WorldWideScience

Sample records for synthetic low-frequency mammalian

  1. Mammalian synthetic biology: emerging medical applications.

    Science.gov (United States)

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  2. Mammalian synthetic biology for studying the cell.

    Science.gov (United States)

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  3. Mammalian Synthetic Biology: Time for Big MACs.

    Science.gov (United States)

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-10-21

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.

  4. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  5. A second, low-frequency mode of vibration in the intact mammalian cochlea.

    Science.gov (United States)

    Lukashkin, Andrei N; Russell, Ian J

    2003-03-01

    The mammalian cochlea is a structure comprising a number of components connected by elastic elements. A mechanical system of this kind is expected to have multiple normal modes of oscillation and associated resonances. The guinea pig cochlear mechanics was probed using distortion components generated in the cochlea close to the place of overlap between two tones presented simultaneously. Otoacoustic emissions at frequencies of the distortion components were recorded in the ear canal. The phase behavior of the emissions reveals the presence of a nonlinear resonance at a frequency about a half octave below that of the high-frequency primary tone. The location of the resonance is level dependent and the resonance shifts to lower frequencies with increasing stimulus intensity. This resonance is thought to be associated with the tectorial membrane. The resonance tends to minimize input to the cochlear receptor cells at frequencies below the high-frequency primary and increases the dynamic load to the stereocilia of the receptor cells at the primary frequency when the tectorial membrane and reticular lamina move in counterphase.

  6. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    Science.gov (United States)

    2015-11-04

    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  7. [Research progress of mammalian synthetic biology in biomedical field].

    Science.gov (United States)

    Yang, Linfeng; Yin, Jianli; Wang, Meiyan; Ye, Haifeng

    2017-03-25

    Although still in its infant stage, synthetic biology has achieved remarkable development and progress during the past decade. Synthetic biology applies engineering principles to design and construct gene circuits uploaded into living cells or organisms to perform novel or improved functions, and it has been widely used in many fields. In this review, we describe the recent advances of mammalian synthetic biology for the treatment of diseases. We introduce common tools and design principles of synthetic gene circuits, and then we demonstrate open-loop gene circuits induced by different trigger molecules used in disease diagnosis and close-loop gene circuits used for biomedical applications. Finally, we discuss the perspectives and potential challenges of synthetic biology for clinical applications.

  8. A mammalianized synthetic nitroreductase gene for high-level expression

    International Nuclear Information System (INIS)

    Grohmann, Maik; Paulmann, Nils; Fleischhauer, Sebastian; Vowinckel, Jakob; Priller, Josef; Walther, Diego J

    2009-01-01

    The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans

  9. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    Science.gov (United States)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above

  10. Generation of a synthetic mammalian promoter library by modification of sequences spacing transcription factor binding sites

    DEFF Research Database (Denmark)

    Tornøe, Jens; Kusk, P.; Johansen, T.E.

    2002-01-01

    The development of a set of synthetic mammalian promoters with different specific activities is described. The library is based on a synthetic promoter, JeT, constructed as a 200 bp chimeric promoter built from fragments of the viral SV40 early promoter and the human beta-actin and ubiquitin C...

  11. Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells.

    Science.gov (United States)

    Angelici, Bartolomeo; Mailand, Erik; Haefliger, Benjamin; Benenson, Yaakov

    2016-08-30

    One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Generation of a synthetic mammalian promoter library by modification of sequences spacing transcription factor binding sites

    DEFF Research Database (Denmark)

    Tornøe, Jens; Kusk, P.; Johansen, T.E.

    2002-01-01

    The development of a set of synthetic mammalian promoters with different specific activities is described. The library is based on a synthetic promoter, JeT, constructed as a 200 bp chimeric promoter built from fragments of the viral SV40 early promoter and the human beta-actin and ubiquitin C......, was obtained. The measured activity of each promoter in the library was highly specific and reproducible when tested in HiB5 and ARPE-19 cell culture....

  13. Low frequency noise study.

    Science.gov (United States)

    2007-04-01

    This report documents a study to investigate human response to the low-frequency : content of aviation noise, or low-frequency noise (LFN). The study comprised field : measurements and laboratory studies. The major findings were: : 1. Start-of-takeof...

  14. LOW FREQUENCY DAMPER

    Directory of Open Access Journals (Sweden)

    Radu BOGATEANU

    2009-09-01

    Full Text Available The low frequency damper is an autonomous equipment for damping vibrations with the 1-20Hz range.Its autonomy enables the equipment to be located in various mechanical systems, without requiring special hydraulic installations.The low frequency damper was designed for damping the low frequency oscillations occurring in the circuit controls of the upgraded IAR-99 Aircraft.The low frequency damper is a novelty in the aerospace field ,with applicability in several areas as it can be built up in an appropriate range of dimensions meeting the requirements of different beneficiaries. On this line an equipment able to damp an extended frequency range was performed for damping oscillations in the pipes of the nuclear power plants.This damper, tested in INCAS laboratories matched the requirements of the beneficiary.The low frequency damper is patented – the patent no. 114583C1/2000 is held by INCAS.

  15. Synthetic biology in mammalian cells: Next generation research tools and therapeutics

    Science.gov (United States)

    Lienert, Florian; Lohmueller, Jason J; Garg, Abhishek; Silver, Pamela A

    2014-01-01

    Recent progress in DNA manipulation and gene circuit engineering has greatly improved our ability to programme and probe mammalian cell behaviour. These advances have led to a new generation of synthetic biology research tools and potential therapeutic applications. Programmable DNA-binding domains and RNA regulators are leading to unprecedented control of gene expression and elucidation of gene function. Rebuilding complex biological circuits such as T cell receptor signalling in isolation from their natural context has deepened our understanding of network motifs and signalling pathways. Synthetic biology is also leading to innovative therapeutic interventions based on cell-based therapies, protein drugs, vaccines and gene therapies. PMID:24434884

  16. Genetic control of mammalian T-cell proliferation with synthetic RNA regulatory systems

    OpenAIRE

    Chen, Yvonne Y.; Jensen, Michael C.; Smolke, Christina D.

    2010-01-01

    RNA molecules perform diverse regulatory functions in natural biological systems, and numerous synthetic RNA-based control devices that integrate sensing and gene-regulatory functions have been demonstrated, predominantly in bacteria and yeast. Despite potential advantages of RNA-based genetic control strategies in clinical applications, there has been limited success in extending engineered RNA devices to mammalian gene-expression control and no example of their application to functional res...

  17. A platform for rapid prototyping of synthetic gene networks in mammalian cells

    Science.gov (United States)

    Duportet, Xavier; Wroblewska, Liliana; Guye, Patrick; Li, Yinqing; Eyquem, Justin; Rieders, Julianne; Rimchala, Tharathorn; Batt, Gregory; Weiss, Ron

    2014-01-01

    Mammalian synthetic biology may provide novel therapeutic strategies, help decipher new paths for drug discovery and facilitate synthesis of valuable molecules. Yet, our capacity to genetically program cells is currently hampered by the lack of efficient approaches to streamline the design, construction and screening of synthetic gene networks. To address this problem, here we present a framework for modular and combinatorial assembly of functional (multi)gene expression vectors and their efficient and specific targeted integration into a well-defined chromosomal context in mammalian cells. We demonstrate the potential of this framework by assembling and integrating different functional mammalian regulatory networks including the largest gene circuit built and chromosomally integrated to date (6 transcription units, 27kb) encoding an inducible memory device. Using a library of 18 different circuits as a proof of concept, we also demonstrate that our method enables one-pot/single-flask chromosomal integration and screening of circuit libraries. This rapid and powerful prototyping platform is well suited for comparative studies of genetic regulatory elements, genes and multi-gene circuits as well as facile development of libraries of isogenic engineered cell lines. PMID:25378321

  18. LOFAR - low frequency array

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Gunst, André

    Nog een paar maanden en dan wordt de grootste radiotelescoop ter wereld officieel geopend: LOFAR, de ‘Low Frequency Arraÿ'.LOFAR is een nieuwe radiotelescoop die in Nederland gebouwd wordt door ASTRON, de Stichting Astronomisch Onderzoek in Nederland. Met LOFAR heeft Nederland er straks een uniek

  19. Low frequency radioastronomy

    International Nuclear Information System (INIS)

    Zarka, Philippe; Cecconi, Baptiste; Tagger, Michel; Torchinsky, Steve; Picard, Philippe; Pezzani, Jacques; Cognard, Ismael; Boone, Frederic; Woan, Graham; Weber, Rodolphe; Gousset, Thierry; Lautridou, Pascal; Dallier, Richard

    2011-07-01

    Low frequency radioastronomy deals with the direct detection (below 100 MHz) and heterodyne detection (up to few GHz) of electromagnetic waves (phase and amplitude) followed by a time or spectral analysis. The 30. Goutelas school covered several aspects of radioastronomy involving various aspects of physics: non-thermal phenomena in plasmas and physics of magnetized plasmas, atomic and molecular physics, and particle physics. These proceedings comprise 17 lectures dealing with: 1 - Low-Frequency Radioastronomy Basics (P. Zarka); 2 - Radioastronomy Historical Highlights (S. A. Torchinsky); 3 - Antennas (P. Picard, J. Pezzani); 4 - Receptors (P. Picard, J. Pezzani); 5 - Pulsars chronometry: metrology in radioastronomy (I. Cognard); 6 - Interferometry as imaging technique (F. Boone); 7 - Radio propagation and scintillation (G. Woan); 8 - Square Kilometer Array (S. A. Torchinsky); 9 - Techniques against radio-electrical interferences in low-frequency radioastronomy (R. Weber); 10 - Introduction to poly-phase filtering (R. Weber); 11 - Three decades of Jupiter's radio-emission studies: from the Nancay deca-meter network to LOFAR (P. Zarka); 12 - Atmospheric showers and their radio counterpart (T. Gousset); 13 - From cosmic rays radio-detection to pulse radioastronomy (P. Lautridou, R. Dallier); 14 - The CODALEMA project (R. Dallier, P. Lautridou); 15 - Space-based radio measurements: Gonio-polarimetry (B. Cecconi); 16 - Radio astronomy from space (G. Woan); 17 - LOFAR: the Low Frequency Array and the French FLOW consortium (M. Tagger, P. Zarka)

  20. Low Frequency Space Array

    International Nuclear Information System (INIS)

    Dennison, B.; Weiler, K.W.; Johnston, K.J.

    1987-01-01

    The Low Frequency Space Array (LFSA) is a conceptual mission to survey the entire sky and to image individual sources at frequencies between 1.5 and 26 MHz, a frequency range over which the earth's ionosphere transmits poorly or not at all. With high resolution, high sensitivity observations, a new window will be opened in the electromagnetic spectrum for astronomical investigation. Also, extending observations down to such low frequencies will bring astronomy to the fundamental limit below which the galaxy becomes optically thick due to free-free absorption. A number of major scientific goals can be pursued with such a mission, including mapping galactic emission and absorption, studies of individual source spectra in a frequency range where a number of important processes may play a role, high resolution imaging of extended sources, localization of the impulsive emission from Jupiter, and a search for coherent emission processes. 19 references

  1. Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells.

    Science.gov (United States)

    Kawasaki, Shunsuke; Fujita, Yoshihiko; Nagaike, Takashi; Tomita, Kozo; Saito, Hirohide

    2017-07-07

    Synthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell. Here, we show a strategy to construct synthetic mRNA devices that detect endogenous proteins in living cells, control translation and distinguish cell types. We engineered protein-binding aptamers that have increased stability in the secondary structures of their active conformation. The designed devices can efficiently respond to target proteins including human LIN28A and U1A proteins, while the original aptamers failed to do so. Moreover, mRNA delivery of an LIN28A-responsive device into human induced pluripotent stem cells (hiPSCs) revealed that we can distinguish living hiPSCs and differentiated cells by quantifying endogenous LIN28A protein expression level. Thus, our endogenous protein-driven RNA devices determine live-cell states and program mammalian cells based on intracellular protein information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  2. Intraperitoneal Infection of Wild-Type Mice with Synthetically Generated Mammalian Prion.

    Directory of Open Access Journals (Sweden)

    Xinhe Wang

    2015-07-01

    Full Text Available The prion hypothesis postulates that the infectious agent in transmissible spongiform encephalopathies (TSEs is an unorthodox protein conformation based agent. Recent successes in generating mammalian prions in vitro with bacterially expressed recombinant prion protein provide strong support for the hypothesis. However, whether the pathogenic properties of synthetically generated prion (rec-Prion recapitulate those of naturally occurring prions remains unresolved. Using end-point titration assay, we showed that the in vitro prepared rec-Prions have infectious titers of around 104 LD50/μg. In addition, intraperitoneal (i.p. inoculation of wild-type mice with rec-Prion caused prion disease with an average survival time of 210-220 days post inoculation. Detailed pathological analyses revealed that the nature of rec-Prion induced lesions, including spongiform change, disease specific prion protein accumulation (PrP-d and the PrP-d dissemination amongst lymphoid and peripheral nervous system tissues, the route and mechanisms of neuroinvasion were all typical of classical rodent prions. Our results revealed that, similar to naturally occurring prions, the rec-Prion has a titratable infectivity and is capable of causing prion disease via routes other than direct intra-cerebral challenge. More importantly, our results established that the rec-Prion caused disease is pathogenically and pathologically identical to naturally occurring contagious TSEs, supporting the concept that a conformationally altered protein agent is responsible for the infectivity in TSEs.

  3. Low-frequency-noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2008-01-01

    From 203 cases of low-frequency complaints a random selection of twenty-one cases were investigated. The main aim of the investigation was to answer the question whether the annoyance is caused by an external physical sound or by a physically non-existing sound, i.e. low-frequency tinnitus. Noise...... of the complainants are annoyed by a physical sound (20-180 Hz), while others suffer from low-frequency tinnitus (perceived frequency 40-100 Hz). Physical sound at frequencies below 20 Hz (infrasound) is not responsible for the annoyance - or at all audible - in any of the investigated cases, and none...... of the complainants has extraordinary hearing sensitivity at low frequencies. For comparable cases of low-frequency noise complaints in general, it is anticipated that physical sound is responsible in a substantial part of the cases, while low-frequency tinnitus is responsible in another substantial part of the cases....

  4. Low frequency electromagnetic field sensor

    International Nuclear Information System (INIS)

    Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun

    2000-01-01

    The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz

  5. Low-frequency noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2006-01-01

    is only heard by a single person in the household. This raises the fundamental question whether the complainants are annoyed by an external physical sound, or if other explanations such as low-frequency tinnitus must be sought. The main aim of this study is to answer this fundamental question...

  6. Inhibition of Dengue Virus 3 in Mammalian Cell Culture by Synthetic ...

    African Journals Online (AJOL)

    HP

    Purpose: To evaluate the inhibition of Dengue virus 3 by synthetic siRNAs targeting the untranslated regions UTR and structural regions of DENV3 genome in Vero-81 cell line. Methods: Vero-81 cells transfected with synthetic siRNAs were challenged by DENV3. The effectiveness of siRNAs was confirmed by four ...

  7. Study of the immunological relatedness of goldfish MSH in an RIA for synthetic mammalian α MSH

    International Nuclear Information System (INIS)

    Follenius, Ernest; Schmitt, Gabrielle; Meunier, Annie

    1980-01-01

    α MSH from the neuro-intermediate lobe of the pituitary gland of the goldfish displays a competitive behaviour in an RIA for synthetic α MSH. The inhibition curves from neuro-intermediate homogenates parallel the standard curve (P [fr

  8. LOFAR, the low frequency array

    Science.gov (United States)

    Vermeulen, R. C.

    2012-09-01

    LOFAR, the Low Frequency Array, is a next-generation radio telescope designed by ASTRON, with antenna stations concentrated in the north of the Netherlands and currently spread into Germany, France, Sweden and the United Kingdom; plans for more LOFAR stations exist in several other countries. Utilizing a novel, phased-array design, LOFAR is optimized for the largely unexplored low frequency range between 30 and 240 MHz. Digital beam-forming techniques make the LOFAR system agile and allow for rapid re-pointing of the telescopes as well as the potential for multiple simultaneous observations. Processing (e.g. cross-correlation) takes place in the LOFAR BlueGene/P supercomputer, and associated post-processing facilities. With its dense core (inner few km) array and long (more than 1000 km) interferometric baselines, LOFAR reaches unparalleled sensitivity and resolution in the low frequency radio regime. The International LOFAR Telescope (ILT) is now issuing its first call for observing projects that will be peer reviewed and selected for observing starting in December. Part of the allocations will be made on the basis of a fully Open Skies policy; there are also reserved fractions assigned by national consortia in return for contributions from their country to the ILT. In this invited talk, the gradually expanding complement of operationally verified observing modes and capabilities are reviewed, and some of the exciting first astronomical results are presented.

  9. A synthetic multifunctional mammalian pH sensor and CO2 transgene-control device.

    Science.gov (United States)

    Ausländer, David; Ausländer, Simon; Charpin-El Hamri, Ghislaine; Sedlmayer, Ferdinand; Müller, Marius; Frey, Olivier; Hierlemann, Andreas; Stelling, Jörg; Fussenegger, Martin

    2014-08-07

    All metabolic activities operate within a narrow pH range that is controlled by the CO2-bicarbonate buffering system. We hypothesized that pH could serve as surrogate signal to monitor and respond to the physiological state. By functionally rewiring the human proton-activated cell-surface receptor TDAG8 to chimeric promoters, we created a synthetic signaling cascade that precisely monitors extracellular pH within the physiological range. The synthetic pH sensor could be adjusted by organic acids as well as gaseous CO2 that shifts the CO2-bicarbonate balance toward hydrogen ions. This enabled the design of gas-programmable logic gates, provided remote control of cellular behavior inside microfluidic devices, and allowed for CO2-triggered production of biopharmaceuticals in standard bioreactors. When implanting cells containing the synthetic pH sensor linked to production of insulin into type 1 diabetic mice developing diabetic ketoacidosis, the prosthetic network automatically scored acidic pH and coordinated an insulin expression response that corrected ketoacidosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Sensitive detection of proteasomal activation using the Deg-On mammalian synthetic gene circuit.

    Science.gov (United States)

    Zhao, Wenting; Bonem, Matthew; McWhite, Claire; Silberg, Jonathan J; Segatori, Laura

    2014-04-08

    The ubiquitin proteasome system (UPS) has emerged as a drug target for diverse diseases characterized by altered proteostasis, but pharmacological agents that enhance UPS activity have been challenging to establish. Here we report the Deg-On system, a genetic inverter that translates proteasomal degradation of the transcriptional regulator TetR into a fluorescent signal, thereby linking UPS activity to an easily detectable output, which can be tuned using tetracycline. We demonstrate that this circuit responds to modulation of UPS activity in cell culture arising from the inhibitor MG-132 and activator PA28γ. Guided by predictive modelling, we enhanced the circuit's signal sensitivity and dynamic range by introducing a feedback loop that enables self-amplification of TetR. By linking UPS activity to a simple and tunable fluorescence output, these genetic inverters will enable a variety of applications, including screening for UPS activating molecules and selecting for mammalian cells with different levels of proteasome activity.

  11. Low-frequency oscillations in Hall thrusters

    International Nuclear Information System (INIS)

    Wei Li-Qiu; Han Liang; Yu Da-Ren; Guo Ning

    2015-01-01

    In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. (review)

  12. Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells.

    Directory of Open Access Journals (Sweden)

    Wendy C Carcamo

    Full Text Available Cytoplasmic filamentous rods and rings (RR structures were identified using human autoantibodies as probes. In the present study, the formation of these conserved structures in mammalian cells and functions linked to these structures were examined.Distinct cytoplasmic rods (∼3-10 µm in length and rings (∼2-5 µm in diameter in HEp-2 cells were initially observed in immunofluorescence using human autoantibodies. Co-localization studies revealed that, although RR had filament-like features, they were not enriched in actin, tubulin, or vimentin, and not associated with centrosomes or other known cytoplasmic structures. Further independent studies revealed that two key enzymes in the nucleotide synthetic pathway cytidine triphosphate synthase 1 (CTPS1 and inosine monophosphate dehydrogenase 2 (IMPDH2 were highly enriched in RR. CTPS1 enzyme inhibitors 6-diazo-5-oxo-L-norleucine and Acivicin as well as the IMPDH2 inhibitor Ribavirin exhibited dose-dependent induction of RR in >95% of cells in all cancer cell lines tested as well as mouse primary cells. RR formation by lower concentration of Ribavirin was enhanced in IMPDH2-knockdown HeLa cells whereas it was inhibited in GFP-IMPDH2 overexpressed HeLa cells. Interestingly, RR were detected readily in untreated mouse embryonic stem cells (>95%; upon retinoic acid differentiation, RR disassembled in these cells but reformed when treated with Acivicin.RR formation represented response to disturbances in the CTP or GTP synthetic pathways in cancer cell lines and mouse primary cells and RR are the convergence physical structures in these pathways. The availability of specific markers for these conserved structures and the ability to induce formation in vitro will allow further investigations in structure and function of RR in many biological systems in health and diseases.

  13. Interference of a synthetic C18 juvenile hormone with mammalian cells in vitro, I. Effects on growth and morphology.

    Science.gov (United States)

    Zielińska, Z M; Laskowska-Bozek, H; Jastreboff, P

    1978-01-01

    Some of structural and functional analogs of juvenile hormones are now under field examinations as growth inhibitors of some pest-insect populations. So far however very little is known about the possible interference of these compounds with mammalian cells or organisms. In this research the interference of a synthetic preparation of the insect C18 juvenile hormone with mouse embryo fibroblasts (ME-cells) and mouse cells of an established line (L-cells) was studied. Aliquots of juvenile hormone solution or those of the solvent (DMSO plus ethanol, 9:1) were included into the culture medium and after defined times of contact the cells were tested for their morphology, pattern of growth, proliferation rate and viability. The data for the parameters under examination were evaluated by means of the analysis of variance and checked by the Tuckey test. The sensitivity of ME-cells and L-cells to the agent tested was compared by means of the analysis of variance of the data for mitotic indices of these cells and by evaluation of the number of dead cells in cultures under the particular conditions of the experiments. The main findings can be summarized as follows: 1. Cells of both types are evidently more sensitive to juvenile hormone than to the solvent. 2. ME-cells are more sensitive to both agents than are L-cells. 3. The concentrations of the hormone in the medium required to evoked the cytocidal effect on the mouse cells similarly as those affecting some insect non-target cells were far above concentrations found in insect blood, but they were of the same order of magnitude as those used in physiological experiments with insect organs in vitro.

  14. Searching for chaos on low frequency

    OpenAIRE

    Nicolas Wesner

    2004-01-01

    A new method for detecting low dimensional chaos in small sample sets is presented. The method is applied to financial data on low frequency (annual and monthly) for which few observations are available.

  15. Resonant magnetic pumping at very low frequency

    International Nuclear Information System (INIS)

    Canobbio, Ernesto

    1978-01-01

    We propose to exploit for plasma heating purposes the very low frequency limit of the Alfven wave resonance condition, which reduces essentially to safety factor q=m/n, a rational number. It is shown that a substantial fraction of the total RF-energy can be absorbed by the plasma. The lowest possible frequency value is determined by the maximum tolerable width of the RF-magnetic islands which develop near the singular surface. The obvious interest of the proposed scheme is the low frequency value (f<=10 KHz) which allows the RF-coils to be protected by stainless steel or even to be put outside the liner

  16. Auditory filters at low-frequencies

    DEFF Research Database (Denmark)

    Orellana, Carlos Andrés Jurado; Pedersen, Christian Sejer; Møller, Henrik

    2009-01-01

    -ear transfer function), the asymmetry of the auditory filter changed from steeper high-frequency slopes at 1000 Hz to steeper low-frequency slopes below 100 Hz. Increasing steepness at low-frequencies of the middle-ear high-pass filter is thought to cause this effect. The dynamic range of the auditory filter...... was found to steadily decrease with decreasing center frequency. Although the observed decrease in filter bandwidth with decreasing center frequency was only approximately monotonic, the preliminary data indicates the filter bandwidth does not stabilize around 100 Hz, e.g. it still decreases below...

  17. Gravity and low-frequency geodynamics

    CERN Document Server

    Teisseyre, Roman

    1989-01-01

    This fourth volume in the series Physics and Evolution of the Earth's Interior, provides a comprehensive review of the geophysical and geodetical aspects related to gravity and low-frequency geodynamics. Such aspects include the Earth's gravity field, geoid shape theory, and low-frequency phenomena like rotation, oscillations and tides.Global-scale phenomena are treated as a response to source excitation in spherical Earth models consisting of several shells: lithosphere, mantle, core and sometimes also the inner solid core. The effect of gravitation and rotation on the Earth's shape is anal

  18. Integral methods in low-frequency electromagnetics

    CERN Document Server

    Solin, Pavel; Karban, Pavel; Ulrych, Bohus

    2009-01-01

    A modern presentation of integral methods in low-frequency electromagnetics This book provides state-of-the-art knowledge on integral methods in low-frequency electromagnetics. Blending theory with numerous examples, it introduces key aspects of the integral methods used in engineering as a powerful alternative to PDE-based models. Readers will get complete coverage of: The electromagnetic field and its basic characteristics An overview of solution methods Solutions of electromagnetic fields by integral expressions Integral and integrodifferential methods

  19. Low-frequency fields - health risk assessment

    International Nuclear Information System (INIS)

    Bernhardt, J.

    1993-01-01

    The author briefly reviews the biological actions and effects of low-frequency fields, epidemiological studies and discusses health risks in detail. He describes the assessment principles of the International Commission on Non-ionizing Radiation Protection (ICNIRP), medical principles for risk assessment, determination of limits and thesholds, and aspects of prevention. This is supplemented to by several fables and literature list. (Uhe) [de

  20. Measuring low-frequency noise indoors

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin

    2008-01-01

    that is exceeded in 10% of the volume of a room (L10) is proposed as a rational and objective target for a measurement method. In Sweden and Denmark rules exist for measuring low-frequency noise indoors. The performance of these procedures was investigated in three rooms. The results from the Swedish method were...

  1. Orbiting low frequency array for radio astronomy

    NARCIS (Netherlands)

    Rajan, Rai Thilak; Rajan, Raj; Engelen, Steven; Bentum, Marinus Jan; Verhoeven, Chris

    2011-01-01

    Recently new and interesting science drivers have emerged for very low frequency radio astronomy from 0.3 MHz to 30 MHz. However Earth bound radio observations at these wavelengths are severely hampered by ionospheric distortions, man made interference, solar flares and even complete reflection

  2. Nonlinear Modelling of Low Frequency Loudspeakers

    DEFF Research Database (Denmark)

    Olsen, Erling Sandermann

    1997-01-01

    In the Danish LoDist project on distortion from dynamic low frequency loudspeakers a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...

  3. Nonlinear Modelling of Low Frequency Loudspeakers

    DEFF Research Database (Denmark)

    Olsen, Erling Sandermann

    1997-01-01

    In the Danish LoDist project on distortion from dynamic low-frequency loudspeakers, a detailed nonlinear model of loudspeakers has been developed. The model has been implemented in a PC program so that it can be used to create signals for listening tests and analysis. Also, different methods...

  4. Digital Filters for Low Frequency Equalization

    DEFF Research Database (Denmark)

    Tyril, Marni; Abildgaard, J.; Rubak, Per

    2001-01-01

    Digital filters with high resolution in the low-frequency range are studied. Specifically, for a given computational power, traditional IIR filters are compared with warped FIR filters, warped IIR filters, and modified warped FIR filters termed warped individual z FIR filters (WizFIR). The results...

  5. Extreme Low Frequency Acoustic Measurement System

    Science.gov (United States)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor)

    2017-01-01

    The present invention is an extremely low frequency (ELF) microphone and acoustic measurement system capable of infrasound detection in a portable and easily deployable form factor. In one embodiment of the invention, an extremely low frequency electret microphone comprises a membrane, a backplate, and a backchamber. The backchamber is sealed to allow substantially no air exchange between the backchamber and outside the microphone. Compliance of the membrane may be less than ambient air compliance. The backplate may define a plurality of holes and a slot may be defined between an outer diameter of the backplate and an inner wall of the microphone. The locations and sizes of the holes, the size of the slot, and the volume of the backchamber may be selected such that membrane motion is substantially critically damped.

  6. Very-low-frequency magnetic plasma

    International Nuclear Information System (INIS)

    Pendry, J.B.; O'Brien, S.

    2002-01-01

    We show that a set of current-carrying wires can exhibit an effective magnetic permeability at very low frequencies of a few hertz. The resonant permeability, which is negative above the resonance frequency, arises from the oscillations of the wires driven by the applied magnetic field. We show that a large, frequency-specific and tunable effective permeability can be realized for a wide range of strengths of the applied field. (author)

  7. Synthetic

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2010-06-01

    Full Text Available Traditionally materials have been associated with a series of physical properties that can be used as inputs to production and manufacturing. Recently we witnessed an interest in materials considered not only as ‘true matter’, but also as new breeds where geometry, texture, tooling and finish are able to provoke new sensations when they are applied to a substance. These artificial materials can be described as synthetic because they are the outcome of various qualities that are not necessarily true to the original matter, but they are the combination of two or more parts, whether by design or by natural processes. The aim of this paper is to investigate the potential of architectural surfaces to produce effects through the invention of new breeds of artificial matter, using micro-scale details derived from Nature as an inspiration.

  8. Low frequency electric and magnetic fields

    Science.gov (United States)

    Spaniol, Craig

    1989-01-01

    Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

  9. Low-frequency fields - sources and exposure

    International Nuclear Information System (INIS)

    Kunsch, B.

    1993-01-01

    The author briefly discusses definition of terms, gives an introduction to measurement techniques and describes the characteristics of various low-frequency fields and their causes using typical examples: natural electric fields (thunderstroms), natural magnetic fields, technical electric constant fields (urban transportation, households), static magnetic fields (urban transportation, nuclear magnetic resonance imaging), technical electric alternating fields (high-voltage transmission lines, households), and magnetic alternating fields (high-voltage transmission lines). The author discusses both occupational exposure and that of the general public while underpinning his statements by numerous tables, measurement diagrams and charts. (Uhe) [de

  10. Nonmonotonic low frequency losses in HTSCs

    International Nuclear Information System (INIS)

    Castro, H; Gerber, A; Milner, A

    2007-01-01

    A calorimetric technique has been used in order to study ac-field dissipation in ceramic BSCCO samples at low frequencies between 0.05 and 250 Hz, at temperatures from 65 to 90 K. In contrast to previous studies, where ac losses have been reported with a linear dependence on magnetic field frequency, we find a nonmonotonic function presenting various maxima. Frequencies corresponding to local maxima of dissipation depend on the temperature and the amplitude of the ac magnetic field. Flux creep is argued to be responsible for this behaviour. A simple model connecting the characteristic vortex relaxation times (flux creep) and the location of dissipation maxima versus frequency is proposed

  11. Status of the low frequency facility experiment

    International Nuclear Information System (INIS)

    Bracci, L; Calamai, G; Cuoco, E; Dominici, P; Fabbroni, L; Guidi, G; Losurdo, G; Martelli, F; Mazzoni, M; Stanga, R; Vetrano, F; Porzio, A; Ricciardi, I; Solimeno, S; Ballardin, G; Braccini, S; Bradaschia, C; Casciano, C; Cavalieri, R; Cecchi, R; Cella, G; Dattilo, V; Virgilio, A Di; Fazzi, M; Ferrante, I; Fidecaro, F; Frasconi, F; Gennaro, G; Giazotto, A; Holloway, L; Penna, P La; Lomtadze, T; Nenci, F; Nicolosi, L; Lelli, F; Paoletti, F; Pasqualetti, A; Passaquieti, R; Passuello, D; Poggiani, R; Raffaelli, F; Taddei, R; Vicere, A; Zhang, Z; Frasca, S; Majorana, E; Palomba, C; Perciballi, M; Puppo, P; Rapagnani, P; Ricci, F

    2002-01-01

    The low frequency facility is a VIRGO R and D experiment having the goal of performing a direct measurement of the thermal noise of the VIRGO suspensions by means of a two-mirror Fabry-Perot cavity suspended to the last stage of the attenuating chain. The present status of advancement of this experiment is reported: the apparatus, including mechanical and optical parts, has been completely built and put into operation. Vacuum facilities and the first control loops are active. First measurements on the suspended cavity are in progress

  12. Simulation model for studying low frequency microinstabilities

    International Nuclear Information System (INIS)

    Lee, W.W.; Okuda, H.

    1976-03-01

    A 2 1 / 2 dimensional, electrostatic particle code in a slab geometry has been developed to study low frequency oscillations such as drift wave and trapped particle instabilities in a nonuniform bounded plasma. A drift approximation for the electron transverse motion is made which eliminates the high frequency oscillations at the electron gyrofrequency and its multiples. It is, therefore, possible to study the nonlinear effects such as the anomalous transport of plasmas within a reasonable computing time using a real mass ratio. Several examples are given to check the validity and usefulness of the model

  13. Suspension for the low frequency facility

    CERN Document Server

    Cella, G; Di Virgilio, A; Gaddi, A; Viceré, A

    2000-01-01

    We introduce the working principles of the VIRGO Low Frequency Facility (LFF), whose main aim is the measurement of the thermal noise in the VIRGO suspension system. We evaluate the displacement thermal noise of a mirror, which is an intermediate element of a double pendulum suspension system. This double pendulum will be suspended to the last stage of a VIRGO Super-Attenuator (SA), the prototype VIRGO suspension system being tested at the Pisa section of INFN. In the proposed configuration, we evaluate the spectrum of the thermal noise for different choices of the parameters: based on this study, we comment on the future directions to be undertaken in the LFF experiment.

  14. Status of the low frequency facility experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bracci, L [Dipartimento di Fisica, Universita di Firenze, Florence (Italy); Calamai, G [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Cuoco, E [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Dominici, P [Dipartimento di Fisica, Universita di Firenze, Firenze (Italy); Fabbroni, L [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Guidi, G [Dipartimento di Fisica, Universita di Urbino, Urbino (Italy); Losurdo, G [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Martelli, F [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Mazzoni, M [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Stanga, R [Istituto Nazionale di Fisica Nucleare, Sez Firenze/Urbino (Italy); Vetrano, F [Dipartimento di Fisica, Universita di Urbino, Urbino (Italy); Porzio, A [Istituto Nazionale di Fisica Nucleare, Sez Naples (Italy); Ricciardi, I [Istituto Nazionale di Fisica Nucleare, Sez Naples (Italy); Solimeno, S [Istituto Nazionale di Fisica Nucleare, Sez Naples (Italy); Ballardin, G [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Braccini, S [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Bradaschia, C [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Casciano, C [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Cavalieri, R [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Cecchi, R [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Cella, G [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Dattilo, V [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Virgilio, A Di [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Fazzi, M [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Ferrante, I [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy); Fidecaro, F [Istituto Nazionale di Fisica Nucleare, Sez Pisa (Italy)] [and others

    2002-04-07

    The low frequency facility is a VIRGO R and D experiment having the goal of performing a direct measurement of the thermal noise of the VIRGO suspensions by means of a two-mirror Fabry-Perot cavity suspended to the last stage of the attenuating chain. The present status of advancement of this experiment is reported: the apparatus, including mechanical and optical parts, has been completely built and put into operation. Vacuum facilities and the first control loops are active. First measurements on the suspended cavity are in progress.

  15. Child leukaemia and low frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Clavel, J.

    2009-01-01

    The author discusses the possible causes of child leukaemia: exposure to natural ionizing radiation (notably radon), to pesticides, and to hydrocarbons emitted by road traffic. Some studies suggested that an inadequate reaction of the immune system to an ordinary infection could result in leukaemia. Other factors are suspected, notably extremely low frequency electromagnetic fields, the influence of which is then discussed by the author. She evokes and discusses results of different investigations on this topic which have been published since the end of the 1970's. It appears that a distance less than 50 meters from high voltage lines or the vicinity of transformation stations may double the risk of child leukaemia

  16. Minimization of nanosatellite low frequency magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Belyayev, S. M., E-mail: belyayev@isr.lviv.ua [Lviv Centre of Institute for Space Research, Lviv 79060 (Ukraine); Royal Institute of Technology, Stockholm 11428 (Sweden); Dudkin, F. L. [Lviv Centre of Institute for Space Research, Lviv 79060 (Ukraine)

    2016-03-15

    Small weight and dimensions of the micro- and nanosatellites constrain researchers to place electromagnetic sensors on short booms or on the satellite body. Therefore the electromagnetic cleanliness of such satellites becomes a central question. This paper describes the theoretical base and practical techniques for determining the parameters of DC and very low frequency magnetic interference sources. One of such sources is satellite magnetization, the reduction of which improves the accuracy and stability of the attitude control system. We present design solutions for magnetically clean spacecraft, testing equipment, and technology for magnetic moment measurements, which are more convenient, efficient, and accurate than the conventional ones.

  17. Low-frequency sound exposure causes reversible long-term changes of cochlear transfer characteristics.

    Science.gov (United States)

    Drexl, Markus; Otto, Larissa; Wiegrebe, Lutz; Marquardt, Torsten; Gürkov, Robert; Krause, Eike

    2016-02-01

    Intense, low-frequency sound presented to the mammalian cochlea induces temporary changes of cochlear sensitivity, for which the term 'Bounce' phenomenon has been coined. Typical manifestations are slow oscillations of hearing thresholds or the level of otoacoustic emissions. It has been suggested that these alterations are caused by changes of the mechano-electrical transducer transfer function of outer hair cells (OHCs). Shape estimates of this transfer function can be derived from low-frequency-biased distortion product otoacoustic emissions (DPOAE). Here, we tracked the transfer function estimates before and after triggering a cochlear Bounce. Specifically, cubic DPOAEs, modulated by a low-frequency biasing tone, were followed over time before and after induction of the cochlear Bounce. Most subjects showed slow, biphasic changes of the transfer function estimates after low-frequency sound exposure relative to the preceding control period. Our data show that the operating point changes biphasically on the transfer function with an initial shift away from the inflection point followed by a shift towards the inflection point before returning to baseline values. Changes in transfer function and operating point lasted for about 180 s. Our results are consistent with the hypothesis that intense, low-frequency sound disturbs regulatory mechanisms in OHCs. The homeostatic readjustment of these mechanisms after low-frequency offset is reflected in slow oscillations of the estimated transfer functions. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A low frequency RFI monitoring system

    Science.gov (United States)

    Amiri, Shahram; Shankar, N. Udaya; Girish, B. S.; Somashekar, R.

    Radio frequency interference (RFI) is a growing problem for research in radio astronomy particularly at wavelengths longer than 2m. For satisfactory operation of a radio telescope, several bands have been protected for radio astronomy observations by the International Telecommunication Union. Since the radiation from cosmic sources are typically 40 to 100 dB below the emission from services operating in unprotected bands, often the out-of-band emission limits the sensitivity of astronomical observations. Moreover, several radio spectral emissions from cosmic sources are present in the frequency range outside the allocated band for radio astronomy. Thus monitoring of RFI is essential before building a receiver system for low frequency radio astronomy. We describe the design and development of an RFI monitoring system operating in the frequency band 30 to 100 MHz. This was designed keeping in view our proposal to extend the frequency of operation of GMRT down to 40 MHz. The monitor is a PC based spectrometer recording the voltage output of a receiver connected to an antenna, capable of digitizing the low frequency RF directly with an 8 bit ADC and sampling bandwidths up to 16 MHz. The system can operate continuously in almost real-time with a loss of only 2% of data. Here we will present the systems design aspects and the results of RFI monitoring carried out at the Raman Research Institute, Bangalore and at the GMRT site in Khodad.

  19. Experiments with a Ship-Mounted Low Frequency SAS for the Detection of Buried Objects

    NARCIS (Netherlands)

    Colin, M.E.G.D.; Quesson, B.A.J.; Hetet, A.; Groen, J.; Sabel, J.C.; Zerr, B.; Brusieux, M.; Legris, M.

    2004-01-01

    In September 2002, GESMA and TNO-FEL carried out a sea trial with a low frequency (20 kHz) sonar mounted on a mine hunter. The objective of the experiments was to collect sonar echoes from proud and buried objects for subsequent synthetic aperture processing. A large data set was collected,

  20. Low-frequency noise characterization of single CuO nanowire gas sensor devices

    NARCIS (Netherlands)

    Steinhauer, S.; Köck, A.; Gspan, C.; Grogger, W.; Vandamme, L.K.J.; Pogany, D.

    2015-01-01

    Low-frequency noise properties of single CuO nanowire devices were investigated under gas sensor operation conditions in dry and humid synthetic air at 350¿°C. A 1/f noise spectrum was found with the normalized power spectral density of current fluctuations typically a factor of 2 higher for humid

  1. Low frequency sound field enhancement system for rectangular rooms using multiple low frequency loudspeakers

    DEFF Research Database (Denmark)

    Celestinos, Adrian; Nielsen, Sofus Birkedal

    2006-01-01

    an enhancement system with extra loudspeakers the sound pressure level distribution along the listening area presents a significant improvement in the subwoofer frequency range. The system is simulated and implemented on the three different rooms and finally verified by measurements on the real rooms.......Rectangular rooms have strong influence on the low frequency performance of loudspeakers. Simulations of three different room sizes have been carried out using finite-difference time-domain method (FDTD) in order to predict the behaviour of the sound field at low frequencies. By using...

  2. Low frequency temperature forcing of chemical oscillations.

    Science.gov (United States)

    Novak, Jan; Thompson, Barnaby W; Wilson, Mark C T; Taylor, Annette F; Britton, Melanie M

    2011-07-14

    The low frequency forcing of chemical oscillations by temperature is investigated experimentally in the Belousov-Zhabotinsky (BZ) reaction and in simulations of the Oregonator model with Arrhenius temperature dependence of the rate constants. Forcing with temperature leads to modulation of the chemical frequency. The number of response cycles per forcing cycle is given by the ratio of the natural frequency to the forcing frequency and phase locking is only observed in simulations when this ratio is a whole number and the forcing amplitude is small. The global temperature forcing of flow-distributed oscillations in a tubular reactor is also investigated and synchronisation is observed in the variation of band position with the external signal, reflecting the periodic modulation of chemical oscillations by temperature.

  3. Low-frequency characteristics extension for vibration sensors

    Institute of Scientific and Technical Information of China (English)

    杨学山; 高峰; 候兴民

    2004-01-01

    Traditional magneto-electric vibration sensors and servo accelerometers have severe shortcomings when used to measure vibration where low frequency components predominate. A low frequency characteristic extension for velocity vibration sensors is presented in this paper. The passive circuit technology, active compensation technology and the closedcycle pole compensation technology are used to extend the measurable range and to improve low frequency characteristics of sensors. Thses three types of low frequency velocity vibration sensors have been developed and widely adopted in China.

  4. Developmental effects of extremely low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Juutilainen, J.

    2003-01-01

    Developmental effects of extremely low frequency (ELF) electric and magnetic fields are briefly reviewed in this paper. The results of animal studies on ELF electric fields are rather consistent, and do not suggest adverse effects on development. The results of studies on ELF magnetic fields suggest effects on bird embryo development, but not consistently in all studies. Results from experiments with other non-mammalian species have also suggested effects on developmental stability. In mammals, pre-natal exposure to ELF magnetic fields does not result in strong adverse effects on development. The only finding that shows some consistency is increase of minor skeleton alterations. Epidemiological studies do not establish an association between human adverse pregnancy outcomes and maternal exposure to ELF fields, although a few studies have reported increased risks associated with some characteristics of magnetic field exposure. Taken as a whole, the results do not show strong adverse effects on development. However, additional studies on the suggested subtle effects on developmental stability might increase our understanding of the sensitivity of organisms to weak ELF fields. (author)

  5. Electric and magnetic fields at extremely low frequencies

    International Nuclear Information System (INIS)

    Anderson, L.E.; Kaune, W.T.

    1989-01-01

    Whole-body exposure to extremely low frequency (ELF, 30-300 Hz) electric fields may involve effects related to stimulation of the sensory apparatus at the body surface (hair vibration, possible direct neural stimulation) and effects within the body caused by the flow of current. Magnetic fields may interact predominantly by the induction of internal current flow. Biological effects observed in a living organism may depend on the electric fields induced inside the body, possibly on the magnetic fields penetrating into the body, and on the fields acting at the surface of the body. Areas in which effects have been observed often appear to be associated with the nervous system, including altered neuronal excitability and neurochemical changes, altered hormone levels, changes in behavioural responses, and changes in biological rhythms. No studies unequivocably demonstrate deleterious effects of ELF electric or magnetic field exposure on mammalian reproduction and development, but several suggest such effects. Exposure to ELF electric and magnetic fields does produce biological effects. However, except for fields strong enough to induce current densities above the threshold for the stimulation of nerve tissues, there is no consensus as to whether these effects constitute a hazard to human health. Human data from epidemiological studies, including reported effects on cancer promotion, congenital malformations, reproductive performance and general health, though somewhat suggestive of adverse health effects, are not conclusive. 274 refs, 13 figs, 6 tabs

  6. Configuration Considerations for Low Frequency Arrays

    Science.gov (United States)

    Lonsdale, C. J.

    2005-12-01

    The advance of digital signal processing capabilities has spurred a new effort to exploit the lowest radio frequencies observable from the ground, from ˜10 MHz to a few hundred MHz. Multiple scientifically and technically complementary instruments are planned, including the Mileura Widefield Array (MWA) in the 80-300 MHz range, and the Long Wavelength Array (LWA) in the 20-80 MHz range. The latter instrument will target relatively high angular resolution, and baselines up to a few hundred km. An important practical question for the design of such an array is how to distribute the collecting area on the ground. The answer to this question profoundly affects both cost and performance. In this contribution, the factors which determine the anticipated performance of any such array are examined, paying particular attention to the viability and accuracy of array calibration. It is argued that due to the severity of ionospheric effects in particular, it will be difficult or impossible to achieve routine, high dynamic range imaging with a geographically large low frequency array, unless a large number of physically separate array stations is built. This conclusion is general, is based on the need for adequate sampling of ionospheric irregularities, and is independent of the calibration algorithms and techniques that might be employed. It is further argued that array configuration figures of merit that are traditionally used for higher frequency arrays are inappropriate, and a different set of criteria are proposed.

  7. On absorption of low frequency electromagnetic fields

    International Nuclear Information System (INIS)

    Brunner, S.; Vaclavik, J.

    1993-03-01

    The drift kinetic equation (DKE) is used to establish a formula for power absorption of small amplitude, low frequency electromagnetic (EM) fields in a hot toroidal axisymmetric plasma. The stationary plasma is first considered. Electrons and ions are described by local Maxwellian distributions, alpha particles by a local slowing-down distribution. The fluctuating part of the distribution function for each species is then evaluated from the linearized DKE in terms of the EM fields using a perturbation method. The parameter b p =B p /B o , where B p is the poloidal component of the magnetostatic field B o , and the parameter v d /λω, where v d is the magnetic curvature drift, λ the wavelength perpendicular to B o and ω the frequency of the EM fields, are considered to be small. By integrating the resulting distribution function over velocity space, an explicit formula for the power absorbed by each species is obtained. To obtain an expression suitable for direct implementation in an ideal-MHD code, the electric field component parallel to the magnetostatic field is evaluated using the quasi-neutrality equation. (author) 4 refs

  8. A low frequency rotational energy harvesting system

    International Nuclear Information System (INIS)

    Febbo, M; Machado, S P; Ramirez, J M; Gatti, C D

    2016-01-01

    This paper presents a rotary power scavenging unit comprised of two systems of flexible beams connected by two masses which are joined by means of a spring, considering a PZT (QP16N, Midé Corporation) piezoelectric sheet mounted on one of the beams. The energy harvesting (EH) system is mounted rigidly on a rotating hub. The gravitational force on the masses causes sustained oscillatory motion in the flexible beams as long as there is rotary motion. The intention is to use the EH system in the wireless autonomous monitoring of wind turbines under different wind conditions. Specifically, the development is oriented to monitor the dynamic state of the blades of a wind generator of 30 KW which rotates between 50 and 150 rpm. The paper shows a complete set of experimental results on three devices, modifying the amount of beams in the frame supporting the system. The results show an acceptable sustained voltage generation for the expected range, in the three proposed cases. Therefore, it is possible to use this system for generating energy in a low-frequency rotating environment. As an alternative, the system can be easily adapted to include an array of piezoelectric sheets to each of the beams, to provide more power generation. (paper)

  9. Low frequency electromagnetic fields and health problems

    International Nuclear Information System (INIS)

    Zahedi, A.; Cosic, I.

    1996-01-01

    Full text: Electromagnetic fields developed around the electric circuits are considered as magnetic pollution and these fields are produced wherever electric appliances or machinery are used at home as well as at workplace. Electric fields and magnetic fields around the home are produced by anything with electric current flowing through it including: the street power lines, the home wiring system, electric ovens, refrigerators, washing machines, electric clothes dryers, vacuum cleaners, television sets, video cassette recorders, toasters, light bulbs, clock radios, electric blankets, mobile phones, etc. In the workplace they would be produced by: nearby power lines, factory machinery, computers/video display units, lights, photocopiers, electrical cabling etc. As one can see, human life is strongly dependent on using-electric appliance. A large number of studies have been undertaken to find out the correlation between electromagnetic fields and health problems. The following significant results have been reported [Lerner E.J., IEEE Spectrum, 57-67, May 1984]: (a) Induction of chromosomal defects in mice spermatogenetic cells following microwave radiation in the Ghz range; (b) Changes in the calcium balance of living cats' brains exposed to microwaves modulated at extremely low frequencies; (c) Alternation of nerve and bone cells exposed to extremely low frequency fields; (d) Decreased activity of the immune cells of mice exposed to modulated microwaves; (e) Apparent increase in deformed foetuses among miniature swine exposed to intense power-line frequency fields. The mostly investigated effect is the effect of electromagnetic irradiation in particular one produced by power lines, and cancer. More than 100 epidemiological studies have been reported but no conclusive result was achieved. A number of studies with laboratory animals were also inconclusive. However, some of these experiments have shown improvements in immune system and tumour suppression when

  10. Extremely low frequency electromagnetic field exposure does not modulate Toll-like receptor signaling in human peripheral blood mononuclear cells

    NARCIS (Netherlands)

    Kleijn, de S.; Bouwens, M.; Verburg-van Kemenade, B.M.L.; Cuppen, J.J.M.; Ferwerda, G.; Hermans, P.

    2011-01-01

    The effects of extremely low frequency electromagnetic fields (ELF-EMF) on human health remain unclear. It has been reported that ELF-EMF may modulate the innate immune response to microorganisms in animal models and mammalian cell-lines. With the recently gained insight in innate immune signaling

  11. Annoyance of low frequency noise and traffic noise

    DEFF Research Database (Denmark)

    Mortensen, F.R.; Poulsen, Torben

    2001-01-01

    The annoyance of different low frequency noise sources was determined and compared to the annoyance from traffic noise. Twenty-two subjects participated in laboratory listening tests. The sounds were presented by loudspeakers in a listening room and the spectra of the low frequency noises were...

  12. The Radio And Very Low Frequency (VLF) Electromagnetic ...

    African Journals Online (AJOL)

    The Radio And Very Low Frequency (VLF) Electromagnetic Response Of A Layered Earth Media With Variable Dielectric Permittivity. ... A radio frequency of 125 KHz and a very low frequency (VLF) of 20 KHz were used in the computations and the field parameters studied over a dimensionless induction number, B. The ...

  13. Indoor measurements of sound at low frequencies

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin

    2006-01-01

    Due to standing waves, the sound pressure level within a room may vary as much as 20-30 dB with low-frequency tonal noise, somewhat less with noise bands. For assessment of annoyance from low-frequency noise it is relevant to measure a level close to the highest level of the room, rather than a r...

  14. Low frequency astronomy - the challenge in a crowded RFI environment

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, Albert Jan

    2011-01-01

    Low frequency radio astronomy is a hot topic at the moment. Many large arrays of antennas are built to facilitate the astronomical research on low frequencies. Building an instrument for the frequency band below 30 MHz on Earth will run into some problems. One of the issues is the instable and

  15. Low frequency oscillatory flow in a rotating curved pipe

    Institute of Scientific and Technical Information of China (English)

    陈华军; 章本照; 苏霄燕

    2003-01-01

    The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotationon the low frequency oscillatory flow were examined in detail, The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without ro-tation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis foree to centrifugal foree and the axial pressure gradient.

  16. Low frequency oscillatory flow in a rotating curved pipe

    Institute of Scientific and Technical Information of China (English)

    陈华军; 章本照; 苏霄燕

    2003-01-01

    The low frequency oscillatory flow in a rotating curved pipe was studied by using the method of bi-parameter perturbation. Perturbation solutions up to the second order were obtained and the effects of rotation on the low frequency oscillatory flow were examined in detail. The results indicated that there exists evident difference between the low frequency oscillatory flow in a rotating curved pipe and in a curved pipe without rotation. During a period, four secondary vortexes may exist on the circular cross-section and the distribution of axial velocity and wall shear stress are related to the ratio of the Coriolis force to centrifugal force and the axial pressure gradient.

  17. Distortion-product otoacoustic emission at low frequencies in humans

    DEFF Research Database (Denmark)

    Christensen, Anders Tornvig

    -frequency hearing has not yet been characterized by measurement of low-frequency emissions from the cochlea. Low-frequency emissions are expected to be covered in sounds of breathing, blood circulation, and so on, if they exist at all at measurable levels. The present study shows, in essence, that the human ear...... emits distortion at least 1-2 octaves lower in frequency than has previously been shown. The emission is promising for further exploratory and clinical assessment of cochlear activity associated with low-frequency hearing. Anders received his M.Sc. degree in acoustics in 2012 from Aalborg University...

  18. Oscillographic Chronopotentiometry with High and Low Frequency Current

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel electroanalytical method, oscillographic chronopotentiometry with high and low frequency current, is presented in this paper. With this method, the sensitivity of almost all kinds of oscillographic chronopotentiometry can be enhanced about one order.

  19. Challenges and limitations in retrofitting facilities for low frequency noise

    Energy Technology Data Exchange (ETDEWEB)

    Wierzba, P. [ATCO Noise Management, Calgary, AB (Canada)

    2007-07-01

    The trend to revise and increase environmental regulations regarding low frequency noise emissions from oil and gas facilities was discussed. Noise related complaints can often be traced to low frequency noise, which is the unwanted sound with a frequency range falling within 31.5-Hz, 63-Hz, and 125-Hz octave bands. This paper also discussed the challenges and limitations of field retrofits of the facilities aimed at reducing low frequency noise. The main sources of low frequency noise associated with a compression facility are the radiator cooler, engine exhaust and the building envelope. Regulators are paying close attention not only to the overall noise exposure as measured by the A-weighted levels, but also to the quality of noise emitted by the particular frequency spectrum. The Alberta Energy and Utilities Board recently issued Noise Control Directive 38 and made it a requirement to perform low frequency noise impact assessment for permitting of all new energy facilities. Under Directive 38, the low frequency noise assessment is to be performed using the C-weighted scale as a measure in addition to the previously used A-weighted scale. Directive 38 recommends that in order to avoid low frequency noise problems the difference between the C-weighted and A-weighted levels at the residential locations should be lower than 20 dB. This implies that noise should be limited to 60 dBC for Category 1 residences of low dwelling density. Small upgrades and changes can be made to lower low frequency noise emissions. These may include upgrading building wall insulation, providing wall-to-skid isolation system, upgrading the fan blades, or reducing the rpm of the fans. It was concluded that these upgrades should be considered for facilities in close proximity to residential areas. 3 refs., 2 tabs., 7 figs.

  20. Static and low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Thommesen, G.; Tynes, T.

    1994-01-01

    The biological effects of exposure to low frequency electric and magnetic fields are reviewed with the objective of summarizing effects directly relevant to considerations of the health and safety of exposed people. Static and low frequency electric and magnetic fields may elicit biological reactions. Whether exposure to such fields may affect human health at field strengths present in everyday or occupational life is still unsettled. There is unsufficient knowledge to establish any dose concept relevant to health risk. 196 refs., 6 tabs

  1. Maintenance of extratropical low-frequency variabilities in the atmosphere

    International Nuclear Information System (INIS)

    Ting, M.

    1994-01-01

    The extratropical low-frequency variability is one of the most important components in extratropical dynamics. While there are some understanding of the high-frequency, synoptic scale storm track eddy development due to baroclinic instability theory, its low-frequency counterpart is poorly understood and the theory for that is slowly evolving. The main difficulty seems to be lying on the fact that the problem is three dimensional in nature

  2. Low-frequency excess flux noise in superconducting devices

    Energy Technology Data Exchange (ETDEWEB)

    Kempf, Sebastian; Ferring, Anna; Fleischmann, Andreas; Enss, Christian [Kirchhoff-Institute for Physics, Heidelberg University (Germany)

    2016-07-01

    Low-frequency noise is a rather universal phenomenon and appears in physical, chemical, biological or even economical systems. However, there is often very little known about the underlying processes leading to its occurrence. In particular, the origin of low-frequency excess flux noise in superconducting devices has been an unresolved puzzle for many decades. Its existence limits, for example, the coherence time of superconducting quantum bits or makes high-precision measurements of low-frequency signals using SQUIDs rather challenging. Recent experiments suggest that low-frequency excess flux noise in Josephson junction based devices might be caused by the random reversal of interacting spins in surface layer oxides and in the superconductor-substrate interface. Even if it turns out to be generally correct, the underlying physical processes, i.e. the origin of these spins, their physical nature as well as the interaction mechanisms, have not been resolved so far. In this contribution we discuss recent measurements of low-frequency SQUID noise which we performed to investigate the origin of low-frequency excess flux noise in superconducting devices. Within this context we give an overview of our measurement techniques and link our data with present theoretical models and literature data.

  3. The isolation of low frequency impact sounds in hotel construction

    Science.gov (United States)

    LoVerde, John J.; Dong, David W.

    2002-11-01

    One of the design challenges in the acoustical design of hotels is reducing low frequency sounds from footfalls occurring on both carpeted and hard-surfaced floors. Research on low frequency impact noise [W. Blazier and R. DuPree, J. Acoust. Soc. Am. 96, 1521-1532 (1994)] resulted in a conclusion that in wood construction low frequency impact sounds were clearly audible and that feasible control methods were not available. The results of numerous FIIC (Field Impact Insulation Class) measurements performed in accordance with ASTM E1007 indicate the lack of correlation between FIIC ratings and the reaction of occupants in the room below. The measurements presented include FIIC ratings and sound pressure level measurements below the ASTM E1007 low frequency limit of 100 Hertz, and reveal that excessive sound levels in the frequency range of 63 to 100 Hertz correlate with occupant complaints. Based upon this history, a tentative criterion for maximum impact sound level in the low frequency range is presented. The results presented of modifying existing constructions to reduce the transmission of impact sounds at low frequencies indicate that there may be practical solutions to this longstanding problem.

  4. Low-frequency noise from large wind turbines.

    Science.gov (United States)

    Møller, Henrik; Pedersen, Christian Sejer

    2011-06-01

    As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative amount of low-frequency noise is higher for large turbines (2.3-3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low frequencies, and for several of the investigated large turbines, the one-third-octave band with the highest level is at or below 250 Hz. It is thus beyond any doubt that the low-frequency part of the spectrum plays an important role in the noise at the neighbors. © 2011 Acoustical Society of America

  5. Characterization and Impact of Low Frequency Wind Turbine Noise Emissions

    Science.gov (United States)

    Finch, James

    Wind turbine noise is a complex issue that requires due diligence to minimize any potential impact on quality of life. This study enhances existing knowledge of wind turbine noise through focused analyses of downwind sound propagation, directionality, and the low frequency component of the noise. Measurements were conducted at four wind speeds according to a design of experiments at incremental distances and angles. Wind turbine noise is shown to be highly directional, while downwind sound propagation is spherical with limited ground absorption. The noise is found to have a significant low frequency component that is largely independent of wind speed over the 20-250 Hz range. The generated low frequency noise is shown to be audible above 40 Hz at the MOE setback distance of 550 m. Infrasound levels exhibit higher dependency on wind speed, but remain below audible levels up to 15 m/s.

  6. Present and Future Modes of Low Frequency Climate Variability

    Energy Technology Data Exchange (ETDEWEB)

    Cane, Mark A.

    2014-02-20

    This project addressed area (1) of the FOA, “Interaction of Climate Change and Low Frequency Modes of Natural Climate Variability”. Our overarching objective is to detect, describe and understand the changes in low frequency variability between model simulations of the preindustrial climate and simulations of a doubled CO2 climate. The deliverables are a set of papers providing a dynamical characterization of interannual, decadal, and multidecadal variability in coupled models with attention to the changes in this low frequency variability between pre-industrial concentrations of greenhouse gases and a doubling of atmospheric concentrations of CO2. The principle mode of analysis, singular vector decomposition, is designed to advance our physical, mechanistic understanding. This study will include external natural variability due to solar and volcanic aerosol variations as well as variability internal to the climate system. An important byproduct is a set of analysis tools for estimating global singular vector structures from the archived output of model simulations.

  7. Sizing of intergranular stress corrosion cracking using low frequency ultrasound

    International Nuclear Information System (INIS)

    Fuller, M.D.; Avioli, M.J.; Rose, J.L.

    1985-01-01

    Based upon the work thus far accomplished on low frequency sizing, the following conclusions can be drawn: the potential of low frequency ultrasound for the sizing of IGSCC seams encouraging as demonstrated in this work. If minimal walking is expected, larger values of crack height/wavelength ratios should not affect the reliability of estimates; notch data points out the validity of signal amplitude for sizing. With care in frequency consideration, the technique can be extended to cracks; when wavelength is greater than flaw size, importance of orientation and reflector shape diminishes although less so for deeper cracks; when beam profile is larger than the defect size, echo amplitude is proportional to defect area when using shear wave probes and corner reflectors; other factors, in addition to crack size, affect signal amplitude. Reference data to compensate for depth and material (HAZ) is a must; additional crack samples should be studied in order to further develop and characterize the use of low frequency ultrasonics

  8. Low frequency electric and magnetic fields - the topic of cancer

    International Nuclear Information System (INIS)

    Thommesen, G.

    1988-01-01

    A review is made of the literature about the biological effects of low frequency electric and magnetic fields. It is still an unsettled question whether extremely low frequency magnetic fields may increase the incidence of cancer. Experimental data arise mainly from exposure to field strengths or frequencies seldom or never encountered by people. The results give no clear explanation to the increase in cancer incidence reported in epidemiological works. The spectre of possible mechanisms imply that no simple dose/effect relationship should be expected, as conflicting mechanisms may dominate at different exposure levels. There is therefore no basis at present for giving numerical value to cancer risk from exposure to low frequency electric or magnetic fields

  9. Low frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Hassan, M.H.A.

    1991-09-01

    The dispersion properties of low frequency electrostatic modes in a dusty plasma in the presence of a static homogeneous magnetic field are examined. It is found that the presence of the dust particles and the static magnetic field have significant effects on the dispersion relations. For the parallel propagation the electrostatic mode is slightly modified by the magnetic field for the ion acoustic branch. A new longitudinal mode arises at the extreme low frequency limit, which is unaffected by the magnetic field for the parallel propagation. For the transverse propagation the ion acoustic mode is not affected by the magnetic field. However, the undamped extreme low frequency mode is significantly modified by the presence of the magnetic field for the propagation transverse to the direction of the magnetic field. (author). 23 refs

  10. Atomic Oxygen Energy in Low Frequency Hyperthermal Plasma Ashers

    Science.gov (United States)

    Banks, Bruce A.; Miller, Sharon K R.; Kneubel, Christian A.

    2014-01-01

    Experimental and analytical analysis of the atomic oxygen erosion of pyrolytic graphite as well as Monte Carlo computational modeling of the erosion of Kapton H (DuPont, Wilmington, DE) polyimide was performed to determine the hyperthermal energy of low frequency (30 to 35 kHz) plasma ashers operating on air. It was concluded that hyperthermal energies in the range of 0.3 to 0.9 eV are produced in the low frequency air plasmas which results in texturing similar to that in low Earth orbit (LEO). Monte Carlo computational modeling also indicated that such low energy directed ions are fully capable of producing the experimentally observed textured surfaces in low frequency plasmas.

  11. Radiative cooling and broadband phenomenon in low-frequency waves

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, we analyze the effects of radiative cooling on the pure baroclinic low-frequency waves under the approximation of equatorial -plane and semi-geostrophic condition. The results show that radiative cooling does not, exclusively, provide the damping effects on the development of low-frequency waves. Under the delicate radiative-convective equilibrium, radiative effects will alter the phase speed and wave period, and bring about the broadband of phase velocity and wave period by adjusting the vertical profiles of diabatic heating. when the intensity of diabatic heating is moderate and appropriate, it is conductive to the development and sustaining of the low-frequency waves and their broadband phenomena, not the larger, the better. The radiative cooling cannot be neglected in order to reach the moderate and appropriate intensity of diabatic heating.

  12. DATA ACQUISITION AND ANALYSIS OF LOW FREQUENCY ELECTROMAGNETIC FIELD

    Directory of Open Access Journals (Sweden)

    PETRICA POPOV

    2016-06-01

    Full Text Available In recent years more and more studies have shown that, the low frequency field strength (particularly magnetic, 50 / 60Hz are a major risk factor; according to some specialists - even more important as the radiation field. As a result, the personnel serving equipment and facilities such as: electric generators, synchronous, the motors, the inverters or power transformers is subjected continually to intense fields, in their vicinity, with possible harmful effects in the long term by affecting metabolism cell, espectively, the biological mechanisms.Therefore, finding new methods and tools for measurement and analysis of low frequency electromagnetic fields may lead to improved standards for exposure limits of the human body.

  13. Low frequency noise reduction using stiff light composite panels

    Institute of Scientific and Technical Information of China (English)

    DENG Yongchang; LIN Weizheng

    2003-01-01

    The experiment presented in this paper is to investigate and analyze the noise reduction at low frequency using stiff light composite panels. Since these composite panels are made of lightweight and stiff materials, this actuation strategy will enable the creation of composite panels for duct noise control without using traditional heavy structural mass. The results suggest that the mass-spring resonance absorption in the case of a comparatively stiff thick panel with a thin flexible plate is more efficient with minimum weight, when subjected to low-frequency (<500 Hz). The efficiency of the panel absorber depends on the mass of the thin flexible plate and the stiffness of the panel.

  14. Effect of low-frequency vibrations on speckle interferometry fringes

    International Nuclear Information System (INIS)

    Vikram, C.S.; Pechersky, M.J.

    1998-01-01

    The effects of low-frequency vibrations on speckle correlation fringes have been investigated. The relatively short capture time of the camera in the low-frequency case may yield usable fringe contrast in spite of vibration. It has been shown that the fringes also shift due to the vibration. The study is in agreement with experimental observations of good-contrast correlation fringes even if the object is not on a vibration-isolated table. Some such experimental observations are also presented. copyright 1998 Society of Photo-Optical Instrumentation Engineers

  15. Improvement of the low frequency oscillation model for Hall thrusters

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Wang, Huashan [Yanshan University, College of Vehicles and Energy, Qinhuangdao 066004, Hebei (China)

    2016-08-15

    The low frequency oscillation of the discharge current in Hall thrusters is a major aspect of these devices that requires further study. While the existing model captures the ionization mechanism of the low frequency oscillation, it unfortunately fails to express the dynamic characteristics of the ion acceleration. The analysis in this paper shows this is because of the simplification of the electron equation, which affects both the electric field distribution and the ion acceleration process. Additionally, the electron density equation is revised and a new model that is based on the physical properties of ion movement is proposed.

  16. Mixed Discretization of the Time Domain MFIE at Low Frequencies

    KAUST Repository

    Ulku, Huseyin Arda

    2017-01-10

    Solution of the magnetic field integral equation (MFIE), which is obtained by the classical marching on-in-time (MOT) scheme, becomes inaccurate when the time step is large, i.e., under low-frequency excitation. It is shown here that the inaccuracy stems from the classical MOT scheme’s failure to predict the correct scaling of the current’s Helmholtz components for large time steps. A recently proposed mixed discretization strategy is used to alleviate the inaccuracy problem by restoring the correct scaling of the current’s Helmholtz components under low-frequency excitation.

  17. Modulation of cochlear tuning by low-frequency sound

    NARCIS (Netherlands)

    Klis, J.F.L.; Prijs, V.F.; Latour, J.B.; Smoorenburg, G.F.

    1988-01-01

    An intense, low-frequency tone (about 30 Hz) modulates the sensitivity of the inner ear to high-frequency stimulation. This modulation is correlated with the displacement of the basilar membrane. The findings suggest that the modulation may also affect cochlear tuning. We have investigated

  18. Mitigation of low-frequency groundnoise from runways

    NARCIS (Netherlands)

    Eerden, F.J.M. van der; Salomons, E.M.; Beeks, A.A.F.M.

    2007-01-01

    With the extra runway at Amsterdam Schiphol Airport, introduced in 2003, the noise nuisance for local residents increased due to increased groundnoise. In a case study the effect of enhanced ground absorption on the propagation of low-frequency noise from aircraft ground operations, e.g. departing

  19. Is Reaction Time Variability in ADHD Mainly at Low Frequencies?

    Science.gov (United States)

    Karalunas, Sarah L.; Huang-Pollock, Cynthia L.; Nigg, Joel T.

    2013-01-01

    Background: Intraindividual variability in reaction times (RT variability) has garnered increasing interest as an indicator of cognitive and neurobiological dysfunction in children with attention deficit hyperactivity disorder (ADHD). Recent theory and research has emphasized specific low-frequency patterns of RT variability. However, whether…

  20. Effects of very low frequency electromagnetic method (VLFEM) and ...

    African Journals Online (AJOL)

    The study examined the impact of livestock dung on ground water status in the study area. To achieve this, a very low frequency EM survey was conducted; the aim and objective was to detect fractures in the subsurface. VLF data were acquired at 5m intervals along two profiles, with maximum length of 60m in the ...

  1. Low frequency sounds in dwellings : A case control study

    NARCIS (Netherlands)

    van den Berg, Frits (G P)

    2000-01-01

    The purpose of this study is to systematically assess the level and spectral distribution of low frequency (LF) sounds in dwellings. Measurements of broad and narrow hand sound levels have been made in 36 Dutch dwellings in 1998. In 19 dwellings there were complaints about LF noise, in 17 others no

  2. The role of low-frequency intraseasonal oscillations in the ...

    Indian Academy of Sciences (India)

    We analyze the dynamical features and responsible factors of the low-frequency intraseasonal time scales which influenced the nature of onset, intensity and duration of active/break phases and withdrawal of the monsoon during the anomalous Indian summer monsoon of 2002 – the most severe drought recorded in recent ...

  3. Excitation of low-frequency electrostatic instability on the auroral ...

    African Journals Online (AJOL)

    Low-Frequency Electrostatic Instability That Is Observed By Both Ground Facilities And Satellites Have Been Studied In The Auroral Acceleration Region Consisting Of Hot Precipitating Electron Beam From The Magnetosphere, Cold Background Electron And Ion Beam Moving Upward Away From The Earth Along The ...

  4. Tracking Galaxy Evolution Through Low-Frequency Radio ...

    Indian Academy of Sciences (India)

    This justify focussing on transitional galaxies to find relic-evidences of the immediate past AGN-feedback which decide the future course of evolution of a galaxy. Relic radio lobes can be best detected in low frequency observations with the GMRT, LOFAR and in future SKA. The age of these relic radio plasma can be as old ...

  5. Planck 2015 results: II. Low Frequency Instrument data processings

    DEFF Research Database (Denmark)

    Ade, P. A R; Aghanim, N.; Ashdown, M.

    2016-01-01

    We present an updated description of the Planck Low Frequency Instrument (LFI) data processing pipeline, associated with the 2015 data release. We point out the places where our results and methods have remained unchanged since the 2013 paper and we highlight the changes made for the 2015 release...

  6. Olfar: orbiting low frequency antenna for radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan; Boonstra, Albert Jan

    2009-01-01

    New interesting astronomical science drivers for very low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high energy cosmic rays. However, astronomical observations with Earth-bound radio telescopes at very

  7. OLFAR - Orbiting low frequency antennas for radio astronomy

    NARCIS (Netherlands)

    Bentum, Marinus Jan

    2013-01-01

    One of the last unexplored frequency ranges in radio astronomy is the frequency band below 30 MHz. New interesting astronomical science drivers for low frequency radio astronomy have emerged, ranging from studies of the astronomical dark ages, the epoch of reionization, exoplanets, to ultra-high

  8. Low-frequency active surface plasmon optics on semiconductors

    NARCIS (Netherlands)

    Gómez Rivas, J.; Kuttge, M.; Kurz, H.; Haring Bolivar, P.; Sánchez-Gil, J.A.

    2006-01-01

    A major challenge in the development of surface plasmon optics or plasmonics is the active control of the propagation of surface plasmon polaritons (SPPs). Here, we demonstrate the feasibility of low-frequency active plasmonics using semiconductors. We show experimentally that the Bragg scattering

  9. Twenty-two cases of low-frequency noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2006-01-01

    In Denmark and in other industrialized countries there are cases where people complain about annoying low-frequency or infrasonic noise in their homes. Besides noise annoyance people often report other adverse effects such as insomnia, headache, lack of concentration etc. In many cases the noise...

  10. Fabrication of SU-8 low frequency electrostatic energy harvester

    KAUST Repository

    Ramadan, Khaled S.; Foulds, Ian G.

    2011-01-01

    A 1500μm × 1500μm × 150μm out-of-plane, gap closing, electrostatic energy harvester is designed and fabricated to harvest low-frequency ambient vibrations. SU-8 is used to fabricate the proof mass (1200μm × 1200μm × 150μm) and the 5 m springs

  11. Low-frequency plasmons in metallic carbon nanotubes

    International Nuclear Information System (INIS)

    Lin, M.F.; Chuu, D.S.; Shung, K.W.

    1997-01-01

    A metallic carbon nanotube could exhibit a low-frequency plasmon, while a semiconducting carbon nanotube or a graphite layer could not. This plasmon is due to the free carriers in the linear subbands intersecting at the Fermi level. The low-frequency plasmon, which corresponds to the vanishing transferred angular momentum, belongs to an acoustic plasmon. For a smaller metallic nanotube, it could exist at larger transferred momenta, and its frequency is higher. Such a plasmon behaves as that in a one-dimensional electron gas (EGS). However, it is very different from the π plasmons in all carbon nanotubes. Intertube Coulomb interactions in a metallic multishell nanotube and a metallic nanotube bundle have been included. They have a strong effect on the low-frequency plasmon. The intertube coupling among coaxial nanotubes markedly modifies the acoustic plasmons in separate metallic nanotubes. When metallic carbon nanotubes are packed in the bundle form, the low-frequency plasmon would change into an optical plasmon, and behave like that in a three-dimensional EGS. Experimental measurements could be used to distinguish metallic and semiconducting carbon nanotubes. copyright 1997 The American Physical Society

  12. Low frequency interference between short synchrotron radiation sources

    Directory of Open Access Journals (Sweden)

    F. Méot

    2001-06-01

    Full Text Available A recently developed analytical formalism describing low frequency far-field synchrotron radiation (SR is applied to the calculation of spectral angular radiation densities from interfering short sources (edge, short magnet. This is illustrated by analytical calculation of synchrotron radiation from various assemblies of short dipoles, including an “isolated” highest density infrared SR source.

  13. Preamplifier with ultra low frequency cutoff for infrasonic condenser microphone

    DEFF Research Database (Denmark)

    Kinnerup, Rasmus Trock; Marbjerg, Kresten; Rasmussen, Per

    2012-01-01

    low frequencies becomes a challenge. The electric preamplifier presented in this paper together with a prepolarized condenser microphone form a measurement system. The developed preamplifier connects the microphone signal directly to the input of an operational amplifier with ultra high input...

  14. Spontaneous low-frequency oscillations in cerebral vessels

    DEFF Research Database (Denmark)

    Schytz, Henrik W; Hansson, Andreas; Phillip, Dorte

    2010-01-01

    ). Analysis of CA by measurement of spontaneous oscillations in the low-frequency spectrum in cerebral vessels might be a useful tool for assessing risk and investigating different treatment strategies in carotid artery disease (CAD) and stroke. We reviewed studies exploring spontaneous oscillations...

  15. LOMEGA: a low frequency, field implicit method for plasma simulation

    International Nuclear Information System (INIS)

    Barnes, D.C.; Kamimura, T.

    1982-04-01

    Field implicit methods for low frequency plasma simulation by the LOMEGA (Low OMEGA) codes are described. These implicit field methods may be combined with particle pushing algorithms using either Lorentz force or guiding center force models to study two-dimensional, magnetized, electrostatic plasmas. Numerical results for ωsub(e)deltat>>1 are described. (author)

  16. Low-frequency noise in planar Hall effect bridge sensors

    DEFF Research Database (Denmark)

    Persson, Anders; Bejhedb, R.S.; Bejhed, R.S.

    2011-01-01

    The low-frequency characteristics of planar Hall effect bridge sensors are investigated as function of the sensor bias current and the applied magnetic field. The noise spectra reveal a Johnson-like spectrum at high frequencies, and a 1/f-like excess noise spectrum at lower frequencies, with a kn...

  17. Electrodialytic soil remediation enhanced by low frequency pulse current

    DEFF Research Database (Denmark)

    Sun, Tian R.; Ottosen, Lisbeth M.; Mortensen, John

    2013-01-01

    The effect of low frequency pulse current on decreasing the polarization and energy consumption during the process of electrodialytic soil remediation was investigated in the present work. The results indicated that the transportation of cations through the cation exchange membrane was the rate...

  18. A very brief description of LOFAR the Low Frequency Array

    NARCIS (Netherlands)

    Falcke, H.D.; van Haarlem, M.P.; de Bruyn, A.G.; Braun, R.; Röttgering, H.J.A.; Stappers, B.W.; Boland, W.H.W.M.; Butcher, H.R.; de Geus, E.J.; Koopmans, L.V.; Fender, R.P.; Kuijpers, H.J.M.E.; Miley, G.K.; Schilizzi, R.T.; Vogt, C.; Wijers, R.A.M.J.; Wise, M.; Brouw, W.N.; Hamaker, J.P.; Noordam, J.E.; Oosterloo, T.; Bähren, L.; Brentjens, M.A.; Wijnholds, S.J.; Bregman, J.D.; van Cappellen, W.A.; Gunst, A.W.; Kant, G.W.; Reitsma, J.; van der Schaaf, K.; de Vos, C.M.

    2007-01-01

    LOFAR (Low Frequency Array) is an innovative radio telescope optimized for the frequency range 30 240 MHz. The telescope is realized as a phased aperture array without any moving parts. Digital beam forming allows the telescope to point to any part of the sky within a second. Transient buffering

  19. A very brief description of LOFAR - the Low Frequency Array

    NARCIS (Netherlands)

    Falcke, H.; Haarlem, M.P. van; Wijnholds, S.J.; Bregman, J.D.; Cappellen, W.A.; Gunst, A.W.; Kant, G.W.; Reitsma, J.; Schaaf, K. van der; Vos, C.M. de

    2006-01-01

    Abstract: LOFAR (Low Frequency Array) is an innovative radio telescope optimized for the frequency range 30-240 MHz. The telescope is realized as a phased aperture array without any moving parts. Digital beam forming allows the telescope to point to any part of the sky within a second. Transient

  20. A very brief description of LOFAR -- the Low Frequency Array

    NARCIS (Netherlands)

    Falcke, H.D.E.; Haarlem, M.P. van; Bruyn, A.G. de; Braun, R.; Röttgering, H.J.A.; Stappers, B.; Boland, W.H.W.M.; Butcher, H.R.; Geus, E.J. de; Koopmans, L.V.; Fender, R.P.; Kuijpers, H.J.M.E.; Miley, G.K.; Schilizzi, R.T.; Vogt, C.; Wijers, R.A.M.J.; Wise, M.W.; Brouw, W.N.; Hamaker, J.P.; Noordam, J.E.; Oosterloo, T.; Bähren, L.; Brentjens, M.A.; Wijnholds, S.J.; Bregman, J.D.; Cappellen, W.A. van; Gunst, A.W.; Kant, G.W.; Reitsma, J.; Schaaf, K. van der; Vos, C.M. de

    2007-01-01

    LOFAR (Low Frequency Array) is an innovative radio telescope optimized for the frequency range 30-240 MHz. The telescope is realized as a phased aperture array without any moving parts. Digital beam forming allows the telescope to point to any part of the sky within a second. Transient buffering

  1. Benchmarking of TALE- and CRISPR/dCas9-Based Transcriptional Regulators in Mammalian Cells for the Construction of Synthetic Genetic Circuits.

    Science.gov (United States)

    Lebar, Tina; Jerala, Roman

    2016-10-21

    Transcriptional activator-like effector (TALE)- and CRISPR/Cas9-based designable recognition domains represent a technological breakthrough not only for genome editing but also for building designed genetic circuits. Both platforms are able to target rarely occurring DNA segments, even within complex genomes. TALE and dCas9 domains, genetically fused to transcriptional regulatory domains, can be used for the construction of engineered logic circuits. Here we benchmarked the performance of the two platforms, targeting the same DNA sequences, to compare their advantages for the construction of designed circuits in mammalian cells. Optimal targeting strands for repression and activation of dCas9-based designed transcription factors were identified; both platforms exhibited good orthogonality and were used to construct functionally complete NOR gates. Although the CRISPR/dCas9 system is clearly easier to construct, TALE-based activators were significantly stronger, and the TALE-based platform performed better, especially for the construction of layered circuits.

  2. Measurement of low-frequency noise in rooms

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin

    2006-01-01

    Measurement of low-frequency noise in rooms is problematic due to standing wave patterns. The spatial variation in the sound pressure level can typically be as much as 20-30 dB. For assessment of annoyance from low-frequency noise in dwellings, it is important to measure a level close...... rooms. The sound pressure level was measured 1) in three-dimensional corners and 2) according to current Swedish and Danish measurement methods. Furthermore, the entire sound pressure distributions were measured by scanning. The Swedish and Danish measurement methods include a corner measurement...... to the highest level present in a room, rather than a room average level. In order to ensure representative noise measurements, different positions were investigated based on theoretical considerations and observations from numerical room simulations. In addition measurements were performed in three different...

  3. Low-frequency waves in magnetized dusty plasmas revisited

    International Nuclear Information System (INIS)

    Salimullah, M.; Khan, M.I.; Amin, R.; Nitta, H.; Shukla, P.K.

    2005-10-01

    The general dispersion relation of any wave is examined for low-frequency waves in a homogeneous dusty plasma in the presence of an external magnetic field. The low-frequency parallel electromagnetic wave propagates as a dust cyclotron wave or a whistler in the frequency range below the ion cyclotron frequency. In the same frequency regime, the transverse electromagnetic magnetosonic wave is modified with a cutoff frequency at the dust-ion lower-hybrid frequency, which reduces to the usual magnetosonic wave in absence of the dust. Electrostatic dust-lower- hybrid mode is also recovered propagating nearly perpendicular to the magnetic field with finite ion temperature and cold dust particles which for strong ion-Larmor radius effect reduces to the usual dust-acoustic wave driven by the ion pressure. (author)

  4. A procedure for the assessment of low frequency noise complaints.

    Science.gov (United States)

    Moorhouse, Andy T; Waddington, David C; Adams, Mags D

    2009-09-01

    The development and application of a procedure for the assessment of low frequency noise (LFN) complaints are described. The development of the assessment method included laboratory tests addressing low frequency hearing threshold and the effect on acceptability of fluctuation, and field measurements complemented with interview-based questionnaires. Environmental health departments then conducted a series of six trials with genuine "live" LFN complaints to test the workability and usefulness of the procedure. The procedure includes guidance notes and a pro-forma report with step-by-step instructions. It does not provide a prescriptive indicator of nuisance but rather gives a systematic procedure to help environmental health practitioners to form their own opinion. Examples of field measurements and application of the procedure are presented. The procedure and examples are likely to be of particular interest to environmental health practitioners involved in the assessment of LFN complaints.

  5. Low-Frequency Waves in HF Heating of the Ionosphere

    Science.gov (United States)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  6. Low-frequency computational electromagnetics for antenna analysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, E.K. (Los Alamos National Lab., NM (USA)); Burke, G.J. (Lawrence Livermore National Lab., CA (USA))

    1991-01-01

    An overview of low-frequency, computational methods for modeling the electromagnetic characteristics of antennas is presented here. The article presents a brief analytical background, and summarizes the essential ingredients of the method of moments, for numerically solving low-frequency antenna problems. Some extensions to the basic models of perfectly conducting objects in free space are also summarized, followed by a consideration of some of the same computational issues that affect model accuracy, efficiency and utility. A variety of representative computations are then presented to illustrate various modeling aspects and capabilities that are currently available. A fairly extensive bibliography is included to suggest further reference material to the reader. 90 refs., 27 figs.

  7. Cross correlation measurement of low frequency conductivity noise

    Science.gov (United States)

    Jain, Aditya Kumar; Nigudkar, Himanshu; Chakraborti, Himadri; Udupa, Aditi; Gupta, Kantimay Das

    2018-04-01

    In order to study the low frequency noise(1/f noise)an experimental technique based on cross correlation of two channels is presented. In this method the device under test (DUT)is connected to the two independently powered preamplifiers in parallel. The amplified signals from the two preamplifiers are fed to two channels of a digitizer. Subsequent data processing largelyeliminates the uncorrelated noise of the two channels. This method is tested for various commercial carbon/metal film resistors by measuring equilibrium thermal noise (4kBTR). The method is then modified to study the non-equilibrium low frequency noise of heterostructure samples using fiveprobe configuration. Five contact probes allow two parts of the sample to become two arms of a balanced bridge. This configuration helps in suppressing the effect of power supply fluctuations, bath temperature fluctuations and contact resistances.

  8. Fabrication of SU-8 low frequency electrostatic energy harvester

    KAUST Repository

    Ramadan, Khaled S.

    2011-11-01

    A 1500μm × 1500μm × 150μm out-of-plane, gap closing, electrostatic energy harvester is designed and fabricated to harvest low-frequency ambient vibrations. SU-8 is used to fabricate the proof mass (1200μm × 1200μm × 150μm) and the 5 m springs. Different harvesters were designed to harvest at 50, 75 and 110 Hz. At 110 Hz, Simulations show that with an input vibration of 10 μm amplitude at the frequency of resonance of the structure, the energy harvester should generate an average output power density of 0.032μW/mm3. This is the most area-efficient low-frequency electrostatic harvester to-date. © 2011 IEEE.

  9. Sampling methods for low-frequency electromagnetic imaging

    International Nuclear Information System (INIS)

    Gebauer, Bastian; Hanke, Martin; Schneider, Christoph

    2008-01-01

    For the detection of hidden objects by low-frequency electromagnetic imaging the linear sampling method works remarkably well despite the fact that the rigorous mathematical justification is still incomplete. In this work, we give an explanation for this good performance by showing that in the low-frequency limit the measurement operator fulfils the assumptions for the fully justified variant of the linear sampling method, the so-called factorization method. We also show how the method has to be modified in the physically relevant case of electromagnetic imaging with divergence-free currents. We present numerical results to illustrate our findings, and to show that similar performance can be expected for the case of conducting objects and layered backgrounds

  10. Extremely low frequency magnetic fields and health risks

    Directory of Open Access Journals (Sweden)

    M.I. Buzdugan

    2009-10-01

    Full Text Available In a world abounding in artificially created electromagnetic fields, we consider that a new approach regarding their possible harmful effects on living beings becomes mandatory. The paper reviews briefly the results of some epidemiological studies, the ICNIRP (International Committee on Non-Ionizing Radiation Protection Guidelines and the latest document of the SCENIHR (an organism of the European Commission regarding extremely low frequency (ELF magnetic fields. We are convinced that the best conduct that might be adopted on this matter is the policy of the prudential avoidance. Several examples of possible harmful effects determined by extremely low frequency magnetic fields dedicated to building services engineering in residences are presented, along with several methods of mitigating them.

  11. A kinetic-MHD model for low frequency phenomena

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter τ and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented

  12. Determination of low-frequency vibrational states in glasses

    International Nuclear Information System (INIS)

    Ahmad, N.; Hasan, M.M.

    1996-01-01

    It is shown that density of low frequency (v < 1 THz) vibrational states g(v) in glasses can be determined from heat capacities measured at low temperature. These g(v) are identical to those determined from inelastic neutron scattering studies. The form of g(v) is non quadratic and therefore the Debye density of states may not be used to interpret the Raman, and infrared absorption in glasses. (author)

  13. Study on low frequency probe characterization for concrete application

    International Nuclear Information System (INIS)

    Amry Amin Abas; Mohd Pauzi Ismail

    2002-01-01

    Ultrasonic testing has been widely used in metal and non-metal material. For non-metal material such as concrete, a probe emitting low frequency ultrasonic wave is applied. This paper describes the comparison between three custom made probes using same design and piezoelectric crystal. The only difference is the backing material, which comprise of three different materials. Characterization of each transducer is compared in order to understand the effects of backing material in the probe. (Author)

  14. Double streamer phenomena in atmospheric pressure low frequency corona plasma

    International Nuclear Information System (INIS)

    Kim, Dan Bee; Jung, H.; Gweon, B.; Choe, Wonho

    2010-01-01

    Time-resolved images of an atmospheric pressure corona discharge, generated at 50 kHz in a single pin electrode source, show unique positive and negative corona discharge features: a streamer for the positive period and a glow for the negative period. However, unlike in previous reports of dc pulse and low frequency corona discharges, multistreamers were observed at the initial time stage of the positive corona. A possible physical mechanism for the multistreamers is suggested.

  15. On low-frequency whistler propagation in ionosphere

    International Nuclear Information System (INIS)

    Mazur, V.A.

    1988-01-01

    The propagation along the Earth surface of an electromagnetic wave with frequency below the ion gyrofrequency is theoretically investigated. In Hall layer of the ionosphere this wave is the whistler mode. It is shown that - contrary to previous works - Ohmic dissipation makes impossible the long-distance propagation of low-frequency whistlers. A many-layer model of the medium is used. The geomagnetic field is considered inclined. The eigen modes and evolution of the initial perturbation are considered

  16. Low-frequency electromagnetic field in a Wigner crystal

    OpenAIRE

    Stupka, Anton

    2016-01-01

    Long-wave low-frequency oscillations are described in a Wigner crystal by generalization of the reverse continuum model for the case of electronic lattice. The internal self-consistent long-wave electromagnetic field is used to describe the collective motions in the system. The eigenvectors and eigenvalues of the obtained system of equations are derived. The velocities of longitudinal and transversal sound waves are found.

  17. The reduction of low frequency fluctuations in RFP experiments

    International Nuclear Information System (INIS)

    Phillips, J.A.; Baker, D.A.; Gribble, R.F.

    1998-01-01

    The low frequency fluctuations seen in RFP experiments are found to be correlated with changes in the toroidal flux measured by diamagnetic loops surrounding the discharge. The correlation of the onset of impurity radiation and x-rays with the crash seen in experiments is caused by plasma bombarding the metal liner associated with this loss of flux. Efforts should be made to design improved stabilizing shells that will reduce the loss of flux and give improved RFP energy confinement times

  18. Galactic foreground science: Faraday Tomography at low frequencies

    Science.gov (United States)

    Haverkorn, Marijke

    2018-05-01

    This contribution describes how low-frequency radio-spectropolarimetric imaging as done for Epoch of Reionization detection is used to investigate the nearby Galactic interstellar medium. The method of Faraday Tomography allows disentangling of every line of sight into various components in Faraday depth, which is a proxy for density-weighted magnetic field. I discuss instrumental biases and side effects of this method, and early results it has yielded.

  19. Charge density fluctuation of low frequency in a dusty plasma

    Institute of Scientific and Technical Information of China (English)

    李芳; 吕保维; O.Havnes

    1997-01-01

    The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.

  20. Low-frequency noise from large wind turbines

    DEFF Research Database (Denmark)

    Møller, Henrik; Pedersen, Christian Sejer

    2011-01-01

    As wind turbines get larger, worries have emerged that the turbine noise would move down in frequency and that the low-frequency noise would cause annoyance for the neighbors. The noise emission from 48 wind turbines with nominal electric power up to 3.6 MW is analyzed and discussed. The relative...... amount of low-frequency noise is higher for large turbines (2.3–3.6 MW) than for small turbines (≤ 2 MW), and the difference is statistically significant. The difference can also be expressed as a downward shift of the spectrum of approximately one-third of an octave. A further shift of similar size...... is suggested for future turbines in the 10-MW range. Due to the air absorption, the higher low-frequency content becomes even more pronounced, when sound pressure levels in relevant neighbor distances are considered. Even when A-weighted levels are considered, a substantial part of the noise is at low...

  1. Relativistic runaway breakdown in low-frequency radio

    Science.gov (United States)

    Füllekrug, Martin; Roussel-Dupré, Robert; Symbalisty, Eugene M. D.; Chanrion, Olivier; Odzimek, Anna; van der Velde, Oscar; Neubert, Torsten

    2010-01-01

    The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from ˜10 to 300 kHz at a distance of ˜800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of ˜550 km. The measured broadband pulses occur ˜4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ˜50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ˜4.5 ms and ˜3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.

  2. Kinetic Scale Structure of Low-frequency Waves and Fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States); Araneda, Jaime A., E-mail: rlopezh@umd.edu, E-mail: yoonp@umd.edu [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile)

    2017-08-10

    The dissipation of solar wind turbulence at kinetic scales is believed to be important for the heating of the corona and for accelerating the wind. The linear Vlasov kinetic theory is a useful tool for identifying various wave modes, including kinetic Alfvén, fast magnetosonic/whistler, and ion-acoustic (or kinetic slow), and their possible roles in the dissipation. However, the kinetic mode structure in the vicinity of ion-cyclotron modes is not clearly understood. The present paper aims to further elucidate the structure of these low-frequency waves by introducing discrete particle effects through hybrid simulations and Klimontovich formalism of spontaneous emission theory. The theory and simulation of spontaneously emitted low-frequency fluctuations are employed to identify and distinguish the detailed mode structures associated with ion-Bernstein modes versus quasi-modes. The spontaneous emission theory and simulation also confirm the findings of the Vlasov theory in that the kinetic Alfvén waves can be defined over a wide range of frequencies, including the proton cyclotron frequency and its harmonics, especially for high-beta plasmas. This implies that these low-frequency modes may play predominant roles even in the fully kinetic description of kinetic scale turbulence and dissipation despite the fact that cyclotron harmonic and Bernstein modes may also play important roles in wave–particle interactions.

  3. Solar observations with a low frequency radio telescope

    Science.gov (United States)

    Myserlis, I.; Seiradakis, J.; Dogramatzidis, M.

    2012-01-01

    We have set up a low frequency radio monitoring station for solar bursts at the Observatory of the Aristotle University in Thessaloniki. The station consists of a dual dipole phased array, a radio receiver and a dedicated computer with the necessary software installed. The constructed radio receiver is based on NASA's Radio Jove project. It operates continuously, since July 2010, at 20.1 MHz (close to the long-wavelength ionospheric cut-off of the radio window) with a narrow bandwidth (~5 kHz). The system is properly calibrated, so that the recorded data are expressed in antenna temperature. Despite the high interference level of an urban region like Thessaloniki (strong broadcasting shortwave radio stations, periodic experimental signals, CBs, etc), we have detected several low frequency solar radio bursts and correlated them with solar flares, X-ray events and other low frequency solar observations. The received signal is monitored in ordinary ASCII format and as audio signal, in order to investigate and exclude man-made radio interference. In order to exclude narrow band interference and calculate the spectral indices of the observed events, a second monitoring station, working at 36 MHz, is under construction at the village of Nikiforos near the town of Drama, about 130 km away of Thessaloniki. Finally, we plan to construct a third monitoring station at 58 MHz, in Thessaloniki. This frequency was revealed to be relatively free of interference, after a thorough investigation of the region.

  4. Adaptive beamforming for low frequency SAS imagery and bathymetry

    NARCIS (Netherlands)

    Hayes, M.P.; Hunter, A.J.

    2012-01-01

    Synthetic aperture side-scan sonar (SAS) is a mature technology for high-resolution sea floor imaging [1]. Interferometric synthetic aperture sonars (InSAS) use additional hydrophones in a vertical array for bathymetric mapping [2]. This has created high-resolution bathymetry in deep water

  5. Low-frequency electromagnetic iirradiation treatment of grain in harvester

    Directory of Open Access Journals (Sweden)

    E. V. Zhalnin

    2016-01-01

    Full Text Available Treatment of crop seeds by low-frequency electromagnetic field contributes to obtaining high and stable yields. After this treatment in a laboratory environment crop production can increase from 15 to 40 percent. To research an effect of magnetic field on a seed material in the field we developed technological design for a seeds treatment in a combine harvester «Enisey-1200 NМ». Three modules of low frequency electromagnetic waves source were mounted in the design of transporting working elements from the threshing apparatus to the grain tank for the impact they have on the moving of freshly threshed grain portion. Conditions of magnetization of seeds vere varied. Influence of modes of grain treatment at threshing of spring wheat in a harvester on the effectiveness of the stimulation vere researched. A comparative laboratory analysis of quality of grain, magnetic directly in the harvester, and 3 months after thrashing showed that the new technology allows to increase sowing qualities of grain. Electromagnetic irradiation of grain in a harvester increases the germination of seeds from 6 to 20 percent, germination energy about 30 percent, also raises the weight of the plant parts and more qualitatively clears seeds of a peel that promotes best storage. Regime of magnetization determines a germination ability and readiness og seeds. The most pronounced effect of the grain magnetization is observed under irradiation becomes apparent for more than 9 minutes. Irradiation of grain placed in the hopper of the combine is more effective. The optimum parameters of electromagnetic radiation is a frequency equaled to 16 Hz, the value of magnetic induction of 6 mT. We proposed to extend the technology field stimulation of seeds with low-frequency magnetic field in order to increase germination and yield of different crops. An application of the proposed design of the electromagnetic module for any model and size of modern types of grain and rice harvesters

  6. Planck 2013 results. II. The Low Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.

    2013-01-01

    We describe the data processing pipeline of the Planck Low Frequency Instrument (LFI) data processing centre (DPC) to create and characterize full-sky maps based on the first 15.5 months of operations at 30, 44, and 70 GHz. In particular, we discuss the various steps involved in reducing the data......) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated noise. Noise covariance matrices, required to compute statistical uncertainties on LFI and Planck products, are also produced. Main beams are estimated down to the approximate to-20 dB level...

  7. Low-frequency electrostatic waves in the ionospheric E region

    Energy Technology Data Exchange (ETDEWEB)

    Krane, B [NDRE, Box 25, N-2027 Kjeller (Norway); Pecseli, H L; Sato, H [Physics Department, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo (Norway); Trulsen, J [Institute of Theoretical Astrophysics, University of Oslo, PO Box 1029 Blindern, N-0315 Oslo (Norway); Wernik, A W, E-mail: hans.pecseli@fys.uio.n [Space Research Center, Polish Academy of Sciences, ul. Bartycka 18a, 00-716 Warsaw (Poland)

    2010-06-15

    Low-frequency electrostatic waves in the ionospheric E region are studied by analyzing data obtained by instrumented rockets. We identify the origin of the enhanced fluctuation level to be the Farley-Buneman instability. The basic information on instability, such as altitude varying spectra and speed of propagation are obtained. Comparison of power spectra for the fluctuations in plasma density and electrostatic potential, respectively, provides information on the electron dynamics. A bispectral analysis gives indications of phase-coherent couplings within the wave spectrum, while higher order structure functions indicate some intermittent features of the turbulence.

  8. Low frequency phase signal measurement with high frequency squeezing

    OpenAIRE

    Zhai, Zehui; Gao, Jiangrui

    2011-01-01

    We calculate the utility of high-frequency squeezed-state enhanced two-frequency interferometry for low-frequency phase measurement. To use the high-frequency sidebands of the squeezed light, a two-frequency intense laser is used in the interferometry instead of a single-frequency laser as usual. We find that the readout signal can be contaminated by the high-frequency phase vibration, but this is easy to check and avoid. A proof-of-principle experiment is in the reach of modern quantum optic...

  9. Low-frequency oscillations at high density in JFT-2

    International Nuclear Information System (INIS)

    Maeno, Masaki; Katagiri, Masaki; Suzuki, Norio; Fujisawa, Noboru

    1977-12-01

    Low-frequency oscillations in a plasma were measured with magnetic probes and Si surface-barrier detectors, and behaviour of the high density plasmas was studied. The plasma current profile in the phase of decreasing density after the interruption of gas input is more peaked than during gas input. The introduction of hydrogen during a discharge results in a reduction of the impurities flux. The increase of density by fast gas input is limited with a negative voltage spike. Immediately before a negative voltage spike, oscillations of m=1,2 grow, leading to the spike. (auth.)

  10. High-efficiency ventilated metamaterial absorber at low frequency

    Science.gov (United States)

    Wu, Xiaoxiao; Au-Yeung, Ka Yan; Li, Xin; Roberts, Robert Christopher; Tian, Jingxuan; Hu, Chuandeng; Huang, Yingzhou; Wang, Shuxia; Yang, Zhiyu; Wen, Weijia

    2018-03-01

    We demonstrate a ventilated metamaterial absorber operating at low frequency (90%) has been achieved in both simulations and experiments. This high-efficiency absorption under the ventilation condition originates from the weak coupling of two identical split tube resonators constituting the absorber, which leads to the hybridization of the degenerate eigenmodes and breaks the absorption upper limit of 50% for conventional transmissive symmetric acoustic absorbers. The absorber can also be extended to an array and work in free space. The absorber should have potential applications in acoustic engineering where both noise reduction and ventilation are required.

  11. Fetal exposure to low frequency electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cech, R; Leitgeb, N; Pediaditis, M [Institute of Clinical Engineering, Graz University of Technology, Inffeldgasse 18, 8010 Graz (Austria)

    2007-02-21

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  12. Fetal exposure to low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Cech, R; Leitgeb, N; Pediaditis, M

    2007-01-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary

  13. Low-frequency fluid waves in fractures and pipes

    Energy Technology Data Exchange (ETDEWEB)

    Korneev, Valeri

    2010-09-01

    Low-frequency analytical solutions have been obtained for phase velocities of symmetrical fluid waves within both an infinite fracture and a pipe filled with a viscous fluid. Three different fluid wave regimes can exist in such objects, depending on the various combinations of parameters, such as fluid density, fluid viscosity, walls shear modulus, channel thickness, and frequency. Equations for velocities of all these regimes have explicit forms and are verified by comparisons with the exact solutions. The dominant role of fractures in rock permeability at field scales and the strong amplitude and frequency effects of Stoneley guided waves suggest the importance of including these wave effects into poroelastic theories.

  14. MASER: Measuring, Analysing, Simulating low frequency Radio Emissions.

    Science.gov (United States)

    Cecconi, B.; Le Sidaner, P.; Savalle, R.; Bonnin, X.; Zarka, P. M.; Louis, C.; Coffre, A.; Lamy, L.; Denis, L.; Griessmeier, J. M.; Faden, J.; Piker, C.; André, N.; Genot, V. N.; Erard, S.; King, T. A.; Mafi, J. N.; Sharlow, M.; Sky, J.; Demleitner, M.

    2017-12-01

    The MASER (Measuring, Analysing and Simulating Radio Emissions) project provides a comprehensive infrastructure dedicated to low frequency radio emissions (typically Radioastronomie de Nançay and the CDPP deep archive. These datasets include Cassini/RPWS, STEREO/Waves, WIND/Waves, Ulysses/URAP, ISEE3/SBH, Voyager/PRA, Nançay Decameter Array (Routine, NewRoutine, JunoN), RadioJove archive, swedish Viking mission, Interball/POLRAD... MASER also includes a Python software library for reading raw data.

  15. Planck early results. V. The Low Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Poutanen, T.; Lähteenmäki, A.; León-Tavares, J.

    2011-01-01

    We describe the processing of data from the Low Frequency Instrument (LFI) used in production of the Planck Early Release Compact Source Catalogue (ERCSC). In particular, we discuss the steps involved in reducing the data from telemetry packets to cleaned, calibrated, time-ordered data (TOD) and ...... statistical uncertainties on LFI and Planck products are also produced. Main beams are estimated down to the ≈ -10dB level using Jupiter transits, which are also used for geometrical calibration of the focal plane. © ESO, 2011....

  16. Sensitivity of the Low Frequency Facility experiment around 10 Hz

    International Nuclear Information System (INIS)

    Di Virgilio, A.; Braccini, S.; Ballardin, G.; Bradaschia, C.; Cella, G.; Cuoco, E.; Dattilo, V.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Giazotto, A.; Gennai, A.; Holloway, L.H.; La Penna, P.; Losurdo, G.; Paoletti, F.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Porzio, A.; Puppo, P.; Raffaelli, F.; Rapagnani, P.; Ricci, F.; Ricciardi, J.; Solimeno, S.; Stanga, R.; Vetrano, F.; Zhang, Z.

    2004-01-01

    The reduction of thermal noise is a fundamental issue for the improvement of future gravitational wave antennas. The main purpose of the Low Frequency Facility (LFF) is to study pendulum thermal noise in the region of 10 Hz. Data at the LFF has been taking since the beginning of 2003 and has been analyzed in order to thoroughly understand the region around 10 Hz. Above 7 Hz, the displacement noise floor is at the level of 10 -14 m/√Hz, decreasing with frequency approximately as 1/ν. Seismic noise contamination is not observed above a few Hz

  17. Dielectric response of KCN crystals at ultra-low frequencies

    OpenAIRE

    Ziemath, Ervino C.; Aegerter, Michel A.; Slaets, J.

    1987-01-01

    We describe an ultra low frequency equipment employing programmable digital technique. The system is used to measure the dielectric parameters et, en and tg d or pure KCN crystals as a function of temperature in the frequency range 10-2 Hz to 40 Hz. The relaxation time of the Cn dipoles presents a classical temperature activated reorientation behaviour characterized by an Arrhenius law t=to exp (U/kT) with t0=7,26 x 10-15 s and U = 0,147 eV.

  18. Sensitivity of the Low Frequency Facility experiment around 10 Hz

    Energy Technology Data Exchange (ETDEWEB)

    Di Virgilio, A.; Braccini, S.; Ballardin, G.; Bradaschia, C.; Cella, G.; Cuoco, E.; Dattilo, V.; Ferrante, I.; Fidecaro, F.; Frasconi, F.; Giazotto, A.; Gennai, A.; Holloway, L.H.; La Penna, P.; Losurdo, G.; Paoletti, F.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Porzio, A.; Puppo, P.; Raffaelli, F.; Rapagnani, P.; Ricci, F.; Ricciardi, J.; Solimeno, S.; Stanga, R.; Vetrano, F.; Zhang, Z

    2004-02-23

    The reduction of thermal noise is a fundamental issue for the improvement of future gravitational wave antennas. The main purpose of the Low Frequency Facility (LFF) is to study pendulum thermal noise in the region of 10 Hz. Data at the LFF has been taking since the beginning of 2003 and has been analyzed in order to thoroughly understand the region around 10 Hz. Above 7 Hz, the displacement noise floor is at the level of 10{sup -14} m/{radical}Hz, decreasing with frequency approximately as 1/{nu}. Seismic noise contamination is not observed above a few Hz.

  19. Planck 2015 results. II. Low Frequency Instrument data processing

    CERN Document Server

    Ade, P.A.R.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Basak, S.; Battaglia, P.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J.J.; Bonaldi, A.; Bonavera, L.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Bucher, M.; Burigana, C.; Butler, R.C.; Calabrese, E.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Chamballu, A.; Christensen, P.R.; Colombi, S.; Colombo, L.P.L.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T.A.; Eriksen, H.K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschet, C.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F.K.; Hanson, D.; Harrison, D.L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, A.H.; Jaffe, T.R.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T.S.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C.R.; Leahy, J.P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Morisset, N.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J.A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; Novikov, D.; Novikov, I.; Oppermann, N.; Paci, F.; Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T.J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J.P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Romelli, E.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J.A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M.D.; Shellard, E.P.S.; Spencer, L.D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J.A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L.A.; Wandelt, B.D.; Watson, R.; Wehus, I.K.; Wilkinson, A.; Yvon, D.; Zacchei, A.

    2016-01-01

    We present an updated description of the Planck Low Frequency (LFI) data processing pipeline, associated with the 2015 data release. We point out the places in which our results and methods have remained unchanged since the 2013 paper and we highlight the changes made for the 2015 release, describing the products (especially timelines) and the ways in which they were obtained. We demonstrate that the pipeline is self-consistent (principally based on simulations) and report all null tests. We refer to other related papers where more detailed descriptions on the LFI data processing pipeline may be found if needed.

  20. An analysis of low frequency noise from large wind turbines

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik

    2010-01-01

    As wind turbines get larger, worries have emerged, that the noise emitted by the turbines would move down in frequency, and that the contents of low-frequency noise would be enough to cause significant annoyance for the neighbors. The sound emission from 48 wind turbines with nominal electric power......-third-octave-band spectra shows that the relative noise emission is higher in the 63-250 Hz frequency range from turbines above 2 MW than from smaller turbines. The observations confirm a downward shift of the spectrum....

  1. Low frequency of paleoviral infiltration across the avian phylogeny

    DEFF Research Database (Denmark)

    Cui, Jie; Zhao, Wei; Huang, Zhiyong

    2014-01-01

    Background: Mammalian genomes commonly harbor endogenous viral elements. Due to a lack of comparable genome-scale sequence data, far less is known about endogenous viral elements in avian species, even though their small genomes may enable important insights into the patterns and processes of end...

  2. Low frequency RFQ linacs for heavy ion fusion

    International Nuclear Information System (INIS)

    Moretti, A.; Watson, J.M.; Martin, R.L.; Lari, R.J.; Stockley, R.L.

    1982-01-01

    Low frequency, radio frequency quadrupole (RFQ) structures are under study at Argonne National Laboratory (ANL) as the low-velocity portion of an rf linac driver for heavy ion inertial confinement fusion. Besides offering a direct comparison with the present ANL front end, it would provide a second low-velocity Xe +1 linac for funneling experiments at 22.9 MeV. Heavy ion RFQ accelerators are characterized by their low rf operating frequency of about 10 MHz. The large size of a manifold-fed four-vane, 10 MHz RFQ resonator structure (about 6 m in diameter) makes it unacceptable for heavy ions; therefore, alternate structures are under study at Argonne. The structures under study are: (1) a Wideroe-type structure with external stub lines, (2) a Wideroe-type structure with the stub lines internal to the structure, (3) a split coaxial line resonator with modulated vanes, and (4) a interdigital line resonator with modulated cylindrical rods. The split coaxial line resonator seems best at this low frequency. It is compact and very efficient. About 15.5 m of linac structure excited with 560 kW of rf power is sufficient to accelerate 30 mA of Xe +1 with 97% transmission efficiency from 250 keV to 3 MeV

  3. Passive Super-Low Frequency electromagnetic prospecting technique

    Science.gov (United States)

    Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming

    2017-03-01

    The Super-Low Frequency (SLF) electromagnetic prospecting technique, adopted as a non-imaging remote sensing tool for depth sounding, is systematically proposed for subsurface geological survey. In this paper, we propose and theoretically illustrate natural source magnetic amplitudes as SLF responses for the first step. In order to directly calculate multi-dimensional theoretical SLF responses, modeling algorithms were developed and evaluated using the finite difference method. The theoretical results of three-dimensional (3-D) models show that the average normalized SLF magnetic amplitude responses were numerically stable and appropriate for practical interpretation. To explore the depth resolution, three-layer models were configured. The modeling results prove that the SLF technique is more sensitive to conductive objective layers than high resistive ones, with the SLF responses of conductive objective layers obviously showing uprising amplitudes in the low frequency range. Afterwards, we proposed an improved Frequency-Depth transformation based on Bostick inversion to realize the depth sounding by empirically adjusting two parameters. The SLF technique has already been successfully applied in geothermal exploration and coalbed methane (CBM) reservoir interpretation, which demonstrates that the proposed methodology is effective in revealing low resistive distributions. Furthermore, it siginificantly contributes to reservoir identification with electromagnetic radiation anomaly extraction. Meanwhile, the SLF interpretation results are in accordance with dynamic production status of CBM reservoirs, which means it could provide an economical, convenient and promising method for exploring and monitoring subsurface geo-objects.

  4. Gravitational dynamos and the low-frequency geomagnetic secular variation.

    Science.gov (United States)

    Olson, P

    2007-12-18

    Self-sustaining numerical dynamos are used to infer the sources of low-frequency secular variation of the geomagnetic field. Gravitational dynamo models powered by compositional convection in an electrically conducting, rotating fluid shell exhibit several regimes of magnetic field behavior with an increasing Rayleigh number of the convection, including nearly steady dipoles, chaotic nonreversing dipoles, and chaotic reversing dipoles. The time average dipole strength and dipolarity of the magnetic field decrease, whereas the dipole variability, average dipole tilt angle, and frequency of polarity reversals increase with Rayleigh number. Chaotic gravitational dynamos have large-amplitude dipole secular variation with maximum power at frequencies corresponding to a few cycles per million years on Earth. Their external magnetic field structure, dipole statistics, low-frequency power spectra, and polarity reversal frequency are comparable to the geomagnetic field. The magnetic variability is driven by the Lorentz force and is characterized by an inverse correlation between dynamo magnetic and kinetic energy fluctuations. A constant energy dissipation theory accounts for this inverse energy correlation, which is shown to produce conditions favorable for dipole drift, polarity reversals, and excursions.

  5. Technologies for Low Frequency Radio Observations of the Cosmic Dawn

    Science.gov (United States)

    Jones, Dayton L.

    2014-01-01

    The Jet Propulsion Laboratory (JPL) is developing concepts and technologies for low frequency radio astronomy space missions aimed at observing highly redshifted neutral Hydrogen from the Dark Ages. This is the period of cosmic history between the recombination epoch when the microwave background radiation was produced and the re-ionization of the intergalactic medium by the first generation of stars (Cosmic Dawn). This period, at redshifts greater than about 20, is a critical epoch for the formation and evolution of large-scale structure in the universe. The 21-cm spectral line of Hydrogen provides the most promising method for directly studying the Dark Ages, but the corresponding frequencies at such large redshifts are only tens of MHz and thus require space-based observations to avoid terrestrial RFI and ionospheric absorption and refraction. This paper reports on the status of several low frequency technology development activities at JPL, including deployable bi-conical dipoles for a planned lunar-orbiting mission, and both rover-deployed and inflation-deployed long dipole antennas for use on the lunar surface.

  6. Low-Frequency Gravitational Wave Searches Using Spacecraft Doppler Tracking

    Directory of Open Access Journals (Sweden)

    Armstrong J. W.

    2006-01-01

    Full Text Available This paper discusses spacecraft Doppler tracking, the current-generation detector technology used in the low-frequency (~millihertz gravitational wave band. In the Doppler method the earth and a distant spacecraft act as free test masses with a ground-based precision Doppler tracking system continuously monitoring the earth-spacecraft relative dimensionless velocity $2 Delta v/c = Delta u/ u_0$, where $Delta u$ is the Doppler shift and $ u_0$ is the radio link carrier frequency. A gravitational wave having strain amplitude $h$ incident on the earth-spacecraft system causes perturbations of order $h$ in the time series of $Delta u/ u_0$. Unlike other detectors, the ~1-10 AU earth-spacecraft separation makes the detector large compared with millihertz-band gravitational wavelengths, and thus times-of-flight of signals and radio waves through the apparatus are important. A burst signal, for example, is time-resolved into a characteristic signature: three discrete events in the Doppler time series. I discuss here the principles of operation of this detector (emphasizing transfer functions of gravitational wave signals and the principal noises to the Doppler time series, some data analysis techniques, experiments to date, and illustrations of sensitivity and current detector performance. I conclude with a discussion of how gravitational wave sensitivity can be improved in the low-frequency band.

  7. Current Status of The Low Frequency All Sky Monitor

    Science.gov (United States)

    Dartez, Louis; Creighton, Teviet; Jenet, Fredrick; Dolch, Timothy; Boehler, Keith; Bres, Luis; Cole, Brent; Luo, Jing; Miller, Rossina; Murray, James; Reyes, Alex; Rivera, Jesse

    2018-01-01

    The Low Frequency All Sky Monitor (LoFASM) is a distributed array of cross-dipole antennas that are sensitive to radio frequencies from 10 to 88 MHz. LoFASM consists of antennas and front end electronics that were originally developed for the Long Wavelength Array by the U.S. Naval Research Lab, the University of New Mexico, Virginia Tech, and the Jet Propulsion Laboratory. LoFASM, funded by the U.S. Department of Defense, will initially consist of 4 stations, each consisting of 12 dual- polarization dipole antenna stands. The primary science goals of LoFASM will be the detection and study of low-frequency radio transients, a high priority science goal as deemed by the National Research Council’s ASTRO2010 decadal survey. The data acquisition system for the LoFASM antenna array uses Field Programmable Gate Array (FPGA) technology to implement a real time full Stokes spectrometer and data recorder. This poster presents an overview of the LoFASM Radio Telescope as well as the status of data analysis of initial commissioning observations.

  8. Low-Frequency Temporal Variability in Mira and Semiregular Variables

    Science.gov (United States)

    Templeton, Matthew R.; Karovska, M.; Waagen, E. O.

    2012-01-01

    We investigate low-frequency variability in a large sample of Mira and semiregular variables with long-term visual light curves from the AAVSO International Database. Our aim is to determine whether we can detect and measure long-timescale variable phenomena in these stars, for example photometric variations that might be associated with supergranular convection. We analyzed the long-term light curves of 522 variable stars of the Mira and SRa, b, c, and d classes. We calculated their low-frequency time-series spectra to characterize rednoise with the power density spectrum index, and then correlate this index with other observable characteristics such as spectral type and primary pulsation period. In our initial analysis of the sample, we see that the semiregular variables have a much broader range of spectral index than the Mira types, with the SRb subtype having the broadest range. Among Mira variables we see that the M- and S-type Miras have similarly wide ranges of index, while the C-types have the narrowest with generally shallower slopes. There is also a trend of steeper slope with larger amplitude, but at a given amplitude, a wide range of slopes are seen. The ultimate goal of the project is to identify stars with strong intrinsic red noise components as possible targets for resolved surface imaging with interferometry.

  9. Transient eddy feedback and low-frequency variability

    International Nuclear Information System (INIS)

    Robinson, W.A.

    1994-01-01

    Superposed on any externally driven secular climatic change are fluctuations that arise from the internal nonlinear dynamics of the climate system. These internally generated variations may involve interactions between the atmosphere and the ocean, as in the case of El Nino, or they may arise from the dynamics of the atmosphere alone. Here we discuss the dynamics of interactions between transient eddies and lower-frequency motions in the atmosphere. The interactions between more transient and more persistent motions can be divided into two types. Nonlinear interactions among the transient motions can act as an essentially random source of low-frequency motion. The idea that the low-frequencies respond in a linear way to stochastic forcing from higher frequencies has been applied to the generation of planetary waves and to the forcing of changes in global angular momentum. In addition to stochastic coupling, there are systematic interactions, denoted feedbacks, through which the persistent motions modulate their own forcing by the transient eddies. This paper discusses the dynamics of these feedbacks

  10. Zinc oxide piezoelectric nano-generators for low frequency applications

    Science.gov (United States)

    Nour, E. S.; Nur, O.; Willander, M.

    2017-06-01

    Piezoelectric Zinc Oxide (ZnO) nanogenerators (NGs) have been fabricated for low frequency (wireless system using footstep pressure. These studies demonstrate the feasibility of using a ZnO NWs piezoelectric NG as a low-frequency self- powered sensor, with potential applications in wireless sensor networks. After that, we investigated and fabricated a sensor on a PEDOT: PSS plastic substrate using a one-sided growth and double-sided growth technique. For the first growth technique, the fabricated NG has been used as a sensor for an acceleration system; while the fabricated NG by the second technique works as an anisotropic direction sensor. This fabricated configuration showed stability for sensing and can be used in surveillance, security, and auto-Mobil applications. In addition to that, we investigated the fabrication of a sandwiched NG on plastic substrates. Finally, we demonstrated that doping ZnO NWs with extrinsic elements (such as Ag) will lead to the reduction of the piezoelectric effect due to the loss of crystal symmetry. A brief summary into future opportunities and challenges is also presented.

  11. Low-frequency 1/f noise in graphene devices

    Science.gov (United States)

    Balandin, Alexander A.

    2013-08-01

    Low-frequency noise with a spectral density that depends inversely on frequency has been observed in a wide variety of systems including current fluctuations in resistors, intensity fluctuations in music and signals in human cognition. In electronics, the phenomenon, which is known as 1/f noise, flicker noise or excess noise, hampers the operation of numerous devices and circuits, and can be a significant impediment to the development of practical applications from new materials. Graphene offers unique opportunities for studying 1/f noise because of its two-dimensional structure and widely tunable two-dimensional carrier concentration. The creation of practical graphene-based devices will also depend on our ability to understand and control the low-frequency noise in this material system. Here, the characteristic features of 1/f noise in graphene and few-layer graphene are reviewed, and the implications of such noise for the development of graphene-based electronics including high-frequency devices and sensors are examined.

  12. Functional subdivisions in low-frequency primary auditory cortex (AI).

    Science.gov (United States)

    Wallace, M N; Palmer, A R

    2009-04-01

    We wished to test the hypothesis that there are modules in low-frequency AI that can be identified by their responsiveness to communication calls or particular regions of space. Units were recorded in anaesthetised guinea pig AI and stimulated with conspecific vocalizations and a virtual motion stimulus (binaural beats) presented via a closed sound system. Recording tracks were mainly oriented orthogonally to the cortical surface. Some of these contained units that were all time-locked to the structure of the chutter call (14/22 tracks) and/or the purr call (12/22 tracks) and/or that had a preference for stimuli from a particular region of space (8/20 tracks with four contralateral, two ipsilateral and two midline), or where there was a strong asymmetry in the response to beats of different direction (two tracks). We conclude that about half of low-frequency AI is organized into modules that are consistent with separate "what" and "where" pathways.

  13. Extremely low frequencies. Health effects of extremely low frequency electromagnetic fields. Opinion of the Afsset. Collective expertise report

    International Nuclear Information System (INIS)

    Bounouh, Alexandre; Brugere, Henri; Clavel, Jacqueline; Febvre, Pascal; Lagroye, Isabelle; Vecchia, Paolo; Dore, Jean-Francois; Anfosso-Ledee, Fabienne; Berengier, Michel; Cesarini, Jean-Pierre; Cohen, Jean-Claude; Planton, Serge; Courant, Daniel; Tardif, Francois; Couturier, Frederic; Debouzy, Jean-Claude; El Khatib, Aicha; Flahaut, Emmanuel; Gaffet, Eric; Hours, Martine; Lambert, Jacques; Vallet, Michel; Job, Agnes; Labeyrie, Antoine; Laurier, Dominique; Le Bihan, Olivier; Lepoutre, Philippe; Marchal, Didier; Moch, Annie; Pirard, Philipe; Rumeau, Michel; De Seze, Rene; Attia, Dina; Merckel, Olivier; Fite, Johanna; Guichard, Alexandra; Saihi, Myriam; Guitton, Sophie; Saddoki, Sophia

    2010-03-01

    This report aims at proposing a synthesis of works of international expertise on the health effect of extremely low frequency electromagnetic fields, at performing a methodological analysis of the 'Expers' study (a study on the exposure of individuals), at performing a methodological analysis of a study performed by the Criirem in the western part of France, at assessing the contribution of different equipment and situations to the exposure of population to extremely-low-frequency electromagnetic fields, at making recommendations and proposals for a better assessment of the exposure level, and at proposing topics of investigation and research to improve knowledge on these issues. The report recalls the context, scope and modalities of the study, gives an overview of generalities on electromagnetic fields (nature, physical values, electromagnetic spectrum, artificial and natural electromagnetic field sources, exposure threshold values and regulatory context), addresses the assessment of exposure (notion of exposure, exposure assessment methods, analysis of available data, analysis of recent or current studies), gives an overview of biological and health effects of these electromagnetic fields (methodological aspects, interaction between fields and biological tissues, synthesis of the international expertise on health impacts). Recommendations are formulated

  14. Field Evaluations of Low-Frequency SAFT-UT on Cast Stainless Steel and Dissimilar Metal Weld Components

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, Aaron A.; Harris, R. V.; Doctor, Steven R.

    2008-11-01

    This report documents work performed at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, and at the Electric Power Research Institute's (EPRI) Nondestructive Examination (NDE) Center in Charlotte, North Carolina, on evalutating a low frequency ultrasonic inspection technique used for examination of cast stainless steel (CSS) and dissimilar metal (DMW) reactor piping components. The technique uses a zone-focused, multi-incident angle, low frequency (250-450 kHz) inspection protocol coupled with the synthetic aperture focusing technique (SAFT). The primary focus of this work is to provide information to the United States Nuclear Regulatory Commission on the utility, effectiveness and reliability of ultrasonic testing (UT) inspection techniques as related to the inservice ultrasonic inspection of coarse grained primary piping components in pressurized water reactors (PWRs).

  15. Indoor measurements of low-frequency noise for annoyance assessment

    DEFF Research Database (Denmark)

    Pedersen, Steffen; Møller, Henrik; Persson-Waye, Kerstin

    2007-01-01

    The sound pressure level within a room may vary as much as 20-30 dB at low frequencies. Mainly the highest levels are of concern with regards to annoyance assessment, rather than a room average. The highest levels can however be very difficult to find. Sound fields in rooms were investigated using......) in an attempt to ensure high levels. The sound pressure level that is exceeded in only 10% of the space of a room (L10) is proposed as a reasonable target for a measurement method. The Swedish method showed good results, however its inclusion of C-weighting can potentially be problematic. The Danish method...... numerical simulations and scanning measurements of the entire sound pressure distributions in three different rooms. Measurements were also performed in three-dimensional corners as well as according to Swedish and Danish guidelines, which include positions close to corners in the floor plane (0.5 to 1 m...

  16. Sound field control for a low-frequency test facility

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik

    2013-01-01

    The two largest problems in controlling the reproduction of low-frequency sound for psychoacoustic experiments is the effect of the room due to standing waves and the relatively large sound pressure levels needed. Anechoic rooms are limited downward in frequency and distortion may be a problem even...... at moderate levels, while pressure-field playback can give higher sound pressures but is limited upwards in frequency. A new solution that addresses both problems has been implemented in the laboratory of Acoustics, Aalborg University. The solution uses one wall with 20 loudspeakers to generate a plane wave...... that is actively absorbed when it reaches the 20 loudspeakers on the opposing wall. This gives a homogeneous sound field in the majority of the room with a flat frequency response in the frequency range 2-300 Hz. The lowest frequencies are limited to sound pressure levels in the order of 95 dB. If larger levels...

  17. Interaction of extremely-low-frequency electromagnetic fields with humans

    International Nuclear Information System (INIS)

    Tenforde, T.S.

    1991-07-01

    At a macroscopic level, the effects of extremely low frequency (ELF) electromagnetic fields on humans are well understood based on fundamental physical principles, but far less is known about the nature of the interactions at a cellular or molecular level. Current evidence suggests the effects of ELF on cellular biochemistry are due to interactions with the cell membrane. Elucidation of the mechanism that underlies this transmembrane signaling is critical for a molecular-level understanding of ELF field effects. Further research is also required to clarify a possible link between ELF exposure and increased cancer risk, since estimated ELF exposure in occupational or residential settings is much lower that the levels used in laboratory studies. There is a clear need for additional epidemiological research in which qualitative dosimetry is used to characterize ELF exposure and careful attention is given to possible effects of confounding variables. 24 refs

  18. Planck 2013 results. II. Low Frequency Instrument data processing

    CERN Document Server

    Aghanim, N; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Bridges, M; Bucher, M; Burigana, C; Butler, R C; Cappellini, B; Cardoso, J -F; Catalano, A; Chamballu, A; Chen, X; Chiang, L -Y; Christensen, P R; Church, S; Colombi, S; Colombo, L P L; Crill, B P; Cruz, M; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dupac, X; Efstathiou, G; Enßlin, T A; Eriksen, H K; Falvella, M C; Finelli, F; Forni, O; Frailis, M; Franceschi, E; Gaier, T C; Galeotta, S; Ganga, K; Giard, M; Giardino, G; Giraud-Héraud, Y; Gjerløw, E; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versillé, S; Hernández-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jewell, J; Jones, W C; Juvela, M; Kangaslahti, P; Keihänen, E; Keskitalo, R; Kiiveri, K; Kisner, T S; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Laureijs, R J; Lawrence, C R; Leach, S; Leahy, J P; Leonardi, R; Lesgourgues, J; Liguori, M; Lilje, P B; Lindholm, V; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Macías-Pérez, J F; Maggio, G; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martínez-González, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Naselsky, P; Natoli, P; Netterfield, C B; Nørgaard-Nielsen, H U; Novikov, D; Novikov, I; O'Dwyer, I J; Osborne, S; Paci, F; Pagano, L; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Peel, M; Perdereau, O; Perotto, L; Perrotta, F; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Platania, P; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Prézeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Ricciardi, S; Riller, T; Rocha, G; Rosset, C; Rossetti, M; Roudier, G; Rubiño-Martín, J A; Rusholme, B; Salerno, E; Sandri, M; Santos, D; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Türler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Varis, J; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Watson, R; Wehus, I K; White, S D M; Wilkinson, A; Yvon, D; Zacchei, A; Zonca, A

    2014-01-01

    We describe the data processing pipeline of the Planck Low Frequency Instrument (LFI) data processing centre (DPC) to create and characterize full-sky maps based on the first 15.5 months of operations at 30, 44 and 70 GHz. In particular, we discuss the various steps involved in reducing the data, starting from telemetry packets through to the production of cleaned, calibrated timelines and calibrated frequency maps. Data are continuously calibrated using the modulation induced on the mean temperature of the cosmic microwave background radiation by the proper motion of the spacecraft. Sky signals other than the dipole are removed by an iterative procedure based on simultaneous fitting of calibration parameters and sky maps. Noise properties are estimated from time-ordered data after the sky signal has been removed, using a generalized least square map-making algorithm. A destriping code (Madam) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated...

  19. Characteristics of low frequency MHD fluctuations in the PRETEXT tokamak

    International Nuclear Information System (INIS)

    Kochanski, T.P.

    1981-05-01

    The temporal and spectral characteristics of low frequency (< 100KHz) MHD fluctuations, which are commonly associated with disruptions, have been investigated in the PRETEXT tokamak. There exists rigid phase coherence between the internal m = 1, and externally detected m = 2 modes indicative of strong mode coupling. A parametric study of the frequency of the mode, in the saturated state, indicates that the frequency scales with the toroidal magnetic field, and is inversely proportional to the plasma current. The frequency is observed to decrease abruptly as the mode amplitude rapidly increases prior to a plasma disruption. The burst type growth of the m = 2 mode appears to be inextricably linked to the occurrence of the disruptive instability

  20. Investigating low-frequency compression using the Grid method

    DEFF Research Database (Denmark)

    Fereczkowski, Michal; Dau, Torsten; MacDonald, Ewen

    2016-01-01

    in literature. Moreover, slopes of the low-level portions of the BM I/O functions estimated at 500 Hz were examined, to determine whether the 500-Hz off-frequency forward masking curves were affected by compression. Overall, the collected data showed a trend confirming the compressive behaviour. However......There is an ongoing discussion about whether the amount of cochlear compression in humans at low frequencies (below 1 kHz) is as high as that at higher frequencies. It is controversial whether the compression affects the slope of the off-frequency forward masking curves at those frequencies. Here......, the Grid method with a 2-interval 1-up 3-down tracking rule was applied to estimate forward masking curves at two characteristic frequencies: 500 Hz and 4000 Hz. The resulting curves and the corresponding basilar membrane input-output (BM I/O) functions were found to be comparable to those reported...

  1. Low-Frequency Radio Bursts and Space Weather

    Science.gov (United States)

    Gopalswamy, N.

    2016-01-01

    Low-frequency radio phenomena are due to the presence of nonthermal electrons in the interplanetary (IP) medium. Understanding these phenomena is important in characterizing the space environment near Earth and other destinations in the solar system. Substantial progress has been made in the past two decades, because of the continuous and uniform data sets available from space-based radio and white-light instrumentation. This paper highlights some recent results obtained on IP radio phenomena. In particular, the source of type IV radio bursts, the behavior of type III storms, shock propagation in the IP medium, and the solar-cycle variation of type II radio bursts are considered. All these phenomena are closely related to solar eruptions and active region evolution. The results presented were obtained by combining data from the Wind and SOHO missions.

  2. WHO's health risk assessment of extremely low frequency electric fields

    International Nuclear Information System (INIS)

    Repacholi, M.H.

    2003-01-01

    The World Health Organization (WHO), the International Commission on Non-Ionizing Radiation Protection (ICNIRP), WHOs scientific collaborating centres (including the UKs National Radiological Protection Board (NRPB) and over 50 participating Member States are participants of WHOs International EMF Project. As part of WHOs health risk assessment process for extremely low frequency fields (ELFs), this workshop was convened by NRPB to assist WHO in evaluating potential health impacts of electrical currents and fields induced by ELF in molecules, cells, tissues and organs of the body. This paper describes the process by which WHO will conduct its health risk assessment. WHO is also trying to provide information on why exposure to ELF magnetic fields seems to be associated with an increased incidence of childhood leukaemia. Are there mechanisms that could lead to this health outcome or does the epidemiological evidence incorporate biases or other factors that need to be further explored? (author)

  3. Membrane-constrained acoustic metamaterials for low frequency sound insulation

    Science.gov (United States)

    Wang, Xiaole; Zhao, Hui; Luo, Xudong; Huang, Zhenyu

    2016-01-01

    We present a constrained membrane-type acoustic metamaterial (CMAM) that employs constraint sticks to add out-of-plane dimensions in the design space of MAM. A CMAM sample, which adopts constraint sticks to suppress vibrations at the membrane center, was fabricated to achieve a sound transmission loss (STL) peak of 26 dB at 140 Hz, with the static areal density of 6.0 kg/m2. The working mechanism of the CMAM as an acoustic metamaterial is elucidated by calculating the averaged normal displacement, the equivalent areal density, and the effective dynamic mass of a unit cell through finite element simulations. Furthermore, the vibration modes of the CMAM indicate that the eigenmodes related to STL dips are shifted into high frequencies, thus broadening its effective bandwidth significantly. Three samples possessing the same geometry and material but different constraint areas were fabricated to illustrate the tunability of STL peaks at low frequencies.

  4. A Low Frequency FBG Accelerometer with Symmetrical Bended Spring Plates

    Directory of Open Access Journals (Sweden)

    Fufei Liu

    2017-01-01

    Full Text Available To meet the requirements for low-frequency vibration monitoring, a new type of FBG (fiber Bragg grating accelerometer with a bended spring plate is proposed. Two symmetrical bended spring plates are used as elastic elements, which drive the FBG to produce axial strains equal in magnitude but opposite in direction when exciting vibrations exist, leading to doubling the wavelength shift of the FBG. The mechanics model and a numerical method are presented in this paper, with which the influence of the structural parameters on the sensitivity and the eigenfrequency are discussed. The test results show that the sensitivity of the accelerometer is more than 1000 pm/g when the frequency is within the 0.7–20 Hz range.

  5. Dissipative elastic metamaterial with a low-frequency passband

    Directory of Open Access Journals (Sweden)

    Yongquan Liu

    2017-06-01

    Full Text Available We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its potential in the design of compact waveguides, filters and other advanced devices for controlling mechanical waves.

  6. Method for imaging with low frequency electromagnetic fields

    Science.gov (United States)

    Lee, Ki H.; Xie, Gan Q.

    1994-01-01

    A method for imaging with low frequency electromagnetic fields, and for interpreting the electromagnetic data using ray tomography, in order to determine the earth conductivity with high accuracy and resolution. The imaging method includes the steps of placing one or more transmitters, at various positions in a plurality of transmitter holes, and placing a plurality of receivers in a plurality of receiver holes. The transmitters generate electromagnetic signals which diffuse through a medium, such as earth, toward the receivers. The measured diffusion field data H is then transformed into wavefield data U. The traveltimes corresponding to the wavefield data U, are then obtained, by charting the wavefield data U, using a different regularization parameter .alpha. for each transform. The desired property of the medium, such as conductivity, is then derived from the velocity, which in turn is constructed from the wavefield data U using ray tomography.

  7. Offshore windfarm connection with low frequency AC transmission technology

    DEFF Research Database (Denmark)

    Qin, Nan; Xu, Zhao; You, Shi

    2009-01-01

    This paper investigates the feasibility of using the low frequency AC transmission (LFAC) system, e.g. fraction of 50 Hz or 60 Hz, for connecting the large offshore wind farm to the grid by modelling and simulation. The LFAC system improves the transmission capacity and distance compared...... to the conventional AC solution at the nominal frequency, e.g. 50 Hz or 60 Hz. and reduces the investment cost compared to the HVDC solution. It is estimated that the LFAC system is competitive in the transmission distance of about 30-150 km. The simulation model of the wind integration using the LFAC system has been...... developed, which consists of three parts, the fixed-speed wind turbine representing a wind farm, the transmission line and the frequency converter. Although the transmission capability is greatly improved by the LFAC system, simulation shows it gives negative influences on the wind turbine operation due...

  8. Observation of low frequency electromagnetic activity at 1000 km altitude

    Directory of Open Access Journals (Sweden)

    N. Ivchenko

    Full Text Available We present a statistical study of low frequency fluctuations of electric and magnetic fields, commonly interpreted as Alfvénic activity. The data base consists of six months of electric and magnetic field measurements by the Astrid-2 microsatellite. The occurrence of the events is studied with respect to the location and general activity. Large regions of broadband Alfvénic activity are persistently observed in the cusp/cleft and, during the periods of high geo-magnetic activity, also in the pre-midnight sector of the auroral oval.

    Key words. Ionosphere (auroral ionosphere – Space plasma physics (waves and instabilities – Magnetospheric physics (magnetosphere-ionosphere interactions

  9. Relativistic runaway breakdown in low-frequency radio

    DEFF Research Database (Denmark)

    Fullekrug, M.; Roussel-Dupre, R.; Symbalisty, E.M.D.

    2011-01-01

    at a distance of similar to 550 km. The measured broadband pulses occur similar to 4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from similar to 50 to 350 kHz, and they exhibit complex waveforms without the typical...... electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.......The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which...

  10. Low-frequency quadrupole impedance of undulators and wigglers

    Directory of Open Access Journals (Sweden)

    A. Blednykh

    2016-10-01

    Full Text Available An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ_{r}. In the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ_{r}→∞, and the case in which the magnets are fully saturated (μ_{r}=1.

  11. Resonant interactions between cometary ions and low frequency electromagnetic waves

    Science.gov (United States)

    Thorne, Richard M.; Tsurutani, Bruce T.

    1987-01-01

    The conditions for resonant wave amplification in a plasma with a ring-beam distribution which is intended to model pick-up ions in a cometary environment are investigated. The inclination between the interplanetary field and the solar wind is found to play a crucial role in governing both the resonant frequency and the growth rate of any unstable mode. It is suggested that the low-frequency MHD mode should experience the most rapid amplification for intermediate inclination. In the frame of the solar wind, such waves should propagate along the field in the direction upstream toward the sun with a phase speed lower than the beaming velocity of the pick-up ions. This mechanism may account for the presence of the interior MHD waves noted by satellites over a region surrounding comets Giacobini-Zinner and Halley.

  12. The Noisiness of Low Frequency Bands of Noise

    Science.gov (United States)

    Lawton, B. W.

    1975-01-01

    The relative noisiness of low frequency 1/3-octave bands of noise was examined. The frequency range investigated was bounded by the bands centered at 25 and 200 Hz, with intensities ranging from 50 to 95 db (SPL). Thirty-two subjects used a method of adjustment technique, producing comparison band intensities as noisy as 100 and 200 Hz standard bands at 60 and 72 db. The work resulted in contours of equal noisiness for 1/3-octave bands, ranging in intensity from approximately 58 to 86 db (SPL). These contours were compared with the standard equal noisiness contours; in the region of overlap, between 50 and 200 Hz, the agreement was good.

  13. Low-frequency radio absorption in Cassiopeia A

    Science.gov (United States)

    Arias, M.; Vink, J.; de Gasperin, F.; Salas, P.; Oonk, J. B. R.; van Weeren, R. J.; van Amesfoort, A. S.; Anderson, J.; Beck, R.; Bell, M. E.; Bentum, M. J.; Best, P.; Blaauw, R.; Breitling, F.; Broderick, J. W.; Brouw, W. N.; Brüggen, M.; Butcher, H. R.; Ciardi, B.; de Geus, E.; Deller, A.; van Dijk, P. C. G.; Duscha, S.; Eislöffel, J.; Garrett, M. A.; Grießmeier, J. M.; Gunst, A. W.; van Haarlem, M. P.; Heald, G.; Hessels, J.; Hörandel, J.; Holties, H. A.; van der Horst, A. J.; Iacobelli, M.; Juette, E.; Krankowski, A.; van Leeuwen, J.; Mann, G.; McKay-Bukowski, D.; McKean, J. P.; Mulder, H.; Nelles, A.; Orru, E.; Paas, H.; Pandey-Pommier, M.; Pandey, V. N.; Pekal, R.; Pizzo, R.; Polatidis, A. G.; Reich, W.; Röttgering, H. J. A.; Rothkaehl, H.; Schwarz, D. J.; Smirnov, O.; Soida, M.; Steinmetz, M.; Tagger, M.; Thoudam, S.; Toribio, M. C.; Vocks, C.; van der Wiel, M. H. D.; Wijers, R. A. M. J.; Wucknitz, O.; Zarka, P.; Zucca, P.

    2018-05-01

    Context. Cassiopeia A is one of the best-studied supernova remnants. Its bright radio and X-ray emission is due to shocked ejecta. Cas A is rather unique in that the unshocked ejecta can also be studied: through emission in the infrared, the radio-active decay of 44Ti, and the low-frequency free-free absorption caused by cold ionised gas, which is the topic of this paper. Aims: Free-free absorption processes are affected by the mass, geometry, temperature, and ionisation conditions in the absorbing gas. Observations at the lowest radio frequencies can constrain a combination of these properties. Methods: We used Low Frequency Array (LOFAR) Low Band Antenna observations at 30-77 MHz and Very Large Array (VLA) L-band observations at 1-2 GHz to fit for internal absorption as parametrised by the emission measure. We simultaneously fit multiple UV-matched images with a common resolution of 17″ (this corresponds to 0.25 pc for a source at the distance of Cas A). The ample frequency coverage allows us separate the relative contributions from the absorbing gas, the unabsorbed front of the shell, and the absorbed back of the shell to the emission spectrum. We explored the effects that a temperature lower than the 100-500 K proposed from infrared observations and a high degree of clumping can have on the derived physical properties of the unshocked material, such as its mass and density. We also compiled integrated radio flux density measurements, fit for the absorption processes that occur in the radio band, and considered their effect on the secular decline of the source. Results: We find a mass in the unshocked ejecta of M = 2.95 ± 0.48 M⊙ for an assumed gas temperatureof T = 100 K. This estimate is reduced for colder gas temperatures and, most significantly, if the ejecta are clumped. We measure the reverse shock to have a radius of 114″± 6″ and be centred at 23:23:26, +58:48:54 (J2000). We also find that a decrease in the amount of mass in the unshocked ejecta

  14. Spontaneous Low Frequency Oscillations in Acute Ischemic Stroke

    DEFF Research Database (Denmark)

    Phillip, Dorte; Schytz, Henrik Winther; Iversen, Helle Klingenberg

    2014-01-01

    Background and purpose: Continuous wave near infrared spectroscopy (NIRS) is a non-invasive bed-side optical method to detect changes in oxygenated (oxyHb) and deoxygenated hemoglobin (deoxyHb) in the outermost layers of the cerebral cortex. Cortical oxyHb low frequency oscillations (LFOs) in the 0.......09-0.11 Hz range are affected by changes in cerebral autoregulation (CA), which is altered following stroke. We examined oxyHb LFOs at bed-side as a marker of CA in the subacute phase in stroke patients with or without recombinant tissue plasminogen activator thrombolytic therapy. Methods: We recruited 29...... patients admitted to the stroke unit with symptoms of ischemic stroke. 11/29 patients received thrombolytic therapy. NIRS examination was conducted 2 days (median time) from stroke onset. NIRS optodes were placed on each side of the head with a 3 cm source-detector distance. Using transfer function...

  15. Nonlinear beat excitation of low frequency wave in degenerate plasmas

    Science.gov (United States)

    Mir, Zahid; Shahid, M.; Jamil, M.; Rasheed, A.; Shahbaz, A.

    2018-03-01

    The beat phenomenon due to the coupling of two signals at slightly different frequencies that generates the low frequency signal is studied. The linear dispersive properties of the pump and sideband are analyzed. The modified nonlinear dispersion relation through the field coupling of linear modes against the beat frequency is derived in the homogeneous quantum dusty magnetoplasmas. The dispersion relation is used to derive the modified growth rate of three wave parametric instability. Moreover, significant quantum effects of electrons through the exchange-correlation potential, the Bohm potential, and the Fermi pressure evolved in macroscopic three wave interaction are presented. The analytical results are interpreted graphically describing the significance of the work. The applications of this study are pointed out at the end of introduction.

  16. Biological actions and effects of low-frequency fields

    International Nuclear Information System (INIS)

    Brix, J.

    1993-01-01

    Cell culture studies have shown that low-frequency electromagnetic fields may affect cell behaviour. The fact that the corresponding field strengths are too weak to affect membrane potential, suggests that these fields trigger enzymatic reactions at the outer face of the membrane, i.e. cell-intrinsic reaction cascades and a biological modification of the affected biological system take place. These are working models and hypotheses which need to substantiated by further studies in this field. Epidemiological studies suggest that electromagnetic fields influence cancer development in man. However there is no action model indicating exposure to fields to be a genotoxic agent possible triggering a direct genetic modification which precludesr any initialization. (orig.) [de

  17. Compact Polarimetry in a Low Frequency Spaceborne Context

    Science.gov (United States)

    Truong-Loi, M-L.; Freeman, A.; Dubois-Fernandez, P.; Pottier, E.

    2011-01-01

    Compact polarimetry has been shown to be an interesting alternative mode to full polarimetry when global coverage and revisit time are key issues. It consists on transmitting a single polarization, while receiving on two. Several critical points have been identified, one being the Faraday rotation (FR) correction and the other the calibration. When a low frequency electromagnetic wave travels through the ionosphere, it undergoes a rotation of the polarization plane about the radar line of sight for a linearly polarized wave, and a simple phase shift for a circularly polarized wave. In a low frequency radar, the only possible choice of the transmit polarization is the circular one, in order to guaranty that the scattering element on the ground is illuminated with a constant polarization independently of the ionosphere state. This will allow meaningful time series analysis, interferometry as long as the Faraday rotation effect is corrected for the return path. In full-polarimetric (FP) mode, two techniques allow to estimate the FR: Freeman method using linearly polarized data, and Bickel and Bates theory based on the transformation of the measured scattering matrix to a circular basis. In CP mode, an alternate procedure is presented which relies on the bare surface scattering properties. These bare surfaces are selected by the conformity coefficient, invariant with FR. This coefficient is compared to other published classifications to show its potential in distinguishing three different scattering types: surface, doublebounce and volume. The performances of the bare surfaces selection and FR estimation are evaluated on PALSAR and airborne data. Once the bare surfaces are selected and Faraday angle estimated over them, the correction can be applied over the whole scene. The algorithm is compared with both FP techniques. In the last part of the paper, the calibration of a CP system from the point of view of classical matrix transformation methods in polarimetry is

  18. Remote tracking of a magnetic receiver using low frequency beacons

    International Nuclear Information System (INIS)

    Sheinker, Arie; Ginzburg, Boris; Salomonski, Nizan; Frumkis, Lev; Kaplan, Ben-Zion

    2014-01-01

    Low frequency magnetic fields feature high penetration ability, which allows communication, localization, and tracking in environments where radio or acoustic waves are blocked or distorted by multipath interferences. In the present work, we propose a method for tracking a magnetic receiver using beacons of low frequency magnetic field, where the receiver includes a tri-axial search-coil magnetometer. Measuring the beacons’ magnetic fields and calculating the total-field signals enables localization without restrictions on magnetometer orientation, allowing on-the-move tracking. The total-field signals are used by a global search method, e.g., simulated annealing (SA) algorithm, to localize the receiver. The magnetic field produced by each beacon has a dipole structure and is governed by the beacon’s position and magnetic moment. We have investigated two different methods for estimating beacons’ magnetic moments prior to localization. The first method requires directional measurements, whereas for the second method the total-field signal is used. Effectiveness of these methods has been proved in numerous field tests. In the present work, we introduce a method for tracking a moving receiver by successive localizations. Using previous localization as a starting point of the search method for the next localization can reduce execution time and chances for divergence. The proposed method has been tested using numerous computer simulations. Successful system operation has been verified in field conditions. The good tracking capability together with simple implementation makes the proposed method attractive for real-time, low power field applications, such as mobile robots navigation. (paper)

  19. Clamped seismic metamaterials: ultra-low frequency stop bands

    International Nuclear Information System (INIS)

    Achaoui, Y; Enoch, S; Guenneau, S; Antonakakis, T; Brûlé, S; Craster, R V

    2017-01-01

    The regularity of earthquakes, their destructive power, and the nuisance of ground vibration in urban environments, all motivate designs of defence structures to lessen the impact of seismic and ground vibration waves on buildings. Low frequency waves, in the range 1–10 Hz for earthquakes and up to a few tens of Hz for vibrations generated by human activities, cause a large amount of damage, or inconvenience; depending on the geological conditions they can travel considerable distances and may match the resonant fundamental frequency of buildings. The ultimate aim of any seismic metamaterial, or any other seismic shield, is to protect over this entire range of frequencies; the long wavelengths involved, and low frequency, have meant this has been unachievable to date. Notably this is scalable and the effects also hold for smaller devices in ultrasonics. There are three approaches to obtaining shielding effects: bragg scattering, locally resonant sub-wavelength inclusions and zero-frequency stop-band media. The former two have been explored, but the latter has not and is examined here. Elastic flexural waves, applicable in the mechanical vibrations of thin elastic plates, can be designed to have a broad zero-frequency stop-band using a periodic array of very small clamped circles. Inspired by this experimental and theoretical observation, all be it in a situation far removed from seismic waves, we demonstrate that it is possible to achieve elastic surface (Rayleigh) wave reflectors at very large wavelengths in structured soils modelled as a fully elastic layer periodically clamped to bedrock. We identify zero frequency stop-bands that only exist in the limit of columns of concrete clamped at their base to the bedrock. In a realistic configuration of a sedimentary basin 15 m deep we observe a zero frequency stop-band covering a broad frequency range of 0–30 Hz. (paper)

  20. An autocorrelation method to detect low frequency earthquakes within tremor

    Science.gov (United States)

    Brown, J.R.; Beroza, G.C.; Shelly, D.R.

    2008-01-01

    Recent studies have shown that deep tremor in the Nankai Trough under western Shikoku consists of a swarm of low frequency earthquakes (LFEs) that occur as slow shear slip on the down-dip extension of the primary seismogenic zone of the plate interface. The similarity of tremor in other locations suggests a similar mechanism, but the absence of cataloged low frequency earthquakes prevents a similar analysis. In this study, we develop a method for identifying LFEs within tremor. The method employs a matched-filter algorithm, similar to the technique used to infer that tremor in parts of Shikoku is comprised of LFEs; however, in this case we do not assume the origin times or locations of any LFEs a priori. We search for LFEs using the running autocorrelation of tremor waveforms for 6 Hi-Net stations in the vicinity of the tremor source. Time lags showing strong similarity in the autocorrelation represent either repeats, or near repeats, of LFEs within the tremor. We test the method on an hour of Hi-Net recordings of tremor and demonstrates that it extracts both known and previously unidentified LFEs. Once identified, we cross correlate waveforms to measure relative arrival times and locate the LFEs. The results are able to explain most of the tremor as a swarm of LFEs and the locations of newly identified events appear to fill a gap in the spatial distribution of known LFEs. This method should allow us to extend the analysis of Shelly et al. (2007a) to parts of the Nankai Trough in Shikoku that have sparse LFE coverage, and may also allow us to extend our analysis to other regions that experience deep tremor, but where LFEs have not yet been identified. Copyright 2008 by the American Geophysical Union.

  1. Fin whale sound reception mechanisms: skull vibration enables low-frequency hearing.

    Directory of Open Access Journals (Sweden)

    Ted W Cranford

    Full Text Available Hearing mechanisms in baleen whales (Mysticeti are essentially unknown but their vocalization frequencies overlap with anthropogenic sound sources. Synthetic audiograms were generated for a fin whale by applying finite element modeling tools to X-ray computed tomography (CT scans. We CT scanned the head of a small fin whale (Balaenoptera physalus in a scanner designed for solid-fuel rocket motors. Our computer (finite element modeling toolkit allowed us to visualize what occurs when sounds interact with the anatomic geometry of the whale's head. Simulations reveal two mechanisms that excite both bony ear complexes, (1 the skull-vibration enabled bone conduction mechanism and (2 a pressure mechanism transmitted through soft tissues. Bone conduction is the predominant mechanism. The mass density of the bony ear complexes and their firmly embedded attachments to the skull are universal across the Mysticeti, suggesting that sound reception mechanisms are similar in all baleen whales. Interactions between incident sound waves and the skull cause deformations that induce motion in each bony ear complex, resulting in best hearing sensitivity for low-frequency sounds. This predominant low-frequency sensitivity has significant implications for assessing mysticete exposure levels to anthropogenic sounds. The din of man-made ocean noise has increased steadily over the past half century. Our results provide valuable data for U.S. regulatory agencies and concerned large-scale industrial users of the ocean environment. This study transforms our understanding of baleen whale hearing and provides a means to predict auditory sensitivity across a broad spectrum of sound frequencies.

  2. Nonlinear low-frequency wave aspect of foreshock density holes

    Directory of Open Access Journals (Sweden)

    N. Lin

    2008-11-01

    Full Text Available Recent observations have uncovered short-duration density holes in the Earth's foreshock region. There is evidence that the formation of density holes involves non-linear growth of fluctuations in the magnetic field and plasma density, which results in shock-like boundaries followed by a decrease in both density and magnetic field. In this study we examine in detail a few such events focusing on their low frequency wave characteristics. The propagation properties of the waves are studied using Cluster's four point observations. We found that while these density hole-structures were convected with the solar wind, in the plasma rest frame they propagated obliquely and mostly sunward. The wave amplitude grows non-linearly in the process, and the waves are circularly or elliptically polarized in the left hand sense. The phase velocities calculated from four spacecraft timing analysis are compared with the velocity estimated from δEB. Their agreement justifies the plane electromagnetic wave nature of the structures. Plasma conditions are found to favor firehose instabilities. Oblique Alfvén firehose instability is suggested as a possible energy source for the wave growth. Resonant interaction between ions at certain energy and the waves could reduce the ion temperature anisotropy and thus the free energy, thereby playing a stabilizing role.

  3. Nonlinear low-frequency wave aspect of foreshock density holes

    Directory of Open Access Journals (Sweden)

    N. Lin

    2008-11-01

    Full Text Available Recent observations have uncovered short-duration density holes in the Earth's foreshock region. There is evidence that the formation of density holes involves non-linear growth of fluctuations in the magnetic field and plasma density, which results in shock-like boundaries followed by a decrease in both density and magnetic field. In this study we examine in detail a few such events focusing on their low frequency wave characteristics. The propagation properties of the waves are studied using Cluster's four point observations. We found that while these density hole-structures were convected with the solar wind, in the plasma rest frame they propagated obliquely and mostly sunward. The wave amplitude grows non-linearly in the process, and the waves are circularly or elliptically polarized in the left hand sense. The phase velocities calculated from four spacecraft timing analysis are compared with the velocity estimated from δE/δB. Their agreement justifies the plane electromagnetic wave nature of the structures. Plasma conditions are found to favor firehose instabilities. Oblique Alfvén firehose instability is suggested as a possible energy source for the wave growth. Resonant interaction between ions at certain energy and the waves could reduce the ion temperature anisotropy and thus the free energy, thereby playing a stabilizing role.

  4. HERA Broadband Feed Design for Low-Frequency Radio Astronomy

    Science.gov (United States)

    Garza, Sierra; Trung, Vincent; Ewall-Wice, Aaron Michael; Li, Jianshu; Hewitt, Jacqueline; Riley, Daniel; Bradley, Richard F.; Makhija, Krishna

    2018-01-01

    As part of the Hydrogen Epoch of Reionization Array (HERA) project, we are designing a broadband low-frequency radio feed to extend the bandwidth from 100-200 MHz to 50-220 MHz. By extending the lower-limit to 50 MHz, we hope to detect the signatures of the first black holes heating the hydrogen gas in the intergalactic medium.The isolation of a very faint signal from vastly brighter foregrounds sets strict requirements on antenna spectral smoothness, polarization purity, forward gain, and internal reflections. We are currently working to meet these requirements with a broad-band sinuous antenna feed suspended over the 14-m parabolic HERA dish, using a combination of measurements and simulations to verify the performance of our design.A sinuous feed has been designed and simulated with Computer Simulation Technology (CST) software. We will present the construction of a prototype sinuous antenna and measurements of its reflection coefficient, S11, including laboratory characterization of baluns. Our measurements agree well with the CST simulations of the antenna’s performance, giving us confidence in our ability to model the feed and ensure that it meets the requirements of a 21cm cosmology measurement.

  5. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-12-31

    Although eastward propagation is usually regarded as an essential feature of the low-frequency ``Madden-Julian oscillation`` observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  6. Low-frequency oscillations in radiative-convective models

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qi; Randall, D.A.

    1991-01-01

    Although eastward propagation is usually regarded as an essential feature of the low-frequency Madden-Julian oscillation'' observed in the tropical atmosphere, many observations indicate that there is an important stationary or quasi-stationary component of the oscillation. Yasunari (1979), for example, investigated the stationary 30--60 day variation in upper tropospheric cloudiness in the Asian summer monsoon region. In a case study of the 30--60 day oscillation. Hsu et al. (1990) found a strong stationary oscillation of the divergence, outgoing longwave mdiadon and other fields. A recent observational study by Weickmann and Khalsa (1990) offers further evidence that the Madden-Julian oscillation has an important stationary component. In this paper, we present evidence that intraseasonal oscillations can be produced by local radiative and convective processes. This suggests that the observed propagating Madden-Julian wave is produced by interactions between these local processes and the large scale motion field, and is not essential for the existence of the observed oscillation.

  7. DC response of dust to low frequency AC signals

    Science.gov (United States)

    McKinlay, Michael; Konopka, Uwe; Thomas, Edward

    2017-10-01

    Macroscopic changes in the shape and equilibrium position of clouds of charged microparticles suspended in a plasma have been observed in response to low frequency AC signals. In these experiments, dusty plasmas consisting of 2-micron diameter silica microspheres suspended between an anode and cathode in an argon, DC glow discharge plasma are produced in a grounded, 6-way cross vacuum chamber. An AC signal, produced by a function generator and amplified by a bipolar op-amp, is superimposed onto the potential from the cathode. The frequencies of the applied AC signals, ranging from tens to hundreds of kHz, are comparable to the ion-neutral collision frequency; well below the ion/electron plasma frequencies, but also considerably higher than the dust plasma frequency. This presentation will detail the experimental setup, present documentation and categorization of observations of the dust response, and present an initial model of the response. This work is supported by funding from the US Dept. of Energy, Grant Number DE-SC0016330, and by the National Science Foundation, Grant Number PHY-1613087.

  8. Low-frequency elastic vibrations localized near fracture in solid

    International Nuclear Information System (INIS)

    Kosevich, Yu.A.; Syrkin, E.S.

    1994-11-01

    We propose a consistent macroscopic description of the thermodynamic and dynamical properties of two-dimensional surface layers on the interface between two crystals or between different media. Such description enables one to elucidate the effect of two-dimensional defects (fracture) on the frequency, dispersion and polarization characteristics of surface waves and scattered on two-dimensional defects bulk waves of various nature, starting from rather general assumptions and without using of the microscopic models of surface or interface layers. A new thermodynamic variable for two-dimensional defect with an internal dynamical degree of freedom is introduced. The coupled long-wavelength and low-frequency equations of motion of the defect layer are obtained as a set of nontraditional boundary conditions for the bulk equations of the theory of elasticity. New types of surface and pseudo-surface (resonance) waves caused by two-dimensional absorbed or segregated layers with different strength of bonding with elastic substrate are analyzed. (author). 31 refs, 4 figs

  9. Broadband low-frequency sound isolation by lightweight adaptive metamaterials

    Science.gov (United States)

    Liao, Yunhong; Chen, Yangyang; Huang, Guoliang; Zhou, Xiaoming

    2018-03-01

    Blocking broadband low-frequency airborne noises is highly desirable in lots of engineering applications, while it is extremely difficult to be realized with lightweight materials and/or structures. Recently, a new class of lightweight adaptive metamaterials with hybrid shunting circuits has been proposed, demonstrating super broadband structure-borne bandgaps. In this study, we aim at examining their potentials in broadband sound isolation by establishing an analytical model that rigorously combines the piezoelectric dynamic couplings between adaptive metamaterials and acoustics. Sound transmission loss of the adaptive metamaterial is investigated with respect to both the frequency and angular spectrum to demonstrate their sound-insulation effects. We find that efficient sound isolation can indeed be pursued in the broadband bi-spectrum for not only the case of the small resonator's periodicity where only one mode relevant to the mass-spring resonance exists, but also for the large-periodicity scenario, so that the total weight can be even lighter, in which the multiple plate-resonator coupling modes appear. In the latter case, the negative spring stiffness provided by the piezoelectric stack has been utilized to suppress the resonance-induced high acoustic transmission. Such kinds of adaptive metamaterials could open a new approach for broadband noise isolation with extremely lightweight structures.

  10. Energy harvesting from low frequency applications using piezoelectric materials

    International Nuclear Information System (INIS)

    Li, Huidong; Tian, Chuan; Deng, Z. Daniel

    2014-01-01

    In an effort to eliminate the replacement of the batteries of electronic devices that are difficult or impractical to service once deployed, harvesting energy from mechanical vibrations or impacts using piezoelectric materials has been researched over the last several decades. However, a majority of these applications have very low input frequencies. This presents a challenge for the researchers to optimize the energy output of piezoelectric energy harvesters, due to the relatively high elastic moduli of piezoelectric materials used to date. This paper reviews the current state of research on piezoelectric energy harvesting devices for low frequency (0–100 Hz) applications and the methods that have been developed to improve the power outputs of the piezoelectric energy harvesters. Various key aspects that contribute to the overall performance of a piezoelectric energy harvester are discussed, including geometries of the piezoelectric element, types of piezoelectric material used, techniques employed to match the resonance frequency of the piezoelectric element to input frequency of the host structure, and electronic circuits specifically designed for energy harvesters

  11. Low frequency acoustic waves from explosive sources in the atmosphere

    Science.gov (United States)

    Millet, Christophe; Robinet, Jean-Christophe; Roblin, Camille; Gloerfelt, Xavier

    2006-11-01

    In this study, a perturbative formulation of non linear euler equations is used to compute the pressure variation for low frequency acoustic waves from explosive sources in real atmospheres. Based on a Dispersion-Relation-Preserving (DRP) finite difference scheme, the discretization provides good properties for both sound generation and long range sound propagation over a variety of spatial atmospheric scales. It also assures that there is no wave mode coupling in the numerical simulation The background flow is obtained by matching the comprehensive empirical global model of horizontal winds HWM-93 (and MSISE-90 for the temperature profile) with meteorological reanalysis of the lower atmosphere. Benchmark calculations representing cases where there is downward and upward refraction (including shadow zones), ducted propagation, and generation of acoustic waves from low speed shear layers are considered for validation. For all cases, results show a very good agreement with analytical solutions, when available, and with other standard approaches, such as the ray tracing and the normal mode technique. Comparison of calculations and experimental data from the high explosive ``Misty Picture'' test that provided the scaled equivalent airblast of an 8 kt nuclear device (on May 14, 1987), is also considered. It is found that instability waves develop less than one hour after the wavefront generated by the detonation passes.

  12. Earless toads sense low frequencies but miss the high notes

    DEFF Research Database (Denmark)

    Womack, Molly C; Christensen-Dalsgaard, Jakob; Coloma, Luis A

    2017-01-01

    Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre-existing alternat......Sensory losses or reductions are frequently attributed to relaxed selection. However, anuran species have lost tympanic middle ears many times, despite anurans' use of acoustic communication and the benefit of middle ears for hearing airborne sound. Here we determine whether pre......-existing alternative sensory pathways enable anurans lacking tympanic middle ears (termed earless anurans) to hear airborne sound as well as eared species or to better sense vibrations in the environment. We used auditory brainstem recordings to compare hearing and vibrational sensitivity among 10 species (six eared......, four earless) within the Neotropical true toad family (Bufonidae). We found that species lacking middle ears are less sensitive to high-frequency sounds, however, low-frequency hearing and vibrational sensitivity are equivalent between eared and earless species. Furthermore, extratympanic hearing...

  13. Health effects of low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    1992-06-01

    The US Department of Labor and the President's Office of Science and Technology Policy (STP) requested that the Committee on interagency Radiation Research and Policy Coordination (CIRRPC) conduct an independent evaluation of the reported health effects from exposure to low-frequency electric and magnetic fields (ELF-EMF), especially reports of carcinogenesis and reproductive and neurophysiological effects focusing on frequencies which appeared to be of greatest public concern. Oak Ridge Associated Universities (ORAU) was tasked by the CIRRPC to oversee the review by a panel of independent, non-Federal, scientists. Following their review of over 1000 journal articles, the ORAU Panel concluded ''... that there is no convincing evidence ... to support the contention that exposure to ELF-EMF generated by sources such as household appliances, video display terminals (10 to 30 KHz), and local power lines (15 to 180 Hz) are demonstrable health hazards.'' Although the Panel noted that some biological effects produced by these fields may be of scientific interest and warrant consideration for future research, it concluded that ''... in the broad scope of research needs in basic science and health research, any health concerns over exposures to these fields should not receive a high priority.'' This executive summary outlines the panel's investigation

  14. Low-frequency nuclear quadrupole resonance with a dc SQUID

    International Nuclear Information System (INIS)

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs

  15. Study of extremely low frequency electromagnetic fields in infant incubators.

    Science.gov (United States)

    Cermáková, Eleonora

    2003-01-01

    The aim of the work was to present the results of measurements of extremely low frequency electromagnetic fields (ELF EMF), namely the magnetic flux density, inside infant incubators, and to compare these results with the data published by other authors who point out to a possible association between leukemia or other diseases observed in newborns kept in incubators after the birth and the ELF EMF exposure in the incubator. The measured magnetic flux densities were compared with the reference values for this frequency range indicated in the European Union (EU) recommendations. The repeated measurements in incubators were made with a calibrated magnetometer EFA 300 in the frequency range of 5-30 kHz. Effective values of magnetic flux densities of ELF EMF were determined taking account of the reference values. The results of many repeated measurements showing the values of magnetic flux density in modern incubators with plastic supporting frame, were compared with those obtained in old type incubators with iron skeleton. A power frequency of 50 Hz was detected in the incubator and the ELF EMF values were by over two orders lower than the EU reference values. The paper emphasizes the need to take a special care of newborns kept in incubators even if only the sub-reference values are detected. The EU reference values are intended for the adult human population. A baby in an incubator has much smaller dimensions, higher electric conductivity and maybe trigger another mechanism of response to ELF EMF than that indicated in this paper.

  16. Considerations on collected data with the Low Frequency Facility experiment

    Energy Technology Data Exchange (ETDEWEB)

    Di Virgilio, A [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Cella, G [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Dattilo, V [EGO, European, Gravitational Observatory, Cascina (Italy); Frasconi, F [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Gennai, A [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Penna, P La [EGO, European, Gravitational Observatory, Cascina (Italy); Losurdo, G [INFN Sezione di Firenze, Sesto Fiorentino (Italy); Pasqualetti, A [EGO, European, Gravitational Observatory, Cascina (Italy); Passuello, D [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Piergiovanni, F [Universita di Urbino, Urbino (Italy); Porzio, A [Coherentia, CNR-INFM Napoli (Italy); Raffaelli, F [Istituto Nazionale di Fisica Nucleare, Sezione di Pisa, Polo Fibonacci Ed. C, via F. Buonarrori 2, Pisa (Italy); Rapagnani, P [Universita di Roma, Roma1, Rome (Italy); Ricci, F [Universita di Roma, Roma1, Rome (Italy); Solimeno, S [Coherentia, CNR-INFM Napoli (Italy); Istituto Nazionale di Fisica Nucleare, Sez. Napoli, and Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' (Italy); Zhang, Z [EGO, European, Gravitational Observatory, Cascina (Italy)

    2006-03-02

    The Low Frequency Facility consists of a 1 cm Fabry-Perot cavity suspended to a single SuperAttenuator, which is the mechanical system adopted to isolate the test masses of the Virgo interferometer. In this paper we present the preliminary results of measurements performed with a cavity of finesse 4000 and lasting 1-2 hours in different working conditions. The analysis presented here is focused mainly on the region below 100 Hz, and uses data collected with longitudinal control bandwidth below 150 Hz. A calibration test confirmed that the collected data are in good agreement with the model of the longitudinal control loop based on the open loop measurements. In addition to this, above 2 Hz the power spectrum of the two mirrors relative displacement shows a stationary noise floor and few peaks with high mechanical quality factor. Studying these peaks in the time domain, it has been observed that the energy associated with a single peak is Boltzman distributed, whether the oscillations are not excited. The measured upper limit of the seismic noise contamination at 10 Hz is around 2 x 10{sup -14} m/{radical}Hz.

  17. Bayesian inference on EMRI signals using low frequency approximations

    International Nuclear Information System (INIS)

    Ali, Asad; Meyer, Renate; Christensen, Nelson; Röver, Christian

    2012-01-01

    Extreme mass ratio inspirals (EMRIs) are thought to be one of the most exciting gravitational wave sources to be detected with LISA. Due to their complicated nature and weak amplitudes the detection and parameter estimation of such sources is a challenging task. In this paper we present a statistical methodology based on Bayesian inference in which the estimation of parameters is carried out by advanced Markov chain Monte Carlo (MCMC) algorithms such as parallel tempering MCMC. We analysed high and medium mass EMRI systems that fall well inside the low frequency range of LISA. In the context of the Mock LISA Data Challenges, our investigation and results are also the first instance in which a fully Markovian algorithm is applied for EMRI searches. Results show that our algorithm worked well in recovering EMRI signals from different (simulated) LISA data sets having single and multiple EMRI sources and holds great promise for posterior computation under more realistic conditions. The search and estimation methods presented in this paper are general in their nature, and can be applied in any other scenario such as AdLIGO, AdVIRGO and Einstein Telescope with their respective response functions. (paper)

  18. Spectral Flattening at Low Frequencies in Crab Giant Pulses

    Science.gov (United States)

    Meyers, B. W.; Tremblay, S. E.; Bhat, N. D. R.; Shannon, R. M.; Kirsten, F.; Sokolowski, M.; Tingay, S. J.; Oronsaye, S. I.; Ord, S. M.

    2017-12-01

    We report on simultaneous wideband observations of Crab giant pulses with the Parkes radio telescope and the Murchison Widefield Array (MWA). The observations were conducted simultaneously at 732 and 3100 MHz with Parkes and at 120.96, 165.76, and 210.56 MHz with the MWA. Flux density calibration of the MWA data was accomplished using a novel technique based on tied-array beam simulations. We detected between 90 and 648 giant pulses in the 120.96-210.56 MHz MWA subbands above a 5.5σ threshold, while in the Parkes subbands we detected 6344 and 231 giant pulses above a threshold of 6σ at 732 and 3100 MHz, respectively. We show, for the first time over a wide frequency range, that the average spectrum of Crab giant pulses exhibits a significant flattening at low frequencies. The spectral index, α, for giant pulses evolves from a steep, narrow distribution with a mean α =-2.6 and width {σ }α =0.5 between 732 and 3100 MHz to a wide, flat distribution of spectral indices with a mean α =-0.7 and width {σ }α =1.4 between 120.96 and 165.76 MHz. We also comment on the plausibility of giant pulse models for fast radio bursts based on this spectral information.

  19. Simple programmable voltage reference for low frequency noise measurements

    Science.gov (United States)

    Ivanov, V. E.; Chye, En Un

    2018-05-01

    The paper presents a circuit design of a low-noise voltage reference based on an electric double-layer capacitor, a microcontroller and a general purpose DAC. A large capacitance value (1F and more) makes it possible to create low-pass filter with a large time constant, effectively reducing low-frequency noise beyond its bandwidth. Choosing the optimum value of the resistor in the RC filter, one can achieve the best ratio between the transient time, the deviation of the output voltage from the set point and the minimum noise cut-off frequency. As experiments have shown, the spectral density of the voltage at a frequency of 1 kHz does not exceed 1.2 nV/√Hz the maximum deviation of the output voltage from the predetermined does not exceed 1.4 % and depends on the holding time of the previous value. Subsequently, this error is reduced to a constant value and can be compensated.

  20. Latitudinal beaming of Jupiter's low frequency radio emissions

    International Nuclear Information System (INIS)

    Alexander, J.K.; Desch, M.D.; Kaiser, M.L.; Thieman, J.R.

    1979-01-01

    By comparing Rae 1 and Imp 6 satelite measurements of Jupiter's radio emissions near 1 MHz with recent Voyager 1 and 2 observations in the same frequency range it is now possible to study the properties of the low frequency radiation pattern over a 10 0 range of latitudes with respect to the Jovian rotation equator. These observations, which cover a wider latitudinal range than is possible from the earth, are consistent with many aspect of earlier ground-based measurements that have been used to infer a sharp beaming pattern for the decameter wavelength emissions. We find marked, systematic changes in the statistical occurrence probability distributions with system III central meridian longitude as the Jovigraphic latitude of the observer changes over this range. Moreover, simultaneous observations by the two Voyager spacecraft, which are separated by up to 3 0 in Jovigraphic latitude, suggest that the instantaneous beam width may be no more than a few degrees at times. The new hectometer wave results can be interpreted in terms of a narrow, curved sheet at a fixed magnetic latitude into which the emission is beamed to escape the planet

  1. The Effects of Sediment Properties on Low Frequency Acoustic Propagation

    Science.gov (United States)

    2013-09-30

    boring 5 locations (BH-15 and BH-8). We used three different correlation relationships to convert the reported N -values from the borings to a...to converge to the correct result. Adjoint inversions were performed in this study using synthetic acoustic data created using glider based sound...shear speed values estimated from the SPT blow counts (using three different methods) contained in boring log BH-15. Right panel shows the

  2. Borehole strain observations of very low frequency earthquakes

    Science.gov (United States)

    Hawthorne, J. C.; Ghosh, A.; Hutchinson, A. A.

    2016-12-01

    We examine the signals of very low frequency earthquakes (VLFEs) in PBO borehole strain data in central Cascadia. These MW 3.3 - 4.1 earthquakes are best observed in seismograms at periods of 20 to 50 seconds. We look for the strain they produce on timescales from about 1 to 30 minutes. First, we stack the strain produced by 13 VLFEs identified by a grid search moment tensor inversion algorithm by Ghosh et. al. (2015) and Hutchinson and Ghosh (2016), as well as several thousand VLFEs detected through template matching these events. The VLFEs are located beneath southernmost Vancouver Island and the eastern Olympic Peninsula, and are best recorded at co-located stations B005 and B007. However, even at these stations, the signal to noise in the stack is often low, and the records are difficult to interpret. Therefore we also combine data from multiple stations and VLFE locations, and simply look for increases in the strain rate at the VLFE times, as increases in strain rate would suggest an increase in the moment rate. We compare the background strain rate in the 12 hours centered on the VLFEs with the strain rate in the 10 minutes centered on the VLFEs. The 10-minute duration is chosen as a compromise that averages out some instrumental noise without introducing too much longer-period random walk noise. Our results suggest a factor of 2 increase in strain rate--and thus moment rate--during the 10-minute VLFE intervals. The increase gives an average VLFE magnitude around M 3.5, within the range of magnitudes obtained with seismology. Further analyses are currently being carried out to better understand the evolution of moment release before, during, and after the VLFEs.

  3. A Model for Low-Frequency Earthquake Slip

    Science.gov (United States)

    Chestler, S. R.; Creager, K. C.

    2017-12-01

    Using high-resolution relative low-frequency earthquake (LFE) locations, we calculate the patch areas (Ap) of LFE families. During episodic tremor and slip (ETS) events, we define AT as the area that slips during LFEs and ST as the total amount of summed LFE slip. Using observed and calculated values for AP, AT, and ST, we evaluate two end-member models for LFE slip within an LFE family patch. In the ductile matrix model, LFEs produce 100% of the observed ETS slip (SETS) in distinct subpatches (i.e., AT ≪ AP). In the connected patch model, AT = AP, but ST ≪ SETS. LFEs cluster into 45 LFE families. Spatial gaps (˜10 to 20 km) between LFE family clusters and smaller gaps within LFE family clusters serve as evidence that LFE slip is heterogeneous on multiple spatial scales. We find that LFE slip only accounts for ˜0.2% of the slip within the slow slip zone. There are depth-dependent trends in the characteristic (mean) moment and in the number of LFEs during both ETS events (only) and the entire ETS cycle (Mcets and NTets and Mcall and NTall, respectively). During ETS, Mc decreases with downdip distance but NT does not change. Over the entire ETS cycle, Mc decreases with downdip distance, but NT increases. These observations indicate that deeper LFE slip occurs through a larger number (800-1,200) of small LFEs, while updip LFE slip occurs primarily during ETS events through a smaller number (200-600) of larger LFEs. This could indicate that the plate interface is stronger and has a higher stress threshold updip.

  4. Effects of extremely low frequency electromagnetic fields on human beings

    International Nuclear Information System (INIS)

    Lilien, J.L.; Dular, P.; Sabariego, R.; Beauvois, V.; Barbier, P.P.; Lorphevre, R.

    2010-01-01

    Since the early seventies, potential health risks from ELF (Extremely Low frequency electromagnetic Fields) exposure (50 Hz) have been extensively treated in the literature (more than 1000 references registered by WHO (World Health Organisation), 2007). After 30 years of worldwide research, the major epidemiological output is the possible modest increased risk (by a factor 2) of childhood leukaemia in case of a long exposure to an ambient magnetic flux density (B-field) higher than 0.4 μT. However, this fact has not been confirmed by in vivo and in vitro studies. Moreover it has not been validated by any adverse health biological mechanisms neither for adults nor for children. International recommendations (ICNIRP, International Commission on Non-Ionising Radiation Protection) are currently, for general public, not to exceed a B-field of 100 μT (50 Hz) and an E-field of 5 kV/m (50 Hz). Herein, a rough overview of typical values of ELF fields will be presented followed by a brief literature survey on childhood leukaemia and ELF The potential carcinogenic effect of ELF would be linked to electrical disturbances in cell behaviour. The major concern linking child-hood leukaemia and ELF is thus to determine the response of bone marrow cells under ELF fields. With that purpose, transmembrane potential will be targeted and linked to the E-field at that level. This paper is three-folded: (1) the electric interactions between ambient ELF fields and the body are studied both qualitatively and quantitatively. Different sources of internal E-field are analysed and classified according to their potential risk; (2) the hypothesis of contact current is detailed; (3) key actions to undertake are highlighted. Based on the current state of the art and some authors' own developments, this paper proposes simple low cost enhancements of private electrical installations in order to annihilate the major source of potential effects of ELF. (authors)

  5. Low Frequency Shadowing of the Parkes Superb Survey

    Science.gov (United States)

    Bhat, N. D. R.; Kaplan, D. L.; Williams, A.; Wayth, R.

    2017-01-01

    The field of Fast Radio Bursts (FRBs) is rapidly gaining momentum. Since their discovery in the Parkes high time resolution survey (Thornton et al. 2013), the number of reported FRB detections has more than tripled, and measurements have been made of their scattering, scintillation, polarisation and Faraday rotation properties, all of which helped to establish their astrophysical nature. Obser- vational evidence continues to mount in support of their extragalactic origin, and the world-wide competitive race is ramping up as a suite of new and existing instruments are gearing up to find them in large numbers. The SUPERB survey at Parkes has been conceived to realise the important goal of understanding the origin and progenitors of FRBs. An integral part of this survey is co-ordinated multi-wavelength follow-ups and shadowing. Our MWA-based shadowing efforts last year resulted in the first simultaneous multi-frequency observation of an FRB (albeit a non-detection at the MWA), and hence the first broadband limit on the spectral index, as reported in our Nature publication (Keane at al. 2016). After an year-long hiatus the SUPERB survey is scheduled to resume in December 2016. We propose to resume our MWA-based efforts by undertaking effective low-frequency shadowing that is uniquely possible with the MWA. Simultaneous detection of even a single a self-same FRB would bring in a huge science payoff and will yield the first unambiguous constraints on the spectral and scattering properties of FRBs, besides the prospects of sub-arc minute localisation that will be possible with the long baseline array of Phase 2 MWA. We propose to make use of unallocated blocks of time within the schedule, available outside the approved programs and the planned commissioning activities relating to Phase 2. This proposal will thus make excellent use of idle time for an exciting and very important science goal in the nascent field of FRB science.

  6. LOW-FREQUENCY OSCILLATIONS IN XTE J1550-564

    International Nuclear Information System (INIS)

    Rao Fengyun; Belloni, Tomaso; Stella, Luigi; Zhang Shuangnan; Li Tipei

    2010-01-01

    We present the results of a timing analysis of the low-frequency quasi-periodic oscillation (QPO) in the Rossi X-Ray Timing Explorer data of the black hole binary XTE J1550-564 during its 1998 outburst. The QPO frequency is observed to vary on timescales between ∼100 s and days, correlated with the count rate contribution from the optically thick accretion disk: we studied this correlation and discuss its influence on the QPO width. In all observations, the quality factors (ν 0 /FWHM) of the fundamental and second harmonic peaks were observed to be consistent, suggesting that the quasi-periodic nature of the oscillation is due to frequency modulation. In addition to the QPO and its harmonic peaks, a new 1.5ν component was detected in the power spectra. This component is broad, with a quality factor of ∼0.6. From this, we argue that the peak observed at half the QPO frequency, usually referred to as 'sub-harmonic', could be the fundamental frequency, leading to the sequence 1:2:3:4. We also studied the energy dependence of the timing features and conclude that the two continuum components observed in the power spectrum, although both more intense at high energies, show a different dependence on energy. At low energies, the lowest-frequency component dominates, while at high energies the higher-frequency one has a higher fractional rms. An interplay between these two components was also observed as a function of their characteristic frequency. In this source, the transition between the low/hard state and the hard-intermediate state appears to be a smooth process.

  7. Extragalactic Peaked-spectrum Radio Sources at Low Frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Callingham, J. R.; Gaensler, B. M.; Sadler, E. M.; Lenc, E. [Sydney Institute for Astronomy (SIfA), School of Physics, The University of Sydney, NSW 2006 (Australia); Ekers, R. D.; Bell, M. E. [CSIRO Astronomy and Space Science (CASS), Marsfield, NSW 2122 (Australia); Line, J. L. B.; Hancock, P. J.; Kapińska, A. D.; McKinley, B.; Procopio, P. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO) (Australia); Hurley-Walker, N.; Tingay, S. J.; Franzen, T. M. O.; Morgan, J. [International Centre for Radio Astronomy Research (ICRAR), Curtin University, Bentley, WA 6102 (Australia); Dwarakanath, K. S. [Raman Research Institute (RRI), Bangalore 560080 (India); For, B.-Q. [International Centre for Radio Astronomy Research (ICRAR), The University of Western Australia, Crawley, WA 6009 (Australia); Hindson, L.; Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6140 (New Zealand); Offringa, A. R., E-mail: joseph.callingham@sydney.edu.au [Netherlands Institute for Radio Astronomy (ASTRON), Dwingeloo (Netherlands); and others

    2017-02-20

    We present a sample of 1483 sources that display spectral peaks between 72 MHz and 1.4 GHz, selected from the GaLactic and Extragalactic All-sky Murchison Widefield Array (GLEAM) survey. The GLEAM survey is the widest fractional bandwidth all-sky survey to date, ideal for identifying peaked-spectrum sources at low radio frequencies. Our peaked-spectrum sources are the low-frequency analogs of gigahertz-peaked spectrum (GPS) and compact-steep spectrum (CSS) sources, which have been hypothesized to be the precursors to massive radio galaxies. Our sample more than doubles the number of known peaked-spectrum candidates, and 95% of our sample have a newly characterized spectral peak. We highlight that some GPS sources peaking above 5 GHz have had multiple epochs of nuclear activity, and we demonstrate the possibility of identifying high-redshift ( z > 2) galaxies via steep optically thin spectral indices and low observed peak frequencies. The distribution of the optically thick spectral indices of our sample is consistent with past GPS/CSS samples but with a large dispersion, suggesting that the spectral peak is a product of an inhomogeneous environment that is individualistic. We find no dependence of observed peak frequency with redshift, consistent with the peaked-spectrum sample comprising both local CSS sources and high-redshift GPS sources. The 5 GHz luminosity distribution lacks the brightest GPS and CSS sources of previous samples, implying that a convolution of source evolution and redshift influences the type of peaked-spectrum sources identified below 1 GHz. Finally, we discuss sources with optically thick spectral indices that exceed the synchrotron self-absorption limit.

  8. Natural very-low-frequency sferics and headache

    Science.gov (United States)

    Vaitl, D.; Propson, N.; Stark, R.; Schienle, A.

      Very-low-frequency (VLF) atmospherics or sferics are pulse-shaped alternating electric and magnetic fields which originate from atmospheric discharges (lightning). The objective of the study was threefold: (i) to analyse numerous parameters characterizing the sferics activity with regard to their suitability for field studies, (ii) to identify meteorological processes related to the sferics activity and (iii) to investigate the possible association of sferics with pain processes in patients suffering from migraine- and tension-type headaches. Over a period of 6 months (July through December) the sferics activity in the area of Giessen (Germany) was recorded. Three sferics parameters were chosen. The number of sferics impulses per day, the variability of the impulse rate during a day and the variability in comparison to the preceding day were correlated with weather processes (thunderstorm, temperature, vapour pressure, barometric pressure, humidity, wind velocity, warm sector). Significant correlations were obtained during the summer months (July, August) but not during the autumn months (October, November, December). During autumn, however, the sferics activity was correlated with the occurrence of migraine-type headaches (r=0.33, Pheadache diary over a period of 6 months (July-December). While the thunderstorm activity was very intense during July and August, no relationship between sferics and migraine was found. In summer, tension-type headaches were associated with meteorological parameters such as temperature (r=0.42, P<0.01) and vapour pressure (r=0.28, P<0.05). Although the sferics activity can explain a small percentage of the variation in migraine occurrence, a direct influence was more likely exerted by visible or otherwise perceptible weather conditions (thunderstorms, humidity, vapour pressure, warm sector, etc.) than by the sferics activity itself.

  9. A Wire Grid Paraboloid for Large Low Frequency Telescopes

    Science.gov (United States)

    Kuiper, Tom

    2017-05-01

    Planetary magnetic fields are usually studied remotely through their electron cyclotron maser (ECM) emission from electrons trapped in their magnetic fields. Jupiter has been well studied since the 1960's because its strong magnetic field allows emissions up to about 40 MHz to be observed. The emission from Earth and other outer planets is mostly below 1 MHz and can only be observed from space. It is reasonable to assume that most exoplanets with ECM must be observed at low frequencies from space. Even optimistic assumptions about the strength of such emission leads one to conclude that very large filled aperture telescopes, with a diameters of a kilometer or more, will be needed.This paper reports on a study of a copper wire reflector with a diameter of 1 km operating between 100 kHz and 3.75 MHz. It would require 200 kg of 0.5 mm diameter copper wire (AWG 24)) to be lifted to and deployed in space. For aluminum, the mass would be about 100 kg. By optimizing the wire spacing the mass can be reduced to 80% of a simple radial-azimuthal arrangement. A relatively flat reflector (0.6 ≤ f/D ≤ 1.0) needs to be anchored at about 5 points from center to ring along 24 radii. Station-keeping CubeSats could serve as anchors. A total of about 100-120 anchors would be needed for an f/D = 1 reflector, adding 200-300 kg. to the mass of the reflector. It would be possible to carry several such reflectors into space in a single payload.The Deep Space Network is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract to the National Aeronautics and Space Administration.

  10. PageRank for low frequency earthquake detection

    Science.gov (United States)

    Aguiar, A. C.; Beroza, G. C.

    2013-12-01

    We have analyzed Hi-Net seismic waveform data during the April 2006 tremor episode in the Nankai Trough in SW Japan using the autocorrelation approach of Brown et al. (2008), which detects low frequency earthquakes (LFEs) based on pair-wise waveform matching. We have generalized this to exploit the fact that waveforms may repeat multiple times, on more than just a pair-wise basis. We are working towards developing a sound statistical basis for event detection, but that is complicated by two factors. First, the statistical behavior of the autocorrelations varies between stations. Analyzing one station at a time assures that the detection threshold will only depend on the station being analyzed. Second, the positive detections do not satisfy "closure." That is, if window A correlates with window B, and window B correlates with window C, then window A and window C do not necessarily correlate with one another. We want to evaluate whether or not a linked set of windows are correlated due to chance. To do this, we map our problem on to one that has previously been solved for web search, and apply Google's PageRank algorithm. PageRank is the probability of a 'random surfer' to visit a particular web page; it assigns a ranking for a webpage based on the amount of links associated with that page. For windows of seismic data instead of webpages, the windows with high probabilities suggest likely LFE signals. Once identified, we stack the matched windows to improve the snr and use these stacks as template signals to find other LFEs within continuous data. We compare the results among stations and declare a detection if they are found in a statistically significant number of stations, based on multinomial statistics. We compare our detections using the single-station method to detections found by Shelly et al. (2007) for the April 2006 tremor sequence in Shikoku, Japan. We find strong similarity between the results, as well as many new detections that were not found using

  11. Manipulating neuronal activity with low frequency transcranial ultrasound

    Science.gov (United States)

    Moore, Michele Elizabeth

    neurons impose temporal constraints on their response to stimulation. If ultrasound-mediated responses are, in fact, ion channel mediated responses, ultrasound-induced responses should exhibit time-dependence characteristics similar to those of optogenetically-triggered responses. Minimal stimulus duration thresholds and the temporal limits of paired pulse facilitation for ultrasound stimulation were identical to those of optogenetic stimulation. Collectively, these experiments demonstrate an electrophysiological basis for low-frequency transcranial ultrasound stimulation of cerebral cortical neuronal activity.

  12. Low-frequency Radio Observatory on the Lunar Surface (LROLS)

    Science.gov (United States)

    MacDowall, Robert; Network for Exploration and Space Science (NESS)

    2018-06-01

    A radio observatory on the lunar surface will provide the capability to image solar radio bursts and other sources. Radio burst imaging will improve understanding of radio burst mechanisms, particle acceleration, and space weather. Low-frequency observations (less than ~20 MHz) must be made from space, because lower frequencies are blocked by Earth’s ionosphere. Solar radio observations do not mandate an observatory on the farside of the Moon, although such a location would permit study of less intense solar bursts because the Moon occults the terrestrial radio frequency interference. The components of the lunar radio observatory array are: the antenna system consisting of 10 – 100 antennas distributed over a square kilometer or more; the system to transfer the radio signals from the antennas to the central processing unit; electronics to digitize the signals and possibly to calculate correlations; storage for the data until it is down-linked to Earth. Such transmission requires amplification and a high-gain antenna system or possibly laser comm. For observatories on the lunar farside a satellite or other intermediate transfer system is required to direct the signal to Earth. On the ground, the aperture synthesis analysis is completed to display the radio image as a function of time. Other requirements for lunar surface systems include the power supply, utilizing solar arrays with batteries to maintain the system at adequate thermal levels during the lunar night. An alternative would be a radioisotope thermoelectric generator requiring less mass. The individual antennas might be designed with their own solar arrays and electronics to transmit data to the central processing unit, but surviving lunar night would be a challenge. Harnesses for power and data transfer from the central processing unit to the antennas are an alternative, but a harness-based system complicates deployment. The concept of placing the antennas and harnesses on rolls of polyimide and

  13. A Sub-Hertz, Low-Frequency Vibration Isolation Platform

    Science.gov (United States)

    Ortiz, Gerardo, G.; Farr, William H.; Sannibale, Virginio

    2011-01-01

    One of the major technical problems deep-space optical communication (DSOC) systems need to solve is the isolation of the optical terminal from vibrations produced by the spacecraft navigational control system and by the moving parts of onboard instruments. Even under these vibration perturbations, the DSOC transceivers (telescopes) need to be pointed l000 fs of times more accurately than an RF communication system (parabolic antennas). Mechanical resonators have been extensively used to provide vibration isolation for groundbased, airborne, and spaceborne payloads. The effectiveness of these isolation systems is determined mainly by the ability of designing a mechanical oscillator with the lowest possible resonant frequency. The Low-Frequency Vibration Isolation Platform (LFVIP), developed during this effort, aims to reduce the resonant frequency of the mechanical oscillators into the sub-Hertz region in order to maximize the passive isolation afforded by the 40 dB/decade roll-off response of the resonator. The LFVIP also provides tip/tilt functionality for acquisition and tracking of a beacon signal. An active control system is used for platform positioning and for dampening of the mechanical oscillator. The basic idea in the design of the isolation platform is to use a passive isolation strut with an approximately equal to 100-mHz resonance frequency. This will extend the isolation range to lower frequencies. The harmonic oscillator is a second-order lowpass filter for mechanical disturbances. The resonance quality depends on the dissipation mechanisms, which are mainly hysteretic because of the low resonant frequency and the absence of any viscous medium. The LFVIP system is configured using the well-established Stewart Platform, which consists of a top platform connected to a base with six extensible struts (see figure). The struts are attached to the base and to the platform via universal joints, which permit the extension and contraction of the struts. The

  14. A Model for Low-Frequency Earthquake Slip in Cascadia

    Science.gov (United States)

    Chestler, S.; Creager, K.

    2017-12-01

    Low-Frequency Earthquakes (LFEs) are commonly used to identify when and where slow slip occurred, especially for slow slip events that are too small to be observed geodetically. Yet, an understanding of how slip occurs within an LFE family patch, or patch on the plate interface where LFEs repeat, is limited. How much slip occurs per LFE and over what area? Do all LFEs within an LFE family rupture the exact same spot? To answer these questions, we implement a catalog of 39,966 LFEs, sorted into 45 LFE families, beneath the Olympic Peninsula, WA. LFEs were detected and located using data from approximately 100 3-component stations from the Array of Arrays experiment. We compare the LFE family patch area to the area within the LFE family patch that slips through LFEs during Cascadia Episodic Tremor and Slip (ETS) events. Patch area is calculated from relative LFE locations, solved for using the double difference method. Slip area is calculated from the characteristic moment (mean of the exponential moment-frequency distribution) and number LFEs for each family and geodetically measured ETS slip. We find that 0.5-5% of the area within an LFE family patch slips through LFEs. The rest must deform in some other manner (e.g., ductile deformation). We also explore LFE slip patterns throughout the entire slow slip zone. Is LFE slip uniform? Does LFE slip account for all geodetically observed slow slip? Double difference relocations reveal that LFE families are 2 km patches where LFE are clustered close together. Additionally, there are clusters of LFE families with diameters of 4-15 km. There are gaps with no observable, repeating LFEs between LFE families in clusters and between clusters of LFE families. Based on this observation, we present a model where LFE slip is heterogeneous on multiple spatial scales. Clusters of LFE families may represent patches with higher strength than the surrounding areas. Finally, we find that LFE slip only accounts for a small fraction ( 0

  15. Characteristics of low-frequency oscillation intensity of airsea turbulent heat fluxes over the northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Based on the daily turbulent heat fluxes and related meteorological variables datasets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea humidity gradient (Δq′) as well as mean air-sea humidity gradient ( Δ q), while the distribution of low-frequency oscillation intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (ΔT′). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of Δq′, low-frequency oscillation intensity of anomalous wind speed (U′), Δ q and mean wind speed (U ), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation intensity of ΔT′ and U . 3) Over the tropical west Pacific and sea areas north of 20°N, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa′ (Ta′) and U′, indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs′ (Ts′) also greatly influences the low-frequency oscillation of LHF (SHF).

  16. Estimation Trajectory of the Low-Frequency Floating Car Considering the Traffic Control

    Directory of Open Access Journals (Sweden)

    Zhijian Wang

    2013-01-01

    Full Text Available Floating car equipped with GPS to detect traffic flow has been widely used in ITS research and applications. The trajectory estimation is the most critical and complex part in the floating vehicle information processing system. However, the trajectory estimation would be more difficult when using the low-frequency data sampling because of the high communication cost and the numerous data. Specifically, the ordinary algorithm cannot determine the specific vehicle paths with two anchor points across multiple intersections. Considering the accuracy in map matching, this paper used a delay matching algorithm and studied the trajectory estimation algorithm focusing on the issue of existence of a small road network between two anchor points. A method considering the three multiobjective factors of signal control and driving distance and number of intersections was developed. Firstly, an optimal solution set was acquired according to multiobjective decision theory and Pareto optimal principles in game theory. Then, the optimal solution set was evaluated synthetically based on the fuzzy set theory. Finally, the candidate trajectory which is the core evaluation factor was identified as the best possible travel path. The algorithm was validated by using the real traffic data in Wangjing area of Beijing. The results showed that the algorithm can get a better trajectory estimation and provide more traffic information to traffic management department.

  17. Cellular studies and interaction mechanisms of extremely low frequency fields

    Science.gov (United States)

    Liburdy, Robert P.

    1995-01-01

    Worldwide interest in the biological effects of ELF (extremely low frequency, level is to identify cellular responses to ELF fields, to develop a dose threshold for such interactions, and with such information to formulate and test appropriate interaction mechanisms. This review is selective and will discuss the most recent cellular studies directed at these goals which relate to power line, sinusoidal ELF fields. In these studies an interaction site at the cell membrane is by consensus a likely candidate, since changes in ion transport, ligand-receptor events such as antibody binding, and G protein activation have been reported. These changes strongly indicate that signal transduction (ST) can be influenced. Also, ELF fields are reported to influence enzyme activation, gene expression, protein synthesis, and cell proliferation, which are triggered by earlier ST events at the cell membrane. The concept of ELF fields altering early cell membrane events and thereby influencing intracellular cell function via the ST cascade is perhaps the most plausible biological framework currently being investigated for understanding ELF effects on cells. For example, the consequence of an increase due to ELF fields in mitogenesis, the final endpoint of the ST cascade, is an overall increase in the probability of mutagenesis and consequently cancer, according to the Ames epigenetic model of carcinogenesis. Consistent with this epigenetic mechanism and the ST pathway to carcinogenesis is recent evidence that ELF fields can alter breast cancer cell proliferation and can act as a copromoter in vitro. The most important dosimetric question being addressed currently is whether the electric (E) or the magnetic (B) field, or if combinations of static B and time-varying B fields represent an exposure metric for the cell. This question relates directly to understanding fundamental interaction mechanisms and to the development of a rationale for ELF dose threshold guidelines. The weight of

  18. Comparison of pulse characteristic of low frequency ultrasonic probes for concrete application

    International Nuclear Information System (INIS)

    Amry Amin Abas; Suhairy Sani; Muhammad Pauzi Ismail

    2006-01-01

    Ultrasonic testing of concrete or large volume of composites usually is done in low frequency range. To obtain low frequency pulse, a low frequency pulser/receiver is used attached to a low frequency probe as transmitter/receiver. Concrete is highly attenuative and a high energy pulse is essential to ensure good penetration of test samples. High energy pulse can be obtained by producing low frequency ultrasonic waves.To achieve high penetration in concrete, a low frequency probe is fabricated with the centre frequency lying at around 100 kHz. The probe is fabricated with single crystal of 18 mm thickness without any backing material to obtain wider pulse and higher pulse power. Then, comparison of pulse characteristic is done between the fabricated probe and a commercially available probe to determine the quality of the probe fabricated. (Author)

  19. LoFASM: A Low Frequency All Sky Monitor for Radio Transients and Student Training

    Science.gov (United States)

    2015-09-02

    SECURITY CLASSIFICATION OF: The Low-Frequency All- Sky Monitor (LoFASM) is an innovative new radio astronomy observatory. Designed and built by...Feb-2015 Approved for Public Release; Distribution Unlimited Final Report: LoFASM: A Low Frequency All Sky Monitor for Radio Transients and Student...reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: LoFASM: A Low Frequency All Sky Monitor for Radio Transients and

  20. Low Frequency Electrostatic Waves in Weakly Inhomogeneous Magnetoplasma Modeled by Lorentzian (kappa) Distributions

    National Research Council Canada - National Science Library

    Basu, Bamandas

    2008-01-01

    ... (to the ambient magnetic field) flow velocities associated with the current. In order to illustrate the distinguishing features of the kappa distributions, stability properties of the low frequency...

  1. Long-term change of activity of very low-frequency earthquakes in southwest Japan

    Science.gov (United States)

    Baba, S.; Takeo, A.; Obara, K.; Kato, A.; Maeda, T.; Matsuzawa, T.

    2017-12-01

    On plate interface near seismogenic zone of megathrust earthquakes, various types of slow earthquakes were detected including non-volcanic tremors, slow slip events (SSEs) and very low-frequency earthquakes (VLFEs). VLFEs are classified into deep VLFEs, which occur in the downdip side of the seismogenic zone, and shallow VLFEs, occur in the updip side, i.e. several kilometers in depth in southwest Japan. As a member of slow earthquake family, VLFE activity is expected to be a proxy of inter-plate slipping because VLFEs have the same mechanisms as inter-plate slipping and are detected during Episodic tremor and slip (ETS). However, long-term change of the VLFE seismicity has not been well constrained compared to deep low-frequency tremor. We thus studied long-term changes in the activity of VLFEs in southwest Japan where ETS and long-term SSEs have been most intensive. We used continuous seismograms of F-net broadband seismometers operated by NIED from April 2004 to March 2017. After applying the band-pass filter with a frequency range of 0.02—0.05 Hz, we adopted the matched-filter technique in detecting VLFEs. We prepared templates by calculating synthetic waveforms for each hypocenter grid assuming typical focal mechanisms of VLFEs. The correlation coefficients between templates and continuous F-net seismograms were calculated at each grid every 1s in all components. The grid interval is 0.1 degree for both longitude and latitude. Each VLFE was detected as an event if the average of correlation coefficients exceeds the threshold. We defined the detection threshold as eight times as large as the median absolute deviation of the distribution. At grids in the Bungo channel, where long-term SSEs occurred frequently, the cumulative number of detected VLFEs increases rapidly in 2010 and 2014, which were modulated by stress loading from the long-term SSEs. At inland grids near the Bungo channel, the cumulative number increases steeply every half a year. This stepwise

  2. Mammalian sleep

    Science.gov (United States)

    Staunton, Hugh

    2005-05-01

    This review examines the biological background to the development of ideas on rapid eye movement sleep (REM sleep), so-called paradoxical sleep (PS), and its relation to dreaming. Aspects of the phenomenon which are discussed include physiological changes and their anatomical location, the effects of total and selective sleep deprivation in the human and animal, and REM sleep behavior disorder, the latter with its clinical manifestations in the human. Although dreaming also occurs in other sleep phases (non-REM or NREM sleep), in the human, there is a contingent relation between REM sleep and dreaming. Thus, REM is taken as a marker for dreaming and as REM is distributed ubiquitously throughout the mammalian class, it is suggested that other mammals also dream. It is suggested that the overall function of REM sleep/dreaming is more important than the content of the individual dream; its function is to place the dreamer protagonist/observer on the topographical world. This has importance for the developing infant who needs to develop a sense of self and separateness from the world which it requires to navigate and from which it is separated for long periods in sleep. Dreaming may also serve to maintain a sense of ‘I’ness or “self” in the adult, in whom a fragility of this faculty is revealed in neurological disorders.

  3. Towards a synthetic chloroplast.

    Directory of Open Access Journals (Sweden)

    Christina M Agapakis

    2011-04-01

    Full Text Available The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.

  4. The low-frequency encoding disadvantage: Word frequency affects processing demands.

    Science.gov (United States)

    Diana, Rachel A; Reder, Lynne M

    2006-07-01

    Low-frequency words produce more hits and fewer false alarms than high-frequency words in a recognition task. The low-frequency hit rate advantage has sometimes been attributed to processes that operate during the recognition test (e.g., L. M. Reder et al., 2000). When tasks other than recognition, such as recall, cued recall, or associative recognition, are used, the effects seem to contradict a low-frequency advantage in memory. Four experiments are presented to support the claim that in addition to the advantage of low-frequency words at retrieval, there is a low-frequency disadvantage during encoding. That is, low-frequency words require more processing resources to be encoded episodically than high-frequency words. Under encoding conditions in which processing resources are limited, low-frequency words show a larger decrement in recognition than high-frequency words. Also, studying items (pictures and words of varying frequencies) along with low-frequency words reduces performance for those stimuli. Copyright 2006 APA, all rights reserved.

  5. Subjective evaluation of noise from neighbours with focus on low frequencies

    DEFF Research Database (Denmark)

    Mortensen, Frank Rysgaard

    1999-01-01

    There is a growing tendency to use lightweight constructions in the building industry. One unwanted side effect of this tendency is poor sound insulation at low frequencies. The purpose of this investigation has been to examine the subjective effects of the resulting increase of low frequency noise...

  6. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    Science.gov (United States)

    2012-08-29

    ... DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar AGENCY: Department of the Navy, DoD. ACTION: Notice of decision... to employ up to four Surveillance Towed Array Sensor System Low Frequency Active (SURTASS LFA) sonar...

  7. Low frequency vibration tests on a floating slab track in an underground laboratory

    Institute of Scientific and Technical Information of China (English)

    De-yun DING; Wei-ning LIU; Ke-fei LI; Xiao-jing SUN; Wei-feng LIU

    2011-01-01

    Low frequency vibrations induced by underground railways have attracted increasing attention in recent years. To obtain the characteristics of low frequency vibrations and the low frequency performance of a floating slab track (FST), low frequency vibration tests on an FST in an underground laboratory at Beijing Jiaotong University were carried out. The FST and an unbalanced shaker SBZ30 for dynamic simulation were designed for use in low frequency vibration experiments. Vibration measurements were performed on the bogie of the unbalanced shaker, the rail, the slab, the tunnel invert, the tunnel wall, the tunnel apex, and on the ground surface at distances varying from 0 to 80 m from the track. Measurements were also made on several floors of an adjacent building. Detailed results of low frequency vibration tests were reported. The attenuation of low frequency vibrations with the distance from the track was presented, as well as the responses of different floors of the building. The experimental results could be regarded as a reference for developing methods to control low frequency vibrations and for adopting countermeasures.

  8. An acoustic vector based approach to locate low frequency noise sources in 3D

    NARCIS (Netherlands)

    Bree, H.-E. de; Ostendorf, C.; Basten, T.

    2009-01-01

    Although low frequency noise is an issue of huge societal importance, traditional acoustic testing methods have limitations in finding the low frequency source. It is hard to determine the direction of the noise using traditional microphones. Three dimensional sound probes capturing the particle

  9. Development of a rating procedure for low frequency noise : Results of measurements near runways

    NARCIS (Netherlands)

    Buikema, E.; Vercammen, M.; Ploeg, F. van der; Granneman, J.; Vos, J.

    2010-01-01

    Recent issues concerning low frequency aircraft noise around airports (groundnoise) and a legal verdict about the application of low frequency noise criteria in the Netherlands have been the motivation to start a research commissioned by the Dutch Ministry of Housing, Spatial Planning and the

  10. Large Amplitude Low Frequency Waves in a Magnetized Nonuniform Electron-Positron-Ion Plasma

    Institute of Scientific and Technical Information of China (English)

    Q. Haque; H. Saleem

    2004-01-01

    @@ It is shown that the large amplitude low-frequency electromagnetic drift waves in electron-positron-ion plasmas might give rise to dipolar vortices. A linear dispersion relation of several coupled electrostatic and electromagnetic low-frequency modes is obtained. The relevance of this work to both laboratory and astrophysical situations is pointed out.

  11. Prediction of the Low Frequency Wave Field on Open Coastal Beaches

    National Research Council Canada - National Science Library

    Ozkan-Haller, H. T

    2005-01-01

    ... (both abrupt and gradual) affect the resulting low frequency wave climate. 3. The assessment of the importance of interactions between different modes of time-varying motions in the nearshore region, as well as interactions between these modes and the incident wave field. 4. To arrive at a predictive understanding of low frequency motions.

  12. Low-frequency electrostatic dust-modes in a non-uniform

    Indian Academy of Sciences (India)

    A self-consistent and general description of obliquely propagating low-frequency electrostatic dust-modes in a non-uniform magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift ...

  13. The role of continuous low-frequency harmonicity cues for interrupted speech perception in bimodal hearing.

    Science.gov (United States)

    Oh, Soo Hee; Donaldson, Gail S; Kong, Ying-Yee

    2016-04-01

    Low-frequency acoustic cues have been shown to enhance speech perception by cochlear-implant users, particularly when target speech occurs in a competing background. The present study examined the extent to which a continuous representation of low-frequency harmonicity cues contributes to bimodal benefit in simulated bimodal listeners. Experiment 1 examined the benefit of restoring a continuous temporal envelope to the low-frequency ear while the vocoder ear received a temporally interrupted stimulus. Experiment 2 examined the effect of providing continuous harmonicity cues in the low-frequency ear as compared to restoring a continuous temporal envelope in the vocoder ear. Findings indicate that bimodal benefit for temporally interrupted speech increases when continuity is restored to either or both ears. The primary benefit appears to stem from the continuous temporal envelope in the low-frequency region providing additional phonetic cues related to manner and F1 frequency; a secondary contribution is provided by low-frequency harmonicity cues when a continuous representation of the temporal envelope is present in the low-frequency, or both ears. The continuous temporal envelope and harmonicity cues of low-frequency speech are thought to support bimodal benefit by facilitating identification of word and syllable boundaries, and by restoring partial phonetic cues that occur during gaps in the temporally interrupted stimulus.

  14. Extracting Low-Frequency Information from Time Attenuation in Elastic Waveform Inversion

    Science.gov (United States)

    Guo, Xuebao; Liu, Hong; Shi, Ying; Wang, Weihong

    2017-03-01

    Low-frequency information is crucial for recovering background velocity, but the lack of low-frequency information in field data makes inversion impractical without accurate initial models. Laplace-Fourier domain waveform inversion can recover a smooth model from real data without low-frequency information, which can be used for subsequent inversion as an ideal starting model. In general, it also starts with low frequencies and includes higher frequencies at later inversion stages, while the difference is that its ultralow frequency information comes from the Laplace-Fourier domain. Meanwhile, a direct implementation of the Laplace-transformed wavefield using frequency domain inversion is also very convenient. However, because broad frequency bands are often used in the pure time domain waveform inversion, it is difficult to extract the wavefields dominated by low frequencies in this case. In this paper, low-frequency components are constructed by introducing time attenuation into the recorded residuals, and the rest of the method is identical to the traditional time domain inversion. Time windowing and frequency filtering are also applied to mitigate the ambiguity of the inverse problem. Therefore, we can start at low frequencies and to move to higher frequencies. The experiment shows that the proposed method can achieve a good inversion result in the presence of a linear initial model and records without low-frequency information.

  15. An investigation of twenty-one cases of low-frequency noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2007-01-01

    Twenty-one cases of low-frequency noise complaints were thoroughly investigated with the aim of answering the question whether it is real physical sound or low-frequency tinnitus that causes the annoyance. Noise recordings were made in the homes of the complainants taking the spatial variation...

  16. Assessment of Crack Detection in Heavy-Walled Cast Stainless Steel Piping Welds Using Advanced Low-Frequency Ultrasonic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Michael T.; Crawford, Susan L.; Cumblidge, Stephen E.; Denslow, Kayte M.; Diaz, Aaron A.; Doctor, Steven R.

    2007-03-01

    Studies conducted at the Pacific Northwest National Laboratory in Richland, Washington, have focused on assessing the effectiveness and reliability of novel approaches to nondestructive examination (NDE) for inspecting coarse-grained, cast stainless steel reactor components. The primary objective of this work is to provide information to the U.S. Nuclear Regulatory Commission on the effectiveness and reliability of advanced NDE methods as related to the inservice inspection of safety-related components in pressurized water reactors (PWRs). This report provides progress, recent developments, and results from an assessment of low frequency ultrasonic testing (UT) for detection of inside surface-breaking cracks in cast stainless steel reactor piping weldments as applied from the outside surface of the components. Vintage centrifugally cast stainless steel piping segments were examined to assess the capability of low-frequency UT to adequately penetrate challenging microstructures and determine acoustic propagation limitations or conditions that may interfere with reliable flaw detection. In addition, welded specimens containing mechanical and thermal fatigue cracks were examined. The specimens were fabricated using vintage centrifugally cast and statically cast stainless steel materials, which are typical of configurations installed in PWR primary coolant circuits. Ultrasonic studies on the vintage centrifugally cast stainless steel piping segments were conducted with a 400-kHz synthetic aperture focusing technique and phased array technology applied at 500 kHz, 750 kHz, and 1.0 MHz. Flaw detection and characterization on the welded specimens was performed with the phased array method operating at the frequencies stated above. This report documents the methodologies used and provides results from laboratory studies to assess baseline material noise, crack detection, and length-sizing capability for low-frequency UT in cast stainless steel piping.

  17. Low-frequency Periodic Error Identification and Compensation for Star Tracker Attitude Measurement

    Institute of Scientific and Technical Information of China (English)

    WANG Jiongqi; XIONG Kai; ZHOU Haiyin

    2012-01-01

    The low-frequency periodic error of star tracker is one of the most critical problems for high-accuracy satellite attitude determination.In this paper an approach is proposed to identify and compensate the low-frequency periodic error for star tracker in attitude measurement.The analytical expression between the estimated gyro drift and the low-frequency periodic error of star tracker is derived firstly.And then the low-frequency periodic error,which can be expressed by Fourier series,is identified by the frequency spectrum of the estimated gyro drift according to the solution of the first step.Furthermore,the compensated model of the low-frequency periodic error is established based on the identified parameters to improve the attitude determination accuracy.Finally,promising simulated experimental results demonstrate the validity and effectiveness of the proposed method.The periodic error for attitude determination is eliminated basically and the estimation precision is improved greatly.

  18. Study on The Extended Range Weather Forecast of Low Frequency Signal Based on Period Analysis Method

    Science.gov (United States)

    Li, X.

    2016-12-01

    Although many studies have explored the MJO and its application for weather forecasting, low-frequency oscillation has been insufficiently studied for the extend range weather forecasting over middle and high latitudes. In China, low-frequency synoptic map is a useful tool for meteorological operation department to forecast extend range weather. It is therefore necessary to develop objective methods to serve the need for finding low-frequency signal, interpretation and application of this signal in the extend range weather forecasting. In this paper, method of Butterworth band pass filter was applied to get low-frequency height field at 500hPa from 1980 to 2014 by using NCEP/NCAR daily grid data. Then period analysis and optimal subset regression methods were used to process the low frequency data of 150 days before the first forecast day and extend the low frequency signal of 500hPa low-frequency high field to future 30 days in the global from June to August during 2011-2014. Finally, the results were test. The main results are as follows: (1) In general, the fitting effect of low frequency signals of 500hPa low-frequency height field by period analysis in the northern hemisphere was better than that in the southern hemisphere, and was better in the low latitudes than that in the high latitudes. The fitting accuracy gradually reduced with the increase of forecast time length, which tended to be stable during the late forecasting period. (2) The fitting effects over the 6 key regions in China showed that except filtering result over Xinjiang area in the first 10 days and 30 days, filtering results over the other 5 key regions throughout the whole period have passed reliability test with level more than 95%. (3) The center and scope of low and high low frequency systems can be fitted well by using the methods mentioned above, which is consist with the corresponding use of the low-frequency synoptic map for the prediction of the extended period. Application of the

  19. The Low-Frequency Encoding Disadvantage: Word Frequency Affects Processing Demands

    OpenAIRE

    Diana, Rachel A.; Reder, Lynne M.

    2006-01-01

    Low-frequency words produce more hits and fewer false alarms than high-frequency words in a recognition task. The low-frequency hit rate advantage has sometimes been attributed to processes that operate during the recognition test (e.g., L. M. Reder et al., 2000). When tasks other than recognition, such as recall, cued recall, or associative recognition, are used, the effects seem to contradict a low-frequency advantage in memory. Four experiments are presented to support the claim that in ad...

  20. On the low frequency characteristics of head-related transfer function

    Institute of Scientific and Technical Information of China (English)

    XIE Bosun

    2009-01-01

    A method to correct the measured head-related transfer functions (HRTFs) at low frequency was proposed. By analyzing the HRTFs from the spherical head model at low frequency, it is proved that below the frequency of 400 Hz, magnitude of HRTF is nearly constant and the phase is a linear function of frequency both for the far and near field. Therefore, if the HRTFs above 400 Hz are accurately measured by experiment, it is able to correct the HRTFs at low frequency by the theoretical model. The results of calculation and subjective experiment show that the feasibility of the proposed method.

  1. Direct excitation of a high frequency wave by a low frequency wave in a plasma

    International Nuclear Information System (INIS)

    Tanaka, Takayasu

    1993-01-01

    A new mechanism is presented of an excitation of a high frequency wave by a low frequency wave in a plasma. This mechanism works when the low frequency wave varies in time in a manner deviated from a usual periodic motion with a constant amplitude. The conversion rate is usually not large but the conversion is done without time delay after the variation of the low frequency wave. The Manley Rowe relation in the usual sense does not hold in this mechanism. This mechanism can excite also waves with same or lower frequencies. (author)

  2. Effects of Low-frequency Current Sacral Dermatome Stimulation on Idiopathic Slow Transit Constipation.

    Science.gov (United States)

    Kim, Jin-Seop; Yi, Seung-Ju

    2014-06-01

    [Purpose] This study aimed to determine whether low-frequency current therapy can be used to reduce the symptoms of idiopathic slow transit constipation (ISTC). [Subjects] Fifteen patients (ten male and five female) with idiopathic slow transit constipation were enrolled in the present study. [Results] Bowel movements per day, bowel movements per week, and constipation assessment scale scores significantly improved after low-frequency current simulation of S2-S3. [Conclusion] Our results show that stimulation with low-frequency current of the sacral dermatomes may offer therapeutic benefits for a subject of patients with ISTC.

  3. [Progress in synthetic biology of "973 Funding Program" in China].

    Science.gov (United States)

    Chen, Guoqiang; Wang, Ying

    2015-06-01

    This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.

  4. Direct CFD Predictions of Low Frequency Sounds Generated by Helicopter Main Rotors

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark; Conner, Dave; Watts, Michael E.

    2010-01-01

    This proposed paper will highlight the application of a CSD/CFD methodology currently inuse by the US Army Aerfolightdynamics Directorate (AFDD) to assess the feasibility and fidelity of directly predicting low frequency sounds of helicopter rotors.

  5. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    Science.gov (United States)

    Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li

    2016-02-01

    A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  6. Comparison of Computational Electromagnetic Codes for Prediction of Low-Frequency Radar Cross Section

    National Research Council Canada - National Science Library

    Lash, Paul C

    2006-01-01

    .... The goal of this research is to compare the capabilities of three computational electromagnetic codes for use in production of RCS signature assessments at low frequencies in terms of performance...

  7. Automated Damage Assessment System for Ballistic Protective Inserts Using Low Frequency Ultrasonics

    National Research Council Canada - National Science Library

    Godinez-Azcuaga, Valery F; Ozevin, Didem; Finlayson, Richard D; Colanto, David

    2006-01-01

    .... Radiography and low frequency ultrasonics are two methods that can provide information about the condition of a BPI, with respect to cracking and porosity in the ceramic plate and debonding between layers...

  8. Power system low frequency oscillation monitoring and analysis based on multi-signal online identification

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The advance in the wide-area measurement system (WAMS) is driving the power system to the trend of wide-area monitoring and control.The Prony method is usually used for low frequency oscillation online identification.However,the identified amplitude and phase information is not sufficiently used.In this paper,the amplitude is adopted to detect the occurrence of the oscillation and to obtain the mode observability of the sites.The phase is adopted to identify the oscillation generator grouping and to obtain the mode shapes.The time varying characteristics of low frequency oscillations are studied.The behaviors and the characters of low frequency oscillations are displayed by dynamic visual techniques.Demonstrations on the "11.9" low frequency oscillation of the Guizhou Power Grid substantiate the feasibility and the validation of the proposed methods.

  9. Low Frequency Activity of Cortical Networks on Microelectrode Arrays is Differentially Altered by Bicuculline and Carbaryl

    Science.gov (United States)

    Thousands of chemicals need to be characterized for their neurotoxicity potential. Neurons grown on microelectrode arrays (MEAs) are an in vitro model used to screen chemicals for functional effects on neuronal networks. Typically, after removal of low frequency components, effec...

  10. Biological effects of exposure to low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Ahnstroem, G.

    1992-10-01

    The biological effects of exposure to low frequency electric and magnetic fields are reviewed with the objective of summarizing effects directly relevant to considerations of the health and safety of exposed people

  11. Analysis of Power System Low Frequency Oscillation Based on Energy Shift Theory

    Science.gov (United States)

    Zhang, Junfeng; Zhang, Chunwang; Ma, Daqing

    2018-01-01

    In this paper, a new method for analyzing low-frequency oscillation between analytic areas based on energy coefficient is proposed. The concept of energy coefficient is proposed by constructing the energy function, and the low-frequency oscillation is analyzed according to the energy coefficient under the current operating conditions; meanwhile, the concept of model energy is proposed to analyze the energy exchange behavior between two generators. Not only does this method provide an explanation of low-frequency oscillation from the energy point of view, but also it helps further reveal the dynamic behavior of complex power systems. The case analysis of four-machine two-area and the power system of Jilin Power Grid proves the correctness and effectiveness of the proposed method in low-frequency oscillation analysis of power system.

  12. Vibration Isolation Study in Scanning Probe Microscopy Part I: Low Frequency

    International Nuclear Information System (INIS)

    Oliva, A.I.; Espinosa-Faller, F.J.; Aguilar, M.

    1998-01-01

    A study of a low frequency isolation device based in a pneumatic system is presented. It consists of four cylinders which are closed and sealed with an elastic membrane on which the load is applied. Each cylinder made of PVC is formed by two chambers divided by a plate with a small hole for communication and damping. Air contained into chambers acts, in combination with the the elastic membranes, as a damper. Scanning probe techniques can be supported by this device in order to reduce the low frequency noises that affects them. Advantages of this isolator are discussed and compared. A theoretical approximation for this model is presented and compared with the experimental results obtained and show that it can isolate noises up to ∼ 2 Hz. The low frequency isolator has stability and fast response to external perturbations. This simple and economical low frequency isolator can be reproduced easily and its design depends on the work specific requirements. (Author) 9 refs

  13. Extremely low frequency electromagnetic field in combination with β ...

    African Journals Online (AJOL)

    Fatemeh Sanie-Jahromi

    Extremely low frequency (<300 Hz) electromagnetic field (EMF) is shown to decrease ... Production and hosting by Elsevier B.V. This is an open access article under ..... mouse liver induced by morphine and protected by antioxidants.

  14. Head Injury and Intracranial Pressure Monitor Using Ultrasonic and Low-Frequency Acoustic (ULFA) Detection

    National Research Council Canada - National Science Library

    Vo-Dinh, Tuan

    2001-01-01

    The main objective of this research project is the development of a non-invasive method and instrument for head injury detection and monitoring using a new approach based on ultrasonic and low-frequency acoustic (ULFA...

  15. Head Injury and Intracranial Pressure Monitor Using Ultrasonic and Low-Frequency (ULFA) Detection

    National Research Council Canada - National Science Library

    Vo-Dinh, Tuan

    2000-01-01

    The main objective of this research project is the development of a non-invasive method and instrument for head injury detection and monitoring using a new approach based on ultrasonic and low-frequency acoustic (ULFA...

  16. A study of twenty-one cases of low-frequency noise complaints

    DEFF Research Database (Denmark)

    Pedersen, Christian Sejer; Møller, Henrik; Persson-Waye, Kerstin

    2008-01-01

    -frequency tinnitus. Noise recordings were made in the homes of the complainants, and the complainants were exposed to these in blind test listening experiments. Furthermore, the low-frequency hearing function of the complainants was investigated, and characteristics of the annoying sound was matched. The results...... showed that some of the complainants are annoyed by a physical sound (20-180 Hz), while others suffer from low-frequency tinnitus (perceived frequency 40-100 Hz). Physical sound at frequencies below 20 Hz (infrasound) is not responsible for the annoyance - or at all audible - in any of the investigated...... cases, and none of the complainants has extraordinary hearing sensitivity at low frequencies. For comparable cases of low-frequency noise complaints in general, it is anticipated that physical sound is responsible in a substantial part of the cases, while lowfrequency tinnitus is responsible in another...

  17. The statistics of low frequency radio interference at the Murchison Radio-astronomy Observatory

    OpenAIRE

    Sokolowski, Marcin; Wayth, Randall B.; Lewis, Morgan

    2016-01-01

    We characterize the low frequency radio-frequency interference (RFI) environment at the Murchison Radio-astronomy Observatory (MRO), the location selected for the low-frequency component of the Square Kilometre Array. Data were collected from the BIGHORNS instrument, located at the MRO, which records a contiguous bandwidth between 70 and 300 MHz, between November 2014 to March 2015 inclusive. The data were processed to identify RFI, and we describe a series of statistics in both the time and ...

  18. Effects on Performance and Work Quality due to Low Frequency Ventilation Noise

    Science.gov (United States)

    Persson Waye, K.; Rylander, R.; Benton, S.; Leventhall, H. G.

    1997-08-01

    A pilot study was carried out to assess method evaluating effects of low frequency noise on performance. Of special interest was to study objective and subjective effects over time. Two ventilation noises were used, one of a predominantly mid frequency character and the other of a predominantly low frequency character. Both had an NC value of 35. For the study, 50 students were recruited and 30 selected on the basis of subjective reports of pressure on the eardrum after exposure to a low frequency noise. Of these, 14 randomly selected subjects aged 21 and 34 took part. The subjects performed three computerized cognitive tests in the mid frequency or the low frequency noise condition alternatively. Tests I and II were performed together with a secondary task.Questionnaires were used to evaluate subjective symptoms, effects on mood and estimated interference with the test results due to temperature, light and noise. The results showed that the subjective estimations of noise interference with performance were higher for the low frequency noise (psocial orientation (pstudied. The results further indicate that the NC curves do not fully assess the negative effects of low frequency noise on work performance.

  19. The Relationship Between Low-Frequency Motions and Community Structure of Residue Network in Protein Molecules.

    Science.gov (United States)

    Sun, Weitao

    2018-01-01

    The global shape of a protein molecule is believed to be dominant in determining low-frequency deformational motions. However, how structure dynamics relies on residue interactions remains largely unknown. The global residue community structure and the local residue interactions are two important coexisting factors imposing significant effects on low-frequency normal modes. In this work, an algorithm for community structure partition is proposed by integrating Miyazawa-Jernigan empirical potential energy as edge weight. A sensitivity parameter is defined to measure the effect of local residue interaction on low-frequency movement. We show that community structure is a more fundamental feature of residue contact networks. Moreover, we surprisingly find that low-frequency normal mode eigenvectors are sensitive to some local critical residue interaction pairs (CRIPs). A fair amount of CRIPs act as bridges and hold distributed structure components into a unified tertiary structure by bonding nearby communities. Community structure analysis and CRIP detection of 116 catalytic proteins reveal that breaking up of a CRIP can cause low-frequency allosteric movement of a residue at the far side of protein structure. The results imply that community structure and CRIP may be the structural basis for low-frequency motions.

  20. The subjective effect of low frequency content in road traffic noise.

    Science.gov (United States)

    Torija, Antonio J; Flindell, Ian H

    2015-01-01

    Based on subjective listening trials, Torija and Flindell [J. Acoust. Soc. Am. 135, 1-4 (2014)] observed that low frequency content in typical urban main road traffic noise appeared to make a smaller contribution to reported annoyance than might be inferred from its objective or physical dominance. This paper reports a more detailed study which was aimed at (i) identifying the difference in sound levels at which low frequency content becomes subjectively dominant over mid and high frequency content and (ii) investigating the relationship between loudness and annoyance under conditions where low frequency content is relatively more dominant, such as indoors where mid and high frequency content is reduced. The results suggested that differences of at least +30 dB between the low frequency and the mid/high frequency content are needed for changes in low frequency content to have as much subjective effect as equivalent changes in mid and high frequency content. This suggests that common criticisms of the A-frequency weighting based on a hypothesized excessive downweighting of the low frequency content may be relatively unfounded in this application area.

  1. Stimulus-dependent modulation of spontaneous low-frequency oscillations in the rat visual cortex.

    Science.gov (United States)

    Huang, Liangming; Liu, Yadong; Gui, Jianjun; Li, Ming; Hu, Dewen

    2014-08-06

    Research on spontaneous low-frequency oscillations is important to reveal underlying regulatory mechanisms in the brain. The mechanism for the stimulus modulation of low-frequency oscillations is not known. Here, we used the intrinsic optical imaging technique to examine stimulus-modulated low-frequency oscillation signals in the rat visual cortex. The stimulation was presented monocularly as a flashing light with different frequencies and intensities. The phases of low-frequency oscillations in different regions tended to be synchronized and the rhythms typically accelerated within a 30-s period after stimulation. These phenomena were confined to visual stimuli with specific flashing frequencies (12.5-17.5 Hz) and intensities (5-10 mA). The acceleration and synchronization induced by the flashing frequency were more marked than those induced by the intensity. These results show that spontaneous low-frequency oscillations can be modulated by parameter-dependent flashing lights and indicate the potential utility of the visual stimulus paradigm in exploring the origin and function of low-frequency oscillations.

  2. Low frequency noise from large wind turbines - updated 2011; Lavfrekvent stoej fra store vindmoeller - opdateret 2011

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, H.; Sejer Pedersen, C.; Pedersen, Steffen

    2011-07-01

    The study analyzed measurements of noise from 65 wind turbines, 25 large turbines (2.3 to 3.6 MW) and 40 small ones (up to 2 MW). The large mills (2.3 to 3.6 MW) emit relatively more low frequency noise than the small ones (up to 2 MW). The difference is statistically significant for the frequency range 63-250 Hz, regardless of whether calculations are performed on all the large mills or only on new wind turbines. There are no significant differences between prototype turbines and the new mills. Because of wind noise in the measurements of the small mills, it is not possible to determine whether the difference between small and large turbines continues further down in frequency. Looking at the A-weighted sound pressure in relevant neighbor distances, the lower frequencies constitute an essential part of the noise from the large mills, and there is no doubt that the low frequency noise is both audible and annoying. When the total A-weighted sound pressure level is the same, there will on average be about 3 dB more low frequency noise from large turbines than from small ones. At large distances the noise character becomes yet more low frequency because atmospheric absorption reduces the high frequencies more than the low frequencies. Depending on the sound insulation the low frequency noise can also be annoying indoors. If the total A-weighted sound pressure level outdoors is 44 dB, the low frequency noise can be heard indoors in all the houses and for all the large turbines. The sound pressure level will in many cases exceed the indoor limit for evening night at 20 dB. (ln)

  3. Low-frequency high-definition power Doppler in visualizing and defining fetal pulmonary venous connections.

    Science.gov (United States)

    Liu, Lin; He, Yihua; Li, Zhian; Gu, Xiaoyan; Zhang, Ye; Zhang, Lianzhong

    2014-07-01

    The use of low-frequency high-definition power Doppler in assessing and defining pulmonary venous connections was investigated. Study A included 260 fetuses at gestational ages ranging from 18 to 36 weeks. Pulmonary veins were assessed by performing two-dimensional B-mode imaging, color Doppler flow imaging (CDFI), and low-frequency high-definition power Doppler. A score of 1 was assigned if one pulmonary vein was visualized, 2 if two pulmonary veins were visualized, 3 if three pulmonary veins were visualized, and 4 if four pulmonary veins were visualized. The detection rate between Exam-1 and Exam-2 (intra-observer variability) and between Exam-1 and Exam-3 (inter-observer variability) was compared. In study B, five cases with abnormal pulmonary venous connection were diagnosed and compared to their anatomical examination. In study A, there was a significant difference between CDFI and low-frequency high-definition power Doppler for the four pulmonary veins observed (P low-frequency high-definition power Doppler was higher than that when employing two-dimensional B-mode imaging or CDFI. There was no significant difference between the intra- and inter-observer variabilities using low-frequency high-definition power Doppler display of pulmonary veins (P > 0.05). The coefficient correlation between Exam-1 and Exam-2 was 0.844, and the coefficient correlation between Exam-1 and Exam-3 was 0.821. In study B, one case of total anomalous pulmonary venous return and four cases of partial anomalous pulmonary venous return were diagnosed by low-frequency high-definition power Doppler and confirmed by autopsy. The assessment of pulmonary venous connections by low-frequency high-definition power Doppler is advantageous. Pulmonary venous anatomy can and should be monitored during fetal heart examination.

  4. Low-frequency scaling applied to stochastic finite-fault modeling

    Science.gov (United States)

    Crane, Stephen; Motazedian, Dariush

    2014-01-01

    Stochastic finite-fault modeling is an important tool for simulating moderate to large earthquakes. It has proven to be useful in applications that require a reliable estimation of ground motions, mostly in the spectral frequency range of 1 to 10 Hz, which is the range of most interest to engineers. However, since there can be little resemblance between the low-frequency spectra of large and small earthquakes, this portion can be difficult to simulate using stochastic finite-fault techniques. This paper introduces two different methods to scale low-frequency spectra for stochastic finite-fault modeling. One method multiplies the subfault source spectrum by an empirical function. This function has three parameters to scale the low-frequency spectra: the level of scaling and the start and end frequencies of the taper. This empirical function adjusts the earthquake spectra only between the desired frequencies, conserving seismic moment in the simulated spectra. The other method is an empirical low-frequency coefficient that is added to the subfault corner frequency. This new parameter changes the ratio between high and low frequencies. For each simulation, the entire earthquake spectra is adjusted, which may result in the seismic moment not being conserved for a simulated earthquake. These low-frequency scaling methods were used to reproduce recorded earthquake spectra from several earthquakes recorded in the Pacific Earthquake Engineering Research Center (PEER) Next Generation Attenuation Models (NGA) database. There were two methods of determining the stochastic parameters of best fit for each earthquake: a general residual analysis and an earthquake-specific residual analysis. Both methods resulted in comparable values for stress drop and the low-frequency scaling parameters; however, the earthquake-specific residual analysis obtained a more accurate distribution of the averaged residuals.

  5. Isoflurane Impairs Low-Frequency Feedback but Leaves High-Frequency Feedforward Connectivity Intact in the Fly Brain.

    Science.gov (United States)

    Cohen, Dror; van Swinderen, Bruno; Tsuchiya, Naotsugu

    2018-01-01

    Hierarchically organized brains communicate through feedforward (FF) and feedback (FB) pathways. In mammals, FF and FB are mediated by higher and lower frequencies during wakefulness. FB is preferentially impaired by general anesthetics in multiple mammalian species. This suggests FB serves critical functions in waking brains. The brain of Drosophila melanogaster (fruit fly) is also hierarchically organized, but the presence of FB in these brains is not established. Here, we studied FB in the fly brain, by simultaneously recording local field potentials (LFPs) from low-order peripheral structures and higher-order central structures. We analyzed the data using Granger causality (GC), the first application of this analysis technique to recordings from the insect brain. Our analysis revealed that low frequencies (0.1-5 Hz) mediated FB from the center to the periphery, while higher frequencies (10-45 Hz) mediated FF in the opposite direction. Further, isoflurane anesthesia preferentially reduced FB. Our results imply that the spectral characteristics of FF and FB may be a signature of hierarchically organized brains that is conserved from insects to mammals. We speculate that general anesthetics may induce unresponsiveness across species by targeting the mechanisms that support FB.

  6. Focal Mechanism of Semi-Volcanic Deep Low-Frequency Earthquakes in Eastern Shimane

    Science.gov (United States)

    Aso, N.; Ohta, K.; Ide, S.

    2012-12-01

    Many deep low-frequency earthquakes (LFEs) occur near the island arc Mohorovicic discontinuities and far from both active volcanoes and plate boundaries. They are quite similar to volcanic LFEs beneath active volcanoes, which infers some fluid movement in the source region, and we regard them as "semi-volcanic" LFEs [Aso et al., 2011; 2012 (submitted)]. Several previous studies determined the focal mechanisms of volcanic and semi-volcanic LFEs using a small portion of information of the waveforms. Although the estimated focal mechanisms are various, they may not necessary support the variety of the actual physical process, owing to the large determination error [e.g., Nishidomi and Takeo, 1996; Ohmi and Obara, 2002; Nakamichi et al., 2003]. Here we determine the focal mechanisms by waveform inversion for LFEs in eastern Shimane in western Japan, where many LFEs occurred in a quiet region. The locations are also close to the fault plane of the 2000 western Tottori earthquake of Mw6.6, and right beneath Yokota volcano, which is a Quaternary volcanic cluster. We estimated the focal mechanisms of semi-volcanic LFEs in eastern Shimane by moment tensor inversion. The data are velocity seismograms at five stations of Hi-net near the epicenters. For each seismogram, we extracted a 1.5-second time window beginning from 0.2 seconds before the arrivals of either P-wave in a vertical component or S-wave in a horizontal component. The arrival time of each phase is picked manually first, and then corrected to minimize the variance between observed and synthetic waveforms. The local site amplification is estimated using far-field body waves from deep intraslab earthquakes, and collected for each seismogram. The synthetic waveforms were calculated using the discrete wavenumber integration method developed by Takeo [1985] for a horizontally layered structure. For 38 LFEs, which are equal to or larger than M1.2 (JMA magnitude) and recorded at all five stations, the focal mechanisms

  7. How Far Is Quasar UV/Optical Variability from a Damped Random Walk at Low Frequency?

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hengxiao; Wang Junxian; Cai Zhenyi; Sun Mouyuan, E-mail: hengxiaoguo@gmail.com, E-mail: jxw@ustc.edu.cn [CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, University of Science and Technology of China, Hefei 230026 (China)

    2017-10-01

    Studies have shown that UV/optical light curves of quasars can be described using the prevalent damped random walk (DRW) model, also known as the Ornstein–Uhlenbeck process. A white noise power spectral density (PSD) is expected at low frequency in this model; however, a direct observational constraint to the low-frequency PSD slope is difficult due to the limited lengths of the light curves available. Meanwhile, quasars show scatter in their DRW parameters that is too large to be attributed to uncertainties in the measurements and dependence on the variation of known physical factors. In this work we present simulations showing that, if the low-frequency PSD deviates from the DRW, the red noise leakage can naturally produce large scatter in the variation parameters measured from simulated light curves. The steeper the low-frequency PSD slope, the larger scatter we expect. Based on observations of SDSS Stripe 82 quasars, we find that the low-frequency PSD slope should be no steeper than −1.3. The actual slope could be flatter, which consequently requires that the quasar variabilities should be influenced by other unknown factors. We speculate that the magnetic field and/or metallicity could be such additional factors.

  8. Ionic screening effect on low-frequency drain current fluctuations in liquid-gated nanowire FETs

    International Nuclear Information System (INIS)

    Lu, Ming-Pei; Vire, Eric; Montès, Laurent

    2015-01-01

    The ionic screening effect plays an important role in determining the fundamental surface properties within liquid–semiconductor interfaces. In this study, we investigated the characteristics of low-frequency drain current noise in liquid-gated nanowire (NW) field effect transistors (FETs) to obtain physical insight into the effect of ionic screening on low-frequency current fluctuation. When the NW FET was operated close to the gate voltage corresponding to the maximum transconductance, the magnitude of the low-frequency noise for the NW exposed to a low-ionic-strength buffer (0.001 M) was approximately 70% greater than that when exposed to a high-ionic-strength buffer (0.1 M). We propose a noise model, considering the charge coupling efficiency associated with the screening competition between the electrolyte buffer and the NW, to describe the ionic screening effect on the low-frequency drain current noise in liquid-gated NW FET systems. This report not only provides a physical understanding of the ionic screening effect behind the low-frequency current noise in liquid-gated FETs but also offers useful information for developing the technology of NW FETs with liquid-gated architectures for application in bioelectronics, nanosensors, and hybrid nanoelectronics. (paper)

  9. Phonons in models for icosahedral quasicrystals: low frequency behaviour an inelastic scattering properties

    International Nuclear Information System (INIS)

    Los, J.; Janssen, T.; Gaehler, F.

    1993-01-01

    A detailed study of the low frequency behaviour of the phonon spectrum for 3-dimensional tiling models of icosahedral quasicrystals is presented, in commensurate approximations with up to 10336 atoms per unit cell. The scaling behaviour of the lowest phonon branches shows that the widths of the gaps relative to the bandwidths vanish in the low frequency limit. The density of states at low frequencies is calculated by Brillouin zone integration, using either local linear or local quadratic interpolation of the branch surface. For perfect approximants it appears that there is a deviation from the normal ω 2 -behaviour already at relatively low frequencies, in the form of pseudogaps. Also randomized approximants are considered, and it turns out that the pseudogaps in the density of states are flattened by randomization. When approaching the quasiperiodic limit, the dispersion of the acoustic branches becomes more and more isotropic, and the two transversal sound velocities tend to the same value. The dynamical structure factor is determined for several approximants, and it is shown that the linearity and the isotropy of the dispersion are extended far beyond the range of the acoustic branches inside the Brillouin zone. A sharply peaked response is observed at low frequencies, and broadening at higher frequencies. To obtain these results, an efficient algorithm based on Lanczos tridiagonalisation is used. (orig.)

  10. Stress Recovery Effects of High- and Low-Frequency Amplified Music on Heart Rate Variability.

    Science.gov (United States)

    Nakajima, Yoshie; Tanaka, Naofumi; Mima, Tatsuya; Izumi, Shin-Ichi

    Sounds can induce autonomic responses in listeners. However, the modulatory effect of specific frequency components of music is not fully understood. Here, we examined the role of the frequency component of music on autonomic responses. Specifically, we presented music that had been amplified in the high- or low-frequency domains. Twelve healthy women listened to white noise, a stress-inducing noise, and then one of three versions of a piece of music: original, low-, or high-frequency amplified. To measure autonomic response, we calculated the high-frequency normalized unit (HFnu), low-frequency normalized unit, and the LF/HF ratio from the heart rate using electrocardiography. We defined the stress recovery ratio as the value obtained after participants listened to music following scratching noise, normalized by the value obtained after participants listened to white noise after the stress noise, in terms of the HFnu, low-frequency normalized unit, LF/HF ratio, and heart rate. Results indicated that high-frequency amplified music had the highest HFnu of the three versions. The stress recovery ratio of HFnu under the high-frequency amplified stimulus was significantly larger than that under the low-frequency stimulus. Our results suggest that the high-frequency component of music plays a greater role in stress relief than low-frequency components.

  11. [The features of high and low-frequency function of horizontal, semicircular canal in Meniere's disease].

    Science.gov (United States)

    Chen, Ying; Zhao, Zhongxin; Zhuang, Jianhua; Xie, Xuewei; Jin, Zhe; Li, Fei

    2015-05-01

    To analyze the feature of horizontal semicircular canal function at high and low-frequencies in Meniere's disease. Thirty patients suffering from unilateral Meniere's disease were included in the research from 2013 June to 2014 June. Caloric test and video head impulse test were performed to evaluate the high low-frequency function of horizontal semicircular canal. these patients were devided by the severity of unilateral weakness in caloric test. The gain value in video head impulse test, which reflects the high-frequency function of semicircular canal, were not different between the normal and mild abnormal group (P > 0.05), but were obviously different between the normal and mild-severe abnormal group, slight abnormal and mild-severe abnormal group (P frequency function of both side, has no difference between three groups (P > 0.05). A part of Meniere's disease may have normal high, low-frequency function of horizontal semicircular canal. As patient suffering slight injury of low-frequency function, the high-frequency function keeps normal. As the injury of low-frequency function become mildly to severely, the damage of high-frequency function appears, but the symmetry still keeps balance.

  12. Do our reconstructions of ENSO have too much low-frequency variability?

    Science.gov (United States)

    Loope, G. R.; Overpeck, J. T.

    2017-12-01

    Reconstructing the spectrum of Pacific SST variability has proven to be difficult both because of complications with proxy systems such as tree rings and the relatively small number of records from the tropical Pacific. We show that the small number of long coral δ18O and Sr/Ca records has caused a bias towards having too much low-frequency variability in PCR, CPS, and RegEM reconstructions of Pacific variability. This occurs because the individual coral records used in the reconstructions have redder spectra than the shared signal (e.g. ENSO). This causes some of the unshared, low-frequency signal from local climate, salinity and possibly coral biology to bleed into the reconstruction. With enough chronologies in a reconstruction, this unshared noise cancels out but the problem is exacerbated in our longest reconstructions where fewer records are available. Coral proxies tend to have more low-frequency variability than SST observations so this problem is smaller but can still be seen in pseudoproxy experiments using observations and reanalysis data. The identification of this low-frequency bias in coral reconstructions helps bring the spectra of ENSO reconstructions back into line with both models and observations. Although our analysis is mostly constrained to the 20th century due to lack of sufficient data, we expect that as more long chronologies are developed, the low-frequency signal in ENSO reconstructions will be greatly reduced.

  13. Low-frequency electrostatic dust-modes in a nonuniform magnetized dusty plasma

    International Nuclear Information System (INIS)

    Paul, S.K.; Duha, S.S.; Mamun, A.A.

    2004-07-01

    A self-consistent and general description of obliquely propagating low frequency electrostatic dust-modes in a inhomogeneous, magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift mode, dust-cyclotron mode, dust-lower-hybrid mode, and other associated modes (such as, accelerated and retarded dust-acoustic modes, accelerated and retarded dust-lower-hybrid modes, etc.), have also been investigated. It has been shown that the effects of obliqueness and inhomogeneities in plasma particle number densities introduce new electrostatic dust modes as well as significantly modify the dispersion properties of the other low-frequency electrostatic dust-modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  14. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    International Nuclear Information System (INIS)

    O’Toole, A.; Peña Arellano, F. E.; Rodionov, A. V.; Kim, C.; Shaner, M.; Asadoor, M.; Sobacchi, E.; Dergachev, V.; DeSalvo, R.; Bhawal, A.; Gong, P.; Lottarini, A.; Minenkov, Y.; Murphy, C.

    2014-01-01

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems

  15. Stabilizing effects of hot electrons on low frequency plasma drift waves

    International Nuclear Information System (INIS)

    Huang Chaosong; Qiu Lijian; Ren Zhaoxing

    1988-01-01

    The MHD equation is used to study the stabilization of low frequency drift waves driven by density gradient of plasma in a hot electron plasma. The dispersion relation is derived, and the stabilizing effects of hot electrons are discussed. The physical mechanism for hot electron stabilization of the low frequency plasma perturbations is charge uncovering due to the hot electron component, which depends only on α, the ratio of N h /N i , but not on the value of β h . The hot electrons can reduce the growth rate of the interchange mode and drift wave driven by the plasma, and suppress the enomalous plasma transport caused by the drift wave. Without including the effectof β h , the stabilization of the interchange mode requires α≅2%, and the stabilization of the drift wave requires α≅40%. The theoretical analyses predict that the drift wave is the most dangerous low frequency instability in the hot electron plasma

  16. Atomic scattering in the presence of a low-frequency laser

    International Nuclear Information System (INIS)

    Banerji, J.

    1982-01-01

    In the first four chapters of this thesis previous work on non-resonant potential scattering, resonant potential scattering and non-resonant electron-atom scattering in the presence of a low-frequency laser has been discussed and extended. Chapter 6 deals with the experimental aspects of laser-modified atomic scattering. In chapter 7, the problem of electron-atom ionizing collisions (both resonant and non-resonant) in the presence of a low-frequency laser is discussed. In the next chapter the cut-off Coulomb potential scattering in the presence of a low-frequency laser has been considered. Because of the long range of the Coulomb potential, the result deviates sharply from that obtained for short range potentials unless, of course, the collision energy is very high. Moreover, it has been suggested that the experiments are not reproducible unless the details of the cut-off Coulomb potential are spelled out

  17. Modulation of low-frequency oscillations in GaAs MESFETs' channel current by sidegating bias

    Institute of Scientific and Technical Information of China (English)

    DING Yong; LU Shengli; ZHAO Fuchuan

    2005-01-01

    Low-frequency oscillations in channel current are usually observed when measuring the GaAs MESFET's output characteristics. This paper studies the oscillations by testing the MESFET's output characteristics under different sidegate bias conditions. It is shown that the low-frequency oscillations of channel current are directly related to the sidegate bias. In other words, the sidegate bias can modulate the oscillations. Whether the sidegate bias varies positively or negatively, there will inevitably be a threshold voltage after which the low-frequency oscillations disappear. The observation is strongly dependent upon the peculiarities of channel-substrate (C-S) junction and impact ionization of traps-EL2 under high field. This conclusion is of particular pertinence to the design of low-noise GaAs IC's.

  18. Low frequency sound field enhancement system for rectangular rooms, using multiple loudspeakers

    DEFF Research Database (Denmark)

    Celestinos, Adrian

    2007-01-01

    The scope of this PhD dissertation is within the performance of loudspeakers in rooms at low frequencies. The research concentrates on the improvement of the sound level distribution in rooms produced by loudspeakers at low frequencies. The work focuses on seeing the problem acoustically...... and solving it in the time domain. Loudspeakers are the last link in the sound reproduction chain, and they are typically placed in small or medium size rooms. When low frequency sound is radiated by a loudspeaker the sound level distribution along the room presents large deviations. This is due...... to the multiple reflection of sound at the rigid walls of the room. This may cause level differences of up to 20 dB in the room. Some of these deviations are associated with the standing waves, resonances or anti resonances of the room. The understanding of the problem is accomplished by analyzing the behavior...

  19. Increasing low frequency sound attenuation using compounded single layer of sonic crystal

    Science.gov (United States)

    Gulia, Preeti; Gupta, Arpan

    2018-05-01

    Sonic crystals (SC) are man-made periodic structures where sound hard scatterers are arranged in a crystalline manner. SC reduces noise in a particular range of frequencies called as band gap. Sonic crystals have a promising application in noise shielding; however, the application is limited due to the size of structure. Particularly for low frequencies, the structure becomes quite bulky, restricting its practical application. This paper presents a compounded model of SC, which has the same overall area and filling fraction but with increased low frequency sound attenuation. Two cases have been considered, a three layer SC and a compounded single layer SC. Both models have been analyzed using finite element simulation and plane wave expansion method. Band gaps for periodic structures have been obtained using both methods which are in good agreement. Further, sound transmission loss has been evaluated using finite element method. The results demonstrate the use of compounded model of Sonic Crystal for low frequency sound attenuation.

  20. Photodetachment of H- in the presence of a low-frequency laser field

    International Nuclear Information System (INIS)

    Bivona, S.; Burlon, R.; Leone, C.

    1992-01-01

    The photodetachment of a model one-electron ion simulating H - in the presence of a low-frequency field is analyzed. Two different geometries are considered in order to get information on the effect of the ponderomotive energy shift Δ on the photodetachment cross section. Our calculations suggest that a correspondence may be established between the ponderomotive shift and the photodetachment cross section, when the ejected electron may exchange only a few low-frequency photons. This is in qualitative agreement with recent experimental observations. When a large number of processes are open in which the detached electron may exchange low-frequency photons with comparable probability, it is impossible to make any connection between ponderomotive threshold shift and photodetachment cross section which, instead, may be described in terms of a field picture

  1. Reduction of low frequency error for SED36 and APS based HYDRA star trackers

    Science.gov (United States)

    Ouaknine, Julien; Blarre, Ludovic; Oddos-Marcel, Lionel; Montel, Johan; Julio, Jean-Marc

    2017-11-01

    In the frame of the CNES Pleiades satellite, a reduction of the star tracker low frequency error, which is the most penalizing error for the satellite attitude control, was performed. For that purpose, the SED36 star tracker was developed, with a design based on the flight qualified SED16/26. In this paper, the SED36 main features will be first presented. Then, the reduction process of the low frequency error will be developed, particularly the optimization of the optical distortion calibration. The result is an attitude low frequency error of 1.1" at 3 sigma along transverse axes. The implementation of these improvements to HYDRA, the new multi-head APS star tracker developed by SODERN, will finally be presented.

  2. Design and initial characterization of a compact, ultra high vacuum compatible, low frequency, tilt accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    O’Toole, A., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com [Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 405 Hilgard Ave, Los Angeles, California 90095 (United States); Peña Arellano, F. E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Rodionov, A. V.; Kim, C. [California Institute of Technology, Pasadena, California 91125 (United States); Shaner, M.; Asadoor, M. [Mayfield Senior School, 500 Bellefontaine Street Pasadena, California 91105 (United States); Sobacchi, E. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy); Dergachev, V.; DeSalvo, R., E-mail: amandajotoole@gmail.com, E-mail: riccardo.desalvo@gmail.com [LIGO Laboratory, California Institute of Technology, MS 100-36, Pasadena, California 91125 (United States); Bhawal, A. [Arcadia High School, 180 Campus Drive, Arcadia, California 91007 (United States); Gong, P. [Department of Precision Instrument, Tsinghua University, Beijing 100084 (China); Lottarini, A. [Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Minenkov, Y. [Sezione INFN Tor Vergata, via della Ricerca Scientfica 1, 00133 Roma (Italy); Murphy, C. [School of Physics, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009 (Australia)

    2014-07-15

    A compact tilt accelerometer with high sensitivity at low frequency was designed to provide low frequency corrections for the feedback signal of the Advanced Laser Interferometer Gravitational Wave Observatory active seismic attenuation system. It has been developed using a Tungsten Carbide ceramic knife-edge hinge designed to avoid the mechanical 1/f noise believed to be intrinsic in polycrystalline metallic flexures. Design and construction details are presented; prototype data acquisition and control limitations are discussed. The instrument's characterization reported here shows that the hinge is compatible with being metal-hysteresis-free, and therefore also free of the 1/f noise generated by the dislocation Self-Organized Criticality in the metal. A tiltmeter of this kind will be effective to separate the ground tilt component from the signal of horizontal low frequency seismometers, and to correct the ill effects of microseismic tilt in advanced seismic attenuation systems.

  3. The assessment and evaluation of low-frequency noise near the region of infrasound

    Directory of Open Access Journals (Sweden)

    Stanislav Ziaran

    2014-01-01

    Full Text Available The main aim of this paper is to present recent knowledge about the assessment and evaluation of low-frequency sounds (noise and infrasound, close to the threshold of hearing, and identify their potential effect on human health and annoyance. Low-frequency noise generated by air flowing over a moving car with an open window was chosen as a typical scenario which can be subjectively assessed by people traveling by automobile. The principle of noise generated within the interior of the car and its effects on the comfort of the driver and passengers are analyzed at different velocities. An open window of a car at high velocity behaves as a source of specifically strong tonal low-frequency noise which is generally perceived as annoying. The interior noise generated by an open window of a passenger car was measured under different conditions: Driving on a highway and driving on a typical roadway. First, an octave-band analysis was used to assess the noise level and its impact on the driver′s comfort. Second, a fast Fourier transform (FFT analysis and one-third octave-band analysis were used for the detection of tonal low-frequency noise. Comparison between two different car makers was also done. Finally, the paper suggests some possibilities for scientifically assessing and evaluating low-frequency sounds in general, and some recommendations are introduced for scientific discussion, since sounds with strong low-frequency content (but not only strong engender greater annoyance than is predicted by an A-weighted sound pressure level.

  4. Flextensional fiber Bragg grating-based accelerometer for low frequency vibration measurement

    Institute of Scientific and Technical Information of China (English)

    Jinghua Zhang; Xueguang Qiao; Manli Hu; Zhongyao Feng; Hong Gao; Yang Yang; Rui Zhou

    2011-01-01

    @@ The intelligent structural health monitoring method,which uses a fiber Bragg grating(FBG)sensor,is a new approach in the field of civil engineering.However,it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements.In this letter,a flextensional FBG-based accelerometer is proposed and demonstrated.The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz,with a high sensitivity of 410.7 pm/g.In addition,it has a broad and flat response over low frequencies ranging from 1 to 10 Hz.The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications.Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer.These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.%The intelligent structural health monitoring method, which uses a fiber Bragg grating {FBG} sensor, ie a new approach in the field of civil engineering. However, it lacks a reliable FBG-based accelerometer for taking structural low frequency vibration measurements. In this letter, a flextensional FBG-based accelerometer is proposed and demonstrated. The experimental results indicate that the natural frequency of the developed accelerometer is 16.7 Hz, with a high sensitivity of 410.7 pm/g. In addition, it has a broad and flat response over low frequencies ranging from 1 to 10 Hz. The natural frequency and sensitivity of the accelerometer can be tuned by adding mass to tailor the sensor performance to specific applications. Experimental results are presented to demonstrate the good performance of the proposed FBG-based accelerometer. These results show that the proposed accelerometer is satisfactory for low frequency vibration measurements.

  5. Voluntary reduction of force variability via modulation of low-frequency oscillations.

    Science.gov (United States)

    Park, Seoung Hoon; Casamento-Moran, Agostina; Yacoubi, Basma; Christou, Evangelos A

    2017-09-01

    Visual feedback can influence the force output by changing the power in frequencies below 1 Hz. However, it remains unknown whether visual guidance can help an individual reduce force variability voluntarily. The purpose of this study, therefore, was to determine whether an individual can voluntarily reduce force variability during constant contractions with visual guidance, and whether this reduction is associated with a decrease in the power of low-frequency oscillations (0-1 Hz) in force and muscle activity. Twenty young adults (27.6 ± 3.4 years) matched a force target of 15% MVC (maximal voluntary contraction) with ankle dorsiflexion. Participants performed six visually unrestricted contractions, from which we selected the trial with the least variability. Following, participants performed six visually guided contractions and were encouraged to reduce their force variability within two guidelines (±1 SD of the least variable unrestricted trial). Participants decreased the SD of force by 45% (P  0.2). The decrease in force variability was associated with decreased low-frequency oscillations (0-1 Hz) in force (R 2  = 0.59), which was associated with decreased low-frequency oscillations in EMG bursts (R 2  = 0.35). The reduction in low-frequency oscillations in EMG burst was positively associated with power in the interference EMG from 35 to 60 Hz (R 2  = 0.47). In conclusion, voluntary reduction of force variability is associated with decreased low-frequency oscillations in EMG bursts and consequently force output. We provide novel evidence that visual guidance allows healthy young adults to reduce force variability voluntarily likely by adjusting the low-frequency oscillations in the neural drive.

  6. Observational study of generation conditions of substorm-associated low-frequency AKR emissions

    Directory of Open Access Journals (Sweden)

    A. Olsson

    2004-11-01

    Full Text Available It has lately been shown that low-frequency bursts of auroral kilometric radiation (AKR are nearly exclusively associated with substorm expansion phases. Here we study low-frequency AKR using Polar PWI and Interball POLRAD instruments to constrain its possible generation mechanisms. We find that there are more low-frequency AKR emission events during wintertime and equinoxes than during summertime. The dot-AKR emission radial distance range coincides well with the region where the deepest density cavities are seen statistically during Kp>2. We suggest that the dot-AKR emissions originate in the deepest density cavities during substorm onsets. The mechanism for generating dot-AKR is possibly strong Alfvén waves entering the cavity from the magnetosphere and changing their character to more inertial, which causes the Alfvén wave associated parallel electric field to increase. This field may locally accelerate electrons inside the cavity enough to produce low-frequency AKR emission. We use Interball IESP low-frequency wave data to verify that in about half of the cases the dot-AKR is accompanied by low-frequency wave activity containing a magnetic component, i.e. probably inertial Alfvén waves. Because of the observational geometry, this result is consistent with the idea that inertial Alfvén waves might always be present in the source region when dot-AKR is generated. The paper illustrates once more the importance of radio emissions as a powerful remote diagnostic tool of auroral processes, which is not only relevant for the Earth's magnetosphere but may be relevant in the future in studying extrasolar planets.

  7. Global low-frequency motions in protein allostery: CAP as a model system.

    Science.gov (United States)

    Townsend, Philip D; Rodgers, Thomas L; Pohl, Ehmke; Wilson, Mark R; McLeish, Tom C B; Cann, Martin J

    2015-06-01

    Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. There is considerable evidence that allosteric cooperativity can be communicated by the modulation of protein dynamics without conformational change. The Catabolite Activator Protein (CAP) of Escherichia coli is an important experimental exemplar for entropically driven allostery. Here we discuss recent experimentally supported theoretical analysis that highlights the role of global low-frequency dynamics in allostery in CAP and identify how allostery arises as a natural consequence of changes in global low-frequency protein fluctuations on ligand binding.

  8. The effect of dust charge inhomogeneity on low-frequency modes in a strongly coupled plasma

    International Nuclear Information System (INIS)

    Farid, T.; Mamun, A.A.; Shukla, P.K.

    2000-01-01

    An analysis of low-frequency modes accounting for dust grain charge fluctuation and equilibrium grain charge inhomogeneity in a strongly coupled dusty plasma is presented. The existence of an extremely low frequency mode, which is due to the inhomogeneity in the equilibrium dust grain charge, is reported. Besides, the equilibrium dust grain charge inhomogeneity makes the dust-acoustic mode unstable. The strong correlations in the dust fluid significantly drive a new mode as well as the existing dust-acoustic mode. The applications of these results to recent experimental and to some space and astrophysical situations are discussed

  9. Ultra-thin smart acoustic metasurface for low-frequency sound insulation

    Science.gov (United States)

    Zhang, Hao; Xiao, Yong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2016-04-01

    Insulating low-frequency sound is a conventional challenge due to the high areal mass required by mass law. In this letter, we propose a smart acoustic metasurface consisting of an ultra-thin aluminum foil bonded with piezoelectric resonators. Numerical and experimental results show that the metasurface can break the conventional mass law of sound insulation by 30 dB in the low frequency regime (sound insulation performance is attributed to the infinite effective dynamic mass density produced by the smart resonators. It is also demonstrated that the excellent sound insulation property can be conveniently tuned by simply adjusting the external circuits instead of modifying the structure of the metasurface.

  10. ANALYSIS OF LOW-FREQUENCY OSCILLATIONS FOR THE SOUTH CHINA SEA SUMMER MONSOON IN 1998

    Institute of Scientific and Technical Information of China (English)

    徐国强; 朱乾根

    2003-01-01

    With NCEP/NCAR reanalysis daily data and SST for 1998, the paper investigates the features of summer monsoon low-frequency oscillation (LFO) over the South China Sea (SCS). Results show that SCS summer monsoon onset is enhanced because of its LFO. Low-frequency (LF) low-level convergence (divergence) region of SCS is in the LF positive (negative) rainfall area. LFO of the SCS region migrates from south to north in the meridian and from west to east in zonal direction. LF divergence of SCS is vertically compensating to each other between high and low level.

  11. Low-frequency fluctuation in multimode semiconductor laser subject to optical feedback

    Institute of Scientific and Technical Information of China (English)

    Xu Zhang; Huiying Ye; Zhaoxin Song

    2008-01-01

    Dynamics of a semiconductor laser subject to moderate optical feedback operating in the low-frequency fluctuation regime is numerically investigated.Multimode Lang-Kobayashi(LK)equations show that the low-frequency intensity dropout including the total intensity and sub-modes intensity is accompanied by sudden dropout simultaneously,which is in good agreement with experimental observation.The power fluctuation is quite annoying in practical applications,therefore it becomes important to study the mechanism of power fluctuation.It is also shown that many factors,such as spontaneous emission noise and feedback parameter,may influence power fluctuation larger than previously expected.

  12. Research of hydroelectric generating set low-frequency vibration monitoring system based on optical fiber sensing

    Science.gov (United States)

    Min, Li; Zhang, Xiaolei; Zhang, Faxiang; Sun, Zhihui; Li, ShuJuan; Wang, Meng; Wang, Chang

    2017-10-01

    In order to satisfy hydroelectric generating set low-frequency vibration monitoring, the design of Passive low-frequency vibration monitoring system based on Optical fiber sensing in this paper. The hardware of the system adopts the passive optical fiber grating sensor and unbalanced-Michelson interferometer. The software system is used to programming by Labview software and finishing the control of system. The experiment show that this system has good performance on the standard vibration testing-platform and it meets system requirements. The frequency of the monitoring system can be as low as 0.2Hz and the resolution is 0.01Hz.

  13. Low frequency torsional vibration gaps in the shaft with locally resonant structures

    International Nuclear Information System (INIS)

    Yu Dianlong; Liu Yaozong; Wang Gang; Cai Li; Qiu Jing

    2006-01-01

    The propagation of torsional wave in the shaft with periodically attached local resonators is studied with the transfer matrix theory and the finite element method. The analytical dispersion relation and the complex band structure of such a structure is presented for the first time, which indicates the existence of low frequency gaps. The effect of shaft material on the vibration attenuation in band gap is investigated. The frequency response function of the shaft with finite periodic locally resonant oscillators is simulated with finite element method, which shows large vibration attenuation in the frequency range of the gap as expected. The low frequency torsional gap in shafts provides a new idea for vibration control

  14. USA and RXTE Observations of a Variable Low-Frequency QPO in XTEJ1118+480

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, Elliott

    2000-06-29

    The USA experiment on ARGOS and RXTE have extensively observed the X-ray transient XTEJ1118+480 during its recent outburst in 2000 April--June. The authors present detailed monitoring of the evolution of a low frequency QPO which drifts from 0.07 Hz to 0.15 Hz during the outburst. They examine possible correlations of the QPO frequency with the flux and spectral characteristics of the source, and compare this QPO to low frequency QPOs observed in other black hole candidates.

  15. High efficiency, low frequency linear compressor proposed for Gifford-McMahon and pulse tube cryocoolers

    Energy Technology Data Exchange (ETDEWEB)

    Höhne, Jens [Pressure Wave Systems GmbH, Häberlstr. 8, 80337 Munich (Germany)

    2014-01-29

    In order to reduce the amount of greenhouse gas emissions, which are most likely the cause of substantial global warming, a reduction of overall energy consumption is crucial. Low frequency Gifford-McMahon and pulse tube cryocoolers are usually powered by a scroll compressor together with a rotary valve. It has been theoretically shown that the efficiency losses within the rotary valve can be close to 50%{sup 1}. In order to eliminate these losses we propose to use a low frequency linear compressor, which directly generates the pressure wave without using a rotary valve. First results of this development will be presented.

  16. Development of a low-frequency physiotherapeutic device for diabetes manipulated by microcontroller.

    Science.gov (United States)

    Guo, Jin-Song; Gong, Jian

    2001-01-01

    OBJECTIVE: To develop a physiotherapeutic device for diabetes that generates special low-frequency waveform manipulated by a microcontroller. METHODS: A microcontoller and a digital-to-analog converter were utilized along with a keyboard and LED display circuit, to generate desired low-frequecy waveform with the assistance of a software. RESULTS: The complex waveform generated by this device met the demands for diabetes physiotherapy, and the frequency and amplitude could be freely adjusted. CONCLUSIONS: The utilization of a digital-to-analog converter controlled by a microcontroller can very well serve the purpose of a low-frequency physiotherapy for diabetes.

  17. On low-frequency errors of uniformly modulated filtered white-noise models for ground motions

    Science.gov (United States)

    Safak, Erdal; Boore, David M.

    1988-01-01

    Low-frequency errors of a commonly used non-stationary stochastic model (uniformly modulated filtered white-noise model) for earthquake ground motions are investigated. It is shown both analytically and by numerical simulation that uniformly modulated filter white-noise-type models systematically overestimate the spectral response for periods longer than the effective duration of the earthquake, because of the built-in low-frequency errors in the model. The errors, which are significant for low-magnitude short-duration earthquakes, can be eliminated by using the filtered shot-noise-type models (i. e. white noise, modulated by the envelope first, and then filtered).

  18. Assessment of extremely low frequency magnetic field exposure from GSM mobile phones

    NARCIS (Netherlands)

    Calderón, Carolina; Addison, Darren; Mee, Terry; Findlay, Richard; Maslanyj, Myron; Conil, Emmanuelle; Kromhout, Hans; Lee, Ae Kyoung; Sim, Malcolm R.; Taki, Masao; Varsier, Nadège; Wiart, Joe; Cardis, Elisabeth

    2014-01-01

    Although radio frequency (RF) electromagnetic fields emitted by mobile phones have received much attention, relatively little is known about the extremely low frequency (ELF) magnetic fields emitted by phones. This paper summarises ELF magnetic flux density measurements on global system for mobile

  19. Dynamical evolution in clusters of galaxies with low-frequency radio emission

    International Nuclear Information System (INIS)

    Guthrie, B.N.G.

    1977-01-01

    Clusters of galaxies in which radio emission at low frequencies ( approximately 10 9 yr). Confinement would probably occur for radio sources associated with bright galaxies in the cores of clusters and cD galaxies in clusters. However, cD galaxies may have recurrent radio outbursts so that steep spectra are not always observed. (Auth.)

  20. Measurements of Low Frequency Noise of Infrared Photo-Detectors with Transimpedance Detection System

    Directory of Open Access Journals (Sweden)

    Ciura Łukasz

    2014-08-01

    Full Text Available The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.

  1. Towards an enhanced performance of uniform circular arrays at low frequencies

    DEFF Research Database (Denmark)

    Tiana Roig, Elisabet; Torras Rosell, Antoni; Fernandez Grande, Efren

    2013-01-01

    are mounted on a scatterer such as a rigid cylinder or a sphere. The beamforming output improves with increasing frequency, up to a certain frequency where spatial aliasing occurs. At low frequencies the performance is limited by the radius of the array; in other words, given a certain number of microphones...

  2. Measurement of weak low frequency pressure signal using stretchable polyurethane fiber sensor for application in wearables

    DEFF Research Database (Denmark)

    Kaysir, Md Rejvi; Stefani, Alessio; Lwin, Richard

    2017-01-01

    .e. a capillary) to measure a weak low frequency signal comparable to respiration/heart rate. We characterized the fiber and measured the sensitivity of a PU capillary using a speaker connected to a function generator. The frequency of the modulated signal was recovered using Fourier Transform (FT). This bodes...

  3. Harmonic Analysis and Mitigation of Low- Frequency Switching Voltage Source Inverter with Auxiliary VSI

    DEFF Research Database (Denmark)

    Bai, Haofeng; Wang, Xiongfei; Blaabjerg, Frede

    2018-01-01

    The output currents of high-power Voltage Source Inverters (VSIs) are distorted by the switching harmonics and the background harmonics in the grid voltage. This paper presents an active harmonic filtering scheme for high-power, low-frequency switching VSIs with an additional auxiliary VSI. In th...

  4. Low-Frequency Noise Reduction by Earmuffs with Flax Fibre-Reinforced Polypropylene Ear Cups

    Directory of Open Access Journals (Sweden)

    Linus Yinn Leng Ang

    2018-01-01

    Full Text Available Soldiers and supporting engineers are frequently exposed to high low-frequency (<500 Hz cabin noise in military vehicles. Despite the use of commercial hearing protection devices, the risk of auditory damage is still imminent because the devices may not be optimally customised for such applications. This study considers flax fibre-reinforced polypropylene (Flax-PP as an alternative to the material selection for the ear cups of commercial earmuffs, which are typically made of acrylonitrile butadiene styrene (ABS. Different weaving configurations (woven and nonwoven and various noise environments (pink noise, cabin booming noise, and firing noise were considered to investigate the feasibility of the proposed composite earmuffs for low-frequency noise reduction. The remaining assembly components of the earmuff were kept consistent with those of a commercial earmuff, which served as a benchmark for results comparison. In contrast to the commercial earmuff, the composite earmuffs were shown to be better in mitigating low-frequency noise by up to 16.6 dB, while compromising midfrequency acoustical performance. Consequently, the proposed composite earmuffs may be an alternative for low-frequency noise reduction in vehicle cabins, at airports, and at construction sites involving heavy machineries.

  5. Occupational exposure to electromagnetic fields (Emf) of extremely low frequency and Alzheimer disease

    International Nuclear Information System (INIS)

    Mir, L.

    2008-01-01

    Occupational exposure to extremely low frequency electromagnetic fields (between 3 and 3000 hz) is one potential risk factor for Alzheimer disease. this critical meta-analysis of the published epidemiologic work suggests the existence of an association in a very heterogeneous dataset. It looks for potential sources of error, examines the areas of uncertainty, and calls for the pursuit of further research. (author)

  6. Creating poloidal flux in a tokamak plasma with low frequency waves

    International Nuclear Information System (INIS)

    Kirkwood, R.K.; Capewell, D.L.; Bellan, P.M.

    1993-01-01

    Using a fully toroidal, collisionless, low frequency model, we show that low amplitude, circularly polarized waves can, depending on antenna geometry (i) drive the toroidal EMF necessary to sustain a tokamak reactor, or (ii) shift the internal current profile. Measurements on a small tokamak to test (ii) agree with the model predictions. (orig.)

  7. Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol

    NARCIS (Netherlands)

    L.A. Lange (Leslie); Y. Hu (Youna); H. Zhang (He); C. Xue (Chenyi); E.M. Schmidt (Ellen); Z.-Z. Tang (Zheng-Zheng); C. Bizon (Chris); E.M. Lange (Ethan); G.D. Smith; E.H. Turner (Emily); Y. Jun (Yang); H.M. Kang (Hyun Min); G.M. Peloso (Gina); P. Auer (Paul); K.-P. Li (Kuo-Ping); J. Flannick (Jason); J. Zhang (Ji); C. Fuchsberger (Christian); K. Gaulton (Kyle); C.M. Lindgren (Cecilia); A. Locke (Adam); A.K. Manning (Alisa); X. Sim (Xueling); M.A. Rivas (Manuel); O.L. Holmen (Oddgeir); R.F. Gottesman (Rebecca); Y. Lu (Yingchang); D. Ruderfer (Douglas); E.A. Stahl (Eli); Q. Duan (Qing); Y. Li (Yun); P. Durda (Peter); S. Jiao (Shuo); A.J. Isaacs (Aaron); A. Hofman (Albert); J.C. Bis (Joshua); D.D. Correa; M.D. Griswold (Michael); M. Jakobsdottir (Margret); G.D. Smith; P.J. Schreiner (Pamela); M.F. Feitosa (Mary Furlan); Q. Zhang (Qunyuan); J.E. Huffman (Jennifer); S. Crosby; C.L. Wassel (Christina); R. Do (Ron); N. Franceschini (Nora); L.W. Martin (Lisa); J.G. Robinson (Jennifer); T.L. Assimes (Themistocles); D.R. Crosslin (David); E.A. Rosenthal (Elisabeth); M.Y. Tsai (Michael); M. Rieder (Mark); D.N. Farlow (Deborah); A.R. Folsom (Aaron); T. Lumley (Thomas); E.R. Fox (Ervin); C.S. Carlson (Christopher); U. Peters (Ulrike); R.D. Jackson (Rebecca); C.M. van Duijn (Cornelia); A.G. Uitterlinden (André); D. Levy (Daniel); J.I. Rotter (Jerome); H.A. Taylor (Herman); V. Gudnason (Vilmundur); D.S. Siscovick (David); M. Fornage (Myriam); I.B. Borecki (Ingrid); C. Hayward (Caroline); I. Rudan (Igor); Y.E. Chen (Y. Eugene); E.P. Bottinger (Erwin); R.J.F. Loos (Ruth); P. Sætrom (Pål); K. Hveem (Kristian); M. Boehnke (Michael); L. Groop (Leif); M.I. McCarthy (Mark); T. Meitinger (Thomas); C. Ballantyne (Christie); S.B. Gabriel (Stacey); C.J. O'Donnell (Christopher); W.S. Post (Wendy S.); K.E. North (Kari); A. Reiner (Alexander); E.A. Boerwinkle (Eric); B.M. Psaty (Bruce); D. Altshuler (David); S. Kathiresan (Sekar); D.Y. Lin (Dan); G.P. Jarvik (Gail); L.A. Cupples (Adrienne); C. Kooperberg (Charles); J.G. Wilson (James); D.A. Nickerson (Deborah); G.R. Abecasis (Gonçalo); S.S. Rich (Stephen); R.P. Tracy (Russell); C.J. Willer (Cristen)

    2014-01-01

    textabstractElevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency

  8. Probing Pharmaceutical Mixtures during Milling: The Potency of Low-Frequency Raman Spectroscopy in Identifying Disorder.

    Science.gov (United States)

    Walker, Greg; Römann, Philipp; Poller, Bettina; Löbmann, Korbinian; Grohganz, Holger; Rooney, Jeremy S; Huff, Gregory S; Smith, Geoffrey P S; Rades, Thomas; Gordon, Keith C; Strachan, Clare J; Fraser-Miller, Sara J

    2017-12-04

    This study uses a multimodal analytical approach to evaluate the rates of (co)amorphization of milled drug and excipient and the effectiveness of different analytical methods in detecting these changes. Indomethacin and tryptophan were the model substances, and the analytical methods included low-frequency Raman spectroscopy (785 nm excitation and capable of measuring both low- (10 to 250 cm -1 ) and midfrequency (450 to 1800 cm -1 ) regimes, and a 830 nm system (5 to 250 cm -1 )), conventional (200-3000 cm -1 ) Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), and X-ray powder diffraction (XRPD). The kinetics of amorphization were found to be faster for the mixture, and indeed, for indomethacin, only partial amorphization occurred (after 360 min of milling). Each technique was capable of identifying the transformations, but some, such as low-frequency Raman spectroscopy and XRPD, provided less ambiguous signatures than the midvibrational frequency techniques (conventional Raman and FTIR). The low-frequency Raman spectra showed intense phonon mode bands for the crystalline and cocrystalline samples that could be used as a sensitive probe of order. Multivariate analysis has been used to further interpret the spectral changes. Overall, this study demonstrates the potential of low-frequency Raman spectroscopy, which has several practical advantages over XRPD, for probing (dis-)order during pharmaceutical processing, showcasing its potential for future development, and implementation as an in-line process monitoring method.

  9. Enhancing the beamforming map of spherical arrays at low frequencies using acoustic holography

    DEFF Research Database (Denmark)

    Tiana Roig, Elisabet; Torras Rosell, Antoni; Fernandez Grande, Efren

    2014-01-01

    Recent studies have shown that the localization of acoustic sources based on circular arrays can be improved at low frequencies by combining beamforming with acoustic holography. This paper extends this technique to the three dimensional case by making use of spherical arrays. The pressure captur...

  10. Variability of the autoregulation index decreases after removing the effect of the very low frequency band

    NARCIS (Netherlands)

    Elting, J. W.; Maurits, N. M.; Aries, M. J. H.

    Dynamic cerebral autoregulation (dCA) estimates show large between and within subject variability. Sources of variability include low coherence and influence of CO2 in the very low frequency (VLF) band, where dCA is active. This may lead to unreliable transfer function and autoregulation index (ARI)

  11. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    Directory of Open Access Journals (Sweden)

    Kuan Lu

    2016-02-01

    Full Text Available A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL at low frequencies (⩽500Hz was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial’s structure is like a sandwich with a thin (thickness=0.25mm lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM. The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  12. The influence of low frequencies on the assessment of noise from neighbours

    DEFF Research Database (Denmark)

    Rindel, Jens Holger; Rasmussen, Birgit; Nielsen, Jesper Rye

    1996-01-01

    Lightweight building constructions often suffer from insufficient sound insulation at low frequencies. In order to investigate the degree of the problems, a laboratory experiment has been carried out. Twenty test persons have been asked to evaluate series of typical noise from neighbours, ie, two...

  13. Effects of low-frequency magnetic fields on the viability of yeast Saccharomyces cerevisiae

    Czech Academy of Sciences Publication Activity Database

    Novák, Jan; Strašák, Luděk; Fojt, Lukáš; Slaninová, I.; Vetterl, Vladimír

    2007-01-01

    Roč. 70, č. 1 (2007), s. 115-121 ISSN 1567-5394 R&D Projects: GA AV ČR(CZ) IAA4004404; GA AV ČR(CZ) IBS5004107 Institutional research plan: CEZ:AV0Z50040702 Keywords : low-frequency electromagnetic field * yeast * Saccharomyces cerevisiae Subject RIV: BO - Biophysics Impact factor: 2.992, year: 2007

  14. Effects of Removing Low-Frequency Electric Information on Speech Perception with Bimodal Hearing

    Science.gov (United States)

    Fowler, Jennifer R.; Eggleston, Jessica L.; Reavis, Kelly M.; McMillan, Garnett P.; Reiss, Lina A. J.

    2016-01-01

    Purpose: The objective was to determine whether speech perception could be improved for bimodal listeners (those using a cochlear implant [CI] in one ear and hearing aid in the contralateral ear) by removing low-frequency information provided by the CI, thereby reducing acoustic-electric overlap. Method: Subjects were adult CI subjects with at…

  15. Measurement of the Low Frequency Noise of MOSFETs under Large Signal RF Excitation

    NARCIS (Netherlands)

    van der Wel, A.P.; Klumperink, Eric A.M.; Nauta, Bram

    2002-01-01

    A measurement technique [1] is presented that allows measurement of MOSFET low frequency (LF) noise under large signal RF (Radio Frequency) excitation. Measurements indicate that MOSFETS exhibit a reduction in LF noise when they are cycled from inversion to accummulation and that this reduction does

  16. The Effects of Visual Complexity for Japanese Kanji Processing with High and Low Frequencies

    Science.gov (United States)

    Tamaoka, Katsuo; Kiyama, Sachiko

    2013-01-01

    The present study investigated the effects of visual complexity for kanji processing by selecting target kanji from different stroke ranges of visually simple (2-6 strokes), medium (8-12 strokes), and complex (14-20 strokes) kanji with high and low frequencies. A kanji lexical decision task in Experiment 1 and a kanji naming task in Experiment 2…

  17. Inactivation of Enterobacter aerogenes in reconstituted skim milk by high- and low-frequency ultrasound.

    Science.gov (United States)

    Gao, Shengpu; Hemar, Yacine; Lewis, Gillian D; Ashokkumar, Muthupandian

    2014-11-01

    The inactivation of Enterobacter aerogenes in skim milk using low-frequency (20kHz) and high-frequency (850kHz) ultrasonication was investigated. It was found that low-frequency acoustic cavitation resulted in lethal damage to E. aerogenes. The bacteria were more sensitive to ultrasound in water than in reconstituted skim milk having different protein concentrations. However, high-frequency ultrasound was not able to inactivate E. aerogenes in milk even when powers as high as 50W for 60min were used. This study also showed that high-frequency ultrasonication had no influence on the viscosity and particle size of skim milk, whereas low-frequency ultrasonication resulted in the decrease in viscosity and particle size of milk. The decrease in particle size is believed to be due to the breakup of the fat globules, and possibly to the cleavage of the κ-casein present at the surface of the casein micelles. Whey proteins were also found to be slightly affected by low-frequency ultrasound, with the amounts of α-lactalbumin and β-lactoglobulin slightly decreasing. Copyright © 2013. Published by Elsevier B.V.

  18. Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS2.

    Science.gov (United States)

    Huang, Shengxi; Liang, Liangbo; Ling, Xi; Puretzky, Alexander A; Geohegan, David B; Sumpter, Bobby G; Kong, Jing; Meunier, Vincent; Dresselhaus, Mildred S

    2016-02-10

    van der Waals homo- and heterostructures assembled by stamping monolayers together present optoelectronic properties suitable for diverse applications. Understanding the details of the interlayer stacking and resulting coupling is crucial for tuning these properties. We investigated the low-frequency interlayer shear and breathing Raman modes (frequency and intensity changes of low-frequency modes. The frequency variation can be up to 8 cm(-1) and the intensity can vary by a factor of ∼5 for twisting angles near 0° and 60°, where the stacking is a mixture of high-symmetry stacking patterns and is thus sensitive to twisting. For twisting angles between 20° and 40°, the interlayer coupling is nearly constant because the stacking results in mismatched lattices over the entire sample. It follows that the Raman signature is relatively uniform. Note that for some samples, multiple breathing mode peaks appear, indicating nonuniform coupling across the interface. In contrast to the low-frequency interlayer modes, high-frequency intralayer Raman modes are much less sensitive to interlayer stacking and coupling. This research demonstrates the effectiveness of low-frequency Raman modes for probing the interfacial coupling and environment of twisted bilayer MoS2 and potentially other two-dimensional materials and heterostructures.

  19. Pre-Learning Low-Frequency Vocabulary in Second Language Television Programmes

    Science.gov (United States)

    Webb, Stuart

    2010-01-01

    This study investigated the potential of pre-learning frequently occurring low-frequency vocabulary as a means to increase comprehension of television and incidental vocabulary learning through watching television. Eight television programmes, each representing different television genres, were analysed using the RANGE program to determine the 10…

  20. Harvesting Low-Frequency (<5 Hz) Irregular Mechanical Energy: A Possible Killer Application of Triboelectric Nanogenerator.

    Science.gov (United States)

    Zi, Yunlong; Guo, Hengyu; Wen, Zhen; Yeh, Min-Hsin; Hu, Chenguo; Wang, Zhong Lin

    2016-04-26

    Electromagnetic generators (EMGs) and triboelectric nanogenerators (TENGs) are the two most powerful approaches for harvesting ambient mechanical energy, but the effectiveness of each depends on the triggering frequency. Here, after systematically comparing the performances of EMGs and TENGs under low-frequency motion (frequency, while that of TENGs is approximately in proportion to the frequency. Therefore, the TENG has a much better performance than that of the EMG at low frequency (typically 0.1-3 Hz). Importantly, the extremely small output voltage of the EMG at low frequency makes it almost inapplicable to drive any electronic unit that requires a certain threshold voltage (∼0.2-4 V), so that most of the harvested energy is wasted. In contrast, a TENG has an output voltage that is usually high enough (>10-100 V) and independent of frequency so that most of the generated power can be effectively used to power the devices. Furthermore, a TENG also has advantages of light weight, low cost, and easy scale up through advanced structure designs. All these merits verify the possible killer application of a TENG for harvesting energy at low frequency from motions such as human motions for powering small electronics and possibly ocean waves for large-scale blue energy.

  1. Low-frequency dust-lower-hybrid modes in a dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.

    1995-10-01

    The existence of low-frequency dust-lower-hybrid modes in a magnetized dusty plasma has been examined. These modes arise on account of the inequalities of charge and number densities of electrons, ions, and dust particles, and finite Larmor radius effects in a dusty plasma. (author). 14 refs

  2. Improved low frequency room responses by considering finiteness of room boundary surfaces

    DEFF Research Database (Denmark)

    Jeong, Cheol-Ho

    2013-01-01

    surface impedance values that are assigned to all the boundary surfaces, the suggested reflection coefficient is found to improve low frequency responses compared to the infinite panel theory; larger improvements are found for a more disproportionate room, more absorptive surfaces, and surfaces having...

  3. Effect of porosity and pore morphology on the low-frequency ...

    Indian Academy of Sciences (India)

    Effect of porosity and pore size distribution on the low-frequency dielectric response, in the range 0.01-100 kHz, in sintered ZrO2-8 mol% Y2O3 ceramic compacts have been investigated. Small-angle neutron scattering (SANS) technique has been employed to obtain the pore characteristics like pore size distribution, ...

  4. Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies

    Institute of Scientific and Technical Information of China (English)

    Tang Wen-Lin; Tian Gui-Hua

    2011-01-01

    Spin-weighted spheroidal wave functions play an important role in the study of the linear stability of rotating Kerr black holes and are studied by the perturbation method in supersymmetric quantum mechanics. Their analytic ground eigenvalues and eigenfunctions are obtained by means of a series in low frequency. The ground eigenvalue and eigenfunction for small complex frequencies are numerically determined.

  5. Low Frequency Dispersion Mechanism of Dielectric Response for Oil-paper Insulation Diagnosis

    Institute of Scientific and Technical Information of China (English)

    ZHOU Lijun; LI Xianlang; WU Guangning

    2013-01-01

    Both the real part and imaginary part of complex permittivity approximately have a log-linear frequency dependency at low frequencies,especially at ultra-low frequencies under conditions of different moisture concentrations and temperatures,which is recognized as the low frequency dispersion (LFD).In order to explain this dispersion,a new mechanism of dielectric response of LFD of oil-paper insulation is proposed.A simplified one-dimensional mathematical model of concentration polarization carrier caused by slow migration is developed and solved,which indicates that ion mobility is closely related to the size of gap and the adsorption capacity of cellulose molecular chains to ions.A stochastic statistical model of the carrier mobility induced LFD is also developed.Moreover,actual tests under 50 ℃and 2% moisture content were put forward,as well as simulations with according current waveforms.The simulation results agreed well with the experimental data in that concentration polarization of carriers caused by slow migration is the probable cause of low frequency dispersion ofdielectric response for oil-paper insulation diagnosis.

  6. Planck 2013 results. IV. Low Frequency Instrument beams and window functions

    DEFF Research Database (Denmark)

    Planck Collaboration,; Aghanim, N.; Armitage-Caplan, C.

    2014-01-01

    This paper presents the characterization of the in-flight beams, the beam window functions and the associated errors for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is the key to determining their imprint on the transfer function from the observed to the actual sky a...

  7. Planck 2013 results. IV. Low Frequency Instrument beams and window functions

    DEFF Research Database (Denmark)

    Planck Collaboration,; Aghanim, N.; Armitage-Caplan, C.

    2013-01-01

    This paper presents the characterization of the in-flight beams, the beam window functions and the associated errors for the Planck Low Frequency Instrument (LFI). Knowledge of the beam profiles is the key to determining their imprint on the transfer function from the observed to the actual sky a...

  8. Planck early results. III. First assessment of the Low Frequency Instrument in-flight performance

    DEFF Research Database (Denmark)

    Poutanen, T.; Lähteenmäki, A.; León-Tavares, J.

    2011-01-01

    The scientific performance of the Planck Low Frequency Instrument (LFI) after one year of in-orbit operation is presented. We describe the main optical parameters and discuss photometric calibration, white noise sensitivity, and noise properties. A preliminary evaluation of the impact of the main...

  9. Equivalent circuit modeling of the dielectric properties of rubber wood at low frequency

    Science.gov (United States)

    Wan M. Daud; Kaida B. Khalid; Aziz H.A. Sidek

    2000-01-01

    Dielectric properties of rubber wood were studied at various moisture contents and grain directions at low frequencies from 10-2 to 105 Hz. Results showed that the moisture content of wood affected the dielectric properties considerably. Dielectric data at different anisotropic directions, i.e., longitudinal, radial, and...

  10. Resonant effects on the low frequency vlasov stability of axisymmetric field reversed configurations

    International Nuclear Information System (INIS)

    Finn, J.M.; Sudan, R.N.

    We investigate the effect of particle resonances on low frequency MHD modes in field-reversed geometries, e.g., an ion ring. It is shown that, for sufficiently high field reversal, modes which are hydromagnetically stable can be driven unstable by ion resonances. The stabilizing effect of a toroidal magnetic field is discussed

  11. Low-frequency variability of surface air temperature over the Barents Sea

    NARCIS (Netherlands)

    Linden, van der Eveline C.; Bintanja, Richard; Hazeleger, Wilco; Graversen, R.G.

    2016-01-01

    The predominant decadal to multidecadal variability in the Arctic region is a feature that is not yet well-understood. It is shown that the Barents Sea is a key region for Arctic-wide variability. This is an important topic because low-frequency changes in the ocean might lead to large variations

  12. Daris, a low-frequency distributed aperture array for radio astronomy in space

    NARCIS (Netherlands)

    Boonstra, A.J.; Saks, N.; Bentum, Marinus Jan; van 't Klooster, K.; Falcke, H.

    2010-01-01

    DARIS (Distributed Aperture Array for Radio Astronomy in Space) is a radio astronomy space mission concept aimed at observing the low-frequency radio sky in the range 1-10 MHz. Because of the Earth's ionospheric disturbances and opaqueness, this frequency range can only be observed from space. The

  13. DARIS, a fleet of passive formation flying small satellites for low frequency radio astronomy

    NARCIS (Netherlands)

    Saks, Noah; Boonstra, Albert Jan; Rajan, Raj Thilak; Rajan, Raj; Bentum, Marinus Jan; Beliën, Frederik; van 't Klooster, Kees

    2010-01-01

    DARIS (Distributed Aperture Array for Radio Astronomy In Space) is a mission to conduct radio astronomy in the low frequency region from 1-10MHz. This region has not yet been explored, as the Earth's ionosphere is opaque to those frequencies, and so a space based observatory is the only solution.

  14. Return-map for low-frequency fluctuations in semiconductor lasers with optical feedback

    DEFF Research Database (Denmark)

    Mørk, Jesper; Sabbatier, H.; Sørensen, Mads Peter

    1999-01-01

    We show that the phenomenon of low-frequency fluctuations (LFF) , commonly observed in semiconductor lasers with optical feedback, can be explained by a simple return-map, implying a tremendous simplification in the description of the slow time-scale dynamics of the system. Experimentally observed...

  15. Linear and nonlinear low-frequency electrostatic waves in a nonuniform pair-ion-dust magnetoplasma

    International Nuclear Information System (INIS)

    Saleem, H; Shukla, P K; Eliasson, B

    2008-01-01

    Linear and nonlinear properties of the low-frequency (in comparison with the ion gyrofrequency) electrostatic oscillations in pair-ion-dust magnetoplasma are presented. In the linear limit, the Shukla-Varma mode is coupled with the ion oscillations while the nonlinearly coupled modes appear in the form of a dipolar or a monopolar vortex

  16. Global low-frequency modes in weakly ionized magnetized plasmas: effects of equilibrium plasma rotation

    International Nuclear Information System (INIS)

    Sosenko, P.; Pierre, Th.; Zagorodny, A.

    2004-01-01

    The linear and non-linear properties of global low-frequency oscillations in cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of equilibrium plasma rotation. The theoretical results are compared with the experimental observations of rotating plasmas in laboratory devices, such as Mistral and Mirabelle in France, and KIWI in Germany. (authors)

  17. The Low-Frequency Array (LOFAR) and EoR Key-Science Project

    NARCIS (Netherlands)

    Brentjens, Michiel; Koopmans, L. V. E.; de Bruyn, A. G.; Zaroubi, S.

    The Low-Frequency ARray (LOFAR) is a novel radio-telescope facility with its core and operation center in the Netherlands. LOFAR is one of several current pathfinders toward SKA. One of LOFAR's key science projects is the detection and characterization of the redshifted 21-cm emission from neutral

  18. Low frequency noise from wind turbines mechanisms of generation and its modelling

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge

    2010-01-01

    competitive designs compared with the upwind threebladed rotor. The simulation package comprises an aeroelastic time simulation code HAWC2 and an acoustic low frequency noise (LFN) prediction model. Computed time traces of rotor thrust and rotor torque from the aeroelastic model are input to the acoustic...

  19. Occupational exposure to extremely low-frequency magnetic fields and risk for central nervous system disease

    DEFF Research Database (Denmark)

    Pedersen, Camilla; Poulsen, Aslak Harbo; Rod, Naja Hulvej

    2017-01-01

    Purpose: Evidence of whether exposure to extremely low-frequency magnetic fields (ELF-MF) is related to central nervous system diseases is inconsistent. This study updates a previous study of the incidence of such diseases in a large cohort of Danish utility workers by almost doubling the period...

  20. Low frequency eardrum directionality in the barn owl induced by sound transmission through the interaural canal

    DEFF Research Database (Denmark)

    Kettler, Lutz; Christensen-Dalsgaard, Jakob; Larsen, Ole Næsbye

    2016-01-01

    . Significant sound transmission across the interaural canal occurred at low frequencies. The sound transmission induces considerable eardrum directionality in a narrow band from 1.5 to 3.5 kHz. This is below the frequency range used by the barn owl for locating prey, but may conceivably be used for locating...

  1. Wind Turbine Acoustic Investigation: Infrasound and Low-Frequency Noise--A Case Study

    Science.gov (United States)

    Ambrose, Stephen E.; Rand, Robert W.; Krogh, Carmen M. E.

    2012-01-01

    Wind turbines produce sound that is capable of disturbing local residents and is reported to cause annoyance, sleep disturbance, and other health-related impacts. An acoustical study was conducted to investigate the presence of infrasonic and low-frequency noise emissions from wind turbines located in Falmouth, Massachusetts, USA. During the…

  2. Wind Turbine Infra and Low-Frequency Sound: Warning Signs that Were Not Heard

    Science.gov (United States)

    James, Richard R.

    2012-01-01

    Industrial wind turbines are frequently thought of as benign. However, the literature is reporting adverse health effects associated with the implementation of industrial-scale wind developments. This article explores the historical evidence about what was known regarding infra and low-frequency sound from wind turbines and other noise sources…

  3. Tuning Range Optimization of a Planar Inverted F Antenna for LTE Low Frequency Bands

    DEFF Research Database (Denmark)

    Barrio, Samantha Caporal Del; Pelosi, Mauro; Franek, Ondrej

    2011-01-01

    This paper presents a Planar Inverted F Antenna (PIFA) tuned with a fixed capacitor to the low frequency bands supported by the Long Term Evolution (LTE) technology. The tuning range is investigated and optimized with respect to the bandwidth and the efficiency of the resulting antenna. Simulatio...... and mock-ups are presented....

  4. Extremely low-frequency magnetic fields and risk of childhood leukemia

    DEFF Research Database (Denmark)

    Schüz, Joachim; Dasenbrock, Clemens; Ravazzani, Paolo

    2016-01-01

    Exposure to extremely low-frequency magnetic fields (ELF-MF) was evaluated in an International Agency for Research on Cancer (IARC) Monographs as "possibly carcinogenic to humans" in 2001, based on increased childhood leukemia risk observed in epidemiological studies. We conducted a hazard assess...

  5. Identification and classification of very low frequency waves on a coral reef flat

    NARCIS (Netherlands)

    Gawehn, M.; van Dongeren, AR; van Rooijen, A.A.; Storlazzi, C.D.; Cheriton, O.M.; Reniers, A.J.H.M.

    2016-01-01

    Very low frequency (VLF, 0.001–0.005 Hz) waves are important drivers of flooding of low-lying coral reef-islands. In particular, VLF wave resonance is known to drive large wave runup and subsequent overwash. Using a 5 month data set of water levels and waves collected along a cross-reef transect on

  6. Bistability and low-frequency fluctuations in semiconductor lasers with optical feedback: a theoretical analysis

    DEFF Research Database (Denmark)

    Mørk, Jesper; Tromborg, Bjarne; Christiansen, Peter Leth

    1988-01-01

    Near-threshold operation of a semiconductor laser exposed to moderate optical feedback may lead to low-frequency fluctuations. In the same region, a kink is observed in the light-current characteristic. Here it is demonstrated that these nonlinear phenomena are predicted by a noise driven multimode...

  7. Domain Decomposition for Computing Extremely Low Frequency Induced Current in the Human Body

    OpenAIRE

    Perrussel , Ronan; Voyer , Damien; Nicolas , Laurent; Scorretti , Riccardo; Burais , Noël

    2011-01-01

    International audience; Computation of electromagnetic fields in high resolution computational phantoms requires solving large linear systems. We present an application of Schwarz preconditioners with Krylov subspace methods for computing extremely low frequency induced fields in a phantom issued from the Visible Human.

  8. Waves of change: immunomodulation of the innate immune response by low frequency electromagnetic field exposure

    NARCIS (Netherlands)

    Golbach, L.A.

    2015-01-01

    In this thesis we investigated possible modulatory roles of low frequency electromagnetic fields (LF EMFs) exposure on the innate immune system. Recent decades have seen a huge increase in the use of electronic devices that nowadays enable us to communicate with distant family, enjoy

  9. Low Frequency Vibration approach to asess the Performance of wood structural Systems

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Michael O. Hunt

    2004-01-01

    The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time consuming process that is expensive, particularly if sheathing or other covering materials must be removed to access the structural members. This paper presents an effort to use a low frequency vibration method for assessing the structural...

  10. Low frequency vibration approach for assessing performance of wood floor systems

    Science.gov (United States)

    Xiping Wang; Robert J. Ross; Michael O. Hunt; John R. Erickson; John W. Forsman

    2005-01-01

    The primary means of inspecting buildings and other structures is to evaluate each structure member individually. This is a time-consuming and expensive process, particularly if sheathing or other covering materials must be removed to access the structural members. The objective of this study was to determine if a low frequency vibration method could be used to...

  11. Low-Frequency Pulsed Current Versus Kilohertz-Frequency Alternating Current: A Scoping Literature Review.

    Science.gov (United States)

    Vaz, Marco Aurélio; Frasson, Viviane Bortoluzzi

    2018-04-01

    To compare the effectiveness of low-frequency pulsed current versus kilohertz-frequency alternating current in terms of evoked force, discomfort level, current intensity, and muscle fatigability; to discuss the physiological mechanisms of each neuromuscular electrical stimulation type; and to determine if kilohertz-frequency alternating current is better than low-frequency pulsed current for clinical treatment. Articles were obtained from PubMed, Scopus, Cochrane Central Register of Controlled Trials, CINAHL, MEDLINE, and SPORTSDiscus databases using the terms Russian current or kilohertz current or alternating current or pulsed current or Aussie current and torque or discomfort or fatigue or current intensity, and through citation tracking up to July 2017. Two independent reviewers selected studies comparing the use of the 2 neuromuscular electrical stimulation currents. Studies describing maximal current intensity tolerated and the main effects of the 2 different current types on discomfort, muscle force, and fatigability were independently reviewed. Data were systematized according to (1) methodology; (2) electrical current characteristics; and (3) outcomes on discomfort level, evoked force, current intensity, and muscle fatigability. The search revealed 15 articles comparing the 2 current types. Kilohertz-frequency alternated current generated equal or less force, similar discomfort, similar current intensity for maximal tolerated neuromuscular electrical stimulation, and more fatigue compared with low-frequency pulsed current. Similar submaximal levels of evoked force revealed higher discomfort and current intensity for kilohertz-frequency alternated current compared with low-frequency pulsed current. Available evidence does not support the idea that kilohertz-frequency alternated current is better than low-frequency pulsed current for strength training and rehabilitation. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier

  12. Adiabatic perturbation theory for atoms and molecules in the low-frequency regime.

    Science.gov (United States)

    Martiskainen, Hanna; Moiseyev, Nimrod

    2017-12-14

    There is an increasing interest in the photoinduced dynamics in the low frequency, ω, regime. The multiphoton absorptions by molecules in strong laser fields depend on the polarization of the laser and on the molecular structure. The unique properties of the interaction of atoms and molecules with lasers in the low-frequency regime imply new concepts and directions in strong-field light-matter interactions. Here we represent a perturbational approach for the calculations of the quasi-energy spectrum in the low-frequency regime, which avoids the construction of the Floquet operator with extremely large number of Floquet channels. The zero-order Hamiltonian in our perturbational approach is the adiabatic Hamiltonian where the atoms/molecules are exposed to a dc electric field rather than to ac-field. This is in the spirit of the first step in the Corkum three-step model. The second-order perturbation correction terms are obtained when iℏω∂∂τ serves as a perturbation and τ is a dimensionless variable. The second-order adiabatic perturbation scheme is found to be an excellent approach for calculating the ac-field Floquet solutions in our test case studies of a simple one-dimensional time-periodic model Hamiltonian. It is straightforward to implement the perturbation approach presented here for calculating atomic and molecular energy shifts (positions) due to the interaction with low-frequency ac-fields using high-level electronic structure methods. This is enabled since standard quantum chemistry packages allow the calculations of atomic and molecular energy shifts due to the interaction with dc-fields. In addition to the shift of the energy positions, the energy widths (inverse lifetimes) can be obtained at the same level of theory. These energy shifts are functions of the laser parameters (low frequency, intensity, and polarization).

  13. Impact of visual repetition rate on intrinsic properties of low frequency fluctuations in the visual network.

    Directory of Open Access Journals (Sweden)

    Yi-Chia Li

    Full Text Available BACKGROUND: Visual processing network is one of the functional networks which have been reliably identified to consistently exist in human resting brains. In our work, we focused on this network and investigated the intrinsic properties of low frequency (0.01-0.08 Hz fluctuations (LFFs during changes of visual stimuli. There were two main questions to be discussed in this study: intrinsic properties of LFFs regarding (1 interactions between visual stimuli and resting-state; (2 impact of repetition rate of visual stimuli. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed scanning sessions that contained rest and visual stimuli in various repetition rates with a novel method. The method included three numerical approaches involving ICA (Independent Component Analyses, fALFF (fractional Amplitude of Low Frequency Fluctuation, and Coherence, to respectively investigate the modulations of visual network pattern, low frequency fluctuation power, and interregional functional connectivity during changes of visual stimuli. We discovered when resting-state was replaced by visual stimuli, more areas were involved in visual processing, and both stronger low frequency fluctuations and higher interregional functional connectivity occurred in visual network. With changes of visual repetition rate, the number of areas which were involved in visual processing, low frequency fluctuation power, and interregional functional connectivity in this network were also modulated. CONCLUSIONS/SIGNIFICANCE: To combine the results of prior literatures and our discoveries, intrinsic properties of LFFs in visual network are altered not only by modulations of endogenous factors (eye-open or eye-closed condition; alcohol administration and disordered behaviors (early blind, but also exogenous sensory stimuli (visual stimuli with various repetition rates. It demonstrates that the intrinsic properties of LFFs are valuable to represent physiological states of human brains.

  14. Characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific

    Institute of Scientific and Technical Information of China (English)

    LI Gen; REN BaoHua; ZHENG JianOiu; WANG Jun

    2009-01-01

    Based on the daily turbulent heat fluxes and related meteorological variables dataeets (1985-2006) from Objectively Analyzed air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution (WHOI), characteristics of low-frequency oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific are analyzed by linear perturbation method and correlation analysis. It can be concluded that: 1) the distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-eea humidity gradient (△q') as well as mean air-eea humidity gradient (△q), while the distribution of low-frequency oscillation Intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (△T'). 2) The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity of △q', low-frequency oscillation intensity of anomalous wind speed (U'), △q and mean wind speed (U), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation Intensity of △T' and U. 3) Over the tropical west Pacific and sea areas north of 20ON, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa' (Ta') and U', indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs' (Ts') also greatly influences the low-frequency oscillation of LHF (SHF).

  15. Low-frequency blood pressure oscillations and inotrope treatment failure in premature infants.

    Science.gov (United States)

    Vesoulis, Zachary A; Hao, Jessica; McPherson, Christopher; El Ters, Nathalie M; Mathur, Amit M

    2017-07-01

    The underlying mechanism as to why some hypotensive preterm infants do not respond to inotropic medications remains unclear. For these infants, we hypothesize that impaired vasomotor function is a significant factor and is manifested through a decrease in low-frequency blood pressure variability across regulatory components of vascular tone. Infants born ≤28 wk estimated gestational age underwent prospective recording of mean arterial blood pressure for 72 h after birth. After error correction, root-mean-square spectral power was calculated for each valid 10-min data frame across each of four frequency bands ( B1 , 0.005-0.0095 Hz; B2 , 0.0095-0.02 Hz; B3 , 0.02-0.06 Hz; and B4 , 0.06-0.16) corresponding to different components of vasomotion control. Forty infants (twenty-nine normotensive control and eleven inotrope-exposed) were included with a mean ± SD estimated gestational age of 25.2 ± 1.6 wk and birth weight 790 ± 211 g. 9.7/11.8 Million (82%) data points were error-free and used for analysis. Spectral power across all frequency bands increased with time, although the magnitude was 20% less in the inotrope-exposed infants. A statistically significant increase in spectral power in response to inotrope initiation was noted across all frequency bands. Infants with robust blood pressure response to inotropes had a greater increase compared with those who had limited or no blood pressure response. In this study, hypotensive infants who require inotropes have decreased low-frequency variability at baseline compared with normotensive infants, which increases after inotrope initiation. Low-frequency spectral power does not change for those with inotrope treatment failure, suggesting dysfunctional regulation of vascular tone as a potential mechanism of treatment failure. NEW & NOTEWORTHY In this study, we examine patterns of low-frequency oscillations in blood pressure variability across regulatory components of vascular tone in normotensive and

  16. Power system low frequency oscillation mode estimation using wide area measurement systems

    Directory of Open Access Journals (Sweden)

    Papia Ray

    2017-04-01

    Full Text Available Oscillations in power systems are triggered by a wide variety of events. The system damps most of the oscillations, but a few undamped oscillations may remain which may lead to system collapse. Therefore low frequency oscillations inspection is necessary in the context of recent power system operation and control. Ringdown portion of the signal provides rich information of the low frequency oscillatory modes which has been taken into analysis. This paper provides a practical case study in which seven signal processing based techniques i.e. Prony Analysis (PA, Fast Fourier Transform (FFT, S-Transform (ST, Wigner-Ville Distribution (WVD, Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT, Hilbert-Huang Transform (HHT and Matrix Pencil Method (MPM were presented for estimating the low frequency modes in a given ringdown signal. Preprocessing of the signal is done by detrending. The application of the signal processing techniques is illustrated using actual wide area measurement systems (WAMS data collected from four different Phasor Measurement Unit (PMU i.e. Dadri, Vindyachal, Kanpur and Moga which are located near the recent disturbance event at the Northern Grid of India. Simulation results show that the seven signal processing technique (FFT, PA, ST, WVD, ESPRIT, HHT and MPM estimates two common oscillatory frequency modes (0.2, 0.5 from the raw signal. Thus, these seven techniques provide satisfactory performance in determining small frequency modes of the signal without losing its valuable property. Also a comparative study of the seven signal processing techniques has been carried out in order to find the best one. It was found that FFT and ESPRIT gives exact frequency modes as compared to other techniques, so they are recommended for estimation of low frequency modes. Further investigations were also carried out to estimate low frequency oscillatory mode with another case study of Eastern Interconnect Phasor Project

  17. Effects of the major sudden stratospheric warming event of 2009 on the subionospheric very low frequency/low frequency radio signals

    Science.gov (United States)

    Pal, S.; Hobara, Y.; Chakrabarti, S. K.; Schnoor, P. W.

    2017-07-01

    This paper presents effects of the major sudden stratospheric warming (SSW) event of 2009 on the subionospheric very low frequency/low frequency (VLF/LF) radio signals propagating in the Earth-ionosphere waveguide. Signal amplitudes from four transmitters received by VLF/LF radio networks of Germany and Japan corresponding to the major SSW event are investigated for possible anomalies and atmospheric influence on the high- to middle-latitude ionosphere. Significant anomalous increase or decrease of nighttime and daytime amplitudes of VLF/LF signals by ˜3-5 dB during the SSW event have been found for all propagation paths associated with stratospheric temperature rise at 10 hPa level. Increase or decrease in VLF/LF amplitudes during daytime and nighttime is actually due to the modification of the lower ionospheric boundary conditions in terms of electron density and electron-neutral collision frequency profiles and associated modal interference effects between the different propagating waveguide modes during the SSW period. TIMED/SABER mission data are also used to investigate the upper mesospheric conditions over the VLF/LF propagation path during the same time period. We observe a decrease in neutral temperature and an increase in pressure at the height of 75-80 km around the peak time of the event. VLF/LF anomalies are correlated and in phase with the stratospheric temperature and mesospheric pressure variation, while minimum of mesospheric cooling shows a 2-3 day delay with maximum VLF/LF anomalies. Simulations of VLF/LF diurnal variation are performed using the well-known Long Wave Propagating Capability (LWPC) code within the Earth-ionosphere waveguide to explain the VLF/LF anomalies qualitatively.

  18. WFS1 and non-syndromic low-frequency sensorineural hearing loss: a novel mutation in a Portuguese case.

    Science.gov (United States)

    Gonçalves, A C; Matos, T D; Simões-Teixeira, H R; Pimenta Machado, M; Simão, M; Dias, O P; Andrea, M; Fialho, G; Caria, H

    2014-04-01

    Low-frequency sensorineural hearing loss (LFSNHL) is an unusual type of HL in which frequencies at 2,000 Hz and below are predominantly affected. Most of the families with LFSNHL carry missense mutations in WFS1 gene, coding for wolframin. A Portuguese patient aged 49, reporting HL since her third decade of life, and also referring tinnitus, was shown to display bilateral moderate LFSNHL after audiological evaluation. Molecular analysis led to the identification of a novel mutation, c.511G>A (p.Asp171Asn), found in heterozygosity in the exon 5 of the WFS1 gene, and changing the aspartic acid at position 171 to an asparagine, in the extracellular N-terminus domain of the wolframin protein. This novel mutation wasn't present either in 200 control chromosomes analyzed or in the hearing proband's half-brother, and it had not been reported in 1000 Genomes, Exome Variant Server, HGMD or dbSNP databases. No mutations were found in GJB2 and GJB6 genes. Multi-alignment of 27 wolframin sequences from mammalian species, against the human wolframin sequence in ConSurf, indicated a conservation score corresponding to 7 in a 1-9 color scale where 9 is conserved and 1 is variable. In addition, the mutation p.Asp171Asn was predicted to be damaging and possibly damaging by SIFT and Polyphen-2, respectively. The auditory phenotype of this patient could thus be due to the novel mutation p.Asp171Asn. Further functional characterization might enable to elucidate in which way the change in the residue 171, as other changes introduced by LFSNHL-associated mutations previously described, leads to this type of HL. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Effects of low-frequency magnetic field on grain boundary segregation in horizontal direct chill casting of 2024 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Effects of low frequency electromagnetic field on grain boundary segregation in horizontal direct chill (HDC)casting process was investigated experimentally. The grain boundary segregation and microstructures of the ingots,which manufactured by conventional HDC casting and low frequency electromagnetic HDC casting were compared.Results show that low frequency electromagnetic field significantly refines the microstructures and reduces grain boundary segregation. Decreasing electromagnetic frequency or increasing electromagnetic intensity has great effects in reducing grain boundary segregation. Meanwhile, the governing mechanisms were discussed.

  20. Simulation of low frequency noise from a downwind wind turbine rotor

    DEFF Research Database (Denmark)

    Madsen Aagaard, Helge; Johansen, Jeppe; Sørensen, Niels N.

    2007-01-01

    in the period from around 1980 to 1990. One of the common characteristics of this low frequency noise, emerging from analysis of the phenomenon, was that the sound pressure level is strongly varying in time. We have investigated this phenomenon using a model package by which the low frequency noise...... to the aero acoustic model. The results for a 5 MW two-bladed turbine with a downwind rotor showed an increase in the sound pressure level of 5-20 dB due to the unsteadiness in the wake caused mainly by vortex shedding. However, in some periods the sound pressure level can increase additionally 0-10 dB when...... the blades directly pass through the discrete shed vortices behind the tower. The present numerical results strongly confirm the experiences with full scale turbines showing big variations of sound pressure level in time due to the wake unsteadiness, as well as a considerable increase in sound pressure level...

  1. Infrasound and low frequency noise from wind turbines: exposure and health effects

    Energy Technology Data Exchange (ETDEWEB)

    Bolin, Karl [Marcus Wallenberg Laboratory, Department of Aeronautical and Vehicle Engineering, Kungliga Tekniska Hoegskolan (Sweden); Bluhm, Goesta; Nilsson, Mats E [Institute of Environmental Medicine, Karolinska Institutet (Sweden); Eriksson, Gabriella, E-mail: kbolin@kth.se [Swedish National Road and Transport Research Institute and Linkoeping University (Sweden)

    2011-07-15

    Wind turbines emit low frequency noise (LFN) and large turbines generally generate more LFN than small turbines. The dominant source of LFN is the interaction between incoming turbulence and the blades. Measurements suggest that indoor levels of LFN in dwellings typically are within recommended guideline values, provided that the outdoor level does not exceed corresponding guidelines for facade exposure. Three cross-sectional questionnaire studies show that annoyance from wind turbine noise is related to the immission level, but several explanations other than low frequency noise are probable. A statistically significant association between noise levels and self-reported sleep disturbance was found in two of the three studies. It has been suggested that LFN from wind turbines causes other, and more serious, health problems, but empirical support for these claims is lacking.

  2. An Ultra-low Frequency Modal Testing Suspension System for High Precision Air Pressure Control

    Directory of Open Access Journals (Sweden)

    Qiaoling YUAN

    2014-05-01

    Full Text Available As a resolution for air pressure control challenges in ultra-low frequency modal testing suspension systems, an incremental PID control algorithm with dead band is applied to achieve high-precision pressure control. We also develop a set of independent hardware and software systems for high-precision pressure control solutions. Taking control system versatility, scalability, reliability, and other aspects into considerations, a two-level communication employing Ethernet and CAN bus, is adopted to complete such tasks as data exchange between the IPC, the main board and the control board ,and the pressure control. Furthermore, we build a single set of ultra-low frequency modal testing suspension system and complete pressure control experiments, which achieve the desired results and thus confirm that the high-precision pressure control subsystem is reasonable and reliable.

  3. Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor

    Science.gov (United States)

    Sim, Ben W.; Potsdam, Mark A.; Conner, Dave A.; Conner, Dave A.; Watts, Michael E.

    2010-01-01

    The use of CFD to directly predict helicopter main rotor noise is shown to be quite promising as an alternative mean for low frequency source noise evaluation. Results using existing state-of-the-art grid structures and finite-difference schemes demonstrated that small perturbation pressures, associated with acoustics radiation, can be extracted with some degree of fidelity. Accuracy of the predictions are demonstrated via comparing to predictions from conventional acoustic analogy-based models, and with measurements obtained from wind tunnel and flight tests for the MD-902 helicopter at several operating conditions. Findings show that the direct CFD approach is quite successfully in yielding low frequency results due to thickness and steady loading noise mechanisms. Mid-to-high frequency contents, due to blade-vortex interactions, are not predicted due to CFD modeling and grid constraints.

  4. The low frequency 2D vibration sensor based on flat coil element

    Energy Technology Data Exchange (ETDEWEB)

    Djamal, Mitra; Sanjaya, Edi; Islahudin; Ramli [Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia); Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia) and Department of Physics, UIN Syarif Hidayatullah, Jl. Ir.H. Djuanda 95 Ciputat 15412 (Indonesia); MTs NW Nurul Iman Kembang Kerang, Jl. Raya Mataram - Lb.Lombok, NTB (Indonesia); Department of Physics, Institut Teknologi Bandung, Jl. Ganesa 10 Bandung 40116 (Indonesia) and Department of Physics,Universitas Negeri Padang, Jl. Prof. Hamka, Padang 25132 (Indonesia)

    2012-06-20

    Vibration like an earthquake is a phenomenon of physics. The characteristics of these vibrations can be used as an early warning system so as to reduce the loss or damage caused by earthquakes. In this paper, we introduced a new type of low frequency 2D vibration sensor based on flat coil element that we have developed. Its working principle is based on position change of a seismic mass that put in front of a flat coil element. The flat coil is a part of a LC oscillator; therefore, the change of seismic mass position will change its resonance frequency. The results of measurements of low frequency vibration sensor in the direction of the x axis and y axis gives the frequency range between 0.2 to 1.0 Hz.

  5. Increase in effectiveness of low frequency acoustic liners by use of coupled Helmholtz resonators

    Science.gov (United States)

    Dean, L. W.

    1977-01-01

    Coupling of Helmholtz resonators in a low-frequency absorber array was studied as a means for increasing the effectiveness for absorbing low-frequency core engine noise. The equations for the impedance of the coupled-resonator systems were developed in terms of uncoupled-resonator parameters, and the predicted impedance for a parallel-coupled scheme is shown to compare favorably with measurements from a test model. In addition, attenuation measurements made in a flow duct on test coupled-resonator panels are shown to compare favorably with predicted values. Finally, the parallel-coupled concept is shown to give significantly more attenuation than that of a typical uncoupled resonator array of the same total volume.

  6. Low-Frequency Volatility in China’s Gold Futures Market and Its Macroeconomic Determinants

    Directory of Open Access Journals (Sweden)

    Song Liu

    2015-01-01

    Full Text Available We extract low- and high-frequency volatility from China’s Shanghai gold futures market using an asymmetric Spline-GARCH (ASP-GARCH model. We then regress monthly low-frequency volatility on selected monthly macroeconomic indicators to study the impact of macroeconomy on gold futures market and to test for excess volatility. Our main result is volatility in China’s Shanghai gold futures market resulting from both macroeconomic fluctuations and investor behaviour. Chinese Consumer Price Index Volatility and US dollar volatility are the two main determinants of low-frequency gold volatility. We also find significant evidence of excess volatility, which can in part be explained in terms of loss-aversive investor behaviour.

  7. Low-frequency electromagnetic radiation field interaction with cerebral nervous MT

    International Nuclear Information System (INIS)

    Gao Feng; Zhou Yi; Xiao Detao; Zhang Dengyu

    2009-01-01

    We investigate the interaction characteristics and mechanism of electromagnetic radiation field and cerebral nervous system. When the electromagnetic radiation is non-ionization low-frequency electromagnetic field, the two-state physical system in the cytoskeletal microtubule (MT) can be quantized. The state of information bits in cerebral neurons system is described by density matrix, and the system dynamics equation is established and solved. It indicates that when the brain is exposed to non-ionization low-frequency electromagnetic field, the density matrix non-opposite angle element of cerebral nervous qubit will never be zero, its quantum coherence characteristic can keep well, and the brain function will also be not damaged. (authors)

  8. Influence of a Low Frequency Electromagnetic field in the Microbial Flora of a Mango Nectar

    Directory of Open Access Journals (Sweden)

    Yaima Torres-Ferrer

    2016-07-01

    Full Text Available In this work an evaluation of the influence of a low frequency electromagnetic field on the microbial flora of mango nectar in order to study their behavior after each treatment is presented. Experiments are designed and implemented with one factor in which the influence of a low frequency electromagnetic field is determined at various levels (0, 90, 95 Gauss, in a homogeneous and completely randomized unit on the microbial load of nectar mango. Magnetic conditioning device used in the tests with approximate average values of magnetic induction of 90 to 95 characterized Gauss. It is established that the application of the magnetic field in the range of values used (90, 95 Gauss causes a stimulation in the values of total count of mesophilic, leading to increased microbial load present in mango nectar studied.

  9. An approach to global equalisation in a rectangular room at low frequencies

    DEFF Research Database (Denmark)

    Orozco, Arturo

    1999-01-01

    The motivation of this study is the fact that sound reproduced in a room undergoes a spectral colouration, which is undesirable. This effect is particularly severe at low frequencies in small enclosures.A theoretical study based on computer simulations is presented. The listening area is a contin......The motivation of this study is the fact that sound reproduced in a room undergoes a spectral colouration, which is undesirable. This effect is particularly severe at low frequencies in small enclosures.A theoretical study based on computer simulations is presented. The listening area...... is a continuous region in a rectangular room that occupies almost the entire room. A travelling wave is generated by feeding a number of loudspeakes with the signal to be reproduced passed through digital filters. The problem of designing these filters is investigated both in the frequency domain and in the time...

  10. Low-frequency flux noise in YBCO dc SQUIDs cooled in static magnetic fields

    International Nuclear Information System (INIS)

    Sager, M.P.; Bindslev Hansen, J.; Petersen, P.R.E.; Holst, T.; Shen, Y.Q.

    1999-01-01

    The low-frequency flux noise in bicrystal and step-edge YBa 2 Cu 3 O x dc SQUIDs has been investigated. The width, w, of the superconducting strips forming the SQUID frame was varied from 4 to 42 μm. The SQUIDs were cooled in static magnetic fields up to 150 μT. Two types of low-frequency noise dominated, namely 1/f-like noise and random telegraph noise giving a Lorentzian frequency spectrum. The 1/f noise performance of the w = 4, 6 and 7 μm SQUIDs was almost identical, while the SQUIDs with w = 22 and 42 μm showed an order of magnitude higher noise level. Our analysis of the data suggests an exponential increase of the 1/f noise versus the cooling field, exhibiting a characteristic magnetic field around 40 μT. (author)

  11. Low-frequency REB modulation and acceleration of ions in a supercritical mode during plasma injection

    International Nuclear Information System (INIS)

    Chupikov, P.T.; Medvedev, D.V.; Onishchenko, I.N.; Panasenko, B.D.

    2004-01-01

    Low-frequency modulation of a high-current relativistic electron beam (REB) and acceleration of ions in the first section of a collective ion accelerator as studied experimentally. This modulation was obtained due to periodic compensation of a virtual cathode charge by plasma ions. An ion flow was produced by an electric field of virtual cathode when plasma assists. Plasma was formed by the four Bostick plasma guns placed at equal distance along the periphery of the drift chamber. The low-frequency modulation with depth 10 % at frequency 46 MHz was obtained. The ion energy was measured using the magnetic analyzer. The ion energy that probably was obtained in the potential well of the virtual cathode exceeded the REB energy

  12. Low frequency AC losses in multi filamentary superconductors up to 15 Tesla

    International Nuclear Information System (INIS)

    Orlando, T.; Braun, C.; Foner, S.; Schwartz, B.; Zieba, A.

    1983-01-01

    Low frequency (1 Hz) ac losses were measured in a variety of A15 superconducting wires having different fiber geometries. Field modulations ofless than or equal to 1 tesla were superimposed on a fixed background field up to 15 tesla. Losses were measured for Nb 3 Sn in continuous fiber, modified jelly-roll, In Situ, and powder metallurgy processed materials, and for Nb 3 Al powder metallurgy processed materials. The results are compared with dc magnetization measurements. The losses are purely hysteretic at these low frequencies, scale with J /SUB c/ (above about 3 tesla), and are reduced substantially by twisting for all the materials. The lowest losses are observed for the Nb 3 Al wires

  13. Identification of low-frequency variants associated with gout and serum uric acid levels

    DEFF Research Database (Denmark)

    Sulem, Patrick; Gudbjartsson, Daniel F; Walters, G Bragi

    2011-01-01

    ,506 individuals for whom serum uric acid measurements were available. We identified a low-frequency missense variant (c.1580C>G) in ALDH16A1 associated with gout (OR = 3.12, P = 1.5 × 10(-16), at-risk allele frequency = 0.019) and serum uric acid levels (effect = 0.36 s.d., P = 4.5 × 10(-21)). We confirmed.......48 s.d., P = 4.5 × 10(-16)). This variant is close to a common variant previously associated with serum uric acid levels. This work illustrates how whole-genome sequencing data allow the detection of associations between low-frequency variants and complex traits....

  14. Low frequency vibrations disrupt left-right patterning in the Xenopus embryo.

    Directory of Open Access Journals (Sweden)

    Laura N Vandenberg

    Full Text Available The development of consistent left-right (LR asymmetry across phyla is a fascinating question in biology. While many pharmacological and molecular approaches have been used to explore molecular mechanisms, it has proven difficult to exert precise temporal control over functional perturbations. Here, we took advantage of acoustical vibration to disrupt LR patterning in Xenopus embryos during tightly-circumscribed periods of development. Exposure to several low frequencies induced specific randomization of three internal organs (heterotaxia. Investigating one frequency (7 Hz, we found two discrete periods of sensitivity to vibration; during the first period, vibration affected the same LR pathway as nocodazole, while during the second period, vibration affected the integrity of the epithelial barrier; both are required for normal LR patterning. Our results indicate that low frequency vibrations disrupt two steps in the early LR pathway: the orientation of the LR axis with the other two axes, and the amplification/restriction of downstream LR signals to asymmetric organs.

  15. Low-frequency analogue Hawking radiation: The Bogoliubov-de Gennes model

    Science.gov (United States)

    Coutant, Antonin; Weinfurtner, Silke

    2018-01-01

    We analytically study the low-frequency properties of the analogue Hawking effect in Bose-Einstein condensates. We show that in one-dimensional flows displaying an analogue horizon, the Hawking effect is dominant in the low-frequency regime. This happens despite nonvanishing grey-body factors, that is, the coupling of the Hawking mode and its partner to the mode propagating with the flow. To show this, we obtained analytical expressions for the scattering coefficients, in general flows and taking into account the full Bogoliubov dispersion relation. We discuss the obtained expressions for the grey-body factors. In particular, we show that they can be significantly decreased if the flow obeys a conformal coupling condition. We argue that in the presence of a small but non-zero temperature, reducing grey-body factors greatly facilitates the observation of entanglement, that is, establishing that the state of the Hawking mode and its partner is non-separable.

  16. Ultra-low-frequency electrostatic modes in a magnetized dusty plasma

    International Nuclear Information System (INIS)

    Salimullah, M.; Amin, M.R.; Roy Chowdhury, A.R.; Salahuddin, M.

    1997-11-01

    A study on the extremely low-frequency possible electrostatic modes in a finite temperature magnetized dusty plasma taking the charged dust grains as the third component has been carried out using the appropriate Vlasov-kinetic theory for the dynamics of the electrons, ions and the dust particles. It is found that the inequalities of charge and number density of plasma species, and the finite-Larmor-radius thermal kinetic effects of the mobile charged dust grains, introduce the existence of very low-frequency electrostatic eigenmodes in the three-component homogeneous magnetized dusty plasma. The relevance of the present investigation to space and astrophysical situations as well as laboratory experiments for dust Coulomb crystallization has been pointed out. (author)

  17. Low frequency acoustic properties of bilayer membrane acoustic metamaterial with magnetic oscillator

    Directory of Open Access Journals (Sweden)

    Nansha Gao

    2017-07-01

    Full Text Available A bilayer membrane acoustic metamaterial was proposed to overcome the influence of the mass law on traditional acoustic materials and obtain a lightweight thin-layer structure that can effectively isolate low frequency noise. The finite element analysis (FEA results agree well with the experimental results. It is proved that the sound transmission losses (STLs of the proposed structures are higher than those of same surface density acoustic materials. The introduction of the magnetic mass block is different from the traditional design method, in which only a passive mass block is fixed on the membrane. The magnetic force will cause tension in the membrane, increase membrane prestress, and improve overall structural stiffness. The effects of the geometry size on the STLs are discussed in detail. The kind of method presented in this paper can provide a new means for engineering noise control. Keywords: Bilayer membrane acoustic metamaterial, Low frequency sound insulation, Sound transmission loss, Magnet oscillator

  18. An oscillation phenomenon of low frequency reverberation in the shallow water and its physical explanation

    Institute of Scientific and Technical Information of China (English)

    LI; Fenghua; LIU; Jianjun; LI; Zhenglin; ZHANG; Renhe

    2005-01-01

    An oscillation phenomenon of the low frequency reverberation intensity was observed in several shallow water reverberation experiments. This phenomenon cannot be explained by the widely used incoherent reverberation theory. In this paper, to explain the observed oscillation phenomenon, a normal mode based coherent reverberation theory is presented. The theoretical analysis and numerical results show that modal interference can cause the regular oscillation phenomenon of the low frequency reverberation intensity, and the oscillation frequency is determined by the normal mode eigen-values. A new method to estimate the bottom sound speed based on the oscillation frequency of reverberation intensity was presented in this paper. The experimental results at three different sites indicate that the bottom sound speed estimated from the oscillation frequency of reverberation intensity agrees with that inverted from Matched Field Processing (MFP) well.

  19. Thickness Measurement of a Film on a Substrate by Low-Frequency Ultrasound

    Institute of Scientific and Technical Information of China (English)

    LI Ming-Xuan; WANG Xiao-Min; MAO Jie

    2004-01-01

    @@ We describe a new simple technique for the low-frequency ultrasonic thickness measurement of an air-backed soft thin layer attached on a hard substrate of finite thickness through the frequency-shifts of the substrate resonances by the substrate-side insonification. A plane compressive wave impinging normally on the substrate surface from a liquid is studied. Low frequency here means an interrogating acoustical wave frequency of less than half of coating to the substrate. Equations for the frequency-shifts are derived and solved by the Newton iterative method and the Taylor expansion method, respectively, indicating satisfactory agreement within the range of interest of thickness ratio of the thin layer to the substrate for a polymer-aluminium structure. An experimental setup is constructed to verify the validity of the technique.

  20. Effect of low-frequency power on dual-frequency capacitively coupled plasmas

    International Nuclear Information System (INIS)

    Yuan, Q H; Xin, Y; Huang, X J; Sun, K; Ning, Z Y; Yin, G Q

    2008-01-01

    In low-pressure dual-frequency capacitively coupled plasmas driven with 60/13.56 MHz, the effect of low-frequency power on the plasma characteristics was investigated using a compensated Langmuir electrostatic probe. At lower pressures (about 10 mTorr), it was possible to control the plasma density and the ion bombardment energy independently. As the pressure increased, this independent control could not be achieved. As the low-frequency power increased for the fixed high-frequency power, the electron energy probability function (EEPF) changed from Druyvesteyn-like to Maxwellian-like at pressures of 50 mTorr and higher, along with a drop in electron temperature. The plasma parameters were calculated and compared with simulation results.

  1. Low-frequency features of the ultrasound echo from an adhesively bonded layer-substrate structure

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaomin; LI Mingxuan; MAO Jie; LIAN Guoxuan

    2005-01-01

    The low-frequency features of the ultrasound reflection spectra from the structure of a single layer on a substrate bonded by a thin adhesive layer are theoretically studied; the low-frequency here means the frequency of the interrogating ultrasonic wave is less than the quart-wavelength resonance frequency of the adhesive layer. The possibility of the inversion of the thickness and the evaluation of the cohesion strength of the adhesive layer from the resonance frequency shifts of the layered system is indicated. An analytic solution to the nonlinear equation satisfied by the resonance frequency is presented by Taylor expansion method showing satisfactory agreement with the numerical results by Newton iterative method. The results indicate larger range for application than the traditional spring model for the thin adhesive layer. In a much lower frequency range the thin adhesive layer may be regarded to be a spring.

  2. AN ALTERNATIVE APPROACH TO LOW FREQUENCY RF ACCELERATORS AND POWER SOURCES

    International Nuclear Information System (INIS)

    ZHAO, Y.

    2001-01-01

    The Muon Collider and Neutrino Factory projects require low frequency rf cavities because the size and emittance of the muon beam is much larger than is usual for electron or proton beams. The range of 30 MHz to 200 MHz is of special interest. However, the size of an accelerator with low frequency will be impractically large if it is simply scaled up from usual designs. In addition, to get very high peak power in this range is difficult. Presented in this paper is an alternative structure that employs a quasi-lumped inductance that can significantly reduce the transverse size while keeping high gradient. Also addressed is a power compression scheme with a thyratron. This gives a possible solution to provide very high peak power

  3. Characteristics of Large Low-frequency Debris Flow Hazards and Mitigation Strategies

    Institute of Scientific and Technical Information of China (English)

    WANG Shige

    2005-01-01

    A low-frequency debris flow took place in the north coastal range of Venezuela on Dec. 16, 1999,and scientists all over the world paid attention to this catastrophe. Four characteristics of low-frequency debris hazard are discussed: long return period and extreme catastrophe, special rare triggering factors,difficulty in distinguishing and a series of small hazards subsequent to the catastrophe. Different measures, such as preventing, forecast - warning,engineering, can be used for mitigating and controlling the catastrophe. In engineering practice, it is a key that large silt-trap dams are used to control rare large debris flow. A kind of low dam with cheap cost can be used to replace high dam in developing countries. A planning for controlling debris flow hazard in Cerro Grande stream of Venezuela is presented at the end of this paper.

  4. A new method for calculation of low-frequency coupling impedance

    International Nuclear Information System (INIS)

    Kurennoy, S.S.; Stupakov, G.V.

    1993-05-01

    In high-energy proton accelerators and storage rings the bunch length is typically at least a few times larger than the radius of the vacuum chamber. For example, the SSC will have an rms bunch length above 6 cm and a beam-pipe radius below 2 cm. The main concern for beam stability in such a machine is the low-frequency impedance, i.e., the coupling impedance at frequencies wen below the cut-off frequency of the vacuum chamber. In the present paper we develop a new analytical approach for calculation of the low-frequency impedance of axisymmetric structures that allows us to give quick and reliable estimates of contributions to the impedance from various chamber discontinuities. Simple formulae for the longitudinal impedance of some typical discontinuities are obtained

  5. Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Banerjee, A.K.; Alam, M.N.; Mamun, A.A.

    2001-01-01

    Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized, two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust- magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that in parallel propagating dust-Alfven mode these effects play no role, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays destabilizing role whereas the effect of dust/ion fluid temperature plays stabilizing role. (author)

  6. Kinetic models of partially ionized complex plasmas in the low frequency regime

    International Nuclear Information System (INIS)

    Tolias, P.; Ratynskaia, S.; Angelis, U. de

    2011-01-01

    The results from three kinetic models of complex plasmas taking into account collisions with neutrals are compared in the low-frequency regime: The ''full'' model which considers the absorption of plasma fluxes on dust particles and dust charge fluctuations, the ''multi-component'' model where both these effects are neglected, and the ''standard'' model which takes into account the dust charge perturbations but not the absorption of fluxes. We derive and numerically evaluate expressions of the low frequency responses of these models, also taking into account the modification of the capture cross-sections due to the effect of neutrals. The role of plasma sources and collisions with neutrals is assessed by computing the plasma permittivities and static permittivities for all the three models.

  7. Low-frequency variations in the wake of a circular cylinder at Re = 3900

    International Nuclear Information System (INIS)

    Lehmkuhl, Oriol; Rodríguez, Ivette; Pérez-Segarra, Carlos D; Oliva, Assensi; Borrell, Ricard

    2011-01-01

    Flow around cylindrical structures is of relevance for many practical applications. Knowledge of flow-related unsteady loading of such structures is crucial for hydro - and aerodynamic control and design. In order to obtain a deeper knowledge of this kind of flow, a DNS have been performed at Re D = 3900 (Re D = U ref D/ν). The instantaneous velocity signals of probes located in the separated shear-layer and in the vortex formation region exhibit the presence of low-frequency variations. The statistical analysis of these signals suggest that low-frequency variations in the vortex formation length, suction base pressure and intermittencies in the shear layer are closely related. It is shown that these variations are the responsible of the large scattering of data obtained in different experimental and numerical results, as well as the U-shape and V-shape stream-wise velocity profiles observed in the very near wake of the cylinder.

  8. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors

    Directory of Open Access Journals (Sweden)

    John G. Baker

    2013-09-01

    Full Text Available We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10^{-5} – 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  9. Ultra-low-frequency dust-electromagnetic modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    Obliquely propagating ultra-low-frequency dust-electromagnetic waves in a self-gravitating, warm, magnetized two fluid dusty plasma system have been investigated. Two special cases, namely, dust-Alfven mode propagating parallel to the external magnetic field and dust-magnetosonic mode propagating perpendicular to the external magnetic field have also been considered. It has been shown that effects of self-gravitational field, dust fluid temperature, and obliqueness significantly modify the dispersion properties of these ultra-low-frequency dust-electromagnetic modes. It is also found that these effects of self-gravitational field and dust/ion fluid temperature play no role in parallel propagating dust-Alfven mode, but in obliquely propagating dust-Alfven mode or perpendicular propagating dust-magnetosonic mode the effect of self-gravitational field plays a destabilizing role whereas the effect of dust/ion fluid temperature plays a stabilizing role. (author)

  10. MD1271: Effect of low frequency noise on the evolution of the emittance and halo population

    CERN Document Server

    Fitterer, Miriam; Valishev, Alexander; Bruce, Roderik; Hofle, Wolfgang; Hostettler, Michi; Papadopoulou, Parthena Stefania; Papotti, Giulia; Papaphilippou, Yannis; Pellegrini, Dario; Trad, Georges; Valuch, Daniel; Valentino, Gianluca; Wagner, Joschka; Cai, Xu; CERN. Geneva. ATS Department

    2018-01-01

    For the High Luminosity upgrade the β* in IR1 and IR5 will be further reduced compared to the current LHC. As the β* decreases the β-functions in the inner triplet (IT) increase resulting in a higher sensitivity of the HL-LHC to ground motion in the IT region or to increases of the low frequency noise. Noise can in general lead to emittance growth and higher halo population and diffusion rate. However, it is usually assumed in the literature that only frequencies close to the betatron frequencies and sidebands have an effect on the emittance and tail population. To test this theory, an MD was carried out to observe if also low frequency noise can lead to emittance growth and stronger halo population and diffusion. This MD conducted on 24.08.2016 follows a previous MD on 05.11.2015/06.11.2015

  11. Effect of low frequency noise on the evolution of the emittance and halo population

    CERN Document Server

    Fitterer, Miriam; Antoniou, Fanouria; Bravin, Enrico; Bruce, Roderik; Fartoukh, Stephane; Fuchsberger, Kajetan; Hofle, Wolfgang; Gasior, Marek; Jaussi, Michael; Jacquet, Delphine; Kotzian, Gerd; Olexa, Jakub; Papadopoulou, Parthena Stefania; Papotti, Giulia; Papaphilippou, Yannis; Redaelli, Stefano; Salvachua Ferrando, Belen Maria; Stancari, Giulio; Trad, Georges; Valuch, Daniel; Valentino, Gianluca; Wagner, Joschka; Wenninger, Jorg; CERN. Geneva. ATS Department

    2016-01-01

    For the High Luminosity upgrade the β* in IR1 and IR5 will be further reduced compared to the current LHC. As the β* decreases the β-functions in the inner triplet (IT) increase resulting in a higher sensitivity of the HL-LHC to ground motion in the IT region or to increases of the low frequency noise. Noise can in general lead to emittance growth and higher halo population and diffusion rate. However, it is usually assumed in the literature that only frequencies close to the betatron frequencies and sidebands have an effect on the emittance and tail population. To test this theory, an MD was carried out to observe if also low frequency noise can lead to emittance growth and stronger halo population and diffusion.

  12. Experimental investigation on low-frequency vibration assisted micro-WEDM of Inconel 718

    Directory of Open Access Journals (Sweden)

    Deepak Rajendra Unune

    2017-02-01

    Full Text Available The micro-wire electric discharge machining (micro-WEDM has emerged as the popular micromachining processes for fabrication of micro-features. However, the low machining rate and poor surface finish are restricting wide applications of this process. Therefore, in this study, an attempt was made to improve machining rate of micro-WEDM with low-frequency workpiece vibration assistance. The gap voltage, capacitance, feed rate and vibrational frequency were chosen as control factors, whereas, the material removal rate (MRR and kerf width were selected as performance measures while fabricating microchannels in Inconel 718. It was observed that in micro-WEDM, the capacitance is the most significant factor affecting both MRR and kerf width. It was witnessed that the low-frequency workpiece vibration improves the performance of micro-WEDM by improving the MRR due to enhanced flushing conditions and reduced electrode-workpiece adhesion.

  13. A low-frequency vibration energy harvester based on diamagnetic levitation

    Science.gov (United States)

    Kono, Yuta; Masuda, Arata; Yuan, Fuh-Gwo

    2017-04-01

    This article presents 3-degree-of-freedom theoretical modeling and analysis of a low-frequency vibration energy harvester based on diamagnetic levitation. In recent years, although much attention has been placed on vibration energy harvesting technologies, few harvesters still can operate efficiently at extremely low frequencies in spite of large potential demand in the field of structural health monitoring and wearable applications. As one of the earliest works, Liu, Yuan and Palagummi proposed vertical and horizontal diamagnetic levitation systems as vibration energy harvesters with low resonant frequencies. This study aims to pursue further improvement along this direction, in terms of expanding maximum amplitude and enhancing the flexibility of the operation direction for broader application fields by introducing a new topology of the levitation system.

  14. Low frequency electric and magnetic fields - effect on fertility and fetal development

    International Nuclear Information System (INIS)

    Thommesen, G.

    1989-01-01

    The epidemiological as well as the experimental data are still inconclusive. Inconsistencies within and between research reports make it impossible to state whether, or under what circumstances, low frequency fields may be harmful to reproduction by reducing fertility or by causing fetal malformations or death. The data indicate, however, that a certain care should be exercised in the case of NMR diagnostic imaging, industrial magnetic field exposure, and paramedical pulsed magnetic field therapy on women who might be expected to be in the first trimester of pregnancy, particularly in the unindentified initial phase. Work in connection with visual display units, living in the neighbourhood of overhead high-voltage powerlines, or other every-day sources of exposure to low frequency fields seem, however, to be an insignificant or non-existent threat to an unborn life. 147 refs

  15. Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller

    DEFF Research Database (Denmark)

    Yao, Wei; Jiang, L.; Fang, Jiakun

    2013-01-01

    This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying...... forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal...... conditions and different disturbances, but also has better robustness against to the time delay existing in the remote signals. The comparison studies with the conventional lead-lag WADC are also provided....

  16. Static and low frequency noise characterization of ultra-thin body InAs MOSFETs

    Science.gov (United States)

    Karatsori, T. A.; Pastorek, M.; Theodorou, C. G.; Fadjie, A.; Wichmann, N.; Desplanque, L.; Wallart, X.; Bollaert, S.; Dimitriadis, C. A.; Ghibaudo, G.

    2018-05-01

    A complete static and low frequency noise characterization of ultra-thin body InAs MOSFETs is presented. Characterization techniques, such as the well-known Y-function method established for Si MOSFETs, are applied in order to extract the electrical parameters and study the behavior of these research grade devices. Additionally, the Lambert-W function parameter extraction methodology valid from weak to strong inversion is also used in order to verify its applicability in these experimental level devices. Moreover, a low-frequency noise characterization of the UTB InAs MOSFETs is presented, revealing carrier trapping/detrapping in slow oxide traps and remote Coulomb scattering as origin of 1/f noise, which allowed for the extraction of the oxide trap areal density. Finally, Lorentzian-like noise is also observed in the sub-micron area devices and attributed to both Random Telegraph Noise from oxide individual traps and g-r noise from the semiconductor interface.

  17. Respiratory ultradian rhythms of mean and low frequencies: a comparative physiological approach.

    Science.gov (United States)

    Stupfel, M; Pletan, Y

    1983-01-01

    Recent developments in human rhythmic respiratory pathology lead to this review of the literature for ultradian rhythms of middle and low frequencies, that is having periods longer than the usual respiratory rates, whose periods are seconds or fractions of seconds. Ultradian respiratory movements for respiratory periods (5 less than tau less than 50 min) have been reported in many species of small laboratory animals (mice, rats, guinea-pigs, rabbits, quails). Long-period respiratory rates (20 less than tau less than 90 min) have been found in human fetuses and infants. But they are more difficult to detect in human adults, except during sleep where they have been related to REM and NONREM activities. These respiratory rhythms of middle and low frequencies are supposed to result from dissipative energy structures related to surface-volume relationships, with interlocking chemical clocks, and to be relevant to a basic rest-activity cycle.

  18. Inertia and ion Landau damping of low-frequency magnetohydrodynamical modes in tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.; Chu, M.S.

    1996-01-01

    The inertia and Landau damping of low-frequency magnetohydrodynamical modes are investigated using the drift-kinetic energy principle for the motion along the magnetic field. Toroidal trapping of the ions decreases the Landau damping and increases the inertia for frequencies below (r/R) 1/2 v thi /qR. The theory is applied to toroidicity-induced Alfvacute en eigenmodes and to resistive wall modes in rotating plasmas. An explanation of the beta-induced Alfvacute en eigenmode is given in terms of the Pfirsch endash Schlueter-like enhancement of inertia at low frequency. The toroidal inertia enhancement also increases the effects of plasma rotation on resistive wall modes. copyright 1996 American Institute of Physics

  19. Low frequency phononic band structures in two-dimensional arc-shaped phononic crystals

    International Nuclear Information System (INIS)

    Xu, Zhenlong; Wu, Fugen; Guo, Zhongning

    2012-01-01

    The low frequency phononic band structures of two-dimensional arc-shaped phononic crystals (APCs) were studied by the transfer matrix method in cylindrical coordinates. The results showed the first phononic band gaps (PBGs) of APCs from zero Hz with low modes. Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials. These properties can be efficiently used in a structure for low frequencies that are forbidden, or in a device that permits a narrow window of frequencies. -- Highlights: ► We report a new class of quasi-periodic hetero-structures, arc-shaped phononic crystals (APCs). ► The results show the first PBGs start with zero Hz with low modes. ► Locally resonant (LR) gaps were obtained with higher-order rotation symmetry, due to LR frequencies corresponding to the speeds of acoustic waves in the materials.

  20. The low-frequency array (LOFAR): opening a new window on the universe

    Science.gov (United States)

    Kassim, N. E.; Lazio, T. J. W.; Ray, P. S.; Crane, P. C.; Hicks, B. C.; Stewart, K. P.; Cohen, A. S.; Lane, W. M.

    2004-12-01

    We present an overview of the low-frequency array (LOFAR) that will open a window on one of the last and most poorly explored regions of the electromagnetic spectrum. LOFAR will be a large (baselines up to 400 km), low-frequency (ν˜10-240MHz) aperture synthesis array with large collecting area ( ˜106m2 at 15MHz) and high resolution ( ˜1.5″ at 100 MHz), and will provide sub-mJy sensitivity across much of its operating range. LOFAR will be a powerful instrument for solar system and planetary science applications as reviewed by papers in this monogram. Key astrophysical science drivers include acceleration, turbulence, and propagation in the galactic interstellar medium, exploring the high red-shift universe and transient phenomena, as well as searching for the red-shifted signature of neutral hydrogen from the cosmologically important epoch of re-ionization.

  1. Modeling of Low Frequency MHD Induced Beam Ion Transport In NSTX

    International Nuclear Information System (INIS)

    Gorelenkov, N.N.; Medley, S.S.

    2004-01-01

    Beam ion transport in the presence of low frequency MHD activity in National Spherical Tokamak Experiment (NSTX) plasma is modeled numerically and analyzed theoretically in order to understand basic underlying physical mechanisms responsible for the observed fast ion redistribution and losses. Numerical modeling of the beam ions flux into the NPA in NSTX shows that after the onset of low frequency MHD activity high energy part of beam ion distribution, E b > 40keV, is redistributed radially due to stochastic diffusion. Such diffusion is caused by high order harmonics of the transit frequency resonance overlap in the phase space. Large drift orbit radial width induces such high order resonances. Characteristic confinement time is deduced from the measured NPA energy spectrum and is typically ∼ 4msec. Considered MHD activity may induce losses on the order of 10% at the internal magnetic field perturbation (delta)B/B = Ο (10 -3 ), which is comparable to the prompt orbit losses

  2. Multichannel Recorder for Low Frequency Signals: Application of Oscilloscope as Integrated Mobile Service for a Smartphone

    Directory of Open Access Journals (Sweden)

    Michal Kochlan

    2016-01-01

    Full Text Available Data acquisition and processing are well known for some time. Many applications use powerful hardware to acquire, process, and visualize signal waveforms. But there are some applications that do not have to perform high resolution signal acquisition and process large amount of data, for example, low frequency applications of embedded design and applications for remote power grid monitoring. The paper describes special system for low frequency signal data sample acquisition, processing, and visualization implemented as a service on Android-based smart device. The service makes smart device functioning as an oscilloscope or arbitrary waveform generator which is accessible remotely through Bluetooth. The design respects low power consumption requirements, simplicity, and user friendliness in application design. Application scenario was implemented as wireless data acquisition system for power grid monitoring.

  3. Testing General Relativity with Low-Frequency, Space-Based Gravitational-Wave Detectors.

    Science.gov (United States)

    Gair, Jonathan R; Vallisneri, Michele; Larson, Shane L; Baker, John G

    2013-01-01

    We review the tests of general relativity that will become possible with space-based gravitational-wave detectors operating in the ∼ 10 -5 - 1 Hz low-frequency band. The fundamental aspects of gravitation that can be tested include the presence of additional gravitational fields other than the metric; the number and tensorial nature of gravitational-wave polarization states; the velocity of propagation of gravitational waves; the binding energy and gravitational-wave radiation of binaries, and therefore the time evolution of binary inspirals; the strength and shape of the waves emitted from binary mergers and ringdowns; the true nature of astrophysical black holes; and much more. The strength of this science alone calls for the swift implementation of a space-based detector; the remarkable richness of astrophysics, astronomy, and cosmology in the low-frequency gravitational-wave band make the case even stronger.

  4. Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation

    International Nuclear Information System (INIS)

    Gu, Lei; Livermore, Carol

    2011-01-01

    This paper presents experiments and models of an energy harvesting device in which a low frequency resonator impacts a high frequency energy harvesting resonator, resulting in energy harvesting predominantly at the system's coupled vibration frequency. Analysis shows that a reduced mechanical damping ratio during coupled vibration enables increased electrical power generation as compared with conventional technology. Experiments demonstrate that the efficiency of electrical power transfer is significantly improved with the coupled vibration approach. An average power output of 0.43 mW is achieved under 0.4g acceleration at 8.2 Hz, corresponding to a power density of 25.5 µW cm −3 . The measured power and power density at the resonant frequency are respectively 4.8 times and 13 times the measured peak values for a conventional harvester created from a low frequency beam alone

  5. Comparison of three cell block techniques for detection of low frequency abnormal cells

    OpenAIRE

    McCormack M; Hecht SA

    2013-01-01

    Steven A Hecht, Matthew McCormackHologic Inc, Marlborough, MA, USABackground: The Cellient® Automated Cell Block System rapidly creates paraffin-embedded cell blocks by using vacuum filtration to deposit a layer of cells on a filter and infiltrate those cells with reagents and paraffin. This study used a “tracer” cell model to mimic low frequency abnormal cells and compare detection and representative sampling with simple sedimentation, Richard-Allan HistoGel&t...

  6. Connecting structural relaxation with the low frequency modes in a hard-sphere colloidal glass.

    Science.gov (United States)

    Ghosh, Antina; Chikkadi, Vijayakumar; Schall, Peter; Bonn, Daniel

    2011-10-28

    Structural relaxation in hard-sphere colloidal glasses has been studied using confocal microscopy. The motion of individual particles is followed over long time scales to detect the rearranging regions in the system. We have used normal mode analysis to understand the origin of the rearranging regions. The low-frequency modes, obtained over short time scales, show strong spatial correlation with the rearrangements that happen on long time scales.

  7. Performance of genotype imputation for low frequency and rare variants from the 1000 genomes.

    Science.gov (United States)

    Zheng, Hou-Feng; Rong, Jing-Jing; Liu, Ming; Han, Fang; Zhang, Xing-Wei; Richards, J Brent; Wang, Li

    2015-01-01

    Genotype imputation is now routinely applied in genome-wide association studies (GWAS) and meta-analyses. However, most of the imputations have been run using HapMap samples as reference, imputation of low frequency and rare variants (minor allele frequency (MAF) 1000 Genomes panel) are available to facilitate imputation of these variants. Therefore, in order to estimate the performance of low frequency and rare variants imputation, we imputed 153 individuals, each of whom had 3 different genotype array data including 317k, 610k and 1 million SNPs, to three different reference panels: the 1000 Genomes pilot March 2010 release (1KGpilot), the 1000 Genomes interim August 2010 release (1KGinterim), and the 1000 Genomes phase1 November 2010 and May 2011 release (1KGphase1) by using IMPUTE version 2. The differences between these three releases of the 1000 Genomes data are the sample size, ancestry diversity, number of variants and their frequency spectrum. We found that both reference panel and GWAS chip density affect the imputation of low frequency and rare variants. 1KGphase1 outperformed the other 2 panels, at higher concordance rate, higher proportion of well-imputed variants (info>0.4) and higher mean info score in each MAF bin. Similarly, 1M chip array outperformed 610K and 317K. However for very rare variants (MAF ≤ 0.3%), only 0-1% of the variants were well imputed. We conclude that the imputation of low frequency and rare variants improves with larger reference panels and higher density of genome-wide genotyping arrays. Yet, despite a large reference panel size and dense genotyping density, very rare variants remain difficult to impute.

  8. Low frequency complex dielectric (conductivity) response of dilute clay suspensions: Modeling and experiments.

    Science.gov (United States)

    Hou, Chang-Yu; Feng, Ling; Seleznev, Nikita; Freed, Denise E

    2018-04-11

    In this work, we establish an effective medium model to describe the low-frequency complex dielectric (conductivity) dispersion of dilute clay suspensions. We use previously obtained low-frequency polarization coefficients for a charged oblate spheroidal particle immersed in an electrolyte as the building block for the Maxwell Garnett mixing formula to model the dilute clay suspension. The complex conductivity phase dispersion exhibits a near-resonance peak when the clay grains have a narrow size distribution. The peak frequency is associated with the size distribution as well as the shape of clay grains and is often referred to as the characteristic frequency. In contrast, if the size of the clay grains has a broad distribution, the phase peak is broadened and can disappear into the background of the canonical phase response of the brine. To benchmark our model, the low-frequency dispersion of the complex conductivity of dilute clay suspensions is measured using a four-point impedance measurement, which can be reliably calibrated in the frequency range between 0.1 Hz and 10 kHz. By using a minimal number of fitting parameters when reliable information is available as input for the model and carefully examining the issue of potential over-fitting, we found that our model can be used to fit the measured dispersion of the complex conductivity with reasonable parameters. The good match between the modeled and experimental complex conductivity dispersion allows us to argue that our simplified model captures the essential physics for describing the low-frequency dispersion of the complex conductivity of dilute clay suspensions. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Adaptive nonparametric estimation for L\\'evy processes observed at low frequency

    OpenAIRE

    Kappus, Johanna

    2013-01-01

    This article deals with adaptive nonparametric estimation for L\\'evy processes observed at low frequency. For general linear functionals of the L\\'evy measure, we construct kernel estimators, provide upper risk bounds and derive rates of convergence under regularity assumptions. Our focus lies on the adaptive choice of the bandwidth, using model selection techniques. We face here a non-standard problem of model selection with unknown variance. A new approach towards this problem is proposed, ...

  10. [Effect of extremely low frequency magnetic field on glutathione in rat muscles].

    Science.gov (United States)

    Ciejka, Elzbieta; Jakubowska, Ewa; Zelechowska, Paulina; Huk-Kolega, Halina; Kowalczyk, Agata; Goraca, Anna

    2014-01-01

    Free radicals (FR) are atoms, molecules or their fragments. Their excess leads to the development of oxidizing stress, the cause of many neoplastic, neurodegenerative and inflammatory diseases, and aging of the organism. Industrial pollution, tobacco smoke, ionizing radiation, ultrasound and magnetic field are the major FR exogenous sources. The low frequency magnetic field is still more commonly applied in the physical therapy. The aim of the presented study was to evaluate the effect of extremely low frequency magnetic field used in the magnetotherapy on the level of total glutathione, oxidized and reduced, and the redox state of the skeletal muscle cells, depending on the duration of exposure to magnetic field. The male rats, weight of 280-300 g, were randomly devided into 3 experimental groups: controls (group I) and treatment groups exposed to extremely low frequency magnetic field (ELF-MF) (group II exposed to 40 Hz, 7 mT for 0.5 h/day for 14 days and group III exposed to 40 Hz, 7 mT for 1 h/day for 14 days). Control rats were kept in a separate room not exposed to extremely low frequency magnetic field. Immediately after the last exposure, part of muscles was taken under pentobarbital anesthesia. Total glutathione, oxidized and reduced, and the redox state in the muscle tissue of animals were determined after exposure to magnetic fields. Exposure to low magnetic field: 40 Hz, 7 mT for 30 min/day and 60 min/day for 2 weeks significantly increased the total glutathione levels in the skeletal muscle compared to the control group (p magnetic therapy plays an important role in the development of adaptive mechanisms responsible for maintaining the oxidation-reduction balance in the body and depends on exposure duration.

  11. Effect of low-frequency low-intensity ultrasound with microbubbles on prostate cancer hypoxia.

    Science.gov (United States)

    Hou, Rui; Xu, Yanjun; Lu, Qijie; Zhang, Yang; Hu, Bing

    2017-10-01

    Angiogenesis plays an important role in tumor growth, invasiveness, and metastasis. It is well established that prostate cancer is exposed to fluctuating oxygen tensions and both acute and chronic hypoxia exist, and these conditions can upregulate angiogenesis-associated proteins such as hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A. Low-frequency low-intensity ultrasound with microbubbles can induce obvious microvessel damage in tumors, cause cell necrosis or apoptosis. However, there is no information about whether the blocking blood effect of low-frequency low-intensity ultrasound with microbubbles has an influence on hypoxia environment of prostate cancer. Therefore, we investigated the impact of different low-frequency low-intensity ultrasound with microbubbles radiation times on prostate tumors, observed the change in the hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A protein levels, as well as cell proliferation, apoptosis, and tumor volume. The results indicated that as the radiation was repeated four times on each treatment day, the effects of interruption were durable, the cell proliferation was inhibited, and apoptosis was promoted, and the hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A expression levels were lower in the treatment group than in the control group. When the radiation was carried out once per treatment day, the hypoxia response was stimulated, the hypoxia-inducible factor 1 alpha and vascular endothelial growth factor A expression levels were higher compared with the control group, and cell proliferation was promoted. In addition, the tumor volume increased obviously in the hypoxia-stimulated group, whereas tumors grew slowly in the hypoxia-suppressed group. The results of this work demonstrated that under the same conditions, different radiation times of low-frequency low-intensity ultrasound with microbubbles affect the hypoxia response differently, and the

  12. A low frequency piezoelectric power harvester using a spiral-shaped bimorph

    Institute of Scientific and Technical Information of China (English)

    HU; Yuantai; HU; Hongping; YANG; Jiashi

    2006-01-01

    We propose a spiral-shaped piezoelectric bimorph power harvester operating with coupled flexural and extensional vibration modes for applications to low frequency energy sources.A theoretical analysis is performed and the computational results show that the spiral structure has relatively low operating frequency compared to beam power harvesters of the same size.It is found that to optimize the performance of a piezoelectric spiral-shaped harvester careful design is needed.

  13. Improvement of Low-Frequency Sound Field Obtained by an Optimized Boundary

    Institute of Scientific and Technical Information of China (English)

    JING Lu; ZHU Xiao-tian

    2006-01-01

    An approach based on the finite element analysis was introduced to improve low-frequency sound field. The optimized scatters on the wall redistribute the modes of the room and provide effective diffusion of sound field. The frequency response, eigenfrequency, spatial distribution and transient response were calculated. Experimental data were obtained through a 1:5 scaled set up. The results show that the optimized treatment has a positive effect on sound field and the improvement is obvious.

  14. Polymorph characterization of active pharmaceutical ingredients (APIs) using low-frequency Raman spectroscopy.

    Science.gov (United States)

    Larkin, Peter J; Dabros, Marta; Sarsfield, Beth; Chan, Eric; Carriere, James T; Smith, Brian C

    2014-01-01

    Polymorph detection, identification, and quantitation in crystalline materials are of great importance to the pharmaceutical industry. Vibrational spectroscopic techniques used for this purpose include Fourier transform mid-infrared (FT-MIR) spectroscopy, Fourier transform near-infrared (FT-NIR) spectroscopy, Raman spectroscopy, and terahertz (THz) and far-infrared (FIR) spectroscopy. Typically, the fundamental molecular vibrations accessed using high-frequency Raman and MIR spectroscopy or the overtone and combination of bands in the NIR spectra are used to monitor the solid-state forms of active pharmaceutical ingredients (APIs). The local environmental sensitivity of the fundamental molecular vibrations provides an indirect probe of the long-range order in molecular crystals. However, low-frequency vibrational spectroscopy provides access to the lattice vibrations of molecular crystals and, hence, has the potential to more directly probe intermolecular interactions in the solid state. Recent advances in filter technology enable high-quality, low-frequency Raman spectra to be acquired using a single-stage spectrograph. This innovation enables the cost-effective collection of high-quality Raman spectra in the 200-10 cm(-1) region. In this study, we demonstrate the potential of low-frequency Raman spectroscopy for the polymorphic characterization of APIs. This approach provides several benefits over existing techniques, including ease of sampling and more intense, information-rich band structures that can potentially discriminate among crystalline forms. An improved understanding of the relationship between the crystalline structure and the low-frequency vibrational spectrum is needed for the more widespread use of the technique.

  15. A stochastic model with a low-frequency amplification feedback for the stratospheric northern annular mode

    Science.gov (United States)

    Yu, Yueyue; Cai, Ming; Ren, Rongcai

    2017-08-01

    We consider three indices to measure the polar stratospheric mass and stratospheric meridional mass circulation variability: anomalies of (1) total mass in the polar stratospheric cap (60-90°N, above the isentropic surface 400 K, PSM), (2) total adiabatic mass transport across 60°N into the polar stratosphere cap (AMT), (3) and total diabetic mass transport across 400 K from the polar stratosphere into the troposphere below (DMT). It is confirmed that the negative stratospheric Northern Annular Mode (NAM) and PSM indices have a nearly indistinguishable temporal evolution and a similar red-noise-like spectrum with a de-correlation timescale of 4 weeks. This enables us to examine the low-frequency nature of the NAM in the framework of mass circulation, namely, d/{dt}{PSM}={AMT} - {DMT} . The DMT index tends to be positively correlated with the PSM with a red-noise-like spectrum, representing slow radiative cooling processes giving rise to a de-correlation timescale of 3-4 weeks. The AMT is nearly perfectly correlated with the day-to-day tendency of PSM, reflecting a robust quasi 90° out-of-phase relation between the AMT and PSM at all frequency bands. Variations of vertically westward tilting of planetary waves contribute mainly to the high-frequency portion of AMT. It is the wave amplitude's slow vacillation that plays the leading role in the quasi 90° out-of-phase relation between the AMT and PSM. Based on this, we put forward a linear stochastic model with a low-frequency amplification feedback from low-frequency amplitude vacillations of planetary waves to explain the amplified low-frequency response of PSM/NAM to a stochastic forcing from the westward tilting variability.

  16. Nonlinear Microstructured Material to Reduce Noise and Vibrations at Low Frequencies

    International Nuclear Information System (INIS)

    Lavazec, Deborah; Cumunel, Gwendal; Duhamel, Denis; Soize, Christian; Batou, Anas

    2016-01-01

    At low frequencies, for which the wavelengths are wide, the acoustic waves and the mechanical vibrations cannot easily be reduced in the structures at macroscale by using dissipative materials, contrarily to the middle- and high-frequency ranges. The final objective of this work is to reduce the vibrations and the induced noise on a broad low-frequency band by using a microstructured material by inclusions that are randomly arranged in the material matrix. The dynamical regimes of the inclusions will be imposed in the nonlinear domain in order that the energy be effectively pumped over a broad frequency band around the resonance frequency, due to the nonlinearity. The first step of this work is to design and to analyze the efficiency of an inclusion, which is made up of a hollow frame including a point mass centered on a beam. This inclusion is designed in order to exhibit nonlinear geometric effects in the low-frequency band that is observed. For this first step, the objective is to develop the simplest mechanical model that has the capability to roughly predict the experimental results that are measured. The second step, which is not presented in the paper, will consist in developing a more sophisticated nonlinear dynamical model of the inclusion. In this paper, devoted to the first step, it is proved that the nonlinearity induces an attenuation on a broad frequency band around the resonance, contrarily to its linear behavior for which the attenuation is only active in a narrow frequency band around the resonance. We will present the design in terms of geometry, dimension and materials for the inclusion, the experimental manufacturing of this system realized with a 3D printing system, and the experimental measures that have been performed. We compare the prevision given by the stochastic computational model with the measurements. The results obtained exhibit the physical attenuation over a broad low-frequency band, which were expected. (paper)

  17. Absorption of low-frequency electromagnetic waves by plasma in electromagnetic trap

    International Nuclear Information System (INIS)

    D'yakov, V.E.

    1984-01-01

    Absorption of electromagnetic waves in plasma of the electromagnetic trap is investigated. An integro-differential equation describing the behaviour of the electrical and magnetic fields of the wave is obtained. The wave has a component along the plasma inhomogeneity axis. Solution of this equation is found within the low frequency range corresponding to the anomalous skin-effect. The possibility of ion-acoustic waves excitation is demonstrated. Expressions are found for reflection, absorption and transformation coefficients

  18. Integrated circuit for processing a low-frequency signal from a seismic detector

    Energy Technology Data Exchange (ETDEWEB)

    Malashevich, N. I.; Roslyakov, A. S.; Polomoshnov, S. A., E-mail: S.Polomoshnov@tsen.ru; Fedorov, R. A. [Research and Production Complex ' Technological Center' of the Moscow Institute of Electronic Technology (Russian Federation)

    2011-12-15

    Specific features for the detection and processing of a low-frequency signal from a seismic detector are considered in terms of an integrated circuit based on a large matrix crystal of the 5507 series. This integrated circuit is designed for the detection of human movements. The specific features of the information signal, obtained at the output of the seismic detector, and the main characteristics of the integrated circuit and its structure are reported.

  19. Low-frequency acoustic atomization with oscillatory flow around micropillars in a microfluidic device

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Yin Nee, E-mail: mailccheung@gmail.com, E-mail: mtnwong@ntu.edu.sg; Wong, Teck Neng, E-mail: mailccheung@gmail.com, E-mail: mtnwong@ntu.edu.sg [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, Singapore 639798 (Singapore); Nguyen, Nam Trung, E-mail: nam-trung.nguyen@griffith.edu.au [Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane QLD 4111 (Australia)

    2014-10-06

    This letter reports a low frequency acoustic atomization technique with oscillatory extensional flow around micropillars. Large droplets passing through two micropillars are elongated. Small droplets are then produced through the pinch-off process at the spindle-shape ends. As the actuation frequency increases, the droplet size decreases with increasing monodispersity. This method is suitable for in-situ mass production of fine droplets in a multi-phase environment without external pumping. Small particles encapsulation was demonstrated with the current technique.

  20. Low frequency enzyme dynamics as a function of temperature and hydration: A neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Kurkal, V. [Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany); Daniel, R.M. [Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Finney, John L. [Department of Physics and Astronomy, University college, London, Gower Street, London WC1E 6BT, England (United Kingdom); Tehei, M. [Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Dunn, R.V. [Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Smith, Jeremy C. [Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: biocomputing@iwr.uni-heidelberg.de

    2005-10-31

    The effect of hydration and temperature on the low-frequency dynamics of the enzyme Pig liver esterase has been investigated with incoherent neutron scattering experiments. The results suggest that at low temperature, increasing hydration results in lower flexibility of the protein. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The environmental force constants indicate that the environment of the protein is more rigid below than it is above the dynamical transition temperature.

  1. Peculiarities of low-frequency dielectric spectra and domain wall motion in gadolinium molybdate

    International Nuclear Information System (INIS)

    Galiyarova, N.M.; Gorin, S.V.; Dontsova, L.I.; Shil'nikov, A.V.; Shuvalov, L.A.

    1994-01-01

    Low-frequency Debye dispersion of dielectric permeability in GMO with the low values of high-frequency limit ε ∞ was investigated in a wide temperature range as well as in fields of variable amplitude. The features of domain boundaries motion were studied at the partial repolarization in monopolar P-pulsed fields. The model of cooperationrelaxation motion brifing in parallel with positive to negative contribution to polarization that explained the low values of ε ∞ was suggested

  2. Worldwide OMEGA and Very Low Frequency (VLF) Transmitter Outages, January to December 1980.

    Science.gov (United States)

    1981-05-01

    WORLDWIDE OMEGA AND VERY LOW FREQUENCY IVLF) TRANSMITTER OUTAGE--ETC, MAY 81 L RZONCA ,’,L.ASSI LED FAA-CT-81-26 FAA-RD- B1 -29 UL7 A-I’ l15FDRL AIO...computer for the time period GBR - Rugby , England (16.00 kHz) January to December 1980. (For the purposes of this report, any downtime NA - Cutler, Maine

  3. [Some aspects of animal-to-human approximation of low frequency electromagnetic field exposure conditions].

    Science.gov (United States)

    Vasin, A L

    2003-01-01

    Appropriateness of representation of a biological object surface as an equipotential surface has been proved for conditions of a quasistatic exposure to EMF of frequencies lower than 1 MHz. The conditions, at which a self capacitance of a biological object is its basic electrical parameter, have been considered. A factor of animal-to-human approximation of low-frequency EMF exposure conditions was estimated on the basis of equal dose loading in biological objects of different geometric sizes.

  4. Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, Y., E-mail: nano@tsutmb.ru [M.V. Lomonosov Moscow State University, School of Chemistry (Russian Federation); Golovin, D. [G.R. Derzhavin Tambov State University (Russian Federation); Klyachko, N.; Majouga, A.; Kabanov, A. [M.V. Lomonosov Moscow State University, School of Chemistry (Russian Federation)

    2017-02-15

    Various plausible acceleration mechanisms of drug release from nanocarriers composed of a single-domain magnetic nanoparticle core with attached long macromolecule chains activated by low frequency non-heating alternating magnetic field (AMF) are discussed. The most important system characteristics affecting the AMF exposure impact are determined. Impact of several reasonable mechanisms is estimated analytically or obtained using numerical modeling. Some conditions providing manifold release acceleration as a result from exposure in AMF are found.

  5. Modeling drug release from functionalized magnetic nanoparticles actuated by non-heating low frequency magnetic field

    International Nuclear Information System (INIS)

    Golovin, Y.; Golovin, D.; Klyachko, N.; Majouga, A.; Kabanov, A.

    2017-01-01

    Various plausible acceleration mechanisms of drug release from nanocarriers composed of a single-domain magnetic nanoparticle core with attached long macromolecule chains activated by low frequency non-heating alternating magnetic field (AMF) are discussed. The most important system characteristics affecting the AMF exposure impact are determined. Impact of several reasonable mechanisms is estimated analytically or obtained using numerical modeling. Some conditions providing manifold release acceleration as a result from exposure in AMF are found.

  6. Distinguishing low frequency oscillations within the 1/f spectral behaviour of electromagnetic brain signals.

    Science.gov (United States)

    Demanuele, Charmaine; James, Christopher J; Sonuga-Barke, Edmund Js

    2007-12-10

    It has been acknowledged that the frequency spectrum of measured electromagnetic (EM) brain signals shows a decrease in power with increasing frequency. This spectral behaviour may lead to difficulty in distinguishing event-related peaks from ongoing brain activity in the electro- and magnetoencephalographic (EEG and MEG) signal spectra. This can become an issue especially in the analysis of low frequency oscillations (LFOs) - below 0.5 Hz - which are currently being observed in signal recordings linked with specific pathologies such as epileptic seizures or attention deficit hyperactivity disorder (ADHD), in sleep studies, etc. In this work we propose a simple method that can be used to compensate for this 1/f trend hence achieving spectral normalisation. This method involves filtering the raw measured EM signal through a differentiator prior to further data analysis. Applying the proposed method to various exemplary datasets including very low frequency EEG recordings, epileptic seizure recordings, MEG data and Evoked Response data showed that this compensating procedure provides a flat spectral base onto which event related peaks can be clearly observed. Findings suggest that the proposed filter is a useful tool for the analysis of physiological data especially in revealing very low frequency peaks which may otherwise be obscured by the 1/f spectral activity inherent in EEG/MEG recordings.

  7. Distinguishing low frequency oscillations within the 1/f spectral behaviour of electromagnetic brain signals

    Directory of Open Access Journals (Sweden)

    Sonuga-Barke Edmund JS

    2007-12-01

    Full Text Available Abstract Background It has been acknowledged that the frequency spectrum of measured electromagnetic (EM brain signals shows a decrease in power with increasing frequency. This spectral behaviour may lead to difficulty in distinguishing event-related peaks from ongoing brain activity in the electro- and magnetoencephalographic (EEG and MEG signal spectra. This can become an issue especially in the analysis of low frequency oscillations (LFOs – below 0.5 Hz – which are currently being observed in signal recordings linked with specific pathologies such as epileptic seizures or attention deficit hyperactivity disorder (ADHD, in sleep studies, etc. Methods In this work we propose a simple method that can be used to compensate for this 1/f trend hence achieving spectral normalisation. This method involves filtering the raw measured EM signal through a differentiator prior to further data analysis. Results Applying the proposed method to various exemplary datasets including very low frequency EEG recordings, epileptic seizure recordings, MEG data and Evoked Response data showed that this compensating procedure provides a flat spectral base onto which event related peaks can be clearly observed. Conclusion Findings suggest that the proposed filter is a useful tool for the analysis of physiological data especially in revealing very low frequency peaks which may otherwise be obscured by the 1/f spectral activity inherent in EEG/MEG recordings.

  8. [Effects of extremely low frequency electromagnetic radiation on cardiovascular system of workers].

    Science.gov (United States)

    Zhao, Long-yu; Song, Chun-xiao; Yu, Duo; Liu, Xiao-liang; Guo, Jian-qiu; Wang, Chuan; Ding, Yuan-wei; Zhou, Hong-xia; Ma, Shu-mei; Liu, Xiao-dong; Liu, Xin

    2012-03-01

    To observe the exposure levels of extremely low frequency electromagnetic fields in workplaces and to analyze the effects of extremely low frequency electromagnetic radiation on cardiovascular system of occupationally exposed people. Intensity of electromagnetic fields in two workplaces (control and exposure groups) was detected with EFA-300 frequency electromagnetic field strength tester, and intensity of the noise was detected with AWA5610D integral sound level. The information of health physical indicators of 188 controls and 642 occupationally exposed workers was collected. Data were analyzed by SPSS17.0 statistic software. The intensity of electric fields and the magnetic fields in exposure groups was significantly higher than that in control group (P 0.05). The results of physical examination showed that the abnormal rates of HCY, ALT, AST, GGT, ECG in the exposure group were significantly higher than those in control group (P 0.05). Exposure to extremely low frequency electromagnetic radiation may have some effects on the cardiovascular system of workers.

  9. Multi-cavity locally resonant structure with the low frequency and broad band-gaps

    Directory of Open Access Journals (Sweden)

    Jiulong Jiang

    2016-11-01

    Full Text Available A multi-cavity periodic structure with the characteristic of local resonance was proposed in the paper. The low frequency band-gap structure was comparatively analyzed by the finite element method (FEM and electric circuit analogy (ECA. Low frequency band-gap can be opened through the dual influence of the coupling’s resonance in the cavity and the interaction among the couplings between structures. Finally, the influence of the structural factors on the band-gap was analyzed. The results show that the structure, which is divided into three parts equally, has a broader effective band-gap below the frequency of 200 Hz. It is also proved that reducing the interval between unit structures can increase the intensity of the couplings among the structures. And in this way, the width of band-gap would be expanded significantly. Through the parameters adjustment, the structure enjoys a satisfied sound insulation effect below the frequency of 500Hz. In the area of low frequency noise reduction, the structure has a lot of potential applications.

  10. Source of low frequency modulation of ENSO amplitude in a CGCM

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Byung-Kwon [Chonbuk National University, Division of Science Education/Institute of Science Education, Jeonju (Korea); Yeh, Sang-Wook [Korea Ocean Research and Development Institute, Ansan (Korea); Dewitte, Boris [Laboratoire d' Etude en Geophysique et Oceanographie Spatiale, Toulouse (France); Jhun, Jong-Ghap [Seoul National University, School of Earth and Environmental Sciences, Seoul (Korea); Kang, In-Sik [Seoul National University, Climate Environment System Research Center (CES), Seoul (Korea)

    2007-07-15

    We study the relationship between changes in equatorial stratification and low frequency El Nino/Southern Oscillation (ENSO) amplitude modulation in a coupled general circulation model (CGCM) that uses an anomaly coupling strategy to prevent climate drifts in the mean state. The stratification is intensified at upper levels in the western and central equatorial Pacific during periods of high ENSO amplitude. Furthermore, changes in equatorial stratification are connected with subsurface temperature anomalies originating from the central south tropical Pacific. The correlation analysis of ocean temperature anomalies against an index for the ENSO modulation supports the hypothesis of the existence of an oceanic ''tunnel'' that connects the south tropical Pacific to the equatorial wave guide. Further analysis of the wind stress projection coefficient onto the oceanic baroclinic modes suggests that the low frequency modulation of ENSO amplitude is associated with a significant contribution of higher-order modes in the western and central equatorial Pacific. In the light of these results, we suggest that, in the CGCM, change in the baroclinic mode energy distribution associated with low frequency ENSO amplitude modulation have its source in the central south tropical Pacific. (orig.)

  11. Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity.

    Science.gov (United States)

    Anderson, Jeffrey S; Zielinski, Brandon A; Nielsen, Jared A; Ferguson, Michael A

    2014-04-01

    Very low-frequency blood oxygen level-dependent (BOLD) fluctuations have emerged as a valuable tool for describing brain anatomy, neuropathology, and development. Such fluctuations exhibit power law frequency dynamics, with largest amplitude at lowest frequencies. The biophysical mechanisms generating such fluctuations are poorly understood. Using publicly available data from 1,019 subjects of age 7-30, we show that BOLD fluctuations exhibit temporal complexity that is linearly related to local connectivity (regional homogeneity), consistently and significantly covarying across subjects and across gray matter regions. This relationship persisted independently of covariance with gray matter density or standard deviation of BOLD signal. During late neurodevelopment, BOLD fluctuations were unchanged with age in association cortex while becoming more random throughout the rest of the brain. These data suggest that local interconnectivity may play a key role in establishing the complexity of low-frequency BOLD fluctuations underlying functional magnetic resonance imaging connectivity. Stable low-frequency power dynamics may emerge through segmentation and integration of connectivity during development of distributed large-scale brain networks. Copyright © 2013 Wiley Periodicals, Inc.

  12. Response identification in the extremely low frequency region of an electret condenser microphone.

    Science.gov (United States)

    Jeng, Yih-Nen; Yang, Tzung-Ming; Lee, Shang-Yin

    2011-01-01

    This study shows that a small electret condenser microphone connected to a notebook or a personal computer (PC) has a prominent response in the extremely low frequency region in a specific environment. It confines most acoustic waves within a tiny air cell as follows. The air cell is constructed by drilling a small hole in a digital versatile disk (DVD) plate. A small speaker and an electret condenser microphone are attached to the two sides of the hole. Thus, the acoustic energy emitted by the speaker and reaching the microphone is strong enough to actuate the diaphragm of the latter. The experiments showed that, once small air leakages are allowed on the margin of the speaker, the microphone captured the signal in the range of 0.5 to 20 Hz. Moreover, by removing the plastic cover of the microphone and attaching the microphone head to the vibration surface, the low frequency signal can be effectively captured too. Two examples are included to show the convenience of applying the microphone to pick up the low frequency vibration information of practical systems.

  13. Response Identification in the Extremely Low Frequency Region of an Electret Condenser Microphone

    Directory of Open Access Journals (Sweden)

    Shang-Yin Lee

    2011-01-01

    Full Text Available This study shows that a small electret condenser microphone connected to a notebook or a personal computer (PC has a prominent response in the extremely low frequency region in a specific environment. It confines most acoustic waves within a tiny air cell as follows. The air cell is constructed by drilling a small hole in a digital versatile disk (DVD plate. A small speaker and an electret condenser microphone are attached to the two sides of the hole. Thus, the acoustic energy emitted by the speaker and reaching the microphone is strong enough to actuate the diaphragm of the latter. The experiments showed that, once small air leakages are allowed on the margin of the speaker, the microphone captured the signal in the range of 0.5 to 20 Hz. Moreover, by removing the plastic cover of the microphone and attaching the microphone head to the vibration surface, the low frequency signal can be effectively captured too. Two examples are included to show the convenience of applying the microphone to pick up the low frequency vibration information of practical systems.

  14. Adaptation of the vertical vestibulo-ocular reflex in cats during low-frequency vertical rotation.

    Science.gov (United States)

    Fushiki, Hiroaki; Maruyama, Motoyoshi; Shojaku, Hideo

    2018-04-01

    We examined plastic changes in the vestibulo-ocular reflex (VOR) during low-frequency vertical head rotation, a condition under which otolith inputs from the vestibular system are essential for VOR generation. For adaptive conditioning of the vertical VOR, 0.02Hz sinusoidal pitch rotation for one hour about the earth's horizontal axis was synchronized with out-of-phase vertical visual stimulation from a random dot pattern. A vertical VOR was well evoked when the upright animal rotated around the earth-horizontal axis (EHA) at low frequency due to the changing gravity stimulus and dynamic stimulation of the otoliths. After adaptive conditioning, the amplitude of the vertical VOR increased by an average of 32.1%. Our observations showing plasticity in the otolithic contribution to the VOR may provide a new strategy for visual-vestibular mismatch training in patients with otolithic disorders. This low-frequency vertical head rotation protocol also provides a model for investigating the mechanisms underlying the adaptation of VORs mediated by otolith activation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Low-frequency sound affects active micromechanics in the human inner ear

    Science.gov (United States)

    Kugler, Kathrin; Wiegrebe, Lutz; Grothe, Benedikt; Kössl, Manfred; Gürkov, Robert; Krause, Eike; Drexl, Markus

    2014-01-01

    Noise-induced hearing loss is one of the most common auditory pathologies, resulting from overstimulation of the human cochlea, an exquisitely sensitive micromechanical device. At very low frequencies (less than 250 Hz), however, the sensitivity of human hearing, and therefore the perceived loudness is poor. The perceived loudness is mediated by the inner hair cells of the cochlea which are driven very inadequately at low frequencies. To assess the impact of low-frequency (LF) sound, we exploited a by-product of the active amplification of sound outer hair cells (OHCs) perform, so-called spontaneous otoacoustic emissions. These are faint sounds produced by the inner ear that can be used to detect changes of cochlear physiology. We show that a short exposure to perceptually unobtrusive, LF sounds significantly affects OHCs: a 90 s, 80 dB(A) LF sound induced slow, concordant and positively correlated frequency and level oscillations of spontaneous otoacoustic emissions that lasted for about 2 min after LF sound offset. LF sounds, contrary to their unobtrusive perception, strongly stimulate the human cochlea and affect amplification processes in the most sensitive and important frequency range of human hearing. PMID:26064536

  16. The application of low frequency repetitive transcranial magnetic stimulation in rehabilitation of Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    WU Zhuo-hua

    2013-07-01

    Full Text Available Objective To explore the application value of low frequency repetitive transcranial magnetic stimulation (rTMS in Parkinson's disease (PD patients and electrophysiological research. Methods Fifty-six PD patients treated in the Department of Neurology of our hospital from September 2010 to September 2012 were randomly divided into 2 groups, group A (N = 28 and group B (N = 28. Patients in group A were given conventional drug treatment and rehabilitation training, while patients in group B were given low frequency rTMS on the basis of conventional drug treatment and rehabilitation training. After 3 weeks, the scores of Unified Parkinson's Disease Rating Scale (UPDRS, resting threshold (RT, cortical latent period, nerve root latent period, central motor conduction time (CMCT and the incidence of adverse reactions were compared between 2 groups. Results After intervention, the emotion, ability of daily living and motor function of patients in group B was obviously improved, and the scores of UPDRS in group B were significantly lower than that in group A (P 0.05. Conclusion The effect of low frequency rTMS in the treatment for PD is evident, safe and reliable, and with less adverse reaction. It can be used as a noninvasive physical treatment measure for PD.

  17. Band-gap tunable dielectric elastomer filter for low frequency noise

    Science.gov (United States)

    Jia, Kun; Wang, Mian; Lu, Tongqing; Zhang, Jinhua; Wang, Tiejun

    2016-05-01

    In the last decades, diverse materials and technologies for sound insulation have been widely applied in engineering. However, suppressing the noise radiation at low frequency still remains a challenge. In this work, a novel membrane-type smart filter, consisting of a pre-stretched dielectric elastomer membrane with two compliant electrodes coated on the both sides, is presented to control the low frequency noise. Since the stiffness of membrane dominates its acoustic properties, sound transmission band-gap of the membrane filter can be tuned by adjusting the voltage applied to the membrane. The impedance tube experiments have been carried out to measure the sound transmission loss (STL) of the filters with different electrodes, membrane thickness and pre-stretch conditions. The experimental results show that the center frequency of sound transmission band-gap mainly depends on the stress in the dielectric elastomer, and a large band-gap shift (more than 60 Hz) can be achieved by tuning the voltage applied to the 85 mm diameter VHB4910 specimen with pre-stretch {λ }0=3. Based on the experimental results and the assumption that applied electric field is independent of the membrane behavior, 3D finite element analysis has also been conducted to calculate the membrane stress variation. The sound filter proposed herein may provide a promising facility to control low frequency noise source with tonal characteristics.

  18. Plate-type metamaterials for extremely broadband low-frequency sound insulation

    Science.gov (United States)

    Wang, Xiaopeng; Guo, Xinwei; Chen, Tianning; Yao, Ge

    2018-01-01

    A novel plate-type acoustic metamaterial with a high sound transmission loss (STL) in the low-frequency range ( ≤1000 Hz) is designed, theoretically proven and then experimentally verified. The thin plates with large modulus used in this paper mean that we do not need to apply tension to the plates, which is more applicable to practical engineering, the achievement of noise reduction is better and the installation of plates is more user-friendly than that of the membranes. The effects of different structural parameters of the plates on the sound-proofed performance at low-frequencies were also investigated by experiment and finite element method (FEM). The results showed that the STL can be modulated effectively and predictably using vibration theory by changing the structural parameters, such as the radius and thickness of the plate. Furthermore, using unit cells of different geometric sizes which are responsible for different frequency regions, the stacked panels with thickness ≤16 mm and weight ≤5 kg/m2 showed high STL below 2000 Hz. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  19. Low-Frequency Ultrasound Therapy in Combination Treatment of Patients with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    YE.E. LAVRINENKO

    2013-04-01

    Results. The beginning of therapeutic effect was observed after 2 procedures of the ultrasound exposure. The maximum effect is appeared after 8–10 treatment sessions. The positive dynamics of complex treatment is improving the general state of health, a disappearance of asthenization, and a decrease in the symptoms of cardiovascular disorders, achieving faster compensation of carbohydrate metabolism. The course of treatment contributed to the hyperglycemia reduction in patients with newly detected type 2 DM. After ultrasound treatment, the authors noted a positive dynamics of clinical symptoms: an improvement of the general health status, a decrease in fatigue, an improvement of psycho-emotional indices, disappearance of pain in the right upper quadrant, and a decrease in liver size in all the patients under study. Conclusions. The use of low-frequency ultrasound therapy on cutaneous projection of the liver in patients with type 2 DM promotes the normalization both fasting and postprandial glycemia. The effect of low-frequency ultrasound on cutaneous projection of the liver is significantly decreasing parameters that characterize the pancreatic insulin synthesizing function (immunoreactive insulin, C-peptide in patients with newly diagnosed type 2 DM and a BMI > 25 kg/m2. Low-frequency ultrasound reduces the glucagon secretion and thereby positively affects the hepatic gluconeogenesis. Ultrasound therapy can be used in the complex treatment of patients with newly diagnosed type 2 DM.

  20. Dust Storms in North China in 2002: A Case Study of the Low Frequency Oscillation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The low frequency oscillation in both hemispheres and its possible role in the dust weather storm events over North China in 2002 are analyzed as a case study. Results show that the Aleutian Low is linked with the Circumpolar Vortex in the Southern Hemisphere on a 30-60-day oscillation, with a weak Circumpolar Vortex tending to deepen the Aleutian Low which may be helpful for the generation of dust storm events.The possible mechanism behind this is the inter-hemispheric interaction of the mean meridional circulation,with the major variability over East Asia. The zonal mean westerly wind at high latitudes of the Southern Hemisphere in the upper level troposphere may lead that of the Northern Hemisphere, which then impacts the local circulation in the Northern Hemisphere. Thus, the low frequency oscillation teleconnection is one possible linkage in the coupling between the Southern Hemisphere circulation and dust events over North China. However, the interannual variation of the low frequency oscillation is unclear.

  1. A theoretical response of the electrostatic parallel plate to constant and low-frequency accelerations

    International Nuclear Information System (INIS)

    Lee, Ki Bang

    2009-01-01

    A theoretical response of an electrostatic gap-closing actuator based on parallel plates to constant and low-frequency accelerations has been derived as a function of the applied acceleration and voltage. The nonlinear equation of motion is obtained in a dimensionless form from the fact that the inertial and damping forces are neglected at a frequency much less than the resonant frequency of the parallel plate, and thereafter the nonlinear equation is solved for the stable inter-plate gap at the acceleration and voltage. From the derived solution, the pull-in acceleration is obtained as a function of the applied voltage, and the pull-in voltage is also expressed as a function of the acceleration. The closed-form solution is validated by comparison with a numerical solution. The theoretical solution is in excellent agreement with the numerical results when the actuator is exposed to a constant acceleration as well as a low-frequency acceleration. The theoretical solution and pull-in acceleration and voltage thus provide guidance to prescribe operational constraints for devices that use the parallel plate actuator and to predict the response of the electrostatic gap-closing parallel plates to constant and low-frequency acceleration

  2. Subjective annoyance caused by indoor low-level and low frequency noise and control method

    Institute of Scientific and Technical Information of China (English)

    DI Guo-qing; ZHANG Bang-jun; SHANG Qi

    2005-01-01

    The influence of low-level noise has not been widely noticed. This paper discovered that low-level and low frequency noise(Aweighted equivalent level Leq < 45 dB) causes higher probability of subjective annoyance. The fuzzy mathematic principle was applied to deal with the threshold level of subjective annoyance from noise in this study; there is preferable relationship between the indoor noise and noise annoyance at low frequency noise level. Study indicated at the same centered noise level, the change of annoyance probability is mainly caused by the change of the frequency spectrum characteristic of the indoor noise. Under low noise level environment, without change of the medium-low frequency noise, the slight increase of medium-high frequency noise level with the help of noise sheltering effect can significantly reduce the noise annoyance. This discovery brings a new resolution on how to improve the environmental quality of working or living places. A noise control model is given in this study according to the acoustic analysis.

  3. Low-frequency and common genetic variation in ischemic stroke: The METASTROKE collaboration.

    Science.gov (United States)

    Malik, Rainer; Traylor, Matthew; Pulit, Sara L; Bevan, Steve; Hopewell, Jemma C; Holliday, Elizabeth G; Zhao, Wei; Abrantes, Patricia; Amouyel, Philippe; Attia, John R; Battey, Thomas W K; Berger, Klaus; Boncoraglio, Giorgio B; Chauhan, Ganesh; Cheng, Yu-Ching; Chen, Wei-Min; Clarke, Robert; Cotlarciuc, Ioana; Debette, Stephanie; Falcone, Guido J; Ferro, Jose M; Gamble, Dale M; Ilinca, Andreea; Kittner, Steven J; Kourkoulis, Christina E; Lemmens, Robin; Levi, Christopher R; Lichtner, Peter; Lindgren, Arne; Liu, Jingmin; Meschia, James F; Mitchell, Braxton D; Oliveira, Sofia A; Pera, Joana; Reiner, Alex P; Rothwell, Peter M; Sharma, Pankaj; Slowik, Agnieszka; Sudlow, Cathie L M; Tatlisumak, Turgut; Thijs, Vincent; Vicente, Astrid M; Woo, Daniel; Seshadri, Sudha; Saleheen, Danish; Rosand, Jonathan; Markus, Hugh S; Worrall, Bradford B; Dichgans, Martin

    2016-03-29

    To investigate the influence of common and low-frequency genetic variants on the risk of ischemic stroke (all IS) and etiologic stroke subtypes. We meta-analyzed 12 individual genome-wide association studies comprising 10,307 cases and 19,326 controls imputed to the 1000 Genomes (1 KG) phase I reference panel. We selected variants showing the highest degree of association (p frequencies for all IS and stroke subtypes. We showed genome-wide significance for 4 loci: ABO for all IS, HDAC9 for large vessel disease (LVD), and both PITX2 and ZFHX3 for cardioembolic stroke (CE). We further refined the association peaks for ABO and PITX2. Analyzing different allele frequency bins, we showed significant enrichment in low-frequency variants (allele frequency frequency variants (allele frequency 10% and 30%) for CE (all p low-frequency and rare variants. Larger sample sizes are needed to identify the variants associated with all IS and stroke subtypes. © 2016 American Academy of Neurology.

  4. Low-frequency Landau-Zener-Stuckelberg interference in dissipative superconducting qubits

    International Nuclear Information System (INIS)

    Du-lingjie; Lan- Dong; Yu-Yang

    2013-01-01

    Landau-Zener-Stuckelberg (LZS) interference of continuously driven superconducting qubits is studied. Going beyond the second order perturbation expansion, we find a time dependent stationary population evolution as well as unsymmetrical microwave driven Landau-Zener transitions, resulting from the nonresonant terms which are neglected in rotating-wave approximation. For the low-frequency driving, the qubit population at equilibrium is a periodical function of time, owing to the contribution of the nonresonant terms. In order to obtain the average population, it is found that the average approximation based on the perturbation approach can be applied to the low-frequency region. For the extremely low frequency which is much smaller than the decoherence rate, we develop noncoherence approximation by dividing the evolution into discrete time steps during which the coherence is lost totally. These approximations present comprehensive analytical descriptions of LZS interference in most of parameter space of frequency and decoherence rate, agreeing well with those of the numerical simulations and providing a simple but integrated understanding to system dynamics. The application of our models to microwave cooling can obtain the minimal frequency to realize effective microwave cooling.

  5. Biological and clinical effects of low-frequency magnetic and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Llaurado, J.G.; Sances, A. Jr.; Battocletti, J. (eds.)

    1974-01-01

    The blurb on this book states that it has been written for physicians, biologists, psychologists, engineers and those persons interested in the interaction of low frequency electric and magnetic fields upon animals and man. Certainly, the content of this book--which comprises papers presented by specialists at a symposium on The Effects of Low Frequency Magnetic Fields on Biological Communication Processes held in Aspen, Colorado--does not make simple reading and those lacking the necessary background are unlikely to make much progress. This said, however, the book can be recommended to those with the necessary interest, knowledge and perseverance. The book provides a great deal of information in a convenient manner and all those concerned with its production are to be congratulated on their work. Articles are well set out, illustrated and supported by abstracts, extensive references and discussions. As indicated above, the range of the subjects covered is large and includes such varied items as acupuncture, bird communication and some details of the U.S.A. Navy's extra low frequency communication system known as Project Sanguine. Finally, it is a pleasure to say that the book has been attractively produced and contains an excellent index.

  6. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency

    Science.gov (United States)

    Ferin, G.; Bantignies, C.; Le Khanh, H.; Flesch, E.; Nguyen-Dinh, A.

    2015-12-01

    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations.

  7. Characterization of the low-frequency unsteadines in LES data of supersonic and hypersonic STBLI

    Science.gov (United States)

    Helm, Clara; Martin, Pino

    2016-11-01

    In a recent study, Priebe et al. (JFM 2016) used Dynamic Mode Decomposition (DMD) to analyze DNS data of a Mach 3 ramp-generated shock and turbulent boundary layer interaction (STBLI). The authors found that the reconstructed low-frequency DMD modes took on the form of Görtler-like vortices downstream of separation. The five reconstructed modes reproduced the low-frequency dynamics of the separation bubble accurately. Martín et al. (AIAA2016-3341) and Martín et al. (APS, DFD 2016) show that the low-frequency unsteadiness in STBLI results from an inviscid centrifugal instability similar to that found in separated subsonic and laminar flows, and that the turbulence is modulated but passive to the global mode. In this work we further characterize the Görtler-like vortices using LES data of Mach 3 and Mach 7 separated STBLIs. We find that the Görtler-like vortices are unsteady, and we quantify the wavelength, amplitude and the aperiodic development of these structures. This work is supported by the Air Force Office of Scientific Research under Grant AF9550-15-1-0284.

  8. Tolerance of low-frequency ultrasound sonophoresis: a double-blind randomized study on humans.

    Science.gov (United States)

    Maruani, Annabel; Vierron, Emilie; Machet, Laurent; Giraudeau, Bruno; Halimi, Jean-Michel; Boucaud, Alain

    2012-05-01

    Sonophoresis [low-frequency ultrasound (US)] has been used in animals and in vitro to investigate enhanced percutaneous absorption of drugs. No study focused on its clinical human tolerance has been published as yet. We aimed to assess the bioeffects of low-frequency US in vivo on human skin in a double-blind randomized-controlled study. We applied pulse-mode US at 36 kHz for 5 min in a step procedure of increasing dosage, from 1.57 to 3.50 W/cm(2), and placebo. The primary outcome was toxic effects of the procedure, defined as a pain score >40 on a 0-100 mm visual analogue scale or necrosis. Erythema (scored from 0 to 3 in severity) was also evaluated. The secondary outcomes were measurements of skin thickness by high-resolution skin imaging, of skin capacitance and temperature. We included 34 healthy volunteers. We found no pain score >38 and no skin necrosis with either US or placebo. Erythema was systematically observed immediately after US application, but after 1 day, we observed three cases in the knee group. The most frequent adverse effect was tinnitus. We observed no marked increase in temperature or cutaneous thickness after US or placebo. Cutaneous capacitance increased immediately after both applications. Such data demonstrating good tolerance of sonophoresis can be useful before the initiation of a clinical trial of the therapeutic use of low-frequency sonophoresis in humans. © 2011 John Wiley & Sons A/S.

  9. Ultrawide low frequency band gap of phononic crystal in nacreous composite material

    International Nuclear Information System (INIS)

    Yin, J.; Huang, J.; Zhang, S.; Zhang, H.W.; Chen, B.S.

    2014-01-01

    The band structure of a nacreous composite material is studied by two proposed models, where an ultrawide low frequency band gap is observed. The first model (tension-shear chain model) with two phases including brick and mortar is investigated to describe the wave propagation in the nacreous composite material, and the dispersion relation is calculated by transfer matrix method and Bloch theorem. The results show that the frequency ranges of the pass bands are quite narrow, because a special tension-shear chain motion in the nacreous composite material is formed by some very slow modes. Furthermore, the second model (two-dimensional finite element model) is presented to investigate its band gap by a multi-level substructure scheme. Our findings will be of great value to the design and synthesis of vibration isolation materials in a wide and low frequency range. Finally, the transmission characteristics are calculated to verify the results. - Highlights: • A Brick-and-Mortar structure is used to discuss wave propagation through nacreous materials. • A 1D Bloch wave solution of nacreous materials with a tension-shear chain model is obtained. • The band structure and transmission characteristics of nacreous materials with the FE model are examined. • An ultrawide low frequency band gap is found in nacreous materials with both theory and FE model

  10. Inverted pendulum as low-frequency pre-isolation for advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Takamori, A.; Raffai, P.; Marka, S.; DeSalvo, R.; Sannibale, V.; Tariq, H.; Bertolini, A.; Cella, G.; Viboud, N.; Numata, K.; Takahashi, R.; Fukushima, M.

    2007-01-01

    We have developed advanced seismic attenuation systems for Gravitational Wave (GW) detectors. The design consists of an Inverted Pendulum (IP) holding stages of Geometrical Anti-Spring Filters (GASF) and pendula, which isolate the test mass suspension from ground noise. The ultra-low-frequency IP suppresses the horizontal seismic noise, while the GASF suppresses the vertical ground vibrations. The three legs of the IP are supported by cylindrical maraging steel flexural joints. The IP can be tuned to very low frequencies by carefully adjusting its load. As a best result, we have achieved an ultra low, ∼12 mHz pendulum frequency for the system prototype made for Advanced LIGO (Laser Interferometer Gravitational Wave Observatory). The measured quality factor, Q, of this IP, ranging from Q∼2500 (at 0.45 Hz) to Q∼2 (at 12 mHz), is compatible with structural damping, and is proportional to the square of the pendulum frequency. Tunable counterweights allow for precise center-of-percussion tuning to achieve the required attenuation up to the first leg internal resonance (∼60 Hz for advanced LIGO prototype). All measurements are in good agreement with our analytical models. We therefore expect good attenuation in the low-frequency region, from ∼0.1to ∼50 Hz, covering the micro-seismic peak. The extremely soft IP requires minimal control force, which simplifies any needed actuation

  11. LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, B.; Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia); Kaplan, D. L. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Greenhill, L. J.; Bernardi, G.; De Oliveira-Costa, A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Tingay, S. J.; Gaensler, B. M. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), School of Physics, The University of Sydney, Sydney, NSW (Australia); Oberoi, D. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune (India); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Arcus, W.; Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Perth (Australia); Barnes, D. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne (Australia); Bunton, J. D. [CSIRO Astronomy and Space Science, Canberra (Australia); Cappallo, R. J.; Corey, B. E. [MIT Haystack Observatory, Westford, MA (United States); Deshpande, A. [Raman Research Institute, Bangalore (India); DeSouza, L. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Goeke, R. [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); and others

    2013-01-01

    A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.

  12. Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk

    DEFF Research Database (Denmark)

    Permuth, Jennifer B; Pirie, Ailith; Ann Chen, Y

    2016-01-01

    Rare and low frequency variants are not well covered in most germline genotyping arrays and are understudied in relation to epithelial ovarian cancer (EOC) risk. To address this gap, we used genotyping arrays targeting rarer protein-coding variation in 8,165 EOC cases and 11,619 controls from...... that is in LD (r(2 )=( )0.90) with a previously identified 'best hit' (rs7651446) mapping to an intron of TIPARP. Suggestive associations (5.0 × 10 (-)  (5 )>( )P≥5.0 ×10 (-)  (7)) were detected for rare and low-frequency variants at 16 novel loci. Four rare missense variants were identified (ACTBL2 rs73757391.......67 × 10 (-)  (4); PSKAT-o = 1.07 × 10 (-)  (5)), reaffirming variant-level analysis. In summary, this large study identified several rare and low-frequency variants and genes that may contribute to EOC susceptibility, albeit with possible small effects. Future studies that integrate epidemiology...

  13. A forward model and conjugate gradient inversion technique for low-frequency ultrasonic imaging.

    Science.gov (United States)

    van Dongen, Koen W A; Wright, William M D

    2006-10-01

    Emerging methods of hyperthermia cancer treatment require noninvasive temperature monitoring, and ultrasonic techniques show promise in this regard. Various tomographic algorithms are available that reconstruct sound speed or contrast profiles, which can be related to temperature distribution. The requirement of a high enough frequency for adequate spatial resolution and a low enough frequency for adequate tissue penetration is a difficult compromise. In this study, the feasibility of using low frequency ultrasound for imaging and temperature monitoring was investigated. The transient probing wave field had a bandwidth spanning the frequency range 2.5-320.5 kHz. The results from a forward model which computed the propagation and scattering of low-frequency acoustic pressure and velocity wave fields were used to compare three imaging methods formulated within the Born approximation, representing two main types of reconstruction. The first uses Fourier techniques to reconstruct sound-speed profiles from projection or Radon data based on optical ray theory, seen as an asymptotical limit for comparison. The second uses backpropagation and conjugate gradient inversion methods based on acoustical wave theory. The results show that the accuracy in localization was 2.5 mm or better when using low frequencies and the conjugate gradient inversion scheme, which could be used for temperature monitoring.

  14. Extremely Low Frequency Magnetic Fields Induce Spermatogenic Germ Cell Apoptosis: Possible Mechanism

    Directory of Open Access Journals (Sweden)

    Sang-Kon Lee

    2014-01-01

    Full Text Available The energy generated by an extremely low frequency electromagnetic field (ELF-EMF is too weak to directly induce genotoxicity. However, it is reported that an extremely low frequency magnetic field (ELF-MF is related to DNA strand breakage and apoptosis. The testes that conduct spermatogenesis through a dynamic cellular process involving meiosis and mitosis seem vulnerable to external stress such as heat, MF exposure, and chemical or physical agents. Nevertheless the results regarding adverse effects of ELF-EMF on human or animal reproductive functions are inconclusive. According to the guideline of the International Commission on Non-Ionizing Radiation Protection (ICNIRP; 2010 for limiting exposure to time-varying MF (1 Hz to 100 kHz, overall conclusion of epidemiologic studies has not consistently shown an association between human adverse reproductive outcomes and maternal or paternal exposure to low frequency fields. In animal studies there is no compelling evidence of causal relationship between prenatal development and ELF-MF exposure. However there is increasing evidence that EL-EMF exposure is involved with germ cell apoptosis in testes. Biophysical mechanism by which ELF-MF induces germ cell apoptosis has not been established. This review proposes the possible mechanism of germ cell apoptosis in testes induced by ELF-MF.

  15. Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol

    Science.gov (United States)

    Lange, Leslie A.; Hu, Youna; Zhang, He; Xue, Chenyi; Schmidt, Ellen M.; Tang, Zheng-Zheng; Bizon, Chris; Lange, Ethan M.; Smith, Joshua D.; Turner, Emily H.; Jun, Goo; Kang, Hyun Min; Peloso, Gina; Auer, Paul; Li, Kuo-ping; Flannick, Jason; Zhang, Ji; Fuchsberger, Christian; Gaulton, Kyle; Lindgren, Cecilia; Locke, Adam; Manning, Alisa; Sim, Xueling; Rivas, Manuel A.; Holmen, Oddgeir L.; Gottesman, Omri; Lu, Yingchang; Ruderfer, Douglas; Stahl, Eli A.; Duan, Qing; Li, Yun; Durda, Peter; Jiao, Shuo; Isaacs, Aaron; Hofman, Albert; Bis, Joshua C.; Correa, Adolfo; Griswold, Michael E.; Jakobsdottir, Johanna; Smith, Albert V.; Schreiner, Pamela J.; Feitosa, Mary F.; Zhang, Qunyuan; Huffman, Jennifer E.; Crosby, Jacy; Wassel, Christina L.; Do, Ron; Franceschini, Nora; Martin, Lisa W.; Robinson, Jennifer G.; Assimes, Themistocles L.; Crosslin, David R.; Rosenthal, Elisabeth A.; Tsai, Michael; Rieder, Mark J.; Farlow, Deborah N.; Folsom, Aaron R.; Lumley, Thomas; Fox, Ervin R.; Carlson, Christopher S.; Peters, Ulrike; Jackson, Rebecca D.; van Duijn, Cornelia M.; Uitterlinden, André G.; Levy, Daniel; Rotter, Jerome I.; Taylor, Herman A.; Gudnason, Vilmundur; Siscovick, David S.; Fornage, Myriam; Borecki, Ingrid B.; Hayward, Caroline; Rudan, Igor; Chen, Y. Eugene; Bottinger, Erwin P.; Loos, Ruth J.F.; Sætrom, Pål; Hveem, Kristian; Boehnke, Michael; Groop, Leif; McCarthy, Mark; Meitinger, Thomas; Ballantyne, Christie M.; Gabriel, Stacey B.; O’Donnell, Christopher J.; Post, Wendy S.; North, Kari E.; Reiner, Alexander P.; Boerwinkle, Eric; Psaty, Bruce M.; Altshuler, David; Kathiresan, Sekar; Lin, Dan-Yu; Jarvik, Gail P.; Cupples, L. Adrienne; Kooperberg, Charles; Wilson, James G.; Nickerson, Deborah A.; Abecasis, Goncalo R.; Rich, Stephen S.; Tracy, Russell P.; Willer, Cristen J.; Gabriel, Stacey B.; Altshuler, David M.; Abecasis, Gonçalo R.; Allayee, Hooman; Cresci, Sharon; Daly, Mark J.; de Bakker, Paul I.W.; DePristo, Mark A.; Do, Ron; Donnelly, Peter; Farlow, Deborah N.; Fennell, Tim; Garimella, Kiran; Hazen, Stanley L.; Hu, Youna; Jordan, Daniel M.; Jun, Goo; Kathiresan, Sekar; Kang, Hyun Min; Kiezun, Adam; Lettre, Guillaume; Li, Bingshan; Li, Mingyao; Newton-Cheh, Christopher H.; Padmanabhan, Sandosh; Peloso, Gina; Pulit, Sara; Rader, Daniel J.; Reich, David; Reilly, Muredach P.; Rivas, Manuel A.; Schwartz, Steve; Scott, Laura; Siscovick, David S.; Spertus, John A.; Stitziel, Nathaniel O.; Stoletzki, Nina; Sunyaev, Shamil R.; Voight, Benjamin F.; Willer, Cristen J.; Rich, Stephen S.; Akylbekova, Ermeg; Atwood, Larry D.; Ballantyne, Christie M.; Barbalic, Maja; Barr, R. Graham; Benjamin, Emelia J.; Bis, Joshua; Boerwinkle, Eric; Bowden, Donald W.; Brody, Jennifer; Budoff, Matthew; Burke, Greg; Buxbaum, Sarah; Carr, Jeff; Chen, Donna T.; Chen, Ida Y.; Chen, Wei-Min; Concannon, Pat; Crosby, Jacy; Cupples, L. Adrienne; D’Agostino, Ralph; DeStefano, Anita L.; Dreisbach, Albert; Dupuis, Josée; Durda, J. Peter; Ellis, Jaclyn; Folsom, Aaron R.; Fornage, Myriam; Fox, Caroline S.; Fox, Ervin; Funari, Vincent; Ganesh, Santhi K.; Gardin, Julius; Goff, David; Gordon, Ora; Grody, Wayne; Gross, Myron; Guo, Xiuqing; Hall, Ira M.; Heard-Costa, Nancy L.; Heckbert, Susan R.; Heintz, Nicholas; Herrington, David M.; Hickson, DeMarc; Huang, Jie; Hwang, Shih-Jen; Jacobs, David R.; Jenny, Nancy S.; Johnson, Andrew D.; Johnson, Craig W.; Kawut, Steven; Kronmal, Richard; Kurz, Raluca; Lange, Ethan M.; Lange, Leslie A.; Larson, Martin G.; Lawson, Mark; Lewis, Cora E.; Levy, Daniel; Li, Dalin; Lin, Honghuang; Liu, Chunyu; Liu, Jiankang; Liu, Kiang; Liu, Xiaoming; Liu, Yongmei; Longstreth, William T.; Loria, Cay; Lumley, Thomas; Lunetta, Kathryn; Mackey, Aaron J.; Mackey, Rachel; Manichaikul, Ani; Maxwell, Taylor; McKnight, Barbara; Meigs, James B.; Morrison, Alanna C.; Musani, Solomon K.; Mychaleckyj, Josyf C.; Nettleton, Jennifer A.; North, Kari; O’Donnell, Christopher J.; O’Leary, Daniel; Ong, Frank; Palmas, Walter; Pankow, James S.; Pankratz, Nathan D.; Paul, Shom; Perez, Marco; Person, Sharina D.; Polak, Joseph; Post, Wendy S.; Psaty, Bruce M.; Quinlan, Aaron R.; Raffel, Leslie J.; Ramachandran, Vasan S.; Reiner, Alexander P.; Rice, Kenneth; Rotter, Jerome I.; Sanders, Jill P.; Schreiner, Pamela; Seshadri, Sudha; Shea, Steve; Sidney, Stephen; Silverstein, Kevin; Smith, Nicholas L.; Sotoodehnia, Nona; Srinivasan, Asoke; Taylor, Herman A.; Taylor, Kent; Thomas, Fridtjof; Tracy, Russell P.; Tsai, Michael Y.; Volcik, Kelly A.; Wassel, Chrstina L.; Watson, Karol; Wei, Gina; White, Wendy; Wiggins, Kerri L.; Wilk, Jemma B.; Williams, O. Dale; Wilson, Gregory; Wilson, James G.; Wolf, Phillip; Zakai, Neil A.; Hardy, John; Meschia, James F.; Nalls, Michael; Singleton, Andrew; Worrall, Brad; Bamshad, Michael J.; Barnes, Kathleen C.; Abdulhamid, Ibrahim; Accurso, Frank; Anbar, Ran; Beaty, Terri; Bigham, Abigail; Black, Phillip; Bleecker, Eugene; Buckingham, Kati; Cairns, Anne Marie; Caplan, Daniel; Chatfield, Barbara; Chidekel, Aaron; Cho, Michael; Christiani, David C.; Crapo, James D.; Crouch, Julia; Daley, Denise; Dang, Anthony; Dang, Hong; De Paula, Alicia; DeCelie-Germana, Joan; Drumm, Allen DozorMitch; Dyson, Maynard; Emerson, Julia; Emond, Mary J.; Ferkol, Thomas; Fink, Robert; Foster, Cassandra; Froh, Deborah; Gao, Li; Gershan, William; Gibson, Ronald L.; Godwin, Elizabeth; Gondor, Magdalen; Gutierrez, Hector; Hansel, Nadia N.; Hassoun, Paul M.; Hiatt, Peter; Hokanson, John E.; Howenstine, Michelle; Hummer, Laura K.; Kanga, Jamshed; Kim, Yoonhee; Knowles, Michael R.; Konstan, Michael; Lahiri, Thomas; Laird, Nan; Lange, Christoph; Lin, Lin; Lin, Xihong; Louie, Tin L.; Lynch, David; Make, Barry; Martin, Thomas R.; Mathai, Steve C.; Mathias, Rasika A.; McNamara, John; McNamara, Sharon; Meyers, Deborah; Millard, Susan; Mogayzel, Peter; Moss, Richard; Murray, Tanda; Nielson, Dennis; Noyes, Blakeslee; O’Neal, Wanda; Orenstein, David; O’Sullivan, Brian; Pace, Rhonda; Pare, Peter; Parker, H. Worth; Passero, Mary Ann; Perkett, Elizabeth; Prestridge, Adrienne; Rafaels, Nicholas M.; Ramsey, Bonnie; Regan, Elizabeth; Ren, Clement; Retsch-Bogart, George; Rock, Michael; Rosen, Antony; Rosenfeld, Margaret; Ruczinski, Ingo; Sanford, Andrew; Schaeffer, David; Sell, Cindy; Sheehan, Daniel; Silverman, Edwin K.; Sin, Don; Spencer, Terry; Stonebraker, Jackie; Tabor, Holly K.; Varlotta, Laurie; Vergara, Candelaria I.; Weiss, Robert; Wigley, Fred; Wise, Robert A.; Wright, Fred A.; Wurfel, Mark M.; Zanni, Robert; Zou, Fei; Nickerson, Deborah A.; Rieder, Mark J.; Green, Phil; Shendure, Jay; Akey, Joshua M.; Bustamante, Carlos D.; Crosslin, David R.; Eichler, Evan E.; Fox, P. Keolu; Fu, Wenqing; Gordon, Adam; Gravel, Simon; Jarvik, Gail P.; Johnsen, Jill M.; Kan, Mengyuan; Kenny, Eimear E.; Kidd, Jeffrey M.; Lara-Garduno, Fremiet; Leal, Suzanne M.; Liu, Dajiang J.; McGee, Sean; O’Connor, Timothy D.; Paeper, Bryan; Robertson, Peggy D.; Smith, Joshua D.; Staples, Jeffrey C.; Tennessen, Jacob A.; Turner, Emily H.; Wang, Gao; Yi, Qian; Jackson, Rebecca; Peters, Ulrike; Carlson, Christopher S.; Anderson, Garnet; Anton-Culver, Hoda; Assimes, Themistocles L.; Auer, Paul L.; Beresford, Shirley; Bizon, Chris; Black, Henry; Brunner, Robert; Brzyski, Robert; Burwen, Dale; Caan, Bette; Carty, Cara L.; Chlebowski, Rowan; Cummings, Steven; Curb, J. David; Eaton, Charles B.; Ford, Leslie; Franceschini, Nora; Fullerton, Stephanie M.; Gass, Margery; Geller, Nancy; Heiss, Gerardo; Howard, Barbara V.; Hsu, Li; Hutter, Carolyn M.; Ioannidis, John; Jiao, Shuo; Johnson, Karen C.; Kooperberg, Charles; Kuller, Lewis; LaCroix, Andrea; Lakshminarayan, Kamakshi; Lane, Dorothy; Lasser, Norman; LeBlanc, Erin; Li, Kuo-Ping; Limacher, Marian; Lin, Dan-Yu; Logsdon, Benjamin A.; Ludlam, Shari; Manson, JoAnn E.; Margolis, Karen; Martin, Lisa; McGowan, Joan; Monda, Keri L.; Kotchen, Jane Morley; Nathan, Lauren; Ockene, Judith; O’Sullivan, Mary Jo; Phillips, Lawrence S.; Prentice, Ross L.; Robbins, John; Robinson, Jennifer G.; Rossouw, Jacques E.; Sangi-Haghpeykar, Haleh; Sarto, Gloria E.; Shumaker, Sally; Simon, Michael S.; Stefanick, Marcia L.; Stein, Evan; Tang, Hua; Taylor, Kira C.; Thomson, Cynthia A.; Thornton, Timothy A.; Van Horn, Linda; Vitolins, Mara; Wactawski-Wende, Jean; Wallace, Robert; Wassertheil-Smoller, Sylvia; Zeng, Donglin; Applebaum-Bowden, Deborah; Feolo, Michael; Gan, Weiniu; Paltoo, Dina N.; Sholinsky, Phyliss; Sturcke, Anne

    2014-01-01

    Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98th or <2nd percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments. PMID:24507775

  16. Powering autonomous sensors with miniaturized piezoelectric based energy harvesting devices operating at very low frequency

    International Nuclear Information System (INIS)

    Ferin, G; Bantignies, C; Khanh, H Le; Flesch, E; Nguyen-Dinh, A

    2015-01-01

    Harvesting energy from ambient mechanical vibrations is a smart and efficient way to power autonomous sensors and support innovative developments in IoT (Internet of Things), WSN (Wireless Sensor Network) and even implantable medical devices. Beyond the environmental operating conditions, efficiency of such devices is mainly related to energy source properties like the amplitude of vibrations and its spectral contain and some of these applications exhibit a quite low frequency spectrum where harvesting surrounding mechanical energy make sense, typically 5-50Hz for implantable medical devices or 50Hz-150Hz for industrial machines. Harvesting such low frequency vibrations is a challenge since it leads to adapt the resonator geometries to the targeted frequency or to use out-off band indirect harvesting strategies. In this paper we present a piezoelectric based vibrational energy harvesting device (PEH) which could be integrated into a biocompatible package to power implantable sensor or therapeutic medical devices. The presented architecture is a serial bimorph laminated with ultra-thinned (ranging from 15μm to 100μm) outer PZT “skins” that could operate at a “very low frequency”, below 25Hz typically. The core process flow is disclosed and performances highlighted with regards to other low frequency demonstrations. (paper)

  17. Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lo, W.-C.; Sposito, G.; Majer, E.

    2007-02-01

    An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman-Thigpen-Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of 'low frequency' underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g. seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed.

  18. Investigation of common, low-frequency and rare genome-wide variation in anorexia nervosa

    Science.gov (United States)

    Huckins, L M; Hatzikotoulas, K; Southam, L; Thornton, L M; Steinberg, J; Aguilera-McKay, F; Treasure, J; Schmidt, U; Gunasinghe, C; Romero, A; Curtis, C; Rhodes, D; Moens, J; Kalsi, G; Dempster, D; Leung, R; Keohane, A; Burghardt, R; Ehrlich, S; Hebebrand, J; Hinney, A; Ludolph, A; Walton, E; Deloukas, P; Hofman, A; Palotie, A; Palta, P; van Rooij, F J A; Stirrups, K; Adan, R; Boni, C; Cone, R; Dedoussis, G; van Furth, E; Gonidakis, F; Gorwood, P; Hudson, J; Kaprio, J; Kas, M; Keski-Rahonen, A; Kiezebrink, K; Knudsen, G-P; Slof-Op 't Landt, M C T; Maj, M; Monteleone, A M; Monteleone, P; Raevuori, A H; Reichborn-Kjennerud, T; Tozzi, F; Tsitsika, A; van Elburg, A; Adan, R A H; Alfredsson, L; Ando, T; Andreassen, O A; Aschauer, H; Baker, J H; Barrett, J C; Bencko, V; Bergen, A W; Berrettini, W H; Birgegard, A; Boni, C; Boraska Perica, V; Brandt, H; Breen, G; Bulik, C M; Carlberg, L; Cassina, M; Cichon, S; Clementi, M; Cohen-Woods, S; Coleman, J; Cone, R D; Courtet, P; Crawford, S; Crow, S; Crowley, J; Danner, U N; Davis, O S P; de Zwaan, M; Dedoussis, G; Degortes, D; DeSocio, J E; Dick, D M; Dikeos, D; Dina, C; Ding, B; Dmitrzak-Weglarz, M; Docampo, E; Duncan, L; Egberts, K; Ehrlich, S; Escaramís, G; Esko, T; Espeseth, T; Estivill, X; Favaro, A; Fernández-Aranda, F; Fichter, M M; Finan, C; Fischer, K; Floyd, J A B; Foretova, L; Forzan, M; Franklin, C S; Gallinger, S; Gambaro, G; Gaspar, H A; Giegling, I; Gonidakis, F; Gorwood, P; Gratacos, M; Guillaume, S; Guo, Y; Hakonarson, H; Halmi, K A; Hatzikotoulas, K; Hauser, J; Hebebrand, J; Helder, S; Herms, S; Herpertz-Dahlmann, B; Herzog, W; Hilliard, C E; Hinney, A; Hübel, C; Huckins, L M; Hudson, J I; Huemer, J; Inoko, H; Janout, V; Jiménez-Murcia, S; Johnson, C; Julià, A; Juréus, A; Kalsi, G; Kaminska, D; Kaplan, A S; Kaprio, J; Karhunen, L; Karwautz, A; Kas, M J H; Kaye, W; Kennedy, J L; Keski-Rahkonen, A; Kiezebrink, K; Klareskog, L; Klump, K L; Knudsen, G P S; Koeleman, B P C; Koubek, D; La Via, M C; Landén, M; Le Hellard, S; Levitan, R D; Li, D; Lichtenstein, P; Lilenfeld, L; Lissowska, J; Lundervold, A; Magistretti, P; Maj, M; Mannik, K; Marsal, S; Martin, N; Mattingsdal, M; McDevitt, S; McGuffin, P; Merl, E; Metspalu, A; Meulenbelt, I; Micali, N; Mitchell, J; Mitchell, K; Monteleone, P; Monteleone, A M; Mortensen, P; Munn-Chernoff, M A; Navratilova, M; Nilsson, I; Norring, C; Ntalla, I; Ophoff, R A; O'Toole, J K; Palotie, A; Pante, J; Papezova, H; Pinto, D; Rabionet, R; Raevuori, A; Rajewski, A; Ramoz, N; Rayner, N W; Reichborn-Kjennerud, T; Ripatti, S; Roberts, M; Rotondo, A; Rujescu, D; Rybakowski, F; Santonastaso, P; Scherag, A; Scherer, S W; Schmidt, U; Schork, N J; Schosser, A; Slachtova, L; Sladek, R; Slagboom, P E; Slof-Op 't Landt, M C T; Slopien, A; Soranzo, N; Southam, L; Steen, V M; Strengman, E; Strober, M; Sullivan, P F; Szatkiewicz, J P; Szeszenia-Dabrowska, N; Tachmazidou, I; Tenconi, E; Thornton, L M; Tortorella, A; Tozzi, F; Treasure, J; Tsitsika, A; Tziouvas, K; van Elburg, A A; van Furth, E F; Wagner, G; Walton, E; Watson, H; Wichmann, H-E; Widen, E; Woodside, D B; Yanovski, J; Yao, S; Yilmaz, Z; Zeggini, E; Zerwas, S; Zipfel, S; Collier, D A; Sullivan, P F; Breen, G; Bulik, C M; Zeggini, E

    2018-01-01

    Anorexia nervosa (AN) is a complex neuropsychiatric disorder presenting with dangerously low body weight, and a deep and persistent fear of gaining weight. To date, only one genome-wide significant locus associated with AN has been identified. We performed an exome-chip based genome-wide association studies (GWAS) in 2158 cases from nine populations of European origin and 15 485 ancestrally matched controls. Unlike previous studies, this GWAS also probed association in low-frequency and rare variants. Sixteen independent variants were taken forward for in silico and de novo replication (11 common and 5 rare). No findings reached genome-wide significance. Two notable common variants were identified: rs10791286, an intronic variant in OPCML (P=9.89 × 10−6), and rs7700147, an intergenic variant (P=2.93 × 10−5). No low-frequency variant associations were identified at genome-wide significance, although the study was well-powered to detect low-frequency variants with large effect sizes, suggesting that there may be no AN loci in this genomic search space with large effect sizes. PMID:29155802

  19. Low-frequency ultrasound increases non-viral gene transfer to the mouse lung.

    Science.gov (United States)

    Xenariou, Stefania; Liang, Hai-Dong; Griesenbach, Uta; Zhu, Jie; Farley, Raymond; Somerton, Lucinda; Singh, Charanjit; Jeffery, Peter K; Scheule, Ronald K; Cheng, Seng H; Geddes, Duncan M; Blomley, Martin; Alton, Eric W F W

    2010-01-01

    The aim of the study was to assess if low-frequency ultrasound (US), in the range of 30-35 kHz, increases non-viral gene transfer to the mouse lung. US is greatly attenuated in the lung due to large energy losses at the air/tissue interfaces. The advantages of low-frequency US, compared with high-frequency US are: (i) increased cavitation (responsible for the formation of transient pores in the cell membrane) and (ii) reduced energy losses during lung penetration. Cationic lipid GL67/plasmid DNA (pDNA), polyethylenimine (PEI)/pDNA and naked pDNA were delivered via intranasal instillation and the animals were then exposed to US (sonoporation) at 0.07 or 0.1 MPa for 10 min. Under these conditions, US did not enhance GL67 or PEI-mediated transfection. It did, however, increase naked pDNA gene transfer by approximately 4 folds. Importantly, this was achieved in the absence of microbubbles, which are crucial for the commonly used high-frequency (1 MHz) sonoporation but may not be able to withstand nebulization in a clinically relevant setup. Lung hemorrhage was also assessed and shown to increase with US pressure in a dose-dependent manner. We have thus, established that low-frequency US can enhance lung gene transfer with naked pDNA and this enhancement is more effective than the previously reported 1 MHz US.

  20. Characterization of low-frequency acoustic wave propagation through a periodic corrugated waveguide

    Science.gov (United States)

    Jiang, Changyong; Huang, Lixi

    2018-03-01

    In this paper, a periodic corrugated waveguide structure is proposed, and its unit-cell is analyzed by the wave finite element method. In low-frequency range, the unit-cell is treated as an equivalent fluid through a homogenization process, and the equivalent acoustic parameters are obtained, which are validated by finite structure simulations and experiments. The proposed structure is shown to add tortuosity to the waveguide, hence higher equivalent fluid density is achieved, while the system elastic modulus remains unchanged. As a result, the equivalent speed of sound is smaller than normal air. The application of such change of speed of sound is demonstrated in the classic quarter-wavelength resonator based on the corrugated waveguide, which gives a lower resonance frequency with the same side branch length. When the waveguide is filled with porous materials, the added tortuosity enhances the broadband, low-frequency sound absorption by increasing the equivalent mass without bringing in excess damping, the latter being partly responsible for the poor performance of usual porous materials in the low-frequency region. Therefore, the proposed structure provides another dimension for the design and optimization of porous sound absorption materials.

  1. Development of Lightweight, Compact, Structurally-Integrated Acoustic Liners for Broadband Low-Frequency Noise Mitigation

    Science.gov (United States)

    Chambers, Andrew T.

    Airborne noise with a low dominant frequency content (scope of conventional acoustic noise mitigation techniques using liners, foams or claddings owing to mass and volume considerations. Its low evanescence contributes significantly to environmental noise pollution, and unwanted structural vibrations causing diminished efficiency, comfort, payload integrity and mission capabilities. An alternative approach using liner configurations with realistic mass and volume constraints having innovative 'folded' core geometries is investigated to ascertain its low-frequency noise absorption characteristics. In contrast to mass-driven approaches, the folded core approach relies on tailoring interactions between acoustic resonances to tune the liner's impedance to suit the dominant low-frequency content of the source. This allows to keep non-structural mass-addition to a minimum, while retaining an overall thickness comparable to conventional liners for these low-frequency liner designs. The relative acoustic performance of various candidate folded core designs is evaluated by means of a new composite metric termed the Low-Frequency Performance (LFP) factor, which is educed from the absorption coefficient spectrum obtained using Zwikker-Kosten Transmission Line (ZKTL) theory-based numerical studies. An LFP-based software tool is developed to determine optimal 3D cavity packing for a prescribed liner volume and target frequency range. ZKTL-based parametric studies on core dimensions and face sheet porosity are utilized for detailed design of test articles. Experimental verification of absorption coefficient spectra conducted using 3D printed test articles in a normal incidence acoustic impedance tube yield good correlation with simulations. More than 100 Hz of continuous bandwidth with an absorption coefficient greater than 0.6 is shown to be possible in the 300 to 400 Hz range with a 38.1-mm (1.5-inch) thick liner. Further, the influence of face sheet type, Mach number, and

  2. Self organization and low frequency Raman scattering in quartz glasses irradiated by fast neutrons

    International Nuclear Information System (INIS)

    Davranov, O. D.; Subhankulov, I.

    2002-01-01

    In all investigated glasses materials in low frequency region of the IR absorption and Raman scattering spectra intensive and sufficiently broad band with maximum within ∼10-100 cm -1 is observed. The availability of such band is a typical trait of low frequency spectra of amorphous materials and spectroscopic characteristics of this observed low frequency peak in glasses are similar to the spectra of liquids and liquid crystals. In this work the influence of fast neutrons (from 2.5·10 15 to 2.2·10 20 cm -2 ) on location of low frequency peak in quartz glass was investigated with accidental impurities (Ca, Al, Ba, Sb, Pb, Mn, B, Na, Zn), in which summary maintenance of impurities was (10 13 -10 -1 ) mass %). Spectral from of low frequency Raman scattering peak is identical in all glasses independently from their chemical composition. It is discovered that the frequency and amplitude of boson peak increase with increasing of irradiation dose. Maximum of peak is displaced from 54 to 72 cm -1 depending on irradiation dose, but amplitude is increased up to 1.5 times. The increasing of glass density and velocity of acoustic waves propagation are observed. Depending on E-centre ( 28 Si 3+ ) concentration under irradiation dose at first a gradual growth, and then saturation of these centres is observed. The increasing of concentration of centres correlates with the growth of intensity of narrow Raman line 606 cm -1 , connected to oxygen atoms' vibrations on the clusters surface. The irradiation by fast neutron lead to the changing degree of self organization of phase correlation in glasses. It leads to the rising of internal field of phase structure, and consequently, to the changing of wave vector of phase structure, which is displayed in the shift of frequency of boson peak. The changing of self organization degree influences the macroscopic parameters of medium and it is displayed in the changing of glass density and velocity of acoustic waves propagation. The

  3. Mammalian cell biology

    International Nuclear Information System (INIS)

    Elkind, M.M.

    1979-01-01

    This section contains summaries of research on mechanisms of lethality and radioinduced changes in mammalian cell properties, new cell systems for the study of the biology of mutation and neoplastic transformation, and comparative properties of ionizing radiations

  4. Resting-state functional MR changes in Alzheimer's disease patients visualized by amplitude of low-frequency fluctuation and fraction of amplitude of low-frequency fluctuation

    International Nuclear Information System (INIS)

    Long Miaomiao; Ni Hongyan; Feng Jie; Zhang Hongtao; Liu Tie; Shen Wen; Qi Ji

    2013-01-01

    Objective: To investigate the difference of amplitude of low-frequency fluctuation (ALFF) and fraction of amplitude of low-frequency fluctuation (fALFF) between Alzheimer's disease (AD)patients and normal aging (NA) controls by voxel-based analysis. Methods: Thirty-one AD patients and 44 NA controls were enrolled in the study. Blood oxygen level dependent functional (BOLD) EPI data were obtained during resting-state by using 32-channel head coil. Data were realigned, normalized and then smoothed with 8 mm FWHM kernel. Resting-state fMRI toolkit (version 1.6) was used to generate ALFF and fALFF images. Independent two sample t-test was performed with SPM5 to compare ALFF and fALFF of AD and NA controls. Pearson correlation analysis was performed to examine the relationship between MMSE score and ALFF, fALFF parameters. The significance level was set to be uncorrected O.001 on the voxel level and 0.05 on the cluster level. Results: AD patients showed increased ALFF in left temporal lobe (0.492 ± 0.119) and right cingulated cortex (0.434 ± 0.093) of AD patients, which were 0.443 ± 0.068 and 0.380 ± 0.081 in NA controls (t = 2.658, 2.227, P < 0.05). Decreased fALFF was found in bilateral posterior cingulate cortices (1.167 ± 0.203) and increased fALFF was found in bilateral temporal lobes (left 1.226 ± 0.127, right 1.146 ± 0.214) with left side dominance, which were 1.453 ± 0.269, 1.134 ± 0.088, 1.014 ± O.132 in NA controls (t =5.001, 3.695, 3.285, P < 0.05). Bilateral temporal ALFF and fALFF correlated with MMSE positively (r = 0.768-0.909, P < 0.05) with left dominance. Conclusion: AD patients showed increased resting-state functional MRI changes correlated with MMSE score in the temporal lobes with left dominance, which indicated left temporal lobe may be the best location for the observation of disease progression in AD patients. (authors)

  5. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  6. Annoyance of Low Frequency Noise (LFN) in the laboratory assessed by LFN-sufferers and non-sufferers

    DEFF Research Database (Denmark)

    Poulsen, Torben

    2003-01-01

    In a series of listening tests, test subjects listened to eight different environmental low frequency noises to evaluate their loudness and annoyance. The noises were continuous noise with and without tones, intermittent noise, music, traffic noise and low frequency noises with an impulsive...

  7. Comparison of objective methods for assessment of annoyance of low frequency noise with the results of a laboratory listening test

    DEFF Research Database (Denmark)

    Poulsen, Torben

    2003-01-01

    Subjective assessments made by test persons were compared to results from a number of objective measurement and calculation methods for the assessment of low frequency noise. Eighteen young persons with normal hearing listened to eight environmental low frequency noises and evaluated the annoyance...

  8. 18 centimeter VLBI observations of the quasar NRAO 140 during and after a low-frequency outburst

    International Nuclear Information System (INIS)

    Marscher, A.P.; Broderick, J.J.; Padrielli, L.; Bartel, N.; Romney, J.D.; Virginia Polytechnic Institute and State Univ., Blacksburg; CNR, Istituto di Radioastronomia, Bologna, Italy; Harvard-Smithsonian Center for Astrophysics, Cambridge, MA; Natitonal Radio Astronomy Observatory, Charlottesville, VA)

    1987-01-01

    VLBI and spectra observations have been used to identify the specific site of a low-frequency outburst in the quasar NRAO 140. The properties of the low-frequency variability in the quasar are compared with the predictions of several models. The refractive scintillation model alone does not account for the source's properties. 32 references

  9. Study of a New Method of Tracking Control with Zero Steady-State Error on Very-Low Frequency

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A servo control system is prone to low speed and unsteadiness during very-low-frequency follow-up. A design method of feedforward control based on intelligent controller is put foward. Simulation and test results show that the method has excellent control characteristics and strong robustness, which meets the servo control needs with very-low frequency.

  10. Scheme for efficient extraction of low-frequency signal beyond the quantum limit by frequency-shift detection.

    Science.gov (United States)

    Yang, R G; Zhang, J; Zhai, Z H; Zhai, S Q; Liu, K; Gao, J R

    2015-08-10

    Low-frequency (Hz~kHz) squeezing is very important in many schemes of quantum precision measurement. But it is more difficult than that at megahertz-frequency because of the introduction of laser low-frequency technical noise. In this paper, we propose a scheme to obtain a low-frequency signal beyond the quantum limit from the frequency comb in a non-degenerate frequency and degenerate polarization optical parametric amplifier (NOPA) operating below threshold with type I phase matching by frequency-shift detection. Low-frequency squeezing immune to laser technical noise is obtained by a detection system with a local beam of two-frequency intense laser. Furthermore, the low-frequency squeezing can be used for phase measurement in Mach-Zehnder interferometer, and the signal-to-noise ratio (SNR) can be enhanced greatly.

  11. Spots of Seismic Danger Extracted by Properties of Low-Frequency Seismic Noise

    Science.gov (United States)

    Lyubushin, Alexey

    2013-04-01

    A new method of seismic danger estimate is presented which is based on using properties of low-frequency seismic noise from broadband networks. Two statistics of noise waveforms are considered: multi-fractal singularity spectrum support width D and minimum normalized entropy En of squared orthogonal wavelet coefficients. The maps of D and En are plotted in the moving time window. Let us call the regions extracted by low values of D and high values of En as "spots of seismic danger" - SSD. Mean values of D and En are strongly anti-correlated - that is why statistics D and En extract the same SSD. Nevertheless their mutual considering is expedient because these parameters are based on different approaches. The physical mechanism which underlies the method is consolidation of small blocks of the Earth's crust into the large one before the strong earthquake. This effect has a consequence that seismic noise does not include spikes which are connected with mutual movements of small blocks. The absence of irregular spikes in the noise follows the decreasing of D and increasing of entropy En. The stability in space and size of the SSD provides estimates of the place and energy of the probable future earthquake. The increasing or decreasing of SSD size and minimum or maximum values of D and En within SSD allows estimate the trend of seismic danger. The method is illustrating by the analysis of seismic noise from broadband seismic network F-net in Japan [1-5]. Statistically significant decreasing of D allowed a hypothesis about approaching Japan to a future seismic catastrophe to be formulated at the middle of 2008. The peculiarities of correlation coefficient estimate within 1 year time window between median values of D and generalized Hurst exponent allowed to make a decision that starting from July of 2010 Japan come to the state of waiting strong earthquake [3]. The method extracted a huge SSD near Japan which includes the region of future Tohoku mega-earthquake and the

  12. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    Science.gov (United States)

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes

  13. The frequency dependence of friction in experiment, theory, and observations of low frequency earthquakes

    Science.gov (United States)

    Thomas, A.; Beeler, N. M.; Burgmann, R.; Shelly, D. R.

    2011-12-01

    Low frequency earthquakes (LFEs) are small amplitude, short duration events composing tectonic tremor, probably generated by shear slip on asperities downdip of the seismogenic zone. In Parkfield, Shelly and Hardebeck [2010] have identified 88 LFE families, or hypocentral locations, that contain over half a million LFEs since 2001 on a 160-km-long section of the San Andreas fault between 16 and 30 km depth. A number of studies have demonstrated the extreme sensitivity of low frequency earthquakes (LFEs) near Parkfield to stress changes ranging from contingent upon the amplitude and frequency content of the applied stress. We attempt to test this framework by comparing observations of LFEs triggered in response to stresses spanning several orders of magnitude in both frequency and amplitude (e.g. tides, teleseismic surface waves, static stress changes, etc.) to the predicted response of a single degree of freedom slider block model with rate and state dependent strength. The sensitivity of failure time in the friction model as developed in previous studies does not distinguish between shear and normal stresses; laboratory experiments show a more complicated sensitivity of failure time to normal stress change than in the published model. Because the shear and normal tidal stresses at Parkfield have different amplitudes and are not in phase, we have modified the model to include the expected sensitivity to normal stress. Our prior investigations of the response of both regular and low frequency earthquakes to tidal stresses [Thomas et al., 2009; Shelly and Johnson, 2011] are qualitatively consistent with the predictions of the friction model , as both the timing and degree (probability) of correlation are in agreement.

  14. The role of localised Ultra-Low Frequency waves in energetic electron precipitation

    Science.gov (United States)

    Rae, J.; Murphy, K. R.; Watt, C.; Mann, I. R.; Ozeke, L.; Halford, A. J.; Sibeck, D. G.; Clilverd, M. A.; Rodger, C. J.; Degeling, A. W.; Singer, H. J.

    2016-12-01

    Electromagnetic waves play pivotal roles in radiation belt dynamics through a variety of different means. Typically, Ultra-Low Frequency (ULF) waves have historically been invoked for radial diffusive transport leading to both acceleration and loss of outer radiation belt electrons. Very-Low Frequency (VLF) and Extremely-Low Frequency (ELF) waves are generally thought to provide a mechanism for localized acceleration and loss through precipitation into the ionosphere. In this study we present a new mechanism for electron loss through precipitation into the ionosphere due to direct modulation of the loss cone via localized compressional ULF waves. Observational evidence is presented demonstrating that modulation of the equatorial loss cone can occur via localized compressional wave activity. We then perform statistical computations of the probability distribution to determine how likely a given magnetic perturbation would produce a given percentage change in the bounce loss-cone (BLC). We discuss the ramifications of the action of coherent, localized compressional ULF waves on drifting electron populations; their precipitation response can be a complex interplay between electron energy, the shape of the phase space density profile at pitch angles close to the loss cone, ionospheric decay timescales, and the time-dependence of the electron source. We present a case study of compressional wave activity in tandem with riometer and balloon-borne electron precipitation across keV-MeV energies to demonstrate that the experimental measurements can be explained by our new enhanced loss cone mechanism. We determine that the two pivotal components not usually considered are localized ULF wave fields and ionospheric decay timescales. We conclude that ULF wave modulation of the loss cone is a viable candidate for direct precipitation of radiation belt electrons without any additional requirement for gyroresonant wave-particle interaction. Additional mechanisms would be

  15. IL10 low-frequency variants in Behçet's disease patients.

    Science.gov (United States)

    Matos, Mafalda; Xavier, Joana M; Abrantes, Patrícia; Sousa, Inês; Rei, Nádia; Davatchi, Fereydoun; Shahram, Farhad; Jesus, Gorete; Barcelos, Filipe; Vedes, Joana; Salgado, Manuel; Abdollahi, Bahar Sadeghi; Nadji, Abdolhadi; Moraes-Fontes, Maria Francisca; Shafiee, Niloofar Mojarad; Ghaderibarmi, Fahmida; Vaz Patto, José; Crespo, Jorge; Oliveira, Sofia A

    2017-05-01

    To explain the missing heritability after the genome-wide association studies era, sequencing studies allow the identification of low-frequency variants with a stronger effect on disease risk. Common variants in the interleukin 10 gene (IL10) have been consistently associated with Behçet's disease (BD) and the goal of this study is to investigate the role of low-frequency IL10 variants in BD susceptibility. To identify IL10 low-frequency variants, a discovery group of 50 Portuguese BD patients were Sanger-sequenced in a 7.7 kb genomic region encompassing the complete IL10 gene, 0.9 kb upstream and 2 kb downstream, and two conserved regions in the putative promoter. To assess if the novel variants are BD- and/or Portuguese-specific, they were assayed in an additional group of BD patients (26 Portuguese and 964 Iranian) and controls (104 Portuguese and 823 Iranian). Rare IL10 coding variants were not detected in BD patients, but we identified 28 known single nucleotide polymorphisms with minor allele frequencies ranging from 0.010 to 0.390, and five novel non-coding variants in five heterozygous cases. ss836185595, located in the IL10 3' untranslated region, was also detected in one Iranian control individual and therefore is not specific to BD. The remaining novel IL10 variants (ss836185596 and ss836185602 in intron 3, ss836185598 and ss836185604 in the putative promoter region) were not found in the replication dataset. This study highlights the importance of screening the whole gene and regulatory regions when searching for novel variants associated with complex diseases, and the need to develop bioinformatics tools to predict the functional impact of non-coding variants and statistical tests which incorporate these predictions. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  16. LOW-FREQUENCY OSCILLATIONS IN GLOBAL SIMULATIONS OF BLACK HOLE ACCRETION

    International Nuclear Information System (INIS)

    O'Neill, Sean M.; Reynolds, Christopher S.; Coleman Miller, M.; Sorathia, Kareem A.

    2011-01-01

    We have identified the presence of large-scale, low-frequency dynamo cycles in a long-duration, global, magnetohydrodynamic (MHD) simulation of black hole accretion. Such cycles have previously been seen in local shearing box simulations, but we discuss their evolution over 1500 inner disk orbits of a global π/4 disk wedge spanning two orders of magnitude in radius and seven scale heights in elevation above/below the disk midplane. The observed cycles manifest themselves as oscillations in azimuthal magnetic field occupying a region that extends into a low-density corona several scale heights above the disk. The cycle frequencies are 10-20 times lower than the local orbital frequency, making them potentially interesting sources of low-frequency variability when scaled to real astrophysical systems. Furthermore, power spectra derived from the full time series reveal that the cycles manifest themselves at discrete, narrowband frequencies that often share power across broad radial ranges. We explore possible connections between these simulated cycles and observed low-frequency quasi-periodic oscillations (LFQPOs) in galactic black hole binary systems, finding that dynamo cycles have the appropriate frequencies and are located in a spatial region associated with X-ray emission in real systems. Derived observational proxies, however, fail to feature peaks with rms amplitudes comparable to LFQPO observations, suggesting that further theoretical work and more sophisticated simulations will be required to form a complete theory of dynamo-driven LFQPOs. Nonetheless, this work clearly illustrates that global MHD dynamos exhibit quasi-periodic behavior on timescales much longer than those derived from test particle considerations.

  17. Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk

    Science.gov (United States)

    Permuth, Jennifer B.; Pirie, Ailith; Ann Chen, Y.; Lin, Hui-Yi; Reid, Brett M.; Chen, Zhihua; Monteiro, Alvaro; Dennis, Joe; Mendoza-Fandino, Gustavo; Anton-Culver, Hoda; Bandera, Elisa V.; Bisogna, Maria; Brinton, Louise; Brooks-Wilson, Angela; Carney, Michael E.; Chenevix-Trench, Georgia; Cook, Linda S.; Cramer, Daniel W.; Cunningham, Julie M.; Cybulski, Cezary; D’Aloisio, Aimee A.; Anne Doherty, Jennifer; Earp, Madalene; Edwards, Robert P.; Fridley, Brooke L.; Gayther, Simon A.; Gentry-Maharaj, Aleksandra; Goodman, Marc T.; Gronwald, Jacek; Hogdall, Estrid; Iversen, Edwin S.; Jakubowska, Anna; Jensen, Allan; Karlan, Beth Y.; Kelemen, Linda E.; Kjaer, Suzanne K.; Kraft, Peter; Le, Nhu D.; Levine, Douglas A.; Lissowska, Jolanta; Lubinski, Jan; Matsuo, Keitaro; Menon, Usha; Modugno, Rosemary; Moysich, Kirsten B.; Nakanishi, Toru; Ness, Roberta B.; Olson, Sara; Orlow, Irene; Pearce, Celeste L.; Pejovic, Tanja; Poole, Elizabeth M.; Ramus, Susan J.; Anne Rossing, Mary; Sandler, Dale P.; Shu, Xiao-Ou; Song, Honglin; Taylor, Jack A.; Teo, Soo-Hwang; Terry, Kathryn L.; Thompson, Pamela J.; Tworoger, Shelley S.; Webb, Penelope M.; Wentzensen, Nicolas; Wilkens, Lynne R.; Winham, Stacey; Woo, Yin-Ling; Wu, Anna H.; Yang, Hannah; Zheng, Wei; Ziogas, Argyrios; Phelan, Catherine M.; Schildkraut, Joellen M.; Berchuck, Andrew; Goode, Ellen L.; Pharoah, Paul D. P.; Sellers, Thomas A.

    2016-01-01

    Rare and low frequency variants are not well covered in most germline genotyping arrays and are understudied in relation to epithelial ovarian cancer (EOC) risk. To address this gap, we used genotyping arrays targeting rarer protein-coding variation in 8,165 EOC cases and 11,619 controls from the international Ovarian Cancer Association Consortium (OCAC). Pooled association analyses were conducted at the variant and gene level for 98,543 variants directly genotyped through two exome genotyping projects. Only common variants that represent or are in strong linkage disequilibrium (LD) with previously-identified signals at established loci reached traditional thresholds for exome-wide significance (P  P≥5.0 ×10 − 7) were detected for rare and low-frequency variants at 16 novel loci. Four rare missense variants were identified (ACTBL2 rs73757391 (5q11.2), BTD rs200337373 (3p25.1), KRT13 rs150321809 (17q21.2) and MC2R rs104894658 (18p11.21)), but only MC2R rs104894668 had a large effect size (OR = 9.66). Genes most strongly associated with EOC risk included ACTBL2 (PAML = 3.23 × 10 − 5; PSKAT-o = 9.23 × 10 − 4) and KRT13 (PAML = 1.67 × 10 − 4; PSKAT-o = 1.07 × 10 − 5), reaffirming variant-level analysis. In summary, this large study identified several rare and low-frequency variants and genes that may contribute to EOC susceptibility, albeit with possible small effects. Future studies that integrate epidemiology, sequencing, and functional assays are needed to further unravel the unexplained heritability and biology of this disease. PMID:27378695

  18. Effects of low-frequency repetitive transcranial magnetic stimulation on event-related potential P300

    Science.gov (United States)

    Torii, Tetsuya; Sato, Aya; Iwahashi, Masakuni; Iramina, Keiji

    2012-04-01

    The present study analyzed the effects of repetitive transcranial magnetic stimulation (rTMS) on brain activity. P300 latency of event-related potential (ERP) was used to evaluate the effects of low-frequency and short-term rTMS by stimulating the supramarginal gyrus (SMG), which is considered to be the related area of P300 origin. In addition, the prolonged stimulation effects on P300 latency were analyzed after applying rTMS. A figure-eight coil was used to stimulate left-right SMG, and intensity of magnetic stimulation was 80% of motor threshold. A total of 100 magnetic pulses were applied for rTMS. The effects of stimulus frequency at 0.5 or 1 Hz were determined. Following rTMS, an odd-ball task was performed and P300 latency of ERP was measured. The odd-ball task was performed at 5, 10, and 15 min post-rTMS. ERP was measured prior to magnetic stimulation as a control. Electroencephalograph (EEG) was measured at Fz, Cz, and Pz that were indicated by the international 10-20 electrode system. Results demonstrated that different effects on P300 latency occurred between 0.5-1 Hz rTMS. With 1 Hz low-frequency magnetic stimulation to the left SMG, P300 latency decreased. Compared to the control, the latency time difference was approximately 15 ms at Cz. This decrease continued for approximately 10 min post-rTMS. In contrast, 0.5 Hz rTMS resulted in delayed P300 latency. Compared to the control, the latency time difference was approximately 20 ms at Fz, and this delayed effect continued for approximately 15 min post-rTMS. Results demonstrated that P300 latency varied according to rTMS frequency. Furthermore, the duration of the effect was not similar for stimulus frequency of low-frequency rTMS.

  19. Research on Wide-field Imaging Technologies for Low-frequency Radio Array

    Science.gov (United States)

    Lao, B. Q.; An, T.; Chen, X.; Wu, X. C.; Lu, Y.

    2017-09-01

    Wide-field imaging of low-frequency radio telescopes are subject to a number of difficult problems. One particularly pernicious problem is the non-coplanar baseline effect. It will lead to distortion of the final image when the phase of w direction called w-term is ignored. The image degradation effects are amplified for telescopes with the wide field of view. This paper summarizes and analyzes several w-term correction methods and their technical principles. Their advantages and disadvantages have been analyzed after comparing their computational cost and computational complexity. We conduct simulations with two of these methods, faceting and w-projection, based on the configuration of the first-phase Square Kilometre Array (SKA) low frequency array. The resulted images are also compared with the two-dimensional Fourier transform method. The results show that image quality and correctness derived from both faceting and w-projection are better than the two-dimensional Fourier transform method in wide-field imaging. The image quality and run time affected by the number of facets and w steps have been evaluated. The results indicate that the number of facets and w steps must be reasonable. Finally, we analyze the effect of data size on the run time of faceting and w-projection. The results show that faceting and w-projection need to be optimized before the massive amounts of data processing. The research of the present paper initiates the analysis of wide-field imaging techniques and their application in the existing and future low-frequency array, and fosters the application and promotion to much broader fields.

  20. Gender Identification Using High-Frequency Speech Energy: Effects of Increasing the Low-Frequency Limit.

    Science.gov (United States)

    Donai, Jeremy J; Halbritter, Rachel M

    The purpose of this study was to investigate the ability of normal-hearing listeners to use high-frequency energy for gender identification from naturally produced speech signals. Two experiments were conducted using a repeated-measures design. Experiment 1 investigated the effects of increasing high-pass filter cutoff (i.e., increasing the low-frequency spectral limit) on gender identification from naturally produced vowel segments. Experiment 2 studied the effects of increasing high-pass filter cutoff on gender identification from naturally produced sentences. Confidence ratings for the gender identification task were also obtained for both experiments. Listeners in experiment 1 were capable of extracting talker gender information at levels significantly above chance from vowel segments high-pass filtered up to 8.5 kHz. Listeners in experiment 2 also performed above chance on the gender identification task from sentences high-pass filtered up to 12 kHz. Cumulatively, the results of both experiments provide evidence that normal-hearing listeners can utilize information from the very high-frequency region (above 4 to 5 kHz) of the speech signal for talker gender identification. These findings are at variance with current assumptions regarding the perceptual information regarding talker gender within this frequency region. The current results also corroborate and extend previous studies of the use of high-frequency speech energy for perceptual tasks. These findings have potential implications for the study of information contained within the high-frequency region of the speech spectrum and the role this region may play in navigating the auditory scene, particularly when the low-frequency portion of the spectrum is masked by environmental noise sources or for listeners with substantial hearing loss in the low-frequency region and better hearing sensitivity in the high-frequency region (i.e., reverse slope hearing loss).