WorldWideScience

Sample records for synthetic nano-low density

  1. Synthetic Nano-Low Density Lipoprotein as Targeted Drug DeliveryVehicle for Glioblastoma Multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Nikanjam, Mina; Blakely, Eleanor A.; Bjornstad, Kathleen A.; Shu,Xiao; Budinger, Thomas F.; Forte, Trudy M.

    2006-06-14

    This paper discribes a synthetic low density lipoprotein(LDL) made by complexing a 29 amino acid that consists of a lipid bindingdomain and the LDL receptor binding domain with a lipid microemulsion.The nano-LDL particles were intermdiate in size between LDL and HDL andbound to LDL receptors on GBM brain tumor cells. Synthetic nano-LDLuptake by GBM cells was LDL receptor specific and dependent on cellreceptor number. It is suggested that these synthetic particles can serveas a delivery vehicle for hydophobic anti-tumor drugs by targeting theLDL receptor.

  2. Preliminary characterization in the development of the nano composite low density polyethylene with attapulgite clay

    International Nuclear Information System (INIS)

    Domingos, Luanda G.; Rego, Jose K.M.A. do; Ito, Edson N.; Acchar, Wilson

    2011-01-01

    The aim of this study was a preliminary study of the physical, thermal and rheological properties of the materials to be used in the development of nano composite low density polyethylene (LDPE) with Brazilian attapulgite clay (ATP), with and without the use of a compatibilizing agent interfacial, polyethylene grafted with maleic anhydride (PE-g-MAH). The materials were characterized by X-ray diffraction (XRD), thermogravimetry (TG) and torque rheometry. The materials were characterized and potentially could be developed polymeric nano composites with technological applications using attapulgite fibers in the nanometer scale. (author)

  3. In vivo analysis of biocompatibility and vascularization of the synthetic bone grafting substitute NanoBone.

    Science.gov (United States)

    Abshagen, K; Schrodi, I; Gerber, T; Vollmar, B

    2009-11-01

    One of the major challenges in the application of bone substitutes is adequate vascularization and biocompatibility of the implant. Thus, the temporal course of neovascularization and the microvascular inflammatory response of implants of NanoBone (fully synthetic nanocrystalline bone grafting material) were studied in vivo by using the mouse dorsal skinfold chamber model. Angiogenesis, microhemodynamics, and leukocyte-endothelial cell interaction were analyzed repetitively after implantation in the center and in the border zone of the implant up to 15 days. Both NanoBone granules and plates exhibited high biocompatibility comparable to that of cancellous bone, as indicated by a lack of venular leukocyte activation after implantation. In both synthetic NanoBone groups, signs of angiogenesis could be observed even at day 5 after implantation, whereas granules showed higher functional vessel density compared with NanoBone plates. The angiogenic response of the cancellous bone was markedly accelerated in the center of the implant tissue. Histologically, implant tissue showed an ingrowth of vascularized fibrous tissue into the material combined with an increased number of foreign-body giant cells. In conclusion, NanoBone, particularly in granular form, showed high biocompatibility and high angiogenic response, thus improving the healing of bone defects. Our results underline that, beside the composition and nanostructure, the macrostructure is also of importance for the incorporation of the biomaterial by the host tissue. (c) 2008 Wiley Periodicals, Inc.

  4. Peculiarities of hydration of Portland cement with synthetic nano-silica

    Science.gov (United States)

    Kotsay, Galyna

    2017-12-01

    Application of nano-materials in cement products significantly, improves their properties. Of course, the effectiveness of the materials depends on their quantity and the way they are introduced into the system. So far, amongst nano-materials used in construction, the most preferred was nano-silica. This research investigated the effect of synthetic precipitated nano-silica on the cement hydration as well as, on the physical and mechanical properties of pastes and mortars. Obtained results showed that admixture of nano-silica enhanced flexural and compressive strength of cement after 2 and 28 days, however, only when admixture made up 0.5% and 1.0%. On the other hand, the use of nano-silica in the amount 2% had some limitations, due to its ability to agglomerate, which resulted in deterioration of the rheological and mechanical properties.

  5. Potentially toxic concentrations of synthetic pyrethroids associated with low density residential land use

    Directory of Open Access Journals (Sweden)

    Stephen Marshall

    2016-11-01

    Full Text Available Trace organic compounds associated with human activity are now ubiquitous in the environment. As the population becomes more urbanised and the use of pesticides and person care products continues to increase, urban waterways are likely to receive higher loads of trace organic contaminants with unknown ecological consequences. To establish the extent of trace organic contamination in urban runoff, concentrations of emerging chemicals of concern were determined in sediments from 99 urban wetlands in and around Melbourne, Australia between February and April, 2015. As a preliminary estimation of potential risks to aquatic biota, we compared measured concentrations with thresholds for acute and chronic toxicity, and modelled toxic units as a function of demographic and land use trends. The synthetic pyrethroid insecticide bifenthrin was common and widespread, and frequently occurred at concentrations likely to cause toxicity to aquatic life. Personal care products DEET and triclosan were common and widely distributed, while the herbicides diuron and prometryn, and the fungicides pyrimethanil and trifloxystrobin occurred less frequently. Toxic unit modelling using random forests found complex and unexpected associations between urban land uses and trace organic concentrations. Synthetic pyrethroid insecticides were identified as emerging compounds of concern, particularly bifenthrin. In contrast with previous surveys, the highest bifenthrin concentrations were associated with lower housing and population density, implicating low-density residential land use in bifenthrin contamination. We discuss the implications for pesticide regulation and urban wetland management in a global context.

  6. Ge nano-layer fabricated by high-fluence low-energy ion implantation

    International Nuclear Information System (INIS)

    Lu Tiecheng; Dun Shaobo; Hu Qiang; Zhang Songbao; An Zhu; Duan Yanmin; Zhu Sha; Wei Qiangmin; Wang Lumin

    2006-01-01

    A Ge nano-layer embedded in the surface layer of an amorphous SiO 2 film was fabricated by high-fluence low-energy ion implantation. The component, phase, nano-structure and luminescence properties of the nano-layer were studied by means of Rutherford backscattering, glancing incident X-ray diffraction, laser Raman scattering, transmission electron microscopy and photoluminescence. The relation between nano-particle characteristics and ion fluence was also studied. The results indicate that nano-crystalline Ge and nano-amorphous Ge particles coexist in the nano-layer and the ratio of nano-crystalline Ge to nano-particle Ge increases with increasing ion fluence. The intensity of photoluminescence from the nano-layer increases with increasing ion fluence also. Prepared with certain ion fluences, high-density nano-layers composed of uniform-sized nano-particles can be observed

  7. Effect of high energy electron beam (10 MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite

    Energy Technology Data Exchange (ETDEWEB)

    Soltani, Z., E-mail: zhr_soltani@yahoo.com [Health Physics and Radiation Dosimetry Research Laboratory, Department of Energy Engineering and Physics, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ziaie, F. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of); Ghaffari, M. [Polymer Group, Golestan University, Golestan (Iran, Islamic Republic of); Beigzadeh, A.M. [Radiation Application Research School, Nuclear Science & Technology Research Institute, Tehran (Iran, Islamic Republic of)

    2017-02-01

    In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10 MeV electron beam at doses of 75 to 250 kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100 °C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite.

  8. Nanosar-case study of synthetic aperture radar for nano-satellites

    NARCIS (Netherlands)

    Engelen, S.; Oever, M. van den; Mahapatra, P.; Sundaramoorthy, P.; Gill, E.; Meijer, R.J.; Verhoeven, C.

    2012-01-01

    Nano-satellites have a cost advantage due to their low mass and usage of commercial-off-the-shelf technologies. However, the low mass also restricts the functionality of a nano-satellite's payload. Typically, this would imply instruments with very low to low resolution and accuracy, essentially

  9. Mechanochemically conjugated PMHS/nano-SiO 2 hybrid and subsequent optimum grafting density study

    Science.gov (United States)

    Lin, Jinbin; Chen, Hongling; Yuan, Yongbing; Ji, Yan

    2011-08-01

    In this paper, we reported the preparation of poly(methylhydrosiloxane) (PMHS)/SiO 2 hybrid particles by mechanochemical method based on high energy ball milling (HEBM). The obtained hybrid particles were characterized by Fourier transform infrared (FT-IR) spectroscopy, 29Si CP (cross-polarization) MAS NMR, viscosity measurement, particle size distribution, thermal analysis (TGA, DSC and DTG), static contact angle (CA), field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). FT-IR and 29Si CP MAS NMR spectra indicate that PMHS is chemically anchored onto the surface of nano-SiO 2. Viscosity measurement, particle size distribution, FE-SEM and TEM demonstrate that an appropriate grafting density optimizes the dispersion of nanoparticles in poly(dimethylsiloxane) (PDMS) matrix, so lower viscosity can be achieved. Too high or too low grafting density may only achieve suboptimal and poor dispersions. The optimum grafting density of PMHS on nano-SiO 2 was determined by thermal analysis, with approximately 0.0531 PMHS/nm 2. Static contact angle measurement indicates that the water contact angle of hybrid particles is modulated by changing the grafting density of PMHS on nano-SiO 2. The CA value of PMHS/SiO 2 hybrid with optimum grafting density is 139.4°, and the highest CA value of PMHS/SiO 2 hybrid is approximately 158.2°.

  10. Protein-polymer nano-machines. Towards synthetic control of biological processes

    Directory of Open Access Journals (Sweden)

    Alexander Cameron

    2004-09-01

    Full Text Available Abstract The exploitation of nature's machinery at length scales below the dimensions of a cell is an exciting challenge for biologists, chemists and physicists, while advances in our understanding of these biological motifs are now providing an opportunity to develop real single molecule devices for technological applications. Single molecule studies are already well advanced and biological molecular motors are being used to guide the design of nano-scale machines. However, controlling the specific functions of these devices in biological systems under changing conditions is difficult. In this review we describe the principles underlying the development of a molecular motor with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for control of the motor function. The molecular motor is a derivative of a TypeI Restriction-Modification (R-M enzyme and the synthetic polymer is drawn from the class of materials that exhibit a temperature-dependent phase transition. The potential exploitation of single molecules as functional devices has been heralded as the dawn of new era in biotechnology and medicine. It is not surprising, therefore, that the efforts of numerous multidisciplinary teams 12. have been focused in attempts to develop these systems. as machines capable of functioning at the low sub-micron and nanometre length-scales 3. However, one of the obstacles for the practical application of single molecule devices is the lack of functional control methods in biological media, under changing conditions. In this review we describe the conceptual basis for a molecular motor (a derivative of a TypeI Restriction-Modification enzyme with numerous potential applications in nanotechnology and the use of specific synthetic polymers as prototypic molecular switches for controlling the motor function 4.

  11. Viscoelastic behaviour and fracture toughness of linear-low-density polyethylene reinforced with synthetic boehmite alumina nanoparticles

    Directory of Open Access Journals (Sweden)

    D. Pedrazzoli

    2013-08-01

    Full Text Available Aim of the present study is to investigate how synthetic boehmite alumina (BA nanoparticles modify the viscoleastic and fracture behaviour of linear low-density polyethylene. Nanocomposites containing up to 8 wt% of untreated and octyl silane-functionalized BA nanoparticles, were prepared by melt compounding and hot pressing. The BA nanoparticles were finely and unformly dispersed within the matrix according to scanning electron microscopy inspection. The results of quasi-static tensile tests indicated that nanoparticles can provide a remarkable stiffening effect at a rather low filler content. Short term creep tests showed that creep stability was significatively improved by nanofiller incorporation. Concurrently, both storage and loss moduli were enhanced in all nanocomposites, showing better result for surface treated nanoparticles. The plane-stress fracture toughness, evaluated by the essential work of fracture approach, manifested a dramatic increase (up to 64% with the BA content, with no significant differences among the various types of BA nanoparticles.

  12. Comparison of Benzene & Toluene removal from synthetic polluted air with use of Nano photocatalyticTiO2/ ZNO process.

    Science.gov (United States)

    Gholami, Mitra; Nassehinia, Hamid Reza; Jonidi-Jafari, Ahmad; Nasseri, Simin; Esrafili, Ali

    2014-02-05

    Mono aromatic hydrocarbons (BTEX) are a group of hazardous pollutants which originate from sources such as refineries, gas, and oil extraction fields, petrochemicals and paint and glue industries.Conventional methods, including incineration, condensation, adsorption and absorption have been used for removal of VOCs. None of these methods is economical for removal of pollutants of polluted air with low to moderate concentrations. The heterogeneous photocatalytic processes involve the chemical reactions to convert pollutant to carbon dioxide and water. The aim of this paper is a comparison of Benzene & Toluene removal from synthetic polluted air using a Nano photocatalytic TiO2/ ZNO process. The X-ray diffraction (XRD) patterns showed that Nano crystals of TiO2 and ZNO were in anatase and rutile phases. Toluene & benzene were decomposed by TiO2/ ZNO Nano photocatalyst and UV radiation. Kruskal-wallis Test demonstrated that there are significant differences (pvalue UV intensity and decreasing initial concentrations. Effect of TiO2/ZNO Nano photocatalyst on benzene is less than that on toluene. In this research, Toluene & benzene removal by TiO2/ZNO and UV followed first-order reactions.

  13. Improvement in current density of nano- and micro-structured Si solar cells by cost-effective elastomeric stamp process

    Science.gov (United States)

    Jeon, Kiseok; Jee, Hongsub; Lim, Sangwoo; Park, Min Joon; Jeong, Chaehwan

    2018-03-01

    Effective incident light should be controlled for improving the current density of solar cells by employing nano- and micro-structures on silicon surface. The elastomeric stamp process, which is more cost effective and simpler than conventional photolithography, was proposed for the fabrication of nano- and micro-structures. Polydimethylsiloxane (PDMS) was poured on a mother pattern with a diameter of 6 μm and a spacing of 2 μm; then, curing was performed to create a PDMS mold. The regular micropattern was stamped on a low-viscosity resin-coated silicon surface, followed by the simple reactive ion etching process. Nano-structures were formed using the Ag-based electroless etching process. As etching time was increased to 6 min, reflectance decreased to 4.53% and current density improved from 22.35 to 34.72 mA/cm2.

  14. Effect of Nano bentonite on Fire Retardant Properties of Medium density fiberboard (MDF

    Directory of Open Access Journals (Sweden)

    Ghonche Rassam

    2014-05-01

    Full Text Available In the present study, Fire – Retarding properties of nano-bentonite in medium density of fiberboard (MDF was studied. 10% of urea-formaldehyde resin was used as the adhesive of the matrix. Nano Bentonite at 5 levels (0%, 5%, 10%, 15% and 20% g/kg based of dry weight of fibers was used with the consumption of Urea-Formuldehyde (UF. Press pressure of 150 bar and temperature of 170during 4, 5, and 6 minutes were applied. Density was kept constant at 0.7 g/cm3 in all treatments. The measured properties consisted of mass reduction, inflammation time, fire-endurance, melting time and the burnt area. The results revealed that Nano-Bentonite had significant effect in approving fire retarding properties in medium density fiber board. The best properties at the level of 10% obtained and the same level recommended for industry use. The use of Nano-Bentonite more than 10% decreased the stickiness and the partly surface of fiberboards.

  15. Comparison Between Digital and Synthetic 2D Mammograms in Breast Density Interpretation.

    Science.gov (United States)

    Alshafeiy, Taghreed I; Wadih, Antoine; Nicholson, Brandi T; Rochman, Carrie M; Peppard, Heather R; Patrie, James T; Harvey, Jennifer A

    2017-07-01

    The purpose of this study was to compare assessments of breast density on synthetic 2D images as compared with digital 2D mammograms. This retrospective study included consecutive women undergoing screening with digital 2D mammography and tomosynthesis during May 2015 with a negative or benign outcome. In separate reading sessions, three radiologists with 5-25 years of clinical experience and 1 year of experience with synthetic 2D mammography read digital 2D and synthetic 2D images and assigned breast density categories according to the 5th edition of BI-RADS. Inter- and intrareader agreement was assessed for each BI-RADS density assessment and combined dense and nondense categories using percent agreement and Cohen kappa coefficient for consensus and all reads. A total of 309 patients met study inclusion criteria. Agreement between consensus BI-RADS density categories assigned for digital and synthetic 2D mammography was 80.3% (95% CI, 75.4-84.5%) with κ = 0.73 (95% CI, 0.66-0.79). For combined dense and nondense categories, agreement reached 91.9% (95% CI, 88.2-94.7%). For consensus readings, similar numbers of patients were shifted between nondense and dense categories (11 and 14, respectively) with the synthetic 2D compared with digital 2D mammography. Interreader differences were apparent; assignment to dense categories was greater with digital 2D mammography for reader 1 (odds ratio [OR], 1.26; p = 0.002), the same for reader 2 (OR, 0.91; p = 0.262), and greater with synthetic 2D mammography for reader 3 (OR, 0.86; p = 0.033). Overall, synthetic 2D mammography is comparable with digital 2D mammography in assessment of breast density, though there is some variability by reader. Practices can readily adopt synthetic 2D mammography without concern that it will affect density assessment and subsequent recommendations for supplemental screening.

  16. The NanoCare project: A German initiative on health aspects of synthetic nanoparticles

    Science.gov (United States)

    Nau, Katja; Krug, Harald F.

    2009-05-01

    Nanotechnology is increasingly considered to be the future technology. It will enable science and industry to provide new and better product solutions for the society. NanoCare is a German project, funded by the German Federal Ministry of Education and Research (BMBF), which aims to broaden knowledge about synthetic nanomaterials with regard to the potential impacts of nanomaterials on human health. 13 partners from industry, universities and research institutes are contributing their expertise to this partnership. The work plan of the NanoCare project is composed of three different parts: (1) the generation, (2) the management, and (3) the transfer of knowledge. The production of synthetic nanoparticles, the subsequent analysis of primary particles, aggregates and agglomerates, as well as the behaviour in biological media and effects on biological systems are focused in the generation of knowledge. In addition to the production and characterization of new synthetic nanoparticles (metal oxides like zirconium dioxide or zinc oxide), titanium dioxide and Carbon Black will be established as reference materials. This enables the comparison of the results of all partners of our project. Various analytical methods for characterization will be applied, for example: transmission and scanning electron microscopy, inductive coupled plasma mass spectroscopy (ICP-MS), atomic absorption spectroscopy (AAS) and the Brunner-Edward-Teller method (BET). In vitro studies will systematically investigate biological mechanisms of action of nanoparticles and the dependency on their size, shape, zeta potential and other important properties. In vitro data will be complemented by in vivo studies. Another work package deals with the measurement of working place exposure and agglomerate stabilities. Established measurement devices and methods will be developed further in order to determine aerosols and nanoparticles directly at the workplace during ongoing work processes. The stabilities of

  17. Field emission properties of nano-structured cobalt ferrite (CoFe2O4) synthesized by low-temperature chemical method

    Science.gov (United States)

    Ansari, S. M.; Suryawanshi, S. R.; More, M. A.; Sen, Debasis; Kolekar, Y. D.; Ramana, C. V.

    2018-06-01

    We report on the field-emission properties of structure-morphology controlled nano-CoFe2O4 (CFO) synthesized via a simple and low-temperature chemical method. Structural analyses indicate that the spongy-CFO (approximately, 2.96 nm) is nano-structured, spherical, uniformly-distributed, cubic-structured and porous. Field emission studies reveal that CFO exhibit low turn-on field (4.27 V/μm) and high emission current-density (775 μA/cm2) at a lower applied electric field of 6.80 V/μm. In addition, extremely good emission current stability is obtained at a pre-set value of 1 μA and high emission spot-density over large area (2 × 2 cm2) suggesting the applicability of these materials for practical applications in vacuum micro-/nano-electronics.

  18. Density functional theory for field emission from carbon nano-structures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhibing, E-mail: stslzb@mail.sysu.edu.cn

    2015-12-15

    Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. - Highlights: • Applications of DFT to electron field emission of nano-structures are reviewed. • Fundamental concepts of field emission are re-visited with emphasis on the many-body effects. • New insights to field emission of nano-structures are obtained by multi-scale DFT calculations. • It is shown that the exchange–correlation effect on the emission barrier is significant. • Spontaneous symmetry breaking in field emission of CNT has been predicted.

  19. Incorporation of photosenzitizer hypericin into synthetic lipid-based nano-particles for drug delivery and large unilamellar vesicles with different content of cholesterol

    Science.gov (United States)

    Joniova, Jaroslava; Blascakova, Ludmila; Jancura, Daniel; Nadova, Zuzana; Sureau, Franck; Miskovsky, Pavol

    2014-08-01

    Low-density lipoproteins (LDL) and high-density lipoproteins (HDL) are attractive natural occurring vehicles for drug delivery and targeting to cancer tissues. The capacity of both types of the lipoproteins to bind hydrophobic drugs and their functionality as drug carriers have been examined in several studies and it has been also shown that mixing of anticancer drugs with LDL or HDL before administration led to an increase of cytotoxic effects of the drugs in the comparison when the drugs were administered alone. However, a difficult isolation of the lipoproteins in large quantity from a biological organism as well as a variability of the composition and size of these molecules makes practical application of LDL and HDL as drug delivery systems quite complicated. Synthetic LDL and HDL and large unilamellar vesicles (LUV) are potentially suitable candidates to substitute the native lipoproteins for targeted and effective drug delivery. In this work, we have studied process of an association of potent photosensitizer hypericin (Hyp) with synthetic lipid-based nano-particles (sLNP) and large unilamellar vesicles (LUV) containing various amount of cholesterol. Cholesterol is one of the main components of both LDL and HDL particles and its presence in biological membranes is known to be a determining factor for membrane properties. It was found that the behavior of Hyp incorporation into sLNP particles with diameter ca ~ 90 nm is qualitatively very similar to that of Hyp incorporation into LDL (diameter ca. 22 nm) and these particles are able to enter U-87 MG cells by endocytosis. The presence of cholesterol in LUV influences the capacity of these vesicles to incorporate Hyp into their structure.

  20. Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping

    Science.gov (United States)

    Liu, Yongchang; Lan, Feng; Ma, Zongqing; Chen, Ning; Li, Huijun; Barua, Shaon; Patel, Dipak; Shahriar, M.; Hossain, Al; Acar, S.; Kim, Jung Ho; Xue Dou, Shi

    2015-05-01

    High performance MgB2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB2 grains with a high level of homogeneous carbon doping were formed in these MgB2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (Jc) in the as-prepared samples. In particular, the value of Jc for the carbon-coated (Mg1.1B2)Cu0.05 sample prepared here is even above 1 × 105 A cm-2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB2 bulks or wires with excellent Jc, as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive.

  1. Catalyzed Nano-Framework Stablized High Density Reversible Hydrogen Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xia [value too long for type character varying(50); Opalka, Susanne M.; Mosher, Daniel A; Laube, Bruce L; Brown, Ronald J; Vanderspurt, Thomas H; Arsenault, Sarah; Wu, Robert; Strickler, Jamie; Ronnebro, Ewa; Boyle, Tim; Cordaro, Joseph

    2010-06-30

    A wide range of high capacity on-board rechargeable material candidates have exhibited non-ideal behavior related to irreversible hydrogen discharge / recharge behavior, and kinetic instability or retardation. This project addresses these issues by incorporating solvated and other forms of complex metal hydrides, with an emphasis on borohydrides, into nano-scale frameworks of low density, high surface area skeleton materials to stabilize, catalyze, and control desorption product formation associated with such complex metal hydrides. A variety of framework chemistries and hydride / framework combinations were investigated to make a relatively broad assessment of the method's potential. In this project, the hydride / framework interactions were tuned to decrease desorption temperatures for highly stable compounds or increase desorption temperatures for unstable high capacity compounds, and to influence desorption product formation for improved reversibility. First principle modeling was used to explore heterogeneous catalysis of hydride reversibility by modeling H2 dissociation, hydrogen migration, and rehydrogenation. Atomic modeling also demonstrated enhanced NaTi(BH4)4 stabilization at nano-framework surfaces modified with multi-functional agents. Amine multi-functional agents were found to have more balanced interactions with nano-framework and hydride clusters than other functional groups investigated. Experimentation demonstrated that incorporation of Ca(BH4)2 and Mg(BH4)2 in aerogels enhanced hydride desorption kinetics. Carbon aerogels were identified as the most suitable nano-frameworks for hydride kinetic enhancement and high hydride loading. High loading of NaTi(BH4)4 ligand complex in SiO2 aerogel was achieved and hydride stability was improved with the aerogel. Although improvements of desorption kinetics was observed, the incorporation of

  2. Density Distribution of Liquid Argon in Nano-channel Poiseuille Flows

    Science.gov (United States)

    She, Jiangwei; Wang, Yuyi; Zhou, Zhe-Wei

    2017-11-01

    The density layering parallel to the boundaries of liquid has been measured in many experiments and also observed in molecular dynamics (MD) simulations. In this study, a detail and systematic investigation of density distribution in nano-scale Poiseuille flows is carried out. Through analyzing the difference of density distribution curves obtained under different conditions, the influence of interaction parameters, configuration form of solid wall and temperature on the layering are investigated. The internal mechanism is also explored in this paper. The detail description of the density distribution results and simulation algorithm is given. National natural science foundation (A020405).

  3. Local elastic properties of nano-confined fluids: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zongli, E-mail: zongli_sun@163.com [Science and Technology College, North China Electric Power University, Baoding 071051 (China); Kang, Yanshuang [College of Science, Agriculture University of Hebei, Baoding 071001 (China)

    2014-05-01

    The understanding of mechanical properties of confined fluids is essential for modeling and manipulating of nano-scaled systems. Unlike the uniform phase, the confined fluids usually display different features in structure and related properties. Due to the presence of the confining geometry, the density profile and many physical and chemical properties may be position-dependent. The aim of our research is to derive an expression for the local elastic property by using the classical elastic theory. Both the bulk and shear moduli are expressed as functional of density of particle. The theoretical result derived is applied to the Lennard-Jones fluids confined in nano-cavity. Comparison of our numerical result and the simulation result is made and qualitative agreement is observed. Further, influence of bulk density, temperature and external potential on moduli is calculated and the physical mechanism is analyzed. Relationship between contact modulus and the interfacial tension is also calculated. Their opposite trend with temperature is observed.

  4. Local elastic properties of nano-confined fluids: A density functional study

    International Nuclear Information System (INIS)

    Sun, Zongli; Kang, Yanshuang

    2014-01-01

    The understanding of mechanical properties of confined fluids is essential for modeling and manipulating of nano-scaled systems. Unlike the uniform phase, the confined fluids usually display different features in structure and related properties. Due to the presence of the confining geometry, the density profile and many physical and chemical properties may be position-dependent. The aim of our research is to derive an expression for the local elastic property by using the classical elastic theory. Both the bulk and shear moduli are expressed as functional of density of particle. The theoretical result derived is applied to the Lennard-Jones fluids confined in nano-cavity. Comparison of our numerical result and the simulation result is made and qualitative agreement is observed. Further, influence of bulk density, temperature and external potential on moduli is calculated and the physical mechanism is analyzed. Relationship between contact modulus and the interfacial tension is also calculated. Their opposite trend with temperature is observed.

  5. Material versatility using replica molding for large-scale fabrication of high aspect-ratio, high density arrays of nano-pillars

    International Nuclear Information System (INIS)

    Li, Y; Menon, C; Ng, H W; Gates, B D

    2014-01-01

    Arrays of high aspect-ratio (AR) nano-pillars have attracted a lot of interest for various applications, such as for use in solar cells, surface acoustic sensors, tissue engineering, bio-inspired adhesives and anti-reflective surfaces. Each application may require a different structural material, which can vary in the required chemical composition and mechanical properties. In this paper, a low cost fabrication procedure is proposed for large scale, high AR and high density arrays of nano-pillars. The proposed method enables the replication of a master with high fidelity, using the subsequent replica molds multiple times, and preparing arrays of nano-pillars in a variety of different materials. As an example applied to bio-inspired dry adhesion, polymeric arrays of nano-pillars are prepared in this work. Thermoset and thermoplastic nano-pillar arrays are examined using an atomic force microscope to assess their adhesion strength and its uniformity. Results indicate the proposed method is robust and can be used to reliably prepare nano-structures with a high AR. (paper)

  6. Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents

    Science.gov (United States)

    2017-11-28

    AFRL-RV-PS- AFRL-RV-PS- TR-2017-0169 TR-2017-0169 ARRAYS OF SYNTHETIC ATOMS: NANOCAPACITOR BATTERIES WITH LARGE ENERGY DENSITY AND SMALL LEAK...1-0247 Arrays of Synthetic Atoms: Nanocapacitor Batteries with Large Energy Density and Small Leak Currents 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...large dielectric strength to a nanoscale rechargeable battery . We fabricated arrays of one-, two- and three-dimensional synthetic atoms and comparison

  7. Significantly enhanced critical current density in nano-MgB2 grains rapidly formed at low temperature with homogeneous carbon doping

    International Nuclear Information System (INIS)

    Liu, Yongchang; Lan, Feng; Ma, Zongqing; Chen, Ning; Li, Huijun; Barua, Shaon; Patel, Dipak; Shahriar, M; Hossain, Al; Kim, Jung Ho; Dou, Shi Xue; Acar, S

    2015-01-01

    High performance MgB 2 bulks using carbon-coated amorphous boron as a boron precursor were fabricated by Cu-activated sintering at low temperature (600 °C, below the Mg melting point). Dense nano-MgB 2 grains with a high level of homogeneous carbon doping were formed in these MgB 2 samples. This type of microstructure can provide a stronger flux pinning force, together with depressed volatility and oxidation of Mg owing to the low-temperature Cu-activated sintering, leading to a significant improvement of critical current density (J c ) in the as-prepared samples. In particular, the value of J c for the carbon-coated (Mg 1.1 B 2 )Cu 0.05 sample prepared here is even above 1 × 10 5 A cm −2 at 20 K, 2 T. The results herein suggest that the combination of low-temperature Cu-activated sintering and employment of carbon-coated amorphous boron as a precursor could be a promising technique for the industrial production of practical MgB 2 bulks or wires with excellent J c , as the carbon-coated amorphous boron powder can be produced commercially at low cost, while the addition of Cu is very convenient and inexpensive. (paper)

  8. Low Bone Density

    Science.gov (United States)

    ... Density Exam/Testing › Low Bone Density Low Bone Density Low bone density is when your bone density ... people with normal bone density. Detecting Low Bone Density A bone density test will determine whether you ...

  9. Synthesis, Properties, and Applications of Low-Dimensional Carbon-Related Nano materials

    International Nuclear Information System (INIS)

    Mostofizadeh, A.; Li, Y.; Song, B.; Huang, Y.; Mostofizadeh, A.

    2011-01-01

    In recent years, many theoretical and experimental studies have been carried out to develop one of the most interesting aspects of the science and nano technology which is called carbon-related nano materials. The goal of this paper is to provide a review of some of the most exciting and important developments in the synthesis, properties, and applications of low-dimensional carbon nano materials. Carbon nano materials are formed in various structural features using several different processing methods. The synthesis techniques used to produce specific kinds of low-dimensional carbon nano materials such as zero-dimensional carbon nano materials (including fullerene, carbon-encapsulated metal nanoparticles, nano diamond, and onion-like carbons), one-dimensional carbon nano materials (including carbon nano fibers and carbon nano tubes), and two-dimensional carbon nano materials (including graphene and carbon nano walls) are discussed in this paper. Subsequently, the paper deals with an overview of the properties of the mainly important products as well as some important applications and the future outlooks of these advanced nano materials.

  10. Synthesis of nano-composite surfaces via the co-deposition of metallic salts and nano particles

    Energy Technology Data Exchange (ETDEWEB)

    MacFarlane, J.W.; Tesh, S.J.; Crane, R.A.; Hallam, K.R.; Scott, T.B.

    2014-03-15

    Highlights: • Nanofaceted surfaces are prepared by a low current density (<0.1 A cm{sup 2}) electrodeposition method. • Surfaces are formed of nanoparticles anchored to a conductive (carbon) substrate. • Formed surfaces show a high nano-reactivity and surface area. • Demonstration of INP/FeCl{sub 3} nanocomposite for water filtration effectively removing BTEX contamination. -- Abstract: A novel, low energy method for coating different nano-particles via electro-deposition to a recyclable carbon glass supporting structure is demonstrated. In the resulting composite, the nano-material is bound to the substrate surface, thereby removing the potential for causing harmful interactions with the environment. Nano-particles were suspended in a salt solution and deposited at low current densities (<0.1 A cm{sup −2}) producing thin (<100 nm), uniform nano-faceted surfaces. A co-deposition mechanism of nano-particles and cations from the salt solution is proposed and explored. This has been successfully demonstrated for iron, sliver, titanium in the current work. Furthermore, the removal of the surface coatings can be achieved via a reversed current applied over the system, allowing for the recovery of surface bound metal contaminants. The demonstrated applicability of this coating method to different nano-particle types, is useful in many areas within the catalysis and water treatment industries. One such example, is demonstrated, for the treatment of BTEX contamination and show a greatly improved efficiency to current leading remediation agents.

  11. Imaging of current density distributions with a Nb weak-link scanning nano-SQUID microscope

    Science.gov (United States)

    Shibata, Yusuke; Nomura, Shintaro; Kashiwaya, Hiromi; Kashiwaya, Satoshi; Ishiguro, Ryosuke; Takayanagi, Hideaki

    2015-10-01

    Superconducting quantum interference devices (SQUIDs) are accepted as one of the highest magnetic field sensitive probes. There are increasing demands to image local magnetic fields to explore spin properties and current density distributions in a two-dimensional layer of semiconductors or superconductors. Nano-SQUIDs have recently attracting much interest for high spatial resolution measurements in nanometer-scale samples. Whereas weak-link Dayem Josephson junction nano-SQUIDs are suitable to miniaturization, hysteresis in current-voltage (I-V) characteristics that is often observed in Dayem Josephson junction is not desirable for a scanning microscope. Here we report on our development of a weak-link nano-SQUIDs scanning microscope with small hysteresis in I-V curve and on reconstructions of two-dimensional current density vector in two-dimensional electron gas from measured magnetic field.

  12. Low Density Sugarcane Bagasse Particleboard Bonded with Citric Acid and Sucrose: Effect of board density and additive content

    Directory of Open Access Journals (Sweden)

    Rui Liao

    2016-01-01

    Full Text Available The development of natural adhesives derived from non-fossil resources is very important for the future. In this study, by taking sugarcane bagasse as the raw material, without using any synthetic resin but adding some eco-friendly additives (citric acid and sucrose, low density particleboards were successfully developed. The effects of board density and additive contents on the physical and mechanical properties of the boards were investigated. The bonding mechanism was observed by Fourier transform infrared spectroscopy (FTIR and X-ray diffraction (XRD. The results showed that the low density bagasse particleboard had good mechanical properties and dimensional stability relative to its low board density. The modulus of rupture (MOR and the thickness swelling (TS values increased with increasing board density. The board with a density of higher than 0.40 g/cm³ and manufactured at 15% additive content can meet the requirements of the Chinese national forestry industry standard LY/T 1718-2007 (2007. Based on the results of the FTIR spectra, the additive not only increased the hydrogen bond but also the molecular linkage force (C-O-C. X-ray diffraction showed the relationship between crystallinity of cellulose and the strength of particleboard.

  13. Effect of Alumina Addition to Zirconia Nano-composite on Low Temperature Degradation Process and Biaxial Strength

    Directory of Open Access Journals (Sweden)

    Moluk Aivazi

    2016-12-01

    Full Text Available Ceramic dental materials have been considered as alternatives to metals for dental implants application. In this respect, zirconia tetragonal stabilized with %3 yttrium, is of great importance among the ceramic materials for endosseous dental implant application. Because of its good mechanical properties and color similar to tooth. The aim and novelty of this study was to design and prepare Y-TZP nano-composite to reduce the degradation process at low temperature by alumina addition and maintaining submicron grain sized. Also, flexural strength of nano-composite samples was evaluated. Toward this purpose, alumina-Y-TZP nano-composites containing 0–30 vol% alumina (denoted as A-Y-TZP 0-30 were fabricated using α-alumina and Y-TZP nano-sized by sintering pressure less method. The synthesized samples were characterized using x-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive x-ray spectroscopy techniques. Nano-composite samples with high density (≥96% and grain sized of ≤ 400 nm was obtained by sintering at 1270 °C for 170 min. After low temperature degradation test (LTD, A-Y-TZP20 and A-Y-TZP30 not showed monoclinic phase and the flexural strength in all of samples were higher than A-Y-TZP0. It was concluded that the grains were remained in submicron sized and A-Y-TZP20 and A-Y-TZP30 did not present biaxial strength reduction after LTD test.

  14. Ultra-low loss nano-taper coupler for Silicon-on-Insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    A nano-taper coupler is optimized specially for the transverse-magnetic mode for interfacing light between a silicon-on-insulator ridge waveguide and a single-mode fiber. An ultra-low coupling loss of ~0.36dB is achieved for the nano-taper coupler.......A nano-taper coupler is optimized specially for the transverse-magnetic mode for interfacing light between a silicon-on-insulator ridge waveguide and a single-mode fiber. An ultra-low coupling loss of ~0.36dB is achieved for the nano-taper coupler....

  15. [Study on biocompatibility of hydroxyapatite/high density polyethylene (HA/HDPE) nano-composites artificial ossicle].

    Science.gov (United States)

    Wang, Guohui; Zhu, Shaihong; Tan, Guolin; Zhou, Kechao; Huang, Suping; Zhao, Yanzhong; Li, Zhiyou; Huang, Boyun

    2008-06-01

    This study was aimed to evaluate the biocompatibility of Hydroxyapatite/High density polyethylene (HA/ HDPE) nano-composites artificial ossicle. The percentage of S-period cells were detected by flow cytometry after L929 cells being incubated with extraction of the HA/HDPE nano-composites; the titanium materials for clinical application served as the contrast. In addition, both materials were implanted in animals and the histopathological evaluations were conducted. There were no statistically significant differences between the two groups (P >0.05). The results demonstrated that the HA/HDPE nano-composite artificial ossicle made by our laboratory is of a good biocompatibility and clinical application outlook.

  16. Effects of nano calcium carbonate and nano calcium citrate on toxicity in ICR mice and on bone mineral density in an ovariectomized mice model

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Sherry; Chen, Jin Ching; Hsu, Chin Wei; Chang, Walter H, E-mail: whchang@cycu.edu.t [Center for Nano Bioengineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Department of Biomedical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2009-09-16

    Taking calcium supplements can reduce the risk of developing osteoporosis, but they are not readily absorbed in the gastrointestinal tract. Nanotechnology is expected to resolve this problem. In the present study, we examined whether the bioavailability of calcium carbonate and calcium citrate can be improved by reducing the particle size. The morphology of nano calcium carbonate and nano calcium citrate was characterized by dynamic laser-light scattering (DLS), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The measurements obtained from DLS, FE-SEM and TEM were comparable. Acute and sub-chronic toxicity tests were performed to establish the safety of these products after oral administration. The no-observed-adverse-effect levels of nano calcium carbonate and nano calcium citrate were 1.3 and 2.3 g kg{sup -1} body weight, respectively. The results of our in vivo studies indicate that administering nano calcium carbonate and nano calcium citrate can enhance the serum calcium concentration and maintain the whole-body bone mineral density in ovariectomized mice. These data suggest that nano calcium carbonate and nano calcium citrate are more bioavailable than micro calcium carbonate and micro calcium citrate, respectively.

  17. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    Science.gov (United States)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  18. Low Energy Dissipation Nano Device Research

    Science.gov (United States)

    Yu, Jenny

    2015-03-01

    The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.

  19. Electro-mechanical properties of free standing micro- and nano-scale polymer-ceramic composites for energy density capacitors

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Paritosh; Borkar, Hitesh [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K. S. Krishnan Road, New Delhi, 110012 (India); Singh, B.P.; Singh, V.N. [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Kumar, Ashok, E-mail: ashok553@nplindia.org [CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi, 110012 (India); Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory (CSIR-NPL) Campus, Dr. K. S. Krishnan Road, New Delhi, 110012 (India)

    2015-11-05

    The integration of inorganic fillers in polymer matrix is useful for superior mechanical strength and functional properties of polymer-ceramic composites. We report the fabrication and characterization of polyvinylidene fluoride-CoFe{sub 2}O{sub 4} (PVDF-CFO) (wt% 80:20, respectively) and PVDF-Pb(Zr{sub 0.52}Ti{sub 0.48})O{sub 3}–CoFe{sub 2}O{sub 4} (PVDF-PZT-CFO) (wt% 80:10:10, respectively) free standing 50 μm thick ferroelectric-polymer-ceramic composites films. X-ray diffraction (XRD) patterns and Raman spectra revealed the presence of major semi-crystalline β-PVDF along with α-phase which is responsible for ferroelectric nature in both the composite systems. Ferroelectric, dielectric and mechanical strength measurements were performed in order to evaluate the effects of CFO and PZT inorganic fillers in PVDF matrix. The inclusion of CFO and PZT micro-/nano-particles in PVDF polymer matrix improved the polarization behavior, dielectric properties and mechanical strength. The energy density was calculated by polarization-electric field hysteresis loop and found in the range of 6–8 J/cm{sup 3} may be useful for microelectronics. - Graphical abstract: Large area PVDF-PZT-CFO nano- and micro-composite films have been fabricated for high energy density storage flexible capacitor. Presence of nanocrystalline PZT and CFO particles in polymer matrix significantly enhanced their energy density capacity. - Highlights: • Physical interaction of cobalt iron oxide with polymer matrix results β-PVDF phase. • Evidence of Micro and Nano crystalline CFO and PZT fillers in polymer matrix. • The CFO and PZT fillers provide better mechanical strength to composite films. • PVDF-ceramic nanocomposites show low leakage behavior for high electric field.

  20. Density functional theory for field emission from carbon nano-structures.

    Science.gov (United States)

    Li, Zhibing

    2015-12-01

    Electron field emission is understood as a quantum mechanical many-body problem in which an electronic quasi-particle of the emitter is converted into an electron in vacuum. Fundamental concepts of field emission, such as the field enhancement factor, work-function, edge barrier and emission current density, will be investigated, using carbon nanotubes and graphene as examples. A multi-scale algorithm basing on density functional theory is introduced. We will argue that such a first principle approach is necessary and appropriate for field emission of nano-structures, not only for a more accurate quantitative description, but, more importantly, for deeper insight into field emission. Copyright © 2015 The Author. Published by Elsevier B.V. All rights reserved.

  1. Optical and Structural Characterizations of GaN Nano structures

    International Nuclear Information System (INIS)

    Shekari, L.; Abu Hassan, H.; Thahab, S.M.

    2011-01-01

    We have grown wurtzite GaN nano wires (NWs) on polished silicon (Si) either with or without Au as catalyst, using commercial GaN powder by thermal evaporation in an atmosphere of argon (Ar) gas. Structural and optical characterizations were performed using high resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM), photoluminescence (PL) and energy-dispersive X-ray spectroscopy (EDX) spectroscopy. Results indicate that the nano wires are of single-crystal hexagonal GaN and the nano wires on Si with Au catalyst are more oriented than those without Au catalyst; and using catalyst make the NWs grow much faster and quite well-ordered. The compositional quality of the grown nano wires on the substrates are mostly same, however the nano wires on the Au coated silicon are of low density, while the nano wires on the Si are of high density. (author)

  2. The effect of crystallization pressure on macromolecular structure, phase evolution, and fracture resistance of nano-calcium carbonate-reinforced high density polyethylene

    International Nuclear Information System (INIS)

    Yuan, Q.; Yang, Y.; Chen, J.; Ramuni, V.; Misra, R.D.K.; Bertrand, K.J.

    2010-01-01

    We describe here phase evolution and structural changes that are induced when high density polyethylene (HDPE) containing dispersion of nano-calcium carbonate is isothermally crystallized in the pressure range of 0.1-100 MPa. To delineate and separate the effects of applied crystallization pressure from nanoparticle effects, a relative comparison is made between neat HDPE and HDPE containing nano-calcium carbonate under similar experimental conditions. X-ray diffraction studies point toward the evolution of monoclinic phase at high crystallization pressure together with the commonly observed orthorhombic phase of HDPE. Furthermore, the nucleation of monoclinic phase is promoted by nanoparticles even at low crystallization pressure. The equilibrium melting point is insignificantly influenced on the addition of nanoparticle, such that the crystallization pressure has no obvious effect. The strong thermodynamic interaction between nano-calcium carbonate and HDPE is supported by the shift in glass transition temperature and changes in the modification of absorption bands of HDPE in Fourier transform infrared (FTIR) spectrum. Furthermore, the reinforcement of HDPE with nano-calcium carbonate increases impact strength and alters the micromechanism from crazing-tearing in polyethylene to fibrillated fracture in polymer nanocomposite, such that the fibrillation increases with crystallization pressure.

  3. Window-assisted nanosphere lithography for vacuum micro-nano-electronics

    International Nuclear Information System (INIS)

    Li, Nannan; Pang, Shucai; Yan, Fei; Chen, Lei; Jin, Dazhi; Xiang, Wei; Zhang, De; Zeng, Baoqing

    2015-01-01

    Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided a new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics

  4. Insights from Synthetic Star-forming Regions. II. Verifying Dust Surface Density, Dust Temperature, and Gas Mass Measurements With Modified Blackbody Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; −13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ {sup 2} values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; −7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect

  5. Insights from Synthetic Star-forming Regions. II. Verifying Dust Surface Density, Dust Temperature, and Gas Mass Measurements with Modified Blackbody Fitting

    Science.gov (United States)

    Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E.

    2017-11-01

    We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; -13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ 2 values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; -7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect techniques.

  6. Micro- and Nano-fibers by Electrospinning Technology: Processing, Properties, and Applications

    DEFF Research Database (Denmark)

    Chronakis, Ioannis S.

    2015-01-01

    Micro- and nano-structures such as micro- and nano-fibers and micro- and nano-particles based on polymers (synthetic and natural) can be processed by electrospinning. Electrospun micro- and nano-structures are an exciting class of novel materials due to several unique characteristics, including...

  7. Density functional theory studies on the nano-scaled composites consisted of graphene and acyl hydrazone molecules

    Science.gov (United States)

    Ren, J. L.; Zhou, L.; Lv, Z. C.; Ding, C. H.; Wu, Y. H.; Bai, H. C.

    2016-07-01

    Graphene, which is the first obtained single atomic layer 2D materials, has drawn a great of concern in nano biotechnology due to the unique property. On one hand, acyl hydrazone compounds belonging to the Schif bases have aroused considerable attention in medicine, pharmacy, and analytical reagent. However, few understanding about the interaction between graphene and acyl hydrazone molecules is now available. And such investigations are much crucial for the applications of these new nano-scaled composites. The current work revealed theoretical investigations on the nano-scaled composites built by acyl hydrazone molecules loaded on the surface of graphene. The relative energy, electronic property and the interaction between the counterparts of graphene/acyl hydrazone composites are investigated based on the density functional theory calculations. According to the obtained adsorption energy, the formation of the nano-scaled composite from the isolated graphene and acyl hydrazone molecule is exothermic, and thus it is energetically favorable to form these nano composites in viewpoint of total energy change. The frontier molecular orbital for the nano composite is mainly distributed at the graphene part, leading to that the energy levels of the frontier molecular orbital of the nano composites are very close to that of isolated graphene. Moreover, the counterpart interaction for the graphene/acyl hydrazone composites is also explored based on the discussions of orbital hybridization, charge redistribution and Van der Waals interaction.

  8. Top-down fabrication of vertical silicon nano-rings based on Poisson diffraction

    International Nuclear Information System (INIS)

    Ai Yujie; Huang Ru; Hao Zhihua; Wang Runsheng; Liu Changze; Fan Chunhui; Wang Yangyuan

    2011-01-01

    Vertical Si nano-rings with a uniform thickness of about 100 nm have been fabricated by conventional optical photolithography with a low cost based on Poisson diffraction. Moreover, the roughness of the Si nano-rings can be effectively reduced by sacrificial oxidation. In order to increase the density of the nano-rings, coaxial twin Si nano-rings have been fabricated by the Poisson diffraction method combined with the spacer technique. The thickness of both the inner and outer Si nano-rings is about 60 nm, and the gap between the twin nano-rings is about 100 nm.

  9. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    Science.gov (United States)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  10. Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites

    International Nuclear Information System (INIS)

    Jung, Jinwoo; Kim, Jaewoo; Uhm, Young Rang; Jeon, Jae-Kyun; Lee, Sol; Lee, Hi Min; Rhee, Chang Kyu

    2010-01-01

    The thermal properties of micro-sized boron nitride (BN) and nano-sized BN dispersed high density polyethylene (HDPE) composites were investigated by means of differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). Nano-BN powder was prepared by using a ball mill process before it was mixed in HDPE. To enhance the dispersivity of nano-BN in the polymer matrix, the surfaces of the nano-particles were treated with low density polyethylene (LDPE) which was dissolved in the cyclohexane solvent. The average particle sizes of micro-BN powder and LDPE coated nano-BN powder were ∼10 μm and ∼100 nm respectively. Dispersion and distribution of 5 wt% and 20 wt% of micro-BN and nano-BN respectively mixed in HDPE were observed by using the scanning electron microscope (SEM). According to the thermal analyses of pure HDPE, micro-BN/HDPE, and nano-BN/HDPE, 20 wt% nano-BN/HDPE composite shows the lowest enthalpy of fusion (ΔH m ) and better thermal conductive characteristics compared to the others.

  11. Nano-cellulose based nano-coating biomaterial dataset using corn leaf biomass: An innovative biodegradable plant biomaterial

    Directory of Open Access Journals (Sweden)

    A.B.M. Sharif Hossain

    2018-04-01

    Full Text Available The nanocellulose derived biodegradable plant biomaterial as nano-coating can be used in the medical, biomedical cosmetics, and bioengineering products. Bio-plastic and some synthetic derived materials are edible and naturally biodegradable. The study was conducted to investigate edible nano-biopolymer based nano-coating of capsules and drugs or other definite biomedical materials from corn leaf biomass. Corn leaf biomass was used as an innovative sample to produce edible nano-coating bioplastic for drug and capsule coating and other industrial uses. The data show the negligible water 0.01% absorbed by bio-plastic nanocoating. Odor represented by burning test was under the completely standard based on ASTM. Moreover, data on color coating, tensile strength, pH, cellulose content have been shown under standard value of ASTM (American standard for testing and materials standard. In addition to that data on the chemical element test like K+, CO3−−, Cl-, Na+ exhibited positive data compared to the synthetic plastic in the laboratory using the EN (166 standardization. Therefore, it can be concluded that both organic (cellulose and starch based edible nano-coating bioplastic may be used for drug and capsule coating as biomedical and medical components in the pharmaceutical industries. Keywords: Nanocellulose, Nanobioplastic, Nanocoating, Biodegradable, Corn leaf

  12. Effect of purified fractions from cell culture supernate of high-density pre-B acute lymphoblastic leukemia cells (ALL3) on the growth of ALL3 cells at low density.

    Science.gov (United States)

    Patel, Sapan J; Darie, Costel C; Clarkson, Bayard D

    2017-02-01

    The mechanisms underlying the aberrant growth and interactions between cells are not understood very well. The pre-B acute lymphoblastic leukemia cells directly obtained from an adult patient grow very poorly or do not grow at all at low density (LD), but grow better at high starting cell density (HD). We found that the LD ALL3 cells can be stimulated to grow in the presence of diffusible, soluble factors secreted by ALL3 cells themselves growing at high starting cell density. We then developed a biochemical purification procedure that allowed us to purify the factor(s) with stimulatory activity and analyzed them by nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS). Using nanoLC-MS/MS we have identified several proteins which were further processed using various bioinformatics tools. This resulted in eight protein candidates which might be responsible for the growth activity on non-growing LD ALL3 cells and their involvement in the stimulatory activity are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Nano-patterning of perpendicular magnetic recording media by low-energy implantation of chemically reactive ions

    International Nuclear Information System (INIS)

    Martin-Gonzalez, M.S.; Briones, F.; Garcia-Martin, J.M.; Montserrat, J.; Vila, L.; Faini, G.; Testa, A.M.; Fiorani, D.; Rohrmann, H.

    2010-01-01

    Magnetic nano-patterning of perpendicular hard disk media with perpendicular anisotropy, but preserving disk surface planarity, is presented here. Reactive ion implantation is used to locally modify the chemical composition (hence the magnetization and magnetic anisotropy) of the Co/Pd multilayer in irradiated areas. The procedure involves low energy, chemically reactive ion irradiation through a resist mask. Among N, P and As ions, P are shown to be most adequate to obtain optimum bit density and topography flatness for industrial Co/Pd multilayer media. The effect of this ion contributes to isolate perpendicular bits by destroying both anisotropy and magnetic exchange in the irradiated areas. Low ion fluences are effective due to the stabilization of atomic displacement levels by the chemical effect of covalent impurities.

  14. A nitrogen doped low-dislocation density free-standing single crystal diamond plate fabricated by a lift-off process

    Energy Technology Data Exchange (ETDEWEB)

    Mokuno, Yoshiaki, E-mail: mokuno-y@aist.go.jp; Kato, Yukako; Tsubouchi, Nobuteru; Chayahara, Akiyoshi; Yamada, Hideaki; Shikata, Shinichi [Research Institute for Ubiquitous Energy Devices, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)

    2014-06-23

    A nitrogen-doped single crystal diamond plate with a low dislocation density is fabricated by chemical vapor deposition (CVD) from a high pressure high temperature synthetic type IIa seed substrate by ion implantation and lift-off processes. To avoid sub-surface damage, the seed surface was subjected to deep ion beam etching. In addition, we introduced a nitrogen flow during the CVD step to grow low-strain diamond at a relatively high growth rate. This resulted in a plate with low birefringence and a dislocation density as low as 400 cm{sup −2}, which is the lowest reported value for a lift-off plate. Reproducing this lift-off process may allow mass-production of single crystal CVD diamond plates with low dislocation density and consistent quality.

  15. Stiff, light, strong and ductile: nano-structured High Modulus Steel.

    Science.gov (United States)

    Springer, H; Baron, C; Szczepaniak, A; Uhlenwinkel, V; Raabe, D

    2017-06-05

    Structural material development for lightweight applications aims at improving the key parameters strength, stiffness and ductility at low density, but these properties are typically mutually exclusive. Here we present how we overcome this trade-off with a new class of nano-structured steel - TiB 2 composites synthesised in-situ via bulk metallurgical spray-forming. Owing to the nano-sized dispersion of the TiB 2 particles of extreme stiffness and low density - obtained by the in-situ formation with rapid solidification kinetics - the new material has the mechanical performance of advanced high strength steels, and a 25% higher stiffness/density ratio than any of the currently used high strength steels, aluminium, magnesium and titanium alloys. This renders this High Modulus Steel the first density-reduced, high stiffness, high strength and yet ductile material which can be produced on an industrial scale. Also ideally suited for 3D printing technology, this material addresses all key requirements for high performance and cost effective lightweight design.

  16. Exploration of the phase diagram of liquid water in the low-temperature metastable region using synthetic fluid inclusions

    DEFF Research Database (Denmark)

    Qiu, Chen; Krüger, Yves; Wilke, Max

    2016-01-01

    water with a density of 0.921 kg/m3 remains in a homogeneous state during cooling down to the temperaure of −30.5 °C, where it is transformed into ice whose density corresponds to zero pressure. iii) ice melting. Ice melting temperatures of up to 6.8 °C were measured in absence of the vapour bubble, i......We present new experimental data of the low-temperature metastable region of liquid water derived from high-density synthetic fluid inclusions (996−916 kg/m3) in quartz. Microthermometric measurements include: i) Prograde (upon heating) and retrograde (upon cooling) liquid-vapour homogenisation. We...

  17. Study of Nano Powder for Improvement the Mechanical Properties of Armor

    Directory of Open Access Journals (Sweden)

    Raid Salih Jawad

    2016-03-01

    Full Text Available During this research nano alumina particles are used as reinforce material to improve characterization of armor. The work involves use of polyester resin as matrix. The properties obtained of resulted samples showed clearly improvement. Where values show linear increases in hardness from low value 77.3 gf/mm of pure polyester to high value 81.6 of polystyrene - 30 wt % nano alumina. Values of thermal conductivity greatly influenced by amount of porosity and so on the density of the sample, where pure polyester has low value 0.0661 W/mk of thermal conductivity and polyester – 30 wt % nano aluminapossess conductivity 0.3411 W/mk.

  18. Numerical study of circular synthetic jets at low Reynolds numbers

    International Nuclear Information System (INIS)

    Xia, Qingfeng; Lei, Shenghui; Ma, Jieyan; Zhong, Shan

    2014-01-01

    Highlights: • Parameter maps depicting different flow regimes of synthetic jets are produced. • Boundaries separating these regimes are defined using quantitative criteria. • The Reynolds number is most appropriate for classifying different flow regimes. • A use of high suction cycle factors enhances the effectiveness of synthetic jets. - Abstract: In this paper, the flow patterns of circular synthetic jets issuing into a quiescent flow at low Reynolds numbers are studied numerically. The results confirm the presence of the three jet flow regimes, i.e. no jet formation, jet flow without rollup and jet flow with rollup reported in the literature. The boundaries of the different jet flow regimes are determined by tracking the structures produced by the synthetic jets in the near field of the jet orifice over several actuation cycles and examining the cycle-averaged streamwise velocity profiles along the jet central axis. When the Stokes number is above a certain threshold value appropriate for the corresponding flow regime, a good correlation between the flow patterns and the jet Reynolds number defined using the jet orifice diameter, Re Do , is also found. Furthermore, the flow structures of synthetic jets with different suction duty cycle factors are compared. The use of a high suction duty cycle factor strengthens the synthetic jet resulting in a greater penetration depth into the surrounding fluid. Overall, the finding from this study enables the flow regimes, in which a synthetic jet actuator with a circular orifice operates, to be determined. It also provides a way of designing more effective synthetic jet actuators for enhancing mass and momentum transfer at very low Reynolds numbers

  19. High-density polymer microarrays: identifying synthetic polymers that control human embryonic stem cell growth.

    Science.gov (United States)

    Hansen, Anne; Mjoseng, Heidi K; Zhang, Rong; Kalloudis, Michail; Koutsos, Vasileios; de Sousa, Paul A; Bradley, Mark

    2014-06-01

    The fabrication of high-density polymer microarray is described, allowing the simultaneous and efficient evaluation of more than 7000 different polymers in a single-cellular-based screen. These high-density polymer arrays are applied in the search for synthetic substrates for hESCs culture. Up-scaling of the identified hit polymers enables long-term cellular cultivation and promoted successful stem-cell maintenance. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Editorial Emerging Multifunctional Nano structures

    International Nuclear Information System (INIS)

    Fan, H.; Lu, Y.; Ramanath, G.; Pomposo, J.A.

    2009-01-01

    The interest in emerging nano structures is growing exponentially since they are promising building blocks for advanced multifunctional nano composites. In recent years, an evolution from the controlled synthesis of individual monodisperse nanoparticles to the tailored preparation of hybrid spherical and also unsymmetrical multiparticle nano structures is clearly observed. As a matter of fact, the field of nano structures built around a nano species such as inside, outside, and next to a nanoparticle is becoming a new evolving area of research and development with potential applications in improved drug delivery systems, innovative magnetic devices, biosensors, and highly efficient catalysts, among several others Emerging nano structures with improved magnetic, conducting and smart characteristics are currently based on the design, synthesis, characterization and modeling of multifunctional nano object-based materials. In fact, core-shell nanoparticles and other related complex nano architectures covering a broad spectrum of materials (from metal and metal oxide to fused carbon, synthetic polymer, and bio polymer structures) to nano structure morphologies (spherical, cylindrical, star-like, etc.) are becoming the main building blocks for next generation of drug delivery systems, advanced sensors and biosensors, or improved nano composites. The five papers presented in this special issue examine the preparation and characterization of emerging multifunctional materials, covering from hybrid asymmetric structures to engineering nano composites.

  1. Nano-cracks in a synthetic graphite composite for nuclear applications

    Science.gov (United States)

    Liu, Dong; Cherns, David

    2018-05-01

    Mrozowski nano-cracks in nuclear graphite were studied by transmission electron microscopy and selected area diffraction. The material consisted of single crystal platelets typically 1-2 nm thick and stacked with large relative rotations around the c-axis; individual platelets had both hexagonal and cubic stacking order. The lattice spacing of the (0002) planes was about 3% larger at the platelet boundaries which were the source of a high fraction of the nano-cracks. Tilting experiments demonstrated that these cracks were empty, and not, as often suggested, filled by amorphous material. In addition to conventional Mrozowski cracks, a new type of nano-crack is reported, which originates from the termination of a graphite platelet due to crystallographic requirements. Both types are crucial to understanding the evolution of macro-scale graphite properties with neutron irradiation.

  2. Incidence of malignant lymphoma in adolescents and young adults in the 58 counties of California with varying synthetic turf field density.

    Science.gov (United States)

    Bleyer, Archie; Keegan, Theresa

    2018-04-01

    Case reports of cancer among soccer players raised concerns that the crumb rubber infill in synthetic turf fields may cause malignant lymphoma. One prior epidemiologic study on the topic found no association. An ecologic evaluation of county-level incidence of lymphomas by race/ethnicity and socioeconomic status for the state of California with data obtained from the National Cancer Institute Surveillance, Epidemiology, and End Results Program. Synthetic turf field density by county was obtained from the Synthetic Turf Council. During 2000-2013, 7214 14- to 30-year-old Californians were diagnosed with malignant lymphoma. Annual lymphoma county incidence trends were not associated with the county-level synthetic turf field density. None of 20 sub-analyses by race/ethnicity, sex and county median household income indicated a correlation of lymphoma incidence with synthetic turf field density. In California, there was no evidence at the county-level that synthetic turf fields are associated with an increased incidence of lymphoma in adolescents and young adults. Our findings in the state with the greatest number of such fields and a large, diverse patient population are consistent with those of a prior study observing no association between individual-level exposures to turf fields and cancer incidence. Avoidance of synthetic turf fields for fear of increased cancer risk is not warranted. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Comparison between nano-diamond and carbon nanotube doping effects on critical current density and flux pinning in MgB2

    International Nuclear Information System (INIS)

    Cheng, C H; Yang, Y; Munroe, P; Zhao, Y

    2007-01-01

    Doping effects of nano-diamond and carbon nanotubes (CNTs) on critical current density of bulk MgB 2 have been studied. CNTs are found prone to be doped into the MgB 2 lattice whereas nano-diamond tends to form second-phase inclusions in the MgB 2 matrix, leading to a more significant improvement of J c (H) by doping by nano-diamond than by CNTs in MgB 2 . TEM reveals tightly packed MgB 2 nanograins (50-100 nm) with a dense distribution of diamond nanoparticles (10-20 nm) inside MgB 2 grains in nano-diamond-doped samples. Such a unique microstructure leads to a flux pinning behaviour different from that in CNTs-doped MgB 2

  4. Oriented nano-wire formation and selective adhesion on substrates by single ion track reaction in polysilanes

    International Nuclear Information System (INIS)

    Shu Seki; Satoshi Tsukuda, Yoichi Yoshida; Seiichi Tagawa; Masaki Sugimoto; Shigeru Tanaka

    2002-01-01

    1-D nano-sized materials such as carbon nanotubes have attracted much attention as ideal quantum wires for future manufacturing techniques of nano-scaled opto-electronic devices. However it is still difficult to control the sizes, spatial distributions, or positions of nanotubes by conventional synthetic techniques to date. The MeV order heavy ion beams causes ultra-high density energy deposition which can not be realized by any other techniques (lasers, H, etc), and penetrate the polymer target straighforward as long as 1∼100 m depth. the energy deposited area produces non-homogeneous field can be controlled by changing the energy deposition rate of incident ions (LET: linear energy transfer, eV/nm). We found that cross-linking reaction of polysilane derivatives was predominantly caused and gave nano-gel in the chemical core, unlike main chain scission occurring at the outside of the area. high density energy deposition by ion beams causes non-homogeneous crosslinking reaction of polysilane derivatives within a nano-sized cylindrical area along an ion trajectory, and gives -SiC based nano-wires of which sizes (length, thickness) and number densities are completely under control by changing the parameters of incident ion beams and molecular sizes of target polymers. based on the concept pf the single track gelation, the present study demonstrates the formation of cross-linked polysilane nano-wires with the fairly controlled sizes. Recently the techniques of position-selective single ion hitting have been developed for MeV order ion beams, however it is not sufficient to control precisely the positions of the nano-wires on the substrates within sub- m area. in the present study, we report the selective adhesion of anno-wires on Si substrates by the surface treatments before coating, which enables the patterning of planted nano-wires on substrates and/or electrodes as candidates for nano-sized field emissive cathodes or electro-luminescent devices. Some examples of

  5. Adhesion, Growth, and Maturation of Vascular Smooth Muscle Cells on Low-Density Polyethylene Grafted with Bioactive Substances

    Directory of Open Access Journals (Sweden)

    Martin Parizek

    2013-01-01

    Full Text Available The attractiveness of synthetic polymers for cell colonization can be affected by physical, chemical, and biological modification of the polymer surface. In this study, low-density polyethylene (LDPE was treated by an Ar+ plasma discharge and then grafted with biologically active substances, namely, glycine (Gly, polyethylene glycol (PEG, bovine serum albumin (BSA, colloidal carbon particles (C, or BSA+C. All modifications increased the oxygen content, the wettability, and the surface free energy of the materials compared to the pristine LDPE, but these changes were most pronounced in LDPE with Gly or PEG, where all the three values were higher than in the only plasma-treated samples. When seeded with vascular smooth muscle cells (VSMCs, the Gly- or PEG-grafted samples increased mainly the spreading and concentration of focal adhesion proteins talin and vinculin in these cells. LDPE grafted with BSA or BSA+C showed a similar oxygen content and similar wettability, as the samples only treated with plasma, but the nano- and submicron-scale irregularities on their surface were more pronounced and of a different shape. These samples promoted predominantly the growth, the formation of a confluent layer, and phenotypic maturation of VSMC, demonstrated by higher concentrations of contractile proteins alpha-actin and SM1 and SM2 myosins. Thus, the behavior of VSMC on LDPE can be regulated by the type of bioactive substances that are grafted.

  6. On airborne nano/micro-sized wear particles released from low-metallic automotive brakes

    International Nuclear Information System (INIS)

    Kukutschova, Jana; Moravec, Pavel; Tomasek, Vladimir; Matejka, Vlastimil; Smolik, Jiri; Schwarz, Jaroslav; Seidlerova, Jana; Safarova, Klara; Filip, Peter

    2011-01-01

    The paper addresses the wear particles released from commercially available 'low-metallic' automotive brake pads subjected to brake dynamometer tests. Particle size distribution was measured in situ and the generated particles were collected. The collected fractions and the original bulk material were analyzed using several chemical and microscopic techniques. The experiments demonstrated that airborne wear particles with sizes between 10 nm and 20 μm were released into the air. The numbers of nanoparticles (<100 nm) were by three orders of magnitude larger when compared to the microparticles. A significant release of nanoparticles was measured when the average temperature of the rotor reached 300 deg. C, the combustion initiation temperature of organics present in brakes. In contrast to particle size distribution data, the microscopic analysis revealed the presence of nanoparticles, mostly in the form of agglomerates, in all captured fractions. The majority of elements present in the bulk material were also detected in the ultra-fine fraction of the wear particles. - Research highlights: → Wear of low-metallic friction composite produces airborne nano-sized particles. → Nano-sized particles contain carbon black and metallic compounds. → Carbon black nano-sized particles are related to resin degradation. → Number of nanoparticles higher by three orders of magnitude than microparticles. - Braking of automobiles may contribute to nano-particulate air pollution caused by friction processes associated with wear of low-metallic brake pads.

  7. An Ultra-High Element Density pMUT Array with Low Crosstalk for 3-D Medical Imaging

    Directory of Open Access Journals (Sweden)

    Tian-Ling Ren

    2013-07-01

    Full Text Available A ~1 MHz piezoelectric micromachined ultrasonic transducer (pMUT array with ultra-high element density and low crosstalk is proposed for the first time. This novel pMUT array is based on a nano-layer spin-coating lead zirconium titanium film technique and can be fabricated with high element density using a relatively simple process. Accordingly, key fabrication processes such as thick piezoelectric film deposition, low-stress Si-SOI bonding and bulk silicon removal have been successfully developed. The novel fine-pitch 6 × 6 pMUT arrays can all work at the desired frequency (~1 MHz with good uniformity, high performance and potential IC integration compatibility. The minimum interspace is ~20 μm, the smallest that has ever been achieved to the best of our knowledge. These arrays can be potentially used to steer ultrasound beams and implement high quality 3-D medical imaging applications.

  8. Synthetically modified nano-cellulose for the removal of chromium: a green nanotech perspective.

    Science.gov (United States)

    Jain, Priyanka; Varshney, Shilpa; Srivastava, Shalini

    2017-02-01

    Existing processes for the decontamination of heavy metals from water are found to be cost-prohibitive and energy-intensive which is totally against the sustainable concept of development. Green nanotechnology for water purification for ecosystem management, agricultural and industry is an emerging as leading global priority and occupies better position over the current state of water purification. Herein, the diafunctionalised polyaniline modified nanocellulose composite sorbent (PANI-NCC) has been used to introduce amine and imine functionalities for the removal of trivalent and hexavalent chromium from water bodies. The fabricated nanobiomaterial has been authenticated by modern spectroscopic, microscopic techniques. The modified PANI-NCC is rod-like in shape, ~60 nm in size. The roughness and crystallinity index is also quantified and found to be 49.67 nm and 84.18%, respectively. The optimised experimental finding provides the efficient removal of trivalent [Cr(III)] (47.06 mg/g; 94.12%) and hexavalent [Cr(VI)] (48.92 mg/g; 97.84%) chromium from synthetic waste water. The fabricated nano biosorbent is deemed to be a potent biosorbent for technological development to remove the toxic metals in the real environmental water samples.

  9. Combined addition of nano diamond and nano SiO2, an effective method to improve the in-field critical current density of MgB2 superconductor

    International Nuclear Information System (INIS)

    Rahul, S.; Varghese, Neson; Vinod, K.; Devadas, K.M.; Thomas, Syju; Anees, P.; Chattopadhyay, M.K.; Roy, S.B.; Syamaprasad, U.

    2011-01-01

    Highlights: → Both nano diamond and nano SiO 2 caused significant modifications in the structural properties of pure MgB 2 sample. → Reduction in T C for the best codoped sample was approximately 2 K. → The best codoped sample yielded a J C , an order of magnitude more than the undoped one at 5 K and 8 T. → The enhanced flux pinning capability provided by the additives is responsible for the improved in-field J C . -- Abstract: MgB 2 bulk samples added with nano SiO 2 and/or nano diamond were prepared by powder-in-sealed-tube (PIST) method and the effects of addition on structural and superconducting properties were studied. X-ray diffraction (XRD) analysis revealed that the addition caused systematic reduction in 'a' lattice parameter due to the substitution of C atoms at B sites and the strain caused by reacted intragrain nano particles of Mg 2 Si as evinced by transmission electron microscope image. Scanning electron microscopy images showed distinct microstructural variations with SiO 2 /diamond addition. It was evident from DC magnetization measurements that the in-field critical current density [J C (H)] of doped samples did not fall drastically like the undoped sample. Among the doped samples the J C (H) of co-doped samples were significantly higher and the best co-doped sample yielded a J C , an order of magnitude more than the undoped one at 5 K and 8 T.

  10. Microfluidic-based screening of resveratrol and drug-loading PLA/Gelatine nano-scaffold for the repair of cartilage defect.

    Science.gov (United States)

    Ming, Li; Zhipeng, Yuan; Fei, Yu; Feng, Rao; Jian, Weng; Baoguo, Jiang; Yongqiang, Wen; Peixun, Zhang

    2018-03-26

    Cartilage defect is common in clinical but notoriously difficult to treat for low regenerative and migratory capacity of chondrocytes. Biodegradable tissue engineering nano-scaffold with a lot of advantages has been the direction of material to repair cartilage defect in recent years. The objective of our study is to establish a biodegradable drug-loading synthetic polymer (PLA) and biopolymer (Gelatine) composite 3D nano-scaffold to support the treatment of cartilage defect. We designed a microfluidic chip-based drug-screening device to select the optimum concentration of resveratrol, which has strong protective capability for chondrocyte. Then biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds were fabricated and used to repair the cartilage defects. As a result, we successfully cultured primary chondrocytes and screened the appropriate concentrations of resveratrol by the microfluidic device. We also smoothly obtained superior biodegradable resveratrol-loading PLA/Gelatine 3D nano-scaffolds and compared the properties and therapeutic effects of cartilage defect in rats. In summary, our microfluidic device is a simple but efficient platform for drug screening and resveratrol-loading PLA/Gelatine 3D nano-scaffolds could greatly promote the cartilage formation. It would be possible for materials and medical researchers to explore individualized pharmacotherapy and drug-loading synthetic polymer and biopolymer composite tissue engineering scaffolds for the repair of cartilage defect in future.

  11. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites

    Science.gov (United States)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2015-02-01

    Co9S8/reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co9S8 nano-rods on the RGO surfaces. The average crystal size of the Co9S8 nano rods grown on the RGO sheets were ˜25-36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co9S8/RGO composite was recorded as 1690 S m-1 at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co9S8/RGO composites. The Co9S8/RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g-1 at a current density of 2.2 A g-1), energy density (68.6 W h kg-1) and power density (1319 W kg-1) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ˜96% after 1000 charge-discharge cycles.

  12. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites.

    Science.gov (United States)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2015-02-20

    Co9S8/reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co9S8 nano-rods on the RGO surfaces. The average crystal size of the Co9S8 nano rods grown on the RGO sheets were ∼25-36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co9S8/RGO composite was recorded as 1690 S m(-1) at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co9S8/RGO composites. The Co9S8/RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g(-1) at a current density of 2.2 A g(-1)), energy density (68.6 W h kg(-1)) and power density (1319 W kg(-1)) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ∼96% after 1000 charge-discharge cycles.

  13. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites

    International Nuclear Information System (INIS)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kuila, Tapas; Kim, Nam Hoon; Lee, Joong Hee

    2015-01-01

    Co 9 S 8 /reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co 9 S 8 nano-rods on the RGO surfaces. The average crystal size of the Co 9 S 8 nano rods grown on the RGO sheets were ∼25–36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co 9 S 8 /RGO composite was recorded as 1690 S m −1 at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co 9 S 8 /RGO composites. The Co 9 S 8 /RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g −1 at a current density of 2.2 A g −1 ), energy density (68.6 W h kg −1 ) and power density (1319 W kg −1 ) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ∼96% after 1000 charge–discharge cycles. (paper)

  14. Review on the Synthesis and Applications of Nano materials

    International Nuclear Information System (INIS)

    Liu, X.; Tang, Y.; Liang, B.; Zhong, Z.

    2013-01-01

    Recently, Fe 3 O 4 nano materials have attracted tremendous attention because of their favorable electric and magnetic properties. Fe 3 O 4 nano structures with various morphologies have been successfully synthesized and have been used in many fields such as lithium-ion batteries (LIBs), wastewater treatment, and magnetic resonance imaging (MRI) contrast agents. In this paper, we provide an in-depth discussion of recent development of Fe 3 O 4 nano materials, including their effective synthetic methods and potential applications.

  15. Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film

    Directory of Open Access Journals (Sweden)

    Hamdy H. Hassan

    2018-02-01

    Full Text Available A commercially available copper electrical cable and pure Cu disk were used as substrates for the electrodeposition of copper nanoparticles (nano-Cu. The surface morphology of the prepared nano-Cu/Cu electrodes was investigated by scanning electron microscope (SEM and energy dispersive X-ray spectrometer (EDX. The bare copper substrates and the nano-copper modified electrodes were utilized and optimized for electrochemical assay of chemical oxygen demand (COD using glycine as a standard. A comparison was made among the four electrodes (i.e., bare and nano-Cu coated copper cable and pure copper disk as potential COD sensors. The oxidation behavior of glycine was investigated on the surface of the prepared sensors using linear sweep voltammetry (LSV. The results indicate significant enhancement of the electrochemical oxidation of glycine by the deposited nano-Cu. The effects of different deposition parameters, such as Cu2+ concentration, deposition potential, deposition time, pH, and scan rate on the response of the prepared sensors were investigated. Under optimized conditions, the optimal nano-Cu based COD sensor exhibited a linear range of 2–595 mg/L, lower limit of detection (LOD as low as 1.07 mg/L (S/N = 3. The developed method exhibited high tolerance level to Cl− ion where 1.0 M Cl− exhibited minimal influence. The sensor was utilized for the detection of COD in different real water samples. The results obtained were validated using the standard dichromate method.

  16. Book Review: Nano physics & Nano technology

    Directory of Open Access Journals (Sweden)

    Abdolkhaled Zaree

    2012-12-01

    Full Text Available During last decades, there are a lot of emphases on studying material behavior in atomic scale. In most scientific and engineering fields, one can see the effect of nanotechnology. The aim of nanoscience is to design and fabrication of new and applicable materials. Nowadays, Nano is a popular science which chemists, physicist, doctors, engineers, financial managers and environment's fans for creating a good life via nanoscience have a great cooperation with each others. Materials in nano scale such as nanotubes and nanowires have extraordinary properties which by optimization of these properties in nano scale and then develop these properties to macro scale, they've been challenging issues. For instance, materials in nano scale improve mechanical properties of polymers and metallic materials via nano particles and on the other hand by producing a thin film on surfaces improve surface hardening. Besides, nanotechnology is in hi-tech industries such as magnetic devices, surface coating, and biomaterial, material having sensors, polymers, gels, ceramics and intelligent membrane. Nano-carbon tubes are considered intelligent due to the fact that they couple electrochemical and elastic properties simultaneously, hence have greater activation energy density in comparison with other intelligent materials. Studying nanoscience is important because it causes the life to be better. Future Materials and structures will have a lot of outstanding properties. Intelligent machines can repair, recycle and reconstruct themselves. All these features are only possible in nano zone. Nano in engineering science can provide the possibility of making light missiles for exploring space. The reduced weight can be achieved by replacing traditional materials with hybrid nanocomposites.

  17. Preparation of Nano-Scale Biopolymer Extracted from Coconut Residue and Its Performance as Drag Reducing Agent (DRA

    Directory of Open Access Journals (Sweden)

    Hasan Muhammad Luqman Bin

    2017-01-01

    Full Text Available Drag or frictional force is defined as force that acts opposite to the object’s relative motion through a fluid which then will cause frictional pressure loss in the pipeline. Drag Reducing Agent (DRA is used to solve this issue and most of the DRAs are synthetic polymers but has some environmental issues. Therefore for this study, biopolymer known as Coconut Residue (CR is selected as the candidate to replace synthetic polymers DRA. The objective of this study is to evaluate the effectiveness of Nano-scale biopolymer DRA on the application of water injection system. Carboxymethyl cellulose (CMC is extracted by synthesizing the cellulose extracted from CR under the alkali-catalyzed reaction using monochloroacetic acid. The synthesize process is held in controlled condition whereby the concentration of NaOH is kept at 60%wt, 60 °C temperature and the reaction time is 4 hours. For every 25 g of dried CR used, the mass of synthesized CMC yield is at an average of 23.8 g. The synthesized CMC is then grinded in controlled parameters using the ball milling machine to get the Nano-scale size. The particle size obtained from this is 43.32 Nm which is in range of Nano size. This study proved that Nano-size CMC has higher percentage of drag reduction (%DR and flow increase (%FI if compared to normal-size CMC when tested in high and low flow rate; 44% to 48% increase in %DR and %FI when tested in low flow rate, and 16% to 18% increase in %DR and %FI when tested in high flow rate. The success of this research shows that Nano-scale DRA can be considered to be used to have better performance in reducing drag.

  18. Nano materials for the Local and Targeted Delivery of Osteoarthritis Drugs

    International Nuclear Information System (INIS)

    Periyasamy, P.C.; Leijten, J.C.H.; Dijkstra, P.J.; Karperien, M.; Post, J.N.

    2012-01-01

    Nano technology has found its potential in every possible field of science and engineering. It offers a plethora of options to design tools at the nanometer scale, which can be expected to function more effectively than micro- and macro systems for specific applications. Although the debate regarding the safety of synthetic nano materials for clinical applications endures, it is a promising technology due to its potential to augment current treatments. Various materials such as synthetic polymer, biopolymers, or naturally occurring materials such as proteins and peptides can serve as building blocks for adaptive nano scale formulations. The choice of materials depends highly on the application. We focus on the use of nanoparticles for the treatment of degenerative cartilage diseases, such as osteoarthritis (OA). Current therapies for OA focus on treating the symptoms rather than modifying the disease. The usefulness of OA disease modifying drugs is hampered by side effects and lack of suitable drug delivery systems that target, deliver, and retain drugs locally. This challenge can be overcome by using nano technological formulations. We describe the different nano drug delivery systems and their potential for cartilage repair. This paper provides the reader basal understanding of nano materials and aims at drawing new perspectives on the use of existing nano technological formulations for the treatment of osteoarthritis.

  19. Fabrication of nano-structured UO2 fuel pellets

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kang, Ki Won; Rhee, Young Woo; Kim, Dong Joo; Kim, Jong Heon; Kim, Keon Sik; Song, Kun Woo

    2007-01-01

    Nano-structured materials have received much attention for their possibility for various functional materials. Ceramics with a nano-structured grain have some special properties such as super plasticity and a low sintering temperature. To reduce the fuel cycle costs and the total mass of spent LWR fuels, it is necessary to extend the fuel discharged burn-up. In order to increase the fuel burn-up, it is important to understand the fuel property of a highly irradiated fuel pellet. Especially, research has focused on the formation of a porous and small grained microstructure in the rim area of the fuel, called High Burn-up Structure (HBS). The average grain size of HBS is about 300nm. This paper deals with the feasibility study on the fabrication of nano-structured UO 2 pellets. The nano sized UO 2 particles are prepared by a combined process of a oxidation-reducing and a mechanical milling of UO 2 powder. Nano-structured UO 2 pellets (∼300nm) with a density of ∼93%TD can be obtained by sintering nano-sized UO 2 compacts. The SEM study reveals that the microstructure of the fabricated nano-structure UO 2 pellet is similar to that of HBS. Therefore, this bulk nano-structured UO 2 pellet can be used as a reference pellet for a measurement of the physical properties of HBS

  20. Nano-porous anodic aluminium oxide membranes with 6-19 nm pore diameters formed by a low-potential anodizing process

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Fan; Liu Xiaohua; Pan Caofeng; Zhu Jing [Beijing National Center for Electron Microscopy, Tsinghua University, Beijing 100084 (China); Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2007-08-29

    Self-organized nano-porous anodic aluminium oxide (AAO) membranes with small pore diameters were obtained by applying a low anodizing potential in sulfuric acid solutions. The pore diameters of the as-prepared AAO membranes were in the range of about 6-19 nm and the interpore distances were about 20-58 nm. Low potentials (6-18 V) were applied in anodizing processes to make such small pores. A linear relationship between the anodizing potential (U{sub a}) and the interpore distance (D{sub int}) was also revealed. By carefully monitoring the current density's evolution as a function of time with different U{sub a} (2-18 V) during the anodizing processes, a new formula is proposed to simulate the self-ordering anodizing process.

  1. LDPE/HDPE/Clay Nano composites: Effects of Compatibilizer on the Structure and Dielectric Response

    International Nuclear Information System (INIS)

    David, Z.E.; Ngo, A.D.

    2013-01-01

    PE/clay nano composites were prepared by mixing a commercially available premixed polyethylene/O-MMT master batch into a polyethylene blend matrix containing 80 wt% low-density polyethylene and 20 wt% high-density polyethylene with and without anhydride modified polyethylene (PE-MA) as the compatibilizer using a corotating twin-screw extruder. In this study, the effect of nano clay and compatibilizer on the structure and dielectric response of PE/clay nano composites has been investigated. The microstructure of PE/clay nano composites was characterized using wide-angle X-ray diffraction (WAXD) and a scanning electron microscope (SEM). Thermal properties were examined using differential scanning calorimetry (DSC). The dielectric response of neat PE was compared with that of PE/clay nano composite with and without the compatibilizer. The XRD and SEM results showed that the PE/O-MMT nano composite with the PE-MA compatibilizer was better dispersed. In the nano composite materials, two relaxation modes are detected in the dielectric losses. The first relaxation is due to a Maxwell-Wagner-Sillars interfacial polarization, and the second relaxation can be related to dipolar polarization. A relationship between the degree of dispersion and the relaxation rate f m ax of Maxwell-Wagner-Sillars was found and discussed.

  2. Importing low-density ideas to high-density revitalisation

    DEFF Research Database (Denmark)

    Arnholtz, Jens; Ibsen, Christian Lyhne; Ibsen, Flemming

    2016-01-01

    Why did union officials from a high-union-density country like Denmark choose to import an organising strategy from low-density countries such as the US and the UK? Drawing on in-depth interviews with key union officials and internal documents, the authors of this article argue two key points. Fi...

  3. In situ AFM analysis investigating disassembly of DNA nanoparticles and nano-films.

    Science.gov (United States)

    Zou, Yi; Wan, Lei; Blacklock, Jenifer; Oupicky, David; Mao, Guangzhao

    2013-01-01

    Synthetic vector-based gene delivery systems continue to gain strength as viable alternatives to viral vectors due to safety and other concerns. DNA release dynamics is key to the understanding and control of gene delivery from nano-systems. Here we describe atomic force microscope application to the understanding of DNA release dynamics from bioreducible polycation-based nano-systems. The two nano-systems are polyplex nanoparticles and layer-by-layer films.

  4. Cadmium removal from aqueous solutions by pumice and nano-pumice

    Energy Technology Data Exchange (ETDEWEB)

    Khorzughy, Sara Haddadi; Eslamkish, Teymur [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ardejani, Faramarz Doulati [University of Tehran, Tehran (Iran, Islamic Republic of); Heydartaemeh, Mohammad Reza [Shahrood University of Technology, Shahrood (Iran, Islamic Republic of)

    2015-01-15

    Use of low-cost minerals to eliminate mining and industrial pollutants is the main goal of this study. We investigated the ability of pumice and nano-pumice to remove cadmium from a synthetic aqueous solution. Batch experiments were performed to investigate adsorption characteristic; therefore, the effective factors influencing the adsorption process including solution pH, contact time and initial concentration have been considered. Equilibrium data were attempted by Langmuir and Freundlich isotherm models to realize the interaction between adsorbent and adsorbate. The results show that cadmium adsorption on Pumice follows the Langmuir isotherm model with a R{sup 2} of 0.9996 and shows a homogeneous and mono-layer adsorption. Whereas, cadmium adsorption on nano-Pumice follows a Freundlich model (R{sup 2}=0.9939) and exhibits a multi-layer adsorption. The maximum mono-layer capacity (q{sub max}) of cadmium for pumice and nano-pumice was calculated 26 and 200mg/g, respectively. Two different kinetics models including pseudo first-order and pseudo second-order were studied to evaluate the rate and mechanism of cadmium adsorption by pumice and nano-pumice. The kinetics data indicate that a pseudo second-order model provides the best correlation of the experimental data.

  5. Low-Weight, Durable, and Low-Cost Metal Rubber Sensor System for Ultra Long Duration Scientific Balloons, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to develop an innovative, low-cost, ultra low mass density, and non-intrusive sensor system for ultra long duration balloons (ULDB) that will...

  6. Synthetic Biology: game changer in intelectual property

    Directory of Open Access Journals (Sweden)

    Laurens Landeweerd

    2016-12-01

    Full Text Available Synthetic biology can be considered a game changer that plays an important role in the current NBIC, or BINC convergence of nano-, bio-, info and cognitive sciences. Although most synthetic biology experts are unaware of it, the field appeals to the imagination in its adherence to targets that were usually associated with premodern alchemist science. This paper elaborates several aspects of synthetic biology as well as its consequences for long held notions of intellectual property and the ontological categories of scientific discovery on the one hand and engineering on the other, the distinction between natural and artificial, the grown and the made.

  7. Aligned Layers of Silver Nano-Fibers

    Directory of Open Access Journals (Sweden)

    Andrii B. Golovin

    2012-02-01

    Full Text Available We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  8. Printability of Synthetic Papers by Electrophotography

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2010-04-01

    Full Text Available This paper deals with the printability of synthetic papers by the electrophotography technique. Prints of cmyk colour fields from 20% to 100% raster tone values were printed on three types of synthetic papers (one film synthetic paper and two fiber synthetic papers. The investigation of the appearance included densitometric measurement of the cmyk prints. The results have shown differences in the optical density and optical tone value between cmyk prints made on various synthetic papers. The highest optical density and the increase of the optical tone value were observed on the film synthetic paper, where cmyk prints were more saturated. The highest abrasion resistance of cmyk prints was obtained from the fibre synthetic paper.

  9. Systematic Study on the Self-Assembled Hexagonal Au Voids, Nano-Clusters and Nanoparticles on GaN (0001.

    Directory of Open Access Journals (Sweden)

    Puran Pandey

    Full Text Available Au nano-clusters and nanoparticles (NPs have been widely utilized in various electronic, optoelectronic, and bio-medical applications due to their great potentials. The size, density and configuration of Au NPs play a vital role in the performance of these devices. In this paper, we present a systematic study on the self-assembled hexagonal Au voids, nano-clusters and NPs fabricated on GaN (0001 by the variation of annealing temperature and deposition amount. At relatively low annealing temperatures between 400 and 600°C, the fabrication of hexagonal shaped Au voids and Au nano-clusters are observed and discussed based on the diffusion limited aggregation model. The size and density of voids and nano-clusters can systematically be controlled. The self-assembled Au NPs are fabricated at comparatively high temperatures from 650 to 800°C based on the Volmer-Weber growth model and also the size and density can be tuned accordingly. The results are symmetrically analyzed and discussed in conjunction with the diffusion theory and thermodynamics by utilizing AFM and SEM images, EDS maps and spectra, FFT power spectra, cross-sectional line-profiles and size and density plots.

  10. Nano-cellulose derived bioplastic biomaterial data for vehicle bio-bumper from banana peel waste biomass

    Directory of Open Access Journals (Sweden)

    A.B.M. Sharif Hossain

    2016-09-01

    Full Text Available The innovative study was carried out to produce nano-cellulose based bioplastic biomaterials for vehicle use coming after bioprocess technology. The data show that nano-cellulose particle size was 20 nm and negligible water absorption was 0.03% in the bioplastic. Moreover, burning test, size and shape characterizations, spray coating dye, energy test and firmness of bioplastic have been explored and compared with the standardization of synthetic vehicle plastic bumper following the American Society for Testing and Materials (ASTM. Tensile test was observed 120 MPa/kg m3. In addition to that pH and cellulose content were found positive in the bioplastic compared to the synthetic plastic. Chemical tests like K, CO3, Cl2, Na were determined and shown positive results compared to the synthetic plastic using the EN-14214 (European Norm standardization. Keywords: Nano-celluloses, Biopolymer, Banana peel waste, Biobumper

  11. Topology in Synthetic Column Density Maps for Interstellar Turbulence

    Science.gov (United States)

    Putko, Joseph; Burkhart, B. K.; Lazarian, A.

    2013-01-01

    We show how the topology tool known as the genus statistic can be utilized to characterize magnetohydrodyanmic (MHD) turbulence in the ISM. The genus is measured with respect to a given density threshold and varying the threshold produces a genus curve, which can suggest an overall ‘‘meatball,’’ neutral, or ‘‘Swiss cheese’’ topology through its integral. We use synthetic column density maps made from three-dimensional 5123 compressible MHD isothermal simulations performed for different sonic and Alfvénic Mach numbers (Ms and MA respectively). We study eight different Ms values each with one sub- and one super-Alfvénic counterpart. We consider sight-lines both parallel (x) and perpendicular (y and z) to the mean magnetic field. We find that the genus integral shows a dependence on both Mach numbers, and this is still the case even after adding beam smoothing and Gaussian noise to the maps to mimic observational data. The genus integral increases with higher Ms values (but saturates after about Ms = 4) for all lines of sight. This is consistent with greater values of Ms resulting in stronger shocks, which results in a clumpier topology. We observe a larger genus integral for the sub-Alfvénic cases along the perpendicular lines of sight due to increased compression from the field lines and enhanced anisotropy. Application of the genus integral to column density maps should allow astronomers to infer the Mach numbers and thus learn about the environments of interstellar turbulence. This work was supported by the National Science Foundation’s REU program through NSF Award AST-1004881.

  12. Self-assembled GaN nano-column grown on Si(111) substrate using Au+Ga alloy seeding method by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Shim, Byung-Young; Ko, Eun-A; Song, Jae-Chul; Kang, Dong-Hun; Kim, Dong-Wook; Lee, In-Hwan; Kannappan, Santhakumar; Lee, Cheul-Ro

    2007-01-01

    Single-crystal GaN nano-column arrays were grown on Au-coated silicon (111) substrate by Au-Ga alloy seeding method using metalorganic chemical vapor deposition (MOCVD). The nano-column arrays were studied as a function of growth parameters and Au thin film thickness. The diameter and length of the as-grown nano-column vary from 100 to 500 nm and 4 to 6 μm, respectively. The surface morphology and optical properties of the nano-columns were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), cathodoluminescence (CL) and photoluminescence (PL). The Au+Ga alloy droplets were found to be uniformly distributed on silicon surface. Further, SEM image reveals a vertical growth and cylindrical in shape GaN nano-column. The chemical composition of the nano-column, which composed of gallium and nitrogen ions, was estimated by EDX. CL reveals a strong band edge emission from the GaN nano-column. PL spectra show a peak at 365.7 nm with a full-width half maximum (FWHM) of 65 meV which indicates good optical quality GaN nano-column with low dislocation density. Our results suggest that single crystal GaN nano-column can be grown on Au+Ga alloy on silicon substrate with a low dislocation density for better device performances. (author)

  13. Compartmentalization and Transport in Synthetic Vesicles

    Directory of Open Access Journals (Sweden)

    Christine eSchmitt

    2016-02-01

    Full Text Available Nano-scale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, like permeability, stability or chemical reactivity.In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multi-compartmented vesosomes as compartmentalized nano-scale bioreactors. In the bottom-up development of protocells from vesicular nano-reactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.

  14. Combined addition of nano diamond and nano SiO{sub 2}, an effective method to improve the in-field critical current density of MgB{sub 2} superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Rahul, S.; Varghese, Neson; Vinod, K.; Devadas, K.M.; Thomas, Syju; Anees, P. [National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019 (India); Chattopadhyay, M.K.; Roy, S.B. [Magnetic and Superconducting Materials Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Syamaprasad, U., E-mail: syamcsir@gmail.com [National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum 695019 (India)

    2011-11-15

    Highlights: {yields} Both nano diamond and nano SiO{sub 2} caused significant modifications in the structural properties of pure MgB{sub 2} sample. {yields} Reduction in T{sub C} for the best codoped sample was approximately 2 K. {yields} The best codoped sample yielded a J{sub C}, an order of magnitude more than the undoped one at 5 K and 8 T. {yields} The enhanced flux pinning capability provided by the additives is responsible for the improved in-field J{sub C}. -- Abstract: MgB{sub 2} bulk samples added with nano SiO{sub 2} and/or nano diamond were prepared by powder-in-sealed-tube (PIST) method and the effects of addition on structural and superconducting properties were studied. X-ray diffraction (XRD) analysis revealed that the addition caused systematic reduction in 'a' lattice parameter due to the substitution of C atoms at B sites and the strain caused by reacted intragrain nano particles of Mg{sub 2}Si as evinced by transmission electron microscope image. Scanning electron microscopy images showed distinct microstructural variations with SiO{sub 2}/diamond addition. It was evident from DC magnetization measurements that the in-field critical current density [J{sub C}(H)] of doped samples did not fall drastically like the undoped sample. Among the doped samples the J{sub C}(H) of co-doped samples were significantly higher and the best co-doped sample yielded a J{sub C}, an order of magnitude more than the undoped one at 5 K and 8 T.

  15. Quantum information aspects on bulk and nano interacting Fermi system: A spin-space density matrix approach

    Energy Technology Data Exchange (ETDEWEB)

    Afzali, R., E-mail: afzali@kntu.ac.ir [Department of Physics, K. N. Toosi University of Technology, Tehran, 15418 (Iran, Islamic Republic of); Ebrahimian, N., E-mail: n.ebrahimian@shahed.ac.ir [Department of Physics, Faculty of Basic Sciences, Shahed University, Tehran, 18155-159 (Iran, Islamic Republic of); Eghbalifar, B., E-mail: b.eghbali2011@yahoo.com [Department of Agricultural Management, Marvdasht Branch, Azad University, Marvdasht (Iran, Islamic Republic of)

    2016-10-07

    Highlights: • In contrast to a s-wave superconductor, the quantum correlation of the d-wave superconductor is sensitive to the change of the gap magnitude. • Quantum discord of the d-wave superconductor oscillates. • Quantum discord becomes zero at a characteristic length of the d-wave superconductor. • Quantum correlation strongly depends on the length of grain. Length of the superconductor lower, the quantum correlation length higher. • Quantum tripartite entanglement for a nano-scale d-wave superconductor is better than for a bulk d-wave superconductor. - Abstract: By approximating the energy gap, entering nano-size effect via gap fluctuation and calculating the Green's functions and the space-spin density matrix, the dependence of quantum correlation (entanglement, discord and tripartite entanglement) on the relative distance of two electron spins forming Cooper pairs, the energy gap and the length of bulk and nano interacting Fermi system (a nodal d-wave superconductor) is determined. In contrast to a s-wave superconductor, quantum correlation of the system is sensitive to the change of the gap magnitude and strongly depends on the length of the grain. Also, quantum discord oscillates. Furthermore, the entanglement length and the correlation length are investigated. Discord becomes zero at a characteristic length of the d-wave superconductor.

  16. Sintered powder cores of high Bs and low coreloss Fe84.3Si4B8P3Cu0.7 nano-crystalline alloy

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2013-06-01

    Full Text Available Nano-crystalline Fe-rich Fe84.3Si4B8P3Cu0.7 alloy ribbon with saturation magnetic flux density (Bs close to Si-steel exhibits much lower core loss (Wt than Si-Steels. Low glass forming ability of this alloy limits fabrication of magnetic cores only to stack/wound types. Here, we report on fabrication, structural, thermal and magnetic properties of bulk Fe84.3Si4B8P3Cu0.7 cores. Partially crystallized ribbons (obtained after salt-bath annealing treatment were crushed into powdered form (by ball milling, and were compacted to high-density (∼88% bulk cores by spark plasma sintering (SPS. Nano-crystalline structure (consisting of α-Fe grain in remaining amorphous matrix similar to wound ribbon cores is preserved in the compacted cores. At 50 Hz, cores sintered at Ts = 680 K show Wt 1 kHz. A trade-off between porosity and electrical resistivity is necessary to get low Wt at higher f. In the f range of ∼1 to 100 kHz, we have shown that the cores mixed with SiO2 exhibit much lower Wt than Fe-powder cores, non-oriented Si-steel sheets and commercially available sintered cores. We believe our core material is very promising to make power electronics/electrical devices much more energy-efficient.

  17. Hemodynamics alter arterial low-density lipoprotein metabolism

    International Nuclear Information System (INIS)

    Warty, V.S.; Calvo, W.J.; Berceli, S.A.; Pham, S.M.; Durham, S.J.; Tanksale, S.K.; Klein, E.C.; Herman, I.M.; Borovetz, H.S.

    1989-01-01

    We have investigated the role of hemodynamic factors on low-density lipoprotein transport and metabolism in the intact arterial wall. Freshly excised canine carotid blood vessels were exposed to well-defined pulsatile flow in vitro for continuous periods up to 20 hours. We chose to impose the following hemodynamic conditions on our test carotid arteries: normotension, hypertension (at physiologic flow conditions), and hypertension coupled with elevated flow of canine serum perfusate. In several experiments the effect of endothelial denudation was examined in carotid arteries exposed to normotensive pulsatile flow. A trapped ligand method was used for quantitating low-density lipoprotein uptake and metabolism in the arterial wall. The distribution of both intact and degraded low-density lipoprotein fractions was determined from measurements of radiolabelled low-density lipoprotein activity within thin radial sections of perfused arteries. Our results suggest that both hypertensive hemodynamic simulations exacerbate the uptake of low-density lipoprotein within the arterial wall (by a factor of three to nine). The percentage of low-density lipoprotein that undergoes irreversible degradation falls from 41% under normotensive conditions to below 30% when hypertensive conditions are imposed, indicating that degradative processes are not proportionally elevated with the accelerated influx. A similar pattern is observed for deendothelialized vessels

  18. Investigation of space charge distribution of low-density polyethylene/GO-GNF (graphene oxide from graphite nanofiber) nanocomposite for HVDC application.

    Science.gov (United States)

    Kim, Yoon Jin; Ha, Son-Tung; Lee, Gun Joo; Nam, Jin Ho; Ryu, Ik Hyun; Nam, Su Hyun; Park, Cheol Min; In, Insik; Kim, Jiwan; Han, Chul Jong

    2013-05-01

    This paper reported a research on space charge distribution in low-density polyethylene (LDPE) nanocomposites with different types of graphene and graphene oxide (GO) at low filler content (0.05 wt%) under high DC electric field. Effect of addition of graphene oxide or graphene, its dispersion in LDPE polymer matrix on the ability to suppress space charge generation will be investigated and compared with MgO/LDPE nanocomposite at the same filler concentration. At an applied electric field of 80 kV/mm, a positive packet-like charge was observed in both neat LDPE, MgO/LDPE, and graphene/LDPE nanocomposites, whereas only little homogenous space charge was observed in GO/LDPE nanocomposites, especially with GO synthesized from graphite nano fiber (GNF) which is only -100 nm in diameter. Our research also suggests that dispersion of graphene oxide particles on the polymer matrix plays a significant role to the performance of nanocomposites on suppressing packet-like space charge. From these results, it is expected that nano-sized GO synthesized from GNF can be a promising filler material to LDPE composite for HVDC applications.

  19. Low density in liver of idiopathic portal hypertension

    International Nuclear Information System (INIS)

    Ishito, Hiroyuki

    1988-01-01

    In order to evaluate the diagnostic value of low density in liver on computed tomography (CT), CT scans of 11 patients with idiopathic portal hypertension (IPH) were compared with those from 22 cirrhotic patients, two patients with scarred liver and 16 normal subjects. Low densities on plain CT scans in patients with IPH were distinctly different from those observed in normal liver. Some of the low densities had irregular shape with unclear margin and were scattered near the liver surface, and others had vessel-like structures with unclear margin and extended as far as near the liver surface. Ten of the 11 patients with IPH had low densities mentioned above, while none of the 22 cirrhotic patients had such low densities. The present results suggest that the presence of low densities in liver on plain CT scan is clinically beneficial in diagnosis of IPH. (author)

  20. Three-dimensional printing and deformation behavior of low-density target structures by two-photon polymerization

    Science.gov (United States)

    Liu, Ying; Stein, Ori; Campbell, John H.; Jiang, Lijia; Petta, Nicole; Lu, Yongfeng

    2017-08-01

    Two-photon polymerization (2PP), a 3D nano to microscale additive manufacturing process, is being used for the first time to fabricate small custom experimental packages ("targets") to support laser-driven high-energy-density (HED) physics research. Of particular interest is the use of 2PP to deterministically print low-density, low atomic-number (CHO) polymer matrices ("foams") at millimeter scale with sub-micrometer resolution. Deformation during development and drying of the foam structures remains a challenge when using certain commercial photo-resins; here we compare use of acrylic resins IP-S and IP-Dip. The mechanical strength of polymeric beam and foam structures is examined particularly the degree of deformation that occurs during the development and drying processes. The magnitude of the shrinkage in the two resins in quantified by printing sample structures and by use of FEA to simulate the deformation. Capillary drying forces are shown to be small and likely below the elastic limit of the core foam structure. In contrast the substantial shrinkage in IP-Dip ( 5-10%) cause large shear stresses and associated plastic deformation particularly near constrained boundaries such as the substrate and locations with sharp density variation. The inherent weakness of stitching boundaries is also evident and in certain cases can lead to delamination. Use of IP-S shows marked reduction in deformation with a minor loss of print resolution

  1. Low temperature spin-glass-like phases in magnetic nano-granular composites

    KAUST Repository

    Zhang, Bei

    2012-09-01

    It is a common understanding that the dipole-dipole interaction among the magnetic nanoparticles may result in a low-temperature spin-glass phase, which has been evidenced by observation of aging effect and memory effect. However, several studies on the nano-particles systems showed that some of the observed spin-glass-like phenomena could be due to the existence of spin-glasslike shells surrounding the ferrimagnetic cores. Therefore, it is very important to understand that how the dipole-dipole interaction induce the spin-glass phase. In order to address this issue, we have fabricated Co-SiO 2 and Fe-SiO 2 nano-granular thin films and measured the memory effect for them. Spin-glass-like phase has been observed at low temperatures. We found that, after annealing, the size of the clusters increased significantly. Based on a simple model, the dipole-dipole interaction between the clusters must be increased accordingly for the annealed samples. Interestingly, the memory effect is greatly weakened in the annealed films, which strongly suggested that the dipole-dipole interaction may not be the major factor for the formation of the low-temperature spin-glass-like phase. Copyright © 2012 American Scientific Publishers All rights reserved.

  2. Spin-accumulation effect in magnetic nano-bridge

    International Nuclear Information System (INIS)

    Khvalkovskii, A.V.; Zvezdin, A.A.; Zvezdin, K.A.; Pullini, D.; Perlo, P.

    2004-01-01

    Large values of magnetoresistance experimentally observed in magnetic nano-contacts and nano-wires are explained in terms of spin accumulation. The investigation of the spin-accumulation effect in magnetic nano-contacts (Phys. Rev. Lett. 82 (1999) 2923) and nano-bridges (JETP Lett. 75 (10) (2002) 613), which are considered to be very promising for various spintronic applications, is presented. The two-dimensional spin-diffusion problem in a magnetic nano-bridge is solved. Dependences of the specific resistance of the domain wall and of the distribution of non-equilibrium spin density on the nano-bridge geometry and the material parameters are obtained

  3. Low Density Supersonic Decelerators

    Data.gov (United States)

    National Aeronautics and Space Administration — The Low-Density Supersonic Decelerator project will demonstrate the use of inflatable structures and advanced parachutes that operate at supersonic speeds to more...

  4. Low dielectric loss in nano-Li-ferrite spinels prepared by sol–gel ...

    Indian Academy of Sciences (India)

    ... Refresher Courses · Symposia · Live Streaming. Home; Journals; Bulletin of Materials Science; Volume 39; Issue 1. Low dielectric loss in nano-Li-ferrite spinels prepared by sol–gel auto-combustion technique. Mamata Maisnam Nandeibam Nilima Maisnam Victory Sumitra Phanjoubam. Volume 39 Issue 1 February 2016 ...

  5. Data Encoding using Periodic Nano-Optical Features

    Science.gov (United States)

    Vosoogh-Grayli, Siamack

    Successful trials have been made through a designed algorithm to quantize, compress and optically encode unsigned 8 bit integer values in the form of images using Nano optical features. The periodicity of the Nano-scale features (Nano-gratings) have been designed and investigated both theoretically and experimentally to create distinct states of variation (three on states and one off state). The use of easy to manufacture and machine readable encoded data in secured authentication media has been employed previously in bar-codes for bi-state (binary) models and in color barcodes for multiple state models. This work has focused on implementing 4 states of variation for unit information through periodic Nano-optical structures that separate an incident wavelength into distinct colors (variation states) in order to create an encoding system. Compared to barcodes and magnetic stripes in secured finite length storage media the proposed system encodes and stores more data. The benefits of multiple states of variation in an encoding unit are 1) increased numerically representable range 2) increased storage density and 3) decreased number of typical set elements for any ergodic or semi-ergodic source that emits these encoding units. A thorough investigation has targeted the effects of the use of multi-varied state Nano-optical features on data storage density and consequent data transmission rates. The results show that use of Nano-optical features for encoding data yields a data storage density of circa 800 Kbits/in2 via the implementation of commercially available high resolution flatbed scanner systems for readout. Such storage density is far greater than commercial finite length secured storage media such as Barcode family with maximum practical density of 1kbits/in2 and highest density magnetic stripe cards with maximum density circa 3 Kbits/in2. The numerically representable range of the proposed encoding unit for 4 states of variation is [0 255]. The number of

  6. Sub-15 nm nano-pattern generation by spacer width control for high density precisely positioned self-assembled device nanomanufacturing

    KAUST Repository

    Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2012-01-01

    We present a conventional micro-fabrication based thin film vertical sidewall (spacer) width controlled nano-gap fabrication process to create arrays of nanopatterns for high density precisely positioned self-assembled nanoelectronics device integration. We have used conventional optical lithography to create base structures and then silicon nitride (Si 3N4) based spacer formation via reactive ion etching. Control of Si3N4 thickness provides accurate control of vertical sidewall (spacer) besides the base structures. Nano-gaps are fabricated between two adjacent spacers whereas the width of the gap depends on the gap between two adjacent base structures minus width of adjacent spacers. We demonstrate the process using a 32 nm node complementary metal oxide semiconductor (CMOS) platform to show its compatibility for very large scale heterogeneous integration of top-down and bottom-up fabrication as well as conventional and selfassembled nanodevices. This process opens up clear opportunity to overcome the decade long challenge of high density integration of self-assembled devices with precise position control. © 2012 IEEE.

  7. Sub-15 nm nano-pattern generation by spacer width control for high density precisely positioned self-assembled device nanomanufacturing

    KAUST Repository

    Rojas, Jhonathan Prieto

    2012-08-01

    We present a conventional micro-fabrication based thin film vertical sidewall (spacer) width controlled nano-gap fabrication process to create arrays of nanopatterns for high density precisely positioned self-assembled nanoelectronics device integration. We have used conventional optical lithography to create base structures and then silicon nitride (Si 3N4) based spacer formation via reactive ion etching. Control of Si3N4 thickness provides accurate control of vertical sidewall (spacer) besides the base structures. Nano-gaps are fabricated between two adjacent spacers whereas the width of the gap depends on the gap between two adjacent base structures minus width of adjacent spacers. We demonstrate the process using a 32 nm node complementary metal oxide semiconductor (CMOS) platform to show its compatibility for very large scale heterogeneous integration of top-down and bottom-up fabrication as well as conventional and selfassembled nanodevices. This process opens up clear opportunity to overcome the decade long challenge of high density integration of self-assembled devices with precise position control. © 2012 IEEE.

  8. Low density, variation in sintered density and high nitrogen in uranium dioxide

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Murty, B.N.; Anuradha, M.; Nageshwara Rao, P.; Jayaraj, R.N.; Ganguly, C.

    2000-01-01

    Low sintered density and density variation in sintered UO 2 were found to have been caused by non uniformity in the granule feed characteristics to the compacting press. The nitrogen impurity content of sintered UO 2 was found to be sintering furnace related and associated with low sintered density pellets. The problems of low density, variation in sintered density and high nitrogen could be solved by the replacement of the prevailing four punch precompaction by a single punch process; by the introduction of a vibro-sieve for the separation of fine particles from the press feed granules; by innovation in the powder feed shoe design for simultaneous and uniform dispensing of powder in all the die holes; by increasing the final compaction pressure and by modifying the gas flows and preheat temperature in the sintering furnace. (author)

  9. Comparison of in vitro biocompatibility of NanoBone(®) and BioOss(®) for human osteoblasts.

    Science.gov (United States)

    Liu, Qin; Douglas, Timothy; Zamponi, Christiane; Becker, Stephan T; Sherry, Eugene; Sivananthan, Sureshan; Warnke, Frauke; Wiltfang, Jörg; Warnke, Patrick H

    2011-11-01

    Scaffolds for bone tissue engineering seeded with the patient's own cells might be used as a preferable method to repair bone defects in the future. With the emerging new technologies of nanostructure design, new synthetic biomaterials are appearing on the market. Such scaffolds must be tested in vitro for their biocompatibility before clinical application. However, the choice between a natural or a synthetic biomaterial might be challenging for the doctor and the patient. In this study, we compared the biocompatibility of a synthetic bone substitute, NanoBone(®) , to the widely used natural bovine bone replacement material BioOss(®) . The in vitro behaviour of human osteoblasts on both materials was investigated. Cell performance was determined using scanning electron microscopy (SEM), cell vitality staining and four biocompatibility tests (LDH, MTT, WST, BrdU). We found that both materials showed low cytotoxicity and good biocompatibility. The MTT proliferation test was superior for Nanobone(®) . Both scaffolds caused only little damage to human osteoblasts and justify their clinical application. However, NanoBone(®) was able to support and promote proliferation of human osteoblasts slightly better than BioOss(®) in our chosen test set-up. The results may guide doctors and patients when being challenged with the choice between a natural or a synthetic biomaterial. Further experiments are necessary to determine the comparison of biocompatibility in vivo. © 2011 John Wiley & Sons A/S.

  10. Nano-topography Enhances Communication in Neural Cells Networks

    KAUST Repository

    Onesto, V.

    2017-08-23

    Neural cells are the smallest building blocks of the central and peripheral nervous systems. Information in neural networks and cell-substrate interactions have been heretofore studied separately. Understanding whether surface nano-topography can direct nerve cells assembly into computational efficient networks may provide new tools and criteria for tissue engineering and regenerative medicine. In this work, we used information theory approaches and functional multi calcium imaging (fMCI) techniques to examine how information flows in neural networks cultured on surfaces with controlled topography. We found that substrate roughness Sa affects networks topology. In the low nano-meter range, S-a = 0-30 nm, information increases with Sa. Moreover, we found that energy density of a network of cells correlates to the topology of that network. This reinforces the view that information, energy and surface nano-topography are tightly inter-connected and should not be neglected when studying cell-cell interaction in neural tissue repair and regeneration.

  11. Preparation of synthetic standard minerals

    International Nuclear Information System (INIS)

    Herrick, C.C.; Bustamante, S.J.; Charls, R.W.; Cowan, R.E.; Hakkila, E.A.; Hull, D.E.; Olinger, B.W.; Roof, R.B.; Sheinberg, H.; Herrick, G.C.

    1978-01-01

    A number of techniques for synthetic mineral preparations have been examined. These techniques include hot-pressing in graphite dies at moderate pressures, high-pressure, high-temperature synthesis in a piston and cylinder apparatus, isostatic pressing under helium gas pressures, hydrous mineral preparations using water as the pressure medium, explosion-generated shock waves, and radiofrequency heating. Minerals suitable for equation-of-state studies (three-inch, high-density discs), for thermodynamic property determinations (low-density powders) and for microprobe standards (fusion-cast microbeads) have been prepared. Mechanical stress-strain calculations in the piston-cylinder apparatus have been initiated and their integration with thermal stress calculations is currently under investigation

  12. Development of nano SiO2 incorporated nano zinc phosphate coatings on mild steel

    International Nuclear Information System (INIS)

    Tamilselvi, M.; Kamaraj, P.; Arthanareeswari, M.; Devikala, S.; Selvi, J. Arockia

    2015-01-01

    Highlights: • Nano SiO 2 incorporated nano zinc phosphate coating on mild steel was developed. • Coatings showed enhanced corrosion resistance. • The nano SiO 2 is adsorbed on mild steel surface and become nucleation sites. • The nano SiO 2 accelerates the phosphating process. - Abstract: This paper reports the development of nano SiO 2 incorporated nano zinc phosphate coatings on mild steel at low temperature for achieving better corrosion protection. A new formulation of phosphating bath at low temperature with nano SiO 2 was attempted to explore the possibilities of development of nano zinc phosphate coatings on mild steel with improved corrosion resistance. The coatings developed were studied by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Electrochemical measurements. Significant variation in the coating weight, morphology and corrosion resistance was observed as nano SiO 2 concentrations varied from 0.5–4 g/L. The results showed that, the nano SiO 2 in the phosphating solution changed the initial potential of the interface between mild steel substrate and phosphating solution and reduce the activation energy of the phosphating process, increase the nucleation sites and yielded zinc phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance. Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano SiO 2 . The new formulation reported in the present study was free from Ni or Mn salts and had very low concentration of sodium nitrite (0.4 g/L) as accelerator

  13. AC dielectrophoresis alignment of single-walled carbon nano tubes (SWNTS) and palladium nano wires for hydrogen gas sensor

    International Nuclear Information System (INIS)

    Nur Ubaidah Saidin; Nur Ubaidah Saidin; Ying, K.K.; KKhuan, N.I.; Mohammad Hafizuddin Jumali

    2013-01-01

    Full-text: Using AC electric field, nano wires or nano tubes can be aligned, chained or accelerated in a direction parallel to the applied field, oriented or concentrated onto designated locations as well as dispersed in controlled manner under high efficiencies. In this work, systematic study on the alignment of nano wires/ nano tubes across the 3 μm-gaps between pairs of micro fabricated gold electrodes was carried out using AC dielectrophoresis technique. Densities and alignment of the nano wires/ nano tubes across the gaps of the electrodes were controlled by the applied AC field strengths and frequencies on the electrodes. Good alignments of SWNTs and Pd nano wires were achieved at an applied frequency of 5 MHz and a field strength as high as 25 V pp for Pd nano wires compared to only 2 V pp for SWNTs. The aligned nano wires/ nano tubes will be functioned as sensor elements for hydrogen gas sensing. (author)

  14. Prospects for production of synthetic liquid fuel from low-grade coal

    Directory of Open Access Journals (Sweden)

    Shevyrev Sergei

    2015-01-01

    Full Text Available In the paper, we compare the energy costs of steam and steam-oxygen gasification technologies for production of synthetic liquid fuel. Results of mathematic simulation and experimental studies on gasification of low-grade coal are presented.

  15. Low-density moderation in the storage of PWR fuel assemblies

    International Nuclear Information System (INIS)

    Alcorn, F.M.

    1987-01-01

    The nuclear criticality safety of PWR fuel storage arrays requires that the potential of low-density moderation within the array be considered. The calculated criticality effect of low-density moderation in a typical PWR fuel assembly array is described in this paper. Calculated reactivity due to low-density moderation can vary significantly between physics codes that have been validated for well moderated systems. The availability of appropriate benchmark experiments for low-density moderation is quite limited; attempts to validate against the one set of suitable experiments at low density have been disappointing. Calculations indicate that a typical array may be unacceptable should the array be subjected to interstitial moderation equivalent to 5 % of full density water. Array parameters (such as spacing and size) will dramatically affect the calculated maximum K-eff at low-density moderation. Administrative and engineered control may be necessary to assure maintenance of safety at low-density moderation. Potential sources for low-density moderation are discussed; in general, accidentally achieving degrees of low-density moderation which might lead to a compromise of safety are not credible. (author)

  16. Single-layer nano-carbon film, diamond film, and diamond/nano-carbon composite film field emission performance comparison

    International Nuclear Information System (INIS)

    Wang, Xiaoping; Wang, Jinye; Wang, Lijun

    2016-01-01

    A series of single-layer nano-carbon (SNC) films, diamond films, and diamond/nano-carbon (D/NC) composite films have been prepared on the highly doped silicon substrate by using microwave plasma chemical vapor deposition techniques. The films were characterised by scanning electron microscopy, Raman spectroscopy, and field emission I-V measurements. The experimental results indicated that the field emission maximum current density of D/NC composite films is 11.8–17.8 times that of diamond films. And the field emission current density of D/NC composite films is 2.9–5 times that of SNC films at an electric field of 3.0 V/μm. At the same time, the D/NC composite film exhibits the advantage of improved reproducibility and long term stability (both of the nano-carbon film within the D/NC composite cathode and the SNC cathode were prepared under the same experimental conditions). And for the D/NC composite sample, a high current density of 10 mA/cm"2 at an electric field of 3.0 V/μm was obtained. Diamond layer can effectively improve the field emission characteristics of nano-carbon film. The reason may be due to the diamond film acts as the electron acceleration layer.

  17. S-Layer Based Bio-Imprinting - Synthetic S-Layer Polymers

    Science.gov (United States)

    2015-07-09

    AFRL-OSR-VA-TR-2015-0161 S-Layer Based Bio- Imprinting - Synthetic S-Layer Polymers Dietmar Pum ZENTRUM FUER NANOBIOTECHNOLOGIE Final Report 07/09...COVERED (From - To)      01-06-2012 to 31-05-2015 4.  TITLE AND SUBTITLE S-Layer Based Bio- Imprinting - Synthetic S-Layer Polymers 5a.  CONTRACT...technology for the fabrication of nano patterned thin film imprints by using functional S-layer protein arrays as templates. The unique feature of

  18. Improvement in J{sub c} performance below liquid nitrogen temperature for SmBa{sub 2}Cu{sub 3}O{sub y} superconducting films with BaHfO{sub 3} nano-rods controlled by low-temperature growth

    Energy Technology Data Exchange (ETDEWEB)

    Miura, S., E-mail: miura-syun12@ees.nagoya-u.ac.jp; Yoshida, Y.; Ichino, Y.; Xu, Q. [Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603 (Japan); Matsumoto, K. [Department of Materials Science and Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Ichinose, A. [Electric Power Engineering Research Laboratory, Central Research Institute of Electric Power Industry, Yokosuka, Kanagawa 240-0196 (Japan); Awaji, S. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2016-01-01

    For use in high-magnetic-field coil-based applications, the critical current density (J{sub c}) of REBa{sub 2}Cu{sub 3}O{sub y} (REBCO, where RE = rare earth) coated conductors must be isotropically improved, with respect to the direction of the magnetic field; these improvements must be realized at the operating conditions of these applications. In this study, improvement of the J{sub c} for various applied directions of magnetic field was achieved by controlling the morphology of the BaHfO{sub 3} (BHO) nano-rods in a SmBCO film. We fabricated the 3.0 vol. % BHO-doped SmBCO film at a low growth temperature of 720 °C, by using a seed layer technique (T{sub s} = 720 °C film). The low-temperature growth resulted in a morphological change in the BHO nano-rods. In fact, a high number density of (3.1 ± 0.1) × 10{sup 3} μm{sup −2} of small (diameter: 4 ± 1 nm), discontinuous nano-rods that grew in various directions, was obtained. In J{sub c} measurements, the J{sub c} of the T{sub s} = 720 °C film in all directions of the applied magnetic field was higher than that of the non-doped SmBCO film. The J{sub c}{sup min} (6.4 MA/cm{sup 2}) of the former was more than 6 times higher than that (1.0 MA/cm{sup 2}) of the latter at 40 K, under 3 T. The aforementioned results indicated that the discontinuous BHO nano-rods, which occurred with a high number density, exerted a 3D-like flux pinning at the measurement conditions considered. Moreover, at 4.2 K and under 17 T, a flux pinning force density of 1.6 TN/m{sup 3} was realized; this value was comparable to the highest value recorded, to date.

  19. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    Science.gov (United States)

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  20. Nano-sized precipitation and properties of a low carbon niobium micro-alloyed bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.J. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Ma, X.P. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada); Shang, C.J., E-mail: cjshang@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Wang, X.M. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Subramanian, S.V. [Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L8 (Canada)

    2015-08-12

    The present work focuses on microstructure evolution and precipitation strengthening during tempering at region of 550–680 °C to elucidate the structure–property relationship in the steel. The effect of tempering on the development of a 700 MPa grade high strength hot rolled cost-effective bainitic steel was studied for infrastructure applications. Granular bainite with dispersed martenisit–austenite (M–A) constituents in the bainitic ferrite matrix was obtained after hot rolling and air cooling to room temperature. The decomposition of M–A constituents to cementite carbides and the precipitation of nano-sized NbC carbides in bainitic matrix on tempering were characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Nano-sized precipitates of NbC precipitated during tempering were in average diameter of ~4.1–6.1 nm. There were ~86–173 MPa increases in yield strength after tempering at region of 550–680 °C. It is noticeable that those nano-sized NbC precipitates provide an effective way to significantly increase the strength of the low carbon bainitic steel. High yield strength of 716 MPa with high ductility (uniform elongation of 9.3% and total elongation of 22.4%), low yield to tensile ratio of 0.9 and good low temperature toughness of 47 J (half thickness) at –40 °C was obtained after tempering at 680 °C for 30 min.

  1. Nano-biocomposites based on synthetic aliphatic polyesters and nanoclay

    CSIR Research Space (South Africa)

    Ojijo, Vincent O

    2014-05-01

    Full Text Available This article gives an overview of the recent developments in the preparation, characterisation, properties, crystallisation behaviour, and melt rheology of clay-containing composites of biodegradable synthetic aliphatic polyesters such as poly...

  2. GREEN SYNTHESIS OF 2-AMINO-3-CYANO-4H-CHROMENES IN WATER USING NANO SILICA-BONDED 5-N-PROPYL-OCTAHYDRO-PYRTMIDO[1,2-4]AZEPINIUM CHLORIDE AS AN EFFECTIVE AND REUSABLE NANO CATALYST

    OpenAIRE

    ROBABEH, BAHARFAR; SHARIATI, SAKINEH ASGHARIAND NARGES

    2015-01-01

    Nano silica-bonded 5-n-propyl-octahydro-pyrimido[1,2-a]azepinium chloride (NSB-DBU) is reported as an highly efficient and recyclable nano catalyst for the preparation of 4H-chromene derivatives in aqueous media. This synthetic method offers a simple, mild and time-saving method under entirely green and environmentally friendly conditions.

  3. High-rate nano-crystalline Li{sub 4}Ti{sub 5}O{sub 12} attached on carbon nano-fibers for hybrid supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Naoi, Katsuhiko; Isobe, Yusaku; Aoyagi, Shintaro [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8558 (Japan); Ishimoto, Shuichi [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8558 (Japan); Nippon Chemi-Con Corporation, 363 Arakawa, Takahagi-shi, Ibaraki 318-8505 (Japan)

    2010-09-15

    A lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12})-based electrode which can operate at unusually high current density (300 C) was developed as negative electrode for hybrid capacitors. The high-rate Li{sub 4}Ti{sub 5}O{sub 12} electrode has a unique nano-structure consisting of unusually small nano-crystalline Li{sub 4}Ti{sub 5}O{sub 12} (ca. 5-20 nm) grafted onto carbon nano-fiber anchors (nc-Li{sub 4}Ti{sub 5}O{sub 12}/CNF). This nano-structured nc-Li{sub 4}Ti{sub 5}O{sub 12}/CNF composite are prepared by simple sol-gel method under ultra-centrifugal force (65,000 N) followed by instantaneous annealing at 900 C for 3 min. A model hybrid capacitor cell consisting of a negative nc-Li{sub 4}Ti{sub 5}O{sub 12}/CNF composite electrode and a positive activated carbon electrode showed high energy density of 40 Wh L{sup -1} and high power density of 7.5 kW L{sup -1} comparable to conventional EDLCs. (author)

  4. A Synthetic Biology Tool Kit for Manned Missions Outside Low Earth Orbit

    Data.gov (United States)

    National Aeronautics and Space Administration — Our goal is to make human missions outside low earth orbit safer and better able to handle the unexpected through the use of synthetic biology as an enabling...

  5. Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations.

    Science.gov (United States)

    Patzke, Greta R; Zhou, Ying; Kontic, Roman; Conrad, Franziska

    2011-01-24

    Oxide nanomaterials are indispensable for nanotechnological innovations, because they combine an infinite variety of structural motifs and properties with manifold morphological features. Given that new oxide materials are almost reported on a daily basis, considerable synthetic and technological work remains to be done to fully exploit this ever increasing family of compounds for innovative nano-applications. This calls for reliable and scalable preparative approaches to oxide nanomaterials and their development remains a challenge for many complex nanostructured oxides. Oxide nanomaterials with special physicochemical features and unusual morphologies are still difficult to access by classic synthetic pathways. The limitless options for creating nano-oxide building blocks open up new technological perspectives with the potential to revolutionize areas ranging from data processing to biocatalysis. Oxide nanotechnology of the 21st century thus needs a strong interplay of preparative creativity, analytical skills, and new ideas for synergistic implementations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Leveraging the Radiation-Resistance and Power Efficiency of Nano-Magnetic Logic to Develop More Affordable, Efficient, and Reliable Space Technologies

    Data.gov (United States)

    National Aeronautics and Space Administration — I am researching nano-magnetic logic (NML) because it has low power consumption, high density of computing and memory elements, CMOS integration capabilities, and...

  7. Low-temperature molten salt synthesis and characterization of CoWO4 nano-particles

    International Nuclear Information System (INIS)

    Song Zuwei; Ma Junfeng; Sun Huyuan; Sun Yong; Fang Jingrui; Liu Zhengsen; Gao Chang; Liu Ye; Zhao Jingang

    2009-01-01

    CoWO 4 nano-particles were successfully synthesized at a low temperature of 270 deg. C by a molten salt method, and effects of such processing parameters as holding time and salt quantity on the crystallization and development of CoWO 4 crystallites were initially studied. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescent spectra techniques (PL), respectively. Experimental results showed that the well-crystallized CoWO 4 nano-particles with ca. 45 nm in diameter could be obtained at 270 deg. C for a holding time of 8 h with 6:1 mass ratio of the salt to CoWO 4 precursor, and XRD analysis evidenced that the as-prepared sample was a pure monoclinic phase of CoWO 4 with wolframite structure. Their PL spectra revealed that the CoWO 4 nano-particles displayed a very strong PL peak at 453 nm with the excitation wavelength of 230 nm, and PL properties of CoWO 4 crystallites relied on their crystalline state, especially on their particle size.

  8. THE EFFECT OF NANO-TITANIA ADDITION ON THE PROPERTIES OF HIGH-ALUMINA LOW-CEMENT SELF-FLOWING REFRACTORY CASTABLES

    Directory of Open Access Journals (Sweden)

    Sasan Otroj

    2011-12-01

    Full Text Available The self-flow characteristics and properties of high-alumina low-cement refractory castables added with nano-titania particles are investigated. For this reason, the reactive alumina in the castable composition is substituted by nano-titania powder in 0-1 %wt. range. The microstructures, phase composition, physical and mechanical properties of these refractory castables at different temperatures are studied. The results show that the addition of nano-titania particles has great effect on the self-flow characteristics, phase composition, physical and mechanical properties of these refractory castables. With increase of nano-titania particles in castable composition, the self-flow value and working time tend to decrease. With addition of 0.5 wt.% nano-titania in the castable composition, the mechanical strength of castable in all firing temperatures tends to increase. It is attributed to the formation of CA6 phase and enhanced ceramic bonding. Nano-titania particles can act as a nucleating agent for hibonite phase and decrease the formation temperature of hibonite. Because of perovskite phase formation, the addition of 1 wt.% nano-titania can decrease the mechanical strength of castable after firing.

  9. Synthesis and Characterization of Si Oxide Coated Nano Ceria by Hydrolysis, and Hydrothermal Treatment at Low Temperature

    Directory of Open Access Journals (Sweden)

    Kong M.

    2017-06-01

    Full Text Available The purpose of this work was to the application of Si oxide coatings. This study deals with the preparation of ceria (CeO2 nanoparticles coating with SiO2 by water glass and hydrolysis reaction. First, the low temperature hydro-reactions were carried out at 30~100°C. Second, Silicon oxide-coated Nano compounds were obtained by the catalyzing synthesis. CeO2 Nano-powders have been successfully synthesized by means of the hydrothermal method, in a low temperature range of 100~200°C. In order to investigate the structure and morphology of the Nano-powders, scanning electron microscopy (SEM and X-ray diffraction (XRD were employed. The XRD results revealed the amorphous nature of silica nanoparticles. To analyze the quantity and properties of the compounds coated with Si oxide, transmission electron microscopy (TEM in conjunction with electron dispersive spectroscopy was used. Finally, it is suggested that the simple growth process is more favorable mechanism than the solution/aggregation process.

  10. Does low surface brightness mean low density?

    NARCIS (Netherlands)

    deBlok, WJG; McGaugh, SS

    1996-01-01

    We compare the dynamical properties of two galaxies at identical positions on the Tully-Fisher relation, but with different surface brightnesses. We find that the low surface brightness galaxy UGC 128 has a higher mass-to-light ratio, and yet has lower mass densities than the high surface brightness

  11. Comparative evaluation of hydroxyapatite and nano-bioglass in two forms of conventional micro- and nano-particles in repairing bone defects (an animal study).

    Science.gov (United States)

    Nosouhian, Saied; Razavi, Mohammad; Jafari-Pozve, Nasim; Rismanchian, Mansour

    2015-01-01

    Many synthetic bone materials have been introduced for repairing bone defects. The aim of this study is to comparatively evaluate the efficacy of nano-hydroxyapatite (HA) and nano-bioglass bone materials with their traditional micro counterparts in repairing bone defects. In this prospective animal study, four healthy dogs were included. First to fourth premolars were extracted in each quadrant and five cavities in each quadrant were created using trephine. Sixteen cavities in each dog were filled by HA, nano-HA, bioglass, and nano-bioglass and four defects were left as the control group. All defects were covered by a nonrestorable membrane. Dogs were sacrificed after 15, 30, 45, and 60 days sequentially. All 20 samples were extracted by trephine #8 with a sufficient amount of surrounding bone. All specimens were investigated under an optical microscope and the percentage of total regenerated bone, lamellar, and woven bone were evaluated. Data analysis was carried out by SPSS Software ver. 15 and Mann-Whitney U-test (α =0.05). After 15 days, the bone formation percentage showed a significant difference between HA and nano-HA and between HA and bioglass (P bone formation after 15 days. Nano-bioglass and bioglass and nano-HA and nano-bioglass groups represented a significant difference and nano-bioglass showed the highest rate of bone formation after 30 days (P = 0.01). After 45 days, the bone formation percentage showed a significant difference between nano-bioglass and bioglass and between nano-HA and nano-bioglass groups (P = 0.01). Nano-HA and nano-bioglass biomaterials showed promising results when compared to conventional micro-particles in the repair of bone defects.

  12. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  13. Topside electron density at low latitudes

    International Nuclear Information System (INIS)

    Ezquer, R.G.; Cabrera, M.A.; Flores, R.F.; Mosert, M.

    2002-01-01

    The validity of IRI to predict the electron density at the topside electron density profile over the low latitude region is checked. The comparison with measurements obtained with the Taiyo satellite during low solar activity shows that, the disagreement between prediction and measurement is lower than 40% for 70% of considered cases. These IRI predictions are better than those obtained in a previous work at the southern peak of the equatorial anomaly for high solar activity. Additional studies for low solar activity, using ionosonde data as input parameters in the model, are needed in order to check if the observed deviations are due to the predicted peak characteristics or to the predicted shape of the topside profile. (author)

  14. A low cost, customizable turbidostat for use in synthetic circuit characterization.

    Science.gov (United States)

    Takahashi, Chris N; Miller, Aaron W; Ekness, Felix; Dunham, Maitreya J; Klavins, Eric

    2015-01-16

    Engineered biological circuits are often disturbed by a variety of environmental factors. In batch culture, where the majority of synthetic circuit characterization occurs, environmental conditions vary as the culture matures. Turbidostats are powerful characterization tools that provide static culture environments; however, they are often expensive, especially when purchased in custom configurations, and are difficult to design and construct in a lab. Here, we present a low cost, open source multiplexed turbidostat that can be manufactured and used with minimal experience in electrical or software engineering. We demonstrate the utility of this system to profile synthetic circuit behavior in S. cerevisiae. We also demonstrate the flexibility of the design by showing that a fluorometer can be easily integrated.

  15. Nano-Sn embedded in expanded graphite as anode for lithium ion batteries with improved low temperature electrochemical performance

    International Nuclear Information System (INIS)

    Yan, Yong; Ben, Liubin; Zhan, Yuanjie; Huang, Xuejie

    2016-01-01

    Highlights: • Nano-Sn embedded in interlayers of expanded graphite is fabricated. • The graphene/nano-Sn/graphene stacked structure promotes cycling stability of Sn. • The Sn/EG shows improved low temperature electrochemical performance. • Chemical diffusion coefficients of the Sn/EG are obtained by GITT. • The Sn/EG exhibits faster Li-ion intercalation kinetics than graphite. - Abstract: Metallic tin (Sn) used as anode material for lithium ion batteries has long been proposed, but its low temperature electrochemical performance has been rarely concerned. Here, a Sn/C composite with nano-Sn embedded in expanded graphite (Sn/EG) is synthesized. The nano-Sn particles (∼30 nm) are uniformly distributed in the interlayers of expanded graphite forming a tightly stacked layered structure. The electrochemical performance of the Sn/EG, particularly at low temperature, is carefully investigated compared with graphite. At -20 °C, the Sn/EG shows capacities of 200 mAh g −1 at 0.1C and 130 mAh g −1 at 0.2C, which is much superior to graphite (<10 mAh g −1 ). EIS measurements suggest that the charge transfer impedance of the Sn/EG increases less rapidly than graphite with decreasing temperatures, which is responsible for the improved low temperature electrochemical performance. The Li-ion chemical diffusion coefficients of the Sn/EG obtained by GITT are an order of magnitude higher at room temperature than that at -20 °C. Furthermore, the Sn/EG exhibits faster Li-ion intercalation kinetics than graphite in the asymmetric charge/discharge measurements, which shows great promise for the application in electric vehicles charged at low temperature.

  16. Nano-cellulose derived bioplastic biomaterial data for vehicle bio-bumper from banana peel waste biomass.

    Science.gov (United States)

    Sharif Hossain, A B M; Ibrahim, Nasir A; AlEissa, Mohammed Saad

    2016-09-01

    The innovative study was carried out to produce nano-cellulose based bioplastic biomaterials for vehicle use coming after bioprocess technology. The data show that nano-cellulose particle size was 20 nm and negligible water absorption was 0.03% in the bioplastic. Moreover, burning test, size and shape characterizations, spray coating dye, energy test and firmness of bioplastic have been explored and compared with the standardization of synthetic vehicle plastic bumper following the American Society for Testing and Materials (ASTM). Tensile test was observed 120 MPa/kg m(3). In addition to that pH and cellulose content were found positive in the bioplastic compared to the synthetic plastic. Chemical tests like K, CO3, Cl2, Na were determined and shown positive results compared to the synthetic plastic using the EN-14214 (European Norm) standardization.

  17. Development of Standards for NanoSIMS Analyses of Biological Materials

    Energy Technology Data Exchange (ETDEWEB)

    Davission, M L; Weber, P K; Pett-Ridge, J; Singer, S

    2008-07-31

    NanoSIMS is a powerful analytical technique for investigating element distributions at the nanometer scale, but quantifying elemental abundances requires appropriate standards, which are not readily available for biological materials. Standards for trace element analyses have been extensively developed for secondary ion mass spectrometry (SIMS) in the semiconductor industry and in the geological sciences. The three primary approaches for generating standards for SIMS are: (1) ion implantation (2) using previously characterized natural materials, and (3) preparing synthetic substances. Ion implantation is a reliable method for generating trace element standards, but it is expensive, which limits investigation of the analytical issues discussed above. It also requires low background levels of the elements of interest. Finding or making standard materials has the potential to provide more flexibility than ion implantation, but realizing homogeneity at the nano-scale is in itself a significant challenge. In this study, we experiment with all three approaches, but with an emphasis toward synthetic organic polymers in order to reduce costs, increase flexibility, and achieve a wide dynamic concentration range. This emphasis serves to meet the major challenge for biological samples of identifying matrix matched, homogeneous material. Biological samples themselves are typically heterogeneous at the scale of microns to 100s of microns, and therefore they are poor SIMS standards. Therefore, we focused on identifying 'biological-like' materials--either natural or synthetic--that can be used for standards. The primary criterion is that the material be as compositionally similar to biological samples as possible (primarily C, H, O, and N). For natural material we adsorbed organic colloids consisting of peptidoglycan (i.e., amino sugars), activated charcoal, and humic acids. Experiments conducted with Si on peptidoglycan showed low affinity as SiO{sub 2}, yet its

  18. The nano-BIon in nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Nano Research Center of the Ferdowsi University, Mashhad (Iran, Islamic Republic of); Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of)

    2016-04-01

    Recently, some authors have considered the superconductivity in nano-cubes and shown that by decreasing the size of these systems, superconductivity order parameter increases. In this research, we show that the same result can be obtained in a nano-BIon which is a configuration of two layers of cuprates connected by an electronic tube. This tube is a channel for transporting energy and matter inside a superconductor and acts as a wormhole in this system. This wormhole-like-tube is formed by decreasing the separation distance between layers of nano-cuprate and enhancing the cooper hopping pairing between layers. We estimate the critical temperature of superconductor and find that it depends on the size of nano-BIon and coupling between atoms in a layer. Also, we observe that external magnetic field generates a new tube which causes losing the energy density of nano-BIon between two layers and decreasing critical temperature of superconductor.

  19. Improvement of mechanical and thermal properties of high energy electron beam irradiated HDPE/hydroxyapatite nano-composite

    Science.gov (United States)

    Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M.

    2017-01-01

    In this research work, the nano-composites of high density polyethylene/hydroxyapatite samples were manufactured via two methods: In the first method, the granules of high density polyethylene and nano-structure hydroxyapatite were processed in an internal mixer to prepare the nano-composite samples with a different weight percentage of the reinforcement phase. As for the second one, high density polyethylene was prepared in nano-powder form in boiling xylene. During this procedure, the hydroxyapatite nano-powder was added with different weight percentages to the solvent to obtain the nano-composite. In both of the procedures, the used hydroxyapatite nano-powder was synthesized via hydrolysis methods. The samples were irradiated under 10 MeV electron beam in 70-200 kGy of doses. Mechanical, thermal and morphological properties of the samples were investigated and compared. The results demonstrate that the nano-composites which we have prepared using nano-polyethylene, show better mechanical and thermal properties than the composites prepared from normal polyethylene granules, due to the better dispersion of nano-particles in the polymer matrix.

  20. YSAR: a compact low-cost synthetic aperture radar

    Science.gov (United States)

    Thompson, Douglas G.; Arnold, David V.; Long, David G.; Miner, Gayle F.; Karlinsey, Thomas W.; Robertson, Adam E.

    1997-09-01

    The Brigham Young University Synthetic Aperture Radar (YSAR) is a compact, inexpensive SAR system which can be flown on a small aircraft. The system has exhibited a resolution of approximately 0.8 m by 0.8 m in test flights in calm conditions. YSAR has been used to collect data over archeological sites in Israel. Using a relatively low frequency (2.1 GHz), we hope to be able to identify walls or other archeological features to assist in excavation. A large data set of radar and photographic data have been collected over sites at Tel Safi, Qumran, Tel Micnah, and the Zippori National Forest in Israel. We show sample images from the archeological data. We are currently working on improved autofocus algorithms for this data and are developing a small, low-cost interferometric SAR system (YINSAR) for operation from a small aircraft.

  1. Blending of Low-Density Polyethylene and Poly-Lactic Acid with Maleic Anhydride as A Compatibilizer for Better Environmentally Food-Packaging Material

    Science.gov (United States)

    Setiawan, A. H.; Aulia, F.

    2017-05-01

    The common conventional food packaging materialsare using a thin layer plastic or film, which is made of a synthetic polymer, such as Low-Density Poly Ethylene (LDPE). However, the use of these polymers hasan adverse impact on the environment, because the synthetic polymersare difficult to degrade naturally. Poly-Lactic Acid (PLA) is a biodegradable polymer that can be substituted to synthetic polymers. Since LDPE and PLA have a difference in polarity, therefore the first step of research is to graft them with maleic anhydride (MAH) for increasing the properties of its miscibility. The interaction between them is confirmed by FTIR; whereas the environment issueis characterized by the water adsorption and biodegradability. The FTIR spectra indicated that there had been an interaction between LDPE and MAH and LDPE/LDPE-g-MAH/PLA blend. Increasing PLA content in the blend affected to the increasing in their water absorption and biodegradable. Poly-blend with 20% PLA content was the optimum composition for environmentally food packaging.

  2. Fabrication of low adhesive superhydrophobic surfaces using nano Cu/Al2O3 Ni–Cr composited electro-brush plating

    International Nuclear Information System (INIS)

    Chen, Tianchi; Ge, Shirong; Liu, Hongtao; Sun, Qinghe; Zhu, Wei; Yan, Wei; Qi, Jianwei

    2015-01-01

    Highlights: • We fabricate a low adhesive superhydrophobic nano Cu/Al 2 O 3 composited Ni–Cr coating via brush plating. • We investigate the influence of process parameters on hydrophobic properties process. • We discuss the formation mechanism of structures on the surface and using water rebound height to explain the low adhesive force mechanism. - Abstract: Superhydrophobic nano Cu/Al 2 O 3 Ni–Cr composited coating with a low adhesive force was deposited onto the Q345 carbon steel via electro-brush plating. Surface morphologies of nano Cu/Al 2 O 3 Ni–Cr composited coating were investigated by scanning electron microscope (SEM). Chemical compositions were characterized by energy dispersive spectroscopy (EDS). First of all, by adjusting different process parameters such as working voltage, relative velocity, Cu particles concentration and plating time, we obtain the most optimal parameters: working voltage is 15 V, relative velocity is 4.8 m/min, Cu particles concentration is 5 g/L and plating time is 60 s. Under the best process parameters, the water contact angle reaches to 156° and a sliding angle is less than 2° on the nano Cu/Al 2 O 3 Ni–Cr coating. Then the mechanism of the superhydrophobic and low adhesion characteristic of this surface were explained by Cassie's model. Low adhesive force can be characterized by max rebound height of water droplet. As a result, to achieve low adhesive surface it is necessary to decrease the fraction of the solid/liquid interface under the water droplet. Finally the coating was proved to have an excellent self-cleaning performance.

  3. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Saba, N., E-mail: naheedchem@gmail.com [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Paridah, M.T. [Laboratory of Biocomposite Technology, Institute of Tropical Forestry and Forest Products(INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Abdan, K. [Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang Selangor (Malaysia); Ibrahim, N.A. [Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2016-12-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  4. Physical, structural and thermomechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites

    International Nuclear Information System (INIS)

    Saba, N.; Paridah, M.T.; Abdan, K.; Ibrahim, N.A.

    2016-01-01

    The present research study deals with the fabrication of kenaf/epoxy hybrid nanocomposites by the incorporation of oil palm nano filler, montmorillonite (MMT) and organically modified montmorillonite (OMMT) at 3% loading, through hand lay-up technique. Effect of adding different nano fillers on the physical (density), structural [X-ray diffraction (XRD)] and thermomechanical analysis (TMA) of kenaf/epoxy composites were carried out. Density results revealed that the incorporation of nano filler in the kenaf/epoxy composites increases the density which in turn increases the hardness of the hybrid nanocomposites. XRD analysis confirmed the presence of nano fillers in the structure of their respective fabricated hybrid nanocomposites. All hybrid nanocomposites displayed lower coefficient of thermal expansion (CTE) with respect to kenaf/epoxy composites. Overall results predicted that the properties improvement in nano OPEFB/kenaf/epoxy was quite comparable to MMT/kenaf/epoxy but relatively lesser to OMMT/kenaf/epoxy hybrid nanocomposites and higher with respect to kenaf/epoxy composites. The improvement ascribed due to improved interfacial bonding or cross linking between kenaf fibers and epoxy matrix by addition of nano filler. - Highlights: • Nano OPEFB/kenaf/epoxy hybrid nanocomposites were fabricated by hand lay-up. • Effect of nano OPEFB on density & structure of kenaf/epoxy were investigated. • Thermal expansion coefficients of kenaf/epoxy and hybrid nanocomposites evaluated. • Comparative studies were made with MMT and OMMT kenaf/epoxy hybrid nanocomposites.

  5. The manufacture of synthetic non-sintered and degradable bone grafting substitutes.

    Science.gov (United States)

    Gerike, W; Bienengräber, V; Henkel, K-O; Bayerlein, T; Proff, P; Gedrange, T; Gerber, Th

    2006-02-01

    A new synthetic bone grafting substitute (NanoBone, ARTOSS GmbH, Germany) is presented. This is produced by a new technique, the sol-gel-method. This bone grafting substitute consists of nanocrystalline hydroxyapatite (HA) and nanostructured silica (SiO2). By achieving a highly porous structure good osteoconductivity can be seen. In addition, the material will be completely biodegraded and new own bone is formed. It has been demonstrated that NanoBone is biodegraded by osteoclasts in a manner comparable to the natural bone remodelling process.

  6. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    Science.gov (United States)

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Effects of Processing Temperatures of Nickel Plating on Capacitance Density of Alumina Film Capacitor.

    Science.gov (United States)

    Jeong, Myung-Sun; Ju, Byeong-Kwon; Lee, Jeon-Kook

    2015-06-01

    We observed the effects of nickel plating temperatures for controlling the surface morphologies of the deposited nickel layers on the alumina nano-pores. The alumina nano-channels were filled with nickel at various processing temperatures of 60-90 degrees C. The electrical properties of the alumina film capacitors were changed with processing temperatures. The electroless nickel plating (ENP) at 60 degrees C improved the nickel penetration into the alumina nano-channels due to the reduced reaction rate. Nickel layers are uniformly formed on the high aspect ratio alumina pores. Due to the uniform nickel electrode, the capacitance density of the alumina film capacitors is improved by the low leakage current, dissipation factor and equivalent series resistance. Alumina film capacitors made by ENP at 60 degrees C had a high capacitance density of 160 nF/cm2.

  8. Selective and lithography-independent fabrication of 20 nm nano-gap electrodes and nano-channels for nanoelectrofluidics applications

    International Nuclear Information System (INIS)

    Zhang, J Y; Wang, X F; Wang, X D; Fan, Z C; Li, Y; Ji, An; Yang, F H

    2010-01-01

    A new method has been developed to selectively fabricate nano-gap electrodes and nano-channels by conventional lithography. Based on a sacrificial spacer process, we have successfully obtained sub-100-nm nano-gap electrodes and nano-channels and further reduced the dimensions to 20 nm by shrinking the sacrificial spacer size. Our method shows good selectivity between nano-gap electrodes and nano-channels due to different sacrificial spacer etch conditions. There is no length limit for the nano-gap electrode and the nano-channel. The method reported in this paper also allows for wafer scale fabrication, high throughput, low cost, and good compatibility with modern semiconductor technology.

  9. Preparation and characterization of bipolar membranes modified by photocatalyst nano-ZnO and nano-CeO2

    International Nuclear Information System (INIS)

    Zhou Tingjin; Hu Yanyu; Chen Riyao; Zheng Xi; Chen Xiao; Chen Zhen; Zhong Jieqiong

    2012-01-01

    Nano-ZnO-CeO 2 coupled semiconductor was added into the chitosan (CS) anion exchange membrane layer to prepare the PVA-CMC/nano-ZnO-CeO 2 -CS (here, PVA: polyvinyl alcohol; CMC: carboxymethyl cellulose) bipolar membrane (BPM), and the prepared BPM was characterized by SEM, J-V characteristics, electronic universal testing machine, contact angle measurement and so on. Experimental results showed that nano-ZnO-CeO 2 exhibited better photocatalytic property for water splitting at the interlayer of BPM than nano-ZnO or nano-CeO 2 , which could greatly reduce the membrane impedance of the BPM. Under the irradiation of high-pressure mercury lamps, the cell voltage of PVA-CMC/nano-ZnO-CeO 2 -CS BPM decreased by 0.7 V at the current density of 60 mA/cm 2 , and the cell voltages of PVA-CMC/nano-ZnO-CS BPM and PVA-CMC/nano-CeO 2 -CS BPM were only reduced by 0.3 V and 0.5 V, respectively. Furthermore, the hydrophilicity, and mechanical properties of the modified BPM were increased.

  10. Probing topological relations between high-density and low-density regions of 2MASS with hexagon cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yongfeng [American Physical Society, San Diego, CA (United States); Xiao, Weike, E-mail: yongfeng.wu@maine.edu [Department of Astronautics Engineering, Harbin Institute of Technology, P.O. Box 345, Heilongjiang Province 150001 (China)

    2014-02-01

    We introduced a new two-dimensional (2D) hexagon technique for probing the topological structure of the universe in which we mapped regions of the sky with high and low galaxy densities onto a 2D lattice of hexagonal unit cells. We defined filled cells as corresponding to high-density regions and empty cells as corresponding to low-density regions. The numbers of filled cells and empty cells were kept the same by controlling the size of the cells. By analyzing the six sides of each hexagon, we could obtain and compare the statistical topological properties of high-density and low-density regions of the universe in order to have a better understanding of the evolution of the universe. We applied this hexagonal method to Two Micron All Sky Survey data and discovered significant topological differences between the high-density and low-density regions. Both regions had significant (>5σ) topological shifts from both the binomial distribution and the random distribution.

  11. Facile synthesis and photoluminescence spectroscopy of 3D-triangular GaN nano prism islands.

    Science.gov (United States)

    Kumar, Mukesh; Pasha, S K; Shibin Krishna, T C; Singh, Avanish Pratap; Kumar, Pawan; Gupta, Bipin Kumar; Gupta, Govind

    2014-08-21

    We report a strategy for fabrication of 3D triangular GaN nano prism islands (TGNPI) grown on Ga/Si(553) substrate at low temperature by N2(+) ions implantation using a sputtering gun technique. The annealing of Ga/Si(553) (600 °C) followed by nitridation (2 keV) shows the formation of high quality GaN TGNPI cross-section. TGNPI morphology has been confirmed by atomic force microscopy. Furthermore, these nano prism islands exhibit prominent ultra-violet luminescence peaking at 366 nm upon 325 nm excitation wavelength along with a low intensity yellow luminescence broad peak at 545 nm which characterizes low defects density TGNPI. Furthermore, the time-resolved spectroscopy of luminescent TGNPI in nanoseconds holds promise for its futuristic application in next generation UV-based sensors as well as many portable optoelectronic devices.

  12. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    Science.gov (United States)

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively.

  13. Design Optimization of Radionuclide Nano-Scale Batteries

    International Nuclear Information System (INIS)

    Schoenfeld, D.W.; Tulenko, J.S.; Wang, J.; Smith, B.

    2004-01-01

    Radioisotopes have been used for power sources in heart pacemakers and space applications dating back to the 50's. Two key properties of radioisotope power sources are high energy density and long half-life compared to chemical batteries. The tritium battery used in heart pacemakers exceeds 500 mW--hr, and is being evaluated by the University of Florida for feasibility as a MEMS (MicroElectroMechanical Systems) power source. Conversion of radioisotope sources into electrical power within the constraints of nano-scale dimensions requires cutting-edge technologies and novel approaches. Some advances evolving in the III-V and II-IV semiconductor families have led to a broader consideration of radioisotopes rather free of radiation damage limitations. Their properties can lead to novel battery configurations designed to convert externally located emissions from a highly radioactive environment. This paper presents results for the analytical computational assisted design and modeling of semiconductor prototype nano-scale radioisotope nuclear batteries from MCNP and EGS programs. The analysis evaluated proposed designs and was used to guide the selection of appropriate geometries, material properties, and specific activities to attain power requirements for the MEMS batteries. Plans utilizing high specific activity radioisotopes were assessed in the investigation of designs employing multiple conversion cells and graded junctions with varying band gap properties. Voltage increases sought by serial combination of VOC s are proposed to overcome some of the limitations of a low power density. The power density is directly dependent on the total active areas

  14. The use of low density high accuracy (LDHA) data for correction of high density low accuracy (HDLA) point cloud

    Science.gov (United States)

    Rak, Michal Bartosz; Wozniak, Adam; Mayer, J. R. R.

    2016-06-01

    Coordinate measuring techniques rely on computer processing of coordinate values of points gathered from physical surfaces using contact or non-contact methods. Contact measurements are characterized by low density and high accuracy. On the other hand optical methods gather high density data of the whole object in a short time but with accuracy at least one order of magnitude lower than for contact measurements. Thus the drawback of contact methods is low density of data, while for non-contact methods it is low accuracy. In this paper a method for fusion of data from two measurements of fundamentally different nature: high density low accuracy (HDLA) and low density high accuracy (LDHA) is presented to overcome the limitations of both measuring methods. In the proposed method the concept of virtual markers is used to find a representation of pairs of corresponding characteristic points in both sets of data. In each pair the coordinates of the point from contact measurements is treated as a reference for the corresponding point from non-contact measurement. Transformation enabling displacement of characteristic points from optical measurement to their match from contact measurements is determined and applied to the whole point cloud. The efficiency of the proposed algorithm was evaluated by comparison with data from a coordinate measuring machine (CMM). Three surfaces were used for this evaluation: plane, turbine blade and engine cover. For the planar surface the achieved improvement was of around 200 μm. Similar results were obtained for the turbine blade but for the engine cover the improvement was smaller. For both freeform surfaces the improvement was higher for raw data than for data after creation of mesh of triangles.

  15. Synthesis of Metal Polymer Nano composites Using Ionizing Radiation

    International Nuclear Information System (INIS)

    Mostafa, R.S.S.

    2012-01-01

    we prepared a series of CdS/PVA and Ag/PVA nano composites via facile and novel synthetic steps. Our synthetic route is simpler; it does not need expensive oxidizing agents, surfactants, templates and complicated apparatus. The present work contains five chapters in addition to the list of figures, tables, abbreviations and references. The first two chapters are concerned with the introduction and reviews of previous studies. Chapter 3 describes the preparation methodology, experimental setup and techniques used in the CdS/PVA and Ag/PVA nano composites processing and analysis. CdS and Ag nanoparticles with different particle sizes were prepared via chemical method and gamma irradiation method. Several techniques were used to detect the structural changes of the nano composites due to interaction between CdS or Ag ions and PVA. These are: UV-Visible spectrophotometer, Transmission Electron microscope (TEM), X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) Spectrophotometer, and thermogravimetric analysis. Chapter 4 includes the obtained results and their discussions: Ultraviolet/Visible spectroscopy (UV/VIS) investigated that the as-prepared nano composites have improved optical properties. Such incremented optical properties were attributed to the nano scale dispersion (nm). The improvement in the optical properties is considered to be dependent on, Cd 2+ :S 2- molar ratio, Ag concentration, Pva content and irradiation dose. The calculated band gap energies for CdS/PVA nano composites are higher than that of bulk of CdS indicating the strong quantum confinement. The increases in band gap energy have been attributed to the crystalline size dependent properties. Transmission electron microscope images illustrated that the nano structured CdS/PVA films were found to be dispersed spherical nanoparticles with good structural homogeneity and polydispersity at either lower concentration of CdCl 2 and/or irradiation dose. Nano rod structure of CdS accompanied

  16. Time-dependent analysis of visible helium line-ratios for electron temperature and density diagnostic using synthetic simulations on NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Muñoz Burgos, J. M., E-mail: jmunozbu@pppl.gov; Stutman, D.; Tritz, K. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Barbui, T.; Schmitz, O. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2016-11-15

    Helium line-ratios for electron temperature (T{sub e}) and density (n{sub e}) plasma diagnostic in the Scrape-Off-Layer (SOL) and edge regions of tokamaks are widely used. Due to their intensities and proximity of wavelengths, the singlet, 667.8 and 728.1 nm, and triplet, 706.5 nm, visible lines have been typically preferred. Time-dependency of the triplet line (706.5 nm) has been previously analyzed in detail by including transient effects on line-ratios during gas-puff diagnostic applications. In this work, several line-ratio combinations within each of the two spin systems are analyzed with the purpose of eliminating transient effects to extend the application of this powerful diagnostic to high temporal resolution characterization of plasmas. The analysis is done using synthetic emission modeling and diagnostic for low electron density NSTX SOL plasma conditions by several visible lines. Quasi-static equilibrium and time-dependent models are employed to evaluate transient effects of the atomic population levels that may affect the derived electron temperatures and densities as the helium gas-puff penetrates the plasma. The analysis of a wider range of spectral lines will help to extend this powerful diagnostic to experiments where the wavelength range of the measured spectra may be constrained either by limitations of the spectrometer or by other conflicting lines from different ions.

  17. Bilateral anterior thalamic low densities in descending transtentorial herniation

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, Chikao; Watanabe, Takao

    1985-02-01

    Round, well-demarcated, symmetrical low densities in a bilateral thalamus in a case of descending transtentorial herniation due secondarily to acute traumatic left subdural hematoma are reported. An 8-year-old boy, on whom emergency surgery was refused by his parents, showed a marked shift due to the hematoma on admission; this was followed by a low density in the left PCA territory and round, equivocal hypodensities in the anterior thalamus 44 hours post-trauma. The equivocal hypodensities became definite, well-demarcated, round low densities situated symmetrically in the anterior thalamus on the 39th day post-trauma. Akinetic mutism was noted at this time. The symmetrical low densities and the PCA-territory low density persisted as late as the 39th day post-trauma, suggesting infarcts. The downward stretch of the bilateral thalamoperforators, which was effected by a narrowing of the interpeduncular fossa with an approximation of the bilateral perforators, plus a downward shift of the PCA due to descending transtentorial herniation, was assumed to be the mechanism involved. (author).

  18. Electrodeposition of ZnO nano-wires lattices with a controlled morphology

    International Nuclear Information System (INIS)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C.

    2006-01-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO 2 . Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  19. Interfacial Properties of Bamboo Fiber-Reinforced High-Density Polyethylene Composites by Different Methods for Adding Nano Calcium Carbonate

    Directory of Open Access Journals (Sweden)

    Cuicui Wang

    2017-11-01

    Full Text Available The focus of this study was to observe the effect of nano calcium carbonate (CaCO3 modification methods on bamboo fiber (BF used in BF-reinforced high-density polyethylene (HDPE composites manufactured by extrusion molding. Two methods were used to introduce the nano CaCO3 into the BF for modification; the first was blending modification (BM and the second was impregnation modification (IM. In order to determine the effects of the modification methods, the water absorption, surface free energy and interfacial properties of the unmodified composites were compared to those of the composites made from the two modification methods. The results revealed that the percentage increase in the weight of the composite treated by nano CaCO3 decreased and that of the IMBF/HDPE composite was the lowest over the seven months of time. The results obtained by the acid-base model according to the Lewis and Owens-Wendt- Rabel-Kaelble (OWRK equations indicated that the surface energy of the composites was between 40 and 50 mJ/m2. When compared to the control sample, the maximum storage modulus (E′max of the BMBF/HDPE and IMBF/HDPE composites increased 1.43- and 1.53-fold, respectively. The values of the phase-to-phase interaction parameter B and the k value of the modified composites were higher than those of the unmodified composites, while the apparent activation energy Ea and interface parameter A were lower in the modified composites. It can be concluded that nano CaCO3 had an effect on the interfacial properties of BF-reinforced HDPE composites, and the interface bonding between IMBF and HDPE was greatest among the composites.

  20. Gamma irradiation effects in low density polyethylene

    International Nuclear Information System (INIS)

    Ono, Lilian S.; Scagliusi, Sandra R.; Cardoso, Elisabeth E.L.; Lugao, Ademar B.

    2011-01-01

    Low density polyethylene (LDPE) is obtained from ethylene gas polymerization, being one of the most commercialized polymers due to its versatility and low cost. It's a semi-crystalline polymer, usually inactive at room temperature, capable to attain temperatures within a 80 deg C - 100 deg C range, without changing its physical-chemical properties. LDPE has more resistance when compared to its equivalent High Density Polyethylene (HDPE). LDPE most common applications consist in manufacturing of laboratory materials, general containers, pipes, plastic bags, etc. Gamma radiation is used on polymers in order to modify mechanical and physical-chemical features according to utility purposes. This work aims to the study of gamma (γ) radiation interaction with low density polyethylene to evaluate changes in its physical-chemical properties. Polymer samples were exposed to 5, 10, 15, 20 and 30kGy doses, at room temperature. Samples characterization employed Thermal Analysis, Melt Flow Index, Infrared Spectroscopy and Swelling tests. (author)

  1. Concurrent doping effect of Ti and nano-diamond on flux pinning of MgB2

    International Nuclear Information System (INIS)

    Zhao, Y.; Ke, C.; Cheng, C.H.; Feng, Y.; Yang, Y.; Munroe, P.

    2010-01-01

    Nano-diamond and titanium concurrently doped MgB 2 nanocomposites have been prepared by solid state reaction method. The effects of carbon and Ti concurrent doping on J c -H behavior and pinning force scaling features of MgB 2 have been investigated. Although T c was slightly depressed, J c of MgB 2 have been significantly improved by the nano-diamond doping, especially in the high field region. In the mean time, the J c value in low field region is sustained though concurrent Ti doping. Microstructure analysis reveals that when nano-diamond was concurrently doped with titanium in MgB 2 , a unique nanocomposite in which TiB 2 forms a thin layer surrounding MgB 2 grains whereas nano-diamond particles were wrapped inside the MgB 2 grains. Besides, nano-diamond doping results in a high density stress field in the MgB 2 samples, which may take responsibility for the Δκ pinning behavior in the carbon-doped MgB 2 system.

  2. Metabolism of cholesteryl esters of rat very low density lipoproteins.

    Science.gov (United States)

    Faergeman, O; Havel, R J

    1975-06-01

    Rat very low density lipoproteins (d smaller than 1.006), biologically labeled in esterified and free cholesterol, were obtained form serum 6 h after intravenous injection of particulate (3-H) cholesterol. When injected into recipient animals, the esterified cholesterol was cleared form plasma with a half-life of 5 min. After 15 min, 71% of the injected esterified (3-H) cholesterol had been taken up by the liver, where it was rapidly hydrolyzed. After 60 min only 3.3% of the amount injected had been transferred, via lipoproteins of intermediate density, to the low density lipoproteins of plasma (d 1.019-1.063). Both uptake in the liver and transfer to low density lipoproteins occurred without change of distribution of 3-H in the various cholesteryl esters. 3-H appearing in esterified cholesterol of high density lipoproteins (d greater than 1.063) was derived from esterification, presumably by lecithin: cholesterol acyltransferase, of simultaneously injected free (3-H) cholesterol. Content of free (3-H) cholesterol in the very low density lipoproteins used for injection could be reduced substantially by incubation with erythrocytes. This procedure, however, increased the rate of clearance of the lipoproteins after injection into recipient rats. These studies show that hepatic removal is the major catabolic pathway for cholesteryl esters of rat very low density lipoproteins and that transfer to low density lipoproteins occurs to only a minor extent.

  3. Metal Oxide Nano structures: Synthesis, Properties, and Applications

    International Nuclear Information System (INIS)

    Xu, L. H.; Patil, D. S.; Yang, J.; Xiao, J.

    2015-01-01

    In recent years, nano structured materials have attracted wide attention due to their fascinating optical and electrical properties, which make these materials potentially suitable for applications in electronics, optics, photonics, and sensors. Some metal oxides show a wide variety of morphologies such as nano wires, nano rods, nano tubes, nano rings, and nano belts. Synthesis and investigation of these metal-oxide nano structures are beneficial not only for understanding the fundamental phenomena in low dimensional systems, but also for developing new-generation nano devices with high performance.

  4. A SEARCH FOR OXYGEN IN THE LOW-DENSITY Lyα FOREST USING THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Pieri, Matthew M.; Frank, Stephan; Mathur, Smita; Weinberg, David H.; York, Donald G.; Oppenheimer, Benjamin D.

    2010-01-01

    We use 2167 Sloan Digital Sky Survey quasar spectra to search for low-density oxygen in the intergalactic medium (IGM). Oxygen absorption is detected on a pixel-by-pixel basis by its correlation with Lyα forest absorption. We have developed a novel locally calibrated pixel (LCP) search method that uses adjacent regions of the spectrum to calibrate interlopers and spectral artifacts, which would otherwise limit the measurement of O VI absorption. Despite the challenges presented by searching for weak O VI within the Lyα forest in spectra of moderate resolution and signal-to-noise, we find a highly significant detection of absorption by oxygen at 2.7 2 = 80 for nine data points). We interpret our results using synthetic spectra generated from a log-normal density field assuming a mixed quasar-galaxy photoionizing background and that it dominates the ionization fraction of detected O VI. The LCP search data can be fit by a constant metallicity model with [O/H] = -2.15 +0.07 -0.09 but also by models in which low-density regions are unenriched and higher density regions have a higher metallicity. The density-dependent enrichment model by Aguirre et al. is also an acceptable fit. All our successful models have similar mass-weighted oxygen abundance, corresponding to [(O/H) MW ] = -2.45 ± 0.06. This result can be used to find the cosmic oxygen density in the Lyα forest, Ω Oxy,IGM = 1.4(±0.2) x 10 -6 ∼ 3 x 10 -4 Ω b . This is the tightest constraint on the mass-weighted mean oxygen abundance and the cosmic oxygen density in the Lyα forest to date and indicates that it contains ∼16% of the total expected metal production by star formation up to z = 3.

  5. Flame Retardant Effect of Nano Fillers on Polydimethylsiloxane Composites.

    Science.gov (United States)

    Jagdale, Pravin; Salimpour, Samera; Islam, Md Hujjatul; Cuttica, Fabio; Hernandez, Francisco C Robles; Tagliaferro, Alberto; Frache, Alberto

    2018-02-01

    Polydimethylsiloxane has exceptional fire retardancy characteristics, which make it a popular polymer in flame retardancy applications. Flame retardancy of polydimethylsiloxane with different nano fillers was studied. Polydimethylsiloxane composite fire property varies because of the shape, size, density, and chemical nature of nano fillers. In house made carbon and bismuth oxide nano fillers were used in polydimethylsiloxane composite. Carbon from biochar (carbonised bamboo) and a carbon by-product (carbon soot) were selected. For comparative study of nano fillers, standard commercial multiwall carbon nano tubes (functionalised, graphitised and pristine) as nano fillers were selected. Nano fillers in polydimethylsiloxane positively affects their fire retardant properties such as total smoke release, peak heat release rate, and time to ignition. Charring and surface ceramization are the main reasons for such improvement. Nano fillers in polydimethylsiloxane may affect the thermal mobility of polymer chains, which can directly affect the time to ignition. The study concludes that the addition of pristine multiwall carbon nano tubes and bismuth oxide nano particles as filler in polydimethylsiloxane composite improves the fire retardant property.

  6. Chip-package nano-structured copper and nickel interconnections with metallic and polymeric bonding interfaces

    Science.gov (United States)

    Aggarwal, Ankur

    With the semiconductor industry racing toward a historic transition, nano chips with less than 45 nm features demand I/Os in excess of 20,000 that support computing speed in terabits per second, with multi-core processors aggregately providing highest bandwidth at lowest power. On the other hand, emerging mixed signal systems are driving the need for 3D packaging with embedded active components and ultra-short interconnections. Decreasing I/O pitch together with low cost, high electrical performance and high reliability are the key technological challenges identified by the 2005 International Technology Roadmap for Semiconductors (ITRS). Being able to provide several fold increase in the chip-to-package vertical interconnect density is essential for garnering the true benefits of nanotechnology that will utilize nano-scale devices. Electrical interconnections are multi-functional materials that must also be able to withstand complex, sustained and cyclic thermo-mechanical loads. In addition, the materials must be environmentally-friendly, corrosion resistant, thermally stable over a long time, and resistant to electro-migration. A major challenge is also to develop economic processes that can be integrated into back end of the wafer foundry, i.e. with wafer level packaging. Device-to-system board interconnections are typically accomplished today with either wire bonding or solders. Both of these are incremental and run into either electrical or mechanical barriers as they are extended to higher density of interconnections. Downscaling traditional solder bump interconnect will not satisfy the thermo-mechanical reliability requirements at very fine pitches of the order of 30 microns and less. Alternate interconnection approaches such as compliant interconnects typically require lengthy connections and are therefore limited in terms of electrical properties, although expected to meet the mechanical requirements. A novel chip-package interconnection technology is

  7. Advanced Nano hybrid Materials: Surface Modification and Applications

    International Nuclear Information System (INIS)

    Liu, L.H.; Metivier, R.; Wang, Sh.; Wang, Sh.; Hui Wang

    2012-01-01

    The field of functional nano scale hybrid materials is one of the most promising and rapidly emerging research areas in materials chemistry. Nano scale hybrid materials can be broadly defined as synthetic materials with organic and inorganic components that are linked together by noncovalent bonds (Class I, linked by hydrogen bond, electrostatic force, or van der Waals force) or covalent bonds (Class II) at nanometer scale. The unlimited possible combinations of the distinct properties of inorganic, organic, or even bioactive components in a single material, either in molecular or nano scale dimensions, have attracted considerable attention. This approach provides an opportunity to create a vast number of novel advanced materials with well-controlled structures and multiple functions. The unique properties of advanced hybrid nano materials can be advantageous to many fields, such as optical and electronic materials, biomaterials, catalysis, sensing, coating, and energy storage. In this special issue, the breadth of papers shows that the hybrid materials is attracting attention, because of both growing fundamental interest, and a route to new materials. Two review articles and seven research papers that report new results of hybrid materials should gather widespread interest.

  8. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    International Nuclear Information System (INIS)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-01-01

    A recent low gas-fill density (0.6 mg/cc 4 He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4 He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth

  9. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Science.gov (United States)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S.

    2015-04-01

    A recent low gas-fill density (0.6 mg/cc 4He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc 4He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  10. High-density carbon ablator ignition path with low-density gas-filled rugby hohlraum

    Energy Technology Data Exchange (ETDEWEB)

    Amendt, Peter; Ho, Darwin D.; Jones, Ogden S. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2015-04-15

    A recent low gas-fill density (0.6 mg/cc {sup 4}He) cylindrical hohlraum experiment on the National Ignition Facility has shown high laser-coupling efficiency (>96%), reduced phenomenological laser drive corrections, and improved high-density carbon capsule implosion symmetry [Jones et al., Bull. Am. Phys. Soc. 59(15), 66 (2014)]. In this Letter, an ignition design using a large rugby-shaped hohlraum [Amendt et al., Phys. Plasmas 21, 112703 (2014)] for high energetics efficiency and symmetry control with the same low gas-fill density (0.6 mg/cc {sup 4}He) is developed as a potentially robust platform for demonstrating thermonuclear burn. The companion high-density carbon capsule for this hohlraum design is driven by an adiabat-shaped [Betti et al., Phys. Plasmas 9, 2277 (2002)] 4-shock drive profile for robust high gain (>10) 1-D ignition performance and large margin to 2-D perturbation growth.

  11. Tailor-made nano-structured materials for perpendicular recording media and head-precise control of direct/indirect exchange coupling

    International Nuclear Information System (INIS)

    Takahashi, Migaku; Tsunoda, Masakiyo; Saito, Shin

    2009-01-01

    Tailor-made nano-structured spin materials obtained by precisely controlled nano-scale fabrication technologies for use in ultra-high density hard disk drives (HDDs), as well as an understanding of their nanomagnetics, are essential from the view point of materials, processes, and physics. Artificial control of the exchange coupling among ferromagnetic layers through the RKKY interaction (indirect) and direct exchange coupling represented as the exchange bias at the ferromagnetic (FM)/antiferromagnetic (AFM) interface are of great interest and have received significant attention to induce new modulated spin structures in conventional simple FM materials. In particular, soft magnetic under layer (SUL) with strong synthetic antiferromagnetic (SAF) coupling between two adjacent soft magnetic layers, exchange coupled stacked media introducing exchange coupling between FM layers and giant exchange anisotropy at the FM/AFM interface have attracted significant attention from the view point of applications. Within the framework of the present paper, we discuss future technical trends for SUL, granular media and the spin-valve head from the viewpoint of direct and/or indirect exchange coupling based on our recent results

  12. Investigation of Luminescence Characteristics of Some Synthetic Nano phosphors and Possibility of Application in Mixed Field Radiation Detection

    International Nuclear Information System (INIS)

    Ahmed, N.Y.A.

    2013-01-01

    The work given in this thesis aimed at Fabrication of high quality nano phosphor particles for getting high sensitive thermoluminescence material to use as ionizing radiation dosimeter. Ca Sr S nano phosphor has been prepared by solid state diffusion reaction method. The prepared nano phosphor was then activated with proper addition of some rare earth elements (dysprosium and gadolinium) for the sake of improving its TL sensitivity. The doped Ca Sr S nano phosphor was then treated by different courses of heat annealing for dual sake and regeneration. High temperature and high gamma dose sensitization are also used to increase sensitivity of Ca Sr S doped. By this means the TL-intensity of treated samples proved about 24 times observed enhancement. The prepared Ca Sr S: Dy nano phosphor is very reliable as pure gamma dosimeter for various applications such as personal, environmental and clinical dosimetry.

  13. Elastic properties of porous low-k dielectric nano-films

    Science.gov (United States)

    Zhou, W.; Bailey, S.; Sooryakumar, R.; King, S.; Xu, G.; Mays, E.; Ege, C.; Bielefeld, J.

    2011-08-01

    Low-k dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric for interconnects in state of the art integrated circuits. In order to further reduce interconnect RC delays, additional reductions in k for these low-k materials are being pursued via the introduction of controlled levels of porosity. The main challenge for such dielectrics is the substantial reduction in elastic properties that accompanies the increased pore volume. We report on Brillouin light scattering measurements used to determine the elastic properties of these films at thicknesses well below 200 nm, which are pertinent to their introduction into present ultralarge scale integrated technology. The observation of longitudinal and transverse standing wave acoustic resonances and their transformation into traveling waves with finite in-plane wave vectors provides for a direct non-destructive measure of the principal elastic constants that characterize the elastic properties of these porous nano-scale films. The mode dispersion further confirms that for porosity levels of up to 25%, the reduction in the dielectric constant does not result in severe degradation in the Young's modulus and Poisson's ratio of the films.

  14. Dynamics of low density coronal plasma in low current x-pinches

    International Nuclear Information System (INIS)

    Haas, D; Bott, S C; Vikhrev, V; Eshaq, Y; Ueda, U; Zhang, T; Baranova, E; Krasheninnikov, S I; Beg, F N

    2007-01-01

    Experiments were performed on an x-pinch using a pulsed power current generator capable of producing an 80 kA current with a rise time of 50 ns. Molybdenum wires with and without gold coating were employed to study the effect of high z coating on the low-density ( 18 cm -3 ) coronal plasma dynamics. A comparison of images from XUV frames and optical probing shows that the low density coronal plasma from the wires initially converges at the mid-plane immediately above and below the cross-point. A central jet is formed which moves with a velocity of 6 x 10 4 ms -1 towards both electrodes forming a z-pinch column before the current maximum. A marked change in the low density coronal plasma dynamics was observed when molybdenum wires coated with ∼ 0.09 μm of gold were used. The processes forming the jet structure were delayed relative to bare Mo x-pinches, and the time-resolved x-ray emission also showed differences. An m = 0 instability was observed in the coronal plasma along the x-pinch legs, which were consistent with x-ray PIN diode signals in which x-ray pulses were observed before x-ray spot formation. These early time x-ray pulses were not observed with pure molybdenum x-pinches. These observations indicate that a thin layer of gold coating significantly changes the coronal plasma behaviour. Two dimensional MHD simulations were performed and qualitatively agree with experimental observations of low density coronal plasma

  15. Fabrication of low adhesive superhydrophobic surfaces using nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited electro-brush plating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tianchi [College of Mechanical & Electrical Engineering, Xu Zhou 221116 (China); Ge, Shirong [College of Mechanical & Electrical Engineering, Xu Zhou 221116 (China); College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China); Liu, Hongtao, E-mail: liuht100@126.com [College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China); Sun, Qinghe; Zhu, Wei; Yan, Wei; Qi, Jianwei [College of Materials Science and Engineering, China University of Mining and Technology, Xu Zhou 221116 (China)

    2015-11-30

    Highlights: • We fabricate a low adhesive superhydrophobic nano Cu/Al{sub 2}O{sub 3} composited Ni–Cr coating via brush plating. • We investigate the influence of process parameters on hydrophobic properties process. • We discuss the formation mechanism of structures on the surface and using water rebound height to explain the low adhesive force mechanism. - Abstract: Superhydrophobic nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited coating with a low adhesive force was deposited onto the Q345 carbon steel via electro-brush plating. Surface morphologies of nano Cu/Al{sub 2}O{sub 3} Ni–Cr composited coating were investigated by scanning electron microscope (SEM). Chemical compositions were characterized by energy dispersive spectroscopy (EDS). First of all, by adjusting different process parameters such as working voltage, relative velocity, Cu particles concentration and plating time, we obtain the most optimal parameters: working voltage is 15 V, relative velocity is 4.8 m/min, Cu particles concentration is 5 g/L and plating time is 60 s. Under the best process parameters, the water contact angle reaches to 156° and a sliding angle is less than 2° on the nano Cu/Al{sub 2}O{sub 3} Ni–Cr coating. Then the mechanism of the superhydrophobic and low adhesion characteristic of this surface were explained by Cassie's model. Low adhesive force can be characterized by max rebound height of water droplet. As a result, to achieve low adhesive surface it is necessary to decrease the fraction of the solid/liquid interface under the water droplet. Finally the coating was proved to have an excellent self-cleaning performance.

  16. Concurrent doping effect of Ti and nano-diamond on flux pinning of MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y., E-mail: yzhao@swjtu.edu.c [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Ke, C. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Cheng, C.H. [Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia); Feng, Y. [Northwest Institute for Nonferrous Metal Research, P.O. Box 51, Xian, Shaanxi 710016 (China); Western Superconductivity Technology Company, Xian (China); Yang, Y. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Munroe, P. [Superconductivity Research Group, School of Materials Science and Engineering, University of New South Wales, Sydney, 2052 NSW (Australia)

    2010-11-01

    Nano-diamond and titanium concurrently doped MgB{sub 2} nanocomposites have been prepared by solid state reaction method. The effects of carbon and Ti concurrent doping on J{sub c}-H behavior and pinning force scaling features of MgB{sub 2} have been investigated. Although T{sub c} was slightly depressed, J{sub c} of MgB{sub 2} have been significantly improved by the nano-diamond doping, especially in the high field region. In the mean time, the J{sub c} value in low field region is sustained though concurrent Ti doping. Microstructure analysis reveals that when nano-diamond was concurrently doped with titanium in MgB{sub 2}, a unique nanocomposite in which TiB{sub 2} forms a thin layer surrounding MgB{sub 2} grains whereas nano-diamond particles were wrapped inside the MgB{sub 2} grains. Besides, nano-diamond doping results in a high density stress field in the MgB{sub 2} samples, which may take responsibility for the {Delta}{kappa} pinning behavior in the carbon-doped MgB{sub 2} system.

  17. Electrochemically synthesized Si nano wire arrays and thermoelectric nano structures

    International Nuclear Information System (INIS)

    Khuan, N.I.; Ying, K.K.; Nur Ubaidah Saidin; Foo, C.T.

    2012-01-01

    Thermoelectric nano structures hold great promise for capturing and directly converting into electricity some vast amount of low-grade waste heats now being lost to the environment (for example from nuclear power plant, fossil fuel burning, automotive and household appliances). In this study, large-area vertically-aligned silicon nano wire (SiNW) arrays were synthesized in an aqueous solution containing AgNO 3 and HF on p-type Si (100) substrate by self-selective electroless etching process. The etching conditions were systematically varied in order to achieve different stages of nano wire formation. Diameters of the SiNWs obtained varied from approximately 50 to 200 nm and their lengths ranged from several to a few tens of μm. Te/ Bi 2 Te 3 -Si thermoelectric core-shell nano structures were subsequently obtained via galvanic displacement of SiNWs in acidic HF electrolytes containing HTeO 2 + and Bi 3+ / HTeO 2 + ions. The reactions were basically a nano-electrochemical process due to the difference in redox potentials between the materials. the surface-modified SiNWs of core-shell structures had roughened surface morphologies and therefore, higher surface-t-bulk ratios compared to unmodified SiNWs. They have potential applications in sensors, photovoltaic and thermoelectric nano devices. Growth study on the SiNWs and core-shell nano structures produced is presented using various microscopy, diffraction and probe-based techniques for microstructural, morphological and chemical characterizations. (Author)

  18. Nano crystals for Electronic and Optoelectronic Applications

    International Nuclear Information System (INIS)

    Zhu, T.; Cloutier, S.G.; Ivanov, I; Knappenberger Jr, K.L.; Robel, I.; Zhang, F

    2012-01-01

    Electronic and optoelectronic devices, from computers and smart cell phones to solar cells, have become a part of our life. Currently, devices with featured circuits of 45 nm in size can be fabricated for commercial use. However, further development based on traditional semiconductor is hindered by the increasing thermal issues and the manufacturing cost. During the last decade, nano crystals have been widely adopted in various electronic and optoelectronic applications. They provide alternative options in terms of ease of processing, low cost, better flexibility, and superior electronic/optoelectronic properties. By taking advantage of solution-processing, self-assembly, and surface engineering, nano crystals could serve as new building blocks for low-cost manufacturing of flexible and large area devices. Tunable electronic structures combined with small exciton binding energy, high luminescence efficiency, and low thermal conductivity make nano crystals extremely attractive for FET, memory device, solar cell, solid-state lighting/display, photodetector, and lasing applications. Efforts to harness the nano crystal quantum tunability have led to the successful demonstration of many prototype devices, raising the public awareness to the wide range of solutions that nano technology can provide for an efficient energy economy. This special issue aims to provide the readers with the latest achievements of nano crystals in electronic and optoelectronic applications, including the synthesis and engineering of nano crystals towards the applications and the corresponding device fabrication, characterization and computer modeling.

  19. Plasma probe characteristics in low density hydrogen pulsed plasmas

    International Nuclear Information System (INIS)

    Astakhov, D I; Lee, C J; Bijkerk, F; Goedheer, W J; Ivanov, V V; Krivtsun, V M; Zotovich, A I; Zyryanov, S M; Lopaev, D V

    2015-01-01

    Probe theories are only applicable in the regime where the probe’s perturbation of the plasma can be neglected. However, it is not always possible to know, a priori, that a particular probe theory can be successfully applied, especially in low density plasmas. This is especially difficult in the case of transient, low density plasmas. Here, we applied probe diagnostics in combination with a 2D particle-in-cell model, to an experiment with a pulsed low density hydrogen plasma. The calculations took into account the full chamber geometry, including the plasma probe as an electrode in the chamber. It was found that the simulations reproduce the time evolution of the probe IV characteristics with good accuracy. The disagreement between the simulated and probe measured plasma density is attributed to the limited applicability of probe theory to measurements of low density pulsed plasmas on a similarly short time scale as investigated here. Indeed, in the case studied here, probe measurements would lead to, either a large overestimate, or underestimate of the plasma density, depending on the chosen probe theory. In contrast, the simulations of the plasma evolution and the probe characteristics do not suffer from such strict applicability limits. These studies show that probe theory cannot be justified through probe measurements. However, limiting cases of probe theories can be used to estimate upper and lower bounds on plasma densities. These theories include and neglect orbital motion, respectively, with different collisional terms leading to intermediate estimates. (paper)

  20. Physicochemical properties of synthetic nano-birnessite and its enhanced scavenging of Co"2"+ and Sr"2"+ ions from aqueous solutions

    International Nuclear Information System (INIS)

    Metwally, S.S.; Ghaly, M.; El-Sherief, E.A.

    2017-01-01

    Nano-birnessite was prepared, characterized and used for removal of cobalt and strontium ions from aqueous solutions. Scanning electron microscope and atomic force microscope images indicated that the particles of the prepared material are presented in the nano-scale form, the grain size was found in a range of 58–95 nm. Specific surface area of the prepared nano-birnessite was determined and found to be 200.54 m"2/g. The Capacities of nano-birnessite for cobalt and strontium are 2.97 and 3.04 meq/g, respectively. The kinetic studies indicated that the sorption of the two ions obeys pseudo-second-order model and controlled by an intra-particle diffusion mechanism. The diffusivity of Co"2"+ and Sr"2"+ ions onto nano-birnessite was determined and indicated that the sorption is chemisorption process. Hence, nano-birnessite material is an efficient sorbent and can be used to decrease the influx of pollutants, such as; Co"2"+ and Sr"2"+ ions to the environment or their removal from contaminated media. - Graphical abstract: 3D AFM images for nano-birnessite. - Highlights: • Nano-birnessite was prepared using sol-gel method. • It was characterized using different analytical techniques. • Sorption of cobalt and strontium ions onto nano-birnessite was investigated. • Kinetic studies and some kinetic models were tested for the sorption process. • Nano-birnessite exhibited high sorption capacity compared to other sorbents obtained in the literature.

  1. The Spontaneous Ray Log: A New Aid for Constructing Pseudo-Synthetic Seismograms

    Science.gov (United States)

    Quadir, Adnan; Lewis, Charles; Rau, Ruey-Juin

    2018-02-01

    Conventional synthetic seismograms for hydrocarbon exploration combine the sonic and density logs, whereas pseudo-synthetic seismograms are constructed with a density log plus a resistivity, neutron, gamma ray, or rarely a spontaneous potential log. Herein, we introduce a new technique for constructing a pseudo-synthetic seismogram by combining the gamma ray (GR) and self-potential (SP) logs to produce the spontaneous ray (SR) log. Three wells, each of which consisted of more than 1000 m of carbonates, sandstones, and shales, were investigated; each well was divided into 12 Groups based on formation tops, and the Pearson product-moment correlation coefficient (PCC) was calculated for each "Group" from each of the GR, SP, and SR logs. The highest PCC-valued log curves for each Group were then combined to produce a single log whose values were cross-plotted against the reference well's sonic ITT values to determine a linear transform for producing a pseudo-sonic (PS) log and, ultimately, a pseudo-synthetic seismogram. The range for the Nash-Sutcliffe efficiency (NSE) acceptable value for the pseudo-sonic logs of three wells was 78-83%. This technique was tested on three wells, one of which was used as a blind test well, with satisfactory results. The PCC value between the composite PS (SR) log with low-density correction and the conventional sonic (CS) log was 86%. Because of the common occurrence of spontaneous potential and gamma ray logs in many of the hydrocarbon basins of the world, this inexpensive and straightforward technique could hold significant promise in areas that are in need of alternate ways to create pseudo-synthetic seismograms for seismic reflection interpretation.

  2. High Tap Density Li4Ti5O12 Microspheres: Synthetic Conditions and Advanced Electrochemical Performance

    KAUST Repository

    Ming, Jun; Zheng, Junwei; Zhou, Qun; Ren, Jianxin; Ming, Hai; Jia, Zhenyong; Zhang, Yanqing

    2017-01-01

    Preparation of uniform spherical Li4Ti5O12 with high tap density is significant to achieve a high volumetric energy density in lithium-ion batteries. Herein, Li4Ti5O12 micro-spheres with variable tap-density and tunable size distribution were synthesized by a newly designed industrial spray drying approach. The slurry concentration, sintering time and sintering conditions after spray, the effect of Li/Ti molar ratio on the lithium ion (Li+) storage capability were investigated. A narrow particle size distribution around 10 μm and high tap-density close to 1.4 g cm-3 of the Li4Ti5O12 spheres can be obtained under the optimized conditions. The Li4Ti5O12 spheres can deliver much higher capacity of 168 mAh g-1 at 1 C-rate and show high capacity retention of 97.7% over 400 cycles. The synthetic conditions are confirmed to be critical for improving the electron conductivity and Li+ diffusivity by adjusting the crystal and spatial structures. As-prepared high performance Li4Ti5O12 is an ideal electrode for Li-ion batteries or capacitors; meanwhile the presented approach is also applicable for preparing other kind of spherical materials.

  3. High Tap Density Li4Ti5O12 Microspheres: Synthetic Conditions and Advanced Electrochemical Performance

    KAUST Repository

    Ming, Jun

    2017-03-17

    Preparation of uniform spherical Li4Ti5O12 with high tap density is significant to achieve a high volumetric energy density in lithium-ion batteries. Herein, Li4Ti5O12 micro-spheres with variable tap-density and tunable size distribution were synthesized by a newly designed industrial spray drying approach. The slurry concentration, sintering time and sintering conditions after spray, the effect of Li/Ti molar ratio on the lithium ion (Li+) storage capability were investigated. A narrow particle size distribution around 10 μm and high tap-density close to 1.4 g cm-3 of the Li4Ti5O12 spheres can be obtained under the optimized conditions. The Li4Ti5O12 spheres can deliver much higher capacity of 168 mAh g-1 at 1 C-rate and show high capacity retention of 97.7% over 400 cycles. The synthetic conditions are confirmed to be critical for improving the electron conductivity and Li+ diffusivity by adjusting the crystal and spatial structures. As-prepared high performance Li4Ti5O12 is an ideal electrode for Li-ion batteries or capacitors; meanwhile the presented approach is also applicable for preparing other kind of spherical materials.

  4. Low insertion loss SOI microring resonator integrated with nano-taper couplers

    DEFF Research Database (Denmark)

    Pu, Minhao; Frandsen, Lars Hagedorn; Ou, Haiyan

    2009-01-01

    We demonstrate a microring resonator working at TM mode integrated with nano-taper couplers with 3.6dB total insertion loss. The measured insertion loss of the nano-taper coupler was only 1.3dB for TM mode....

  5. Precise Time Synchronisation and Ranging in Nano-Satellite Swarms

    Science.gov (United States)

    Laabs, Martin; Plettemeier, Dirk

    2015-04-01

    Precise time synchronization and ranging is very important for a variety of scientific experiments with more than two nano-satellites: For synthetic aperture radar (SAR) applications, for example, the radar signal phase (which corresponds to a synchronized time) as well as the location must be known on each satellite forming synthetic antenna. Also multi-static radar systems, MIMO radar systems or radio tomography applications will take advantage from highly accurate synchronization and position determination. We propose a method for synchronizing the time as well as measuring the distance between nano-satellites very precisely by utilizing mm-wave radio links. This approach can also be used for time synchronization of more than two satellites and accordingly determinating the precise relative location of nano-satellites in space. The time synchronization signal is modulated onto a mm-wave carrier. In the simplest form it is a harmonic sinusoidal signal with a frequency in the MHz range. The distance is measured with a frequency sweep or short pulse modulated onto a different carrier frequency. The sweep or pulse transmission start is synchronized to the received time synchronization. The time synchronization transmitter receives the pulse/sweep signal and can calculate the (double) time of flight for both signals. This measurement can be easily converted to the distance. The use of a mm-wave carrier leads to small antennas and the free space loss linked to the high frequency reduces non line of sight echoes. It also allows a high sweep/pulse bandwidth enabling superior ranging accuracy. Additionally, there is also less electromagnetic interference probability since telemetry and scientific applications typically do not use mm-wavefrequencies. Since the system is working full-duplex the time synchronization can be performed continuously and coherently. Up to now the required semiconductor processes did not achieve enough gain/bandwidth to realize this concept at

  6. Preparation and Low Temperature Short-term Storage for Synthetic Seeds of Caladium bicolor

    Directory of Open Access Journals (Sweden)

    Mehpara MAQSOOD

    2015-03-01

    Full Text Available An efficient somatic embryo encapsulation and in vitro plant regeneration technique were established with Caladium bicolor, an important ornamental plant.Tuber derived embryogenic callus (95.50% was obtained on Murashige and Skoog (MS medium amended with 0.5 mg L-1 α-Naphthalene acetic acid (NAA + 0.5 mg L-1 6-Benzyladenine (BA. The embryogenic callus later differentiated into somatic embryos in the same plant growth regulators (PGRs added medium (NAA and BA. The induced embryos matured and developed into plantlets in NAA and BA added media; maximum plantlets development was observed at 1.0 mg L-1 NAA + 1.0 mg L-1 BA supplemented medium. Synthetic seeds were produced by encapsulating embryos in gel containing 3.0% sucrose + 3.0% sodium alginate and 100 mM of calcium chloride.The highest synthetic seed germination (97.6% was observed on medium supplemented with 1.0 mg L-1 NAA + 1.0 mg L-1 BA. The synthetic seeds were kept at low temperatures for storage; the encapsulated beads were viable and demonstrated good germination even after 12 weeks of storage at 4 °C. The plantlet recovery frequency was however declined with time. The synthetic seed derived plantlets were morphologically similar to the mother plant.

  7. Passion fruit-like nano-architectures: a general synthesis route

    Science.gov (United States)

    Cassano, D.; David, J.; Luin, S.; Voliani, V.

    2017-03-01

    Noble metal nanostructures have demonstrated a number of intriguing features for both medicine and catalysis. However, accumulation issues have prevented their clinical translation, while their use in catalysis has shown serious efficiency and stability hurdles. Here we introduce a simple and robust synthetic protocol for passion fruit-like nano-architectures composed by a silica shell embedding polymeric arrays of ultrasmall noble metal nanoparticles. These nano-architectures show interesting features for both oncology and catalysis. They avoid the issue of persistence in organism thanks to their fast biodegradation in renal clearable building blocks. Furthermore, their calcination results in yolk-shell structures composed by naked metal or alloy nanospheres shielded from aggregation by a silica shell.

  8. The effect of oxide shell thickness on the structural, electronic, and optical properties of Si-SiO{sub 2} core-shell nano-crystals: A (time dependent)density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Nazemi, Sanaz, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir; Soleimani, Ebrahim Asl [School of Electrical and Computer Engineering, University of Tehran, Tehran 14395-515 (Iran, Islamic Republic of); Pourfath, Mahdi, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir [School of Electrical and Computer Engineering, University of Tehran, Tehran 14395-515 (Iran, Islamic Republic of); Institute for Microelectronics, Technische Universität Wien, Wien A-1040 (Austria); Kosina, Hans [Institute for Microelectronics, Technische Universität Wien, Wien A-1040 (Austria)

    2016-04-14

    Due to their tunable properties, silicon nano-crystals (NC) are currently being investigated. Quantum confinement can generally be employed for size-dependent band-gap tuning at dimensions smaller than the Bohr radius (∼5 nm for silicon). At the nano-meter scale, however, increased surface-to-volume ratio makes the surface effects dominant. Specifically, in Si-SiO{sub 2} core-shell semiconductor NCs the interfacial transition layer causes peculiar electronic and optical properties, because of the co-existence of intermediate oxidation states of silicon (Si{sup n+}, n = 0–4). Due to the presence of the many factors involved, a comprehensive understanding of the optical properties of these NCs has not yet been achieved. In this work, Si-SiO{sub 2} NCs with a diameter of 1.1 nm and covered by amorphous oxide shells with thicknesses between 2.5 and 4.75 Å are comprehensively studied, employing density functional theory calculations. It is shown that with increased oxide shell thickness, the low-energy part of the optical transition spectrum of the NC is red shifted and attenuated. Moreover, the absorption coefficient is increased in the high-energy part of the spectrum which corresponds to SiO{sub 2} transitions. Structural examinations indicate a larger compressive stress on the central silicon cluster with a thicker oxide shell. Examination of the local density of states reveals the migration of frontier molecular orbitals from the oxide shell into the silicon core with the increase of silica shell thickness. The optical and electrical properties are explained through the analysis of the density of states and the spatial distribution of silicon sub-oxide species.

  9. Low-memory iterative density fitting.

    Science.gov (United States)

    Grajciar, Lukáš

    2015-07-30

    A new low-memory modification of the density fitting approximation based on a combination of a continuous fast multipole method (CFMM) and a preconditioned conjugate gradient solver is presented. Iterative conjugate gradient solver uses preconditioners formed from blocks of the Coulomb metric matrix that decrease the number of iterations needed for convergence by up to one order of magnitude. The matrix-vector products needed within the iterative algorithm are calculated using CFMM, which evaluates them with the linear scaling memory requirements only. Compared with the standard density fitting implementation, up to 15-fold reduction of the memory requirements is achieved for the most efficient preconditioner at a cost of only 25% increase in computational time. The potential of the method is demonstrated by performing density functional theory calculations for zeolite fragment with 2592 atoms and 121,248 auxiliary basis functions on a single 12-core CPU workstation. © 2015 Wiley Periodicals, Inc.

  10. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    Science.gov (United States)

    Ocakoglu, Kasim; Joya, Khurram S.; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-07-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ~120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates.Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The

  11. Interaction effects in liquids with low electron densities

    International Nuclear Information System (INIS)

    Warren, W.W. Jr.

    1987-01-01

    The author discusses two complementary classes of systems in which strong electron-electron or electron-ion interactions appear at low electron densities. The first are the expanded liquid alkali metals (cesium) in which electron correlation effects have a profound effect on the magnetic properties on the metallic side of the metal-nonmetal transition. The second group are molten alkali halides containing low densities of localized electrons introduced, say, by dissolution of small amounts of excess metal. (Auth.)

  12. Evaluation of the effect of reprocessing on the structure and properties of low density polyethylene/thermoplastic starch blends.

    Science.gov (United States)

    Peres, Anderson M; Pires, Ruthe R; Oréfice, Rodrigo L

    2016-01-20

    The great quantity of synthetic plastic discarded inappropriately in the environment is forcing the search for materials that can be reprocessable and biodegradable. Blends between synthetic polymers and natural and biodegradable polymers can be good candidates of such novel materials because they can combine processability with biodegradation and the use of renewable raw materials. However, traditional polymers usually present high levels of recyclability and use the well-established recycling infrastructure that can eventually be affected by the introduction of systems containing natural polymers. Thus, this work aims to evaluate the effect of reprocessing (simulated here by multiple extrusions) on the structure and properties of a low density polyethylene/thermoplastic starch (LDPE/TPS) blend compared to LDPE. The results indicated that multiple extrusion steps led to a reduction in the average size of the starch-rich phases of LDPE/TPS blends and minor changes in the mechanical and rheological properties of the materials. Such results suggest that the LDPE/TPS blend presents similar reprocessability to the LDPE for the experimental conditions used. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Electromagnetics of active coated nano-particles

    DEFF Research Database (Denmark)

    Arslanagic, Samel

    2013-01-01

    This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation, t......, the optical gain constant and the nano-particle material composition on the electric and magnetic near fields, the power flow density, the radiated power as well as the directivities. Resonant as well as quasi-transparent states will be emphasized in the discussion.......This work reviews the fundamental properties of several spherical and cylindrical active coated nano-particles excited by their respective single and/or multiple sources of radiation at optical frequencies. Particular attention is devoted to the influence of the source location and orientation...

  14. Synthesis of nano-textured biocompatible scaffolds from chicken eggshells

    International Nuclear Information System (INIS)

    Asghar, Waseem; Ilyas, Azhar; Sankaran, Jeyantt; Wan Yuan; Iqbal, Samir M; Kim, Young-Tae

    2012-01-01

    Cell adhesion, morphology and growth are influenced by surface topography at nano and micrometer scales. Nano-textured surfaces are prepared using photolithography, plasma etching and long polymer chemical etching which are cost prohibitive and require specialized equipment. This article demonstrates a simple approach to synthesize nano-textured scaffolds from chicken eggshells. Varieties of pattern are made on the eggshells like micro-needle forests and nanopores, giving very uniform nano-textures to the surfaces. The surfaces are characterized for chemical composition and crystal phase. The novel patterns are transferred to PDMS surfaces and the nano-textured PDMS surfaces are used to study the effect of texturing on human fibroblast cell growth and attachment. The effects of surface topographies, along with laminin coating on cell cultures, are also studied. We find an exciting phenomenon that the initial seeding density of the fibroblast cells affects the influence of the nano-texturing on cell growth. These nano-textured surfaces give 16 times more fibroblast growth when compared to flat PDMS surfaces. The novel nano-textured patterns also double the laminin adsorption on PDMS. (paper)

  15. Compaction simulation of nano-crystalline metals with molecular dynamics analysis

    Directory of Open Access Journals (Sweden)

    Khoei A.R.

    2016-01-01

    Full Text Available The molecular-dynamics analysis is presented for 3D compaction simulation of nano-crystalline metals under uniaxial compaction process. The nano-crystalline metals consist of nickel and aluminum nano-particles, which are mixed with specified proportions. The EAM pair-potential is employed to model the formation of nano-particles at different temperatures, number of nano-particles, and mixing ratio of Ni and Al nano-particles to form the component into the shape of a die. The die-walls are modeled using the Lennard-Jones inter-atomic potential between the atoms of nano-particles and die-walls. The forming process is model in uniaxial compression, which is simulated until the full-dense condition is attained at constant temperature. Numerical simulations are performed by presenting the densification of nano-particles at different deformations and distribution of dislocations. Finally, the evolutions of relative density with the pressure as well as the stress-strain curves are depicted during the compaction process.

  16. A density functional reactivity theory (DFRT) based approach to understand the effect of symmetry of fullerenes on the kinetic, thermodynamic and structural aspects of carbon NanoBuds

    Energy Technology Data Exchange (ETDEWEB)

    Sarmah, Amrit; Roy, Ram Kinkar, E-mail: rkroy2@rediffmail.com

    2016-06-15

    Highlights: • Kinetic and thermodynamic aspects of the interaction between fullerene (C{sub 32}) and SWCNT using CDASE scheme. • Role of symmetry of fullerenes as well as the site of covalent attachment to the SWCNT in the structural stability of the NanoBud structure. • Increase in the fullerene symmetry improves the relative stability of hybrid NanoBud structure. - Abstract: In the present study, we have rationalized the effect of variation in the symmetry of relatively smaller fullerene (C{sub 32}) on the mode of its interaction with semi-conducting Single-Walled Carbon Nanotubes (SWCNTs) in the process of formation of stable hybrid carbon NanoBuds. Thermodynamic and kinetic parameters, along with the charge transfer values associated with the interaction between fullerene and SWCNTs, have been evaluated using an un-conventional and computationally cost–effective method based on density functional reactivity theory (DFRT). In addition to this, conventional DFT based studies are also performed to substantiate the growth of NanoBud structures formed by the interaction between fullerene and SWCNTs. The findings of the present study suggest that the kinetic, thermodynamic and structural aspects of hybrid carbon NanoBuds are significantly influenced by both the symmetry of C{sub 32} fullerene and its site of covalent attachment to the SWCNT.

  17. Cholesterol transfer from normal and atherogenic low density lipoproteins to Mycoplasma membranes

    International Nuclear Information System (INIS)

    Mitschelen, J.J.; St Clair, R.W.; Hester, S.H.

    1981-01-01

    The purpose of this study was to determine whether the free cholesterol of hypercholesterolemic low density lipoprotein from cholesterol-fed nonhuman primates has a greater potential for surface transfer to cell membranes than does the free cholesterol of normal low density lipoprotein. The low density lipoproteins were isolated from normal and hypercholesterolemic rhesus and cynomolgus monkeys, incubated with membranes from Acholeplasma laidlawii, a mycoplasma species devoid of cholesterol in its membranes, and the mass transfer of free cholesterol determined by measuring membrane cholesterol content. Since these membranes neither synthesize nor esterify cholesterol, nor degrade the protein or cholesterol ester moieties of low density lipoprotein, they are an ideal model with which to study differences in the cholesterol transfer potential of low density lipoprotein independent of the uptake of the intact low density lipoprotein particle. These studies indicate that, even though there are marked differences in the cholesterol composition of normal and hypercholesterolemic low density lipoproteins, this does not result in a greater chemical potential for surface transfer of free cholesterol. Consequently, if a difference in the surface transfer of free cholesterol is responsible for the enhanced ability of hypercholesterolemic low density lipoprotein to promote cellular cholesterol accumulation and, perhaps, also atherosclerosis, it must be the result of differences in the interaction to the hypercholesterolemic low density lipoprotein with the more complicated mammalian cell membranes, rather than differences in the chemical potential for cholesterol transfer

  18. Synthesis and study of nano-structured cellulose acetate based materials for energy applications

    International Nuclear Information System (INIS)

    Fischer, F.

    2006-12-01

    Nano-structured materials have unique properties (high exchange areas, containment effect) because of their very low characteristic dimensions. The elaboration way set up in this PhD work consists in applying the classical processes for the preparation of aerogel-like materials (combining sol-gel synthesis and CO 2 supercritical extraction) to cellulosic polymers. This work is divided in four parts: a literature review, the presentation and the study of the chemical synthesis that leads to cellulose acetate-based aerogel, the characterizations (chemical, structural and thermal) of the elaborated nano-materials, and finally the study of the first carbons that were obtained after pyrolysis of the organic matrix. The formulations and the sol-gel protocol lead to chemical gels by crosslinking cellulose acetate using a poly-functional iso-cyanate. The dry materials obtained after solvent extraction with supercritical CO 2 are nano-structured and mainly meso-porous. Correlations between chemical synthesis parameters (reagent concentrations, crosslinking rate and degree of polymerisation) and porous properties (density, porosity, pore size distribution) were highlighted thanks to structural characterizations. An ultra-porous reference aerogel, with a density equals to 0,245 g.cm -3 together with a meso-porous volume of 3,40 cm 3 .g -1 was elaborated. Once in granular shape, this material has a thermal conductivity of 0,029 W.m -1 .K -1 . In addition, carbon materials produced after pyrolysis of the organic matrix and after grinding are nano-structured and nano-porous, even if important structural modifications have occurred during the carbonization process. The elaborated materials are evaluated for applications in relation with energy such as thermal insulation (organic aerogels) but also for energy conversion and storage through electrochemical way (carbon aerogels). (author)

  19. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  20. Low-density silicon thin films for lithium-ion battery anodes

    Energy Technology Data Exchange (ETDEWEB)

    Demirkan, M.T., E-mail: tmdemirkan@ualr.edu [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States); Department of Materials Science and Engineering, Gebze Technical University, Kocaeli (Turkey); Trahey, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Karabacak, T. [Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR 72204 (United States)

    2016-02-01

    Density of sputter deposited silicon (Si) thin films was changed by a simple working gas pressure control process, and its effects on the cycling performance of Si films in Li-ion batteries as anodes was investigated. Higher gas pressure results in reduced film densities due to a shadowing effect originating from lower mean free path of sputter atoms, which leads to a wider angular distribution of the incoming flux and formation of a porous film microstructure. Si thin film anodes of different densities ranging from 2.27 g/cm{sup 3} (film porosity ~ 3%) down to 1.64 g/cm{sup 3} (~ 30% porosity) were fabricated by magnetron sputtering at argon pressures varying from 0.2 Pa to 2.6 Pa, respectively. High density Si thin film anodes of 2.27 g/cm{sup 3} suffered from an unstable cycling behavior during charging/discharging depicted by a continuous reduction in specific down to ~ 830 mAh/g at the 100th cycle. Electrochemical properties of lower density films with 1.99 g/cm{sup 3} (~ 15% porosity) and 1.77 g/cm{sup 3} (~ 24% porosity) got worse resulting in only ~ 100 mAh/g capacity at 100th cycle. On the other hand, as the density of anode was further reduced down to about 1.64 g/cm{sup 3} (~ 30% porosity), cycling stability and capacity retention significantly improved resulting in specific capacity values ~ 650 mAh/g at 100th cycle with coulombic efficiencies of > 98%. Enhancement in our low density Si film anodes are believed to mainly originate from the availability of voids for volumetric expansion during lithiation and resulting compliant behavior that provides superior mechanical and electrochemical stability. - Highlights: • Low density Si thin films were studied as Li-ion battery anodes. • Low density Si films were fabricated by magnetron sputter deposition. • Density of Si films reduced down to as low as ~ 1.64 g/cm{sup 3} with a porosity of ~ 30% • Low density Si films presented superior mechanical properties during cycling.

  1. Evaluating Weathering of Food Packaging Polyethylene-Nano-clay Composites: Release of Nanoparticles and their Impacts.

    Science.gov (United States)

    Han, Changseok; Zhao, Amy; Varughese, Eunice; Sahle-Demessie, E

    2018-01-01

    Nano-fillers are increasingly incorporated into polymeric materials to improve the mechanical, barrier or other matrix properties of nanocomposites used for consumer and industrial applications. However, over the life cycle, these nanocomposites could degrade due to exposure to environmental conditions, resulting in the release of embedded nanomaterials from the polymer matrix into the environment. This paper presents a rigorous study on the degradation and the release of nanomaterials from food packaging composites. Films of nano-clay-loaded low-density polyethylene (LDPE) composite for food packaging applications were prepared with the spherilene technology and exposed to accelerated weathering of ultraviolet (UV) irradiation or low concentration of ozone at 40 °C. The changes in the structural, surface morphology, chemical and physical properties of the films during accelerated weathering were investigated. Qualitative and quantitative changes in properties of pristine and aged materials and the release of nano-clay proceeded slowly until 130 hr irradiation and then accelerated afterward resulting complete degradation. Although nano-clay increased the stability of LDPE and improved thermal and barrier properties, they accelerated the UV oxidation of LDPE. With increasing exposure to UV, the surface roughness, chemiluminescence index, and carbonyl index of the samples increased while decreasing the intensity of the wide-angle X-ray diffraction pattern. Nano-clay particles with sizes ranging from 2-8 nm were released from UV and ozone weathered composite. The concentrations of released nanoparticles increased with an increase in aging time. Various toxicity tests, including reactive oxygen species generation and cell activity/viability were also performed on the released nano-clay and clay polymer. The released nano-clays basically did not show toxicity. Our combined results demonstrated the degradation properties of nano-clay particle-embedded LDPE composites

  2. Vapor-solid-solid growth mechanism driven by an epitaxial match between solid Au Zn alloy catalyst particle and Zn O nano wire at low temperature

    International Nuclear Information System (INIS)

    Campos, Leonardo C.; Tonezzer, Matteo; Ferlauto, Andre S.; Magalhaes-Paniago, Rogerio; Oliveira, Sergio; Ladeira, Luiz O.; Lacerda, Rodrigo G.

    2008-01-01

    Nowadays, the growth of nano materials, like nano wires and nano tubes, is one of the key research areas of nano technology. However, a full picture of the growth mechanism of these quasi-one dimensional systems still needs to be achieved if these materials are to be applied electronics, biology and medicinal fields. Nevertheless, in spite of considerable advances on the growth of numerous nano wires, a clear understanding of the growth mechanism is still controversial and highly discussed. The present work provides a comprehensive picture of the precise mechanism of Zn O vapor-solid-solid (VSS) nano wire growth at low temperatures and gives the fundamental reasons responsible. We demonstrate by using a combination of synchrotron XRD and high resolution TEM that the growth dynamics at low temperatures is not governed by the well-known vapor-liquid solid (VLS) mechanisms. A critical new insight on the driving factor of VSS growth is proposed in which the VSS process occurs by a solid diffusion mechanism that is driven by a preferential oxidation process of the Zn inside the alloy catalyst induced by an epitaxial match between the Zn O(10-10) plane and the γ-Au Zn(222) plane. We believe that these results are not only important for the understanding of Zn O nano wire growth but could also have significant impact on the understanding of growth mechanisms of other nano wire systems. (author)

  3. Synthesis and structural characterization of nano-hydroxyapatite biomaterials prepared by microwave processing

    Science.gov (United States)

    Ramli, Rosmamuhamadani; Arawi, Ainaa Zafirah Omar; Talari, Mahesh Kumar; Mahat, Mohd Muzamir; Jais, Umi Sarah

    2012-07-01

    Synthetic hydroxyapatite, (HA, Ca10(PO4)6(OH)2), is an attractive and widely utilized bio-ceramic material for orthopedic and dental implants because of its close resemblance of native tooth and bone crystal structure. Synthetic HA exhibits excellent osteoconductive properties. Osteoconductivity means the ability to provide the appropriate scaffold or template for bone formation. Calcium phosphate biomaterials [(HA), tri-calcium phosphate (TCP) and biphasic calcium phosphate (HA/TCP)] with appropriate three-dimensional geometry are able to bind and concentrate endogenous bone morphogenetic proteins in circulation, and may become osteoinductive and can be effective carriers of bone cell seeds. This HA can be used in bio-implants as well as drug delivery application due to the unique properties of HA. Biomaterials synthesized from the natural species like mussel shells have additional benefits such as high purity, less expensive and high bio compatibility. In this project, HA-nanoparticles of different crystallite size were prepared by microwave synthesis of precursors. High purity CaO was extracted from the natural mussel shells for the synthesis of nano HA. Dried nano HA powders were analyzed using X-Ray Diffraction (XRD) technique for the determination of crystal structure and impurity content. Scanning Electron Microscopic (SEM) investigation was employed for the morphological investigation of nano HA powders. From the results obtained, it was concluded that by altering the irradiation time, nano HA powders of different crystallite sizes and morphologies could be produced. Crystallite sizes calculated from the XRD patterns are found to be in the range of 10-55 nm depending on the irradiation time.

  4. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  5. Clustering and Symmetry Energy in a Low Density Nuclear Gas

    International Nuclear Information System (INIS)

    Kowalski, S.; Natowitz, J.B.; Shlomo, S.; Wada, R.; Hagel, K.; Wang, J.; Materna, T.; Chen, Z.; Ma, Y.G.; Qin, L.; Botvina, A.S.; Fabris, D.; Lunardon, M.; Moretto, S.; Nebbia, G.; Pesente, S.; Rizzi, V.; Viesti, G.; Cinausero, M.; Prete, G.; Keutgen, T.; El Masri, Y.; Majka, Z.; Ono, A.

    2007-01-01

    Temperature and density dependent symmetry energy coefficients have been derived from isoscaling analyses of the yields of nuclei with A= 64 Zn projectiles with 92 Mo and 197 Au target nuclei. The symmetry energies at low density are larger than those obtained in mean field calculations, reflecting the clustering of low density nuclear matter. They are in quite good agreement with results of a recently proposed Virial Equation of State calculation

  6. Nano-technology and nano-toxicology.

    Science.gov (United States)

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  7. Comparison on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fibre lasers

    Science.gov (United States)

    Yang, Chun-Yu; Lin, Yung-Hsiang; Wu, Chung-Lun; Cheng, Chih-Hsien; Tsai, Din-Ping; Lin, Gong-Ru

    2018-06-01

    Comparisons on exfoliated graphene nano-sheets and triturated graphite nano-particles for mode-locking the Erbium-doped fiber lasers (EDFLs) are performed. As opposed to the graphite nano-particles obtained by physically triturating the graphite foil, the tri-layer graphene nano-sheets is obtained by electrochemically exfoliating the graphite foil. To precisely control the size dispersion and the layer number of the exfoliated graphene nano-sheet, both the bias of electrochemical exfoliation and the speed of centrifugation are optimized. Under a threshold exfoliation bias of 3 volts and a centrifugation at 1000 rpm, graphene nano-sheets with an average diameter of 100  ±  40 nm can be obtained. The graphene nano-sheets with an area density of 15 #/µm2 are directly imprinted onto the end-face of a single-mode fiber made patchcord connector inside the EDFL cavity. Such electrochemically exfoliated graphene nano-sheets show comparable saturable absorption with standard single-graphene and perform the self-amplitude modulation better than physically triturated graphite nano-particles. The linear transmittance and modulation depth of the inserted graphene nano-sheets are 92.5% and 53%, respectively. Under the operation with a power gain of 21.5 dB, the EDFL can be passively mode-locked to deliver a pulsewidth of 454.5 fs with a spectral linewidth of 5.6 nm. The time-bandwidth product of 0.31 is close to the transform limit. The Kelly sideband frequency spacing of 1.34 THz is used to calculate the chirp coefficient as  ‑0.0015.

  8. Nano-FTIR Spectroscopy to Investigate the Silicate Mineralogy of Mercury Analogues: Supporting MERTIS Onboard BepiColombo Mission

    Science.gov (United States)

    Varatharajan, I.; Maturilli, A.; Helbert, J.; Ulrich, G.; Born, K.; Namur, O.; Kästner, B.; Hecht, L.; Charlier, B.; Hiesinger, H.

    2018-05-01

    Nano-FTIR Spectroscopy is used to investigate the silicate mineralogy of synthetic Mercury analogues produced under reduced conditions representing different Mercury terrains. The study will support MERTIS payload onboard BepiColombo mission.

  9. Three-dimensional structure of low-density nuclear matter

    International Nuclear Information System (INIS)

    Okamoto, Minoru; Maruyama, Toshiki; Yabana, Kazuhiro; Tatsumi, Toshitaka

    2012-01-01

    We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.

  10. Three-dimensional structure of low-density nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Minoru, E-mail: okamoto@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Maruyama, Toshiki, E-mail: maruyama.toshiki@jaea.go.jp [Advanced Science Research Center, Japan Atomic Energy Agency, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan); Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Yabana, Kazuhiro, E-mail: yabana@nucl.ph.tsukuba.ac.jp [Graduate School of Pure and Applied Science, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Center of Computational Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8571 (Japan); Tatsumi, Toshitaka, E-mail: tatsumi@ruby.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2012-07-09

    We numerically explore the pasta structures and properties of low-density nuclear matter without any assumption on the geometry. We observe conventional pasta structures, while a mixture of the pasta structures appears as a metastable state at some transient densities. We also discuss the lattice structure of droplets.

  11. [Ridge preservation with synthetic nanocrystalline hydroxyapatite reduces the severity of gingival invaginations-a prospective clinical study].

    Science.gov (United States)

    Reichert, Christoph; Wenghoefer, Matthias; Kutschera, Eric; Götz, Werner; Jäger, Andreas

    2014-01-01

    Gingival invaginations develop after tooth extraction and subsequent orthodontic space closure. Aetiological factors and long-term effects of gingival invaginations on oral health are nearly unknown. In addition, preventive or therapeutic strategies are rare. This prospective clinical study employing the split mouth technique was performed to investigate the effect of extraction socket augmentation with a synthetic nanocrystalline hydroxyapatite (NanoBone(®) Artoss, Rostock, Germany) on the incidence and degree of gingival invaginations. A total of 10 orthodontic patients with need for symmetric premolar extractions offering a total of 28 extractions were included in this trial. The study plan provided one extraction site to be augmented with synthetic nanocrystalline hydroxyapatite (NanoBone(®)), the other served as control. After primary wound healing, space closure was performed under defined biomechanical conditions. After space closure was accomplished, occurrence and degree of gingival invaginations as well as probing depths of the adjacent teeth mesial and distal to the extractions were determined and dental radiographs were taken. The degree of gingival invaginations and probing depths mesial and distal of the extraction were significantly reduced on NanoBone(®) augmented extraction sites. In addition, 70% of the radiographs revealed translucent and hyperdense areas on the intervention side after space closure. Apical root resorption was found in 2 patients on both the NanoBone(®) side and the control side. Ridge preservation with NanoBone(®) appeared to reduce the severity of gingival invaginations. Further investigation on long-term effects is mandatory to eliminate the appearance of adverse effects.

  12. Charge density fluctuation of low frequency in a dusty plasma

    Institute of Scientific and Technical Information of China (English)

    李芳; 吕保维; O.Havnes

    1997-01-01

    The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.

  13. Clathrates and beyond: Low-density allotropy in crystalline silicon

    Energy Technology Data Exchange (ETDEWEB)

    Beekman, Matt [Department of Physics, California Polytechnic State University, San Luis Obispo, California 93407 (United States); Wei, Kaya; Nolas, George S., E-mail: gnolas@usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States)

    2016-12-15

    In its common, thermodynamically stable state, silicon adopts the same crystal structure as diamond. Although only a few alternative allotropic structures have been discovered and studied over the past six decades, advanced methods for structure prediction have recently suggested a remarkably rich low-density phase space that has only begun to be explored. The electronic properties of these low-density allotropes of silicon, predicted by first-principles calculations, indicate that these materials could offer a pathway to improving performance and reducing cost in a variety of electronic and energy-related applications. In this focus review, we provide an introduction and overview of recent theoretical and experimental results related to low-density allotropes of silicon, highlighting the significant potential these materials may have for technological applications, provided substantial challenges to their experimental preparation can be overcome.

  14. High Performance Nano-Crystalline Oxide Fuel Cell Materials. Defects, Structures, Interfaces, Transport, and Electrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Scott [Northwestern Univ., Evanston, IL (United States); Poeppelmeier, Ken [Northwestern Univ., Evanston, IL (United States); Mason, Tom [Northwestern Univ., Evanston, IL (United States); Marks, Lawrence [Northwestern Univ., Evanston, IL (United States); Voorhees, Peter [Northwestern Univ., Evanston, IL (United States)

    2016-09-07

    This project addresses fundamental materials challenges in solid oxide electrochemical cells, devices that have a broad range of important energy applications. Although nano-scale mixed ionically and electronically conducting (MIEC) materials provide an important opportunity to improve performance and reduce device operating temperature, durability issues threaten to limit their utility and have remained largely unexplored. Our work has focused on both (1) understanding the fundamental processes related to oxygen transport and surface-vapor reactions in nano-scale MIEC materials, and (2) determining and understanding the key factors that control their long-term stability. Furthermore, materials stability has been explored under the “extreme” conditions encountered in many solid oxide cell applications, i.e, very high or very low effective oxygen pressures, and high current density.

  15. Cobalt oxide polymorph growth on electrostatic self-assembled nanoparticle arrays for dually tunable nano-textures

    International Nuclear Information System (INIS)

    Bulliard, Xavier; Benayad, Anass; Lee, Kwang-Hee; Choi, Yun-Hyuk; Lee, Jae Cheol; Park, Jong-Jin; Kim, Jong-Min

    2011-01-01

    We report on a method for surface nano-texturing on a plastic substrate. Nano-objects with a silica nanoparticle core and a textured cobalt oxide crown are created with selectable density on the plastic substrate. The resulting dual morphology is easily tuned over large areas, either by changing the parameters directing nanoparticle deposition through electrostatic self-arrangement for nano-object density control, or the parameter directing cobalt oxide deposition for shape control. The entire process takes place at room temperature, with no chemicals harmful to the plastic substrate. The ready modulation of the dual morphology is used to control the wettability properties of the plastic film, which is covered by nano-objects.

  16. Development of construction materials using nano-silica and aggregates recycled from construction and demolition waste.

    Science.gov (United States)

    Mukharjee, Bibhuti Bhusan; Barai, Sudhirkumar V

    2015-06-01

    The present work addresses the development of novel construction materials utilising commercial grade nano-silica and recycled aggregates retrieved from construction and demolition waste. For this, experimental work has been carried out to examine the influence of nano-silica and recycled aggregates on compressive strength, modulus of elasticity, water absorption, density and volume of voids of concrete. Fully natural and recycled aggregate concrete mixes are designed by replacing cement with three levels (0.75%, 1.5% and 3%) of nano-silica. The results of the present investigation depict that improvement in early days compressive strength is achieved with the incorporation of nano-silica in addition to the restoration of reduction in compressive strength of recycled aggregate concrete mixes caused owing to the replacement of natural aggregates by recycled aggregates. Moreover, the increase in water absorption and volume of voids with a reduction of bulk density was detected with the incorporation of recycled aggregates in place of natural aggregates. However, enhancement in density and reduction in water absorption and volume of voids of recycled aggregate concrete resulted from the addition of nano-silica. In addition, the results of the study reveal that nano-silica has no significant effect on elastic modulus of concrete. © The Author(s) 2015.

  17. New nano-hydroxyapatite in bone defect regeneration: A histological study in rats.

    Science.gov (United States)

    Kubasiewicz-Ross, Paweł; Hadzik, Jakub; Seeliger, Julia; Kozak, Karol; Jurczyszyn, Kamil; Gerber, Hanna; Dominiak, Marzena; Kunert-Keil, Christiane

    2017-09-01

    Many types of bone substitute materials are available on the market. Researchers are refining new bone substitutes to make them comparable to autologous grafting materials in treatment of bone defects. The purpose of the study was to evaluate the osseoconductive potential and bone defect regeneration in rat calvaria bone defects treated with new synthetic nano-hydroxyapatite. The study was performed on 30 rats divided into 5 equal groups. New preproduction of experimental nano-hydroxyapatite material by NanoSynHap (Poznań, Poland) was tested and compared with commercially available materials. Five mm critical size defects were created and filled with the following bone grafting materials: 1) Geistlich Bio-Oss ® ; 2) nano-hydroxyapatite+β-TCP; 3) nano-hydroxyapatite; 4) nano-hydroxyapatite+collagen membrane. The last group served as controls without any augmentation. Bone samples from calvaria were harvested for histological and micro-ct evaluation after 8 weeks. New bone formation was observed in all groups. Histomorphometric analysis revealed an amount of regenerated bone between 34.2 and 44.4% in treated bone defects, whereas only 13.0% regenerated bone was found in controls. Interestingly, in group 3, no significant particles of the nano-HA material were found. In contrast, residual bone substitute material could be detected in all other test groups. Micro-CT study confirmed the results of the histological examinations. The new nano-hydroxyapatite provides comparable results to other grafts in the field of bone regeneration. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Progress in Tribological Properties of Nano-Composite Hard Coatings under Water Lubrication

    Directory of Open Access Journals (Sweden)

    Qianzhi Wang

    2017-02-01

    Full Text Available The tribological properties, under water-lubricated conditions, of three major nano-composite coatings, i.e., diamond-like carbon (DLC or a-C, amorphous carbon nitride (a-CNx and transition metallic nitride-based (TiN-based, CrN-based, coatings are reviewed. The influences of microstructure (composition and architecture and test conditions (counterparts and friction parameters on their friction and wear behavior under water lubrication are systematically elucidated. In general, DLC and a-CNx coatings exhibit superior tribological performance under water lubrication due to the formation of the hydrophilic group and the lubricating layer with low shear strength, respectively. In contrast, TiN-based and CrN-based coatings present relatively poor tribological performance in pure water, but are expected to present promising applications in sea water because of their good corrosion resistance. No matter what kind of coatings, an appropriate selection of counterpart materials would make their water-lubricated tribological properties more prominent. Currently, Si-based materials are deemed as beneficial counterparts under water lubrication due to the formation of silica gel originating from the hydration of Si. In the meantime, the tribological properties of nano-composite coatings in water could be enhanced at appropriate normal load and sliding velocity due to mixed or hydrodynamic lubrication. At the end of this article, the main research that is now being developed concerning the development of nano-composite coatings under water lubrication is described synthetically.

  19. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  20. Long-time evolution of a low-density ion beam

    International Nuclear Information System (INIS)

    Zachary, A.L.; Cohen, B.I.; Max, C.E.; Arons, J.

    1989-01-01

    With a new, orbit-averaged hybrid computer simulation code, we study a cold, fast low-density ion beam which propagates along the ambient magnetic field as it interacts with a much denser fluid background. We examine the character of the interactions as we vary the ion beam density relative to the background density over the range 1 x 10/sup -5/ to 3 x 10/sup -3/. The low beam density simulations may not be directly observable upstream of the Earth's bow shock, but they are included to help develop an understanding of the results seen in the simulations with high-beam density. However, our highest density simulation falls within the range of solar wind data. All the simulations, regardless of the relative beam density, show three distinct phases: (1) an early or ''linear'' phase; (2) an intermediate or ''trapping'' phase; and (3) a late or ''decorrelation'' phase. In the early phase, the beam excites a nearly monochromatic Alfven wave whose amplitude grows exponentially at a rate given by linear perturbation theory. The wave amplitude saturates when the linear growth rate is of the order of the trapping frequency

  1. Engineered electrospun poly(caprolactone)/polycaprolactone-g-hydroxyapatite nano-fibrous scaffold promotes human fibroblasts adhesion and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Keivani, F. [Biology Department, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shokrollahi, P., E-mail: p.shokrolahi@ippi.ac.ir [Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Zandi, M. [Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Irani, S. [Biology Department, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Shokrolahi, F. [Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Khorasani, S.C. [Biology Department, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Polycaprolactone (PCL)/hydroxyapatite nano-composites are among the best candidates for tissue engineering. However, interactions between nHAp and PCL are difficult to control leading to inhomogeneous dispersion of the bio-ceramic particles. Grafting of polymer chains at high density/chain length while promotes the phase compatibility may result in reduced HAp exposed surface area and therefore, bioactivity is compromised. This issue is addressed here by grafting PCL chains onto HAp nano-particles through ring opening polymerization of ε-caprolactone (PCL-g-HAp). FTIR and TGA analysis showed that PCL (6.9 wt%), was successfully grafted on the HAp. PCL/PCL-g-HAp nano-fibrous scaffold showed up to 10 and 33% enhancement in tensile strength and modulus, respectively, compared to those of PCL/HAp. The effects of HAp on the in vitro HAp formation were investigated for both the PCL/HAp and PCL/PCL-g-HAp scaffolds. Precipitation of HAp on the nano-composite scaffolds observed after 15 days incubation in simulated body fluid (SBF), as confirmed by scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). Human fibroblasts were seeded on PCL, PCL/HAp and PCL/PCL-g-HAp scaffolds. According to MTT assay, the highest cell proliferation was recorded for PCL/PCL-g-HAp nano-composite, at all time intervals (1–21 days, P < 0.001). Fluorescent microscopy (of DAPI stained samples) and electron microscopy images showed that all nano-fibrous scaffolds (PCL, PCL/HAp, and PCL/PCL-g-HAp), were non-toxic against cells, while more cell adhesion, and the most uniform cell distribution observed on the PCL/PCL-g-HAp. Overall, grafting of relatively short chains of PCL on the surface of HAp nano-particles stimulates fibroblasts adhesion and proliferation on the PCL/PCL-g-HAp nano-composite. - Highlights: • PCL chains were grafted on HAp nano-particles at relatively low density, through ROP of ε-caprolactone (PCL-g-HAp) • PCL-g-HAp featured a relatively high

  2. Effects of low-dose simvastatin on the distribution of plasma cholesterol and oxidized low-density lipoprotein in three ultra-centrifugally separated low-density lipoprotein subfractions: 12- month, open-label trial.

    Science.gov (United States)

    Homma, Yasuhiko; Michishita, Ichiro; Hayashi, Hiroshi; Shigematsu, Hiroshi

    2010-10-27

    The effects of statins on the distribution of oxidized LDL in plasma LDL subfractions have not been well defined. Effects of 12-month treatment with low-dose simvastatin on the distribution of cholesterol and oxidized LDL in 3 ultracentrifugally separated plasma LDL subfractions were compared in patients with hypercholesterolemia. Simvastatin was administered to 30 hypercholesterolemic subjects for 12 months at an initial dose of 5 mg/day, which was increased to 20 mg/day via 10mg/day to decrease plasma LDL-cholesterol (C) lower than 130 mg/dL. Simvastatin dose was fixed after 3 months of treatment. The amounts of cholesterol and oxidized LDL in 3 ultracentrifugally separated plasma LDL subfractions were compared between 0 and 12 months of treatment. The distribution of ox-LDL skewed to denser LDL fractions, compared with cholesterol in plasma LDL subfractions. Plasma cholesterol in low-density LDL, medium-density LDL and high-density LDL decreased significantly by 31%, 30%, and 25%, respectively (pLDL was decreased from 70 U/L to 56 U/L in medium-density LDL (p=0.042). Oxidized LDL in low-density LDL and high-density LDL did not change significantly after 12 months of treatment. Treatment with low-dose simvastatin decreased plasma cholesterol in 3 LDL subfractions and oxidized LDL in medium-density LDL. The decrease of oxidized LDL seemed to be not due to the decrease of cholesterol in plasma LDL subfractions because the decreasing patterns of cholesterol and ox-LDL were different in 3 LDL subfractions.

  3. Bisphophonates in CKD Patients with Low Bone Mineral Density

    Directory of Open Access Journals (Sweden)

    Wen-Chih Liu

    2013-01-01

    Full Text Available Patients with chronic kidney disease-mineral and bone disorder (CKD-MBD have a high risk of bone fracture because of low bone mineral density and poor bone quality. Osteoporosis also features low bone mass, disarranged microarchitecture, and skeletal fragility, and differentiating between osteoporosis and CKD-MBD in low bone mineral density is a challenge and usually achieved by bone biopsy. Bisphosphonates can be safe and beneficial for patients with a glomerular filtration rate of 30 mL/min or higher, but prescribing bisphosphonates in advanced CKD requires caution because of the increased possibility of low bone turnover disorders such as osteomalacia, mixed uremic osteodystrophy, and adynamic bone, even aggravating hyperparathyroidism. Therefore, bone biopsy in advanced CKD is an important consideration before prescribing bisphosphonates. Treatment also may induce hypocalcemia in CKD patients with secondary hyperparathyroidism, but vitamin D supplementation may ameliorate this effect. Bisphosphonate treatment can improve both bone mineral density and vascular calcification, but the latter becomes more unlikely in patients with stage 3-4 CKD with vascular calcification but no decreased bone mineral density. Using bisphosphonates requires considerable caution in advanced CKD, and the lack of adequate clinical investigation necessitates more studies regarding its effects on these patients.

  4. Low fasting low high-density lipoprotein and postprandial lipemia

    Directory of Open Access Journals (Sweden)

    Sorodila Konstandina

    2004-07-01

    Full Text Available Abstract Background Low levels of high density lipoprotein (HDL cholesterol and disturbed postprandial lipemia are associated with coronary heart disease. In the present study, we evaluated the variation of triglyceride (TG postprandially in respect to serum HDL cholesterol levels. Results Fifty two Greek men were divided into 2 main groups: a the low HDL group (HDL p = 0.002. The low HDL group had significantly higher TG at 4, 6 and 8 h postprandially compared to the controls (p = 0.006, p = 0.002, and p p = 0.017 compared to the matched-control group. ROC analysis showed that fasting TG ≥ 121 mg/dl have 100% sensitivity and 81% specificity for an abnormal TG response (auc = 0.962, p Conclusions The delayed TG clearance postprandially seems to result in low HDL cholesterol even in subjects with low fasting TG. The fasting TG > 121 mg/dl are predictable for abnormal response to fatty meal.

  5. Nitrogen aggregation in Ib type synthetic diamonds at low pressure and high-temperature annealing

    International Nuclear Information System (INIS)

    Kazyuchits, N.M.; Rusetskij, M.S.; Latushko, Ya.I.; Kazyuchits, V.N.; Zajtsev, A.M.

    2015-01-01

    A new technique for annealing of diamonds at low pressure and high temperature (LPHT) is considered. The absorption spectra of synthetic Ib diamonds are given before and after annealing. This is evident from a comparison of the spectra that nitrogen aggregation process takes place at the LPHT annealing diamond. (authors)

  6. Low Bone Density and Bisphosphonate Use and the Risk of Kidney Stones.

    Science.gov (United States)

    Prochaska, Megan; Taylor, Eric; Vaidya, Anand; Curhan, Gary

    2017-08-07

    Previous studies have demonstrated lower bone density in patients with kidney stones, but no longitudinal studies have evaluated kidney stone risk in individuals with low bone density. Small studies with short follow-up reported reduced 24-hour urine calcium excretion with bisphosphonate use. We examined history of low bone density and bisphosphonate use and the risk of incident kidney stone as well as the association with 24-hour calcium excretion. We conducted a prospective analysis of 96,092 women in the Nurses' Health Study II. We used Cox proportional hazards models to adjust for age, body mass index, thiazide use, fluid intake, supplemental calcium use, and dietary factors. We also conducted a cross-sectional analysis of 2294 participants using multivariable linear regression to compare 24-hour urinary calcium excretion between participants with and without a history of low bone density, and among 458 participants with low bone density, with and without bisphosphonate use. We identified 2564 incident stones during 1,179,860 person-years of follow-up. The multivariable adjusted relative risk for an incident kidney stone for participants with history of low bone density compared with participants without was 1.39 (95% confidence interval [95% CI], 1.20 to 1.62). Among participants with low bone density, the multivariable adjusted relative risk for an incident kidney stone for bisphosphonate users was 0.68 (95% CI, 0.48 to 0.98). In the cross-sectional analysis of 24-hour urine calcium excretion, the multivariable adjusted mean difference in 24-hour calcium was 10 mg/d (95% CI, 1 to 19) higher for participants with history of low bone density. However, among participants with history of low bone density, there was no association between bisphosphonate use and 24-hour calcium with multivariable adjusted mean difference in 24-hour calcium of -2 mg/d (95% CI, -25 to 20). Low bone density is an independent risk factor for incident kidney stone and is associated with

  7. Self-Passivation by Fluorine Plasma Treatment and Low-Temperature Annealing in SiGe Nano wires for Biochemical Sensors

    International Nuclear Information System (INIS)

    Chang, K.; Chen, C.; Kuo, P.; Chen, Y.; Chang, T.; Lai, C.; Whang, A. J.; Lai, Y.; Chen, H.; Hsieh, I.

    2014-01-01

    Nano wires are widely used as highly sensitive sensors for electrical detection of biological and chemical species. Modifying the band structure of strained-Si metal-oxide-semiconductor field-effect transistors by applying the in-plane tensile strain reportedly improves electron and hole mobility. The oxidation-induced Ge condensation increases the Ge fraction in a SiGe-on-insulator (SGOI) and substantially increases hole mobility. However, oxidation increases the number of surface states, resulting in hole mobility degradation. In this work, 3-aminopropyltrimethoxysilane (APTMS) was used as a biochemical reagent. The hydroxyl molecule on the oxide surface was replaced by the methoxy groups of the APTMS molecule. We proposed a surface plasma treatment to improve the electrical properties of SiGe nano wires. Fluorine plasma treatment can result in enhanced rates of thermal oxidation and speed up the formation of a self-passivation oxide layer. Like a capping oxide layer, the self-passivation oxide layer reduces the rate of follow-up oxidation. Pre oxidation treatment also improved the sensitivity of SiGe nano wires because the Si-F binding was held at a more stable interface state compared to bare nano wire on the SiGe surface. Additionally, the sensitivity can be further improved by either the N 2 plasma posttreatment or the low-temperature post annealing due to the suppression of out diffusion of Ge and F atoms from the SiGe nano wire surface.

  8. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    International Nuclear Information System (INIS)

    Cutting, R.S.; Coker, V.S.; Telling, N.D.; Kimber, R.L.; Pearce, C.I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J.R.

    2009-01-01

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe 3 O 4 powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion (∼10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a γ-camera to obtain real time images of a 99m Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more (∼20%) 99m Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral substrate supplied to Fe

  9. Optimizing Cr(VI) and Tc(VII) remediation through nano-scale biomineral engineering

    Energy Technology Data Exchange (ETDEWEB)

    Cutting, R. S.; Coker, V. S.; Telling, N. D.; Kimber, R. L.; Pearce, C. I.; Ellis, B.; Lawson, R; van der Laan, G.; Pattrick, R.A.D.; Vaughan, D.J.; Arenholz, E.; Lloyd, J. R.

    2009-09-09

    To optimize the production of biomagnetite for the bioremediation of metal oxyanion contaminated waters, the reduction of aqueous Cr(VI) to Cr(III) by two biogenic magnetites and a synthetic magnetite was evaluated under batch and continuous flow conditions. Results indicate that nano-scale biogenic magnetite produced by incubating synthetic schwertmannite powder in cell suspensions of Geobacter sulfurreducens is more efficient at reducing Cr(VI) than either biogenic nano-magnetite produced from a suspension of ferrihydrite 'gel' or synthetic nano-scale Fe{sub 3}O{sub 4} powder. Although X-ray Photoelectron Spectroscopy (XPS) measurements obtained from post-exposure magnetite samples reveal that both Cr(III) and Cr(VI) are associated with nanoparticle surfaces, X-ray Magnetic Circular Dichroism (XMCD) studies indicate that some Cr(III) has replaced octahedrally coordinated Fe in the lattice of the magnetite. Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) measurements of total aqueous Cr in the associated solution phase indicated that, although the majority of Cr(III) was incorporated within or adsorbed to the magnetite samples, a proportion ({approx}10-15 %) was released back into solution. Studies of Tc(VII) uptake by magnetites produced via the different synthesis routes also revealed significant differences between them as regards effectiveness for remediation. In addition, column studies using a {gamma}-camera to obtain real time images of a {sup 99m}Tc(VII) radiotracer were performed to visualize directly the relative performances of the magnetite sorbents against ultra-trace concentrations of metal oxyanion contaminants. Again, the magnetite produced from schwertmannite proved capable of retaining more ({approx}20%) {sup 99m}Tc(VII) than the magnetite produced from ferrihydrite, confirming that biomagnetite production for efficient environmental remediation can be fine-tuned through careful selection of the initial Fe(III) mineral

  10. Neurotoxicity of low-dose repeatedly intranasal instillation of nano- and submicron-sized ferric oxide particles in mice

    Energy Technology Data Exchange (ETDEWEB)

    Wang Bing; Feng Weiyue, E-mail: fengwy@mail.ihep.ac.cn; Zhu Motao; Wang Yun; Wang Meng [Chinese Academy of Sciences, Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics (China); Gu Yiqun [Maternity Hospital of Haidian District (China); Ouyang Hong; Wang Huajian; Li Ming; Zhao Yuliang, E-mail: zhaoyuliang@mail.ihep.ac.cn; Chai Zhifang [Chinese Academy of Sciences, Laboratory for Bio-Environmental Effects of Nanomaterials and Nanosafety and Key Laboratory of Nuclear Analytical Techniques, Institute of High Energy Physics (China); Wang Haifang [Peking University, College of Chemistry and Molecular Engineering (China)

    2009-01-15

    Olfactory tract has been demonstrated to be an important portal for inhaled solid nanoparticle transportation into the central nervous system (CNS). We have previously demonstrated that intranasally instilled Fe{sub 2}O{sub 3} nanoparticles could transport into the CNS via olfactory pathway. In this study, we investigated the neurotoxicity and size effect of repeatedly low-dose (130 {mu}g) intranasal exposure of nano- and submicron-sized Fe{sub 2}O{sub 3} particles (21 nm and 280 nm) to mice. The biomarkers of oxidative stress, activity of nitric oxide synthases and release of monoamine neurotransmitter in the brain were studied. Our results showed that significant oxidative stress was induced by the two sizes of Fe{sub 2}O{sub 3} particles. The activities of GSH-Px, Cu,Zn-SOD, and cNOS significantly elevated and the total GSH and GSH/GSSG ratio significantly decreased in the olfactory bulb and hippocampus after the nano- and submicron-sized Fe{sub 2}O{sub 3} particle treatment (p < 0.05). The nano-sized Fe{sub 2}O{sub 3} generally induced greater alteration and more significant dose-effect response than the submicron-sized particle did. Some slight perturbation of monoamine neurotransmitters were found in the hippocampus after exposure to the two sizes of Fe{sub 2}O{sub 3} particle. The TEM image showed that some ultrastructural alterations in nerve cells, including neurodendron degeneration, membranous structure disruption and lysosome increase in the olfactory bulb, slight dilation in the rough endoplasmic reticulum and lysosome increase in the hippocampus were induced by the nano-sized Fe{sub 2}O{sub 3} treatment. In contrast, in the submicron-sized Fe{sub 2}O{sub 3} treated mice, slightly swollen mitochondria and some vacuoles were observed in the olfactory bulb and hippocampus, respectively. These results indicate that intranasal exposure of Fe{sub 2}O{sub 3} nanoparticles could induce more severe oxidative stress and nerve cell damage in the brain than the

  11. Synthetic high-density lipoprotein nanodisks for targeted withalongolide delivery to adrenocortical carcinoma

    Directory of Open Access Journals (Sweden)

    Kuai R

    2017-09-01

    Full Text Available Rui Kuai,1,2,* Chitra Subramanian,3,* Peter T White,3,* Barbara N Timmermann,4 James J Moon,1,2,5 Mark S Cohen,3,6 Anna Schwendeman1,2 1Department of Pharmaceutical Sciences, College of Pharmacy, 2Biointerfaces Institute, University of Michigan, 3Department of Surgery, University of Michigan, Ann Arbor, MI, 4Department of Medicinal Chemistry, University of Kansas, Lawrence, KS, 5Department of Biomedical Engineering, 6Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA *These authors contributed equally to this work Abstract: Adrenocortical carcinoma (ACC is a rare endocrine malignancy and has a 5-year survival rate of <35%. ACC cells require cholesterol for steroid hormone production, and this requirement is met via expression on the cell surface of a high level of SRB1, responsible for the uptake of high-density lipoproteins (HDLs, which carry and transport cholesterol in vivo. Here, we describe how this natural lipid carrier function of SRB1 can be utilized to improve the tumor-targeted delivery of a novel natural product derivative – withalongolide A 4,19,27-triacetate (WGA-TA – which has shown potent antitumor efficacy, but poor aqueous solubility. Our strategy was to use synthetic HDL (sHDL nanodisks, which are effective in tumor-targeted delivery due to their smallness, long circulation half-life, documented safety, and ability to bind to SRB1. In this study, we prepared sHDL nanodisks using an optimized phospholipid composition combined with ApoA1 mimetic peptide (22A, which has previously been tested in clinical trials, to load WGA-TA. Following optimization, WGA-TA nanodisks showed drug encapsulation efficiency of 78%, a narrow particle size distribution (9.81±0.41 nm, discoid shape, and sustained drug release in phosphate buffered saline. WGA-TA-sHDL nanodisks exhibited higher cytotoxicity in the ACC cell line H295R half maximal inhibitory concentration ([IC50] 0.26±0.045 µM than free WGA-TA (IC50 0.492±0

  12. Fabrication and condensation characteristics of metallic superhydrophobic surface with hierarchical micro-nano structures

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin

    2016-05-01

    Metallic superhydrophobic surfaces have various applications in aerospace, refrigeration and other engineering fields due to their excellent water repellent characteristics. This study considers a simple but widely applicable fabrication method using a two simultaneous chemical reactions method to prepare the acid-salt mixed solutions to process the metal surfaces with surface deposition and surface etching to construct hierarchical micro-nano structures on the surface and then modify the surface with low surface-energy materials. Al-based and Cu-based superhydrophobic surfaces were fabricated using this method. The Al-based superhydrophobic surface had a water contact angle of 164° with hierarchical micro-nano structures similar to the lotus leaves. The Cu-based surface had a water contact angle of 157° with moss-like hierarchical micro-nano structures. Droplet condensation experiments were also performed on these two superhydrophobic surfaces to investigate their condensation characteristics. The results show that the Al-based superhydrophobic surface has lower droplet density, higher droplet jumping probability, slower droplet growth rate and lower surface coverage due to the more structured hierarchical structures.

  13. A review of low density porous materials used in laser plasma experiments

    Science.gov (United States)

    Nagai, Keiji; Musgrave, Christopher S. A.; Nazarov, Wigen

    2018-03-01

    This review describes and categorizes the synthesis and properties of low density porous materials, which are commonly referred to as foams and are utilized for laser plasma experiments. By focusing a high-power laser on a small target composed of these materials, high energy and density states can be produced. In the past decade or so, various new target fabrication techniques have been developed by many laboratories that use high energy lasers and consequently, many publications and reviews followed these developments. However, the emphasis so far has been on targets that did not utilize low density porous materials. This review therefore, attempts to redress this balance and endeavors to review low density materials used in laser plasma experiments in recent years. The emphasis of this review will be on aspects of low density materials that are of relevance to high energy laser plasma experiments. Aspects of low density materials such as densities, elemental compositions, macroscopic structures, nanostructures, and characterization of these materials will be covered. Also, there will be a brief mention of how these aspects affect the results in laser plasma experiments and the constrictions that these requirements put on the fabrication of low density materials relevant to this field. This review is written from the chemists' point of view to aid physicists and the new comers to this field.

  14. Functional properties of extruded nano composites based on cassava starch, polyvinyl alcohol and montmorillonite

    International Nuclear Information System (INIS)

    Debiagi, Flavia; Matsuda, Daniel K.M.; Marengo, Vitor A.; Vercelheze, Ana Elisa S.; Mali, Suzana

    2011-01-01

    The objectives of this work were to produce biodegradable trays based on cassava starch (native or modified by acid), sugarcane fibers and nano clay (sodium montmorillonite) and also to characterize the produced trays according to their density, tensile strength, X-ray diffraction and biodegradability. The trays were obtained by thermoforming into a hydraulic press coupled to a Teflon mold (18 x 23 cm) at 130 degree C/ 20 min and 100 bars of pressure. The peak related to the nano clay (2 = 7.1 o ) were not observed in XRD patterns of the trays, suggesting the formation of an exfoliated structure in the nano composite. The addition of modified starch increased tensile strength and density of the samples, and the addition of fibers and nano clays decreased the tensile strength of native and modified starch trays. The weight loss of trays was not affected by the starch type, however the addition of fibers increased the biodegradation and the addition of nano clays decreased. (author)

  15. In-vitro investigations of skin closure using diode laser and protein solder containing gold nano shells

    International Nuclear Information System (INIS)

    Nourbakhsh, M. S.; Etrati Khosroshahi, M.

    2011-01-01

    Laser tissue soldering is a new technique for repair of various tissues including the skin, liver, articular cartilage and nerves and is a promising alternative to suture. To overcome the problems of thermal damage to surrounding tissues and low laser penetration depth, some exogenous chromophores such as gold nano shells, a new class of nanoparticles consisting of a dielectric core surrounded by a thin metal shell, are used. The aims of this study were to use two different concentrations of gold nano shells as the exogenous material for skin tissue soldering and also to examine the effects of laser soldering parameters on the properties of the repaired skin. Material and Methods: Two mixtures of albumin solder and different concentrations of gold nano shells were prepared. A full thickness incision of 2*20 mm 2 was made on the surface and after placing 50 μ1 of the solder mixture on the incision, an 810 nm diode laser was used to irradiate it at different power densities. The changes of tensile strength, σt, due to temperature rise, number of scan (Ns), and scan velocity (Vs) were investigated. Results: The results showed that the tensile strength of the repaired skin increased with increasing irradiance for both gold nano shell concentrations. In addition, at constant laser irradiance (I), the tensile strength of the repaired incision increased with increasing Ns and decreasing Vs. In our case, this corresponded to σt = 1610 g/cm 2 at I ∼ 60 W cm-2, T ∼ 65 d egree C , Ns = 10 and Vs = 0.2 mms-1. Discussion and Conclusion: Gold nano shells can be used as an indocyanine green dye alterative for laser tissue soldering. Although by increasing the laser power density, the tensile strength of the repaired skin increases, an optimum power density must be considered due to the resulting increase in tissue temperature.

  16. Fracture surface analysis on nano-SiO{sub 2}/epoxy composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Rongguo [Institute of Fundamental Mechanics and Material Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Hunan 411105 (China)], E-mail: zhaorongguo@xtu.edu.cn; Luo Wenbo [Institute of Fundamental Mechanics and Material Engineering, Xiangtan University, Hunan 411105 (China); Key Laboratory of Low Dimensional Materials and Application Technology, Xiangtan University, Ministry of Education, Hunan 411105 (China)

    2008-06-15

    Fracture surface morphologies of nano-SiO{sub 2}/epoxy composite with different weight percentage of SiO{sub 2} are investigated using scanning electron microscopy. Two types of curing agent, dimethylbenzanthracene (DMBA) and methyltetrahydrophthalic anhydride (MeTHPA), are individually used for preparing the composites. It is found that the fracture surface morphology of the composite cured by DMBA shows as radial striations, which suggests a rapid brittle fracture mode, while the fracture surface morphology of the composite cured by MeTHPA shows as regularly spaced 'rib' markings, which indicates a stick-slip motion during the fracture process. Furthermore, the uniaxial tensile behavior under constant loading rate and ambient temperature are investigated. It is shown that the elastic modulus of the composite cured by DMBA firstly increases, and then decreases with the mass fraction of nano-SiO{sub 2} particles, but the elongation of the composite cured by MeTHPA is reversed with increasing fraction of nano-SiO{sub 2} particles. For nano-SiO{sub 2}/epoxy composite cured with MeTHPA that possesses a suitable fraction of nano-SiO{sub 2}, an excellent synthetic mechanical property on elastic modulus and elongation is obtained.

  17. Low-temperature oxidation effects on the morphological and structural properties of hexagonal Zn nano disks

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, R.; Villa S, G.; Rosales D, J. [Tecnologico de Estudios Superiores de Jocotitlan, Carretera Toluca-Atlacomulco Km 44.8, Jocotitlan, Estado de Mexico (Mexico); Vigueras S, E.; Hernandez L, S. [Universidad Autonoma del Estado de Mexico, Laboratorio de Investigacion y Desarrollo de Materiales Avanzados, Paseo Colon esquina Paseo Tollocan, Toluca, Estado de Mexico (Mexico); Acuna, P. [Universidad Autonoma del Estado de Mexico, Programa de Doctorado en Ciencia de Materiales, Paseo Colon esquina Paseo Tollocan, Toluca, Estado de Mexico (Mexico); Argueta V, A.; Colin B, N., E-mail: lorr810813@gmail.com [Tecnologico de Estudios Superiores de Jocotitlan, Programa de Ingenieria Mecatronica, Carretera Toluca-Atlacomulco Km 44.8, Jocotitlan, Estado de Mexico (Mexico)

    2017-11-01

    Ambient-atmosphere oxidation in the temperature range of 90-450 degrees Celsius was performed over Zn films composed by well-faceted hexagonal nano disks, which were deposited by thermal evaporation. Morphological and structural properties of oxidized Zn nano disks were studied by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering measurements. It was found that Zn nano disks keep its original shape only when they are annealed at 90 or 150 degrees Celsius. Smooth oxidation occurred only on the rectangular faces of Zn nano disks heated at 150 degrees Celsius. Thermal oxidation at 250 degrees Celsius favored growth of Zn O nano needles over the surface of the Zn nano disks. Hexagonal-shape of Zn nano disks was transformed completely into a complex morphology composed by different shaped particles, with further increase in oxidation temperature to 450 degrees Celsius. (Author)

  18. Low-temperature oxidation effects on the morphological and structural properties of hexagonal Zn nano disks

    International Nuclear Information System (INIS)

    Lopez, R.; Villa S, G.; Rosales D, J.; Vigueras S, E.; Hernandez L, S.; Acuna, P.; Argueta V, A.; Colin B, N.

    2017-01-01

    Ambient-atmosphere oxidation in the temperature range of 90-450 degrees Celsius was performed over Zn films composed by well-faceted hexagonal nano disks, which were deposited by thermal evaporation. Morphological and structural properties of oxidized Zn nano disks were studied by scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, X-ray diffraction and Raman scattering measurements. It was found that Zn nano disks keep its original shape only when they are annealed at 90 or 150 degrees Celsius. Smooth oxidation occurred only on the rectangular faces of Zn nano disks heated at 150 degrees Celsius. Thermal oxidation at 250 degrees Celsius favored growth of Zn O nano needles over the surface of the Zn nano disks. Hexagonal-shape of Zn nano disks was transformed completely into a complex morphology composed by different shaped particles, with further increase in oxidation temperature to 450 degrees Celsius. (Author)

  19. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    KAUST Repository

    Ocakoǧlu, Kasim; Joya, Khurram Saleem; Harputlu, Ersan; Tarnowska, Anna; Gryko, Daniel T.

    2014-01-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C 18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ∼120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates. © 2014 the Partner Organisations.

  20. Study of Two-Phase Heat Transfer in Nano-fluids for Nuclear Applications

    International Nuclear Information System (INIS)

    Kim, S.J.; Truong, B.; Buongiorno, J.; Hu, L.W.; Bang, I.C.

    2006-01-01

    Nano-fluids are engineered colloidal suspensions of nano-particles in a base fluid. We are investigating the two-phase heat transfer behavior of water-based nano-fluids, to evaluate their potential use in nuclear applications, including the PWR primary coolant and PWR and BWR safety systems. A simple pool boiling wire experiment shows that a significant increase in Critical Heat Flux (CHF) can be achieved at modest nano-particle concentrations. For example, the CHF increases by 50% in nano-fluids with alumina nano-particles at 0.001%v concentration. The CHF enhancement appears to correlate with the presence of a layer of nano-particles that builds up on the heated surface during nucleate boiling. A review of the prevalent Departure from Nucleate Boiling (DNB) theories suggests that an alteration of the nucleation site density (brought about by the nano-particle layer) could plausibly explain the CHF enhancement. (authors)

  1. Bilateral symmetrical low density areas in the basal ganglia

    International Nuclear Information System (INIS)

    Ugawa, Yoshikazu; Ihara, Yasuo

    1984-01-01

    We reported a case with dysarthria and gait disturbance, in which CT revealed symmetrical well-demarcated low density areas in the basal ganglia. The patient was a 43-year-old woman. Her family history and past history were not contributory. She had a little difficulty in speaking at the age of 17. Gait disturbance and micrographia appeared later. Although her expressionless face resembles to that seen in Parkinsonism, rigidity, akinesia and small-stepped gait were not present. The unclassified types of dysarthria and gait disturbance, which characterize the present case, were considered to be a kind of extrapyramidal symptoms, which were distinct from those of Parkinsonism. CT showed well demarcated low density areas predominantly in bilateral putamen. Metrizamide CT failed to show any communication between low density areas and subarachnoid spaces. To date, six cases, which presented similar clinical features and almost same CT findings as our case, were reported. (author)

  2. Physicochemical properties of synthetic nano-birnessite and its enhanced scavenging of Co{sup 2+} and Sr{sup 2+} ions from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Metwally, S.S., E-mail: sicosad@hotmail.com; Ghaly, M.; El-Sherief, E.A.

    2017-06-01

    Nano-birnessite was prepared, characterized and used for removal of cobalt and strontium ions from aqueous solutions. Scanning electron microscope and atomic force microscope images indicated that the particles of the prepared material are presented in the nano-scale form, the grain size was found in a range of 58–95 nm. Specific surface area of the prepared nano-birnessite was determined and found to be 200.54 m{sup 2}/g. The Capacities of nano-birnessite for cobalt and strontium are 2.97 and 3.04 meq/g, respectively. The kinetic studies indicated that the sorption of the two ions obeys pseudo-second-order model and controlled by an intra-particle diffusion mechanism. The diffusivity of Co{sup 2+} and Sr{sup 2+} ions onto nano-birnessite was determined and indicated that the sorption is chemisorption process. Hence, nano-birnessite material is an efficient sorbent and can be used to decrease the influx of pollutants, such as; Co{sup 2+} and Sr{sup 2+} ions to the environment or their removal from contaminated media. - Graphical abstract: 3D AFM images for nano-birnessite. - Highlights: • Nano-birnessite was prepared using sol-gel method. • It was characterized using different analytical techniques. • Sorption of cobalt and strontium ions onto nano-birnessite was investigated. • Kinetic studies and some kinetic models were tested for the sorption process. • Nano-birnessite exhibited high sorption capacity compared to other sorbents obtained in the literature.

  3. Shape-Control of a 0D/1D NaFe0.9Mn0.1PO4 Nano-Complex by Electrospinning

    Science.gov (United States)

    Shin, Mi-Ra; Son, Jong-Tae

    2018-03-01

    NaFePO4 with a maricite structure was one of the most promising candidates for sodium ion batteries (SIBs) due to its advantages of environmental friendly and having low cost. However, it has low electrochemical conductivity and energy density, which impose limitations on its application as commercial cathode materials. In this study, other transition-metal ions such as Mn2+ were substituted into the iron (Fe2+) site in NaFePO4 to increase the surface area and the number of nanofibers in the prepared one-dimensional (1D) nano-sized material with 0D/1D dimensions to enhance the energy density. Also, the 0D/1D NaFe0.9Mn0.1PO4 cathode material has increased electrochemical conductivity because the fiber size was reduced to the nano-scale level by using the electrospinning method in order to decrease the diffusion path of Na-ions. The morphology of the 0D/1D nanofiber was evaluated by Field-emission scanning electron microscope and atomic force microscope analyses. The NaFe0.9Mn0.1PO4 nanofibers had a diameter of approximately 180 nm, while the spherical particle had a diameter 1 μm. The 0D/1D nano-sized cathode material show a discharge capacity of 27 mAhg -1 at a 0.05 C rate within the 2.0 4.5 V voltage range and a low R ct of 110 Ω.

  4. High Density Nano-Electrode Array for Radiation Detection

    International Nuclear Information System (INIS)

    Misra, Mano

    2010-01-01

    Bulk single crystals of Cd 1-x Zn x Te (x=0.04 to x=0.2) compound semiconductor is used for room temperature radiation detection. The production of large volume of Cd 1-x Zn x Te with low defect density is expensive. As a result there is a growing research interest in the production of nanostructured compound semiconductors such as Cd 1-x Zn x Te in an electrochemical route. In this investigation, Cd 1-x Zn x Te ternary compound semiconductor, referred as CZT, was electrodeposited in the form of nanowires onto a TiO 2 nanotubular template from propylene carbonate as the non-aqueous electrolyte, using a pulse-reverse electrodeposition process at 130 C. The template acted as a support in growing ordered nanowire of CZT which acts as a one dimensional conductor. Cyclic Voltammogram (CV) studies were conducted in determining the potentials for the growth of nanowires of uniform stoichiometry. The morphologies and composition of CZT were characterized by using SEM, TEM and XRD. The STEM mapping carried out on the nanowires showed the uniform distribution of Cd, Zn and Te elements. TEM image showed that the nanowires were polycrystalline in nature. The Mott-Schottky analysis carried on the nanowires showed that the nanowires were a p-type semiconductor. The carrier density, band gap and resistivity of the Cd 0.9 Zn 0.1 Te nanowires were 4.29 x 10 13 cm -3 , 1.56 eV and 2.76 x 10 11 (Omega)-cm respectively. The high resistivity was attributed to the presence of deep defect states such as cadmium vacancies or Te antisites which were created by the anodic cycle of the pulse-reverse electrodeposition process. Stacks of series connected CZT nanowire arrays were tested with different bias potentials. The background current was in the order of tens of picoamperes. When exposed to radiation source Amerecium-241 (60 KeV, 4 (micro)Ci), the stacked CZT nanowires arrays showed sensing behavior. The sensitivity of the nanowire arrays increased as the number of stacks increased. The

  5. High Density Nano-Electrode Array for Radiation Detection

    Energy Technology Data Exchange (ETDEWEB)

    Mano Misra

    2010-05-07

    Bulk single crystals of Cd1-xZnxTe (x=0.04 to x=0.2) compound semiconductor is used for room temperature radiation detection. The production of large volume of Cd1-xZnxTe with low defect density is expensive. As a result there is a growing research interest in the production of nanostructured compound semiconductors such as Cd1-xZnxTe in an electrochemical route. In this investigation, Cd1-xZnxTe ternary compound semiconductor, referred as CZT, was electrodeposited in the form of nanowires onto a TiO2 nanotubular template from propylene carbonate as the non-aqueous electrolyte, using a pulse-reverse electrodeposition process at 130 ºC. The template acted as a support in growing ordered nanowire of CZT which acts as a one dimensional conductor. Cyclic Voltammogram (CV) studies were conducted in determining the potentials for the growth of nanowires of uniform stoichiometry. The morphologies and composition of CZT were characterized by using SEM, TEM and XRD. The STEM mapping carried out on the nanowires showed the uniform distribution of Cd, Zn and Te elements. TEM image showed that the nanowires were polycrystalline in nature. The Mott-Schottky analysis carried on the nanowires showed that the nanowires were a p-type semiconductor. The carrier density, band gap and resistivity of the Cd0.9Zn0.1Te nanowires were 4.29x1013 cm-3, 1.56 eV and 2.76x1011Ω-cm respectively. The high resistivity was attributed to the presence of deep defect states such as cadmium vacancies or Te antisites which were created by the anodic cycle of the pulse-reverse electrodeposition process. Stacks of series connected CZT nanowire arrays were tested with different bias potentials. The background current was in the order of tens of picoamperes. When exposed to radiation source Amerecium-241 (60 KeV, 4 μCi), the stacked CZT nanowires arrays showed sensing behavior. The sensitivity of the nanowire arrays increased as the number of stacks increased. The preliminary results indicate that the

  6. Pool boiling of water on nano-structured micro wires at sub-atmospheric conditions

    Science.gov (United States)

    Arya, Mahendra; Khandekar, Sameer; Pratap, Dheeraj; Ramakrishna, S. Anantha

    2016-09-01

    Past decades have seen active research in enhancement of boiling heat transfer by surface modifications. Favorable surface modifications are expected to enhance boiling efficiency. Several interrelated mechanisms such as capillarity, surface energy alteration, wettability, cavity geometry, wetting transitions, geometrical features of surface morphology, etc., are responsible for change in the boiling behavior of modified surfaces. Not much work is available on pool boiling at low pressures on microscale/nanoscale geometries; low pressure boiling is attractive in many applications wherein low operating temperatures are desired for a particular working fluid. In this background, an experimental setup was designed and developed to investigate the pool boiling performance of water on (a) plain aluminum micro wire (99.999 % pure) and, (b) nano-porous alumina structured aluminum micro wire, both having diameter of 250 µm, under sub-atmospheric pressure. Nano-structuring on the plain wire surface was achieved via anodization. Two samples, A and B of anodized wires, differing by the degree of anodization were tested. The heater length scale (wire diameter) was much smaller than the capillary length scale. Pool boiling characteristics of water were investigated at three different sub-atmospheric pressures of 73, 123 and 199 mbar (corresponding to T sat = 40, 50 and 60 °C). First, the boiling characteristics of plain wire were measured. It was noticed that at sub-atmospheric pressures, boiling heat transfer performance for plain wire was quite low due to the increased bubble sizes and low nucleation site density. Subsequently, boiling performance of nano-structured wires (both Sample A and Sample B) was compared with plain wire and it was noted that boiling heat transfer for the former was considerably enhanced as compared to the plain wire. This enhancement is attributed to increased nucleation site density, change in wettability and possibly due to enhanced pore scale

  7. Nano Materials

    International Nuclear Information System (INIS)

    Jin, In Ju; Lee, Ik Mo; Kwon, Yeung Gu

    2006-02-01

    This book introduces background of nano science such as summary, plenty room at the bottom, access way to nano technique, nanoparticles using bottom-up method which are a marvel of nature, and modern alchemy : chemical synthesis of artificial nano structure, understanding of quantum mechanics, STM/AFM, nano metal powder, ceramic nanoparticles, nano structure film, manufacture of nanoparticles using reverse micelle method, carbon nano tube, sol-gel material, nano energy material, nano catalyst nano bio material technology and spintronics.

  8. Scat-detection dogs survey low density moose in New York

    Science.gov (United States)

    Heidi Kretser; Michale Glennon; Alice Whitelaw; Aimee Hurt; Kristine Pilgrim; Michael Schwartz

    2016-01-01

    The difficulty of collecting occurrence and population dynamics data in mammalian populations of low density poses challenges for making informed management decisions. We assessed the use of scat-detection dogs to search for fecal pellets in a low density moose (Alces alces) population in the Adirondack Park in New York State, and the success rate of DNA...

  9. Cylindrical micelles of a POSS amphiphilic dendrimer as nano-reactors for polymerization.

    Science.gov (United States)

    Weng, Jing-Ting; Yeh, Tso-Fan; Samuel, Ashok Zachariah; Huang, Yi-Fan; Sie, Jyun-Hao; Wu, Kuan-Yi; Peng, Chi-How; Hamaguchi, Hiro-O; Wang, Chien-Lung

    2018-02-15

    A low generation amphiphilic dendrimer, POSS-AD, which has a POSS core and eight amphiphilic arms, was synthesized and used as a nano-reactor to produce well-defined polymer nano-cylinders. Confirmed by small-angle X-ray scattering (SAXS), Raman and NMR spectrometry, monodispersed cylindrical micelles that contain a hydrophilic cavity with a diameter of 2.09 nm and a length of 4.26 nm were produced via co-assembling POSS-AD with hydrophilic liquids, such as H 2 O and HEMA in hydrophobic solvents. Taking the HEMA/POSS-AD cylindrical micelles as nano-reactors, polymerization of HEMA within the micelles results in polymer nano-cylinders (POSS-ADNPs) with a diameter of 2.24 nm and a length of 5.02 nm. The study confirmed that despite the inability to maintain specific shape in solution, low generation dendrimers form well-defined nano-containers or nano-reactors, which relies on co-assembling with hydrophilic guest molecules. These nano-reactors are robust enough to maintain their shape during the polymerization of the guest molecules. Polymer nano-cylinders with dimensions less than 10 nm can thus be produced from the HEMA/POSS-AD micelles. Since the chemical structure of low-generation dendrimers and the contents of the co-assembled nano-reactors can be easily adjusted, the concept holds the potential for the further developments of low-generation amphiphilic dendrimers.

  10. Nano-technology and nano-toxicology

    OpenAIRE

    Maynard, Robert L.

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of ...

  11. Novel low temperature synthesis of spinel nano-magnesium chromites from secondary resources

    Energy Technology Data Exchange (ETDEWEB)

    El-Sheikh, S.M., E-mail: selsheikh2001@gmail.com [Nanostructured Materials Laboratory, Advanced Material Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt); Rabbah, M., E-mail: mahmoud.rabah@ymail.com [Electrochemical and Chemical Treatment Laboratory, Minerals Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt)

    2013-09-20

    Graphical abstract: FE-SEM micrograph and TEM image of magnesium chromite sample heated at 500 °C. - Highlights: • No study has been reported to prepare spinel magnesium chromite form waste resources. • Novel low synthesis temperature of magnesium chromite. • Selective removal of Ca ions from industrial waste tannery solution is rarely reported. • The method applied is simple and safe. - Abstract: A novel low temperature method for synthesis of nano-crystalline magnesium chromites from the tannery waste solution was investigated. Magnesium and chromium hydroxides gel was co-precipitated at pH 8.5 using ammonia solution. MgCr{sub 2}O{sub 4} was obtained by heating the gel formed at different temperatures 300–500 °C for to 8 h. FT-IR, TG-DTG-DTA, FE-SEM and TEM were used to investigate the produced materials. XRD patterns of the primary oxides revealed the formation of amorphous oxide phase by heating at 300 °C. Heating at 400 °C produces nano-crystallite magnesium chromites partly having the structure MgCrO{sub 4} and mainly MgCr{sub 2}O{sub 4} and traces of Cr{sub 2}O{sub 3}{sup +} 500 °C MgCrO{sub 4} mostly decomposed into MgCr{sub 2}O{sub 4} structure{sub .} After 8 h of heating at 500 °C, Cr{sub 2}O{sub 3} completely disappeared. A high surface area about 42.6 m{sup 2}/g and mesoporous structure was obtained for the produced sample at 500 °C for 8 h. A thermodynamic model has been suggested to explain the findings.

  12. Evidence-based screening for low bone mineral density in HIV-infected men.

    Science.gov (United States)

    Albright, Patsi; Du, Ping; Haas, Richard E; Pugh, Linda C

    2014-01-01

    Low bone mineral density, which leads to osteoporosis and fracture risk, is an emerging clinical problem in HIV-infected patients. Our evidence-based practice project screened a convenience sample of 225 HIV-infected men for low bone mineral density using the Osteoporosis Self-Assessment Tool, and of those men, 173 were also screened by quantitative ultrasound of the calcaneus. One hundred twelve men had low bone mineral density by either or both screening methods. Seventy-one of these 112 men were tested by dual-energy x-ray absorptiometry and 73% had low bone mineral density. The positive protective value of the Osteoporosis Self-Assessment Tool was 73% and for quantitative ultrasound was 88%. These results suggest that routine low bone mineral density screening should be included as standard practice for all HIV-infected patients. Copyright © 2014 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  13. Applications of Low Density Flow Techniques and Catalytic Recombination at the Johnson Space Center

    Science.gov (United States)

    Scott, Carl D.

    2000-01-01

    The talk presents a brief background on defInitions of catalysis and effects associated with chemically nonequilibrium and low-density flows of aerospace interest. Applications of catalytic recombination on surfaces in dissociated flow are given, including aero heating on reentry spacecraft thermal protection surfaces and reflection of plume flow on pressure distributions associated with the space station. Examples include aero heating predictions for the X-38 test vehicle, the inlet of a proposed gas-sampling probe used in high enthalpy test facilities, and a parabolic body at angle of attack. The effect of accommodation coefficients on thruster induced pressure distributions is also included. Examples of tools used include simple aero heating formulas based on boundary layer solutions, an engineering approximation that uses axisymmetric viscous shock layer flow to simulate full three dimensional flow, full computational fluid dynamics, and direct simulation Monte-Carlo calculations. Methods of determining catalytic recombination rates in arc jet flow are discus ed. An area of catalysis not fully understood is the formation of single-wall carbon nanotubes (SWNT) with gas phase or nano-size metal particles. The Johnson Space Center is making SWNTs using both a laser ablation technique and an electric arc vaporization technique.

  14. Development of Low Density, Flexible Carbon Phenolic Ablators

    Science.gov (United States)

    Stackpoole, Mairead; Thornton, Jeremy; Fan, Wendy; Covington, Alan; Doxtad, Evan; Beck, Robin; Gasch, Matt; Arnold, Jim

    2012-01-01

    Phenolic Impregnated Carbon Ablator (PICA) was the enabling TPS material for the Stardust mission where it was used as a single piece heatshield. PICA has the advantages of low density (approximately 0.27 grams per cubic centimeter) coupled with efficient ablative capability at high heat fluxes. Due to its brittle nature and low strain to failure recent efforts at NASA ARC have focused on alternative architectures to yield flexible and more conformal carbon phenolic materials with comparable densities to PICA. This presentation will discuss flexible alternatives to PICA and include preliminary mechanical and thermal properties as well as recent arc jet and LHMEL screening test results.

  15. Effect of the shape of a nano-object on quantum-size states

    International Nuclear Information System (INIS)

    Dzyuba, Vladimir; Kulchin, Yurii; Milichko, Valentin

    2012-01-01

    In this paper, we propose an original functional method that makes it easy to determine the effect of any deviation in the shape of a nano-object from the well-studied shape (e.g., spherical) on the quantum characteristics of charge localized inside the nano-object. The maximum dimension of the object is determined by the magnitude of influence of quantum-size effects on quantum states of charge, and is limited by 100 nm. This method is ideologically similar to the perturbation theory, but the perturbation of the surface shape, rather than the potential, is used. Unlike the well-known variational methods of theoretical physics, this method is based on the assumption that the physical quantity is a functional of surface shape. Using the method developed, we present the quantum-size state of charges for two different complex shapes of nano-objects. The results from analyzing the quantum-size states of charge in the nano-objects with a deformed spherical shape indicated that the shape perturbations have a larger effect on the probability density of locating a particle inside the nano-object than on the surface energy spectrum and quantum density of the states.

  16. Sampling low-density gypsy moth populations

    Science.gov (United States)

    William E. Wallner; Clive G. Jones; Joseph S. Elkinton; Bruce L. Parker

    1991-01-01

    The techniques and methodology for sampling gypsy moth, Lymantria dispar L., at low densities, less than 100 egg masses/ha (EM/ha), are compared. Forest managers have constraints of time and cost, and need a useful, simple predictable means to assist them in sampling gypsy moth populations. A comparison of various techniques coupled with results of...

  17. Carbon nano tubes embedded in polymer nano fibers

    International Nuclear Information System (INIS)

    Dror, Y.; Kedem, S.; Khalfin, R.L.; Paz, Y.; Cohenl, Y.; Salalha, Y.; Yarin, A.L.; Zussman, A.

    2004-01-01

    Full Text: The electro spinning process was used successfully to embed Multi-walled carbon nano tubes (MWCNTs) and single-walled carbon nano tubes (SWCNTs) in a matrix of poly(ethylene oxide) (PEO) forming composite nano fibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphphilic alternating copolymer of styrene and sodium maleate. MWNT dispersion was achieved by ionic and nonionic surfactants. The distribution and conformation of the nano tubes in the nano fibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nano tubes within the nano fibers to facilitate direct observation. Nano tube alignment within the nano fibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nano tubes were embedded in a straight and aligned form while entangled non-separated nano tubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electro spun nano fibers with embedded SWCNTs, whereas incorporation of MVCNTs had a detrimental effect on the polymer orientation. Composite polymer nano fibers containing dispersed phases of nanometric TiO 2 particles and MWCNTs were also prepared electro spinning. In this case, the polymer matrix was poly(acrylonitrile) (PAN). The morphology and possible applications of these composite nano fibers will be discussed

  18. Synthetic Microwave Imaging Reflectometry diagnostic using 3D FDTD Simulations

    Science.gov (United States)

    Kruger, Scott; Jenkins, Thomas; Smithe, David; King, Jacob; Nimrod Team Team

    2017-10-01

    Microwave Imaging Reflectometry (MIR) has become a standard diagnostic for understanding tokamak edge perturbations, including the edge harmonic oscillations in QH mode operation. These long-wavelength perturbations are larger than the normal turbulent fluctuation levels and thus normal analysis of synthetic signals become more difficult. To investigate, we construct a synthetic MIR diagnostic for exploring density fluctuation amplitudes in the tokamak plasma edge by using the three-dimensional, full-wave FDTD code Vorpal. The source microwave beam for the diagnostic is generated and refelected at the cutoff surface that is distorted by 2D density fluctuations in the edge plasma. Synthetic imaging optics at the detector can be used to understand the fluctuation and background density profiles. We apply the diagnostic to understand the fluctuations in edge plasma density during QH-mode activity in the DIII-D tokamak, as modeled by the NIMROD code. This work was funded under DOE Grant Number DE-FC02-08ER54972.

  19. Nano-islands Based Charge Trapping Memory: A Scalability Study

    KAUST Repository

    Elatab, Nazek; Saadat, Irfan; Saraswat, Krishna; Nayfeh, Ammar

    2017-01-01

    Zinc-oxide (ZnO) and zirconia (ZrO2) metal oxides have been studied extensively in the past few decades with several potential applications including memory devices. In this work, a scalability study, based on the ITRS roadmap, is conducted on memory devices with ZnO and ZrO2 nano-islands charge trapping layer. Both nano-islands are deposited using atomic layer deposition (ALD), however, the different sizes, distribution and properties of the materials result in different memory performance. The results show that at the 32-nm node charge trapping memory with 127 ZrO2 nano-islands can provide a 9.4 V memory window. However, with ZnO only 31 nano-islands can provide a window of 2.5 V. The results indicate that ZrO2 nano-islands are more promising than ZnO in scaled down devices due to their higher density, higher-k, and absence of quantum confinement effects.

  20. Nano-islands Based Charge Trapping Memory: A Scalability Study

    KAUST Repository

    Elatab, Nazek

    2017-10-19

    Zinc-oxide (ZnO) and zirconia (ZrO2) metal oxides have been studied extensively in the past few decades with several potential applications including memory devices. In this work, a scalability study, based on the ITRS roadmap, is conducted on memory devices with ZnO and ZrO2 nano-islands charge trapping layer. Both nano-islands are deposited using atomic layer deposition (ALD), however, the different sizes, distribution and properties of the materials result in different memory performance. The results show that at the 32-nm node charge trapping memory with 127 ZrO2 nano-islands can provide a 9.4 V memory window. However, with ZnO only 31 nano-islands can provide a window of 2.5 V. The results indicate that ZrO2 nano-islands are more promising than ZnO in scaled down devices due to their higher density, higher-k, and absence of quantum confinement effects.

  1. The effects of carbon nano filaments (CNT and CNF) doping on high temperature superconductors Y-123

    International Nuclear Information System (INIS)

    Dadras, S.; Daadmehr, V.

    2007-01-01

    Full text: This paper is based on the effects of carbon nano filaments (carbon nano tubes and carbon nano fibers) doping on Y-123 studies. We synthesized Y-123 with different contents of CNT and CNF doping. The samples were prepared from powders of Y 2 O 3 , BaCO 3 and Cu O by the solid state reaction. After calcination in air, we mixed Y-123 powder with different percentage of carbon nano filaments weight, produced by the CVD method. For obtaining more homogenous mixing, we have suspended it in an organic solvent with an ultrasonic mixer to prevent agglomeration of CNT. The CNT-Y-123 powder was dried afterwards, and pressed as pellet samples, in about 1mm thick, 10mm diameter, and 1gr weight, and sintered in oxygen atmosphere. We tried to find the transport effects on CNT and CNF doping in 123 systems. The strong coupling between grains in CNT doped samples caused the flow of inter-granular currents. Therefore the presence of CNT in high temperature superconductor samples increases the critical current density. Among various carbon precursors, carbon nano tubes (CNT) are very interesting because of their nano meter diameter which may make them as effective pinning centers, compared to the ordinary carbon. The carbon nano tubes are functioning like columnar defects produced by heavy-ion irradiation. Nano phase particles or aggregates embodied in the superconductor matrix can pin the flux lines effectively and enhance the intra-grain transport critical current density in high applied magnetic fields. Nano phase size particles in the size range of about 5-10 nm can be used as flux pinning centers for low field applications. The effects of carbon and carbon dioxide in Y-123 were studied by several groups, but none of them argued the effects of carbon nano tubes doping on Y-123. Uno et al. found that Jc was related to the carbon concentration, but they showed that Tc value and other physical properties did not change. In carbon doped Y-123 samples, Tc decreases with

  2. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  3. Low Density Symmetry Energy Effects and the Neutron Star Crust Properties

    International Nuclear Information System (INIS)

    Kubis, S.; Alvarez-Castillo, D.E.; Porebska, J.

    2010-01-01

    The form of the nuclear symmetry energy E s around saturation point density leads to a different crust-core transition point in the neutron star and affects the crust properties. We show that the knowledge of E s close to the saturation point is not sufficient to determine the position of the transition point and the very low density behaviour is required. We also claim that crust properties are strongly influenced by the very high density behaviour of E s , so in order to conclude about the form of low density part of the symmetry energy from astrophysical data one must isolate properly the high density part. (authors)

  4. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst.

    Science.gov (United States)

    Wang, Peng; Dimitrijevic, Nada M; Chang, Angela Y; Schaller, Richard D; Liu, Yuzi; Rajh, Tijana; Rozhkova, Elena A

    2014-08-26

    Photocatalytic production of clean hydrogen fuels using water and sunlight has attracted remarkable attention due to the increasing global energy demand. Natural and synthetic dyes can be utilized to sensitize semiconductors for solar energy transformation using visible light. In this study, reduced graphene oxide (rGO) and a membrane protein bacteriorhodopsin (bR) were employed as building modules to harness visible light by a Pt/TiO2 nanocatalyst. Introduction of the rGO boosts the nano-bio catalyst performance that results in hydrogen production rates of approximately 11.24 mmol of H2 (μmol protein)(-1) h(-1). Photoelectrochemical measurements show a 9-fold increase in photocurrent density when TiO2 electrodes were modified with rGO and bR. Electron paramagnetic resonance and transient absorption spectroscopy demonstrate an interfacial charge transfer from the photoexcited rGO to the semiconductor under visible light.

  5. Modeling of branching density and branching distribution in low-density polyethylene polymerization

    NARCIS (Netherlands)

    Kim, D.M.; Iedema, P.D.

    2008-01-01

    Low-density polyethylene (ldPE) is a general purpose polymer with various applications. By this reason, many publications can be found on the ldPE polymerization modeling. However, scission reaction and branching distribution are only recently considered in the modeling studies due to difficulties

  6. IMPROVING GLOBALlAND30 ARTIFICIAL TYPE EXTRACTION ACCURACY IN LOW-DENSITY RESIDENTS

    Directory of Open Access Journals (Sweden)

    L. Hou

    2016-06-01

    Full Text Available GlobalLand 30 is the first 30m resolution land cover product in the world. It covers the area within 80°N and 80°S. There are ten classes including artificial cover, water bodies, woodland, lawn, bare land, cultivated land, wetland, sea area, shrub and snow,. The TM imagery from Landsat is the main data source of GlobalLand 30. In the artificial surface type, one of the omission error happened on low-density residents’ part. In TM images, hash distribution is one of the typical characteristics of the low-density residents, and another one is there are a lot of cultivated lands surrounded the low-density residents. Thus made the low-density residents part being blurred with cultivated land. In order to solve this problem, nighttime light remote sensing image is used as a referenced data, and on the basis of NDBI, we add TM6 to calculate the amount of surface thermal radiation index TR-NDBI (Thermal Radiation Normalized Difference Building Index to achieve the purpose of extracting low-density residents. The result shows that using TR-NDBI and the nighttime light remote sensing image are a feasible and effective method for extracting low-density residents’ areas.

  7. Brightness enhancement of plasma ion source by utilizing anode spot for nano applications

    International Nuclear Information System (INIS)

    Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S.; Kim, Yoon-Jae; Park, Man-Jin; Moon, Dae Won

    2012-01-01

    Anode spots are known as additional discharges on positively biased electrode immersed in plasmas. The anode spot plasma ion source (ASPIS) has been investigated as a high brightness ion source for nano applications such as focused ion beam (FIB) and nano medium energy ion scattering (nano-MEIS). The generation of anode spot is found to enhance brightness of ion beam since the anode spot increases plasma density near the extraction aperture. Brightness of the ASPIS has been estimated from measurement of emittance for total ion beam extracted through sub-mm aperture. The ASPIS is installed to the FIB system. Currents and diameters of the focused beams with/without anode spot are measured and compared. As the anode spot is turned on, the enhancement of beam current is observed at fixed diameter of the focused ion beam. Consequently, the brightness of the focused ion beam is enhanced as well. For argon ion beam, the maximum normalized brightness of 12 300 A/m 2 SrV is acquired. The ASPIS is applied to nano-MEIS as well. The ASPIS is found to increase the beam current density and the power efficiency of the ion source for nano-MEIS. From the present study, it is shown that the ASPIS can enhance the performance of devices for nano applications.

  8. The nanorod approach: GaN NanoLEDs for solid state lighting

    Energy Technology Data Exchange (ETDEWEB)

    Waag, Andreas; Wang, Xue; Fuendling, Soenke; Ledig, Johannes; Erenburg, Milena; Neumann, Richard; Al Suleiman, Mohamed; Merzsch, Stephan; Wei, Jiandong; Li, Shunfeng; Wehmann, Hergo H. [Institut fuer Halbleitertechnik, TU Braunschweig, Hans-Sommer-Strasse 66, 38106 Braunschweig (Germany); Bergbauer, Werner; Strassburg, Martin [OSRAM Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Trampert, Achim; Jahn, Uwe; Riechert, Henning [Paul-Drude-Institut fuer Festkoerperelektronik, Hausvogteiplatz 5-7, 10117 Berlin (Germany)

    2011-07-15

    Vertically aligned GaN nanorods have recently obtained substantial interest as a new approach to solid state lighting. In comparison to conventional planar LEDs, 3D NanoLEDs are expected to offer substantial advantageous: very low defect density, quasi free-standing, no strain due to mismatch of thermal expansion coefficients, no substrate bending even when grown on large area silicon. Core-shell strategies are another very interesting aspect. The active LED surface per wafer could be increased by more than one order of magnitude. However, most of these advantages have not yet been proven in real devices, which would include a quantitative comparison of light emission. Related to the 3D character, there are also technological risks. In the following we will discuss the main developments which have paved the way up to this point, including a detailed discussion of possible benefits and risks connected with the NanoLED approach (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Reactive evaporation of low-defect density hafnia

    International Nuclear Information System (INIS)

    Chow, R.; Falabella, S.; Loomis, G.E.; Rainer, F.; Stolz, C.J.; Kozlowski, M.R.

    1993-01-01

    Motivation for this work includes observations at Lawrence Livermore National Laboratory of a correlation between laser damage thresholds and both the absorption and the nodular-defect density of coatings. Activated oxygen is used to increase the metal-oxidation kinetics at the coated surface during electron-beam deposition. A series of hafnia layers are made with various conditions: two μ-wave configuations, two sources (hafnium and hafnia), and two reactive oxygen pressures. Laser damage thresholds (1064-nm, 10-ns pulses), absorption (at 511 nm), and nodular-defect densities from these coatings are reported. The damage thresholds are observed to increase as the absorption of the coatings decreases. However, no significant increase in damage thresholds are observed with the coatings made from a low nodular-defect density source material (hafnium). Hafnia coatings can be made from hafnium sources that have lower nodular-defect densities, lower absorption, and damage thresholds that are comparable with coatings made from a conventional hafnia source

  10. Nano tubular Transition Metal Oxide for Hydrogen Production

    International Nuclear Information System (INIS)

    Sreekantan, S.; San, E.P.; Kregvirat, W.; Wei, L.C.

    2011-01-01

    TiO 2 , transition metal oxide nano tubes were successfully grown by anodizing of titanium foil (Ti) in ethylene glycol electrolyte containing 5wt. % hydrogen peroxide and 5wt. % ammonium fluoride for 60 minutes at 60V. It was found such electrochemical condition resulted in the formation of nano tube with average diameter of 90nm and length of 6.6 μm. These samples were used to study the effect of W loading by RF sputtering on TiO 2 nano tubes. Amorphous TiO 2 nano tube substrate leads to enhance incorporation of W instead of anatase. Therefore for the entire study, W was sputtered on amorphous TiO 2 nano tube substrate. TiO 2 nano tube sputtered for 1 minute resulted in the formation of W-O-Ti while beyond this point (10 minutes); it accumulates to form a self independent structure of WO 3 on the surface of the nano tubes. TiO 2 nano tube sputtered for 1 minute at 150 W and annealed at 450 degree Celsius exhibited best photocurrent density (1.4 mA/ cm 2 ) with photo conversion efficiency of 2.5 %. The reason for such behavior is attributed to W 6+ ions allows for electron traps that suppress electron hole recombination and exploit the lower band gap of material to produce a water splitting process by increasing the charge separation and extending the energy range of photoexcitation for the system. (author)

  11. Low Density Solvent-Based Dispersive Liquid-Liquid Microextraction for the Determination of Synthetic Antioxidants in Beverages by High-Performance Liquid Chromatography

    Science.gov (United States)

    Çabuk, Hasan; Köktürk, Mustafa

    2013-01-01

    A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries. PMID:23853535

  12. Low Density Solvent-Based Dispersive Liquid-Liquid Microextraction for the Determination of Synthetic Antioxidants in Beverages by High-Performance Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Hasan Çabuk

    2013-01-01

    Full Text Available A simple and efficient method was established for the determination of synthetic antioxidants in beverages by using dispersive liquid-liquid microextraction combined with high-performance liquid chromatography with ultraviolet detection. Butylated hydroxy toluene, butylated hydroxy anisole, and tert-butylhydroquinone were the antioxidants evaluated. Experimental parameters including extraction solvent, dispersive solvent, pH of sample solution, salt concentration, and extraction time were optimized. Under optimal conditions, the extraction recoveries ranged from 53 to 96%. Good linearity was observed by the square of correlation coefficients ranging from 0.9975 to 0.9997. The relative standard deviations ranged from 1.0 to 5.2% for all of the analytes. Limits of detection ranged from 0.85 to 2.73 ng mL−1. The method was successfully applied for determination of synthetic antioxidants in undiluted beverage samples with satisfactory recoveries.

  13. Evaluation of Fused Synthetic and Enhanced Vision Display Concepts for Low-Visibility Approach and Landing

    Science.gov (United States)

    Bailey, Randall E.; Kramer, Lynda J.; Prinzel, Lawrence J., III; Wilz, Susan J.

    2009-01-01

    NASA is developing revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next generation air transportation system. A piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck during low-visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. Improvements in lateral path control performance were realized when the Head-Up Display concepts included a tunnel, independent of the imagery (enhanced vision or fusion of enhanced and synthetic vision) presented with it. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were neither improved nor adversely impacted by the display concepts. The addition of Enhanced Vision may not, of itself, provide an improvement in runway incursion detection without being specifically tailored for this application.

  14. Cell characteristics of FePt nano-dot memories with a high-k Al2O3 blocking oxide

    International Nuclear Information System (INIS)

    Lee, Gae Hun; Lee, Jung Min; Yang, Hyung Jun; Song, Yun Heub; Bea, Ji Cheol; Tanaka, Testsu

    2012-01-01

    The cell characteristics of an alloy FePt nano-dot (ND) charge trapping memory with a high-k dielectric as a blocking oxide was investigated. Adoption of a high-k Al 2 O 3 material as a blocking oxide for the metal nano-dot memory provided a superior scaling of the operation voltage compared to silicon oxide under a similar gate leakage level. For the 40-nm-thick high-k (Al 2 O 3 ) blocking oxide, we confirmed an operation voltage reduction of ∼7 V under the same memory window on for silicon dioxide. Also, this device showed a large memory window of 7.8 V and a low leakage current under 10 -10 A in an area of Φ 0.25 mm. From these results, the use of a dielectric (Al 2 O 3 ) as a blocking oxide for a metal nano-dot device is essential, and a metal nano-dot memory with a high-k dielectric will be one of the candidates for a high-density non-volatile memory device.

  15. A graded nano-TiN coating on biomedical Ti alloy: Low friction coefficient, good bonding and biocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Wenfang [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819 (China); Qin, Gaowu, E-mail: qingw@smm.neu.edu.cn [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819 (China); Duan, Jingzhu; Wang, Huan [Spinal surgery, Shengjing Hospital, China Medical University, Shenyang 110004 (China)

    2017-02-01

    In order to solve wear resistance of Ti alloy biomaterials, the concept of a graded nano-TiN coating has been proposed. The coating was prepared on Ti-6Al-4V bio-alloy by DC reactive magnetron sputtering. The wear performance of the coated specimens was measured in Hank's solution under the load of 10 N, and the biocompatibility was evaluated according to ISO-10993-4 standard. The results show that the gradient coating exhibits a gradual change in compositions and microstructures along the direction of film growth. Nano-TiN with the size of several to dozens nanometers and Ti{sub 4}N{sub 3−x} transitional phase with variable composition form a graded composite structure, which significantly improves adhesion strength (L{sub c1} = 80 N, L{sub c2} = 120 N), hardness (21 GPa) and anti-wear performance (6.2 × 10{sup −7} mm{sup 3}/Nm). The excellent bonding and wear resistance result from a good match of mechanical properties at substrate/coating interface and the strengthening and toughening effects of the nanocrystalline composite. The nano-TiN coating has also been proved to have good biocompatibility through in-vitro cytotoxicity, hemocompatibility and general toxicity tests. And thus, the proposed graded nano-TiN coating is a good candidate improving wear resistance of many implant medical devices. - Highlights: • A graded nano-TiN coating was prepared on biomedical Ti alloy by PVD. • The combination of hard and soft phase increases hardness and toughness. • The coating exhibits high bonding, low coefficient of friction and wear rate. • The new coating has good bio-safety and great clinical application prospect.

  16. Refractory Coated/Lined Low Density Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses the development of refractory coated or lined low density structures applicable for advanced future propulsion system technologies. The...

  17. Low bone mineral density in noncholestatic liver cirrhosis: prevalence, severity and prediction

    Directory of Open Access Journals (Sweden)

    Figueiredo Fátima Aparecida Ferreira

    2003-01-01

    Full Text Available BACKGROUND: Metabolic bone disease has long been associated with cholestatic disorders. However, data in noncholestatic cirrhosis are relatively scant. AIMS: To determine prevalence and severity of low bone mineral density in noncholestatic cirrhosis and to investigate whether age, gender, etiology, severity of underlying liver disease, and/or laboratory tests are predictive of the diagnosis. PATIENTS/METHODS: Between March and September/1998, 89 patients with noncholestatic cirrhosis and 20 healthy controls were enrolled in a cross-sectional study. All subjects underwent standard laboratory tests and bone densitometry at lumbar spine and femoral neck by dual X-ray absorptiometry. RESULTS: Bone mass was significantly reduced at both sites in patients compared to controls. The prevalence of low bone mineral density in noncholestatic cirrhosis, defined by the World Health Organization criteria, was 78% at lumbar spine and 71% at femoral neck. Bone density significantly decreased with age at both sites, especially in patients older than 50 years. Bone density was significantly lower in post-menopausal women patients compared to pre-menopausal and men at both sites. There was no significant difference in bone mineral density among noncholestatic etiologies. Lumbar spine bone density significantly decreased with the progression of liver dysfunction. No biochemical variable was significantly associated with low bone mineral density. CONCLUSIONS: Low bone mineral density is highly prevalent in patients with noncholestatic cirrhosis. Older patients, post-menopausal women and patients with severe hepatic dysfunction experienced more advanced bone disease. The laboratory tests routinely determined in patients with liver disease did not reliably predict low bone mineral density.

  18. Analysis of compaction shock interactions during DDT of low density HMX

    Science.gov (United States)

    Rao, Pratap T.; Gonthier, Keith A.

    2017-01-01

    Deflagration-to-Detonation Transition (DDT) in confined, low density granular HMX occurs by a complex mechanism that involves compaction shock interactions within the material. Piston driven DDT experiments indicate that detonation is abruptly triggered by the interaction of a strong combustion-supported secondary shock and a piston-supported primary (input) shock, where the nature of the interaction depends on initial packing density and primary shock strength. These interactions influence transition by affecting dissipative heating within the microstructure during pore collapse. Inert meso-scale simulations of successive shock loading of low density HMX are performed to examine how dissipation and hot-spot formation are affected by the initial density, and the primary and secondary shock strengths. This information is used to formulate an ignition and burn model for low density HMX that accounts for the effect of shock densensitization on burn. Preliminary DDT predictions are presented that illustrate how primary shock strength affects the transition mechanism.

  19. Formation of low charge state ions of synthetic polymers using quaternary ammonium compounds.

    Science.gov (United States)

    Nasioudis, Andreas; Joyce, William F; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F

    2010-07-01

    Factors such as high polymer dispersity and variation in elemental composition (of copolymers) often complicate the electrospray ionization mass spectrometry (ESI-MS) analysis of synthetic polymers with high molar mass. In the experiments described in this study, quaternary ammonium compounds were observed to facilitate the production of low charge state pseudomolecular ions when added to the spray solution for ESI-MS. This approach was then used for the ESI time-of-flight mass spectrometry (TOF-MS) analysis of synthetic polymers. Hexadecyltrimethylammonium chloride permitted the successful analysis of poly(ethylene glycol) of 2-40 kDa, poly(propylene glycol) and poly(tetramethylene glycol) oligomers. Increasing the quaternary ammonium compounds' concentration results in the production of low charge state pseudomolecular ions. A comparison of structurally different quaternary ammonium compounds showed that the best performance is expected from large molecules with specific charge localization, which leaves the charge available for interactions. The applicability of the method for the MS analysis of other polymeric systems was also studied. In the case of poly(tetramethylene glycol), the method not only shifted the distributions to higher m/z values but also allowed the detection of high molecular weight material that was not observed without addition of the modifier to the spray solution.

  20. Layer-by-Layer Assembly of Biopolyelectrolytes onto Thermo/pH-Responsive Micro/Nano-Gels

    Directory of Open Access Journals (Sweden)

    Ana M. Díez-Pascual

    2014-11-01

    Full Text Available This review deals with the layer-by-layer (LbL assembly of polyelectrolyte multilayers of biopolymers, polypeptides (i.e., poly-l-lysine/poly-l-glutamic acid and polysaccharides (i.e., chitosan/dextran sulphate/sodium alginate, onto thermo- and/or pH-responsive micro- and nano-gels such as those based on synthetic poly(N-isopropylacrylamide (PNIPAM and poly(acrylic acid (PAA or biodegradable hyaluronic acid (HA and dextran-hydroxyethyl methacrylate (DEX-HEMA. The synthesis of the ensembles and their characterization by way of various techniques is described. The morphology, hydrodynamic size, surface charge density, bilayer thickness, stability over time and mechanical properties of the systems are discussed. Further, the mechanisms of interaction between biopolymers and gels are analysed. Results demonstrate that the structure and properties of biocompatible multilayer films can be finely tuned by confinement onto stimuli-responsive gels, which thus provides new perspectives for biomedical applications, particularly in the controlled release of biomolecules, bio-sensors, gene delivery, tissue engineering and storage.

  1. Oxidation of nano-reinforced polyolefins

    International Nuclear Information System (INIS)

    Gutierrez Castro, G.G.

    2010-11-01

    Nano-composite materials attract search due to their improvements on barrier properties by incorporating low level of nano-filler of 5%w. Nowadays, organically modified montmorillonite (MMT-O) is the most used filler due to its high aspect ratio which permits stronger clay/polymer interactions. If nano-reinforced materials are highly performing, the ways in which clay presence affects polyolefin durability have not being subject of a rigorous study, thus they are not yet clear. Our goal was to examine unstabilized clay polypropylene and unstabilized clay polyethylene nano composites to get a better comprehension of the clay effects on their thermo-oxidation process under low temperatures. The effects induced by a dual physic-chemical nature of the clay were explored. The problem was tackled from both experimental and theoretical point of views for degradation process not controlled and controlled by oxygen diffusion (homogenous and heterogeneous respectively). It seems that MMT-O speeds up oxidation. This phenomenon was modeled by adding a catalytic reaction between metallic particles initially present in the MMT-O and hydroperoxide groups (main responsible of oxidation). Regarding the oxygen permeability two situations were confronted: for the clay polypropylene system a decrease of 45% of oxygen permeability was measured. On the other hand, no variation was found for the polyethylene case. This effect was attributed to the fact that polyethylene nano-composite reached a blend morphology less developed than those of the polypropylene nano-composite. Kinetics and oxidation products profiles across the sample thickness were simulated for both systems by coupling oxidation reactions with oxygen diffusion equations. For the polyethylene case, the effects induced by oxidation on molar mass and crystalline morphology were also simulated. Finally, based on a structure-property relationship, simulations of mechanic modulus profiles were performed for the heterogeneous

  2. Novel aluminum near field transducer and highly integrated micro-nano-optics design for heat-assisted ultra-high-density magnetic recording

    International Nuclear Information System (INIS)

    Miao, Lingyun; Hsiang, Thomas Y; Stoddart, Paul R

    2014-01-01

    Heat-assisted magnetic recording (HAMR) has attracted increasing attention as one of the most promising future techniques for ultra-high-density magnetic recording beyond the current limit of 1 Tb in −2 . Localized surface plasmon resonance plays an important role in HAMR by providing a highly focused optical spot for heating the recording medium within a small volume. In this work, we report an aluminum near-field transducer (NFT) based on a novel bow-tie design. At an operating wavelength of 450 nm, the proposed transducer can generate a 35 nm spot size inside the magnetic recording medium, corresponding to a recording density of up to 2 Tb in −2 . A highly integrated micro-nano-optics design is also proposed to ensure process compatibility and corrosion-resistance of the aluminum NFT. Our work has demonstrated the feasibility of using aluminum as a plasmonic material for HAMR, with advantages of reduced cost and improved efficiency compared to traditional noble metals. (paper)

  3. FINAL REPORT: Room Temperature Hydrogen Storage in Nano-Confined Liquids

    Energy Technology Data Exchange (ETDEWEB)

    VAJO, JOHN

    2014-06-12

    experiments. Overall, the combined experimental measurements and simulations indicate that hydrogen storage based on enhanced solubility in nano-confined liquids is unlikely to meet the storage densities required for practical use. Only low gravimetric capacities of < 0.5 wt% were achieved. More importantly, solvent filled scaffolds had lower volumetric capacities than corresponding empty scaffolds. Nevertheless, several of the composites measured did show significant (>~ 5x) enhanced hydrogen solubility relative to bulk solvent solubility, when the hydrogen capacity was attributed only to dissolution in the confined solvent. However, when the hydrogen capacity was compared to an empty scaffold that is known to store hydrogen by surface adsorption on the scaffold walls, including the solvent always reduced the hydrogen capacity. For the best composites, this reduction relative to an empty scaffold was ~30%; for the worst it was ~90%. The highest capacities were obtained with the largest solvent molecules and with scaffolds containing 3- dimensionally confined pore geometries. The simulations suggested that the capacity of the composites originated from hydrogen adsorption on the scaffold pore walls at sites not occupied by solvent molecules. Although liquid solvent filled the pores, not all of the adsorption sites on the pore walls were occupied due to restricted motion of the solvent molecules within the confined pore space.

  4. Facile fabrication of super-hydrophobic nano-needle arrays via breath figures method.

    Science.gov (United States)

    Kim, Jiseok; Lew, Brian; Kim, Woo Soo

    2011-12-06

    Super-hydrophobic surfaces which have been fabricated by various methods such as photolithography, chemical treatment, self-assembly, and imprinting have gained enormous attention in recent years. Especially 2D arrays of nano-needles have been shown to have super-hydrophobicity due to their sharp surface roughness. These arrays can be easily generated by removing the top portion of the honeycomb films prepared by the breath figures method. The hydrophilic block of an amphiphilic polymer helps in the fabrication of the nano-needle arrays through the production of well-ordered honeycomb films and good adhesion of the film to a substrate. Anisotropic patterns with water wettability difference can be useful for patterning cells and other materials using their selective growth on the hydrophilic part of the pattern. However, there has not been a simple way to generate patterns with highly different wettability. Mechanical stamping of the nano-needle array with a polyurethane stamp might be the simplest way to fabricate patterns with wettability difference. In this study, super-hydrophobic nano-needle arrays were simply fabricated by removing the top portion of the honeycomb films. The maximum water contact angle obtained with the nano-needle array was 150°. By controlling the pore size and the density of the honeycomb films, the height, width, and density of nano-needle arrays were determined. Anisotropic patterns with different wettability were fabricated by simply pressing the nano-needle array at ambient temperature with polyurethane stamps which were flexible but tough. Mechanical stamping of nano-needle arrays with micron patterns produced hierarchical super-hydrophobic structures.PACS: 05.70.Np, 68.55.am, 68.55.jm.

  5. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  6. Functional properties of extruded nano composites based on cassava starch, polyvinyl alcohol and montmorillonite

    International Nuclear Information System (INIS)

    Debiagi, Flavia; Mali, Suzana

    2011-01-01

    The objectives of this work were to produce expanded nano composites (foams) based on starch, PVA and sodium montmorillonite and characterize them according to their expansion index (EI), density, water absorption capacity (WSC), mechanical properties and X-ray diffraction. The nano composites were prepared in a single-screw extruder using different starch contents (97.6 - 55.2 g/100 g formulation), PVA (0 - 40 g/100 g formulation), unmodified nano clay - Closite - Na (0 - 4. 8 g/100 g formulation) and glycerol (20 g/100 g formulation) as plasticizer. The addition of montmorillonite and PVA resulted in an increase of EI and a decrease of density of the samples, and reduced WSC and increased the mechanical strength of the foams. Through the analysis of X-ray diffraction can be observed that the addition of montmorillonite led to production of intercalated nano composites in all samples. (author)

  7. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    Directory of Open Access Journals (Sweden)

    R. Senthilkumar

    2015-01-01

    Full Text Available Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014 alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM and Transmission Electron Microscope (TEM images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  8. Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors

    Science.gov (United States)

    Zhi, Mingjia; Manivannan, Ayyakkannu; Meng, Fanke; Wu, Nianqiang

    2012-06-01

    This paper presents highly conductive carbon nanofiber/MnO2 coaxial cables in which individual electrospun carbon nanofibers are coated with an ultrathin hierarchical MnO2 layer. In the hierarchical MnO2 structure, an around 4 nm thick sheath surrounds the carbon nanofiber (CNF) in a diameter of 200 nm, and nano-whiskers grow radically outward from the sheath in view of the cross-section of the coaxial cables, giving a high specific surface area of MnO2. The CNFs are synthesized by electrospinning a precursor containing iron acetylacetonate (AAI). The addition of AAI not only enlarges the specific surface area of the CNF but also greatly enhances their electronic conductivity, which leads to a dramatic improvement in the specific capacitance and the rate capability of the CNF/MnO2 electrode. The AAI-CNF/MnO2 electrode shows a specific capacitance of 311 F g-1 for the whole electrode and 900 F g-1 for the MnO2 shell at a scan rate of 2 mV s-1. Good cycling stability, high energy density (80.2 Wh kg-1) and high power density (57.7 kW kg-1) are achieved. This work indicates that high electronic conductivity of the electrode material is crucial to achieving high power and energy density for pseudo-supercapacitors.

  9. Magnetic behavior of Si-Ge bond in SixGe4-x nano-clusters

    Science.gov (United States)

    Nahali, Masoud; Mehri, Ali

    2018-06-01

    The structure of SixGe4-x nano-clusters were optimized by MPW1B95 level of theory using MG3S and SDB-aug-cc-PVTZ basis set. The agreement of the calculated ionization and dissociation energies with experimental values validates the reported structures of nano-clusters and justifies the use of hybrid meta density functional method. Since the Si-Si bond is stronger than Si-Ge and Ge-Ge bonds, the Si-Si, Si-Ge, and Ge-Ge diagonal bonds determine the precedence of the stability in these nano-clusters. The hybrid meta density functional calculations were carried out to investigate the adsorption of CO on all possible SixGe4-x nano-clusters. It was found that the silicon atom generally makes a stronger bond with CO than germanium and thereby preferentially affects the shape of structures having higher multiplicity. In Si-Ge structures with higher spin more than 95% of spins accumulate on positions with less bonds to other atoms of the cluster. Through CO adsorption on these clusters bridge structures are made that behave as spin bridge which conduct the spin from the nano-cluster surface to the adsorbate atoms. A better understanding of bridged structures was achieved upon introducing the 'spin bridge' concept. Based on exhaustive spin density analysis, it was found that the reason for the extra negative charge on oxygen in the bridged structures is the relocation of spin from the surface through the bridge.

  10. Carbon nanotube based 3-D matrix for enabling three-dimensional nano-magneto-electronics [corrected].

    Directory of Open Access Journals (Sweden)

    Jeongmin Hong

    Full Text Available This letter describes the use of vertically aligned carbon nanotubes (CNT-based arrays with estimated 2-nm thick cobalt (Co nanoparticles deposited inside individual tubes to unravel the possibility of using the unique templates for ultra-high-density low-energy 3-D nano-magneto-electronic devices. The presence of oriented 2-nm thick Co layers within individual nanotubes in the CNT-based 3-D matrix is confirmed through VSM measurements as well as an energy-dispersive X-ray spectroscopy (EDS.

  11. Generation of pH responsive fluorescent nano capsules through simple steps for the oral delivery of low pH susceptible drugs

    Science.gov (United States)

    Radhakumary, Changerath; Sreenivasan, Kunnatheeri

    2016-11-01

    pH responsive nano capsules are promising as it can encapsulate low pH susceptible drugs like insulin and guard them from the hostile environments in the intestinal tract. The strong acidity of the gastro-intestinal tract and the presence of proteolytic enzymes are the tumbling blocks for the design of drug delivery vehicles through oral route for drugs like insulin. Nano capsules are normally built over templates which are subsequently removed by further steps. Such processes are complex and often lead into deformed and collapsed capsules. In this study, we choose calcium carbonate (CaCO3) nano particles to serve as template. Over CaCO3 nanoparticles, silica layers were built followed by polymethacrylic acid chains to acquire pH responsiveness. During the polymerization process of the methacrylic acid, the calcium carbonate core particles were dissolved leading to the formation of nano hollow capsules having a size that ranges from 225 to 246 nm and thickness from 19 to 58 nm. The methodology is simple and devoid of additional steps. The nano shells exhibited 80% release of the loaded model drug, insulin at pH 7.4 while at pH 2.0 the capsules nearly stopped the release of the drug. Polymethacrylic acid shows pH responsive swelling behavior that it swells at intestinal pH (7.0-7.5) and shrinks at gastric pH (˜2.0) thus enabling the safe unloading of the drug from the nano capsules.

  12. Emission properties of Ga2O3 nano-flakes: effect of excitation density.

    Science.gov (United States)

    Pozina, G; Forsberg, M; Kaliteevski, M A; Hemmingsson, C

    2017-02-08

    In the quest of developing high performance electronic and optical devices and more cost effective fabrication processes of monoclinic β-Ga 2 O 3 , new growth techniques and fundamental electronic and optical properties of defects have to be explored. By heating of dissolved metallic Ga in HCl in a NH 3 and N 2 atmosphere, nano-flake films of monoclinic β-phase Ga 2 O 3 were grown as confirmed by XRD. From optical measurements, we observe two strong emissions. A red band peaking at ~2.0 eV and a UV band at ~3.8 eV. The band at ~2.0 eV is attributed to donor-acceptor pair recombination where the donor and acceptor level is suggested to be related to V O and nitrogen, respectively. By studying the dependence of the intensity of the UV band at 3.8 eV versus excitation density, a model is suggested. In the model, it is assumed that local potential fluctuations forming minima (maxima), where the carriers would be localized with a summarized band offset for conduction and valence band of 1 eV. The origin of the fluctuations is tentatively suggested to be related to micro-inclusions of different phases in the film.

  13. Cell characteristics of a multiple alloy nano-dots memory structure

    International Nuclear Information System (INIS)

    Bea, Ji Chel; Lee, Kang-Wook; Tanaka, Tetsu; Koyanagi, Mitsumasa; Song, Yun Heub; Lee, Gae-Hun

    2009-01-01

    A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (∼5.2 eV) and extremely high dot density (∼1.2 × 10 13 cm −2 ) was fabricated. Its structural effect for multiple layers was evaluated and compared to the one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with two to four multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler–Nordheim (FN) tunneling could be a candidate structure for future flash memory

  14. Micro/nano-fabrication technologies for cell biology.

    Science.gov (United States)

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  15. X-ray specular reflection and fluorescence study of nano-films

    International Nuclear Information System (INIS)

    Zheludeva, S.; Novikova, N.

    2001-01-01

    The techniques that combine the advantages of high-resolution structure sensitive x-ray methods with spectroscopic selectivity of data obtained are shown to be extremely promising for characterization of organic and inorganic nano films and nano structures. Fluorescence yield angular dependences exited by complicated evanescent wave / x-ray standing wave pattern at total reflection and glancing incidence can be used to detect structure position of different ions in organic systems and alien interfacial layers in inorganic multilayers;, to get information about interdiffusion at the interfaces of Langmuir- Blodgett (L-B) films and artificial inorganic - x-ray mirrors; to study ion permeation through L-B nano structures - models of biomembrans; to obtain nano - film thickness and density; to get precisely the parameters of small d-space multilayer mirrors, ets

  16. Microbial biodegradable potato starch based low density polyethylene

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... Key words: Low density polyethylene, fungi, biodegradable polymer, Pseudomonas aeruginosa. ... particle such as CO2 or water by microorganism's activities. ... package and production of bags, composites and agricultural.

  17. Flow and granular analysis of cement paste with Nano-silica (nS): from macro to nano concrete design

    NARCIS (Netherlands)

    Quercia Bianchi, G.; Brouwers, H.J.H.; Hüsken, G.

    2010-01-01

    Current micro-silica is only applied in special cases, due to its high price, and nano-silica is not used in practice yet. The new nano-silica can be produced in such quantities and for low prices that mass application in concrete is within reach. It may replace cement in the mix, which is the most

  18. Functionalized Multi walled Carbon Nano tubes-Reinforced Viny lester/Epoxy Blend Based Nano composites: Enhanced Mechanical, Thermal, and Electrical Properties

    International Nuclear Information System (INIS)

    Praharaj, A. P.; Behera, D.; Bastia, T. K.; Rout, A. K.

    2015-01-01

    This paper presents a study on the mechanical, thermal, and electrical characterization of a new class of low cost multiphase nano composites consisting of Vinyl ester resin/epoxy (VER/EP) blend (40:60 w/w) reinforced with amine functionalized multi walled carbon nano tubes (f-MWCNTs). Five different sets of VER/EP nano composites are fabricated with addition of 0, 1, 3, 5, and 7 wt.% of f-MWCNTs. A detailed investigation of mechanical properties like tensile strength, impact strength, Young’s modulus, and hardness, thermal properties like thermogravimetric analysis (TGA) and thermal conductivity, electrical properties like dielectric strength, dielectric constant, and electrical conductivity, and corrosive and swelling properties of the nano composites has been carried out. Here, we report significant improvement in all the above properties of the fabricated nano composites with nano filler (f-MWCNTs) addition compared to the virgin blend (0 wt. nano filler loading). The properties are best observed in case of 5 wt.% nano filler loading with gradual deterioration thereafter which may be due to the nucleating tendency of the nano filler particles. Thus the above nano composites could be a preferable candidate for a wide range of structural, thermal, electrical, and solvent based applications.

  19. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions

    Science.gov (United States)

    Mann, Stephen

    2009-10-01

    Understanding how chemically derived processes control the construction and organization of matter across extended and multiple length scales is of growing interest in many areas of materials research. Here we review present equilibrium and non-equilibrium self-assembly approaches to the synthetic construction of discrete hybrid (inorganic-organic) nano-objects and higher-level nanostructured networks. We examine a range of synthetic modalities under equilibrium conditions that give rise to integrative self-assembly (supramolecular wrapping, nanoscale incarceration and nanostructure templating) or higher-order self-assembly (programmed/directed aggregation). We contrast these strategies with processes of transformative self-assembly that use self-organizing media, reaction-diffusion systems and coupled mesophases to produce higher-level hybrid structures under non-equilibrium conditions. Key elements of the constructional codes associated with these processes are identified with regard to existing theoretical knowledge, and presented as a heuristic guideline for the rational design of hybrid nano-objects and nanomaterials.

  20. NanoLaunch

    Science.gov (United States)

    Jones, Jonathan; Harris, Lawanna

    2015-01-01

    NASA's NanoLaunch effort will provide the framework to mature both Earth-to-orbit and on-orbit propulsion and avionics technologies while also providing affordable, dedicated access to low-Earth orbit for CubeSat-class payloads. The project will also serve as an early career personnel training opportunity with mentors to gain hands-on project experience.

  1. Low bone mineral density among patients with newly diagnosed rheumatoid arthritis

    International Nuclear Information System (INIS)

    Arain, S.R.; Riaz, A.; Nazir, L.; Umer, T.P.; Rasool, T.

    2016-01-01

    Background: Osteoporosis is an early and common feature in rheumatoid arthritis. Apart from other manifestations, Osteoporosis is an extra-articular manifestation of rheumatoid arthritis which may result in increased risk of fractures, morbidity, mortality, and associated healthcare costs. This study evaluates bone mineral density changes in patients with rheumatoid arthritis of recent-onset. Methods: This descriptive case series was conducted in the Rheumatology Department of a tertiary care hospital in Karachi. Data was prospectively collected from 76 patients presenting with seropositive or seronegative rheumatoid arthritis. Bone mineral density of these patients measured at lumbar spine and hip by using dual energy x-ray absorptiometry scan. Variables like age, gender, BMI, menstrual status, disease duration, erythrocyte sedimentation rate, vitamin D level, clinical disease activity index and seropositivity for rheumatoid arthritis were measured along with outcome variables. Results: A total of 104 patients fulfilling inclusion criteria were registered with 28 excluded from study. Among the remaining 76 patients, 68 (89.50 percentage) were female, with mean age of patients (with low bone mineral density) as 50.95±7.87 years. Nineteen (25 percentage) patients had low bone mineral density, 68.52 percentage had low BMD at spine while 10.52 percentage at hip and 21.05 percentage at spine and hip both. Low bone mineral density was found higher in patients with seronegative 7 (50 percentage) as compared to seropositive patients 12 (19.4 percentage) (p-value 0.017), whereas low bone mineral density was found higher 12 (70.6 percentage) among post-menopausal women. Conclusion: Low BMD was found in 25 percentage of patients at earlier stage of the rheumatoid arthritis with seropositivity, age and menopausal status as significant risk factors. (author)

  2. Growth of VO2 Nano wires from Supercooled Liquid Nano droplets and E-beam Irradiation for Ultra-sensitive sensor

    International Nuclear Information System (INIS)

    Byun, Ji Won; Baik, Jeong Min; Lee, Sang Hyun; Lee, Byung Cheol

    2011-01-01

    Vanadium dioxide is an interesting material on account of its easily accessible and sharp Mott metal-insulator transition at ∼ 68 .deg. C in the bulk, which is of great interest in sensing and catalytic applications. In this Paper, we describe the synthesis and properties of VO 2 nano wires as novel catalytic and gas sensor materials based on electron beam irradiation. High yields of single crystalline VO 2 nano wires are synthesized by atmospheric-pressure, physical vapor deposition using V 2 O 5 layer. Pd-decorated VO 2 nano wire sensors show extraordinary sensitivity towards hydrogen, an almost 3 order-of-magnitude increase in the current through the nano wire. By the Eb irradiation, the conductance of the nano wires significantly increased up to 5 times, reducing the response time by half and the operating temperature. The metal nanoparticles-VO 2 nano wire system will be very promising for high-sensitivity and high-selectivity under low temperature less than 100. deg. C

  3. Kinetics of the high- to low-density amorphous water transition

    International Nuclear Information System (INIS)

    Koza, M M; Schober, H; Fischer, H E; Hansen, T; Fujara, F

    2003-01-01

    In situ neutron diffraction experiments have been carried out to study the kinetics of the transformation of high-density amorphous (HDA) water into its low-density amorphous state at temperatures 87 K ≤ T ≤ 110 K. It is found that three different stages are comprised in this transformation, namely an annealing process of the high-density matrix followed by a first-order-like transition into a low-density state, which can be further annealed at higher temperatures T ≤ 127 K. The annealing kinetics of the HDA state follows the logarithm of time as found in other systems showing polyamorphism. According to the theory of transformation by nucleation and growth the apparent first-order transition follows an Avrami-Kolmogorov behaviour. An energy barrier ΔE ∼ 33 k Jmol -1 is estimated from the temperature dependence of this transition

  4. Diffusive dynamics during the high-to-low density transition in amorphous ice

    Science.gov (United States)

    Perakis, Fivos; Amann-Winkel, Katrin; Lehmkühler, Felix; Sprung, Michael; Mariedahl, Daniel; Sellberg, Jonas A.; Pathak, Harshad; Späh, Alexander; Cavalca, Filippo; Schlesinger, Daniel; Ricci, Alessandro; Jain, Avni; Massani, Bernhard; Aubree, Flora; Benmore, Chris J.; Loerting, Thomas; Grübel, Gerhard; Pettersson, Lars G. M.; Nilsson, Anders

    2017-08-01

    Water exists in high- and low-density amorphous ice forms (HDA and LDA), which could correspond to the glassy states of high- (HDL) and low-density liquid (LDL) in the metastable part of the phase diagram. However, the nature of both the glass transition and the high-to-low-density transition are debated and new experimental evidence is needed. Here we combine wide-angle X-ray scattering (WAXS) with X-ray photon-correlation spectroscopy (XPCS) in the small-angle X-ray scattering (SAXS) geometry to probe both the structural and dynamical properties during the high-to-low-density transition in amorphous ice at 1 bar. By analyzing the structure factor and the radial distribution function, the coexistence of two structurally distinct domains is observed at T = 125 K. XPCS probes the dynamics in momentum space, which in the SAXS geometry reflects structural relaxation on the nanometer length scale. The dynamics of HDA are characterized by a slow component with a large time constant, arising from viscoelastic relaxation and stress release from nanometer-sized heterogeneities. Above 110 K a faster, strongly temperature-dependent component appears, with momentum transfer dependence pointing toward nanoscale diffusion. This dynamical component slows down after transition into the low-density form at 130 K, but remains diffusive. The diffusive character of both the high- and low-density forms is discussed among different interpretations and the results are most consistent with the hypothesis of a liquid-liquid transition in the ultraviscous regime.

  5. Nano Sensing and Energy Conversion Using Surface Plasmon Resonance (SPR

    Directory of Open Access Journals (Sweden)

    Iltai (Isaac Kim

    2015-07-01

    Full Text Available Nanophotonic technique has been attracting much attention in applications of nano-bio-chemical sensing and energy conversion of solar energy harvesting and enhanced energy transfer. One approach for nano-bio-chemical sensing is surface plasmon resonance (SPR imaging, which can detect the material properties, such as density, ion concentration, temperature, and effective refractive index in high sensitivity, label-free, and real-time under ambient conditions. Recent study shows that SPR can successfully detect the concentration variation of nanofluids during evaporation-induced self-assembly process. Spoof surface plasmon resonance based on multilayer metallo-dielectric hyperbolic metamaterials demonstrate SPR dispersion control, which can be combined with SPR imaging, to characterize high refractive index materials because of its exotic optical properties. Furthermore, nano-biophotonics could enable innovative energy conversion such as the increase of absorption and emission efficiency and the perfect absorption. Localized SPR using metal nanoparticles show highly enhanced absorption in solar energy harvesting. Three-dimensional hyperbolic metamaterial cavity nanostructure shows enhanced spontaneous emission. Recently ultrathin film perfect absorber is demonstrated with the film thickness is as low as ~1/50th of the operating wavelength using epsilon-near-zero (ENZ phenomena at the wavelength close to SPR. It is expected to provide a breakthrough in sensing and energy conversion applications using the exotic optical properties based on the nanophotonic technique.

  6. Mechanical Behavior of Polymer Nano Bio Composite for Orthopedic Implants

    Science.gov (United States)

    Marimuthu, K., Dr.; Rajan, Sankar

    2018-04-01

    The bio-based polymer composites have been the focus of many scientific and research projects, as well as many commercial programs. In recent years, scientists and engineers have been working together to use the inherent strength and performance of the new class of bio-based composites which is compactable with human body and can act as a substitute for living cells. In this stage the polymer composites also stepped into human bone implants as a replacement for metallic implants which was problems like corrosion resistance and high cost. The polymer composite have the advantage that it can be molded to the required shape, the polymers have high corrosion resistance, less weight and low cost. The aim of this research is to develop and analyze the suitable bio compactable polymer composite for human implants. The nano particles reinforced polymer composites provides good mechanical properties and shows good tribological properties especially in the total hip and knee replacements. The graphene oxide powders are bio compactable and acts as anti biotic. GO nano powder where reinforced into High-density polyethylene in various weight percentage of 0.5% to 2%. The performance of GO nano powder shows better tribological properties. The material produced does not cause any pollution to the environment and at the same time it can be bio compactable and sustainable. The product will act environmentally friendly.

  7. Brightness enhancement of plasma ion source by utilizing anode spot for nano applications

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Yoon-Jae [Samsung Electronics Co. Ltd., Gyeonggi 445-701 (Korea, Republic of); Park, Man-Jin [Research Institute of Nano Manufacturing System, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Moon, Dae Won [Nanobio Fusion Research Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2012-02-15

    Anode spots are known as additional discharges on positively biased electrode immersed in plasmas. The anode spot plasma ion source (ASPIS) has been investigated as a high brightness ion source for nano applications such as focused ion beam (FIB) and nano medium energy ion scattering (nano-MEIS). The generation of anode spot is found to enhance brightness of ion beam since the anode spot increases plasma density near the extraction aperture. Brightness of the ASPIS has been estimated from measurement of emittance for total ion beam extracted through sub-mm aperture. The ASPIS is installed to the FIB system. Currents and diameters of the focused beams with/without anode spot are measured and compared. As the anode spot is turned on, the enhancement of beam current is observed at fixed diameter of the focused ion beam. Consequently, the brightness of the focused ion beam is enhanced as well. For argon ion beam, the maximum normalized brightness of 12 300 A/m{sup 2} SrV is acquired. The ASPIS is applied to nano-MEIS as well. The ASPIS is found to increase the beam current density and the power efficiency of the ion source for nano-MEIS. From the present study, it is shown that the ASPIS can enhance the performance of devices for nano applications.

  8. Photo-nano immunotherapy for metastatic cancers (Conference Presentation)

    Science.gov (United States)

    Zhou, Feifan

    2016-03-01

    We constructed a multifunction nano system SWNT-GC and investigated the synergize photothermal and immunological effects. Here, we improve the SWNT-GC nano system and design a new synergistic nano-particle, both have the photothermal effects and immunological effects. We investigate the therapeutic effects and detect the immune response with metastatic mouse tumor models. We also study the therapeutic mechanism after treatment in vitro and in vivo. With the enhancement of nano-materials on photothermal effects, laser treatment could destroy primary tumor and protect normal tissue with low dose laser irradiation. With the immunological effects of nano-materials, the treatment could trigger specific antitumor immune response, to eliminate the metastasis tumor. It is providing a promising treatment modality for the metastatic cancers.

  9. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3

    International Nuclear Information System (INIS)

    Jiang, Xiang; Luo, Ruilian; Peng, Feifei; Fang, Yutang; Akiyama, Tomohiro; Wang, Shuangfeng

    2015-01-01

    Highlights: • Novel MEPCM modified with nano-Al 2 O 3 was prepared via emulsion polymerization. • The paraffin microcapsules presented a well-defined microstructure. • The composite achieved high encapsulation efficiency. • The thermal conductivity of MEPCM was enhanced due to the nano-Al 2 O 3 particles. - Abstract: A sort of new microencapsulated phase change materials (MEPCM) based on paraffin wax core and poly(methyl methacrylate-co-methyl acrylate) shell with nano alumina (nano-Al 2 O 3 ) inlay was synthesized through emulsion polymerization. Various techniques were used to characterize the as-prepared products so as to investigate the effect of nano-Al 2 O 3 on morphology and thermal performance, including scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and thermal conductivity measurement. The results showed that the products achieved the best performance with 16% (monomer mass) nano-Al 2 O 3 added under the optimal preparation conditions. The DSC results indicated that the phase change temperature of the composite exhibited appropriate phase change temperature and achieved high encapsulation efficiency. The thermal conductivity of the paraffin microcapsules is also significantly improved owing to the presence of high thermal conductive nano-Al 2 O 3 . This synthetic technique can be a perspective way to prepare the MEPCM with enhanced thermal transfer and phase change properties for potential applications to energy-saving building materials

  10. Low cost, p-ZnO/n-Si, rectifying, nano heterojunction diode: Fabrication and electrical characterization

    Directory of Open Access Journals (Sweden)

    Vinay Kabra

    2014-11-01

    Full Text Available A low cost, highly rectifying, nano heterojunction (p-ZnO/n-Si diode was fabricated using solution-processed, p-type, ZnO nanoparticles and an n-type Si substrate. p-type ZnO nanoparticles were synthesized using a chemical synthesis route and characterized by XRD and a Hall effect measurement system. The device was fabricated by forming thin film of synthesized p-ZnO nanoparticles on an n-Si substrate using a dip coating technique. The device was then characterized by current–voltage (I–V and capacitance–voltage (C–V measurements. The effect of UV illumination on the I–V characteristics was also explored and indicated the formation of a highly rectifying, nano heterojunction with a rectification ratio of 101 at 3 V, which increased nearly 2.5 times (232 at 3 V under UV illumination. However, the cut-in voltage decreases from 1.5 V to 0.9 V under UV illumination. The fabricated device could be used in switches, rectifiers, clipper and clamper circuits, BJTs, MOSFETs and other electronic circuitry.

  11. Low bone mineral density in ambulatory persons with cerebral palsy? A systematic review.

    Science.gov (United States)

    Mus-Peters, Cindy T R; Huisstede, Bionka M A; Noten, Suzie; Hitters, Minou W M G C; van der Slot, Wilma M A; van den Berg-Emons, Rita J G

    2018-05-22

    Non-ambulatory persons with cerebral palsy are prone to low bone mineral density. In ambulatory persons with cerebral palsy, bone mineral density deficits are expected to be small or absent, but a consensus conclusion is lacking. In this systematic review bone mineral density in ambulatory persons with cerebral palsy (Gross Motor Function Classification Scales I-III) was studied. Medline, Embase, and Web of Science were searched. According to international guidelines, low bone mineral density was defined as Z-score ≤ -2.0. In addition, we focused on Z-score ≤ -1.0 because this may indicate a tendency towards low bone mineral density. We included 16 studies, comprising 465 patients aged 1-65 years. Moderate and conflicting evidence for low bone mineral density (Z-score ≤ -2.0) was found for several body parts (total proximal femur, total body, distal femur, lumbar spine) in children with Gross Motor Function Classification Scales II and III. We found no evidence for low bone mineral density in children with Gross Motor Function Classification Scale I or adults, although there was a tendency towards low bone mineral density (Z-score ≤ -1.0) for several body parts. Although more high-quality research is needed, results indicate that deficits in bone mineral density are not restricted to non-ambulatory people with cerebral palsy. Implications for Rehabilitation Although more high-quality research is needed, including adults and fracture risk assessment, the current study indicates that deficits in bone mineral density are not restricted to non-ambulatory people with CP. Health care professionals should be aware that optimal nutrition, supplements on indication, and an active lifestyle, preferably with weight-bearing activities, are important in ambulatory people with CP, also from a bone quality point-of-view. If indicated, medication and fall prevention training should be prescribed.

  12. On the potential of Hg-Photo-CVD process for the low temperature growth of nano-crystalline silicon (Topical review)

    International Nuclear Information System (INIS)

    Barhdadi, A.

    2005-08-01

    Mercury-Sensitized Photo-Assisted Chemical Vapor Deposition (Hg-Photo-CVD) technique opens new possibilities for reducing thin film growth temperature and producing novel semiconductor materials suitable for the future generation of high efficiency thin film solar cells onto low cost flexible plastic substrates. This paper provides an overview of this technique, with the emphasis on its potential in low temperature elaboration of nano-crystalline silicon for the development of thin films photovoltaic technology. (author)

  13. The mechanical properties modeling of nano-scale materials by molecular dynamics

    NARCIS (Netherlands)

    Yuan, C.; Driel, W.D. van; Poelma, R.; Zhang, G.Q.

    2012-01-01

    We propose a molecular modeling strategy which is capable of mod-eling the mechanical properties on nano-scale low-dielectric (low-k) materials. Such modeling strategy has been also validated by the bulking force of carbon nano tube (CNT). This modeling framework consists of model generation method,

  14. Low-frequency oscillations at high density in JFT-2

    International Nuclear Information System (INIS)

    Maeno, Masaki; Katagiri, Masaki; Suzuki, Norio; Fujisawa, Noboru

    1977-12-01

    Low-frequency oscillations in a plasma were measured with magnetic probes and Si surface-barrier detectors, and behaviour of the high density plasmas was studied. The plasma current profile in the phase of decreasing density after the interruption of gas input is more peaked than during gas input. The introduction of hydrogen during a discharge results in a reduction of the impurities flux. The increase of density by fast gas input is limited with a negative voltage spike. Immediately before a negative voltage spike, oscillations of m=1,2 grow, leading to the spike. (auth.)

  15. Modification of low density polyethylene, isostatic polypropylene and their blends by gamma radiation

    International Nuclear Information System (INIS)

    Santos Rosa, D. dos

    1991-01-01

    The effects of the gamma radiation (of a 60 Co source), over low density polyethylene, isostatic polypropylene and their blends of low density polyethylene / polypropylene were studied. The structures modifications were attended by infrared spectrometry (IV), differential scanning calorimeter (DSC), strain-strain measurement, density measurement and scanning electron microscope (SEM). (author)

  16. Reverse micelle-loaded lipid nano-emulsions: new technology for nano-encapsulation of hydrophilic materials.

    Science.gov (United States)

    Anton, Nicolas; Mojzisova, Halina; Porcher, Emilien; Benoit, Jean-Pierre; Saulnier, Patrick

    2010-10-15

    This study presents novel, recently patented technology for encapsulating hydrophilic species in lipid nano-emulsions. The method is based on the phase-inversion temperature method (the so-called PIT method), which follows a low-energy and solvent-free process. The nano-emulsions formed are stable for months, and exhibit droplet sizes ranging from 10 to 200 nm. Hydrophilic model molecules of fluorescein sodium salt are encapsulated in the oily core of these nano-emulsion droplets through their solubilisation in the reverse micellar system. As a result, original, multi-scaled nano-objects are generated with a 'hydrophilic molecule in a reverse-micelles-in-oil-in-water' structure. Once fluorescein has been encapsulated it remains stable, for thermodynamic reasons, and the encapsulation yields can reach 90%. The reason why such complex objects can be formed is due to the soft method used (PIT method) which allows the conservation of the structure of the reverse micelles throughout the formulation process, up to their entrapment in the nano-emulsion droplets. In this study, we focus the investigation on the process itself, revealing its potential and limits. Since the formulation of nanocarriers for the encapsulation of hydrophilic substances still remains a challenge, this study may constitute a significant advance in this field. Copyright 2010 Elsevier B.V. All rights reserved.

  17. nanos-Driven expression of piggyBac transposase induces mobilization of a synthetic autonomous transposon in the malaria vector mosquito, Anopheles stephensi.

    Science.gov (United States)

    Macias, Vanessa M; Jimenez, Alyssa J; Burini-Kojin, Bianca; Pledger, David; Jasinskiene, Nijole; Phong, Celine Hien; Chu, Karen; Fazekas, Aniko; Martin, Kelcie; Marinotti, Osvaldo; James, Anthony A

    2017-08-01

    Transposons are a class of selfish DNA elements that can mobilize within a genome. If mobilization is accompanied by an increase in copy number (replicative transposition), the transposon may sweep through a population until it is fixed in all of its interbreeding members. This introgression has been proposed as the basis for drive systems to move genes with desirable phenotypes into target species. One such application would be to use them to move a gene conferring resistance to malaria parasites throughout a population of vector mosquitos. We assessed the feasibility of using the piggyBac transposon as a gene-drive mechanism to distribute anti-malarial transgenes in populations of the malaria vector, Anopheles stephensi. We designed synthetic gene constructs that express the piggyBac transposase in the female germline using the control DNA of the An. stephensi nanos orthologous gene linked to marker genes to monitor inheritance. Two remobilization events were observed with a frequency of one every 23 generations, a rate far below what would be useful to drive anti-pathogen transgenes into wild mosquito populations. We discuss the possibility of optimizing this system and the impetus to do so. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Natural convection in nano-fluids: Are the thermophoresis and Brownian motion effects significant in nano-fluid heat transfer enhancement?

    International Nuclear Information System (INIS)

    Haddad, Zoubida; Abu-Nada, Eiyad; Oztop, Hakan F.; Mataoui, Amina

    2012-01-01

    Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)

  19. Organic Nano vesicular Cargoes for Sustained Drug Delivery: Synthesis, Vesicle Formation, Controlling “Pearling” States, and Terfenadine Loading/Release Studies

    International Nuclear Information System (INIS)

    Botcha, A.K.; Chandrasekar, R.; Dulla, B.; Reddy, E.R.; Rajadurai, M.S.; Chennubhotla, K.S.; Kulkarni, P.; Kulkarni, P.

    2014-01-01

    “Sustained drug delivery systems” which are designed to accomplish long-lasting therapeutic effect are one of the challenging topics in the area of nano medicine. We developed an innovative strategy to prepare nontoxic and polymer stabilized organic nano vesicles (diameter: 200 nm) from a novel bolaamphiphile, where two hydrogen bonding acetyl cytosine molecules connected to 4,4′′-positions of the 2,6-bispyrazolylpyridine through two flexible octyne chains. The nano vesicles behave like biological membrane by spontaneously self-assembling into “pearl-like” chains and subsequently forming long nano tubes (diameter: 150 nm), which further develop into various types of network-junctions through self-organization. For drug loading and delivery applications, the nano vesicles were externally protected with biocompatible poly(ethyleneglycol)-2000 to prevent them from fusion and ensuing tube formation. Nontoxic nature of the nano vesicles was demonstrated by zebra fish teratogenicity assay. Biocompatible nano vesicles were loaded with “terfenadine” drug and successfully utilized to transport and release drug in sustained manner (up to 72 h) in zebra fish larvae, which is recognized as an emerging in vivo model system Synthetic nano

  20. In-situ TEM observation of nano-void formation in UO2 under irradiation

    Science.gov (United States)

    Sabathier, C.; Martin, G.; Michel, A.; Carlot, G.; Maillard, S.; Bachelet, C.; Fortuna, F.; Kaitasov, O.; Oliviero, E.; Garcia, P.

    2014-05-01

    Transmission electron microscopy (TEM) observations of UO2 polycrystals irradiated in situ with 4 MeV Au ions were performed at room temperature (RT) to better understand the mechanisms of cavity and ultimately fission products nucleation in UO2. Experiments were carried out at the JANNuS Orsay facility that enables in situ ion irradiations inside the microscope to be carried out. The majority of 4 MeV gold ions were transmitted through the thin foil, and the induced radiation defects were investigated by TEM. Observations showed that nano-void formation occurs at ambient temperature in UO2 thin foils irradiated with energetic heavy ions under an essentially nuclear energy loss regime. The diameter and density of nano-objects were measured as a function of the gold irradiation dose at RT. A previous paper has also revealed a similar nano-object population after a Xe implantation performed at 390 keV at 870 K. The nano-object density was modelled using simple concepts derived from Classical Molecular Dynamics simulations. The results are in good agreement, which suggests a mechanism of heterogeneous nucleation induced by energetic cascade overlaps. This indicates that nano-void formation mechanism is controlled by radiation damage. Such nanovoids are likely to act as sinks for mobile fission products during reactor operation.

  1. Construct 3D porous hollow Co3O4 micro-sphere: A potential oxidizer of nano-energetic materials with superior reactivity

    Science.gov (United States)

    Wang, Jun; Zheng, Bo; Qiao, Zhiqiang; Chen, Jin; Zhang, Liyuan; Zhang, Long; Li, Zhaoqian; Zhang, Xingquan; Yang, Guangcheng

    2018-06-01

    High energy density and rapid reactivity are the future trend for nano-energetic materials. Energetic performance of nano-energetic materials depends on the interfacial diffusion and mass transfer during the reacted process. However, the development of desired structure to significantly enhance reactivity still remains challenging. Here we focused on the design and preparation of 3D porous hollow Co3O4 micro-spheres, in which gas-blowing agents (air) and maximize interfacial interactions were introduced to enhance mass transport and reduce the diffusion distance between the oxidizer and fuel (Aluminum). The 3D hierarchical Co3O4/Al based nano-energetic materials show a low-onset decomposition temperature (423 °C), and high heat output (3118 J g-1) resulting from porous and hollow nano-structure of Co3O4 micro-spheres. Furthermore, 3D hierarchical Co3O4/Al arrays were directly fabricated on the silicon substrate, which was fully compatible with silicon-based microelectromechanical systems to achieve functional nanoenergetics-on-a-chip. This approach provides a simple and efficient way to fabricate 3D ordered nano-energetic arrays with superior reactivity and the potential on the application in micro-energetic devices.

  2. Indentation analysis of nano-particle using nano-contact mechanics models during nano-manipulation based on atomic force microscopy

    International Nuclear Information System (INIS)

    Daeinabi, Khadijeh; Korayem, Moharam Habibnejad

    2011-01-01

    Atomic force microscopy is applied to measure intermolecular forces and mechanical properties of materials, nano-particle manipulation, surface scanning and imaging with atomic accuracy in the nano-world. During nano-manipulation process, contact forces cause indentation in contact area between nano-particle and tip/substrate which is considerable at nano-scale and affects the nano-manipulation process. Several nano-contact mechanics models such as Hertz, Derjaguin–Muller–Toporov (DMT), Johnson–Kendall–Roberts–Sperling (JKRS), Burnham–Colton–Pollock (BCP), Maugis–Dugdale (MD), Carpick–Ogletree–Salmeron (COS), Pietrement–Troyon (PT), and Sun et al. have been applied as the continuum mechanics approaches at nano-scale. In this article, indentation depth and contact radius between tip and substrate with nano-particle for both spherical and conical tip shape during nano-manipulation process are analyzed and compared by applying theoretical, semiempirical, and empirical nano-contact mechanics models. The effects of adhesion force, as the main contrast point in different nano-contact mechanics models, on nano-manipulation analysis is investigated for different contact radius, and the critical point is discussed for mentioned models.

  3. Removal of arsenic from water using nano adsorbents and challenges: A review.

    Science.gov (United States)

    Lata, Sneh; Samadder, S R

    2016-01-15

    Many researchers have used nanoparticles as adsorbents to remove water pollutants including arsenic after modifying the properties of nanoparticles by improving reactivity, biocompatibility, stability, charge density, multi-functionalities, and dispersibility. For arsenic removal, nano adsorbents emerged as the potential alternatives to existing conventional technologies. The present study critically reviewed the past and current available information on the potential of nano adsorbents for arsenic removal from contaminated water and the challenges involved in that. The study discussed the separation and regeneration techniques of nano adsorbents and the performance thereof. The study evaluated the adsorption efficiency of the various nanoparticles based on size of nanoparticles, types of nano adsorbents, method of synthesis, separation and regeneration of the nano adsorbents. The study found that more studies are required on suitable holding materials for the nano adsorbents to improve the permeability and to make the technology applicable at the field condition. The study will help the readers to choose suitable nanomaterials and to take up further research required for arsenic removal using nano adsorbents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Perspectives on continuum flow models for force-driven nano-channel liquid flows

    Science.gov (United States)

    Beskok, Ali; Ghorbanian, Jafar; Celebi, Alper

    2017-11-01

    A phenomenological continuum model is developed using systematic molecular dynamics (MD) simulations of force-driven liquid argon flows confined in gold nano-channels at a fixed thermodynamic state. Well known density layering near the walls leads to the definition of an effective channel height and a density deficit parameter. While the former defines the slip-plane, the latter parameter relates channel averaged density with the desired thermodynamic state value. Definitions of these new parameters require a single MD simulation performed for a specific liquid-solid pair at the desired thermodynamic state and used for calibration of model parameters. Combined with our observations of constant slip-length and kinematic viscosity, the model accurately predicts the velocity distribution and volumetric and mass flow rates for force-driven liquid flows in different height nano-channels. Model is verified for liquid argon flow at distinct thermodynamic states and using various argon-gold interaction strengths. Further verification is performed for water flow in silica and gold nano-channels, exhibiting slip lengths of 1.2 nm and 15.5 nm, respectively. Excellent agreements between the model and the MD simulations are reported for channel heights as small as 3 nm for various liquid-solid pairs.

  5. Do Low-Density Diets Improve Broiler Breeder Welfare During Rearing and Laying.

    NARCIS (Netherlands)

    Jong, de I.C.; Enting, H.; Voorst, van A.; Blokhuis, H.J.

    2005-01-01

    Low-density diets may improve welfare of restricted fed broiler breeders by increasing feed intake time with less frustration of feed intake behavior as a result. Moreover, low-density diets may promote satiety through a more filled gastrointestinal tract, and thus feelings of hunger may be reduced.

  6. Comparative study on nano-Zirconium Oxide Materials used in Nuclear Technology

    International Nuclear Information System (INIS)

    Khalil, T.; Dakroury, G.A.; Abou El-Nour, F.; Abdel-Khlik, M.

    2004-01-01

    Nano-ZrO 2 powders were prepared using two advanced methods, namely SoI-GeI and Gelation techniques. Y 2 O 3 , Ce0 2 and Mg0 were used as stabilizers during the preparation processes. The function of these materials is to stabilize the meta stable tetragonal Zr0 2 phase responsible for the nano character of produced materials. The applied experimental procedures proved to be suitable to produce nano powders composed of crystallites of few nano-meter size with an interfacial component formed by all atoms situated in the grain boundaries. These two structure components (nano-sized crystallites and boundaries) of comparable volume fractions are crucial for the nano-structure materials. Powder agglo-meration, contamination during processing and remaining of the residual pores in the bodies were overcome during the sintering process of the powder by special treatment. Different analytical procedures such as DTA-TG, specific surface area, pore size analysis, density, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were carried out for Zr0 2 produced by both SoI-GeI and Gelation techniques

  7. A study of low-density areas, clinical findings, and angiographic findings in patients with cerebral infarction

    International Nuclear Information System (INIS)

    Saiki, Iwao; Sakai, Yoshiaki; Oikawa, Tadato; Koide, Kohji; Kanaya, Haruyuki.

    1978-01-01

    55 out of 62 patients with cerebral infarction were investigated in terms of CT scan findings, angiographic findings, and clinical symptoms. The results obtained were as follows: 1) The low-density areas of the CT scan findings were classified into the following four types: large hemispheric or lobular --Type I; wedge-shaped --Type II; small --Type III; and lacunar low-density area. --Type IV. 2) Almost all patients with angiographically occlusive findings showed low-density areas of Type I; however, one patient with ICA occlusion revealed only a lacunar low-density area. 3) The patients with lacunar low-density areas showed an angiographically delayed filling of the angular artery and posterior parietal artery of the middle cerebral artery. 4) The relationship between the types of low-density areas and the clinical conscious disorders was not clear. On the other hand, the patients with Type I low-density areas almost all had motor disturbances, while patients with other types of low-density areas showed only 60 - 70% motor disturbances. 5) In patients with speech disorders, total aphasia cases were found in patients with large hemispheric low-density areas on the left side. Although, motor aphasia cases were seen in patients with various low-density areas on the left inferior frontal and precentral gyri, dysarthria cases were found in the patients with several low-density areas on both sides. 6) The localization of lacunar low-density areas seemed to be near the caudate nucleus on the right side and in the putaminal regions on the left side. The mean and the standard deviation of CT numbers in the lacunar low-density areas showed higher values on the right side than on the left side. (author)

  8. Tungsten nano-tendril growth in the Alcator C-Mod divertor

    International Nuclear Information System (INIS)

    Wright, G.M.; Brunner, D.; Labombard, B.; Lipschultz, B.; Terry, J.L.; Whyte, D.G.; Baldwin, M.J.; Doerner, R.P.

    2012-01-01

    Growth of tungsten nano-tendrils (‘fuzz’) has been observed for the first time in the divertor region of a high-power density tokamak experiment. After 14 consecutive helium L-mode discharges in Alcator C-Mod, the tip of a tungsten Langmuir probe at the outer strike point was fully covered with a layer of nano-tendrils. The thickness of the individual nano-tendrils (50–100 nm) and the depth of the layer (600 ± 150 nm) are consistent with observations from experiments on linear plasma devices. The observation of tungsten fuzz in a tokamak may have important implications for material erosion, dust formation, divertor lifetime and tokamak operations in next-step devices. (letter)

  9. Synthetic inversions for density using seismic and gravity data

    NARCIS (Netherlands)

    Blom, Nienke; Boehm, Christian; Fichtner, Andreas

    Density variations drive mass transport in the Earth from plate tectonics to convection in the mantle and core. Nevertheless, density remains poorly known because most geophysical measurements used to probe the Earth's interior either have little sensitivity to density, suffer from trade-offs or

  10. Design and finite element method analysis of laterally actuated multi-value nano electromechanical switches

    KAUST Repository

    Kloub, Hussam; Smith, Casey; Hussain, Muhammad Mustafa

    2011-01-01

    We report on the design and modeling of novel nano electromechanical switches suitable for implementing reset/set flip-flops, AND, NOR, and XNOR Boolean functions. Multiple logic operations can be implemented using only one switching action enabling parallel data processing; a feature that renders this design competitive with complementary metal oxide semiconductor and superior to conventional nano-electromechanical switches in terms of functionality per device footprint. The structural architecture of the newly designed switch consists of a pinned flexural beam structure which allows low strain lateral actuation for enhanced mechanical integrity. Reliable control of on-state electrical current density is achieved through the use of metal-metal contacts, true parallel beam deflection, and lithographically defined contact area to prevent possible device welding. Dynamic response as a function of device dimensions numerically investigated using ANSYS and MatLab Simulink. © 2011 The Japan Society of Applied Physics.

  11. Design and finite element method analysis of laterally actuated multi-value nano electromechanical switches

    KAUST Repository

    Kloub, Hussam

    2011-09-01

    We report on the design and modeling of novel nano electromechanical switches suitable for implementing reset/set flip-flops, AND, NOR, and XNOR Boolean functions. Multiple logic operations can be implemented using only one switching action enabling parallel data processing; a feature that renders this design competitive with complementary metal oxide semiconductor and superior to conventional nano-electromechanical switches in terms of functionality per device footprint. The structural architecture of the newly designed switch consists of a pinned flexural beam structure which allows low strain lateral actuation for enhanced mechanical integrity. Reliable control of on-state electrical current density is achieved through the use of metal-metal contacts, true parallel beam deflection, and lithographically defined contact area to prevent possible device welding. Dynamic response as a function of device dimensions numerically investigated using ANSYS and MatLab Simulink. © 2011 The Japan Society of Applied Physics.

  12. Role of strangeness and isospin in low density expansions of hadronic matter

    Science.gov (United States)

    de Oliveira, Thamirys; Menezes, Débora P.; Pinto, Marcus B.; Gulminelli, Francesca

    2018-05-01

    We compare relativistic mean-field models with their low density expansion counterparts used to mimic nonrelativistic models by consistently expanding the baryonic scalar density in powers of the baryonic number density up to O (13 /3 ) , which goes two orders beyond the order considered in previous works. We show that, due to the nontrivial density dependence of the Dirac mass, the convergence of the expansion is very slow, and the validity of the nonrelativistic approximation is questionable even at subsaturation densities. In order to analyze the roles played by strangeness and isospin we consider n -Λ and n -p matter separately. Our results indicate that these degrees of freedom play quite different roles in the expansion mechanism and n -Λ matter can be better described by low density expansions than n -p matter in general.

  13. Miniature and low cost fiber Bragg grating interrogator for structural monitoring in nano-satellites

    Science.gov (United States)

    Toet, P. M.; Hagen, R. A. J.; Hakkesteegt, H. C.; Lugtenburg, J.; Maniscalco, M. P.

    2017-11-01

    In this paper we present a newly developed Fiber Optic measurement system, consisting of Fiber Bragg Grating (FBG) sensors and an FBG interrogator. The development of the measuring system is part of the PiezoElectric Assisted Smart Satellite Structure (PEASSS) project, which was initiated at the beginning of 2013 and is financed by the Seventh Framework Program (FP7) of the European Commission. Within the PEASSS project, a Nano-Satellite is being designed and manufactured to be equipped with new technology that will help keep Europe on the cutting edge of space research, potentially reducing the cost and development time for more accurate future sensor platforms including synthetic aperture optics, moving target detection and identification, and compact radars. After on ground testing the satellite is planned to be launched at the end of 2015. Within the satellite, different technologies will be demonstrated on orbit to show their capabilities for different in-space applications. For our application the FBG interrogator monitors the structural and thermal behaviour of a so called "smart panel". These panels will enable fine angle control and thermal and vibration compensation in order to improve all types of future Earth observations, such as environmental and planetary mapping, border and regional imaging. The Fiber Optic (FO) system in PEASSS includes four FBG strain sensors and two FBG temperature sensors. The 3 channel interrogator has to have a small footprint (110x50x40mm), is low cost, low in mass and has a low power consumption. In order to meet all these requirements, an interrogator has been designed based on a tunable Vertical-Cavity Surface-Emitting Laser (VCSEL) enabling a wavelength sweep of around 7 nm. To guarantee the absolute and relative performance, two reference methods are included internally in the interrogator. First, stabilized reference FBG sensors are used to obtain absolute wavelength calibrations. This method is used for the temperature

  14. Increased oxidizability of low-density lipoproteins in hypothyroidism

    NARCIS (Netherlands)

    Diekman, T.; Demacker, P. N.; Kastelein, J. J.; Stalenhoef, A. F.; Wiersinga, W. M.

    1998-01-01

    Hypothyroidism leads to an increase of plasma low-density lipoprotein (LDL) cholesterol levels. Oxidation of LDL particles changes their intrinsic properties, thereby enhancing the development of atherosclerosis. T4 has three specific binding sites on apolipoprotein B; furthermore it inhibits LDL

  15. Low temperature synthesis of hydroxyapatite nano-rods by a modified sol-gel technique

    International Nuclear Information System (INIS)

    Jadalannagari, Sushma; More, Sandeep; Kowshik, Meenal; Ramanan, Sutapa Roy

    2011-01-01

    Hydroxyapatite (HAp) nano-rods were successfully synthesized by a modified sol-gel method using a solution of CaCl 2 .2H 2 O in water, along with a solution of H 3 PO 4 in triethylamine and NH 4 OH as starting materials. The Ca/P molar ratio was maintained at 1.67. The sol obtained was dried in an oven for 2 days at 100 deg. C after being dialyzed for 12 h. Pellets were made from the crystalline powders and immersed in simulated body fluid (SBF) to check its biocompatibility after 15, 45 and 180 days of immersion. The HAp powders and pellets were characterized by X-Ray Diffraction crystallography (XRD), Fourier transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The HAp nano-rods had an average diameter of 25 nm and length 110-120 nm. Immersion of the HAp pellets in SBF led to the formation of a highly porous interconnecting HAp layer on the surface. The porosity increased with increase in immersion time. Highlights: → Low temperature synthesis of hydroxyapatite nanorods using Ca and P sources and triethylamine. → The synthesis time was only 0.5 hours. → Crystalline material was obtained after drying at 100oC only in air. → SBF studies showed the HAP bodies to be biocompatible.

  16. Internal Morphologies of Cycled Li-Metal Electrodes Investigated by Nano-Scale Resolution X-ray Computed Tomography.

    Science.gov (United States)

    Frisco, Sarah; Liu, Danny X; Kumar, Arjun; Whitacre, Jay F; Love, Corey T; Swider-Lyons, Karen E; Litster, Shawn

    2017-06-07

    While some commercially available primary batteries have lithium metal anodes, there has yet to be a commercially viable secondary battery with this type of electrode. Research prototypes of these cells typically exhibit a limited cycle life before dendrites form and cause internal cell shorting, an occurrence that is more pronounced during high-rate cycling. To better understand the effects of high-rate cycling that can lead to cell failure, we use ex situ nanoscale-resolution X-ray computed tomography (nano-CT) with the aid of Zernike phase contrast to image the internal morphologies of lithium metal electrodes on copper wire current collectors that have been cycled at low and high current densities. The Li that is deposited on a Cu wire and then stripped and deposited at low current density appears uniform in morphology. Those cycled at high current density undergo short voltage transients to >3 V during Li-stripping from the electrode, during which electrolyte oxidation and Cu dissolution from the current collector may occur. The effect of temperature is also explored with separate cycling experiments performed at 5 and 33 °C. The resulting morphologies are nonuniform films filled with voids that are semispherical in shape with diameters ranging from hundreds of nanometers to tens of micrometers, where the void size distributions are temperature-dependent. Low-temperature cycling elicits a high proportion of submicrometer voids, while the higher-temperature sample morphology is dominated by voids larger than 2 μm. In evaluating these morphologies, we consider the importance of nonidealities during extreme charging, such as electrolyte decomposition. We conclude that nano-CT is an effective tool for resolving features and aggressive cycling-induced anomalies in Li films in the range of 100 nm to 100 μm.

  17. Nano-liquid chromatography applied to enantiomers separation.

    Science.gov (United States)

    Fanali, Salvatore

    2017-02-24

    This paper presents the state of the art concerning the separation of chiral compounds by means of nano-liquid chromatography (nano-LC). The enantiomers' separation and determination are a subject of fundamental importance in various application fields such as pharmaceutical industry, biomedicine, food, agrochemical etc. Nano-LC is a miniaturized chromatographic technique offering some advantages over conventional ones such as low consumption of mobile phase, sample volume and amount of chiral stationary phase, reduced costs etc. This is reported in the first part of the paper illustrating the features of the nano-LC. In addition, chiral resolution methods are briefly illustrated. Some chiral selectors, used in high-performance liquid chromatography have also been applied in nano-LC including cyclodextrins, glycopeptide antibiotics, modified polysaccharides etc. This is discussed in the second part of the review. Finally some examples of the applications available in literature are reported. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Learning from biology: synthetic lipoproteins for drug delivery.

    Science.gov (United States)

    Huang, Huang; Cruz, William; Chen, Juan; Zheng, Gang

    2015-01-01

    Synthetic lipoproteins represent a relevant tool for targeted delivery of biological/chemical agents (chemotherapeutics, siRNAs, photosensitizers, and imaging contrast agents) into various cell types. These nanoparticles offer a number of advantages for drugs delivery over their native counterparts while retaining their natural characteristics and biological functions. Their ultra-small size (lipoprotein receptors, i.e., low-density lipoprotein receptor (LDLR) and Scavenger receptor class B member 1 (SRB1) that are found in a number of pathological conditions (e.g., cancer, atherosclerosis), make them superior delivery strategies when compared with other nanoparticle systems. We review the various approaches that have been developed for the generation of synthetic lipoproteins and their respective applications in vitro and in vivo. More specifically, we summarize the approaches employed to address the limitation on use of reconstituted lipoproteins by means of natural or recombinant apolipoproteins, as well as apolipoprotein mimetic molecules. Finally, we provide an overview of the advantages and disadvantages of these approaches and discuss future perspectives for clinical translation of these nanoparticles. © 2014 Wiley Periodicals, Inc.

  19. Characteristics of PEMFC operating at high current density with low external humidification

    International Nuclear Information System (INIS)

    Fan, Linhao; Zhang, Guobin; Jiao, Kui

    2017-01-01

    Highlights: • PEMFC with low humidity and high current density is studied by numerical simulation. • At high current density, water production lowers external humidification requirement. • A steady anode circulation status without external humidification is demonstrated. • The corresponding detailed internal water transfer path in the PEMFC is illustrated. • Counter-flow is superior to co-flow at low anode external humidification. - Abstract: A three-dimensional multiphase numerical model for proton exchange membrane fuel cell (PEMFC) is developed to study the fuel cell performance and water transport properties with low external humidification. The results show that the sufficient external humidification is necessary to prevent the polymer electrolyte dehydration at low current density, while at high current density, the water produced in cathode CL is enough to humidify the polymer electrolyte instead of external humidification by flowing back and forth between the anode and cathode across the membrane. Furthermore, a steady anode circulation status without external humidification is demonstrated in this study, of which the detailed internal water transfer path is also illustrated. Additionally, it is also found that the water balance under the counter-flow arrangement is superior to co-flow at low anode external humidification.

  20. Comparison of low density and high density pedicle screw instrumentation in Lenke 1 adolescent idiopathic scoliosis.

    Science.gov (United States)

    Shen, Mingkui; Jiang, Honghui; Luo, Ming; Wang, Wengang; Li, Ning; Wang, Lulu; Xia, Lei

    2017-08-02

    The correlation between implant density and deformity correction has not yet led to a precise conclusion in adolescent idiopathic scoliosis (AIS). The aim of this study was to evaluate the effects of low density (LD) and high density (HD) pedicle screw instrumentation in terms of the clinical, radiological and Scoliosis Research Society (SRS)-22 outcomes in Lenke 1 AIS. We retrospectively reviewed 62 consecutive Lenke 1 AIS patients who underwent posterior spinal arthrodesis using all-pedicle screw instrumentation with a minimum follow-up of 24 months. The implant density was defined as the number of screws per spinal level fused. Patients were then divided into two groups according to the average implant density for the entire study. The LD group (n = 28) had fewer than 1.61 screws per level, while the HD group (n = 34) had more than 1.61 screws per level. The radiographs were analysed preoperatively, postoperatively and at final follow-up. The perioperative and SRS-22 outcomes were also assessed. Independent sample t tests were used between the two groups. Comparisons between the two groups showed no significant differences in the correction of the main thoracic curve and thoracic kyphosis, blood transfusion, hospital stay, and SRS-22 scores. Compared with the HD group, there was a decreased operating time (278.4 vs. 331.0 min, p = 0.004) and decreased blood loss (823.6 vs. 1010.9 ml, p = 0.048), pedicle screws needed (15.1 vs. 19.6, p density and high density pedicle screw instrumentation achieved satisfactory deformity correction in Lenke 1 AIS patients. However, the operating time and blood loss were reduced, and the implant costs were decreased with the use of low screw density constructs.

  1. Synthetic quorum sensing in model microcapsule colonies

    Science.gov (United States)

    Shum, Henry; Balazs, Anna C.

    2017-08-01

    Biological quorum sensing refers to the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. Designing synthetic materials systems that exhibit quorum sensing-like behavior could enable the fabrication of devices with both self-recognition and self-regulating functionality. Herein, we develop models for a colony of synthetic microcapsules that communicate by producing and releasing signaling molecules. Production of the chemicals is regulated by a biomimetic negative feedback loop, the “repressilator” network. Through theory and simulation, we show that the chemical behavior of such capsules is sensitive to both the density and number of capsules in the colony. For example, decreasing the spacing between a fixed number of capsules can trigger a transition in chemical activity from the steady, repressed state to large-amplitude oscillations in chemical production. Alternatively, for a fixed density, an increase in the number of capsules in the colony can also promote a transition into the oscillatory state. This configuration-dependent behavior of the capsule colony exemplifies quorum-sensing behavior. Using our theoretical model, we predict the transitions from the steady state to oscillatory behavior as a function of the colony size and capsule density.

  2. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater — Using humic acid and iron nano-sized colloids as test particles

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret

    2015-01-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution...

  3. An assessment of osteoporosis and low bone density in postmenopausal

    International Nuclear Information System (INIS)

    Hafeez, F.; Khurshid, R.

    2009-01-01

    Assessment of bone mineral density and other risk factors of osteoporosis in postmenopausal age group of Pakistani population and to compare them with premenopausal group. The risk factors of osteoporosis were studied both in premenopausal and postmenopausal groups. These risk factors can be exogenous or endogenous. Endogenous risk factors are aging, altered menstrual status, low bone mass, positive family history and oestrogen deficiency. Exogenous factors include lack of adequate nutrition (milk, calcium, vitamin D etc.) and lack of physical exercise. These risk factors were evaluated by taking history, recording height and weight, doing blood parameters and checking bone mineral density. Oestrogen level was carried out by the Eliza technique. Bone mass density was carried out by the bone heel densitometer. The data was analyzed statistically and the values of two groups were compared. The risk factors in postmenopausal group were low BMD, low oestrogen levels, poor intake of milk and calcium and lack of physical exercise. All women should get checked their BMD in this age group. Regular exercise and adequate calcium intake can still help in postmenopausal age group. (author)

  4. Effect of high density lipoproteins on permeability of rabbit aorta to low density lipoproteins

    International Nuclear Information System (INIS)

    Klimov, A.N.; Popov, V.A.; Nagornev, V.A.; Pleskov, V.M.

    1985-01-01

    A study was made on the effect of high density lipoproteins (HDL) on the permeability of rabbit aorta to low density lipoproteins (LDL) after intravenous administration of human HDL and human ( 125 I)LDL to normal and hypercholesterolemic rabbits. Evaluation of radioactivity in plasma and aorta has shown that the administration of a large dose of HDL decreased the aorta permeability rate for ( 125 I)LDL on an average by 19% in normal rabbits, and by 45% in rabbits with moderate hypercholesterolemia. A historadiographic study showed that HDL also decreased the vessel wall permeability to ( 125 I)LDL in normal and particularly in hypercholesterolemic animals. The suggestion was made that HDL at very high molar concentration can hamper LDL transportation through the intact endothelial layer into the intima due to the ability of HDL to compete with LDL in sites of low affinity on the surface of endothelial cells. (author)

  5. Density functional study of structural and catalytic properties of free and supported metal nano cluster; Dichtefunktionalstudie der strukturellen und katalytischen Eigenschaften freier und getraegerter Metallnanocluster

    Energy Technology Data Exchange (ETDEWEB)

    Huber, B.

    2007-04-11

    The structural and catalytic properties of metal clusters were determined in the framework of density functional theory. The first part of this work investigates the electronic and geometrical structure of sodium clusters with up to 309 atoms. The ground-state structures of the clusters are determined and the corresponding electronic density of states is compared to experimental photoelectron spectras. The excellent agreement to the experimental results indicates that the correct growth motive of the sodium clusters was found. Small clusters from Na{sup -}{sub 20} to Na{sup -}{sub 42} prefer pentagonal and icosahedral structures with anti-Mackay overlayers, while clusters larger than Na{sup -}{sub 50} prefer icosahedral structures with Mackay overlayers. Clusters between the closed-shell Mackay Clusters often exhibit a twist deformation with respect to the regular Mackay positions. The second part of this work investigates the catalytic properties of free and supported palladium clusters. For both cases the oxidation of small Pd{sub N} clusters (N {<=} 9) was studied. It turned out that MgO supported Pd-clusters dissociate oxygen with a significant lower reaction energy than free clusters or supported systems with particles consisting of several thousands of atoms. The reaction with oxygen transforms the non-crystalline Pd-clusters into crystalline Pd{sub x}O{sub y} nano-oxide clusters that are in epitaxy with the underlying support. Simulations of the CO oxidation on the Pd{sub x}O{sub y} cluster predict a low-temperature reaction mechanism. By calculating the electronic density of states and CO stretch frequencies, different ways of verifying the results experimentally are discussed. (orig.)

  6. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shilpam; Amaladass, E.P. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sharma, Neha [Surface & Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Harimohan, V. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Mani, Awadhesh, E-mail: mani@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples. - Highlights: • Thin films of molybdenum using DC sputtering have been deposited on glass. • Argon background pressure during sputtering was used to tune the crystallite sizes of films. • Correlation in deposition pressure, disorder and particle sizes has been observed. • Disorder tuned superconductor to insulator transition along with an intermediate metallic phase has been observed. • Enhancement of superconducting transition temperature and a dome shaped T{sub C} vs. deposition pressure phase diagram has been observed.

  7. Unexpected storm-time nightside plasmaspheric density enhancement at low L shell

    Science.gov (United States)

    Chu, X.; Bortnik, J.; Denton, R. E.; Yue, C.

    2017-12-01

    We have developed a three-dimensional dynamic electron density (DEN3D) model in the inner magnetosphere using a neural network approach. The DEN3D model can provide spatiotemporal distribution of the electron density at any location and time that spacecraft observations are not available. Given DEN3D's good performance in predicting the structure and dynamic evolution of the plasma density, the salient features of the DEN3D model can be used to gain further insight into the physics. For instance, the DEN3D models can be used to find unusual phenomena that are difficult to detect in observations or simulations. We report, for the first time, an unexpected plasmaspheric density increase at low L shell regions on the nightside during the main phase of a moderate storm during 12-16 October 2004, as opposed to the expected density decrease due to storm-time plasmaspheric erosion. The unexpected density increase is first discovered in the modeled electron density distribution using the DEN3D model, and then validated using in-situ density measurements obtained from the IMAGE satellite. The density increase was likely caused by increased earthward transverse field plasma transport due to enhanced nightside ExB drift, which coincided with enhanced solar wind electric field and substorm activity. This is consistent with the results of physics-based simulation SAMI3 model which show earthward enhanced plasma transport and electron density increase at low L shells during storm main phase.

  8. Experimental investigation on the effect of surface electric field in the growth of tungsten nano-tendril morphology due to low energy helium irradiation

    International Nuclear Information System (INIS)

    Woller, K.B.; Whyte, D.G.; Wright, G.M.; Brunner, D.

    2016-01-01

    The mechanisms responsible for and controlling the growth of tungsten nano-tendrils (or “fuzz”) under low-energy helium plasma exposure remain unclear. For the first time in nano-tendril experiments, the plasma sheath-produced electric field and the helium (He) ion energy have been decoupled, showing that the sheath electric field has little impact on nano-tendril growth, eliminating a possible cause for tendril growth. The well-established necessary growth conditions for W fuzz were maintained with He ion flux density Γ He  > 10 21  He m −2  s −1 , surface temperature T s  = 1273 K, He ion energy E He  = 64 eV, and He ion fluence Φ He  > 10 24  He m −2 . A grid is situated between the tungsten sample and plasma, with the grid and sample potentials independently controlled in order to control the electric field at the surface of the sample while maintaining the same incident He ion energy to the surface. A calculation of the potential profile in the drift space between the grid and sample was used to account for space charge and calculate the electric field at the surface of the sample. Tungsten fuzz formed at all electric fields tested, even near zero electric field. Also, the depth of the resulting W fuzz layer was unaltered by the electric field when compared to the calculated depth determined from an empirical growth model. The conclusion is that the sheath electric field is not necessary to cause the changes in surface morphology. - Highlights: • Surface electric field is proposed as a possible driver of tungsten fuzz growth. • A method that decouples plasma sheath electric field and ion energy is described. • Tungsten fuzz is shown to grow even without direct exposure to plasma. • Tungsten fuzz grows to the same depth with and without the plasma sheath.

  9. Using of synthetic Zeolites in the treatment of low-level liquid radioactive waste

    International Nuclear Information System (INIS)

    Ganjizadeh, M.; Bayat, I.; Sadatipoor, M.T.; Yavari, I.

    2002-01-01

    The removal of Cesium-137 from low active waste solution from research reactors by ion exchange using synthetic zeolites 4 A and A R-1 has been investigated by using batch and column technique. In batch tests we have studied the distribution coefficient (k d ) of Cesium-137 on the zeolites as a function of P H, Sodium concentration, contact time, and particle size of zeolites. The decontamination factor determined in column test. The accuracy of the method is investigated by comparing results obtained by this method here with results obtained by other techniques

  10. PEGylated Self-Assembled Nano-Bacitracin A: Probing the Antibacterial Mechanism and Real-Time Tracing of Target Delivery in Vivo.

    Science.gov (United States)

    Hong, Wei; Zhao, Yining; Guo, Yuru; Huang, Chengcheng; Qiu, Peng; Zhu, Jia; Chu, Chun; Shi, Hong; Liu, Mingchun

    2018-04-04

    Although nano-self-assemblies of hydrophobic-modified bacitracin A with poly(d,l-lactic- co-glycolic acid) (PLGA) (nano-BA PLGA ) have demonstrated promising antibacterial activities, the application of nano-BA PLGA was severely compromised by low water solubility. In this study, a series of PEGylated PLGA copolymers were selected to conjugate with the N-terminus of bacitracin A to construct PEGylated self-assembled nano-BAs and to further develop nano-self-assemblies of bacitracin A with strong antibacterial potency and high solubility. Compared with nano-BA PLGA , all PEGylated nano-BAs, except nano-BA 5k , exhibited strong antibacterial efficiency against both Gram-positive and Gram-negative bacteria by inducing loss of cytoplasmic membrane potential, membrane permeabilization, and leakage of calcein from artificial cell membranes. Studies elucidating the underlying mechanism of PEGylated nano-BAs against Gram-negative bacteria indicated that the strong hydrophobic and van der Waals interactions between PLGA and lipopolysaccharide (LPS) could bind, neutralize, and disassociate LPS, facilitating cellular uptake of the nanoparticles, which could destabilize the membrane, resulting in cell death. Moreover, PEGylated nano-BAs (nano-BA 12k ) with a longer PLGA block were expected to occupy a higher local density of BA mass on the surface and result in stronger hydrophobic and van der Waals interactions with LPS, which were responsible for the enhanced antibacterial activity against Gram-positive and emerging antibacterial activity against Gram-negative bacteria, respectively. In vivo imaging verified that PEGylated nano-BAs exhibited higher inflammatory tissue distribution and longer circulation time than nano-BA PLGA . Therefore, although PEGylation did not affect antibacterial activity, it is necessary for target delivery and resistance to clearance of the observed PEGylated nano-BAs. In vivo, nano-BA 12k also showed the highest therapeutic index against infection

  11. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  12. Investigation of bioactivity and cell effects of nano-porous sol–gel derived bioactive glass film

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Zhijun, E-mail: mokuu@zju.edu.cn [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Ji, Huijiao [College of Life Science, Zhejiang University, Hangzhou, 310028 (China); Hu, Xiaomeng [School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Teng, Yu [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli [College of Life Science, Zhejiang University, Hangzhou, 310028 (China); Chen, Weibo [School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640 (China); Qiu, Jianrong, E-mail: qjr@scut.edu.cn [State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640 (China); Zhang, Ming, E-mail: zhangming201201@126.com [College of Life Science, Zhejiang University, Hangzhou, 310028 (China)

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol–gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  13. Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film

    Science.gov (United States)

    Ma, Zhijun; Ji, Huijiao; Hu, Xiaomeng; Teng, Yu; Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli; Chen, Weibo; Qiu, Jianrong; Zhang, Ming

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol-gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  14. Report: Discussion on the development of nano Ag/TiO2 coating bracket and its antibacterial property and biocompatibility in orthodontic treatment.

    Science.gov (United States)

    Zhang, Ronghe; Zhang, Weiwei; Bai, Xueyan; Song, Xiaotong; Wang, Chunyan; Gao, Xinxin; Tian, Xubiao; Liu, Fengzhen

    2015-03-01

    This paper aims to explore the antibacterial property of nano Ag/TiO2 coating bracket for the common bacteria in oral cavity, and discuss its biocompatibility. Micro morphology in the surface of nano Ag/TiO2 coating bracket was detected by scanning electron microscope (SEM), and surface roughness of ordinary mental bracket, nano TiO2 coating bracket and nano Ag/TiO2 coating bracket were measured. First, antibacterial property of nano Ag/TiO2 coating bracket on the common bacteria in oral cavity was studied by sticking membrane method. Secondly, bonding strength of nano TiO2 coating and nano Ag/TiO2 coating bracket in groups were detected by scratching test. The result showed that, the synthetic nano Ag/TiO2 coating was nanogranular films with rigorous organizational structure, presenting as smooth and clean surface, and antibacterial rate of nano Ag/TiO2 coating for the common bacteria in oral cavity for 20 min was more than 79% in the dark. All the findings suggested that, nano Ag/TiO2 coating bracket not only has antibacterial effect but also has good biocompatibility, therefore, it can satisfy the clinical request of orthodontic treatment.

  15. Nano- and micro-electromechanical systems fundamentals of nano- and microengineering

    CERN Document Server

    Lyshevski, Sergey Edward

    2005-01-01

    NANOTECHNOLOGY AND MICROTECHNOLOGY (NANO- AND MICRO- SCIENCE, ENGINEERING AND TECHNOLOGY), AND BEYOND Introduction and Overview: From Micro- to Nano- and Beyond to Stringo-Scale Introductory Definitions to the Subjects Current Developments and Needs for Coherent Revolutionary Developments Societal Challenges and Implications NANO- AND MICROSCALE SYSTEMS, DEVICES, AND STRUCTURES Sizing Features: From Micro- to Nano-, and from Nano- to Stringo-Scale MEMS and NEMS Definitions Introduction to Taxonomy of Nano- and Microsystem Synthesis and Design Introduction to Design and Optimization of Nano- and Microsystems in the Behavioral Domain NANO- AND MICROSYSTEMS: CLASSIFICATION AND CONSIDERATION Biomimetics, Biological Analogies,and Design of NEMS and MEMS Micro- and Nanoelectromechanical Systems: Scaling Laws and Mathematical Modeling MEMS Examples and MEMS Architectures Introduction to Microfabrication and Micromachining FUNDAMENTALS OF MICROFABRICATION AND MEMS FABRICATION TECHNOLOGIES Introducti...

  16. Fabrication of a Low Density Carbon Fiber Foam and Its Characterization as a Strain Gauge

    Directory of Open Access Journals (Sweden)

    Claudia C. Luhrs

    2014-05-01

    Full Text Available Samples of carbon nano-fiber foam (CFF, essentially a 3D solid mat of intertwined nanofibers of pure carbon, were grown using the Constrained Formation of Fibrous Nanostructures (CoFFiN process in a steel mold at 550 °C from a palladium particle catalysts exposed to fuel rich mixtures of ethylene and oxygen. The resulting material was studied using Scanning Electron Microscopy (SEM, Energy Dispersive Spectroscopy (EDX, Surface area analysis (BET, and Thermogravimetric Analysis (TGA. Transient and dynamic mechanical tests clearly demonstrated that the material is viscoelastic. Concomitant mechanical and electrical testing of samples revealed the material to have electrical properties appropriate for application as the sensing element of a strain gauge. The sample resistance versus strain values stabilize after a few compression cycles to show a perfectly linear relationship. Study of microstructure, mechanical and electrical properties of the low density samples confirm the uniqueness of the material: It is formed entirely of independent fibers of diverse diameters that interlock forming a tridimensional body that can be grown into different shapes and sizes at moderate temperatures. It regains its shape after loads are removed, is light weight, presents viscoelastic behavior, thermal stability up to 550 °C, hydrophobicity, and is electrically conductive.

  17. Fabrication of a Low Density Carbon Fiber Foam and Its Characterization as a Strain Gauge.

    Science.gov (United States)

    Luhrs, Claudia C; Daskam, Chris D; Gonzalez, Edwin; Phillips, Jonathan

    2014-05-08

    Samples of carbon nano-fiber foam (CFF), essentially a 3D solid mat of intertwined nanofibers of pure carbon, were grown using the Constrained Formation of Fibrous Nanostructures (CoFFiN) process in a steel mold at 550 °C from a palladium particle catalysts exposed to fuel rich mixtures of ethylene and oxygen. The resulting material was studied using Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), Surface area analysis (BET), and Thermogravimetric Analysis (TGA). Transient and dynamic mechanical tests clearly demonstrated that the material is viscoelastic. Concomitant mechanical and electrical testing of samples revealed the material to have electrical properties appropriate for application as the sensing element of a strain gauge. The sample resistance v ers us strain values stabilize after a few compression cycles to show a perfectly linear relationship. Study of microstructure, mechanical and electrical properties of the low density samples confirm the uniqueness of the material: It is formed entirely of independent fibers of diverse diameters that interlock forming a tridimensional body that can be grown into different shapes and sizes at moderate temperatures. It regains its shape after loads are removed, is light weight, presents viscoelastic behavior, thermal stability up to 550 °C, hydrophobicity, and is electrically conductive.

  18. Low density molecular cloud in the vicinity of the Pleiades

    International Nuclear Information System (INIS)

    Federman, S.R.; Wilson, R.F.

    1984-01-01

    The central region of a small, low density molecular cloud, which lies to the south of the Pleiades cluster, has been studied through the use of molecular line observations. Column densities for CH, OH, 12 CO, and 13 CO are derived from the radio data. The CH and OH data yield a visual extinction through the center of the cloud of about 3 mag. The ratio of the antenna temperatures for the OH main lines is consistent with optically thin emission; therefore, the OH results are a good indication of the total extinction through the optically thin emission; therefore, the OH results are a good indication of the total extinction through the cloud. The analysis of the carbon monoxide data produces a relatively high kinetic temperature of at least 20 K, a low total gas density of approx.300-500 cm -3 , and a column density of approx.4 x 10 17 cm -2 for 12 CO. Thus this small molecular cloud is not typical of the molecular material generally studied in Taurus

  19. Nano dentistry

    International Nuclear Information System (INIS)

    Oh, S.; Park, Y.B.; Kim, S.; Jin, S.

    2014-01-01

    Nano technology in dentistry has drawn many scientists’ and clinicians’ attention to significant advances in the diagnosis, treatment, and prevention of oral disease. Also, nano materials in dentistry have been studied to overcome the physical and chemical characteristics of conventional dental materials. These interesting facts are the motivation of this special issue. The presented issue provides a variety of topics in the field of dentistry such as novel nano filled composite resin, the cytotoxicity of nanoparticles deposited on orthodontic bands, the osseointegration of 3D nano scaffold, and nano surface treated implant.

  20. Hβ Stark broadening in cold plasmas with low electron densities calibrated with Thomson scattering

    International Nuclear Information System (INIS)

    Palomares, J.M.; Hübner, S.; Carbone, E.A.D.; Vries, N. de; Veldhuizen, E.M. de; Sola, A.; Gamero, A.; Mullen, J.J.A.M. van der

    2012-01-01

    In the present work Stark broadening measurements have been carried out on low electron density (n e 19 m −3 ) and (relatively) low gas temperature (T g e . - Highlights: ► Stark broadening measurements at low density and temperature conditions ► Calibration with Thomson scattering ► Indications of the non-Lorentzian shape of the Stark broadening ► Impossibility of simultaneous diagnostic of gas temperature and electron density

  1. Nano-Satellite Secondary Spacecraft on Deep Space Missions

    Science.gov (United States)

    Klesh, Andrew T.; Castillo-Rogez, Julie C.

    2012-01-01

    NanoSat technology has opened Earth orbit to extremely low-cost science missions through a common interface that provides greater launch accessibility. They have also been used on interplanetary missions, but these missions have used one-off components and architectures so that the return on investment has been limited. A natural question is the role that CubeSat-derived NanoSats could play to increase the science return of deep space missions. We do not consider single instrument nano-satellites as likely to complete entire Discovery-class missions alone,but believe that nano-satellites could augment larger missions to significantly increase science return. The key advantages offered by these mini-spacecrafts over previous planetary probes is the common availability of advanced subsystems that open the door to a large variety of science experiments, including new guidance, navigation and control capabilities. In this paper, multiple NanoSat science applications are investigated, primarily for high risk/high return science areas. We also address the significant challenges and questions that remain as obstacles to the use of nano-satellites in deep space missions. Finally, we provide some thoughts on a development roadmap toward interplanetary usage of NanoSpacecraft.

  2. Nano structural anodes for radiation detectors

    Science.gov (United States)

    Cordaro, Joseph V.; Serkiz, Steven M.; McWhorter, Christopher S.; Sexton, Lindsay T.; Retterer, Scott T.

    2015-07-07

    Anodes for proportional radiation counters and a process of making the anodes is provided. The nano-sized anodes when present within an anode array provide: significantly higher detection efficiencies due to the inherently higher electric field, are amenable to miniaturization, have low power requirements, and exhibit a small electromagnetic field signal. The nano-sized anodes with the incorporation of neutron absorbing elements (e.g., .sup.10B) allow the use of neutron detectors that do not use .sup.3He.

  3. Cooperative doping effects of Ti and nano-SiC on transport critical current density and grain connectivity of in situ MgB{sub 2} tapes

    Energy Technology Data Exchange (ETDEWEB)

    Pan, X.F., E-mail: PAN.Xifeng@nims.go.jp [National Institute for Materials Science, Superconducting Materials Research Center, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan)] [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Chengdu 610031 (China); Matsumoto, A.; Kumakura, H. [National Institute for Materials Science, Superconducting Materials Research Center, 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Cheng, C.H.; Zhao, Y. [Key Laboratory of Magnetic Levitation and Maglev Trains (Ministry of Education of China), Superconductivity R and D Center (SRDC), Southwest Jiaotong University, Chengdu 610031 (China)] [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia)

    2011-11-15

    We studied the cooperative doping effects of Ti and nano-SiC on transport J{sub c} and grain connectivity of MgB{sub 2} tape. Ti doping significantly weakens the current dependence of T{sub c} of MgB{sub 2} tapes at self-field, and does not change T{sub c} or slightly increases T{sub c}. Further Ti adding can enhance in-field J{sub c} performance of SiC doped MgB{sub 2} tapes by a factor of 50-100% at 4.2 K and 10 T. Ti addition improves the J{sub c} performance of undoped and SiC doped MgB{sub 2} by modifying their grains connection. By now, nano-SiC powder (20-30 nm) is still the most effective additive for improving upper critical field and critical current density of MgB{sub 2}-based superconducting materials. However, some decomposed carbon aggregates at grain boundaries and results in serious weak-links of MgB{sub 2} grains, and these weak-links limit the further improvement of critical current density, J{sub c} of MgB{sub 2}, especially at lower fields. Ti doping is reported to increase the compactness of MgB{sub 2}, and modify its intergranular coupling by forming ultrathin TiB{sub 2} layer at grain boundaries. In this work, we studied the cooperative doping effects of Ti and nano-SiC on transport J{sub c} and grain connectivity of MgB{sub 2} and the possibility to improve transport J{sub c} of SiC doped MgB{sub 2} by introducing Ti additive. The results suggest the Ti addition can obviously improve J{sub c} of MgB{sub 2} at lower fields and also enhance the J{sub c} of SiC doped MgB{sub 2} by improving their grain connectivity which shows serious intergranular weak-links.

  4. Semiconductor Nano wires and Nano tubes: From Fundamentals to Diverse Applications

    International Nuclear Information System (INIS)

    Xiong, Q.; Grimes, C.A.; Zacharias, M.; Morral, A.F.; Hiruma, K.; Shen, G.

    2012-01-01

    Research in the field of semiconductor nano wires (SNWs) and nano tubes has been progressing into a mature subject with several highly interdisciplinary sub areas such as nano electronics, nano photonics, nano composites, bio sensing, optoelectronics, and solar cells. SNWs represent a unique system with novel properties associated to their one-dimensional (1D) structures. The fundamental physics concerning the formation of discrete 1D subbands, coulomb blockade effects, ballistic transport, and many-body phenomena in 1D nano wires and nano tubes provide a strong platform to explore the various scientific aspects in these nano structures. A rich variety of preparation methods have already been developed for generating well-controlled 1D nano structures and from a broad range of materials. The present special issue focuses on the recent development in the mechanistic understanding of the synthesis, the studies on electrical/optical properties of nano wires and their applications in nano electronics, nano photonics, and solar-energy harvesting. In this special issue, we have several invited review articles and contributed papers that are addressing current status of the fundamental issues related to synthesis and the diverse applications of semiconducting nano wires and nano tubes. One of the papers reviews the progress of the top-down approach of developing silicon-based vertically aligned nano wires to explore novel device architectures and integration schemes for nano electronics and clean energy applications. Another paper reviews the recent developments and experimental evidences of probing the confined optical and acoustic phonon in nonpolar semiconducting (Si and Ge) nano wires using Raman spectroscopy. The paper by K. Hiruma et al. spotlights the III semiconductor nano wires and demonstrates selective-area metal organic vapor phase epitaxy grown GaAs/In(Al)GaAs and InP/InAs/InP nano wires with heterojunctions along their axial and radial directions. The paper

  5. Process of making titanium carbide (TiC) nano-fibrous felts

    Science.gov (United States)

    Fong, Hao; Zhang, Lifeng; Zhao, Yong; Zhu, Zhengtao

    2015-01-13

    A method of synthesizing mechanically resilient titanium carbide (TiC) nanofibrous felts comprising continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix, comprising: (a) electrospinning a spin dope for making precursor nanofibers with diameters less than 0.5 J.Lm; (b) overlaying the nanofibers to produce a nanofibrous mat (felt); and then (c) heating the nano-felts first at a low temperature, and then at a high temperature for making electrospun continuous nanofibers or nano-ribbons with TiC crystallites embedded in carbon matrix; and (d) chlorinating the above electrospun nano-felts at an elevated temperature to remove titanium for producing carbide derived carbon (CDC) nano-fibrous felt with high specific surface areas.

  6. Low-density carbonized resorcinol-formaldehyde foams

    International Nuclear Information System (INIS)

    Kong, F.M.; Buckley, S.R.; Giles, C.L. Jr.; Haendler, B.L.; Hair, L.M.; Letts, S.A.; Overturf, G.E. III; Price, C.W.; Cook, R.C.

    1991-01-01

    This report documents research and development on resorcinol- formaldehyde-based foam materials conducted between 1986 and June 1990, when the effort was discontinued. The foams discussed are resorcinol-formaldehyde (RF) foam, carbonized RF (CRF) foam, and two composite foams, a polystyrene/RF (PS/RF) foam and its carbonized derivative (CPR). The RF foams are synthesized by the polycondensation of resorcinol with formaldehyde in a slightly basic solution. Their structure and density depend strongly on the concentration of the sodium carbonate catalyst. The have an interconnected bead structure similar to that of silica aerogels; bead sizes range from 30 to 130 Angstrom, and cell sizes are less than 0.1 μm. We have achieved densities of 16 to 200 mg/cm 3 . The RF foams can be pyrolyzed in an inert atmosphere to form a vitreous carbon foam (CRF), which has a similar microstructure but much higher mechanical strength. The PS/RF foams are obtained by filling the 2- to 3-μm cells of PS foam (a low-density hydrocarbon foam we have developed) with RF. The resultant foams have the outstanding handling and machinability of the PS foam matrix and the small cell size of RF. Pyrolyzing PS/RF foams causes depolymerization and loss of the PS; the resulting CPR foams have a structure similar to the PS foams in which CRF both replicates and fills the PS cells

  7. Experimental Evidence of Low Density Liquid Water under Decompression

    Science.gov (United States)

    Shen, G.; Lin, C.; Sinogeikin, S. V.; Smith, J.

    2017-12-01

    Water is not only the most important substance for life, but also plays important roles in liquid science for its anomalous properties. It has been widely accepted that water's anomalies are not a result of simple thermal fluctuation, but are connected to the formation of various structural aggregates in the hydrogen bonding network. Among several proposed scenarios, one model of fluctuations between two different liquids has gradually gained traction. These two liquids are referred to as a low-density liquid (LDL) and a high-density liquid (HDL) with a coexistence line in the deeply supercooled regime at elevated pressure. The LDL-HDL transition ends with decreasing pressure at a liquid-liquid critical point (LLCP) with its Widom line extending to low pressures. Above the Widom line lies mostly HDL which is favored by entropy, while LDL, mostly lying below the Widom line, is favored by enthalpy in the tetrahedral hydrogen bonding network. The origin of water's anomalies can then be explained by the increase in structural fluctuations, as water is cooled down to deeply supercooled temperatures approaching the Widom line. Because both the LLCP and the LDL-HDL transition line lie in water's "no man's land" between the homogeneous nucleation temperature (TH, 232 K) and the crystallization temperature (TX, 150 K), the success of experiments exploring this region has been limited thus far. Using a rapid decompression technique integrated with in situ x-ray diffraction, we observe that a high-pressure ice phase transforms to a low-density noncrystalline (LDN) form upon rapid release of pressure at temperatures of 140-165K. The LDN subsequently crystallizes into ice-Ic through a diffusion-controlled process. The change in crystallization rate with temperature indicates that the LDN is a LDL with its tetrahedrally-coordinated network fully developed and clearly linked to low-density amorphous ices. The observation of the tetrahedral LDL supports the two-liquid model for

  8. Fundamental properties of high-quality carbon nanofoam: from low to high density

    Directory of Open Access Journals (Sweden)

    Natalie Frese

    2016-12-01

    Full Text Available Highly uniform samples of carbon nanofoam from hydrothermal sucrose carbonization were studied by helium ion microscopy (HIM, X-ray photoelectron spectroscopy (XPS, and Raman spectroscopy. Foams with different densities were produced by changing the process temperature in the autoclave reactor. This work illustrates how the geometrical structure, electron core levels, and the vibrational signatures change when the density of the foams is varied. We find that the low-density foams have very uniform structure consisting of micropearls with ≈2–3 μm average diameter. Higher density foams contain larger-sized micropearls (≈6–9 μm diameter which often coalesced to form nonspherical μm-sized units. Both, low- and high-density foams are comprised of predominantly sp2-type carbon. The higher density foams, however, show an advanced graphitization degree and a stronger sp3-type electronic contribution, related to the inclusion of sp3 connections in their surface network.

  9. Morphological, Structural, and Electrical Characterization of Sol-Gel-Synthesized ZnO Nano rods

    International Nuclear Information System (INIS)

    Kashif, M.; Hashim, U.; Foo, K.L.; Ali, M.E.; Ali, M.E.; Ali, S.M.U.

    2013-01-01

    ZnO nano rods were grown on thermally oxidized p-type silicon substrate using sol-gel method. The SEM image revealed high-density, well-aligned, and perpendicular ZnO nano rods on the oxidized silicon substrate. The XRD profile confirmed the c-axis orientation of the nano rods. PL measurements showed the synthesized ZnO nano rods have strong ultraviolet (UV) emission. The electrical characterization was performed using interdigitated silver electrodes to investigate the stability in the current flow of the fabricated device under different ultraviolet (UV) exposure times. It was notified that a stable current flow was observed after 60 min of UV exposure. The determination of stable current flow after UV exposure is necessary for UV-based gas sensing and optoelectronic devices.

  10. Polymer/Layered Silicate Nano composites

    International Nuclear Information System (INIS)

    Bakhit, M.E.E.H.

    2012-01-01

    Polymer–clay nano composites have attracted the attention of many researchers and experimental results are presented in a large number of recent papers and patents because of the outstanding mechanical properties and low gas permeabilities that are achieved in many cases. Polymer-clay nano composites are a new class of mineral-field polymer that contain relatively small amounts (<10%) of nanometer-sized clay particles. Polymer/clay nano composites have their origin in the pioneering research conducted at Toyota Central Research Laboratories and the first historical record goes back to 1987. The matrix was nylon-6 and the filler MMT. Because of its many advantages such as high mechanical properties, good gas barrier, flame retardation, etc. polymer/clay nano composites have been intensely investigated and is currently the subject of many research programs. Nano composite materials are commercially important and several types of products with different shapes and applications including food packaging films and containers, engine parts, dental materials, etc. are now available in markets. A number of synthesis routes have been developed in the recent years to prepare these materials, which include intercalation of polymers or prepolymers from solution, in-situ polymerization, melt intercalation etc. In this study, new nano composite materials were produced from the components of rubber (Nbr, SBR and EPDM) as the polymeric matrix and organically modified quaternary alkylammonium montmorillonite in different contents (3, 5, 7, and 10 phr) as the filler by using an extruder then, the rubber nano composite sheets were irradiated at a dose of 0, 50, 75, 100 and 150 KGy using Electron beam Irradiation technique as a crosslinking agent. These new materials can be characterized by using various analytical techniques including X-ray diffractometer XRD, Thermogravimetric analyzer TGA, scanning electron microscope (SEM), transmission electron microscope (TEM),Fourier transform

  11. The world of Nano

    International Nuclear Information System (INIS)

    Noh, Seung Jeong; Hyun, Jun Won; An, Yong Hyeon; Lee, Sung Uk; Jee, Hye Gu; Kim, Young Seon

    2006-07-01

    The contents of this book are the beginning of nano technology, definition of nano, commercialization of nano technology, prospect of nano technology, survive with nano t-, development strategy of n-t in the U.S, and Japan, Korea, and other countries, comparison of development strategy of n-t among each country, various measurement technology for practical n-t, scanning tunneling microscopy, nano device, carbon nano tube, nano belt and nano wire, application of sensor in daily life, energy, post-Genome period and using as medicine with nano bio technology.

  12. Oxidized low-density lipoprotein in postmenopausal women

    DEFF Research Database (Denmark)

    Jankowski, Vera; Just, Alexander R; Pfeilschifter, Johannes

    2014-01-01

    BACKGROUND: Oxidized low-density lipoprotein (oxLDL) leads to atherosclerosis and cardiovascular disease, the most frequent causes of death worldwide. After menopause, lipid and lipoprotein metabolism changes and women are at greater risk of cardiovascular disease compared to fertile women. The aim.......10-0.43). Although intima-media thickness did not differ, postmenopausal women with serous oxLDL had more often atherosclerotic plaques compared to women without oxLDL (6/66 vs. 0/467; P lipoprotein, impaired glucose intolerance, and DBP were independently associated...... with the occurrence of oxLDL. If oxLDL was present, higher high-density lipoprotein and glucose intolerance were associated with higher concentrations of oxLDL. In contrast, higher blood urea concentrations were associated with lower concentrations of oxLDL. CONCLUSION: This study presents the prevalence...

  13. Effect of nano-fillers on the thermal conductivity of epoxy composites with micro-Al2O3 particles

    International Nuclear Information System (INIS)

    Gao, Zhifang; Zhao, Lei

    2015-01-01

    Highlights: • Nano-fillers were synthesized by a simple urea process. • Ternary filler system with synthesized nano-hybrid fillers was investigated. • Using of nano-hybrid filler for prevent nanofiller aggregation was presented. - Abstract: Nano-AlN particles, AlN/graphene nano-hybrids (AlN/GE) and AlN/carbon nanotubes nano-hybrids (AlN/CNTs) were prepared. The structures, morphologies of synthesized nano-materials were examined by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). The results showed that the morphologies of the synthesized nano-materials were obviously different. In addition, the thermal conductivity of epoxy composites could be effectively improved by adding the produced nano-fillers. Especially, the epoxy composite with AlN/GE nano-hybrids had the highest enhancement in thermal conductivity comparison to the pure epoxy. Moreover, the density of epoxy composites with the synthesized nano-fillers was decreased and the corresponding thermal stability was enhanced

  14. The CHF enhancement on pool boiling using nano-fluids

    International Nuclear Information System (INIS)

    Chang, Won Joon; Jeong, Yong Hoon

    2009-01-01

    A increase of CHF was observed with nano-fluid. The addition of nano-particle helped to increase the wettability. This happens with the decrease in bubble diameter, breakup of bubbles and avoidance of bubble coalescence. CHF increase or decrease depends upon competition between high wettability and high instability. An optimum nano-fluid concentration is needed which must have high crystalline content. When the concentration reaches at a critical value, CHF will tend to a constant value. Deposition of nano-particles increasing the wettability and the rewetting are cause of CHF enhancement. It delay the growth of dry patch by increasing of wettability and lead to CHF enhancement. Now, we must define the wettability of nano-fluids. At case of nano-fluids using metallic particle, the explanation using contact angle using was reasonable. But, at case of nan-fluids using hydrophobic CNT, this explanation can't be acceptable. Moreover, at case of surfactant solution, contact angle was very low. But CHF enhancement was not great. So, wettability about nano-fluids must be defined anew for explanation of CHF enhancement. I suggest the extension of micro layer are acceptable concept for increasing wettability using nano-fluids

  15. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

    Science.gov (United States)

    Colombo, P.; Kalb, P.D.

    1984-06-05

    In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

  16. Improving magnetic properties of MgB_2 bulk superconductors by synthetic engine oil treatment

    International Nuclear Information System (INIS)

    Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.

    2016-01-01

    Highlights: • The effects of synthetic engine oil treatment on magnetic properties of bulk MgB_2 superconductors has been first time investigated and reported. • Synthetic engine oil used as a product which is cheap and a rich carbon source obviously has improved the superconducting magnetic properties of MgB_2. • The critical current density of all of MgB_2 samples immersed at different standby time in engine oil in whole field range has been better than that of the pure MgB_2 sample. • The MgB_2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. - Abstract: The present study focuses on the effects of standby time of the MgB_2 samples immersed in synthetic engine oil on the critical current density ( J_c(H)), magnetic field dependence of the pinning force density f_p(b) and T_c performances of MgB_2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB_2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB_2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB_2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB_2 sample because of the number of the pinning centers. The MgB_2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The J_c value for the pure sample is 2.0 × 10"3 A/cm"2, whereas for the MgB_2 sample immersed at 300 min standby time in engine oil the J_c is enhanced to 4.8 × 10"3 A/cm"2 at 5 K and 3 T. The superconducting transition temperature (T_c) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was

  17. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes.

    Science.gov (United States)

    Aberare, Ogbevire L; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard

    2011-06-01

    Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Twenty-five Wister albino rats (of both sexes) were used for this study between the 4(th) of August and 7(th) of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. These results showed that frequent exposure to petrol fumes may be highly deleterious to the liver cells.

  18. Polyethylene/synthetic boehmite alumina nanocomposites: Structure, thermal and rheological properties

    Directory of Open Access Journals (Sweden)

    2010-05-01

    Full Text Available Synthetic boehmite alumina (BA has been incorporated up to 8 wt% in low density polyethylene (LDPE and high density polyethylene (HDPE, respectively, by melt compounding. The primary nominal particle size of these two BA grades was 40 and 60 nm, respectively. The dispersion of the BA in polyethylene (PE matrices was investigated by scanning and transmission electron microscopy techniques (SEM and TEM. The thermal (melting and crystallization, thermooxidative (oxidation induction temperature and time, and rheological behaviors of the nanocomposites were determined. It was found that BA is nanoscale dispersed in both LDPE and HDPE without any surface treatment and additional polymeric compatibilizer. BA practically did not influence the thermal (melting and crystallization and rheological properties of the parent PEs. On the other hand, BA worked as a powerful thermooxidative stabilizer for LDPE, and especially for HDPE nanocomposites.

  19. Nano-g Micromachined Inertial Sensors with Low Payload Impact, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiant Acoustics' patented technology for micro-interferometry enables a nano-g intertial sensor for NASA's emerging needs. The proposed sensor system is 1000x more...

  20. Method for controlling low-energy high current density electron beams

    International Nuclear Information System (INIS)

    Lee, J.N.; Oswald, R.B. Jr.

    1977-01-01

    A method and an apparatus for controlling the angle of incidence of low-energy, high current density electron beams are disclosed. The apparatus includes a current generating diode arrangement with a mesh anode for producing a drifting electron beam. An auxiliary grounded screen electrode is placed between the anode and a target for controlling the average angle of incidence of electrons in the drifting electron beam. According to the method of the present invention, movement of the auxiliary screen electrode relative to the target and the anode permits reliable and reproducible adjustment of the average angle of incidence of the electrons in low energy, high current density relativistic electron beams

  1. Suture, synthetic, or biologic in contaminated ventral hernia repair.

    Science.gov (United States)

    Bondre, Ioana L; Holihan, Julie L; Askenasy, Erik P; Greenberg, Jacob A; Keith, Jerrod N; Martindale, Robert G; Roth, J Scott; Liang, Mike K

    2016-02-01

    Data are lacking to support the choice between suture, synthetic mesh, or biologic matrix in contaminated ventral hernia repair (VHR). We hypothesize that in contaminated VHR, suture repair is associated with the lowest rate of surgical site infection (SSI). A multicenter database of all open VHR performed at from 2010-2011 was reviewed. All patients with follow-up of 1 mo and longer were included. The primary outcome was SSI as defined by the Centers for Disease Control and Prevention. The secondary outcome was hernia recurrence (assessed clinically or radiographically). Multivariate analysis (stepwise regression for SSI and Cox proportional hazard model for recurrence) was performed. A total of 761 VHR were reviewed for a median (range) follow-up of 15 (1-50) mo: there were 291(38%) suture, 303 (40%) low-density and/or mid-density synthetic mesh, and 167(22%) biologic matrix repair. On univariate analysis, there were differences in the three groups including ethnicity, ASA, body mass index, institution, diabetes, primary versus incisional hernia, wound class, hernia size, prior VHR, fascial release, skin flaps, and acute repair. The unadjusted outcomes for SSI (15.1%; 17.8%; 21.0%; P = 0.280) and recurrence (17.8%; 13.5%; 21.5%; P = 0.074) were not statistically different between groups. On multivariate analysis, biologic matrix was associated with a nonsignificant reduction in both SSI and recurrences, whereas synthetic mesh associated with fewer recurrences compared to suture (hazard ratio = 0.60; P = 0.015) and nonsignificant increase in SSI. Interval estimates favored biologic matrix repair in contaminated VHR; however, these results were not statistically significant. In the absence of higher level evidence, surgeons should carefully balance risk, cost, and benefits in managing contaminated ventral hernia repair. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Examining the occupancy–density relationship for a low-density carnivore

    Science.gov (United States)

    Linden, Daniel W.; Fuller, Angela K.; Royle, J. Andrew; Hare, Matthew P.

    2017-01-01

    The challenges associated with monitoring low-density carnivores across large landscapes have limited the ability to implement and evaluate conservation and management strategies for such species. Non-invasive sampling techniques and advanced statistical approaches have alleviated some of these challenges and can even allow for spatially explicit estimates of density, one of the most valuable wildlife monitoring tools.For some species, individual identification comes at no cost when unique attributes (e.g. pelage patterns) can be discerned with remote cameras, while other species require viable genetic material and expensive laboratory processing for individual assignment. Prohibitive costs may still force monitoring efforts to use species distribution or occupancy as a surrogate for density, which may not be appropriate under many conditions.Here, we used a large-scale monitoring study of fisher Pekania pennanti to evaluate the effectiveness of occupancy as an approximation to density, particularly for informing harvest management decisions. We combined remote cameras with baited hair snares during 2013–2015 to sample across a 70 096-km2 region of western New York, USA. We fit occupancy and Royle–Nichols models to species detection–non-detection data collected by cameras, and spatial capture–recapture (SCR) models to individual encounter data obtained by genotyped hair samples. Variation in the state variables within 15-km2 grid cells was modelled as a function of landscape attributes known to influence fisher distribution.We found a close relationship between grid cell estimates of fisher state variables from the models using detection–non-detection data and those from the SCR model, likely due to informative spatial covariates across a large landscape extent and a grid cell resolution that worked well with the movement ecology of the species. Fisher occupancy and density were both positively associated with the proportion of coniferous

  3. Word selection affects perceptions of synthetic biology

    Directory of Open Access Journals (Sweden)

    Tonidandel Scott

    2011-07-01

    Full Text Available Abstract Members of the synthetic biology community have discussed the significance of word selection when describing synthetic biology to the general public. In particular, many leaders proposed the word "create" was laden with negative connotations. We found that word choice and framing does affect public perception of synthetic biology. In a controlled experiment, participants perceived synthetic biology more negatively when "create" was used to describe the field compared to "construct" (p = 0.008. Contrary to popular opinion among synthetic biologists, however, low religiosity individuals were more influenced negatively by the framing manipulation than high religiosity people. Our results suggest that synthetic biologists directly influence public perception of their field through avoidance of the word "create".

  4. Measurements of low density, high velocity flow by electron beam fluorescence technique

    International Nuclear Information System (INIS)

    Soga, Takeo; Takanishi, Masaya; Yasuhara, Michiru

    1981-01-01

    A low density chamber with an electron gun system was made for the measurements of low density, high velocity (high Mach number) flow. This apparatus is a continuous running facility. The number density and the rotational temperature in the underexpanding free jet of nitrogen were measured along the axis of the jet by the electron beam fluorescence technique. The measurements were carried out from the vicinity of the exit of the jet to far downstream of the first Mach disk. Rotational nonequilibrium phenomena were observed in the hypersonic flow field as well as in the shock wave (Mach disk). (author)

  5. Low buoyant density proteoglycans from saline and dissociative extracts of embryonic chicken retinas

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J.E.; Ting, Y.P.; Birkholz-Lambrecht, A.

    1984-03-01

    Retinas were labeled in culture with (/sup 3/H)glucosamine or (/sup 3/H)leucine and (/sup 35/S)sulfate and extracted sequentially with physiologically balanced saline and 4 M guanidine HCl. They were dialyzed into associative conditions (0.5 M NaCl) and chromatographed on agarose columns. Under these conditions, some of the proteoglycans were associated in massive complexes that showed low buoyant densities when centrifuged in CsCl density gradients under dissociative conditions (4 M guanidine HCl). Much of the label in these complexes was in molecules other than proteoglycans. Most of the proteoglycans, however, were included on the agarose columns, where they appeared to be constitutionally of low buoyant density. They resisted attempts to separate potential low buoyant density contaminants from the major proteoglycans by direct CsCl density gradient centrifugation or by the fractionation of saline or 8 M urea extracts on diethylaminoethyl-Sephacel. The diethylaminoethyl-Sephacel fractions were either subjected to CsCl density gradient centrifugation or were chromatographed on Sephacryl S-300, in both cases before and after alkaline cleavage, to confirm the presence of typical O-linked glycosaminoglycans. The medium and balanced salt extracts were enriched in chondroitin sulfate and other sulfated macromolecules, possibly highly sulfated oligosaccharides, that resisted digestion by chondroitinase ABC but were electrophoretically less mobile than heparan sulfate. Guanidine HCl or urea extracts of the residues were mixtures of high and low density proteoglycans that were enriched in heparan sulfate.

  6. MicroCT Analysis of Micro-Nano Titanium Implant Surface on the Osseointegration.

    Science.gov (United States)

    Ban, Jaesam; Kang, Seongsoo; Kim, Jihyun; Lee, Kwangmin; Hyunpil, Lim; Vang, Mongsook; Yang, Hongso; Oh, Gyejeong; Kim, Hyunseung; Hwang, Gabwoon; Jung, Yongho; Lee, Kyungku; Park, Sangwon; Yunl, Kwidug

    2015-01-01

    This study was to investigate the effects of micro-nano titanium implant surface on the osseointegration. A total of 36 screw-shaped implants were used. The implant surfaces were classified into 3 groups (n = 12): machined surface (M group), nanosurface which is nanotube formation on the machined surface (MA group) and nano-micro surface which is nanotube formation on the RBM surface (RA group). Anodic oxidation was performed at a 20 V for 10 min with 1 M H3PO4 and 1.5 wt% HF solutions. The implants were installed on the humerus on 6 beagles. After 4 and 12 weeks, the morphometric analysis with micro CT (skyscan 1172, SKYSCAN, Antwerpen, Belgium) was done. The data were statistically analyzed with two-way ANOVA. Bone mineral density and bone volume were significantly increased depending on time. RA group showed the highest bone mineral density and bone volume at 4 weeks and 12 weeks significantly. It indicated that nano-micro titanium implant surface showed faster and more mature osseointegration.

  7. Low density in liver of idiopathic portal hypertension. A computed tomographic observation with possible diagnostic significance

    Energy Technology Data Exchange (ETDEWEB)

    Ishito, Hiroyuki

    1988-01-01

    In order to evaluate the diagnostic value of low density in liver on computed tomography (CT), CT scans of 11 patients with idiopathic portal hypertension (IPH) were compared with those from 22 cirrhotic patients, two patients with scarred liver and 16 normal subjects. Low densities on plain CT scans in patients with IPH were distinctly different from those observed in normal liver. Some of the low densities had irregular shape with unclear margin and were scattered near the liver surface, and others had vessel-like structures with unclear margin and extended as far as near the liver surface. Ten of the 11 patients with IPH had low densities mentioned above, while none of the 22 cirrhotic patients had such low densities. The present results suggest that the presence of low densities in liver on plain CT scan is clinically beneficial in diagnosis of IPH.

  8. The Field Emission Characteristics of Titanium-Doped Nano-Diamonds

    Institute of Scientific and Technical Information of China (English)

    YANG Yan-Ning; ZHANG Zhi-Yong; ZHANG Fu-Chun; DONG Jun-Tang; ZHAO Wu; ZHAI Chun-Xue; ZHANG Wei-Hu

    2012-01-01

    An electrophoresis solution,prepared in a specific ratio of titanium (Ti)-doped nano-diamond,is dispersed by ultrasound and the nano-diamond coating is then deposited on a polished Ti substrate by electrophoresis.After high-temperature vacuum annealing,the appearance of the surface and the microstructures of the coating are observed by a metallomicroscope,scanning electron microscopy and Raman spectroscopy.The field emission characteristics and luminescence features are also tested,and the mechanism of the field emission characteristics of the Ti-doped nano-diamond is analyzed.The experimental results show that under the same conditions,the diamond-coated surface (by deposition) is more uniform after doping with 5 mg of Ti powder.Compared with the undoped nano-diamond cathode,the turn-on fields decline from 6.95 to 5.95 V/μm.When the electric field strength is 13.80 V/μm,the field emission current density increases to 130.00 μA/cm2.Under the applied fields,the emission current is stable and the luminescence is at its best,while the field emission characteristics of the 10 mg Ti-doped coating become worse,as does the luminescence.The reason for this could be that an excessive amount of TiC is generated on the surface of the coating.%An electrophoresis solution, prepared in a speciGc ratio of titanium (Ti)-doped nano-diamond, is dispersed by ultrasound and the nano-diamond coating is then deposited on a polished Ti substrate by electrophoresis. After high-temperature vacuum annealing, the appearance of the surface and the microstructures of the coating are observed by a metallomicroscope, scanning electron microscopy and Raman spectroscopy. The field emission characteristics and luminescence features are also tested, and the mechanism of the field emission characteristics of the Ti-doped nano-diamond is analyzed. The experimental results show that under the same conditions, the diamond-coated surface (by deposition) is more uniform after doping with 5 mg of Ti

  9. Ultra High Electrical Performance of Nano Nickel Oxide and Polyaniline Composite Materials

    Directory of Open Access Journals (Sweden)

    Xiaomin Cai

    2017-07-01

    Full Text Available The cooperative effects between the PANI (polyaniline/nano-NiO (nano nickel oxide composite electrode material and redox electrolytes (potassium iodide, KI for supercapacitor applications was firstly discussed in this article, providing a novel method to prepare nano-NiO by using β-cyelodextrin (β-CD as the template agent. The experimental results revealed that the composite electrode processed a high specific capacitance (2122.75 F·g−1 at 0.1 A·g−1 in 0.05 M KI electrolyte solution, superior energy density (64.05 Wh·kg−1 at 0.2 A·g−1 in the two-electrode system and excellent cycle performance (86% capacitance retention after 1000 cycles at 1.5 A·g−1. All those ultra-high electrical performances owe to the KI active material in the electrolyte and the PANI coated nano-NiO structure.

  10. Sexual conflict and the evolution of asexuality at low population densities.

    Science.gov (United States)

    Gerber, Nina; Kokko, Hanna

    2016-10-26

    Theories for the evolution of sex rarely include facultatively sexual reproduction. Sexual harassment by males is an underappreciated factor: it should at first sight increase the relative advantage of asexual reproduction by increasing the cost of sex. However, if the same females can perform either sexual or asexual life cycles, then females trying to reproduce asexually may not escape harassment. If resisting male harassment is costly, it might be beneficial for a female to accept a mating and undertake a sexual life cycle rather than 'insist' on an asexual one. We investigate the effects of sexual harassment on the maintenance of sex under different population densities. Our model shows that resisting matings pays off at low population densities, which leads to the complete extinction of males, and thus to the evolution of completely asexual populations. Facultative sex persists in a narrow range of slightly higher densities. At high densities, selection favours giving up resisting male mating attempts and thus sexual reproduction takes over. These interactions between the outcomes of sexual conflict and population density suggest an explanation for the rarity of facultative sex and also patterns of geographical parthenogenesis, where marginal environments with potentially low densities are associated with asexuality. © 2016 The Author(s).

  11. Nano-sized structured layered positive electrode materials to enable high energy density and high rate capability lithium batteries

    Science.gov (United States)

    Deng, Haixia; Belharouak, Ilias; Amine, Khalil

    2012-10-02

    Nano-sized structured dense and spherical layered positive active materials provide high energy density and high rate capability electrodes in lithium-ion batteries. Such materials are spherical second particles made from agglomerated primary particles that are Li.sub.1+.alpha.(Ni.sub.xCo.sub.yMn.sub.z).sub.1-tM.sub.tO.sub.2-dR.sub.d- , where M is selected from can be Al, Mg, Fe, Cu, Zn, Cr, Ag, Ca, Na, K, In, Ga, Ge, V, Mo, Nb, Si, Ti, Zr, or a mixture of any two or more thereof, R is selected from F, Cl, Br, I, H, S, N, or a mixture of any two or more thereof, and 0.ltoreq..alpha..ltoreq.0.50; 0

  12. Effect of nano Cu coating on porous Si prepared by acid etching Al-Si alloy powder

    International Nuclear Information System (INIS)

    Li, Chunli; Zhang, Ping; Jiang, Zhiyu

    2015-01-01

    As a promising anode material for lithium ion battery, nano-Cu coated porous Si powder was fabricated through two stages: first, preparation of porous nano Si fibers by acid-etching Al-Si alloy powder; second, modified by nano-Cu particles using an electroless plating method. The nano-Cu particles on the surface of nano-Si fibers, not only increase the conductivity of material, but also inhibit the fuse process between nano Si fibers during charge/discharge cycling process, resulting in increased cycling stability of the material. In 1 M LiPF 6 /EC: DMC (1:1) + 1.5 wt% VC solution at current density of 200 mA g −1 , the 150th discharge capacity of nano-Cu coated porous Si electrode was 1651 mAh g −1 with coulombic efficiency of 99%. As anode material for lithium ion battery, nano-Cu coated porous Si nano fiber material is easier to prepare, costs less, and produces higher performance, representing a promising approach for high energy lithium ion battery application

  13. W nano-fuzzes: A metastable state formed due to large-flux He"+ irradiation at an elevated temperature

    International Nuclear Information System (INIS)

    Wu, Yunfeng; Liu, Lu; Lu, Bing; Ni, Weiyuan; Liu, Dongping

    2016-01-01

    W nano-fuzzes have been formed due to the large-flux and low-energy (200eV) He"+ irradiation at W surface temperature of 1480 °C. Microscopic evolution of W nano-fuzzes during annealing or low-energy (200 eV) He"+ bombardments has been observed using scanning electron microscopy and thermal desorption spectroscopy. Our measurements show that both annealing and He"+ bombardments can significantly alter the structure of W nano-fuzzes. W nano-fuzzes are thermally unstable due to the He release during annealing, and they are easily sputtered during He"+ bombardments. The current study shows that W nano-fuzzes act as a metastable state during low-energy and large-flux He"+ irradiation at an elevated temperature. - Highlights: • W nano-fuzzes microscopic evolution during annealing or He"+ irradiated have been measured. • W nano-fuzzes are thermally unstable due to He release during annealing. • He are released from the top layer of W fuzzes by annealing. • Metastable W nano-fuzzes are formed due to He"+ irradiation at an elevated temperature.

  14. Super-Resolution for Synthetic Zooming

    Directory of Open Access Journals (Sweden)

    Li Xin

    2006-01-01

    Full Text Available Optical zooming is an important feature of imaging systems. In this paper, we investigate a low-cost signal processing alternative to optical zooming—synthetic zooming by super-resolution (SR techniques. Synthetic zooming is achieved by registering a sequence of low-resolution (LR images acquired at varying focal lengths and reconstructing the SR image at a larger focal length or increased spatial resolution. Under the assumptions of constant scene depth and zooming speed, we argue that the motion trajectories of all physical points are related to each other by a unique vanishing point and present a robust technique for estimating its D coordinate. Such a line-geometry-based registration is the foundation of SR for synthetic zooming. We address the issue of data inconsistency arising from the varying focal length of optical lens during the zooming process. To overcome the difficulty of data inconsistency, we propose a two-stage Delaunay-triangulation-based interpolation for fusing the LR image data. We also present a PDE-based nonlinear deblurring to accommodate the blindness and variation of sensor point spread functions. Simulation results with real-world images have verified the effectiveness of the proposed SR techniques for synthetic zooming.

  15. Characterization and Influence of Green Synthesis of Nano-Sized Zinc Complex with 5-Aminolevulinic Acid on Bioactive Compounds of Aniseed.

    Science.gov (United States)

    Tavallali, Vahid; Rahmati, Sadegh; Rowshan, Vahid

    2017-11-01

    A new water soluble zinc-aminolevulinic acid nano complex (n[Zn(ALA) 2 ]), which was characterized by TEM, IR, and EDX spectra, has been prepared via sonochemical method under green conditions in water. In the current study, the effectiveness of foliar Zn amendment using synthetic Zn-ALA nano complex, as a new introduced Zn-fertilizer here, was evaluated. As the model plant, Pimpinella anisum, the most valuable spice and medicinal plant grown in warm regions, was used. By using zinc nano complex, further twenty compounds were obtained in the essential oil of anise plants. Application of 0.2% (w/v) Zn-ALA nano complex increased the levels of (E)-anethole, β-bisabolene, germacrene D, methyl chavicol, and α-zingiberene in the essential oil. Nano Zn complex at the rate of 0.2% induced considerable high phenolic compounds and zinc content of shoots and seeds. Chlorogenic acid had the highest level between four detected phenolic compounds. The maximum antioxidant activity was monitored through the application of Zn nano complex. According to the results, nanoscale nutrients can be provided with further decreased doses for medicinal plants. Using Zn-ALA nano complex is a new and efficient method to improve the pharmaceutical and food properties of anise plants. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  16. Scaling laws for nanoFET sensors

    International Nuclear Information System (INIS)

    Zhou Fushan; Wei Qihuo

    2008-01-01

    The sensitive conductance change of semiconductor nanowires and carbon nanotubes in response to the binding of charged molecules provides a novel sensing modality which is generally denoted as nanoFET sensors. In this paper, we study the scaling laws of nanoplate FET sensors by simplifying nanoplates as random resistor networks with molecular receptors sitting on lattice sites. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors, while they could be eliminated by designing devices with very short source-drain distance and large width

  17. Field-emission properties of transparent tungsten oxide nano-urchins

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Do-Hyung [Kyungpook National University, Nano-applied Physics Laboratory, Department of Physics, Daegu (Korea, Republic of)

    2012-09-15

    The field-emission properties of transparent tungsten oxide nano-urchin (NU) films deposited on conducting glass substrates were examined. The novel crystalline tungsten oxide NUs consisted of nanowires added to a spherical shell. The WO{sub 2.72} NUs showed better field-emission properties than the WO{sub 3} NUs with a low turn-on field of approximately 5.8 V/{mu}m and a current density as high as 1.3 mA/cm{sup 2} at 7.2 V/mm. The WO{sub x} NUs films could be used in FE applications using a large-area glass substrate without the need for a catalyst and a mechanical rubbing or lift-up process. These results have implications for the enhancement of FE properties by further tuning the WO{sub x} phases. (orig.)

  18. Measurement capability overview in PolyNano

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    A measurement capability overview has been conducted to evaluate, among the most used instruments in the field of nanometrology, where the PolyNano project should focus its research. The deliverable presents the most relevant instruments to achieve the best possible measurements accuracy matching...... requirements such as low uncertainty, high repeatability and resolution, adequate measuring range and availability among the different project partners. Based on the present measurement capability overview and in relation to the objective of PolyNano to “remove the technology barrier between lab‐scale proof...

  19. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    Science.gov (United States)

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots nano-CeO 2  nano iron oxides nano-Al 2 O 3  nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  20. Nano Mechanical Machining Using AFM Probe

    Science.gov (United States)

    Mostofa, Md. Golam

    Complex miniaturized components with high form accuracy will play key roles in the future development of many products, as they provide portability, disposability, lower material consumption in production, low power consumption during operation, lower sample requirements for testing, and higher heat transfer due to their very high surface-to-volume ratio. Given the high market demand for such micro and nano featured components, different manufacturing methods have been developed for their fabrication. Some of the common technologies in micro/nano fabrication are photolithography, electron beam lithography, X-ray lithography and other semiconductor processing techniques. Although these methods are capable of fabricating micro/nano structures with a resolution of less than a few nanometers, some of the shortcomings associated with these methods, such as high production costs for customized products, limited material choices, necessitate the development of other fabricating techniques. Micro/nano mechanical machining, such an atomic force microscope (AFM) probe based nano fabrication, has, therefore, been used to overcome some the major restrictions of the traditional processes. This technique removes material from the workpiece by engaging micro/nano size cutting tool (i.e. AFM probe) and is applicable on a wider range of materials compared to the photolithographic process. In spite of the unique benefits of nano mechanical machining, there are also some challenges with this technique, since the scale is reduced, such as size effects, burr formations, chip adhesions, fragility of tools and tool wear. Moreover, AFM based machining does not have any rotational movement, which makes fabrication of 3D features more difficult. Thus, vibration-assisted machining is introduced into AFM probe based nano mechanical machining to overcome the limitations associated with the conventional AFM probe based scratching method. Vibration-assisted machining reduced the cutting forces

  1. Synthesis of self-assembled Ge nano crystals employing reactive RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez H, A. [Universidad Autonoma del Estado de Hidalgo, Escuela Superior de Apan, Calle Ejido de Chimalpa Tlalayote s/n, Col. Chimalpa, Apan, Hidalgo (Mexico); Hernandez H, L. A. [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco, 07730 Ciudad de Mexico (Mexico); Monroy, B. M.; Santana R, G. [UNAM, Instituto de Investigaciones en Materiales, Apdo. Postal 70-360, 04510 Ciudad de Mexico (Mexico); Santoyo S, J.; Gallardo H, S. [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Apdo. Postal 14740, 07300 Ciudad de Mexico (Mexico); Marquez H, A. [Universidad de Guanajuato, Campus Irapuato-Salamanca, Departamento de Ingenieria Agricola, Km. 9 Carretera Irapuato-Silao, 36500 Irapuato, Guanajuato (Mexico); Mani G, P. G.; Melendez L, M. [Universidad Autonoma de Ciudad Juarez, Instituto de Ingenieria y Tecnologia, Departamento de Fisica y Matematicas, 32310 Ciudad Juarez, Chihuahua (Mexico)

    2016-11-01

    This work presents the results of a simple methodology able to control crystal size, dispersion and spatial distribution of germanium nano crystals (Ge-NCs). It takes advantage of a self-assembled process taken place during the deposit of the system SiO{sub 2}/Ge/SiO{sub 2} by reactive RF sputtering. Nanoparticles formation is controlled mainly by the roughness of the first SiO{sub 2} layer buy the ulterior interaction of the interlayer with the top layer also play a role. Structural quality of germanium nano crystals increases with roughness and the interlayer thickness. The tetragonal phase of germanium is produced and its crystallographic quality improves with interlayer thickness and oxygen partial pressure. Room temperature photoluminescence emission without a post growth thermal annealing process indicates that our methodology produces a low density of non-radiative traps. The surface topography of SiO{sub 2} reference samples was carried out by atomic force microscopy. The crystallographic properties of the samples were studied by grazing incidence X-ray diffraction at 1.5 degrees carried out in a Siemens D-5000 system employing the Cu Kα wavelength. (Author)

  2. Chemical Functionalization, Self-Assembly, and Applications of Nano materials and Nano composites 2014

    International Nuclear Information System (INIS)

    Yan, X.; Jiao, T.; Balan, L.; Chen, X.; Hu, M.Z.; Liu, W.

    2014-01-01

    The growing interests in nano materials and nano composites call for the development of processing techniques to obtain multiple functionalization nano structures and achieve the tailoring of specific features of the nanometer size. Functional nano materials and nano composites will expand the applied range of the original material and at the same time promote the development of inter discipline. Thus, the chemical functionalization and bottom-up assemblies of nano materials and subsequent applications will accelerate the development of nano science and nano technology.

  3. Nano-enhanced food contact materials and the in vitro toxicity to human intestinal cells of nano-ZnO at low dose

    International Nuclear Information System (INIS)

    Claonadh, Niall O; Casey, Alan; Mukherjee, Sanchali Gupta; Chambers, Gordon; Lyons, Sean; Higginbotham, Clement

    2011-01-01

    Nano Zinc Oxide (nZnO) has been shown to display antimicrobial effects which have lead to its application in a number of areas such as antimicrobial surface coatings, anti bacterial wound dressings and more recently in polymer composite systems for use in food contact materials. Concerns have been raised due to the incorporation of nanoparticles in food packaging stemming from the possibility of repeated low dose direct exposure, through ingestion, primarily due to degradation and nanoparticle leaching from the polymer composite. To address these concerns, composites consisting of nZnO and polyethylene were formed using twin screw extrusion to mimic commercial methods of food contact material production. A leaching study was performed using Atomic Absorption Spectroscopy in order to determine the concentration of nZnO leached from the composite. Composite stability studies were performed and a leached nZnO concentration was evaluated. This concentration range was then utilised in a series of tests aimed at determining the toxicity response associated with nZnO when exposed to an intestinal model. In this study two human colorectal carcinoma cell lines, HT29 (ATCC No: HTB-38) and SW480 (ATTC No: CCL-228), were employed as a model to represent areas exposed by ingestion. These lines were exposed to a concentration range of nZnO which incorporated the concentration leached from the composites. The cytotoxic effects of nZnO were evaluated using four cytotoxic endpoints namely the Neutral Red, Alamar Blue, Coomassie Blue and MTT assays. The results of these studies are presented and their implications for the use on nano ZnO in direct food contact surfaces will be discussed.

  4. Nano-enhanced food contact materials and the in vitro toxicity to human intestinal cells of nano-ZnO at low dose

    Energy Technology Data Exchange (ETDEWEB)

    Claonadh, Niall O; Casey, Alan; Mukherjee, Sanchali Gupta; Chambers, Gordon [Nanolab Research Centre, Focas Institute, Dublin Institute of Technology, Dublin (Ireland); Lyons, Sean; Higginbotham, Clement, E-mail: Niall.OClaonadh@DIT.ie, E-mail: Alan.Casey@DIT.ie [Materials Research Institute, Athlone Institute of Technology, Westmeath (Ireland)

    2011-07-06

    Nano Zinc Oxide (nZnO) has been shown to display antimicrobial effects which have lead to its application in a number of areas such as antimicrobial surface coatings, anti bacterial wound dressings and more recently in polymer composite systems for use in food contact materials. Concerns have been raised due to the incorporation of nanoparticles in food packaging stemming from the possibility of repeated low dose direct exposure, through ingestion, primarily due to degradation and nanoparticle leaching from the polymer composite. To address these concerns, composites consisting of nZnO and polyethylene were formed using twin screw extrusion to mimic commercial methods of food contact material production. A leaching study was performed using Atomic Absorption Spectroscopy in order to determine the concentration of nZnO leached from the composite. Composite stability studies were performed and a leached nZnO concentration was evaluated. This concentration range was then utilised in a series of tests aimed at determining the toxicity response associated with nZnO when exposed to an intestinal model. In this study two human colorectal carcinoma cell lines, HT29 (ATCC No: HTB-38) and SW480 (ATTC No: CCL-228), were employed as a model to represent areas exposed by ingestion. These lines were exposed to a concentration range of nZnO which incorporated the concentration leached from the composites. The cytotoxic effects of nZnO were evaluated using four cytotoxic endpoints namely the Neutral Red, Alamar Blue, Coomassie Blue and MTT assays. The results of these studies are presented and their implications for the use on nano ZnO in direct food contact surfaces will be discussed.

  5. Neutrophil–lymphocyte ratio is associated with low high-density lipoprotein cholesterol in healthy young men

    Directory of Open Access Journals (Sweden)

    Duran Tok

    2014-04-01

    Full Text Available Objective: It has been reported that the neutrophil–lymphocyte ratio is significantly elevated in patients with low high-density lipoprotein cholesterol (<35 mg/dL. But in this study, some patients had hypertension that may have affected the neutrophil–lymphocyte ratio. This study consisted of 1274 asymptomatic healthy young men. In contrast with the previous study, we investigated the neutrophil–lymphocyte ratio in healthy young men with low high-density lipoprotein cholesterol compared with controls. Methods: We studied 1274 asymptomatic young males (military personnel screening who underwent routine health check-up. Of them, 102 subjects had low high-density lipoprotein cholesterol. Results: The neutrophil–lymphocyte ratio was significantly higher among the men with low high-density lipoprotein cholesterol than that of the control group (P < 0.001. Conclusion: We conclude that the neutrophil–lymphocyte ratio is significantly elevated in asymptomatic healthy young men with low high-density lipoprotein cholesterol compared with control participants.

  6. Low speed/low rarefaction flow simulation in micro/nano cavity using DSMC method with small number of particles per cell

    International Nuclear Information System (INIS)

    Amiri-Jaghargh, Ali; Roohi, Ehsan; Niazmand, Hamid; Stefanov, Stefan

    2012-01-01

    The aim of this study is to extend the validity of the simplified Bernoulli-trials (SBT)/dual grid algorithm, newly proposed by Stefanov, as a suitable alternative of the standard collision scheme in the direct simulation Monte Carlo (DSMC) method, for solving low speed/low Knudsen number rarefied micro/nano flows. The main advantage of the SBT algorithm is to provide accurate calculations using much smaller number of particles per cell, i.e., ≈ 1. Compared to the original development of SBT [1], we extend the application of the SBT scheme to the near continuum rarefied flows, i.e., Kn = 0.005, where NTC scheme requires a relatively large sample size. Comparing the results of the SBT/dual grid scheme with NTC, it is shown that the SBT/dual grid scheme could successfully predict the thermal pattern and hydrodynamics field as well as surface parameters such as velocity slip and temperature jump. Nonlinear flux-corrected transport algorithm (FCT) is also employed as a filter to extract the smooth solution from the noisy DSMC calculation for low-speed/low-Knudsen number DSMC calculations. The results indicate that combination of SBT/dual grid and FTC filtering can decrease the total sample size needed to reach smooth solution without losing significant accuracy.

  7. Low lymphatic vessel density associates with chronic rhinosinusitis with nasal polyps.

    Science.gov (United States)

    Luukkainen, A; Seppälä, M; Renkonen, J; Renkonen, R; Hagstrő M, J; Huhtala, H; Rautiainen, M; Myller, J; Paavonen, T; Ranta, A; Torkkeli, T; Toppila-Salmi, S

    2017-06-01

    Chronic rhinosinusitis with and without nasal polyps (CRSwNP and CRSsNP) and antrochoanal polyps (ACP) are different upper airway inflammation phenotypes with different pathomechanisms. In order to understand the development of tissue edema, the present study aimed to evaluate lymphatic vessel density in CRSsNP, CRSwNP and ACP. 120 retrospective nasal and maxillary sinus specimens were stained immunohistochemically with a von Willebrand factor polyclonal antibody recognizing vascular and lymphatic endothelium, and with a podoplanin monoclonal antibody recognizing lymphatic endothelium. Vessels were studied by microscopy in a blinded fashion, and the vessel density and the relative density of lymphatic vessels were calculated. Patient characteristic factors and follow-up data of in average 9 years were collected from patient records. In the nasal cavity, the low absolute and relative density of vessels and of lymphatic vessels was associated with CRSwNP and ACP tissues compared to control inferior turbinate. This was observed also in the inflammatory hotspot area. In the maxillary sinus, lower absolute and relative density of lymphatic vessels associated with the CRSwNP phenotype. High lymphatic vessel density in polyp tissue associated with the need for revision CRS-surgery. As a conclusion, low density of lymphatic vessels distinguished patients with CRSwNP not only in the hotspot area of polyp tissue, but also in maxillary sinus mucosa. Yet, higher lymphatic vessel density seems to associate with polyp recurrence. Further studies are still needed to explore if formation of nasal polyps could be diminished by intranasal therapeutics affecting lymphangiogenesis.

  8. Controlled Synthesis of Manganese Dioxide Nano structures via a Facile Hydrothermal

    International Nuclear Information System (INIS)

    Pang, R.S.C.; Chin, S.F.; Ye, Ch. Ling

    2012-01-01

    Manganese dioxide nano structures with controllable morphological structures and crystalline phases were synthesized via a facile hydrothermal route at low temperatures without using any templates or surfactants. Both the aging duration and aging temperatures were the main synthesis parameters used to influence and control the rate of morphological and structural evolution of MnO 2 nano structures. MnO 2 nano structures comprise of spherical nano particulate agglomerates and highly amorphous in nature were formed at lower temperature and/or short aging duration. In contrast, MnO 2 nano structures of sea-urchin-like and nano rods-like morphologies and nanocrystalline in nature were prepared at the combined higher aging temperatures and longer aging durations. These nano structures underwent notable phase transformation from d-MnO 2 to a-MnO 2 upon prolonged hydrothermal aging duration and exhibited accelerated rate of phase transformation at higher aging temperature.

  9. Obtention of scintillography images by low density lipoproteins labelled with technetium 99

    International Nuclear Information System (INIS)

    Silva, S.; Coelho, I.; Zanardo, E.; Pileggi, F.; Meneguethi, C.; Maranhao, R.C.

    1992-01-01

    The low density lipoproteins carry the most part of the cholesterol in the blood plasma. These lipoproteins are labelled with technetium-99-m and have been used for obtaining images in nuclear medicine. The introduction of this technique is presented, aiming futures clinical uses. Scintillographic images are obtained 25 minutes and 24 hours after the injection of 3 m Ci of low density lipoproteins - technetium-99 m in rabbits. (C.G.C.)

  10. Electrodeposition of ZnO nano-wires lattices with a controlled morphology; Electrodepot de reseaux de nanofils de ZnO a morphologie controlee

    Energy Technology Data Exchange (ETDEWEB)

    Elias, J.; Tena-Zaera, R.; Katty, A.; Levy-Clement, C. [Centre National de la Recherche Scientifique (CNRS), Lab. de Chimie Metallurgique des Terres Rares, UPR 209, 94 - Thiais (France)

    2006-07-01

    In this work, it is shown that the electrodeposition is a changeable low cost method which allows, according to the synthesis conditions, to obtain not only plane thin layers of ZnO but different nano-structures too. In a first part, are presented the formation conditions of a compact thin layer of nanocrystalline ZnO electrodeposited on a conducing glass substrate. This layer plays a buffer layer role for the deposition of a lattice of ZnO nano-wires. The step of nano-wires nucleation is not only determined by the electrochemical parameters but by the properties of the buffer layer too as the grain sizes and its thickness. In this context, the use of an electrodeposition method in two steps allows to control the nano-wires length and diameter and their density. The morphology and the structural and optical properties of these nano-structures have been analyzed by different techniques as the scanning and transmission electron microscopy, the X-ray diffraction and the optical spectroscopy. These studies show that ZnO nano-structures are formed of monocrystalline ZnO nano-wires, presenting a great developed surface and a great optical transparency in the visible. These properties make ZnO a good material for the development of nano-structured photovoltaic cells as the extremely thin absorber cells (PV ETA) or those with dye (DSSC) which are generally prepared with porous polycrystalline TiO{sub 2}. Its replacement by a lattice of monocrystalline ZnO nano-wires allows to reduce considerably the number of grain boundaries and in consequence to improve the transport of the electrons. The results are then promising for the PV ETA cells with ZnO nano-wires. (O.M.)

  11. Modification of cement concrete by multilayer carbon nano-tubes

    International Nuclear Information System (INIS)

    Yakovlev, G.I.; Pervushin, G.N.; Pudov, I.A.; Korzhenko, A.

    2012-01-01

    The compact structure of protective concrete-conservative on the basis of Portland cement modified by carbon nano-dispersed systems has been studied. Multilayer carbon nano-tubes Graphistrength TM by 'Arkema' dispersed in hydrodynamic plant in the solution of surfactant Polyplast SP-1 have been used as modifying additives. The bending strength of fine grain concrete has been observed to increase by 45.1% and compression strength - by 96.8%. The concrete strength increase is related to morphological changes of crystalline hydrate new formations providing the formation of less defective structure of cement matrix of high density, preventing the migration of radionuclides into the environment in the process of radioactive waste conservation

  12. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    Directory of Open Access Journals (Sweden)

    Ammar Ben Brahim

    2013-05-01

    Full Text Available This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting.

  13. Nano-Electrochemistry and Nano-Electrografting with an Original Combined AFM-SECM

    Science.gov (United States)

    Ghorbal, Achraf; Grisotto, Federico; Charlier, Julienne; Palacin, Serge; Goyer, Cédric; Demaille, Christophe; Ben Brahim, Ammar

    2013-01-01

    This study demonstrates the advantages of the combination between atomic force microscopy and scanning electrochemical microscopy. The combined technique can perform nano-electrochemical measurements onto agarose surface and nano-electrografting of non-conducting polymers onto conducting surfaces. This work was achieved by manufacturing an original Atomic Force Microscopy-Scanning ElectroChemical Microscopy (AFM-SECM) electrode. The capabilities of the AFM-SECM-electrode were tested with the nano-electrografting of vinylic monomers initiated by aryl diazonium salts. Nano-electrochemical and technical processes were thoroughly described, so as to allow experiments reproducing. A plausible explanation of chemical and electrochemical mechanisms, leading to the nano-grafting process, was reported. This combined technique represents the first step towards improved nano-processes for the nano-electrografting. PMID:28348337

  14. Carbon nano-tubes - what risks, what prevention?

    International Nuclear Information System (INIS)

    Ricaud, Myriam; Lafon, Dominique; Roos, Frederique

    2007-01-01

    Carbon nano-tubes are arousing considerable interest in both the research world and industry because of their exceptional intrinsic properties and dimensional characteristics. Health risks of nano-tubes have been little studied, although the general public is already aware of their existence on account of their numerous promising applications. Existing, sometimes extremely brief, publications only reveal insufficient data for assessing risks sustained due to carbon nano-tube exposure. Yet, the great interest aroused by these new chemicals would indicate strongly that the number of exposed workers will increase over the coming years. It therefore appears essential to review not only the characteristics and applications of carbon nano-tubes, but also the prevention means to be implemented during their handling. We recommend application of the principle of precaution and measures to keep the exposure level as low as possible until the significance of occupational exposure and the corresponding human health risks are better known and have been assessed. (authors)

  15. Fabrication and thermomechanical properties of nano-SiC/carbon nano-tubes composites

    International Nuclear Information System (INIS)

    Lanfant, Briac

    2014-01-01

    Ceramic carbides materials such as SiC, due to their refractory nature and their low neutron absorption are believed to be promising candidates for high temperature nuclear or aerospace applications. However, SiC brittleness has limited its structural application. In this context this work examines in a first part the possibilities to perform dense nano-structured SiC matrix by SPS without the use of sintering additive. Indeed a reduction of grain size (below 100 nm) accompanied by a high final density seem to be the solutions to counteract the brittleness and thus to improve mechanical properties. Dense (95%) and nano-structured (grain size around 100 nm) SiC samples were obtained thanks to the realization of an effective dispersion technique and the study on the sintering parameters effect. High hardness (2200 Hv) and decent fracture toughness (3.0 MPa.m1/2) were achieved. This first work also showed the preponderant influence of recurrent pollutants (oxygen and carbon) found in SiC powders on the final microstructure and mechanical properties of sintered samples. The oxygen as silica or silicon oxycarbide seems to promote densification mechanisms while free carbon (3.5 %wt) causes lower grain size and densification state. Mechanical properties with carbon are also negatively impacted (950 Hv and 2.4 MPa.m1/2). Such degradation is due by the specific localization of carbon structure between the grains. In return of the expected mechanical properties improvement by reducing the grain size, the thermal conductivity is drastically decrease of due to the phonon scattering at the grain boundaries. With the aim of reducing this effect, a second study was initiated by introducing multi-walled carbon nano-tubes (MWCNTs) into the SiC matrix. The MWCNTs by exhibiting a high toughness could also help to enhance the mechanical properties. Green bodies with different amounts of well dispersed MWCNTs (0 %wt to 5 %wt) were realized. Like free carbon, MWCNTs are located between

  16. Growth temperature dependence of flux pinning properties in ErBa2Cu3Oy thin films with nano-rods

    International Nuclear Information System (INIS)

    Haruta, M.; Sueyoshi, T.; Fujiyoshi, T.; Mukaida, M.; Kai, H.; Matsumoto, K.; Mele, P.; Maeda, T.; Horii, S.

    2011-01-01

    Nano-rods were introduced into ErBa 2 Cu 3 O y thin films to improve J c . Pinning properties depended on the growth temperature of the films. Morphology of nano-rods was affected by the growth temperature. The growth temperature is important to achieve high in-field J c 's. Irreversibility lines and distributions of local critical current density (J cl ) based on the percolation transition model were affected by the growth temperature (T s ) in 3.5 wt.%-BaNb 2 O 6 -doped ErBa 2 Cu 3 O y thin films. The vortex-Bose-glass-like state appeared by the introduction of nano-rods, and this vortex state was affected by T s . The shape and width of the J cl distribution strongly depended on T s . These results are probably caused by variations of the density and the growth direction for nano-rods reflecting T s . The growth temperature is an important factor to achieve higher critical current properties under magnetic fields for coated conductors of rare-earth-based cuprates with nano-rods.

  17. Low-density lipoprotein analysis in microchip capillary electrophoresis systems

    NARCIS (Netherlands)

    Ceriotti, Laura; Shibata, Takayuki; Folmer, Britta; Weiller, Bruce H.; Roberts, Matthew A.; De Rooij, Nico F.; Verpoorte, Elisabeth

    2002-01-01

    Due to the mounting evidence for altered lipoprotein and cholesterol-lipoprotein content in several disease states, there has been an increasing interest in analytical methods for lipoprotein profiling for diagnosis. The separation of low- and high-density lipoproteins (LDL and HDL, respectively)

  18. Role of oxidized low-density lipoprotein in renal disease

    NARCIS (Netherlands)

    Heeringa, P; Tervaert, JWC

    Accelerated atherosclerosis is often observed in patients with chronic renal failure. In the present review we summarize and discuss the recent literature on the pathogenic role of low-density lipoproteins modified by oxidative processes in atherosclerosis and the possible role in renal diseases.

  19. Human Low Density Lipoprotein as a Vehicle of Atherosclerosis ...

    African Journals Online (AJOL)

    Low-density lipoproteins have been sufficiently established as an important precursor of atherosclerosis. The actual mechanism is still unclear, and the current technique of using radioisotopes has clinical limitation. However, the current study techniques or methods excellently elucidate the functional aspects of ...

  20. Synthesis of zinc oxide microrods and nano-fibers with dominant exciton emission at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Brito, F., E-mail: fro_brito@yahoo.com.m [Laboratorio de Materiales Optoelectronicos del Centro de Ciencias de Sinaloa, Ave. de las Americas 2771 Col. Villa Universidad 80010, Culiacan, Sinaloa (Mexico); Alejo-Armenta, C. [Laboratorio de Materiales Optoelectronicos del Centro de Ciencias de Sinaloa, Ave. de las Americas 2771 Col. Villa Universidad 80010, Culiacan, Sinaloa (Mexico); Garcia-Hipolito, M. [Departamento de Materiales Metalicos y Ceramicos, Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, AP 70-360, Coyoacan 04510, DF (Mexico); Camarillo, E.; Hernandez A, J. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP 20-364, Alvaro Obregon 01000, DF (Mexico); Falcony, C. [Departamento de Fisica, CINVESTAV-IPN, AP 14-740, 07000, DF (Mexico); Murrieta S, H. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, AP 20-364, Alvaro Obregon 01000, DF (Mexico)

    2011-05-15

    Employing a simple chemical synthesis method, hexagonal-shaped zinc oxide microrods and zinc oxide nano-fibers were deposited on pyrex-glass and aluminum substrates, respectively. Both kinds of deposits showed zincite crystalline phase with lattice parameters: a=3.2498 A and c=5.2066 A. Microrods showed very uniform wide and large sizes of around 1 and 10 {mu}m, respectively. Both deposits were homogeneous over all substrate surfaces. Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0]and [0 0 0 1]directions. The principal optical characteristics for both microrods and nano-fibers were: a) room-temperature photo and cathodo-luminescent spectra with strong exciton emission centered around 390 nm and with FWHMs around 125 and 160 meV, respectively, b) poor photo and cathode-luminescent emissions in the visible region of the electromagnetic spectrum, c) energy band gap of 3.32 eV, d) good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission and e) good ZnO stoichiometry endorsed by photoluminescent results. These characteristics make of these microrods and nano-fibers good for potential photonic applications. - Research highlights: {yields} Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0]and [0 0 0 1]directions. {yields} Microrods and nano-fibers resulted with good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission. {yields} The wet chemical method is appropriated for deposition of microrods and nano-fibers with the desired optical properties for its possible application in photonics.

  1. Synthesis of zinc oxide microrods and nano-fibers with dominant exciton emission at room temperature

    International Nuclear Information System (INIS)

    Ramos-Brito, F.; Alejo-Armenta, C.; Garcia-Hipolito, M.; Camarillo, E.; Hernandez A, J.; Falcony, C.; Murrieta S, H.

    2011-01-01

    Employing a simple chemical synthesis method, hexagonal-shaped zinc oxide microrods and zinc oxide nano-fibers were deposited on pyrex-glass and aluminum substrates, respectively. Both kinds of deposits showed zincite crystalline phase with lattice parameters: a=3.2498 A and c=5.2066 A. Microrods showed very uniform wide and large sizes of around 1 and 10 μm, respectively. Both deposits were homogeneous over all substrate surfaces. Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0] and [0 0 0 1] directions. The principal optical characteristics for both microrods and nano-fibers were: a) room-temperature photo and cathodo-luminescent spectra with strong exciton emission centered around 390 nm and with FWHMs around 125 and 160 meV, respectively, b) poor photo and cathode-luminescent emissions in the visible region of the electromagnetic spectrum, c) energy band gap of 3.32 eV, d) good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission and e) good ZnO stoichiometry endorsed by photoluminescent results. These characteristics make of these microrods and nano-fibers good for potential photonic applications. - Research highlights: → Microrods and nano-fibers resulted with good optical quality and with preferential crystalline growth in [1 0 1 0] and [0 0 0 1] directions. → Microrods and nano-fibers resulted with good emission efficiency supported by the not-required high energy densities to obtain strong exciton emission. → The wet chemical method is appropriated for deposition of microrods and nano-fibers with the desired optical properties for its possible application in photonics.

  2. Effects of SiO2 nano-particles on tribological and mechanical properties of aluminum matrix composites by different dispersion methods

    Science.gov (United States)

    Azadi, Mahboobeh; Zolfaghari, Mehrdad; Rezanezhad, Saeid; Azadi, Mohammad

    2018-05-01

    This study has been presented with mechanical properties of aluminum matrix composites, reinforced by SiO2 nano-particles. The stir casting method was employed to produce various aluminum matrix composites. Different composites by varying the SiO2 nano-particle content (including 0.5 and 1 weight percents) and two dispersion methods (including ball-milling and pre-heating) were made. Then, the density, the hardness, the compression strength, the wear resistance and the microstructure of nano-composites have been studied in this research. Besides, the distribution of nano-particles in the aluminum matrix for all composites has been also evaluated by the field emission scanning electron microscopy (FESEM). Obtained results showed that the density, the elongation and the ultimate compressive strength of various nano-composites decreased by the presence of SiO2 nano-particles; however, the hardness, the wear resistance, the yield strength and the elastic modulus of composites increased by auditioning of nano-particles to the aluminum alloy. FESEM images indicated better wetting of the SiO2 reinforcement in the aluminum matrix, prepared by the pre-heating dispersion method, comparing to ball-milling. When SiO2 nano-particles were added to the aluminum alloy, the morphology of the Si phase and intermetallic phases changed, which enhanced mechanical properties. In addition, the wear mechanism plus the friction coefficient value were changed for various nano-composites with respect to the aluminum alloy.

  3. Low density lipoprotein uptake by an endothelial-smooth muscle cell bilayer

    International Nuclear Information System (INIS)

    Alexander, J.J.; Miguel, R.; Graham, D.

    1991-01-01

    To study the interaction of endothelial and smooth muscle cells, and the means by which such interaction may affect lipid permeability of the arterial wall, cell bilayers were established by use of a transwell culture system. After confluent growth of both cell types had been achieved, iodine 125 bound to low-density lipoprotein (10 ng protein/ml) was added to the media of the upper well. After a 3-hour incubation period, the iodine 125-bound low-density lipoprotein content of the upper and lower media demonstrated an impedance to lipoprotein movement across the endothelial cell monolayer as compared to the bare porous polycarbonate filter of the transwell (p less than 10(-6)). The presence of smooth muscle cells in the bottom well significantly enhanced the permeability of the endothelial cell layer (p less than 10(-60)). This effect remained unchanged over a 9-day time course. Membrane binding and cellular uptake of low-density lipoprotein by endothelial cells was not altered by smooth muscle cells, indicating that this change in permeability could not be easily attributed to changes in receptor-mediated transport or transcytosis. Membrane binding (p less than 0.02) and cellular uptake (p less than 10(-6)) of low-density lipoprotein by smooth muscle cells in the bilayer, when adjusted for counts available in the smooth muscle cell media, were both reduced in the early incubation period as compared to isolated smooth muscle cells. The disproportionate reduction in uptake as compared to binding would suggest that this was not entirely a receptor-dependent process

  4. Low density lesion in solid mass on CT: Pathologic change and housfield number

    International Nuclear Information System (INIS)

    Han, Tae Il; Lim, Joo Won; Ryu, Kyung Nam; Ko, Young Tae; Song, Mi Jin; Lee, Dong Ho; Lee, Ju Hie

    1994-01-01

    We retrospectively reviewed the pathologic changes and housfield unit of the low density lesion in solid mass on CT. Pathologically proved solid mass was evaluated in regard to the shape and margin of the low density in the mass on the CT scans of 23 patient. The CT number of the low density lesion was correlated with the pathologic changes. Pathologic changes of the low density lesions were; necrosis (n=17), hemorrhage (n=13), cyst (n=4), myxoid degeneration (n=2), hyaline degeneration (n=1), fibrosis (n=1), and mixed cellularity (n=1). In 14 cases, more than 2 pathologic changes were seen. In 11 cases, necrosis was associated with hemorrhage. The CT number ranged from 11.5 to 44.9 Housfield unit(HU) (mean, 25.2 HU). The average CT number was 26.9 HU in hemorrhage and necrosis, 17.2 HU in cystic change, 20.9 HU in myxoid degeneration, 35.7 HU in hyaline de generation, 22.3 HU in fibrosis, and 21.4 HU in mixed cellularity. The hemorrhage and necrosis in 17 cases showed irregular margin, amorphous shape, and showed centrifugal distribution. The cystic change in 4 cases showed well defined margin, round shape, and peripheral location in solid mass. The low density lesions in solid mass on CT represented variable pathologic changes; necrosis, hemorrhage, cyst, myxoid degeneration, hyaline degeneration, fibrosis, and mixed cellularity. Pathologic changes would not be differentiated on the basis of CT number

  5. Synthetic CT: Simulating low dose single and dual energy protocols from a dual energy scan

    International Nuclear Information System (INIS)

    Wang, Adam S.; Pelc, Norbert J.

    2011-01-01

    Purpose: The choice of CT protocol can greatly impact patient dose and image quality. Since acquiring multiple scans at different techniques on a given patient is undesirable, the ability to predict image quality changes starting from a high quality exam can be quite useful. While existing methods allow one to generate simulated images of lower exposure (mAs) from an acquired CT exam, the authors present and validate a new method called synthetic CT that can generate realistic images of a patient at arbitrary low dose protocols (kVp, mAs, and filtration) for both single and dual energy scans. Methods: The synthetic CT algorithm is derived by carefully ensuring that the expected signal and noise are accurate for the simulated protocol. The method relies on the observation that the material decomposition from a dual energy CT scan allows the transmission of an arbitrary spectrum to be predicted. It requires an initial dual energy scan of the patient to either synthesize raw projections of a single energy scan or synthesize the material decompositions of a dual energy scan. The initial dual energy scan contributes inherent noise to the synthesized projections that must be accounted for before adding more noise to simulate low dose protocols. Therefore, synthetic CT is subject to the constraint that the synthesized data have noise greater than the inherent noise. The authors experimentally validated the synthetic CT algorithm across a range of protocols using a dual energy scan of an acrylic phantom with solutions of different iodine concentrations. An initial 80/140 kVp dual energy scan of the phantom provided the material decomposition necessary to synthesize images at 100 kVp and at 120 kVp, across a range of mAs values. They compared these synthesized single energy scans of the phantom to actual scans at the same protocols. Furthermore, material decompositions of a 100/120 kVp dual energy scan are synthesized by adding correlated noise to the initial material

  6. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  7. Mothership - Affordable Exploration of Planetary Bodies through Individual Nano-Sats and Swarms

    Science.gov (United States)

    DiCorcia, James D.; Ernst, Sebastian M.; Grace, J. Mike; Gump, David P.; Lewis, John S.; Foulds, Craig F.; Faber, Daniel R.

    2015-04-01

    One concept to enable broad participation in the scientific exploration of small bodies is the Mothership mission architecture which delivers third-party nano-sats, experiments, and sensors to a near Earth asteroid or comet. Deep Space Industries' Mothership service includes delivery of nano-sats, communication to Earth, and visuals of the asteroid surface and surrounding area. It allows researchers to house their instruments in a low-cost nano-sat platform that does not require the high-performance propulsion or deep space communication capabilities that otherwise would be required for a solo asteroid mission. This enables organizations with relatively low operating budgets to closely examine an asteroid with highly specialized sensors of their own choosing, while the nano-sats can be built or commissioned by a variety of smaller institutions, companies, or agencies. In addition, the Mothership and its deployed nano-sats can offer a platform for instruments which need to be distributed over multiple spacecraft. The Mothership is designed to carry 10 to 12 nano-sats, based upon a variation of the Cubesat standard, with some flexibility on the specific geometry. The Deep Space Nano-Sat reference design is a 14.5 cm cube, which accomodates the same volume as a traditional 3U Cubesat. This design was found to be more favorable for deep space due to its thermal characteristics. The CubeSat standard was originally designed with operations in low Earth orbit in mind. By deliberately breaking the standard, Deep Space Nano-Sats offer better performance with less chance of a critical malfunction in the more hostile deep space environment. The first mission can launch as early as Q4 2017, with subsequent, regular launches through the 2020's.

  8. Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method

    Science.gov (United States)

    Tan, Yongtao; Liu, Ying; Kong, Lingbin; Kang, Long; Ran, Fen

    2017-09-01

    Nano-Co3O4 decorated with gold nanoparticles is synthesized by a simple method of in-situ reduction of HAuCl4 by sodium citrate for energy storage application, and the effect of gold content in the product on electrochemical performance is investigated in detail. Introducing gold nanoparticles into nano-Co3O4 bulk would contribute to reduce internal resistance of charge transmission. The results show that after in-situ reduction reaction gold nanoparticles imbed uniformly into nano-Co3O4 with irregular nanoparticles. The gold nanoparticles decorated nano-Co3O4 exhibits specific capacitance of 681 F g-1 higher than that of pristine Co3O4 of 368 F g-1. It is interesting that a good cycle life with the specific capacitance retention of 83.1% is obtained after 13000 cycles at 5 A g-1, which recovers to initial specific capacitance value when the test current density is turned to 2 A g-1. In addition, the device of asymmetric supercapacitor, assembled with gold nanoparticles decorated nano-Co3O4 as the positive electrode and activated carbon as the negative electrode, exhibits good energy density of 25 Wh kg-1, which is comparable to the asymmetric device assembled with normal nano-Co3O4, or the symmetric device assembled just with activated carbon.

  9. W nano-fuzzes: A metastable state formed due to large-flux He{sup +} irradiation at an elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yunfeng; Liu, Lu; Lu, Bing; Ni, Weiyuan; Liu, Dongping, E-mail: dongping.liu@dlnu.edu.cn

    2016-12-15

    W nano-fuzzes have been formed due to the large-flux and low-energy (200eV) He{sup +} irradiation at W surface temperature of 1480 °C. Microscopic evolution of W nano-fuzzes during annealing or low-energy (200 eV) He{sup +} bombardments has been observed using scanning electron microscopy and thermal desorption spectroscopy. Our measurements show that both annealing and He{sup +} bombardments can significantly alter the structure of W nano-fuzzes. W nano-fuzzes are thermally unstable due to the He release during annealing, and they are easily sputtered during He{sup +} bombardments. The current study shows that W nano-fuzzes act as a metastable state during low-energy and large-flux He{sup +} irradiation at an elevated temperature. - Highlights: • W nano-fuzzes microscopic evolution during annealing or He{sup +} irradiated have been measured. • W nano-fuzzes are thermally unstable due to He release during annealing. • He are released from the top layer of W fuzzes by annealing. • Metastable W nano-fuzzes are formed due to He{sup +} irradiation at an elevated temperature.

  10. Angular dependence of dose sensitivity of nanoDot optically stimulated luminescent dosimeters in different radiation geometries

    Energy Technology Data Exchange (ETDEWEB)

    Jursinic, Paul A., E-mail: pjursinic@wmcc.org [West Michigan Cancer Center, 200 North Park Street, Kalamazoo, Michigan 49007 (United States)

    2015-10-15

    Purpose: A type of in vivo dosimeter, an optically stimulated luminescent dosimeter, OSLD, may have dose sensitivity that depends on the angle of incidence of radiation. This work measures how angular dependence of a nanoDot changes with the geometry of the phantom in which irradiation occurs and with the intrinsic structure of the nanoDot. Methods: The OSLDs used in this work were nanoDot dosimeters (Landauer, Inc., Glenwood, IL), which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x-rays. NanoDots with various intrinsic sensitivities were irradiated in numerous phantoms that had geometric shapes of cylinders, rectangles, and a cube. Results: No angular dependence was seen in cylindrical phantoms, cubic phantoms, or rectangular phantoms with a thickness to width ratio of 0.3 or 1.5. An angular dependence of 1% was observed in rectangular phantoms with a thickness to width of 0.433–0.633. A group of nanoDots had sensitive layers with mass density of 2.42–2.58 g/cm{sup 3} and relative sensitivity of 0.92–1.09 and no difference in their angular dependence. Within experimental uncertainty, nanoDot measurements agree with a parallel-plate ion chamber at a depth of maximum dose. Conclusions: When irradiated in cylindrical, rectangular, and cubic phantoms, nanoDots show a maximum angular dependence of 1% or less at an incidence angle of 90°. For a sample of 78 new nanoDots, the range of their relative intrinsic sensitivity is 0.92–1.09. For a sample of ten nanoDots, on average, the mass in the sensitive layer is 73.1% Al{sub 2}O{sub 3}:C and 26.9% polyester. The mass density of the sensitive layer of a nanoDot disc is between 2.42 and 2.58 g/cm{sup 3}. The angular dependence is not related to Al{sub 2}O{sub 3}:C loading of the nanoDot disc. The nanoDot at the depth of maximum dose has no more angular dependence than a parallel-plate ion chamber.

  11. Simulating variable-density flows with time-consistent integration of Navier-Stokes equations

    Science.gov (United States)

    Lu, Xiaoyi; Pantano, Carlos

    2017-11-01

    In this talk, we present several features of a high-order semi-implicit variable-density low-Mach Navier-Stokes solver. A new formulation to solve pressure Poisson-like equation of variable-density flows is highlighted. With this formulation of the numerical method, we are able to solve all variables with a uniform order of accuracy in time (consistent with the time integrator being used). The solver is primarily designed to perform direct numerical simulations for turbulent premixed flames. Therefore, we also address other important elements, such as energy-stable boundary conditions, synthetic turbulence generation, and flame anchoring method. Numerical examples include classical non-reacting constant/variable-density flows, as well as turbulent premixed flames.

  12. Research on a Micro-Nano Si/SiGe/Si Double Heterojunction Electro-Optic Modulation Structure

    Directory of Open Access Journals (Sweden)

    Song Feng

    2018-01-01

    Full Text Available The electro-optic modulator is a very important device in silicon photonics, which is responsible for the conversion of optical signals and electrical signals. For the electro-optic modulator, the carrier density of waveguide region is one of the key parameters. The traditional method of increasing carrier density is to increase the external modulation voltage, but this way will increase the modulation loss and also is not conducive to photonics integration. This paper presents a micro-nano Si/SiGe/Si double heterojunction electro-optic modulation structure. Based on the band theory of single heterojunction, the barrier heights are quantitatively calculated, and the carrier concentrations of heterojunction barrier are analyzed. The band and carrier injection characteristics of the double heterostructure structure are simulated, respectively, and the correctness of the theoretical analysis is demonstrated. The micro-nano Si/SiGe/Si double heterojunction electro-optic modulation is designed and tested, and comparison of testing results between the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation and the micro-nano Silicon-On-Insulator (SOI micro-ring electro-optic modulation, Free Spectrum Range, 3 dB Bandwidth, Q value, extinction ratio, and other parameters of the micro-nano Si/SiGe/Si double heterojunction micro-ring electro-optic modulation are better than others, and the modulation voltage and the modulation loss are lower.

  13. Flow visualization of a low density hypersonic flow field

    International Nuclear Information System (INIS)

    Masson, B.S.; Jumper, E.J.; Walters, E.; Segalman, T.Y.; Founds, N.D.

    1989-01-01

    Characteristics of laser induced iodine fluorescence (LIIF) in low density hypersonic flows are being investigated for use as a diagnostic technique. At low pressures, doppler broadening dominates the iodine absorption profile producing a fluorescence signal that is primarily temperature and velocity dependent. From this dependency, a low pressure flow field has the potential to be mapped for its velocity and temperature fields. The theory for relating iodine emission to the velocity and temperature fields of a hypersonic flow is discussed in this paper. Experimental observations are made of a fluorescencing free expansion and qualitatively related to the theory. 7 refs

  14. Free-standing nano-scale graphite saturable absorber for passively mode-locked erbium doped fiber ring laser

    International Nuclear Information System (INIS)

    Lin, Y-H; Lin, G-R

    2012-01-01

    The free-standing graphite nano-particle located between two FC/APC fiber connectors is employed as the saturable absorber to passively mode-lock the ring-type Erbium-doped fiber laser (EDFL). The host-solvent-free graphite nano-particles with sizes of 300 – 500 nm induce a comparable modulation depth of 54%. The interlayer-spacing and lattice fluctuations of polished graphite nano-particles are observed from the weak 2D band of Raman spectrum and the azimuth angle shift of –0.32 ° of {002}-orientation dependent X-ray diffraction peak. The graphite nano-particles mode-locked EDFL generates a 1.67-ps pulsewidth at linearly dispersion-compensated regime with a repetition rate of 9.1 MHz. The time-bandwidth product of 0.325 obtained under a total intra-cavity group-delay-dispersion of –0.017 ps 2 is nearly transform-limited. The extremely high stability of the nano-scale graphite saturable absorber during mode-locking is observed at an intra-cavity optical energy density of 7.54 mJ/cm 2 . This can be attributed to its relatively high damage threshold (one order of magnitude higher than the graphene) on handling the optical energy density inside the EDFL cavity. The graphite nano-particle with reduced size and sufficient coverage ratio can compete with other fast saturable absorbers such as carbon nanotube or graphene to passively mode-lock fiber lasers with decreased insertion loss and lasing threshold

  15. DAQ system for low density plasma parameters measurement

    International Nuclear Information System (INIS)

    Joshi, Rashmi S.; Gupta, Suryakant B.

    2015-01-01

    In various cases where low density plasmas (number density ranges from 1E4 to 1E6 cm -3 ) exist for example, basic plasma studies or LEO space environment measurement of plasma parameters becomes very critical. Conventional tip (cylindrical) Langmuir probes often result into unstable measurements in such lower density plasma. Due to larger surface area, a spherical Langmuir probe is used to measure such lower plasma densities. Applying a sweep voltage signal to the probe and measuring current values corresponding to these voltages gives V-I characteristics of plasma which can be plotted on a digital storage oscilloscope. This plot is analyzed for calculating various plasma parameters. The aim of this paper is to measure plasma parameters using a spherical Langmuir probe and indigenously developed DAQ system. DAQ system consists of Keithley source-meter and a host system connected by a GPIB interface. An online plasma parameter diagnostic system is developed for measuring plasma properties for non-thermal plasma in vacuum. An algorithm is developed using LabVIEW platform. V-I characteristics of plasma are plotted with respect to different filament current values and different locations of Langmuir probe with reference to plasma source. V-I characteristics is also plotted for forward and reverse voltage sweep generated programmatically from the source meter. (author)

  16. Direct measurements of 3d structure, chemistry and mass density during the induction period of C3s hydration

    International Nuclear Information System (INIS)

    Hu, Qinang; Aboustait, Mohammed; Kim, Taehwan; Ley, M. Tyler; Bullard, Jeffrey W.; Scherer, George; Hanan, Jay C.; Rose, Volker; Winarski, Robert; Gelb, Jeffrey

    2016-01-01

    The reasons for the start and end of the induction period of cement hydration remain a topic of controversy. One long-standing hypothesis is that a thin metastable hydrate forming on the surface of cement grains significantly reduces the particle dissolution rate; the eventual disappearance of this layer re-establishes higher dissolution rates at the beginning of the acceleration period. However, the importance, or even the existence, of this metastable layer has been questioned because it cannot be directly detected in most experiments. In this work, a combined analysis using nano-tomography and nano-X-ray fluorescence makes the direct imaging of early hydration products possible. These novel X-ray imaging techniques provide quantitative measurements of 3D structure, chemical composition, and mass density of the hydration products during the induction period. This work does not observe a low density product on the surface of the particle, but does provide insights into the formation of etch pits and the subsequent hydration products that fill them.

  17. Recent Development of Nano-Materials Used in DNA Biosensors

    Directory of Open Access Journals (Sweden)

    Yibin Ying

    2009-07-01

    Full Text Available As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  18. Low-density lipoprotein cholesterol and risk of gallstone disease

    DEFF Research Database (Denmark)

    Stender, Stefan; Frikke-Schmidt, Ruth; Benn, Marianne

    2013-01-01

    Drugs which reduce plasma low-density lipoprotein cholesterol (LDL-C) may protect against gallstone disease. Whether plasma levels of LDL-C per se predict risk of gallstone disease remains unclear. We tested the hypothesis that elevated LDL-C is a causal risk factor for symptomatic gallstone...

  19. Activated platelets contribute to oxidized low-density lipoproteins and dysfunctional high-density lipoproteins through a phospholipase A2-dependent mechanism

    NARCIS (Netherlands)

    Blache, Denis; Gautier, Thomas; Tietge, Uwe J. F.; Lagrost, Laurent

    Plasma activity of secretory phospholipase A2 (sPLA2) increases in patients with cardiovascular disease. The present study investigated whether platelet-released sPLA2 induces low-density lipoprotein (LDL) and high-density lipoprotein (HDL) modifications that translate into changes in lipoprotein

  20. Optical properties of phosphorescent nano-silicon electrochemically doped with terbium

    Energy Technology Data Exchange (ETDEWEB)

    Gelloz, Bernard [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603 (Japan); Mentek, Romain; Koshida, Nobuyoshi [Tokyo University A and T, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan)

    2012-12-15

    Hybrid thin films consisting of oxidized nano-silicon doped with terbium have been fabricated. Nano-silicon was formed by electrochemical etching of silicon wafers. Terbium was incorporated into nano-silicon pores by electrochemical deposition. Different oxidizing thermal treatments were applied to the films. The samples treated by high-pressure water vapor annealing (HWA) exhibited strong blue emission with a phosphorescent component, as previously reported by our group. The low temperature (260 C) HWA also led to strong emission from Tb{sup 3+} ions, whereas typical high temperature (900 C) treatment generally used to activate Tb{sup 3+} ions in silicon-based materials led to less luminescent samples. Spectroscopic and dynamic analyses suggest that terbium was incorporated as a separate oxide phase in the pores of the porous nano-silicon. The PL of the terbium phase and nano-silicon phase exhibit different temperature and excitation power dependences suggesting little optical or electronic interaction between the two phases. The luminescence of terbium is better activated at low temperature (260 C) than at high temperature (900 C). The hybrid material may find some applications in photonics, for instance as a display material. (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. CO oxidation on Alsbnd Au nano-composite systems

    Science.gov (United States)

    Rajesh, C.; Majumder, C.

    2018-03-01

    Using first principles method we report the CO oxidation behaviour of Alsbnd Au nano-composites in three different size ranges: Al6Au8, Al13Au42 and a periodic slab of Alsbnd Au(1 1 1) surface. The clusters prefer enclosed structures with alternating arrangement of Al and Au atoms, maximising Auδ-sbnd Alδ+ bonds. Charge distribution analysis suggests the charge transfer from Al to Au atoms, corroborated by the red shift in the density of states spectrum. Further, CO oxidation on these nano-composite systems was investigated through both Eley - Rideal and Langmuir Hinshelwood mechanism. While, these clusters interact with O2 non-dissociatively with an elongation of the Osbnd O bond, further interaction with CO led to formation of CO2 spontaneously. On contrary, the CO2 evolution by co-adsorption of O2 and CO molecules has a transition state barrier. On the basis of the results it is inferred that nano-composite material of Alsbnd Au shows significant promise toward effective oxidative catalysis.

  2. Electron beam cross-linking of natural rubber/linear-low density polyethylene blends

    International Nuclear Information System (INIS)

    Ahmad, A.; Mohd, D. H.; Abdullah, I.

    2005-01-01

    Effects of electron beam irradiation on the mechanical properties and morphological structure of natural rubber/linear-low density polyethylene blend was investigated The natural rubber/linear-low density polyethylene blend was prepared by melt blending in a Haake internal mixer at 140 d ig C , rotor speed of 50 rpm, and in 15 min Liquid natural rubber was incorporated into the blend as a compatibilizer Samples in the form of 1 mm sheets were exposed to 50-300 kGy of electron beam irradiation and analyzed for swelling index and gel content, tensile strength, and surface morphology. The result Indicated that gel content and mechanical properties of the samples increased with radiation dosage. The honey-comb structure of the surface morphology in low dosage irradiated samples slowly transformed into a continuous matrix on increasing radiation dose The variation of mechanical and physical properties was due to Increase in cross-linking density in the rubber and plastic phases and rubber-plastic Interaction on irradiation

  3. The effects of low environmental cadmium exposure on bone density

    Energy Technology Data Exchange (ETDEWEB)

    Trzcinka-Ochocka, M., E-mail: ochocka@imp.lodz.pl [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland); Jakubowski, M. [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland); Szymczak, W. [Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz (Poland); Insitute of Psychology, University of Lodz (Poland); Janasik, B.; Brodzka, R. [Department of Chemical Hazards, Laboratory of Biomonitoring, Nofer Institute of Occupational Medicine, Lodz (Poland)

    2010-04-15

    Recent epidemiological data indicate that low environmental exposure to cadmium, as shown by cadmium body burden (Cd-U), is associated with renal dysfunction as well as an increased risk of cadmium-induced bone disorders. The present study was designed to assess the effects of low environmental cadmium exposure, at the level sufficient to induce kidney damage, on bone metabolism and mineral density (BMD). The project was conducted in the area contaminated with cadmium, nearby a zinc smelter located in the region of Poland where heavy industry prevails. The study population comprised 170 women (mean age=39.7; 18-70 years) and 100 men (mean age=31.9; 18-76 years). Urinary and blood cadmium and the markers of renal tubular dysfunction ({beta}{sub 2}M-U RBP, NAG), glomerular dysfunction (Alb-U and {beta}{sub 2}M-S) and bone metabolism markers (BAP-S, CTX-S) as well as forearm BMD, were measured. The results of this study based on simple dose-effect analysis showed the relationship between increasing cadmium concentrations and an increased excretion of renal dysfunction markers and decreasing bone density. However, the results of the multivariate analysis did not indicate the association between exposure to cadmium and decrease in bone density. They showed that the most important factors that have impact on bone density are body weight and age in the female subjects and body weight and calcium excretion in males. Our investigation revealed that the excretion of low molecular weight proteins occurred at a lower level of cadmium exposure than the possible loss of bone mass. It seems that renal tubular markers are the most sensitive and significant indicators of early health effects of cadmium intoxication in the general population. The correlation of urinary cadmium concentration with markers of kidney dysfunction was observed in the absence of significant correlations with bone effects. Our findings did not indicate any effects of environmental cadmium exposure on bone

  4. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    Science.gov (United States)

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes

  5. The ultrastructure and processing properties of Straumann Bone Ceramic and NanoBone.

    Science.gov (United States)

    Dietze, S; Bayerlein, T; Proff, P; Hoffmann, A; Gedrange, T

    2006-02-01

    The ultrastructure, fundamental chemistry, and processing modes of fully synthetic bone grafting materials are relevant to the reconstruction of osseous defects. Rapid progress in the profitable market of biomaterials has led to the development of various bone substitutes. Despite all these efforts, an ideal and full substitute of autologous bone is not yet in sight. With regard to anorganic calcium phosphate ceramics, Straumann Bone Ceramic and NanoBone are compared. These have a similar composition and are osteoconductive, which indispensably requires contact with well-vascularised bone.

  6. Effects of nano-silica on mechanical performance and microstructure of ultra-high performance concrete

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, T. M., E-mail: thiagomendes@utfpr.edu.br [Universidade Tecnologica Federal do Parana (UTFPR), Londrina, PR (Brazil). Departamento de Engenharia Ambiental; Repette, W.L., E-mail: wellington.repette@gmail.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Engenharia Civil; Reis, P.J., E-mail: pjlondrina@yahoo.com.br [Univeridade Estadual de Londrina (UEL), PR (Brazil). Lab. de Fisica Nuclear Aplicada

    2017-07-15

    The use of nanoparticles in ultra-high strength concretes can result in a positive effect on mechanical performance of these cementitious materials. This study evaluated mixtures containing 10 and 20 wt% of silica fume, for which the optimum nano-silica content was determined, i.e. the quantity of nano-silica that resulted on the higher gain of strength. The physical characterization of raw materials was done in terms of particle size distribution, density and specific surface area. Chemical and mineralogical compositions of materials were obtained through fluorescence and X-ray diffraction. The mechanical performance was evaluated by compressive strength, flexural strength and dynamic elastic modulus measurements. The microstructural analysis of mixtures containing nano-silica was performed by X-ray diffraction, thermogravimetry, mercury intrusion porosimetry and scanning electron microscopy. Obtained results indicate an optimum content of nano-silica of 0.62 wt%, considering compressive and flexural strengths. This performance improvement was directly related to two important microstructural aspects: the packing effect and pozzolanic reaction of nano-silica. (author)

  7. Effects of nano-silica on mechanical performance and microstructure of ultra-high performance concrete

    International Nuclear Information System (INIS)

    Mendes, T. M.; Repette, W.L.; Reis, P.J.

    2017-01-01

    The use of nanoparticles in ultra-high strength concretes can result in a positive effect on mechanical performance of these cementitious materials. This study evaluated mixtures containing 10 and 20 wt% of silica fume, for which the optimum nano-silica content was determined, i.e. the quantity of nano-silica that resulted on the higher gain of strength. The physical characterization of raw materials was done in terms of particle size distribution, density and specific surface area. Chemical and mineralogical compositions of materials were obtained through fluorescence and X-ray diffraction. The mechanical performance was evaluated by compressive strength, flexural strength and dynamic elastic modulus measurements. The microstructural analysis of mixtures containing nano-silica was performed by X-ray diffraction, thermogravimetry, mercury intrusion porosimetry and scanning electron microscopy. Obtained results indicate an optimum content of nano-silica of 0.62 wt%, considering compressive and flexural strengths. This performance improvement was directly related to two important microstructural aspects: the packing effect and pozzolanic reaction of nano-silica. (author)

  8. Scaling Laws for NanoFET Sensors

    Science.gov (United States)

    Wei, Qi-Huo; Zhou, Fu-Shan

    2008-03-01

    In this paper, we report our numerical studies of the scaling laws for nanoplate field-effect transistor (FET) sensors by simplifying the nanoplates as random resistor networks. Nanowire/tube FETs are included as the limiting cases where the device width goes small. Computer simulations show that the field effect strength exerted by the binding molecules has significant impact on the scaling behaviors. When the field effect strength is small, nanoFETs have little size and shape dependence. In contrast, when the field-effect strength becomes stronger, there exists a lower detection threshold for charge accumulation FETs and an upper detection threshold for charge depletion FET sensors. At these thresholds, the nanoFET devices undergo a transition between low and large sensitivities. These thresholds may set the detection limits of nanoFET sensors. We propose to eliminate these detection thresholds by employing devices with very short source-drain distance and large width.

  9. A Canadian refiner's perspective of synthetic crudes

    International Nuclear Information System (INIS)

    Halford, T.L.; McIntosh, A.P.; Rasmussen

    1997-01-01

    Some of the factors affecting a refiner's choice of crude oil include refinery hardware, particularly gas oil crackers, products slate and product specifications, crude availability, relative crude price and crude quality. An overview of synthetic crude, the use of synthetic crude combined with other crudes and a comparison of synthetic crude with conventional crude oil was given. The two main users of synthetic crude are basically two groups of refiners, those large groups who use synthetic crude combined with other crudes, and a smaller group who run synthetic crude on specially designed units as a sole feed. The effects of changes in fuel legislation were reviewed. It was predicted that the changes will have a mixed impact on the value of synthetic crude, but low sulphur diesel regulations and gasoline sulphur regulations will make current synthetic crudes attractive. The big future change with a negative impact will be diesel cetane increases to reduce engine emissions. This will reduce synthetic crude attractiveness due to distillate yields and quality and high gas oil yields. Similarly, any legislation limiting aromatics in diesel fuel will also make synthetic crudes less attractive. Problems experienced by refiners with hardware dedicated to synthetic crude (salt, naphthenic acid, fouling, quality variations) were also reviewed. 3 tabs

  10. Association between bone mineral density and low backache in postmenopausal women

    International Nuclear Information System (INIS)

    Qayum, M.; Ali, W.

    2017-01-01

    Objective: To determine association between bone mineral density (BMD) and low backache in post menopausal women in general population of Lahore. Study Design: Descriptive study. Place and Duration of Study: Gynaecological outpatint department of Punjab Rangers Hospital Lahore during the period, from Feb 2015 to Feb 2016. Material and Methods: Screening for association between BMD and low backache in 481 post menopausal women was carried out. Low back pain was considered clinically relevant if the patient complained of moderate to severe pain, or if the patient needed any medical treatment. Their BMD was measured. The measurement site for BMD was the calcaneus of patient. The diagnosis was based on T score. Data was analyzed. Result: Osteoporosis was found in 303 (88.3%) of 50-60 years age group and 40 (11.7%) of 61-plus years age group. Conclusion: Bone mineral density was significantly lower in postmenopausal women and there was a strong association between low back ache and decreased BMD value. (author)

  11. Mercury nano-trap for effective and efficient removal of mercury(II) from aqueous solution

    Science.gov (United States)

    Li, Baiyan; Zhang, Yiming; Ma, Dingxuan; Shi, Zhan; Ma, Shengqian

    2014-11-01

    Highly effective and highly efficient decontamination of mercury from aqueous media remains a serious task for public health and ecosystem protection. Here we report that this task can be addressed by creating a mercury ‘nano-trap’ as illustrated by functionalizing a high surface area and robust porous organic polymer with a high density of strong mercury chelating groups. The resultant porous organic polymer-based mercury ‘nano-trap’ exhibits a record-high saturation mercury uptake capacity of over 1,000 mg g-1, and can effectively reduce the mercury(II) concentration from 10 p.p.m. to the extremely low level of smaller than 0.4 p.p.b. well below the acceptable limits in drinking water standards (2 p.p.b.), and can also efficiently remove >99.9% mercury(II) within a few minutes. Our work therefore presents a new benchmark for mercury adsorbent materials and provides a new perspective for removing mercury(II) and also other heavy metal ions from contaminated water for environmental remediation.

  12. Direct numerical simulation of axisymmetric laminar low-density jets

    Science.gov (United States)

    Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro

    2017-11-01

    The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.

  13. Synthesis of superior fast charging-discharging nano-LiFePO4/C from nano-FePO4 generated using a confined area impinging jet reactor approach.

    Science.gov (United States)

    Liu, Xiao-min; Yan, Pen; Xie, Yin-Yin; Yang, Hui; Shen, Xiao-dong; Ma, Zi-Feng

    2013-06-14

    LiFePO4/C nanocomposites with excellent electrochemical performance is synthesized from nano-FePO4, generated by a novel method using a confined area impinging jet reactor (CIJR). When discharged at 80 C (13.6 Ag(-1)), the LiFePO4/C delivers a discharge capacity of 95 mA h g(-1), an energy density of 227 W h kg(-1) and a power density of 34 kW kg(-1).

  14. Nano-bio-sensing

    CERN Document Server

    Carrara, Sandro

    2011-01-01

    This book examines state-of-the-art applications of nano-bio-sensing. It brings together researchers from nano-electronics and bio-technology, providing multidisciplinary content from nano-structures fabrication to bio-sensing applications.

  15. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  16. From Nano Structure to Systems: Fabrication and Characterization

    International Nuclear Information System (INIS)

    Uda Hashim

    2011-01-01

    NPD is designed in various nano wires scale size from 100 nm down to 20 nm. Next, the nano fabrication process flow development which consists of the detailed parameters and recipes are developed for nano wires formation. In order to produce very small nano wires, the dimensions, developments, etch profiles of nano wires and size reduction by thermal oxidation was investigated. Finally, the combination on top-down nano fabrication method and size-reduction has resulted in successful reduction of Nano wires reduced from 100 nm to approximately 20 nm. Spacer Patterning Lithography (SPL) is another technique used to fabricate nano structure especially nano wire. It is a low-cost and compatible to standard CMOS fabrication process. SPL, in general is a combination of conventional photolithography, anisotropic etchings and the excellent homogeneity and reproducibility of conformal chemical vapor deposition processes. The detail process flow involving every step in SPL including the deposition of a sacrificial layer, the definition of vertical step by means of lithography and etch-back process, the deposition of a conformal layer, final anisotropic etching and formation of gold pad. A wire with the scale in nano size has a wide range of applications. Up to present, the nano wires have been implemented in electronics, optics, mechanics, and sensing technology etc. One of the fields where nano wires have been used as building blocks is biosensor. Biosensor has been developed for different applications such as health care, industrial process control, environmental monitoring, quality control of food applications etc. Nevertheless, the conventional biosensor has its disadvantages, which are expensive, time-consuming, and require highly trained personnel. Therefore, there is increasing interest in the development of new type of biosensor which has the advantages of label-free, ultrasensitive, and near real-time operation. (author)

  17. Manufacturing and characterisation of PMMA-graphene oxide (GO) nanocomposite sandwich films with electrospun nano-fibre core

    OpenAIRE

    D. Bhattacharyya; D. Liu; S. Rao; R. Das; J. Upadhyay

    2012-01-01

    Purpose: Nanocomposite materials, comprising of polymer matrices and nano-sized reinforcements, exhibit significantly enhanced mechanical and functional properties at extremely low filler loading. In recent years, graphene oxide (GO) has emerged as a new class of low cost nano-filler with high mechanical strength and stiffness, and alterable electrical properties. For nano-fillers with layered structure like GO, complete exfoliation and uniform dispersion of filler in the polymer matrices is ...

  18. Improving magnetic properties of MgB{sub 2} bulk superconductors by synthetic engine oil treatment

    Energy Technology Data Exchange (ETDEWEB)

    Taylan Koparan, E., E-mail: etaylan20@gmail.com [Department of Science Education, Eregli Faculty of Education, Bulent Ecevit University, TR-67300, Zonguldak (Turkey); Savaskan, B. [Energy Systems Engineering, Faculty of Technology, Karadeniz Technical University, 61830, Of, Trabzon (Turkey); Yanmaz, E. [Department of Mechatronics, Faculty of Engineering and Architecture, İstanbul Gelişim University, İstanbul (Turkey)

    2016-08-15

    Highlights: • The effects of synthetic engine oil treatment on magnetic properties of bulk MgB{sub 2} superconductors has been first time investigated and reported. • Synthetic engine oil used as a product which is cheap and a rich carbon source obviously has improved the superconducting magnetic properties of MgB{sub 2}. • The critical current density of all of MgB{sub 2} samples immersed at different standby time in engine oil in whole field range has been better than that of the pure MgB{sub 2} sample. • The MgB{sub 2} sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. - Abstract: The present study focuses on the effects of standby time of the MgB{sub 2} samples immersed in synthetic engine oil on the critical current density ( J{sub c}(H)), magnetic field dependence of the pinning force density f{sub p}(b) and T{sub c} performances of MgB{sub 2} bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB{sub 2} pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB{sub 2} samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB{sub 2} samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB{sub 2} sample because of the number of the pinning centers. The MgB{sub 2} sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The J{sub c} value for the pure sample is 2.0 × 10{sup 3} A/cm{sup 2}, whereas for the MgB{sub 2} sample immersed at 300 min standby time in engine oil the J{sub c} is enhanced to 4.8 × 10{sup 3} A/cm{sup 2} at 5 K and 3 T. The superconducting transition temperature (T{sub c}) did not change

  19. Nonfasting Triglycerides, Low-Density Lipoprotein Cholesterol, and Heart Failure Risk

    DEFF Research Database (Denmark)

    Varbo, Anette; Nordestgaard, Børge G

    2018-01-01

    OBJECTIVE: The prevalence of heart failure is increasing in the aging population, and heart failure is a disease with large morbidity and mortality. There is, therefore, a need for identifying modifiable risk factors for prevention. We tested the hypothesis that high concentrations of nonfasting...... triglycerides and low-density lipoprotein cholesterol are associated with higher risk of heart failure in the general population. APPROACH AND RESULTS: We included 103 860 individuals from the Copenhagen General Population Study and 9694 from the Copenhagen City Heart Study in 2 prospective observational...... association studies. Nonfasting triglycerides and low-density lipoprotein cholesterol were measured at baseline. Individuals were followed for ≤23 years, during which time 3593 were diagnosed with heart failure. Hazard ratios were estimated using Cox proportional hazard regression models. In the Copenhagen...

  20. Pharmacologic management of isolated low high-density lipoprotein syndrome.

    Science.gov (United States)

    Bermúdez, Valmore; Cano, Raquel; Cano, Clímaco; Bermúdez, Fernando; Arraiz, Nailet; Acosta, Luis; Finol, Freddy; Pabón, María Rebeca; Amell, Anilsa; Reyna, Nadia; Hidalgo, Joaquin; Kendall, Paúl; Manuel, Velasco; Hernández, Rafael

    2008-01-01

    High-density lipoprotein (HDL) cholesterol is a heterogeneous group of lipoproteins exhibiting a variety of properties like prostacyclin production stimulation, decrease in platelet aggregation, endothelial cell apoptosis inhibition, and low-density lipoprotein oxidation blockade. Epidemiologic studies have shown an inverse relation between HDL cholesterol levels and cardiovascular risk. Low HDL cholesterol is associated with increased risk for myocardial infarction, stroke, sudden death, peripheral artery disease, and postangioplasty restenosis. In contrast, high HDL levels are associated with longevity and protection against atherosclerotic disease development. Given the evolving epidemic of obesity, diabetes mellitus, and metabolic syndrome, the prevalence of low HDL will continue to rise. In the United States, low HDL is present in 35% of men, 15% of women, and approximately 63% of patients with coronary artery disease. Data extracted from the Framingham study highlight that 1-mg increase in HDL levels decreases by 2% to 3% the risk of cardiovascular disease. There is no doubt regarding clinical importance about isolated low HDL, but relatively few clinicians consider a direct therapeutic intervention of this dyslipidemia. In this sense, lifestyle measures should be the first-line strategy to manage low HDL levels. On the other hand, pharmacologic options include niacin, fibrates, and statins. Fibrates appear to reduce risk preferentially in patients with low HDL with metabolic syndrome, whereas statins reduce risk across all levels of HDL. Torcetrapib, a cholesteryl esters transfer protein inhibitor, represented a hope to raise this lipoprotein; however, all clinical trials on this drug had ceased after ILLUMINATE, RADIANCE and ERASE trials had recorded an increase in mortality, rates of myocardial infarction, angina, and heart failure. In the near future, drugs as beta-glucans, Apo-A1 mimetic peptides, and ACAT inhibitors, are the new promises to treat this

  1. Regions of low density in the contrast-enhanced pituitary gland: normal and pathologic processes

    International Nuclear Information System (INIS)

    Chambers, E.F.; Turski, P.A.; LaMasters, D.; Newton, T.H.

    1982-01-01

    The incidence of low-density regions in the contrast-enhanced pituitary gland and the possible causes of these regions were investigated by a retrospective review of computed tomographic (CT) scans of the head in 50 patients and autopsy specimens of the pituitary in 100 other patients. It was found that focal areas of low density within the contrast enhanced pituitary gland can be caused by various normal and pathologic conditions such as pituitary microadenomas, pars intermedia cysts, foci of metastasis, infarcts, epidermoid cysts, and abscesses. Although most focal low-density regions probably represent pituitary microadenomas, careful clinical correlation is needed to establish a diagnosis

  2. Characteristic densities of low- and high-pressure liquid SnI4

    International Nuclear Information System (INIS)

    Fuchizaki, Kazuhiro; Hamaya, Nozomu; Katayama, Yoshinori

    2013-01-01

    An in situ synchrotron x-ray absorption measurement was carried out to estimate the density of liquid SnI 4 . The characteristic densities of the low- and high-pressure liquids were found to be 4.6-4.7 and 4.9-5.0 g/cm 3 , respectively, and their region is separated at around 1.7 GPa. The difference in density, although a slight amount of 0.3-0.4 g/cm 3 , strongly suggests the existence of a weak but discontinuous phase transition at that pressure between the two liquid regions. (author)

  3. Intermolecular thermoelectric-like effects in molecular nano electronic systems

    International Nuclear Information System (INIS)

    Sabzyan, H.; Safari, R.

    2012-01-01

    Intramolecular thermoelectric-like coefficients are introduced and computed of a single molecule nano electronic system. Values of the electronic Intramolecular thermoelectric-like coefficients are calculated based on the density and energy transfers between different parts of the molecule using quantum theory of atoms in molecule. Since, Joule and Peltier heating are even (symmetrical) and odd (antisymmetric) functions of the external bias, it is possible to divide Intramolecular thermoelectric-like coefficients into two components, symmetrical and antisymmetrical Intramolecular thermoelectric-like coefficients, which describe the intramolecular Joule-like and Peltier-like effects, respectively. In addition, a semiclassical temperature model is presented to describe intramolecular temperature mapping (intramolecular energy distributions) in molecular nano electronic systems.

  4. Low-dislocation-density epitatial layers grown by defect filtering by self-assembled layers of spheres

    Science.gov (United States)

    Wang, George T.; Li, Qiming

    2013-04-23

    A method for growing low-dislocation-density material atop a layer of the material with an initially higher dislocation density using a monolayer of spheroidal particles to bend and redirect or directly block vertically propagating threading dislocations, thereby enabling growth and coalescence to form a very-low-dislocation-density surface of the material, and the structures made by this method.

  5. Liquid radiation detectors based on nano-silver surface plasmon resonance phenomena

    International Nuclear Information System (INIS)

    Puiso, J.; Laurikaitiene, J.; Adliene, D.; Prosycevas, I.

    2010-01-01

    The rapid development of micro- and nano-structures containing silver nano-particles is based on their unique physical properties. Despite the new applications of silver nano-particles in nano-medicine are under heavy discussions, silver nano-particles could be used in liquid radiation detectors thanks to the irradiation-induced surface plasmon resonance (SPR) phenomena observed in the colloidal solutions. Silver nitrate (1 mM AgNO 3 ) and sodium citrate (1 wt% and 5 wt% C 6 H 5 O 7 Na 3 ) were used as precursors for the fabrication of colloidal solutions. Prepared solutions were exposed to gamma-rays from a 60 Co gamma therapy unit 'Rokus-M' to varying absorbed doses, from 2 to 250 Gy. A UV/VIS/NIR spectrometer (Avantes-2048) was used for the measurement of the optical properties (absorbance) of the silver solutions. It was found that an initial absorbed dose of 2 Gy induced the formation of spherical silver nano-particles as it was indicated in the absorbance spectrum of the solution, which had a well-pronounced absorption maximum at the wavelength of 410 nm. There is a potential to measure absorbed doses down to around 20 mGy. The SPR peaks at the wavelengths of 500-700 nm were found at the highest investigated doses > 100 Gy, indicating the presence of silver nano-rods. The colour of colloidal solutions ranged from pale yellow to green and was dependent on the absorbed dose. The investigation has shown that density, size and shape of synthesised silver nano-particles are dependent on the absorbed dose and that shape transformations of the particles due to irradiation are possible. Application of colloidal solutions containing silver nano-particles for dosimetric purposes is discussed on the basis of the obtained results. (authors)

  6. Low voltage electroosmotic pump for high density integration into microfabricated fluidic systems

    NARCIS (Netherlands)

    Heuck, F.C.A.; Staufer, U.

    2011-01-01

    A low voltage electroosmotic (eo) pump suitable for high density integration into microfabricated fluidic systems has been developed. The high density integration of the eo pump required a small footprint as well as a specific on-chip design to ventilate the electrolyzed gases emerging at the

  7. Evaluation of a Low Energy, Low Density, Non-Ablative Fractional 1927 nm Wavelength Laser for Facial Skin Resurfacing.

    Science.gov (United States)

    Brauer, Jeremy A; Alabdulrazzaq, Hamad; Bae, Yoon-Soo Cindy; Geronemus, Roy G

    2015-11-01

    We investigated the safety, tolerability and efficacy of a low energy low density, non-ablative fractional 1,927-nm laser in the treatment of facial photodamage, melasma, and post inflammatory hyperpigmentation. Prospective non-randomized trial. Single center, private practice with a dedicated research department. Subjects with clinically diagnosed facial photodamage, melasma, or post inflammatory hyperpigmentation. Subjects received four to six treatments at 14-day intervals (+/- 3 days) with a low energy low density non-ablative fractional 1,927-nm laser (Solta Hayward, CA) with an energy level of 5 mJ, and density coverage of either 5%, 7.5%, or 10%, with a total of up to 8 passes. Blinded assessment of clinical photos for overall improvement at one and three months post final treatment. Investigator improvement scores, and subject pain and satisfaction scores for overall improvement were recorded as well. We enrolled 23 subjects, average age 45.0 years (range, 25-64 years), 22 with Fitzpatrick Skin Types I-IV and 1 with Type VI, with facial photodamage, melasma, or post inflammatory hyperpigmentation. Approximately 55% of subjects reported marked to very significant improvement at one and three months post final treatment. Blinded assessment of photography of 20 subjects revealed an average of moderate improvement at one-month follow up and mild to moderate improvement at three months. Average subject pain score was 3.4/10 during treatment. Favorable outcomes were demonstrated using the low energy low density, non-ablative fractional 1,927-nm laser in facial resurfacing for photodamage, melasma, and post inflammatory hyperpigmentation. Results were maintained at the 3-month follow up, as demonstrated by investigator and subject assessments, as well as blinded evaluations by three independent dermatologists utilizing photographs obtained from a standardized facial imaging device.

  8. XPS study of palladium sensitized nano porous silicon thin film

    Indian Academy of Sciences (India)

    Keywords. Porous silicon; passivation; palladium; oxidation; XPS. Abstract. Nano porous silicon (PS) was formed on -type monocrystalline silicon of 2–5 cm resistivity and (100) orientation by electrochemical anodization method using HF and ethanol as the electrolytes. High density of surface states, arising due to its ...

  9. Thermal stability of nano structured fly ash synthesized by high ...

    African Journals Online (AJOL)

    user

    Casting, as a liquid phase process, is capable of producing products with ... materials, including stiffness, strength and wear resistance and reduce the density. .... been destroyed; and in this 10h milling stage the fly ash is in cold welding ..... 2004, Nanostructures and Nano materials- Synthesis, properties and Applications, ...

  10. Ultra low density biodegradable shape memory polymer foams with tunable physical properties

    Science.gov (United States)

    Singhal, Pooja; Wilson, Thomas S.; Cosgriff-Hernandez, Elizabeth; Maitland, Duncan J.

    2017-12-12

    Compositions and/or structures of degradable shape memory polymers (SMPs) ranging in form from neat/unfoamed to ultra low density materials of down to 0.005 g/cc density. These materials show controllable degradation rate, actuation temperature and breadth of transitions along with high modulus and excellent shape memory behavior. A method of m ly low density foams (up to 0.005 g/cc) via use of combined chemical and physical aking extreme blowing agents, where the physical blowing agents may be a single compound or mixtures of two or more compounds, and other related methods, including of using multiple co-blowing agents of successively higher boiling points in order to achieve a large range of densities for a fixed net chemical composition. Methods of optimization of the physical properties of the foams such as porosity, cell size and distribution, cell openness etc. of these materials, to further expand their uses and improve their performance.

  11. NanoSail - D Orbital and Attitude Dynamics

    Science.gov (United States)

    Heaton, Andrew F.; Faller, Brent F.; Katan, Chelsea K.

    2013-01-01

    NanoSail-D unfurled January 20th, 2011 and successfully demonstrated the deployment and deorbit capability of a solar sail in low Earth orbit. The orbit was strongly perturbed by solar radiation pressure, aerodynamic drag, and oblate gravity which were modeled using STK HPOP. A comparison of the ballistic coefficient history to the orbit parameters exhibits a strong relationship between orbital lighting, the decay rate of the mean semi-major axis and mean eccentricity. A similar comparison of mean solar area using the STK HPOP solar radiation pressure model exhibits a strong correlation of solar radiation pressure to mean eccentricity and mean argument of perigee. NanoSail-D was not actively controlled and had no capability on-board for attitude or orbit determination. To estimate attitude dynamics we created a 3-DOF attitude dynamics simulation that incorporated highly realistic estimates of perturbing forces into NanoSail-D torque models. By comparing the results of this simulation to the orbital behavior and ground observations of NanoSail-D, we conclude that there is a coupling between the orbit and attitude dynamics as well as establish approximate limits on the location of the NanoSail-D solar center of pressure. Both of these observations contribute valuable data for future solar sail designs and missions.

  12. Effects of hepatocyte growth factor on glutathione synthesis, growth, and apoptosis is cell density-dependent

    International Nuclear Information System (INIS)

    Yang Heping; Magilnick, Nathaniel; Xia Meng; Lu, Shelly C.

    2008-01-01

    Hepatocyte growth factor (HGF) is a potent hepatocyte mitogen that exerts opposing effects depending on cell density. Glutathione (GSH) is the main non-protein thiol in mammalian cells that modulates growth and apoptosis. We previously showed that GSH level is inversely related to cell density of hepatocytes and is positively related to growth. Our current work examined whether HGF can modulate GSH synthesis in a cell density-dependent manner and how GSH in turn influence HGF's effects. We found HGF treatment of H4IIE cells increased cell GSH levels only under subconfluent density. The increase in cell GSH under low density was due to increased transcription of GSH synthetic enzymes. This correlated with increased protein levels and nuclear binding activities of c-Jun, c-Fos, p65, p50, Nrf1 and Nrf2 to the promoter region of these genes. HGF acts as a mitogen in H4IIE cells under low cell density and protects against tumor necrosis factor α (TNFα)-induced apoptosis by limiting JNK activation. However, HGF is pro-apoptotic under high cell density and exacerbates TNFα-induced apoptosis by potentiating JNK activation. The increase in cell GSH under low cell density allows HGF to exert its full mitogenic effect but is not necessary for its anti-apoptotic effect

  13. Environmental silicate nano-biocomposites

    CERN Document Server

    Pollet, Eric

    2012-01-01

    Environmental Silicate Nano-Biocomposites focuses on nano-biocomposites, which are obtained by the association of silicates such as bioclays with biopolymers. By highlighting recent developments and findings, green and biodegradable nano-composites from both renewable and biodegradable polymers are explored. This includes coverage of potential markets such as packaging, agricultures, leisure and the fast food industry. The knowledge and experience of more than twenty international experts in diverse fields, from chemical and biochemical engineering to applications, is brought together in four different sections covering: Biodegradable polymers and Silicates, Clay/Polyesters Nano-biocomposites, Clay/Agropolymers Nano-biocomposites, and Applications and biodegradation of Nano-biocomposites. By exploring the relationships between the biopolymer structures, the processes, and the final properties Environmental Silicate Nano-Biocomposites explains how to design nano-materials to develop new, valuable, environmenta...

  14. Nonlinear low-frequency wave aspect of foreshock density holes

    Directory of Open Access Journals (Sweden)

    N. Lin

    2008-11-01

    Full Text Available Recent observations have uncovered short-duration density holes in the Earth's foreshock region. There is evidence that the formation of density holes involves non-linear growth of fluctuations in the magnetic field and plasma density, which results in shock-like boundaries followed by a decrease in both density and magnetic field. In this study we examine in detail a few such events focusing on their low frequency wave characteristics. The propagation properties of the waves are studied using Cluster's four point observations. We found that while these density hole-structures were convected with the solar wind, in the plasma rest frame they propagated obliquely and mostly sunward. The wave amplitude grows non-linearly in the process, and the waves are circularly or elliptically polarized in the left hand sense. The phase velocities calculated from four spacecraft timing analysis are compared with the velocity estimated from δE/δB. Their agreement justifies the plane electromagnetic wave nature of the structures. Plasma conditions are found to favor firehose instabilities. Oblique Alfvén firehose instability is suggested as a possible energy source for the wave growth. Resonant interaction between ions at certain energy and the waves could reduce the ion temperature anisotropy and thus the free energy, thereby playing a stabilizing role.

  15. Interaction of laser radiation with a low-density structured absorber

    Czech Academy of Sciences Publication Activity Database

    Rozanov, V. B.; Barishpol’tsev, D.V.; Vergunova, G.A.; Demchenko, N. N.; Ivanov, E.M.; Aristova, E.N.; Zmitrenko, N.V.; Limpouch, I.; Ullschmied, Jiří

    2016-01-01

    Roč. 122, č. 2 (2016), s. 256-276 ISSN 1063-7761 Institutional support: RVO:61389021 Keywords : laser radiation interaction * laser with low-density Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.196, year: 2016

  16. On Combining High and Low Q2 Information on the Polarized Parton Densities

    International Nuclear Information System (INIS)

    Leader, Elliot; Stamenov, Dimiter B.

    2000-01-01

    We draw attention to some problems in the combined use of high-Q 2 deep inelastic scattering (DIS) data and low-Q 2 hyperon β-decay data in the determination of the polarized parton densities. We explain why factorization schemes like the JET or AB schemes are the simplest in which to study the implications of the DIS parton densities for the physics of the low-Q 2 region. (author)

  17. Nano technologies for Biosensor and Bio chip

    International Nuclear Information System (INIS)

    Kim, I.M.; Park, T.J.; Paskaleva, E.E.; Sun, F.; Seo, J.W.; Mehta, K.K.

    2015-01-01

    The bio sensing devices are characterized by their biological receptors, which have specificity to their corresponding analytes. These analytes are a vast and diverse group of biological molecules, DNAs, proteins (such as antibodies), fatty acids, or entire biological systems, such as pathogenic bacteria, viruses, cancerous cells, or other living organisms. A main challenge in the development of biosensor applications is the efficient recognition of a biological signal in a low signal-to-noise ratio environment, and its transduction into an electrochemical, optical, or other signals. The advent of nano material technology greatly increased the potential for achieving exquisite sensitivity of such devises, due to the innate high surface-to-volume ratio and high reactivity of the nano material. The second major challenge facing the biosensor application, that of sca lability, is addressed by multiplexing and miniaturizing of the biosensor devises into a bio chip. In recent years, biosensor and bio chip technologies have made significant progress by taking advantages of diverse kinds of nano materials that are derived from nano technology

  18. Metal Matrix Composites Reinforced by Nano-Particles—A Review

    Directory of Open Access Journals (Sweden)

    Riccardo Casati

    2014-03-01

    Full Text Available Metal matrix composites reinforced by nano-particles are very promising materials, suitable for a large number of applications. These composites consist of a metal matrix filled with nano-particles featuring physical and mechanical properties very different from those of the matrix. The nano-particles can improve the base material in terms of wear resistance, damping properties and mechanical strength. Different kinds of metals, predominantly Al, Mg and Cu, have been employed for the production of composites reinforced by nano-ceramic particles such as carbides, nitrides, oxides as well as carbon nanotubes. The main issue of concern for the synthesis of these materials consists in the low wettability of the reinforcement phase by the molten metal, which does not allow the synthesis by conventional casting methods. Several alternative routes have been presented in literature for the production of nano-composites. This work is aimed at reviewing the most important manufacturing techniques used for the synthesis of bulk metal matrix nanocomposites. Moreover, the strengthening mechanisms responsible for the improvement of mechanical properties of nano-reinforced metal matrix composites have been reviewed and the main potential applications of this new class of materials are envisaged.

  19. Decoration of carbon nano surfaces with hydrogen and hydrogen rich molecules

    International Nuclear Information System (INIS)

    Zöttl, S.

    2013-01-01

    The use of helium nano droplets as a matrix to investigate different atomic and molecular samples is a well established experimental technique. The unique properties of helium allow for different analytical methods and at the same time provide a stable ambient temperature. Cluster growth inside helium nano droplets can be accomplished by repeatedly doping the droplets with sample particles in a controlled environment. The experimental work represented in this thesis was performed using helium nano droplets to create clusters of fullerenes like C 60 and C 70 . The adsorption properties of these fullerene clusters regarding hydrogen and hydrogen rich molecules have been subject to investigation. The observed results suggest that curved carbon nano surfaces offer higher storage densities than planar graphite surfaces. The use of C 60 as a model carbon nano structure provides a well understood molecule for testing and evaluating computational methods to calculate surface properties of various carbon nano materials. The cost effective storage of hydrogen for mobile applications plays a key role in the development of alternatives to fossil fuels. For that reason, the application of carbon nano materials to store hydrogen by adsorption has attracted much scientific attention lately. The insights gained in the presented thesis contribute to the collective efforts and deliver more refined tools to estimate the adsorption properties of future carbon nano materials. In addition to the aforementioned, a time-of-flight mass spectrometer for educational purpose has been designed and constructed in the framework of my PhD thesis. The instrument is successfully used in various lab courses and information on the setup can be found in the Appendix of this work. (author) [de

  20. Removal of heavy metals from synthetic solution by electrocoagulation

    Directory of Open Access Journals (Sweden)

    Mohamed Ilou

    2016-05-01

    Full Text Available The objective of this work concerns the optimization of the operating conditions for the removal of heavy metals from synthetic solution by Electrocoagulation (EC. To reach this purpose, we prepared a synthetic wastewater containing certain heavy metals (Ni, Cu, Zn, Fe and Pb to study the influence of various parameters (conductivity, pH, time of electrolysis, current density and the initial concentration of the metal on the rate of removal of these metals. The results show that this rate of removal can reach 99.9 % in the following optimal conditions: pH included between 6 and 8 and a density of the current of 1~1.5A / dm2. This study shows that it is possible to remove metals in aqueous solution by the technique of electrocoagulation. 

  1. The impact of nano-coating on surface charge accumulation of epoxy resin insulator: characteristic and mechanism

    Science.gov (United States)

    Qi, Bo; Gao, Chunjia; Lv, Yuzhen; Li, Chengrong; Tu, Youping; Xiong, Jun

    2018-06-01

    The flashover phenomenon of the insulator is the main cause for insulating failure of GIS/GIL, and one of the most critical impacting factors is the accumulation of surface charge. The common methods to restrain the surface charge accumulation are reviewed in this paper. Through the reasonable comparison and analysis of these methods, nano-coatings for the insulator were selected as a way to restrain the surface charge accumulation. Based on this, six nano-coated epoxy resin samples with different concentrations of P25-TiO2 nanoparticles were produced. A high precision 3D surface charge measurement system was developed in this paper with a spatial resolution of 4.0 mm2 and a charge resolution of 0.01 µC (m2 · mV)‑1. The experimental results for the epoxy resin sample showed that with the concentration of nanoparticles of the coating material increasing, the surface charge density tended to first decrease and then increase. In the sample coated with 0.5% concentration of nanoparticles, the suppression effect is the optimum, leading to a 63.8% reduction of charge density under DC voltage. The application test for actual nano-coated GIS/GIL basin insulator indicated that the maximum suppression degree for the charge density under DC voltage could reach 48.3%, while it could reach 22.2% for switching impulse voltage and 12.5% for AC context. The control mechanism of nano-coatings on charge accumulation was proposed based on the analysis for surface morphology features and traps characteristics; the shallow traps dominate in the migration of charges while the deep traps operate on the charge accumulation. With the concentration of nanoparticles in nano-coating material mounting up, the density of shallow traps continuously increases, while for deep traps, it first decreases and then increases. For the sample with 0.5% concentration of nanoparticles coated, the competition between shallow traps and deep traps comes to the most balanced state, producing the most

  2. Low-Cost Energy-Efficient 3-D Nano-Spikes-Based Electric Cell Lysis Chips

    KAUST Repository

    Riaz, Kashif

    2017-05-04

    Electric cell lysis (ECL) is a promising technique to be integrated with portable lab-on-a-chip without lysing agent due to its simplicity and fast processing. ECL is usually limited by the requirements of high power/voltage and costly fabrication. In this paper, we present low-cost 3-D nano-spikes-based ECL (NSP-ECL) chips for efficient cell lysis at low power consumption. Highly ordered High-Aspect-Ratio (HAR). NSP arrays with controllable dimensions were fabricated on commercial aluminum foils through scalable and electrochemical anodization and etching. The optimized multiple pulse protocols with minimized undesirable electrochemical reactions (gas and bubble generation), common on micro parallel-plate ECL chips. Due to the scalability of fabrication process, 3-D NSPs were fabricated on small chips as well as on 4-in wafers. Phase diagram was constructed by defining critical electric field to induce cell lysis and for cell lysis saturation Esat to define non-ECL and ECL regions for different pulse parameters. NSP-ECL chips have achieved excellent cell lysis efficiencies ηlysis (ca 100%) at low applied voltages (2 V), 2~3 orders of magnitude lower than that of conventional systems. The energy consumption of NSP-ECL chips was 0.5-2 mJ/mL, 3~9 orders of magnitude lower as compared with the other methods (5J/mL-540kJ/mL). [2016-0305

  3. Risk factors for low bone density in pediatric nephrotic syndrome

    Directory of Open Access Journals (Sweden)

    Corina Lisa

    2011-04-01

    Full Text Available Background Disturbances in bone mineral metabolism and side effects of corticosteroid treatment may cause decreased bone density in patients v.ith nephrotic syndrome (NS. Objectives To compare the prevalence oflow bone mineral density (BMD in children with and 'Without NS and to assess the effect of corticosteroid treatment on bone density in NS patients.  Methods We conducted a retrospective, cohort study in children aged 5-18 years diagnosed 'With NS for more than 2 months prior to data collection, and in children v.ithout NS as a control. BMD was assessed on calcaneal bone wlith ultrasound bone densitometry. Serum calcium, albumin, creatinine and phosphate levels were also assessed. Results The prevalence of low BMD was significantly higher in NS patients than nonNS subjects, 73.3% (22 in 30 vs. 33% (11 in 33, respectively. The prevalence ratio was 6.3 (95% CI 2.1 to 18.9. NS patients had lower serum calcium levels, With mean difference of -0.17 (95% CI -0.27 to -0.07 mMollL, P<0.009, and lower serum albumin, with mean difference of  -0.88 (95% CI -1.27 to -0.49 gIL; Plow BMD. Steroid-resistant and steroid-dependent patients had lower BMD than steroid-sensitive subjects (P=0.02. There was also a significant correlation between the onset of corticosteroid treatment and BMD (r=O.3; P=0.02. Conclusions NS patients had higher risk for low BMD compared to normal subjects. Response to steroid treatment influences the severity of impaired bone density.

  4. Removal of 4-chlorophenol from synthetic wastewater by the granulated graphene oxide nano particles

    Directory of Open Access Journals (Sweden)

    A Eslami

    2016-09-01

    Full Text Available Abstract Introduction: 4-chlorophenols one of the most common pollutants in wastewater is generated from the chemical and petrochemical industries. It is due to the presence of chloride and benzene ring is resistant to biodegradation. In this study, the use of granulated graphene oxide nano particles as an adsorbent nanostructure with better properties than other adsorbents for Removal of 4- chlorophenol from aqueous solution were investigated Methods: This research was implemented during the year 2013-2014 where the Granules of Graphene oxide nanoparticles were prepared using sodium silicate and X-ray diffraction techniques and electron microscope were used to identify the morphology and structure of the adsorbent of.  Parameters  affecting the adsorption process such as initial concentration of  4-chlorophenol(5,10,15,20,25,30mg/L, amount of adsorbent(20,40,60,80% by weight, contact time (3,5,10,20,30 min and pH(4,6,7,8,9 were investigated by changing one factor at a time. Finally, the data fitness with Langmuir and Freundlich isotherms were showed. Results: Adsorption process reached to equilibrium after 20 minutes. 2 g/L of graphene oxide granules at 3 minutes and 7 = pH could remove 5 mg/L 4-chlorophenol up to 58%. Freundlich isotherm have describing adsorption process and R2 =0.92. Conclusion: Absorbed process by the granules of Graphene oxide nanoparticles is low-cost high-efficiency and it could used to reduce and eliminate environmental pollutants particularly aqueous solutions.  

  5. Synthetic biology, inspired by synthetic chemistry.

    Science.gov (United States)

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  6. Commercial Flight Crew Decision-Making during Low-Visibility Approach Operations Using Fused Synthetic/Enhanced Vision Systems

    Science.gov (United States)

    Kramer, Lynda J.; Bailey, Randall E.; Prinzel, Lawrence J., III

    2007-01-01

    NASA is investigating revolutionary crew-vehicle interface technologies that strive to proactively overcome aircraft safety barriers that would otherwise constrain the full realization of the next-generation air transportation system. A fixed-based piloted simulation experiment was conducted to evaluate the complementary use of Synthetic and Enhanced Vision technologies. Specific focus was placed on new techniques for integration and/or fusion of Enhanced and Synthetic Vision and its impact within a two-crew flight deck on the crew's decision-making process during low-visibility approach and landing operations. Overall, the experimental data showed that significant improvements in situation awareness, without concomitant increases in workload and display clutter, could be provided by the integration and/or fusion of synthetic and enhanced vision technologies for the pilot-flying and the pilot-not-flying. During non-normal operations, the ability of the crew to handle substantial navigational errors and runway incursions were neither improved nor adversely impacted by the display concepts. The addition of Enhanced Vision may not, unto itself, provide an improvement in runway incursion detection without being specifically tailored for this application. Existing enhanced vision system procedures were effectively used in the crew decision-making process during approach and missed approach operations but having to forcibly transition from an excellent FLIR image to natural vision by 100 ft above field level was awkward for the pilot-flying.

  7. Nutritional Correlates of Koala Persistence in a Low-Density Population

    Science.gov (United States)

    Stalenberg, Eleanor; Wallis, Ian R.; Cunningham, Ross B.; Allen, Chris; Foley, William J.

    2014-01-01

    It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus) populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts) compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence. PMID:25470599

  8. Nutritional correlates of koala persistence in a low-density population.

    Directory of Open Access Journals (Sweden)

    Eleanor Stalenberg

    Full Text Available It is widely postulated that nutritional factors drive bottom-up, resource-based patterns in herbivore ecology and distribution. There is, however, much controversy over the roles of different plant constituents and how these influence individual herbivores and herbivore populations. The density of koala (Phascolarctos cinereus populations varies widely and many attribute population trends to variation in the nutritional quality of the eucalypt leaves of their diet, but there is little evidence to support this hypothesis. We used a nested design that involved sampling of trees at two spatial scales to investigate how leaf chemistry influences free-living koalas from a low-density population in south east New South Wales, Australia. Using koala faecal pellets as a proxy for koala visitation to trees, we found an interaction between toxins and nutrients in leaves at a small spatial scale, whereby koalas preferred trees with leaves of higher concentrations of available nitrogen but lower concentrations of sideroxylonals (secondary metabolites found exclusively in eucalypts compared to neighbouring trees of the same species. We argue that taxonomic and phenotypic diversity is likely to be important when foraging in habitats of low nutritional quality in providing diet choice to tradeoff nutrients and toxins and minimise movement costs. Our findings suggest that immediate nutritional concerns are an important priority of folivores in low-quality habitats and imply that nutritional limitations play an important role in constraining folivore populations. We show that, with a careful experimental design, it is possible to make inferences about populations of herbivores that exist at extremely low densities and thus achieve a better understanding about how plant composition influences herbivore ecology and persistence.

  9. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit

    Directory of Open Access Journals (Sweden)

    Peng Xi

    2018-05-01

    Full Text Available Objective: Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. Method: We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Result: Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film group significantly decreased skin irritation, infection integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film significantly reduced film rabbits’ scalded skin crusting time (P < 0.01, significantly shortened the rabbit skin burns from the scab time (P < 0.01, and significantly improved the treatment of skin diseases in rabbits scald model change (P < 0.01, P < 0.05. Conclusion: The nano-silver hydrogel coating film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing. Keywords: Nano-silver hydrogel coating film, Deep degree burns, Topical, Rabbits

  10. Low-density lipoproteins cause atherosclerotic cardiovascular disease

    DEFF Research Database (Denmark)

    Ference, Brian A.; Ginsberg, Henry N.; Graham, Ian

    2017-01-01

    Aims To appraise the clinical and genetic evidence that low-density lipoproteins (LDLs) cause atherosclerotic cardiovascular disease (ASCVD). Methods and results We assessed whether the association between LDL and ASCVD fulfils the criteria for causality by evaluating the totality of evidence from...... proportional to the absolute reduction in LDL-C and the cumulative duration of exposure to lower LDL-C, provided that the achieved reduction in LDL-C is concordant with the reduction in LDL particle number and that there are no competing deleterious off-target effects. Conclusion Consistent evidence from...

  11. Fullerene-based low-density superhard materials with tunable bandgaps

    Science.gov (United States)

    Cao, Ai-Hua; Zhao, Wen-Juan; Gan, Li-Hua

    2018-06-01

    Four carbon allotropes built from tetrahedral symmetrical fullerenes C28 and C40 are predicted to be superhard materials with mass density around that of water, and all of them are porous semiconductors. Both the bandgaps and hardness decrease with increasing ratio of sp2 hybridized carbon atoms. The mechanical and thermodynamic stabilities of C28- and C40-based allotropes at zero pressure are confirmed by a variety of state-of-the-art theoretical calculations. The evolution trend of bandgap found here suggests that one can obtain low-density hard materials with tunable bandgaps by substituting the carbon atom in diamond with different Td-symmetrical non-IPR fullerene Cn.

  12. Measurements of the Electron Cloud Density in the PEP-II Low Energy Ring

    Energy Technology Data Exchange (ETDEWEB)

    Byrd, John; De Santis, Stefano; Sonnad, Kiran; Caspers, Fritz; Kroyer, Tom; Krasnykh, Anatoly; Pivi, Mauro

    2008-06-01

    Clouds of low energy electronsin the vacuum beam pipes of accelerators of positively charged particle beams present a serious limitation for operation of these machines at high currents. Because of the size of these accelerators, it is difficult to probe the low energyelectron clouds over substantial lengths of the beam pipe. We have developed a novel technique to directly measure the electron cloud density via the phase shift induced in a TE wave that is independently excited and transmitted over a section of the accelerator. We infer the absolute phase shift with relatively high accuracy from the phase modulation of the transmission due to the modulation of the electron cloud density from a gap in the positively charged beam. We have used this technique for the first time to measure the average electron cloud density over a 50 m straight section in the positron ring of the PEP-II collider at the Stanford Linear Accelerator Center. We have also measured the variation of the density by using low field solenoid magnets to control the electrons.

  13. Oxide nano-rod array structure via a simple metallurgical process

    International Nuclear Information System (INIS)

    Nanko, M; Do, D T M

    2011-01-01

    A simple method for fabricating oxide nano-rod array structure via metallurgical process is reported. Some dilute alloys such as Ni(Al) solid solution shows internal oxidation with rod-like oxide precipices during high-temperature oxidation with low oxygen partial pressure. By removing a metal part in internal oxidation zone, oxide nano-rod array structure can be developed on the surface of metallic components. In this report, Al 2 O 3 or NiAl 2 O 4 nano-rod array structures were prepared by using Ni(Al) solid solution. Effects of Cr addition into Ni(Al) solid solution on internal oxidation were also reported. Pack cementation process for aluminizing of Ni surface was applied to prepare nano-rod array components with desired shape. Near-net shape Ni components with oxide nano-rod array structure on their surface can be prepared by using the pack cementation process and internal oxidation,

  14. Superconducting nano-strip particle detectors

    International Nuclear Information System (INIS)

    Cristiano, R; Ejrnaes, M; Casaburi, A; Zen, N; Ohkubo, M

    2015-01-01

    We review progress in the development and applications of superconducting nano-strip particle detectors. Particle detectors based on superconducting nano-strips stem from the parent devices developed for single photon detection (SSPD) and share with them ultra-fast response times (sub-nanosecond) and the ability to operate at a relatively high temperature (2–5 K) compared with other cryogenic detectors. SSPDs have been used in the detection of electrons, neutral and charged ions, and biological macromolecules; nevertheless, the development of superconducting nano-strip particle detectors has mainly been driven by their use in time-of-flight mass spectrometers (TOF-MSs) where the goal of 100% efficiency at large mass values can be achieved. Special emphasis will be given to this case, reporting on the great progress which has been achieved and which permits us to overcome the limitations of existing mass spectrometers represented by low detection efficiency at large masses and charge/mass ambiguity. Furthermore, such progress could represent a breakthrough in the field. In this review article we will introduce the device concept and detection principle, stressing the peculiarities of the nano-strip particle detector as well as its similarities with photon detectors. The development of parallel strip configuration is introduced and extensively discussed, since it has contributed to the significant progress of TOF-MS applications. (paper)

  15. In situ construction of carbon nano-interconnects between the LiFePO{sub 4} grains using ultra low-cost asphalt

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wenkui; Zhou Xiaozheng [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China); Tao Xinyong, E-mail: tao@zjut.edu.c [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China); Huang Hui; Gan Yongping [College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014 (China); Wang Chuntao [College of Electromechanical Engineering, Zhejiang Ocean University, Hangzhou 316000 (China)

    2010-03-01

    LiFePO{sub 4}/C composite cathode materials with carbon nano-interconnect structures were synthesized by one-step solid state reaction using low-cost asphalt as both carbon source and reducing agent. Based on the thermogravimetry, differential scanning calorimetry, transmission electron microscopy and high-resolution transmission electron microscopy, a growth model was proposed to illustrate the formation of the carbon nano-interconnect between the LiFePO{sub 4} grains. The LiFePO{sub 4}/C composite shows enhanced discharge capacity (150 mAh g{sup -1}) with excellent capacity retention compared with the bare LiFePO{sub 4} (41 mAh g{sup -1}) due to the electronically conductive nanoscale networking provided by the asphalt-based carbon. The results prove that the asphalt is a perfect carbon source and reduction agent for cost-effective production of high performance LiFePO{sub 4}/C composite.

  16. Thermal Cracking of Low Density Polyethylene (LDPE) Waste into ...

    African Journals Online (AJOL)

    Waste low density polyethylene film (table water sachets) was converted into solid, liquid oil and gaseous products by thermal process in a self- designed stainless steel laboratory reactor. The waste polymer was completely pyrolized within the temperature range of 474 – 520°C and 2hours reaction time. The solid residue ...

  17. Effect of interstitial low level laser stimulation in skin density

    Science.gov (United States)

    Jang, Seulki; Ha, Myungjin; Lee, Sangyeob; Yu, Sungkon; Park, Jihoon; Radfar, Edalat; Hwang, Dong Hyun; Lee, Han A.; Kim, Hansung; Jung, Byungjo

    2016-03-01

    As the interest in skin was increased, number of studies on skin care also have been increased. The reduction of skin density is one of the symptoms of skin aging. It reduces elasticity of skin and becomes the reason of wrinkle formation. Low level laser therapy (LLLT) has been suggested as one of the effective therapeutic methods for skin aging as in hasten to change skin density. This study presents the effect of a minimally invasive laser needle system (MILNS) (wavelength: 660nm, power: 20mW) in skin density. Rabbits were divided into three groups. Group 1 didn't receive any laser stimulation as a control group. Group 2 and 3 as test groups were exposed to MILNS with energy of 8J and 6J on rabbits' dorsal side once a week, respectively. Skin density of rabbits was measured every 12 hours by using an ultrasound skin scanner.

  18. Development of new ferritic alloys reinforced by nano titanium nitrides

    International Nuclear Information System (INIS)

    Mathon, M.H.; Perrut, M.; Poirier, L.; Ratti, M.; Hervé, N.; Carlan, Y. de

    2015-01-01

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH 2 powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy

  19. Development of new ferritic alloys reinforced by nano titanium nitrides

    Energy Technology Data Exchange (ETDEWEB)

    Mathon, M.H., E-mail: marie-helene.mathon@cea.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Perrut, M., E-mail: mikael.perrut@onera.fr [Laboratoire Léon Brillouin, CEA-CNRS, CEA/Saclay, 91191 Gif-sur-Yvette (France); Poirier, L., E-mail: poirier@nitruvid.com [Bodycote France and Belgium, 9 r Jean Poulmarch, 95100 Argenteuil (France); Ratti, M., E-mail: mathieu.ratti@snecma.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France); Hervé, N., E-mail: nicolas.herve@cea.fr [CEA, DRT, LITEN, F38054 Grenoble (France); Carlan, Y. de, E-mail: yann.decarlan@cea.fr [CEA, DEN, Service de Recherches Métallurgiques Appliquées, F91191 Gif-sur-Yvette (France)

    2015-01-15

    Nano-reinforced steels are considered for future nuclear reactors or for application at high temperature like the heat exchangers tubes or plates. Oxide Dispersion Strengthened (ODS) alloys are the most known of the nano-reinforced alloys. They exhibit high creep strength as well as high resistance to radiation damage. This article deals with the development of new nano reinforced alloys called Nitride Dispersed Strengthened (NDS). Those are also considered for nuclear applications and could exhibit higher ductility with a simplest fabrication way. Two main fabrication routes were studied: the co-milling of Fe–18Cr1W0.008N and TiH{sub 2} powders and the plasma nitration at low temperature of a Fe–18Cr1W0.8Ti powder. The materials were studied mainly by Small Angle Neutron Scattering. The feasibility of the reinforcement by nano-nitride particles is demonstrated. The final size of the nitrides can be similar (few nanometers) to the nano-oxides observed in ODS alloys. The mechanical properties of the new NDS show an amazing ductility at high temperature for a nano-reinforced alloy.

  20. Is it viable to improve light output efficiency by nano-light-emitting diodes?

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao-Hung; Huang, Yu-Wen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Shang-En [Genesis Photonics Incorporation, Tainan 70101, Taiwan (China); Liu, Chuan-Pu, E-mail: cpliu@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan 70101, Taiwan (China); Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2013-12-02

    Nanopillar arrays with InGaN/GaN multiple-quantum-disks (MQDs) are fabricated by focused-ion-beam milling with surface damage layer removed by KOH wet etching. Nano-light-emitting diodes (Nano-LEDs) made of the InGaN/GaN MQD nanopillars are found to have 19.49% less output power than that of a conventional LED. The reasons are analyzed in detail and considering their current-voltage and electroluminescence characteristics, internal quantum efficiency, external quantum efficiency, light extraction, and wall-plug efficiency. Our results suggest that nanopillar-LED can outperform if the density can be increased to 2.81 × 10{sup 9} cm{sup −2} with the size unchanged or the size can be increased to 854.4 nm with the density unchanged.