. This is a crucial advantage over other classes of materials to meet the ever-increasing requirements of new designs of drug delivery formulations. The polymer architecture (topology) describes the shape of a single polymer molecule. Every natural, seminatural, and synthetic polymer falls into one of categorized architectures: linear, graft, branched, cross-linked, block, star-shaped, and dendron/dendrimer topology. Although this topic spans a truly broad area in polymer science, this review introduces polymer architectures along with brief synthetic approaches for pharmaceutical scientists who are not familiar with polymer science, summarizes the characteristic properties of each architecture useful for drug delivery applications, and covers recent advances in drug delivery relevant to polymer architecture.

  16. Effects of designed PLLA and 50:50PLGA scaffold architectures on bone formation in vivo

    OpenAIRE

    Saito, Eiji; Liao, Elly E.; Hu, Wei-Wen; Krebsbach, Paul H.; Hollister, Scott J.

    2011-01-01

    Biodegradable porous scaffolds have been investigated as an alternative approach to current metal, ceramic, and polymer bone graft substitutes for lost or damaged bone tissues. Although there have been many studies investigating the effects of scaffold architecture on bone formation, many of these scaffolds were fabricated using conventional methods, such as salt leaching and phase separation, and were constructed without designed architecture. To study the effects of both designed architectu...

  17. Preparation of Natural and Synthetic Porous Biodegradable ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Preparation of Natural and Synthetic Porous Biodegradable Scaffolds for Infected Wounds. Characterised for their physical properties, pore size and release kinetics. Release kinetics of bioactive molecules (antibiotics) in a controlled fashion. Release pattern of the ...

  18. SHOP: receptor-based scaffold hopping by GRID-based similarity searches

    DEFF Research Database (Denmark)

    Bergmann, Rikke; Liljefors, Tommy; Sørensen, Morten D

    2009-01-01

    A new field-derived 3D method for receptor-based scaffold hopping, implemented in the software SHOP, is presented. Information from a protein-ligand complex is utilized to substitute a fragment of the ligand with another fragment from a database of synthetically accessible scaffolds. A GRID...

  19. Fracture behaviors of ceramic tissue scaffolds for load bearing applications

    Science.gov (United States)

    Entezari, Ali; Roohani-Esfahani, Seyed-Iman; Zhang, Zhongpu; Zreiqat, Hala; Dunstan, Colin R.; Li, Qing

    2016-07-01

    Healing large bone defects, especially in weight-bearing locations, remains a challenge using available synthetic ceramic scaffolds. Manufactured as a scaffold using 3D printing technology, Sr-HT-Gahnite at high porosity (66%) had demonstrated significantly improved compressive strength (53 ± 9 MPa) and toughness. Nevertheless, the main concern of ceramic scaffolds in general remains to be their inherent brittleness and low fracture strength in load bearing applications. Therefore, it is crucial to establish a robust numerical framework for predicting fracture strengths of such scaffolds. Since crack initiation and propagation plays a critical role on the fracture strength of ceramic structures, we employed extended finite element method (XFEM) to predict fracture behaviors of Sr-HT-Gahnite scaffolds. The correlation between experimental and numerical results proved the superiority of XFEM for quantifying fracture strength of scaffolds over conventional FEM. In addition to computer aided design (CAD) based modeling analyses, XFEM was conducted on micro-computed tomography (μCT) based models for fabricated scaffolds, which took into account the geometric variations induced by the fabrication process. Fracture strengths and crack paths predicted by the μCT-based XFEM analyses correlated well with relevant experimental results. The study provided an effective means for the prediction of fracture strength of porous ceramic structures, thereby facilitating design optimization of scaffolds.

  20. Temperature control in large-internal-diameter scaffolded monolithic columns operated at ultra-high pressures

    NARCIS (Netherlands)

    Vonk, R.J.; Aalbers, T.; Eeltink, S.; Schoenmakers, P.J.

    2015-01-01

    Scaffolding makes it feasible to create organic-polymer monoliths in large confinements, such as wide-bore columns. By creating the scaffold from a metal good heat conductivity inside the column is obtained, which renders the relatively large columns (comparable with 4.6 mm id.) suitable for

  1. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  2. Polyurethane (PU) scaffolds prepared by solvent casting/particulate leaching (SCPL) combined with centrifugation

    International Nuclear Information System (INIS)

    Sin, Dong Choon; Miao Xigeng; Liu Gang; Wei Fan; Chadwick, Gary; Yan Cheng; Friis, Thor

    2010-01-01

    This article reports an enhanced solvent casting/particulate (salt) leaching (SCPL) method developed for preparing three-dimensional porous polyurethane (PU) scaffolds for cardiac tissue engineering. The solvent for the preparation of the PU scaffolds was a mixture of dimethylformamide (DFM) and tetrahydrofuran (THF). The enhanced method involved the combination of a conventional SCPL method and a step of centrifugation, with the centrifugation being employed to improve the pore uniformity and the pore interconnectivity of scaffolds. Highly porous three-dimensional scaffolds with a well interconnected porous structure could be achieved at the polymer solution concentration of up to 20% by air or vacuum drying to remove the solvent. When the salt particle sizes of 212-295, 295-425, or 425-531 μm and a 15% w/v polymer solution concentration were used, the porosity of the scaffolds was between 83-92% and the compression moduli of the scaffolds were between 13 kPa and 28 kPa. Type I collagen acidic solution was introduced into the pores of a PU scaffold to coat the collagen onto the pore walls throughout the whole PU scaffold. The human aortic endothelial cells (HAECs) cultured in the collagen-coated PU scaffold for 2 weeks were observed by scanning electron microscopy (SEM). It was shown that the enhanced SCPL method and the collagen coating resulted in a spatially uniform distribution of cells throughout the collagen-coated PU scaffold.

  3. PEDOT doped with algal, mammalian and synthetic dopants: polymer properties, protein and cell interactions, and influence of electrical stimulation on neuronal cell differentiation.

    Science.gov (United States)

    Molino, P J; Garcia, L; Stewart, E M; Lamaze, M; Zhang, B; Harris, A R; Winberg, P; Wallace, G G

    2018-03-28

    Poly(3,4-ethylenedioxythiophene) (PEDOT) films were electrochemically polymerised with several synthetic (dodecylbenzosulfonic acid (DBSA)) and biological (dextran sulphate (DS), chondroitin sulphate (CS), alginic acid (ALG) and ulvan (ULV)) dopant anions, and their physical, mechanical and electrochemical properties characterised. PEDOT films incorporating the biological dopants ALG and ULV produced films of the greatest surface roughness (46 ± 5.1 and 31 ± 1.9 nm, respectively), and demonstrated significantly lower shear modulus values relative to all other PEDOT films (2.1 ± 0.1 and 1.2 ± 0.2 MPa, respectively). Quartz crystal microgravimetry was used to study the adsorption of the important extracellular matrix protein fibronectin, revealing protein adsorption to be greatest on PEDOT doped with DS, followed by DBSA, ULV, CS and ALG. Electrical stimulation experiments applying a pulsed current using a biphasic waveform (250 Hz) were undertaken using PEDOT doped with either DBSA or ULV. Electrical stimulation had a significant influence on cell morphology and cell differentiation for PEDOT films with either dopant incorporated, with the degree of branching per cell increased by 10.5× on PEDOT-DBSA and 6.5× on PEDOT-ULV relative to unstimulated cells, and mean neurite length per cell increasing 2.6× and 2.2× on stimulated vs. unstimulated PEDOT-DBSA and PEDOT-ULV, respectively. We demonstrate the cytocompatibility of synthetic and biologically doped PEDOT biomaterials, including the new algal derived polysaccharide dopant ulvan, which, along with DBSA doped PEDOT, is shown to significantly enhance the differentiation of PC12 neuronal cells under electrical stimulation.

  4. Application of Liquid-Phase Direct Fluorination: Novel Synthetic Methods for a Polyfluorinated Coating Material and a Monomer of a Perfluorinated Polymer Electrolyte Membrane

    Directory of Open Access Journals (Sweden)

    Takashi Okazoe

    2012-04-01

    Full Text Available A new polyfluorinated anti-staining coating material CF3O(CF2CF2OxCF2-CONHCH2CH2CH2Si(OCH33 has been developed by utilizing the PERFECT method, which employs a liquid-phase direct fluorination reaction with elemental fluorine as a key step. Direct fluorination of a partially-fluorinated ester, which was prepared from a non-fluorinated poly(ethylene glycol and a perfluorinated acyl fluoride, followed by methanolysis, gave the perfluorinated corresponding compound, which was led to the coating material for surface treating agents, and the methyl ester of the starting perfluorinated acyl fluoride. Application to the synthesis of a new perfluorinated bifunctional sulfonate monomer CF2=CFOCF2CF2CF2OCF(CF2SO2F2 for polymer electrolyte membranes (PEMs of fuel cells was also developed.

  5. The dynamics of scaffolding

    NARCIS (Netherlands)

    Van Geert, P. L. C.; Steenbeek, H.W.

    2005-01-01

    In this article we have reinterpreted a relatively standard definition of scaffolding in the context of dynamic systems theory. Our main point is that scaffolding cannot be understood outside the context of a dynamic approach of learning and (formal or informal) teaching. We provide a dynamic

  6. Mechanical enhancement and in vitro biocompatibility of nanofibrous collagen-chitosan scaffolds for tissue engineering.

    Science.gov (United States)

    Zou, Fengjuan; Li, Runrun; Jiang, Jianjun; Mo, Xiumei; Gu, Guofeng; Guo, Zhongwu; Chen, Zonggang

    2017-12-01

    The collagen-chitosan complex with a three-dimensional nanofiber structure was fabricated to mimic native ECM for tissue repair and biomedical applications. Though the three-dimensional hierarchical fibrous structures of collagen-chitosan composites could provide more adequate stimulus to facilitate cell adhesion, migrate and proliferation, and thus have the potential as tissue engineering scaffolding, there are still limitations in their applications due to the insufficient mechanical properties of natural materials. Because poly (vinyl alcohol) (PVA) and thermoplastic polyurethane (TPU) as biocompatible synthetic polymers can offer excellent mechanical properties, they were introduced into the collagen-chitosan composites to fabricate the mixed collagen/chitosan/PVA fibers and a sandwich structure (collagen/chitosan-TPU-collagen/chitosan) of nanofiber in order to enhance the mechanical properties of the nanofibrous collagen-chitosan scaffold. The results showed that the tensile behavior of materials was enhanced to different degrees with the difference of collagen content in the fibers. Besides the Young's modulus had no obvious changes, both the break strength and the break elongation of materials were heightened after reinforced by PVA. For the collagen-chitosan nanofiber reinforced by TPU, both the break strength and the Young's modulus of materials were heightened in different degrees with the variety of collagen content in the fibers despite the decrease of the break elongation of materials to some extent. In vitro cell test demonstrated that the materials could provide adequate environment for cell adhesion and proliferation. All these indicated that the reinforced collagen-chitosan nanofiber could be as potential scaffold for tissue engineering according to the different mechanical requirements in clinic.

  7. Direct laser writing and geometrical analysis of scaffolds with designed pore architecture for three-dimensional cell culturing

    Science.gov (United States)

    Käpylä, Elli; Aydogan, Dogu Baran; Virjula, Sanni; Vanhatupa, Sari; Miettinen, Susanna; Hyttinen, Jari; Kellomäki, Minna

    2012-11-01

    Traditional scaffold fabrication methods used in tissue engineering enable only limited control over essential parameters such as porosity, pore size and pore interconnectivity. In this study, we designed and fabricated five different types of three-dimensionally interconnected, highly porous scaffolds with precise control over the scaffold characteristics. We used two-photon polymerization (2PP) with a commercial polymer-ceramic material (Ormocomp®) for scaffold fabrication. Also for the first time, we analyzed the 2PP fabrication accuracy with respect to scaffold design parameters. Our results showed that the porosity values decreased up to 13% compared to the design specifications due to the fabrication process and the shrinkage of the material. Finally, we showed that our scaffolds supported human adipose stem cell adhesion and proliferation in a six day culture. By precise tuning of scaffold parameters, our design and fabrication method provides a novel approach for studying the effect of scaffold architecture on cell behavior in vitro.

  8. Polymers in regenerative medicine biomedical applications from nano- to macro-structures

    CERN Document Server

    Monleon Pradas, Manuel

    2015-01-01

    Biomedical applications of Polymers from Scaffolds toNanostructures The ability of polymers to span wide ranges of mechanicalproperties and morph into desired shapes makes them useful for avariety of applications, including scaffolds, self-assemblingmaterials, and nanomedicines. With an interdisciplinary list ofsubjects and contributors, this book overviews the biomedicalapplications of polymers and focuses on the aspect of regenerativemedicine. Chapters also cover fundamentals, theories, and tools forscientists to apply polymers in the following ways: Matrix protein interactions with synthe

  9. Antibacterial activity of combination of synthetic and biopolymer non-woven structures.

    Science.gov (United States)

    Bhullar, Sukhwinder K; Özsel, Burcak Kaya; Yadav, Ramesh; Kaur, Ginpreet; Chintamaneni, Meena; Buttar, Harpal S

    2015-12-01

    Fibrous structures and synthetic polymer blends offer potential usages in making biomedical devices, textiles used in medical practices, food packaging, tissue engineering, environmental applications and biomedical arena. These products are also excellent candidates for building scaffolds to grow stem cells for implantation, to make tissue engineering grafts, to make stents to open up blood vessels caused by atherosclerosis or narrowed by blood clots, for drug delivery systems for micro- to nano-medicines, for transdermal patches, and for healing of wounds and burn care. The current study was designed to evaluate the antimicrobial activity of woven and non-woven forms of nano- and macro-scale blended polymers having biocompatible and biodegradable characteristics. The antimicrobial activity of non-woven fibrous structures created with the combination of synthetic and biopolymer was assessed using Gram-negative, Gram-positive bacteria, such as Staphylococcus aureus, Proteus vulgaris, Escherichia coli and Enterobacter aerogenes using pour plate method. Structural evaluation of the fabricated samples was performed by Fourier transform infrared spectroscopy. Broad spectrum antibacterial activities were found from the tested materials consisting of polyvinyl alcohol (PVA) with chitosan and nylon-6 combined with chitosan and formic acid. The combination of PVA with chitosan was more bactericidal or bacteriostatic than that of nylon-6 combined with chitosan and formic acid. PVA combination with chitosan appears to be a broad-spectrum antimicrobial agent.

  10. Synthetic oils

    Science.gov (United States)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  11. Molecularly imprinted polymers with synthetic dummy template for simultaneously selective removal and enrichment of ginkgolic acids from Ginkgo biloba L. leaves extracts.

    Science.gov (United States)

    Ji, Wenhua; Ma, Xiuli; Xie, Hongkai; Chen, Lingxiao; Wang, Xiao; Zhao, Hengqiang; Huang, Luqi

    2014-11-14

    Dummy molecularly imprinted polymers (DMIPs) for simultaneously selective removal and enrichment of ginkgolic acids (GAs) during the processing of Ginkgo biloba leaves have been prepared. Two dummy template molecule with similar structural skeleton to GAs, 6-methoxysalicylic acid (MOSA, DT-1) and 6-hexadecyloxysalicylic acid (HOSA, DT-2), have been designed and synthesized. The performance of the DMIPs and NIPs were evaluated including selective recognition capacity, adsorption isotherm, and adsorption kinetics. The selective recognition capacity of the three GAs with four analogues on the sorbents illustrated that the DMIPs sorbents have high specificity for GAs. An efficient method based on DMIP-HOSA coupled with solid-phase extraction (SPE) was developed for simultaneously selective removal and enrichment of ginkgolic acids (GAs) during the processing of Ginkgo biloba leaves. The method showed excellent recoveries (82.5-88.7%) and precision (RSD 0.5-2.6%, n=5) for licorice extracts, Gastrodia elata extracts and pepper extracts spiked at three concentration levels each (50, 100, 200 μg mL(-1)). The results indicated that GAs and standardized Ginkgo biloba leaves extracts could be obtained simultaneously through the DMIP-SPE. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Fibrin and poly(lactic-co-glycolic acid hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study

    Directory of Open Access Journals (Sweden)

    Idrus Ruszymah BH

    2008-04-01

    Full Text Available Abstract Background Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid (PLGA are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. Methods PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 × 106cells/scaffold and polymerized by dropping thrombin-calcium chloride (CaCl2 solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl-2-, 5-diphenyltetrazolium-bromide (MTT assay. Morphological observation, histology, immunohistochemistry (IHC, gene expression and sulphated-glycosaminoglycan (sGAG analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM. Results Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further

  13. Fibrin and poly(lactic-co-glycolic acid) hybrid scaffold promotes early chondrogenesis of articular chondrocytes: an in vitro study.

    Science.gov (United States)

    Sha'ban, Munirah; Kim, Soon Hee; Idrus, Ruszymah Bh; Khang, Gilson

    2008-04-25

    Synthetic- and naturally derived- biodegradable polymers have been widely used to construct scaffolds for cartilage tissue engineering. Poly(lactic-co-glycolic acid) (PLGA) are bioresorbable and biocompatible, rendering them as a promising tool for clinical application. To minimize cells lost during the seeding procedure, we used the natural polymer fibrin to immobilize cells and to provide homogenous cells distribution in PLGA scaffolds. We evaluated in vitro chondrogenesis of rabbit articular chondrocytes in PLGA scaffolds using fibrin as cell transplantation matrix. PLGA scaffolds were soaked in chondrocytes-fibrin suspension (1 x 10(6) cells/scaffold) and polymerized by dropping thrombin-calcium chloride (CaCl2) solution. PLGA-seeded chondrocytes was used as control. All constructs were cultured for a maximum of 21 days. Cell proliferation activity was measured at 1, 3, 7, 14 and 21 days in vitro using 3-(4,5-dimethylthiazole-2-yl)-2-, 5-diphenyltetrazolium-bromide (MTT) assay. Morphological observation, histology, immunohistochemistry (IHC), gene expression and sulphated-glycosaminoglycan (sGAG) analyses were performed at each time point of 1, 2 and 3 weeks to elucidate in vitro cartilage development and deposition of cartilage-specific extracellular matrix (ECM). Cell proliferation activity was gradually increased from day-1 until day-14 and declined by day-21. A significant cartilaginous tissue formation was detected as early as 2-week in fibrin/PLGA hybrid construct as confirmed by the presence of cartilage-isolated cells and lacunae embedded within basophilic ECM. Cartilage formation was remarkably evidenced after 3 weeks. Presence of cartilage-specific proteoglycan and glycosaminoglycan (GAG) in fibrin/PLGA hybrid constructs were confirmed by positive Safranin O and Alcian Blue staining. Collagen type II exhibited intense immunopositivity at the pericellular matrix. Chondrogenic properties were further demonstrated by the expression of genes encoded for

  14. The assessment of natural scaffolds ability in chondrogenic ...

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    polymers have suitable mechanical properties in tissue engineering, they do not have good biocompatibility as well as inability to provide appropriate cell adhesion. Moreover, their preparation is complex in laboratory conditions22,23. There are also disadvantages in different types of natural scaffolds, including low stability ...

  15. Fluorinated Polyurethane Scaffolds for 19F Magnetic Resonance Imaging

    NARCIS (Netherlands)

    Lammers, Twan; Mertens, Marianne E.; Schuster, Philipp; Rahimi, Khosrow; Shi, Yang; Schulz, Volkmar; Kuehne, Alexander J.C.; Jockenhoevel, Stefan; Kiessling, Fabian

    2017-01-01

    Researchers used fluorinated polyurethane scaffolds for 19F magnetic resonance imaging. They generated a novel fluorinated polymer based on thermoplastic polyurethane (19F -TPU) which possesses distinct properties rendering it suitable for fluorine-based MRI. The 19F -TPU is synthesized from a

  16. Biomimetic synthesis of hybrid nanocomposite scaffolds by freeze

    Indian Academy of Sciences (India)

    The aim of this study is to biomimetically synthesize hydroxyapatite–hydrophilic polymer scaffolds for biomedical applications. This organic–inorganic hybrid has been structurally characterized and reveals a good microstructural control as seen by the SEM analysis and the nanosize of the particulates is confirmed by AFM ...

  17. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, S., E-mail: smsilva@ineb.up.pt [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalurgica e Materiais, Porto (Portugal); Rodriguez, M.A.; Pena, P.; De Aza, A.H.; De Aza, S. [Instituto de Ceramica y Vidrio, CSIC, 28049-Cantoblanco, Madrid (Spain); Ferraz, M.P. [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Faculdade de Ciencias da Saude da Universidade Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto (Portugal); Monteiro, F.J. [INEB - Instituto de Engenharia Biomedica, Divisao de Biomateriais, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalurgica e Materiais, Porto (Portugal)

    2009-06-01

    The present study refers to the preparation and characterization of porous hydroxyapatite scaffolds to be used as matrices for bone regeneration or as specific release vehicles. Ceramics are widely used for bone tissue engineering purposes and in this study, hydroxyapatite porous scaffolds were produced using the polymer replication method. Polyurethane sponges were used as templates and impregnated with a ceramic slurry at different ratios, and sintered at 1300 deg. C following a specific thermal cycle. The characteristics of the hydroxyapatite porous scaffolds and respective powder used as starting material, were investigated by using scanning electron microscopy, particle size distribution, X-ray diffraction, Fourier transformed infrared spectroscopy and compressive mechanical testing techniques. It was possible to produce highly porous hydroxyapatite scaffolds presenting micro and macropores and pore interconnectivity.

  18. Factorial Study of Compressive Mechanical Properties and Primary In Vitro Osteoblast Response of PHBV/PLLA Scaffolds

    Directory of Open Access Journals (Sweden)

    Naznin Sultana

    2012-01-01

    Full Text Available For bone tissue regeneration, composite scaffolds containing biodegradable polymers and nanosized osteoconductive bioceramics have been regarded as promising biomimetic systems. Polymer blends of poly(hydroxybutyrate-co-hydroxyvalerate (PHBV and poly(L-lactic acid (PLLA can be used as the polymer matrix to control the degradation rate. In order to render the scaffolds osteoconductive, nano-sized hydroxyapatite (nHA particles can be incorporated into the polymer matrix. In the first part of this study, a factorial design approach to investigate the influence of materials on the initial compressive mechanical properties of the scaffolds was studied. In the second part, the protein adsorption behavior and the attachment and morphology of osteoblast-like cells (Saos-2 of the scaffolds in vitro were also studied. It was observed that nHA incorporated PHBV/PLLA composite scaffolds adsorbed more bovine serum albumin (BSA protein than PHBV or PHBV/PLLA scaffolds. In vitro studies also revealed that the attachment of human osteoblastic cells (SaOS-2 was significantly higher in nHA incorporated PHBV/PLLA composite scaffolds. From the SEM micrographs of nHA incorporated PHBV/PLLA composite scaffolds seeded with SaOS-2 cells after a 7-day cell culture period, it was observed that the cells were well expanded and spread in all directions on the scaffolds.

  19. Preparation of biodegradable gelatin/PVA porous scaffolds for skin regeneration.

    Science.gov (United States)

    Mahnama, Hossein; Dadbin, Susan; Frounchi, Masoud; Rajabi, Sareh

    2017-08-01

    Porous scaffolds composed of gelatin/poly (vinyl alcohol), (Gel/PVA), were prepared using combination of freeze gelation and freeze drying methods. The effect of polymer concentration, gelatin/PVA ratio, and glutaraldehyde/gelatin ratio (GA/Gel) was investigated on morphology of pores, swelling ratio, biodegradation, and skin cell culture. At optimum preparation conditions the scaffolds had uniform pore size distributions showing high swelling ratio of 23.6. The scaffolds were of biodegradable nature and almost degraded in 28 days. Human dermal fibroblast cells (HDF) were cultured on the scaffolds and MTS assay was conducted to evaluate the influence of PVA on growth and proliferation of the cells.

  20. Gradient polymers for tissue engineering

    NARCIS (Netherlands)

    Klein Gunnewiek, Michel

    2015-01-01

    With increasing life expectancy, there is an constant demand for finding solutions to restore damaged or diseased tissues and organs. Regenerative medicine holds the promise to create continuous body-part replacements through the combination of cells, biological factors, and synthetic scaffolds.

  1. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation

    International Nuclear Information System (INIS)

    Sultana, Naznin; Wang Min

    2012-01-01

    Tissue engineering combines living cells with biodegradable materials and/or bioactive components. Composite scaffolds containing biodegradable polymers and nanosized osteoconductive bioceramic with suitable properties are promising for bone tissue regeneration. In this paper, based on blending two biodegradable and biocompatible polymers, namely poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) and poly(l-lactic acid) (PLLA) with incorporated nano hydroxyapatite (HA), three-dimensional composite scaffolds with controlled microstructures and an interconnected porous structure, together with high porosity, were fabricated using an emulsion freezing/freeze-drying technique. The influence of various parameters involved in the emulsion freezing/freeze-drying technique was studied for the fabrication of good-quality polymer scaffolds based on PHBV polymers. The morphology, mechanical properties and crystallinity of PHBV/PLLA and HA in PHBV/PLLA composite scaffolds and PHBV polymer scaffolds were studied. The scaffolds were coated with collagen in order to improve wettability. During in vitro biological evaluation study, it was observed that SaOS-2 cells had high attachment on collagen-coated scaffolds. Significant improvement in cell proliferation and alkaline phosphatase activity for HA-incorporated composite scaffolds was observed due to the incorporation of HA. After 3 and 7 days of culture on all scaffolds, SaOS-2 cells also had normal morphology and growth. These results indicated that PHBV/PLLA-based scaffolds fabricated via an emulsion freezing/freeze-drying technique were favorable sites for osteoblastic cells and are promising for the applications of bone tissue engineering.

  2. 3D Printed Silicone–Hydrogel Scaffold with Enhanced Physicochemical Properties

    DEFF Research Database (Denmark)

    Mohanty, Soumyaranjan; Alm, Martin; Hemmingsen, Mette

    2016-01-01

    is currently a huge challenge. The goal of this work was to fabricate a tissue engineering scaffold from clinically approved materials with the capability of delivering biomolecules and direct cell fate. We have used a simple 3D printing approach, that combines polymer casting with supercritical fluid...... technology to produce 3D interpenetrating polymer network (IPN) scaffold of silicone-poly(2-hydroxyethyl methacrylate)-co-poly(ethylene glycol) methyl ether acrylate (pHEMA-co-PEGMEA). The pHEMA-co-PEGMEA IPN materials were employed to support growth of human mesenchymal stem cells (hMSC), resulting in high...... cell viability and metabolic activity over a 3 weeks period. In addition, the IPN scaffolds support 3D tissue formation inside the porous scaffold with well spread cell morphology on the surface of the scaffold. As a proof of concept, sustained doxycycline (DOX) release from pHEMA-co-PEGMEA IPN...

  3. Photosensitive semiconducting polymer-incorporated nanofibers for promoting the regeneration of skin wound

    International Nuclear Information System (INIS)

    Jin, Guorui; Li, Jun; Li, Kai

    2017-01-01

    Photosensitive semiconducting polymer (SP) combined with light stimulation has shown the capability in promoting the proliferation of human dermal fibroblasts (HDFs). However, the high cytotoxicity of the used SP hindered its further application in bioactive scaffolds. In this contribution, we designed and synthesized a SP, poly (N,N-bis(2-octyldodecyl)-3,6-di(thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c] pyrrole-1,4-dione-alt-thieno[3,2-b]thiophene) (PDBTT) with low cytotoxicity and strong absorbance in red and near-infrared region (600–1200 nm). The photosensitive SP was then applied in electrospun poly(ε-caprolactone) (PCL) nanofibrous scaffold and evaluated its proliferative effect on HDFs under the illumination from red light-emitting diode (LED) with high tissue penetration. After 9 days of continuous stimulation, the hybrid electrospun PCL/PDBTT nanofibers with low cytotoxicity showed excellent support for HDFs adhesion, proliferation and collagen secretion than neat PCL nanofibers and HDFs on the stimulated PCL/PDBTT nanofibers gained typical spindle morphology, indicating the well cell spreading on the stimulated PCL/PDBTT nanofibers. The incorporation of functional materials within synthetic biomaterials could be a novel way in improving the performance of engineered tissue constructs by providing multiple cues (e.g. electrical stimulation) to the attached cells. - Highlights: • A photosensitive semiconducting polymer (SP) was applied in electrospun nanofibrous scaffold. • The SP-incorporated scaffold could promote cell proliferation upon light stimulation. • The designed photosensitive SP could be applied as functional material with low cost and high durability in skin tissue engineering.

  4. Thermal-annealing effects on the structural and magnetic properties of 10% Fe-doped SnO{sub 2} nanoparticles synthetized by a polymer precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Aragón, F.H., E-mail: fermin964@hotmail.com [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Instituto de Ciências Biológicas, Pós-graduação em Nanociência e Nanobiotecnologia, Universidade de Brasília, Brasilia DF 70919-970 (Brazil); Coaquira, J.A.H. [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Nagamine, L.C.C.M.; Cohen, R. [Instituto de Física, Universidade de São Paulo, São Paulo SP 05508-090 (Brazil); Silva, S.W. da [Núcleo de Física Aplicada, Instituto de Física, Universidade de Brasília, Brasília DF 70910-900 (Brazil); Instituto de Ciências Biológicas, Pós-graduação em Nanociência e Nanobiotecnologia, Universidade de Brasília, Brasilia DF 70919-970 (Brazil); and others

    2015-02-01

    In this work, we present the experimental results of Sn{sub 0.9}Fe{sub 0.1}O{sub 2} nanoparticles synthesized by a polymer precursor method. Studies were performed in the as-prepared (AP) and thermally-annealed (TA) samples. The X-ray diffraction (XRD) data analysis carried out using the Rietveld refinement method shows the formation of only the rutile-type structure in the AP sample and this phase remains stable for the TA sample. Additionally, the mean crystallite size shows an increase from ∼4 nm to ∼17 nm after the annealing and a clear reduction of the residual strain has also been determined. Micro-Raman spectroscopy measurements show the formation of an iron oxide phase (likely α-Fe{sub 2}O{sub 3}) after the thermal treatment. Magnetic measurements show a paramagnetic behavior for the AP sample and the coexistence of a weak ferromagnetism and paramagnetism for the TA sample. The magnetically-ordered contribution of the TA sample has been assigned to the formation of the hematite phase. DC and AC magnetic features of the TA sample are consistent with a cluster-glass behavior which seems to be related to the magnetic disorder of spins located at the particle surface. Those spins clusters seem to be formed due to the diffusion of iron ions from the core of the particle to the surface caused by the annealing process. - Highlights: • Thermal annealing effects in the 10% Fe-doped SnO{sub 2} nanoparticles have been studied. • XRD data analysis shows the formation of the rutile-type structure. • Raman measurements show the formation of small amount of α-Fe{sub 2}O{sub 3} after the annealing. • Paramagnetic and magnetically ordered phases were determined after the annealing. • Spin clusters likely at the particle surface have been formed after the annealing.

  5. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Chhavi, E-mail: chhavisharma19@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee (India); Dinda, Amit Kumar, E-mail: amit_dinda@yahoo.com [Department of Molecular Medicine and Biology, Jaslok Hospital and Research Centre, Mumbai 400 026 (India); Potdar, Pravin D., E-mail: ppotdar@jaslokhospital.net [Department of Pathology, All India Institute of Medical Sciences, New Delhi 110029 (India); Chou, Chia-Fu, E-mail: cfchou@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Mishra, Narayan Chandra, E-mail: mishrawise@gmail.com [Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Roorkee (India)

    2016-07-01

    A novel nano-biocomposite scaffold was fabricated in bead form by applying simple foaming method, using a combination of natural polymers–chitosan, gelatin, alginate and a bioceramic–nano-hydroxyapatite (nHAp). This approach of combining nHAp with natural polymers to fabricate the composite scaffold, can provide good mechanical strength and biological property mimicking natural bone. Environmental scanning electron microscopy (ESEM) images of the nano-biocomposite scaffold revealed the presence of interconnected pores, mostly spread over the whole surface of the scaffold. The nHAp particulates have covered the surface of the composite matrix and made the surface of the scaffold rougher. The scaffold has a porosity of 82% with a mean pore size of 112 ± 19.0 μm. Swelling and degradation studies of the scaffold showed that the scaffold possesses excellent properties of hydrophilicity and biodegradability. Short term mechanical testing of the scaffold does not reveal any rupturing after agitation under physiological conditions, which is an indicative of good mechanical stability of the scaffold. In vitro cell culture studies by seeding osteoblast cells over the composite scaffold showed good cell viability, proliferation rate, adhesion and maintenance of osteoblastic phenotype as indicated by MTT assay, ESEM of cell–scaffold construct, histological staining and gene expression studies, respectively. Thus, it could be stated that the nano-biocomposite scaffold of chitosan–gelatin–alginate–nHAp has the paramount importance for applications in bone tissue-engineering in future regenerative therapies. - Highlights: • nHAp–chitosan–gelatin–alginate composite scaffold was successfully fabricated. • Foaming method, without surfactant, was applied successfully for fabricating the scaffold. • nHAp provided mechanical stability and nanotopographic features to scaffold matrix. • This scaffold shows good biocompatibility and proliferation with

  6. Synthetic environments

    Science.gov (United States)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  7. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.

    Science.gov (United States)

    Ahadian, Samad; Davenport Huyer, Locke; Estili, Mehdi; Yee, Bess; Smith, Nathaniel; Xu, Zhensong; Sun, Yu; Radisic, Milica

    2017-04-01

    Polymer biomaterials are used to construct scaffolds in tissue engineering applications to assist in mechanical support, organization, and maturation of tissues. Given the flexibility, electrical conductance, and contractility of native cardiac tissues, it is desirable that polymeric scaffolds for cardiac tissue regeneration exhibit elasticity and high electrical conductivity. Herein, we developed a facile approach to introduce carbon nanotubes (CNTs) into poly(octamethylene maleate (anhydride) 1,2,4-butanetricarboxylate) (124 polymer), and developed an elastomeric scaffold for cardiac tissue engineering that provides electrical conductivity and structural integrity to 124 polymer. 124 polymer-CNT materials were developed by first dispersing CNTs in poly(ethylene glycol) dimethyl ether porogen and mixing with 124 prepolymer for molding into shapes and crosslinking under ultraviolet light. 124 polymers with 0.5% and 0.1% CNT content (wt) exhibited improved conductivity against pristine 124 polymer. With increasing the CNT content, surface moduli of hybrid polymers were increased, while their bulk moduli were decreased. Furthermore, increased swelling of hybrid 124 polymer-CNT materials was observed, suggesting their improved structural support in an aqueous environment. Finally, functional characterization of engineered cardiac tissues using the 124 polymer-CNT scaffolds demonstrated improved excitation threshold in materials with 0.5% CNT content (3.6±0.8V/cm) compared to materials with 0% (5.1±0.8V/cm) and 0.1% (5.0±0.7V/cm), suggesting greater tissue maturity. 124 polymer-CNT materials build on the advantages of 124 polymer elastomer to give a versatile biomaterial for cardiac tissue engineering applications. Achieving a high elasticity and a high conductivity in a single cardiac tissue engineering material remains a challenge. We report the use of CNTs in making electrically conductive and mechanically strong polymeric scaffolds in cardiac tissue regeneration

  8. Design and Applications of Biodegradable Polyester Tissue Scaffolds Based on Endogenous Monomers Found in Human Metabolism

    Directory of Open Access Journals (Sweden)

    Devin G. Barrett

    2009-10-01

    Full Text Available Synthetic polyesters have deeply impacted various biomedical and engineering fields, such as tissue scaffolding and therapeutic delivery. Currently, many applications involving polyesters are being explored with polymers derived from monomers that are endogenous to the human metabolism. Examples of these monomers include glycerol, xylitol, sorbitol, and lactic, sebacic, citric, succinic, α-ketoglutaric, and fumaric acids. In terms of mechanical versatility, crystallinity, hydrophobicity, and biocompatibility, polyesters synthesized partially or completely from these monomers can display a wide range of properties. The flexibility in these macromolecular properties allows for materials to be tailored according to the needs of a particular application. Along with the presence of natural monomers that allows for a high probability of biocompatibility, there is also an added benefit that this class of polyesters is more environmentally friendly than many other materials used in biomedical engineering. While the selection of monomers may be limited by nature, these polymers have produced or have the potential to produce an enormous number of successes in vitro and in vivo.

  9. Improved resolution of 3D printed scaffolds by shrinking.

    Science.gov (United States)

    Chia, Helena N; Wu, Benjamin M

    2015-10-01

    Three-dimensional printing (3DP) uses inkjet printheads to selectively deposit liquid binder to adjoin powder particles in a layer-by-layer fashion to create a computer-modeled 3D object. Two general approaches for 3DP have been described for biomedical applications (direct and indirect 3DP). The two approaches offer competing advantages, and both are limited by print resolution. This study describes a materials processing strategy to enhance 3DP resolution by controlled shrinking net-shape scaffolds. Briefly, porogen preforms are printed and infused with the desired monomer or polymer solution. After solidification or polymerization, the porogen is leached and the polymer is allowed to shrink by controlled drying. Heat treatment is performed to retain the dimensions against swelling forces. The main objective of this study is to determine the effects of polymer content and post-processing on dimension, microstructure, and thermomechanical properties of the scaffold. For polyethylene glycol diacrylate (PEG-DA), reducing polymer content corresponded with greater shrinkage with maximum shrinkage of ∼80 vol% at 20% vol% PEG-DA. The secondary heat treatment retains the microarchitecture and new dimensions of the scaffolds, even when the heat-treated scaffolds are immersed into water. To demonstrate shrinkage predictability, 3D components with interlocking positive and negative features were printed, processed, and fitted. This material processing strategy provides an alternative method to enhance the resolution of 3D scaffolds, for a wide range of polymers, without optimizing the binder-powder interaction physics to print each material combination. © 2014 Wiley Periodicals, Inc.

  10. Modification of porous polyethylene scaffolds for cell attachment and proliferation.

    Science.gov (United States)

    Sengupta, Poulomi; Surwase, Sachin S; Prasad, Bhagavatula Lv

    2018-01-01

    Synthetic polymers are widely researched for their use in tissue engineering. Control in size, surface area, pore size, and elasticity are the biggest advantages of using a man-made polymer. However, often the polymers are hydrophobic (do not encourage cell attachment); hence, it is hugely challenging to integrate them with the normal tissues. Herein, we have tried to overcome this disadvantage of polymers by coating them with citrate-stabilized gold nanoparticles and arginine. High-density polyethylene, upon multiple treatments, shows low water contact angle, which encourages cell attachment and proliferation in comparison to the untreated polymers.

  11. Exact approaches for scaffolding

    OpenAIRE

    Weller, Mathias; Chateau, Annie; Giroudeau, Rodolphe

    2015-01-01

    This paper presents new structural and algorithmic results around the scaffolding problem, which occurs prominently in next generation sequencing. The problem can be formalized as an optimization problem on a special graph, the "scaffold graph". We prove that the problem is polynomial if this graph is a tree by providing a dynamic programming algorithm for this case. This algorithm serves as a basis to deduce an exact algorithm for general graphs using a tree decomposition of the input. We ex...

  12. Tunable and processable shape memory composites based on degradable polymers

    NARCIS (Netherlands)

    Zhang, Xi; Geven, Mike A.; Grijpma, Dirk W.; Peijs, Ton; Gautrot, Julien E.

    2017-01-01

    Biodegradable shape memory polymers are attractive materials for the design of biomedical scaffolds as they allow deploying implants remotely with minimal intervention, whilst allowing degradation and tissue repair. However, shape memory properties are difficult to design from common degradable

  13. Synthetic Rutile

    International Nuclear Information System (INIS)

    Burastero, J.

    1975-01-01

    This work is about the laboratory scale investigation of the conditions in the rutile synthetic production from one me nita in Aguas Dulces reservoir. The iron mineral is chlorinated and volatilized selectively leaving a residue enriched in titanium dioxide which can be used as a substitute of rutile mineral

  14. BMP-2 immobilized PLGA/hydroxyapatite fibrous scaffold via polydopamine stimulates osteoblast growth.

    Science.gov (United States)

    Zhao, Xingyu; Han, Yu; Li, Jiawei; Cai, Bo; Gao, Hang; Feng, Wei; Li, Shuqiang; Liu, Jianguo; Li, Dongsong

    2017-09-01

    Combining biomaterials scaffolds with bone morphogenetic protein-2 (BMP-2) is currently used to promote the regeneration of bone tissue. However, the traditional strategies used to add BMP-2 into the polymer scaffolds directly suffer from limitations that can result in lower growth factor loading and damage the bioactivity of growth factors. In this study, we report the fabrication of poly(lactide-co-glycolide)/hydroxyapatite (PLGA/HA) composite fibrous scaffolds via melt-spinning method to mimic native extracellular matrix (ECM). In order to effectively immobilize BMP-2 on PLGA/HA composite fibrous scaffolds, the surface of the scaffold was modified with polydopamine (PDA) (PDA-PLGA/HA). PDA was chosen as an adhesive polymeric bridge-layer between PLGA/HA fibrous scaffolds and BMP-2. Analysis of the scaffold using scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscope revealed that the PDA coating was attached to the scaffold surface. Moreover, analysis of the scaffold using water contact angle demonstrated an increased hydrophilicity via PDA modification. Furthermore, the PDA coating effectively immobilized BMP-2 on the PDA-PLGA/HA fibrous scaffold and a sustained release profile of BMP-2 was achieved in the BMP-2-immobilized PLGA/HA fibrous scaffold. In vitro experiments showed that BMP-2-immobilized PLGA/HA fibrous scaffold significantly promoted the attachment and proliferation of MC3T3-E1 cells. More importantly, the ALP activity, mRNA expression of osteosis-related genes and calcium deposition in MC3T3-E1 cells cultured on BMP-2-immobilized PLGA/HA fibrous scaffold were significantly increased. These results collectively demonstrate that the BMP-2-immobilized PLGA/HA fibrous scaffold is a promising candidate for bone regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Electrospun aniline-tetramer-co-polycaprolactone fibres for conductive, biodegradable scaffolds

    Science.gov (United States)

    Guex, A.G.; Spicer, C.D.; Armgarth, A.; Gelmi, A.; Humphrey, E.J.; Terracciano, C.M.; Harding, S.; Stevens, M.M.

    2018-01-01

    Conjugated polymers have been proposed as promising materials for scaffolds in tissue engineering applications. The restricted processability and biodegradability of conjugated polymers limit their use for biomedical applications however. Here we synthesised a block-co-polymer of aniline tetramer and PCL (AT-PCL), and processed it into fibrous non-woven scaffolds by electrospinning. We showed that fibronectin (Fn) adhesion was dependant on the AT-PCL oxidative state, with a reduced Fn unfolding length on doped membranes. Furthermore, we demonstrated the cytocompatibility and potential of these membranes to support the growth and osteogenic differentiation of MC3T3-E1 over 21 days. PMID:29387506