WorldWideScience

Sample records for synthetic embedded application

  1. Synthetic Studies of Curved Heptagon-embedded Polycyclic Arenes

    Science.gov (United States)

    Cheung, Kwan Yin

    Polycyclic aromatic hydrocarbons (PAHs) are a class of compounds which is an area of intense research for its application in organic electronics. PAHs are usually flat molecules. However, when non-hexagonal rings are embedded into PAHs, curvature may be introduced to the PAHs backbone. In this thesis, synthetic studies of curved PAHs embedded with seven-membered rings are presented, in which saddle-shaped molecules are made. Chapter 1 contains two major parts. The first part reviews polycyclic arenes containing seven-membered carbocycles. A seven-membered ring in polycyclic arenes can stabilize cations by forming the aromatic tropylium ion and may also induce negative curvature to the pi-backbone depending on fusion mode of the heptagon. The synthesis, properties and application of these carbocycles are reviewed. The second part reviews the synthetic studies of conjugated carbon nano-rings with radially oriented pi orbitals. Chapter 2 presents the synthesis of soluble derivatives of C70H 26 and C70H30, two new saddle-shaped polycyclic arenes containing two heptagons. The common precursor of these two aromatic saddles is a saddle-shaped diketone, which embedded two heptagons into the well-known hexa-peri-hexabenzocoronene (HBC), and whose carbonyl groups are the key in the reactions to extend the polycyclic pi-framework. These compounds are characterized by X-ray crystallography and are shown to be saddle-shaped. On the basis of crystal structures, local aromaticity and nonplanarity of individual rings in the saddle-shaped pi-backbone are analyzed, and are found to follow Clar's rule in general. It is found that two of these compounds behave as p-type semiconductors in solution-processed thin film transistors. Chapter 3 presents the synthetic studies towards heptagon-embedded carbon nano-ring. Carbon nano-rings such as cycloparaphenylenes are of great interest as they are segments of carbon nanotubes. Theoretical studies suggest that toroidal carbon nanotubes can

  2. Synthetic biology for therapeutic applications.

    Science.gov (United States)

    Abil, Zhanar; Xiong, Xiong; Zhao, Huimin

    2015-02-02

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders.

  3. Communicating embedded systems networks applications

    CERN Document Server

    Krief, Francine

    2013-01-01

    Embedded systems become more and more complex and require having some knowledge in various disciplines such as electronics, data processing, telecommunications and networks. Without detailing all the aspects related to the design of embedded systems, this book, which was written by specialists in electronics, data processing and telecommunications and networks, gives an interesting point of view of communication techniques and problems in embedded systems. This choice is easily justified by the fact that embedded systems are today massively communicating and that telecommunications and network

  4. Embedding methods: application and development

    Science.gov (United States)

    Cheng, Jin; Libisch, Florian; Carter, Emily

    2013-03-01

    Correlated-wavefunction/density functional theory (CW/DFT) embedding methods aim to combine the formally exact correlation treatment in CW methods with the high efficiency of DFT. By partitioning a system into a cluster and its environment, each part can be treated independently. Different embedding schemes have been proposed. The density-based scheme searches for a global embedding potential mediating the interaction on the DFT level. The potential can then be used in CW calculations, e.g., to investigate hot-electron assisted H2 dissociation on Al and Au surfaces. Experimentally, optical excitations of plasmons efficiently create the required hot electrons. The embedded CW calculations validates that the hot electrons play a key role. However, this method neglects the back-action of the cluster on the environment. To solve this problem, a potential-based scheme has been proposed [J. Chem. Phys., 135, 194104 (2011)] that allows for a self-consistent combination of different ab-initio methods. Such an embedding potential thus goes beyond the DFT level. The heterogeneity involved poses various numerical challenges. We report on efforts to construct appropriate basis sets and pseudopotentials as well as to optimize the numerical procedure.

  5. Secure smart embedded devices, platforms and applications

    CERN Document Server

    Markantonakis, Konstantinos

    2013-01-01

    New generations of IT users are increasingly abstracted from the underlying devices and platforms that provide and safeguard their services. As a result they may have little awareness that they are critically dependent on the embedded security devices that are becoming pervasive in daily modern life. Secure Smart Embedded Devices, Platforms and Applications provides a broad overview of the many security and practical issues of embedded devices, tokens, and their operation systems, platforms and main applications. It also addresses a diverse range of industry/government initiatives and consider

  6. Application of invariant embedding to reactor physics

    CERN Document Server

    Shimizu, Akinao; Parsegian, V L

    1972-01-01

    Application of Invariant Embedding to Reactor Physics describes the application of the method of invariant embedding to radiation shielding and to criticality calculations of atomic reactors. The authors intend to show how this method has been applied to realistic problems, together with the results of applications which will be useful to shielding design. The book is organized into two parts. Part A deals with the reflection and transmission of gamma rays by slabs. The chapters in this section cover topics such as the reflection and transmission problem of gamma rays; formulation of the probl

  7. Diverse Power Iteration Embeddings and Its Applications

    Energy Technology Data Exchange (ETDEWEB)

    Huang H.; Yoo S.; Yu, D.; Qin, H.

    2014-12-14

    Abstract—Spectral Embedding is one of the most effective dimension reduction algorithms in data mining. However, its computation complexity has to be mitigated in order to apply it for real-world large scale data analysis. Many researches have been focusing on developing approximate spectral embeddings which are more efficient, but meanwhile far less effective. This paper proposes Diverse Power Iteration Embeddings (DPIE), which not only retains the similar efficiency of power iteration methods but also produces a series of diverse and more effective embedding vectors. We test this novel method by applying it to various data mining applications (e.g. clustering, anomaly detection and feature selection) and evaluating their performance improvements. The experimental results show our proposed DPIE is more effective than popular spectral approximation methods, and obtains the similar quality of classic spectral embedding derived from eigen-decompositions. Moreover it is extremely fast on big data applications. For example in terms of clustering result, DPIE achieves as good as 95% of classic spectral clustering on the complex datasets but 4000+ times faster in limited memory environment.

  8. Applications of scenarios in early embedded system design space exploration

    NARCIS (Netherlands)

    van Stralen, P.

    2014-01-01

    One of the challenges during embedded system design is the application driven design. Due to the application driven design, the objectives that are steering the design of an embedded system are mainly based on the needs of the application(s). Examples of embedded system objectives are performance,

  9. Embedded computer systems for control applications in EBR-II

    International Nuclear Information System (INIS)

    Carlson, R.B.; Start, S.E.

    1993-01-01

    The purpose of this paper is to describe the embedded computer systems approach taken at Experimental Breeder Reactor II (EBR-II) for non-safety related systems. The hardware and software structures for typical embedded systems are presented The embedded systems development process is described. Three examples are given which illustrate typical embedded computer applications in EBR-II

  10. Mammalian synthetic biology: emerging medical applications

    Science.gov (United States)

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M.; Krams, Rob

    2015-01-01

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON–OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. PMID:25808341

  11. Modular control system for embedded applications

    Directory of Open Access Journals (Sweden)

    Dostálek Petr

    2016-01-01

    Full Text Available This paper deals with hardware design of a modular control system intended for embedded applications demanding high computational power while maintaining low cost. The control system central unit is based on 32bit microcontroller MK60DN512 with ARM Cortex-M4 core manufactured by NXP Semiconductor. Module provides all the necessary signals on the two 2-row 40 pin headers and Ethernet communication interface in the form of a small daughter board. It is connected to the mainboard which must always contain 5 V stabilized power supply; other circuits are application specific. In our application the mainboard is equipped with SD card slot, RS232 and RS485 interface which is used for high speed interconnection with up to 15 expansion peripheral modules. This concept enables high flexibility to specific application demands without necessity of redesigning the control system. Controller is freely programmable in C language using any compatible integrated development environment – NXP Kinetis Design Studio, for example. Software development and debugging is simplified by our support program libraries including necessary routines for control and monitoring tasks.

  12. Synthetic biology platform technologies for antimicrobial applications.

    Science.gov (United States)

    Braff, Dana; Shis, David; Collins, James J

    2016-10-01

    The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Synthetic Biomimetic Membranes and Their Sensor Applications

    Directory of Open Access Journals (Sweden)

    Young-Rok Kim

    2012-07-01

    Full Text Available Synthetic biomimetic membranes provide biological environments to membrane proteins. By exploiting the central roles of biological membranes, it is possible to devise biosensors, drug delivery systems, and nanocontainers using a biomimetic membrane system integrated with functional proteins. Biomimetic membranes can be created with synthetic lipids or block copolymers. These amphiphilic lipids and polymers self-assemble in an aqueous solution either into planar membranes or into vesicles. Using various techniques developed to date, both planar membranes and vesicles can provide versatile and robust platforms for a number of applications. In particular, biomimetic membranes with modified lipids or functional proteins are promising platforms for biosensors. We review recent technologies used to create synthetic biomimetic membranes and their engineered sensors applications.

  14. Applications of synthetic polymers in clinical medicine

    OpenAIRE

    Maitz, M.F.

    2015-01-01

    Multiple biological, synthetic and hybrid polymers are used for multiple medical applications. A wide range of different polymers is available, and they have further the advantage to be tunable in physical, chemical and biological properties in a wide range to match the requirements of specific applications. This review gives a brief overview about the introduction and developments of polymers in medicine in general, addressing first stable polymers, then polymers with degradability as a firs...

  15. Isometric embeddings of 2-spheres by embedding flow for applications in numerical relativity

    International Nuclear Information System (INIS)

    Jasiulek, Michael; Korzyński, Mikołaj

    2012-01-01

    We present a numerical method for solving Weyl's embedding problem which consists in finding a global isometric embedding of a positively curved and positive-definite spherical 2-metric into the Euclidean 3-space. The method is based on a construction introduced by Weingarten and was used in Nirenberg's proof of Weyl's conjecture. The target embedding results as the endpoint of an embedding flow in R 3 beginning at the unit sphere's embedding. We employ spectral methods to handle functions on the surface and to solve various (non)linear elliptic PDEs. The code requires no additional input or steering from the operator and its convergence is guaranteed by the Nirenberg arguments. Possible applications in 3 + 1 numerical relativity range from quasi-local mass and momentum measures to coarse-graining in inhomogeneous cosmological models. (paper)

  16. Tools and applications in synthetic biology.

    Science.gov (United States)

    MacDonald, I Cody; Deans, Tara L

    2016-10-01

    Advances in synthetic biology have enabled the engineering of cells with genetic circuits in order to program cells with new biological behavior, dynamic gene expression, and logic control. This cellular engineering progression offers an array of living sensors that can discriminate between cell states, produce a regulated dose of therapeutic biomolecules, and function in various delivery platforms. In this review, we highlight and summarize the tools and applications in bacterial and mammalian synthetic biology. The examples detailed in this review provide insight to further understand genetic circuits, how they are used to program cells with novel functions, and current methods to reliably interface this technology in vivo; thus paving the way for the design of promising novel therapeutic applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Synthetic applications of immobilized lipases in polymers

    International Nuclear Information System (INIS)

    Dalla-Vecchia, Roberto; Nascimento, Maria da Graca; Soldi, Valdir

    2004-01-01

    The application of biocatalysis is a promising field related to new technologies for organic synthesis. The development of immobilization techniques is very important due to the multiple or repetitive use of a single batch of enzymes and the ability to stop the reaction rapidly, at any stage, by removing the enzymes. In most cases, after immobilization, enzymes and microorganisms maintain or even increase their activity and stability. This work presents an overview of the common methods for lipase immobilization in polymers and applications of these systems to obtain compounds of synthetic interest. (author)

  18. HAMLET: HPCN Technology for Real-Time, Embedded Applications

    NARCIS (Netherlands)

    Mager, J.W.L.J.; Dam, A. ten

    1995-01-01

    Building an application by using HPCN technology makes the solution scalable and therefore more flexible. The uptake of HPCN technology for real-time, embedded applications, however, is severely hampered by the lack of real application development support. Within the Esprit project HAMLET,

  19. Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data

    Directory of Open Access Journals (Sweden)

    Viswanath Satish

    2012-02-01

    Full Text Available Abstract Background Dimensionality reduction (DR enables the construction of a lower dimensional space (embedding from a higher dimensional feature space while preserving object-class discriminability. However several popular DR approaches suffer from sensitivity to choice of parameters and/or presence of noise in the data. In this paper, we present a novel DR technique known as consensus embedding that aims to overcome these problems by generating and combining multiple low-dimensional embeddings, hence exploiting the variance among them in a manner similar to ensemble classifier schemes such as Bagging. We demonstrate theoretical properties of consensus embedding which show that it will result in a single stable embedding solution that preserves information more accurately as compared to any individual embedding (generated via DR schemes such as Principal Component Analysis, Graph Embedding, or Locally Linear Embedding. Intelligent sub-sampling (via mean-shift and code parallelization are utilized to provide for an efficient implementation of the scheme. Results Applications of consensus embedding are shown in the context of classification and clustering as applied to: (1 image partitioning of white matter and gray matter on 10 different synthetic brain MRI images corrupted with 18 different combinations of noise and bias field inhomogeneity, (2 classification of 4 high-dimensional gene-expression datasets, (3 cancer detection (at a pixel-level on 16 image slices obtained from 2 different high-resolution prostate MRI datasets. In over 200 different experiments concerning classification and segmentation of biomedical data, consensus embedding was found to consistently outperform both linear and non-linear DR methods within all applications considered. Conclusions We have presented a novel framework termed consensus embedding which leverages ensemble classification theory within dimensionality reduction, allowing for application to a wide range

  20. Embedding

    DEFF Research Database (Denmark)

    Høyrup, Jens

    2016-01-01

    “Embedding” as a technical concept comes from linguistics, more precisely from grammar. The present paper investigates whether it can be applied fruitfully to certain questions that have been investigated by historians (and sometimes philosophers) of mathematics: 1. The construction of numeral...... systems, in particular place-value and quasi place-value systems. 2. The development of algebraic symbolisms. 3. The discussion whether “scientific revolutions” ever take place in mathematics, or new conceptualizations always include what preceded them. A final section investigates the relation between...... spatial and linguistic embedding and concludes that the spatio-linguistic notion of embedding can be meaningfully applied to the former two discussions, whereas the apparent embedding of older within new theories is rather an ideological mirage....

  1. Embedding

    DEFF Research Database (Denmark)

    Høyrup, Jens

    2015-01-01

    to become the starting point not only for theoretical algebra, but for the whole transformation of mathematics from his time onward: the possibility of embedding, that is, of making a symbol or an element of a calculation stand not only for a single number, determined or undetermined, but for a whole...

  2. [Acupoint catgut-embedding therapy: superiorities and principles of application].

    Science.gov (United States)

    Zhang, Xuan-Ping; Jia, Chun-Sheng; Wang, Jian-Ling; Shi, Jing; Zhang, Xin; Li, Xiao-Feng; Xu, Xiao-Kang; Qin, Liang; Zhang, Mei-Ling; Kang, Su-Gang; Duan, Xiao-Dong

    2012-10-01

    To analyze the superiorities of acupoint catgut-embedding therapy, discuss its law of clinical application and provide scientific decision-making for clinical treatment. Literatures on acupoint catgut-embedding therapy in the recent 40 years were selected, input, examined and verified, picked up and analyzed by establishing database with the modern computer technology. (1) One thousand and seventy-five literatures were input. It shows that the acupoint catgut-embedding therapy has an extensive application in all departments, especially in the internal department, accounting for 48.54% (50/103) of the total disease category. It has the most extensive application on treatment of epigastric pain, with the frequency of 102 times, and obesity of 74 times. The next is surgery, accounting for 14.56% (15/103). The major application is on low back pain and leg pain with the frequency of 79 times. Psoriasis, with the frequency of 30 times, holds the major application in dermatological department. And blepharoplasty, with the frequency of 30 times, gains the most application in department of ophthalmology and otorhinolaryngology. (2) In the included literatures, selection of adjacent acupoints and distal acupoints are held as the major method of acupoint selection. The adjusted lumbar puncture needle is taken as the major tool for the acupoint catgut-embedding therapy. And catguts of different sizes are adopted for the operation. (3) Analysis of the therapeutic effect shows that acupoint catgut-embedding therapy has obvious effect in all departments, especially in surgery and dermatology, with the total effective rate over 90%. Epigastric pain, obesity, epilepsy, asthma, abdominal pain, facial paralysis and constipation of the internal medicine, low back pain and leg pain of the surgical department, psoriasis of the dermatological department and blepharoplasty of the department of ophthalmology and otorhinolaryngology are considered as the dominant diseases for acupoint

  3. Distributed embedded smart cameras architectures, design and applications

    CERN Document Server

    Velipasalar, Senem

    2014-01-01

    This publication addresses distributed embedded smart cameras –cameras that perform onboard analysis and collaborate with other cameras. This book provides the material required to better understand the architectural design challenges of embedded smart camera systems, the hardware/software ecosystem, the design approach for, and applications of distributed smart cameras together with the state-of-the-art algorithms. The authors concentrate on the architecture, hardware/software design, realization of smart camera networks from applications to architectures, in particular in the embedded and mobile domains. •                    Examines energy issues related to wireless communication such as decreasing energy consumption to increase battery-life •                    Discusses processing large volumes of video data on an embedded environment in real-time •                    Covers design of realistic applications of distributed and embedded smart...

  4. Model-Based Application Development for Massively Parallel Embedded Systems

    NARCIS (Netherlands)

    Jacobs, J.W.M.

    2008-01-01

    The development of embedded systems in information-rich contexts is governed by some intertwined trends. The increase of both volume of data to be processed and the related processing functionality feeds the growing complexity of applications. Independently, the processing hardware that is needed to

  5. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    Khan, N.A.; Yahya, K.M.

    2003-01-01

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  6. Embedded Thermal Control for Subsystems for Next Generation Spacecraft Applications

    Science.gov (United States)

    Didion, Jeffrey R.

    2015-01-01

    Thermal Fluids and Analysis Workshop, Silver Spring MD NCTS 21070-15. NASA, the Defense Department and commercial interests are actively engaged in developing miniaturized spacecraft systems and scientific instruments to leverage smaller cheaper spacecraft form factors such as CubeSats. This paper outlines research and development efforts among Goddard Space Flight Center personnel and its several partners to develop innovative embedded thermal control subsystems. Embedded thermal control subsystems is a cross cutting enabling technology integrating advanced manufacturing techniques to develop multifunctional intelligent structures to reduce Size, Weight and Power (SWaP) consumption of both the thermal control subsystem and overall spacecraft. Embedded thermal control subsystems permit heat acquisition and rejection at higher temperatures than state of the art systems by employing both advanced heat transfer equipment (integrated heat exchangers) and high heat transfer phenomena. The Goddard Space Flight Center Thermal Engineering Branch has active investigations seeking to characterize advanced thermal control systems for near term spacecraft missions. The embedded thermal control subsystem development effort consists of fundamental research as well as development of breadboard and prototype hardware and spaceflight validation efforts. This paper will outline relevant fundamental investigations of micro-scale heat transfer and electrically driven liquid film boiling. The hardware development efforts focus upon silicon based high heat flux applications (electronic chips, power electronics etc.) and multifunctional structures. Flight validation efforts include variable gravity campaigns and a proposed CubeSat based flight demonstration of a breadboard embedded thermal control system. The CubeSat investigation is technology demonstration will characterize in long-term low earth orbit a breadboard embedded thermal subsystem and its individual components to develop

  7. Wind energy applications of synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Bruun Christiansen, M.

    2006-11-15

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting wind fields are valuable in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse, and model wind fields, which are not fully validated. Two applications of SAR measurements in offshore wind energy planning are addressed here: the study of wind farm wake effects and the potential of using SAR winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms in Denmark Horns Rev and Nysted are identified. A region of reduced wind speed is found downstream of both wind farms from the SAR wind fields. The wake extent and magnitude depends on the wind speed, the atmospheric stability, and the fraction of turbines operating. Wind farm wake effects are detected up to 20 km downwind of the last turbine. This distance is longer than predicted by state-of-the art wake models. Wake losses are typically 10-20% near the wind farms. Secondly, the potential of using SAR wind maps in offshore wind resource assessment is investigated. The resource assessment is made through Weibull fitting to frequency observations of wind speed and requires at least 100 satellite observations per year for a given site of interest. Predictions of the energy density are very sensitive to the wind speed and the highest possible accuracy on SAR wind retrievals is therefore sought. A 1.1 m s{sup -1} deviation on the mean wind speed is found through comparison with mast measurements at Horns Rev. The accuracy on mean wind speeds and energy densities found from satellite measurements varies with different empirical model functions. Additional uncertainties are introduced by the infrequent satellite sampling at fixed times of the day. The accuracy on satellite based wind resource

  8. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy...

  9. Synthetic Biology: Applications in the Food Sector.

    Science.gov (United States)

    Tyagi, Ashish; Kumar, Ashwani; Aparna, S V; Mallappa, Rashmi H; Grover, Sunita; Batish, Virender Kumar

    2016-08-17

    Synthetic biology also termed as "genomic alchemy" represents a powerful area of science that is based on the convergence of biological sciences with systems engineering. It has been fittingly described as "moving from reading the genetic code to writing it" as it focuses on building, modeling, designing and fabricating novel biological systems using customized gene components that result in artificially created genetic circuitry. The scientifically compelling idea of the technological manipulation of life has been advocated since long time. Realization of this idea has gained momentum with development of high speed automation and the falling cost of gene sequencing and synthesis following the completion of the human genome project. Synthetic biology will certainly be instrumental in shaping the development of varying areas ranging from biomedicine, biopharmaceuticals, chemical production, food and dairy quality monitoring, packaging, and storage of food and dairy products, bioremediation and bioenergy production, etc. However, potential dangers of using synthetic life forms have to be acknowledged and adoption of policies by the scientific community to ensure safe practice while making important advancements in the ever expanding field of synthetic biology is to be fully supported and implemented.

  10. A Synthetic Teammate for UAV Applications: A Prospective Look

    National Research Council Canada - National Science Library

    Gluck, Kevin A; Ball, Jerry T; Gunzelmann, Glenn; Krusmark, Michael A; Lyon, Don R; Cooke, Nancy J

    2006-01-01

    This report describes current progress and future plans for research and development in synthetic teammates for applications in training, analysis, and system design for Uninhabited Aerial Vehicle (UAV) operations...

  11. Network-Embedded Management and Applications Understanding Programmable Networking Infrastructure

    CERN Document Server

    Wolter, Ralf

    2013-01-01

    Despite the explosion of networking services and applications in the past decades, the basic technological underpinnings of the Internet have remained largely unchanged. At its heart are special-purpose appliances that connect us to the digital world, commonly known as switches and routers. Now, however, the traditional framework is being increasingly challenged by new methods that are jostling for a position in the next-generation Internet. The concept of a network that is becoming more programmable is one of the aspects that are taking center stage. This opens new possibilities to embed software applications inside the network itself and to manage networks and communications services with unprecedented ease and efficiency. In this edited volume, distinguished experts take the reader on a tour of different facets of programmable network infrastructure and application exploit it. Presenting the state of the art in network embedded management and applications and programmable network infrastructure, the book c...

  12. Embedded memory compression for video and graphics applications

    Science.gov (United States)

    Teng, Andy; Gokce, Dane; Aleksic, Mickey; Reznik, Yuriy A.

    2010-08-01

    We describe design of a low-complexity lossless and near-lossless image compression system with random access, suitable for embedded memory compression applications. This system employs a block-based DPCM coder using variable-length encoding for the residual. As part of this design, we propose to use non-prefix (one-to-one) codes for coding of residuals, and show that they offer improvements in compression performance compared to conventional techniques, such as Golomb-Rice and Huffman codes.

  13. Yeast synthetic biology toolbox and applications for biofuel production.

    Science.gov (United States)

    Tsai, Ching-Sung; Kwak, Suryang; Turner, Timothy L; Jin, Yong-Su

    2015-02-01

    Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  14. Embedded Streaming Deep Neural Networks Accelerator With Applications.

    Science.gov (United States)

    Dundar, Aysegul; Jin, Jonghoon; Martini, Berin; Culurciello, Eugenio

    2017-07-01

    Deep convolutional neural networks (DCNNs) have become a very powerful tool in visual perception. DCNNs have applications in autonomous robots, security systems, mobile phones, and automobiles, where high throughput of the feedforward evaluation phase and power efficiency are important. Because of this increased usage, many field-programmable gate array (FPGA)-based accelerators have been proposed. In this paper, we present an optimized streaming method for DCNNs' hardware accelerator on an embedded platform. The streaming method acts as a compiler, transforming a high-level representation of DCNNs into operation codes to execute applications in a hardware accelerator. The proposed method utilizes maximum computational resources available based on a novel-scheduled routing topology that combines data reuse and data concatenation. It is tested with a hardware accelerator implemented on the Xilinx Kintex-7 XC7K325T FPGA. The system fully explores weight-level and node-level parallelizations of DCNNs and achieves a peak performance of 247 G-ops while consuming less than 4 W of power. We test our system with applications on object classification and object detection in real-world scenarios. Our results indicate high-performance efficiency, outperforming all other presented platforms while running these applications.

  15. Catalytic Membranes Embedding Selective Catalysts: Preparation and Applications

    Science.gov (United States)

    Drioli, Enrico; Fontananova, Enrica

    The embedding of a catalyst in membranes is today recognized as a promising strategy to develop highly efficient and eco-friendly heterogeneous catalytic chemical processes. When a catalyst is heterogenized within or on the surface of a membrane, the membrane composition (characteristics of the membrane material: hydrophobic or hydrophilic, presence of chemical groups with specific functionality, etc.) and the membrane structure (dense or porous, symmetric or asymmetric), can positively influence the catalyst performance, not only by the selective sorption and diffusion of reagents and/or products, but also influencing the catalyst activity by electronic and conformational effect. These effects are similar to those occurring in biological membranes. In this chapter, after a preliminary presentation of the basic principles of membrane reactors and polymer membranes, the preparation, characterization and applications of polymeric catalytic membranes, will be discussed.

  16. Component-based analysis of embedded control applications

    DEFF Research Database (Denmark)

    Angelov, Christo K.; Guan, Wei; Marian, Nicolae

    2011-01-01

    The widespread use of embedded systems requires the creation of industrial software technology that will make it possible to engineer systems being correct by construction. That can be achieved through the use of validated (trusted) components, verification of design models, and automatic...... instances of reusable, executable components—function blocks (FBs). System actors operate in accordance with a timed multitasking model of computation, whereby I/O signals are exchanged with the controlled plant at precisely specified time instants, resulting in the elimination of I/O jitter. The paper...... a feasible (light-weight) analysis method based on runtime observers. The latter are conceived as special-purpose actors running in parallel with the application actors, while checking system properties specified in Linear Temporal Logic. Observers are configured from reusable FBs that can be exported...

  17. Dielectrically embedded flat mesh lens for millimeter waves applications.

    Science.gov (United States)

    Pisano, Giampaolo; Ng, Ming Wah; Ozturk, Fahri; Maffei, Bruno; Haynes, Vic

    2013-04-10

    A flat lens based on subwavelength periodic metal meshes has been developed using photolithographic techniques. These mesh grids are stacked at specific distances and embedded in polypropylene. A code was developed to optimize more than 1000 transmission line circuits required to vary the device phase shift across the lens flat surface, mimicking the behavior of a classical lens. A W-band mesh-lens prototype was successfully manufactured and its RF performance characterized using a vector network analyzer coupled to corrugated horn antennas. Co-polarization far-field beam patterns were measured and compared with finite-element method models. The excellent agreement between data and simulations validated our designing tools and manufacturing procedures. This mesh lens is a low-loss, robust, light, and compact device that has many potential applications including millimeter wave quasi-optical systems for future cosmic microwave background polarization instruments.

  18. Advancing Sustainable Catalysis with Magnetite Surface Modification and Synthetic Applications

    Science.gov (United States)

    This article surveys the recent developments in the synthesis, surface modification, and synthetic applications of magnetitenanoparticles. The emergence of iron(II,III) oxide (triiron tetraoxide or magnetite; Fe3O4, or FeO•Fe2O3) nanoparticles as a sustainable support in heteroge...

  19. Inverse synthetic aperture radar imaging principles, algorithms and applications

    CERN Document Server

    Chen , Victor C

    2014-01-01

    Inverse Synthetic Aperture Radar Imaging: Principles, Algorithms and Applications is based on the latest research on ISAR imaging of moving targets and non-cooperative target recognition (NCTR). With a focus on the advances and applications, this book will provide readers with a working knowledge on various algorithms of ISAR imaging of targets and implementation with MATLAB. These MATLAB algorithms will prove useful in order to visualize and manipulate some simulated ISAR images.

  20. Noble metal nanoparticles embedding into polymeric materials: From fundamentals to applications.

    Science.gov (United States)

    Prakash, Jai; Pivin, J C; Swart, H C

    2015-12-01

    This review covers some key concepts related to embedding of the noble metal nanoparticles in polymer surfaces. The metal nanoparticles embedded into the polymer matrix can provide high-performance novel materials that find applications in modern nanotechnology. In particular, the origin of various processes that drive the embedding phenomenon, growth of the nanostructure at the surface, factors affecting the embedding including role of surface, interface energies and thermodynamic driving forces with emphasis on the fundamental and technological applications, under different conditions (annealing and ion beams) have been discussed. In addition to the conventional thermal process for embedding which includes the measure of fundamental polymer surface properties with relevant probing techniques, this review discusses the recent advances carried out in the understanding of embedding phenomenon starting from thin metal films to growth of the nanoparticles and embedded nanostructures using novel ion beam techniques. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Embedded Visual System and its Applications on Robots

    CERN Document Server

    Xu, De

    2010-01-01

    Embedded vision systems such as smart cameras have been rapidly developed recently. Vision systems have become smaller and lighter, but their performance has improved. The algorithms in embedded vision systems have their specifications limited by frequency of CPU, memory size, and architecture. The goal of this e-book is to provide a an advanced reference work for engineers, researchers and scholars in the field of robotics, machine vision, and automation and to facilitate the exchange of their ideas, experiences and views on embedded vision system models. The effectiveness for all methods is

  2. Consideration of applications of olefin metathesis in synthetic fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Heveling, J.

    1984-07-01

    One of the characteristics of Fischer-Tropsch synthesis and many oligomerization processes, is insufficient selectivity. Efforts have to be made to bring the products obtained in line with the market requirements. The olefin metathesis reaction has the potential to convert less desirable olefins to more useful ones and provides new ways of producing petrochemicals. Based on existing and suggested process technologies, applications of this reaction for the production of synthetic liquid fuels are discussed.

  3. Advances in Synthetic Applications of Hypervalent Iodine Compounds.

    Science.gov (United States)

    Yoshimura, Akira; Zhdankin, Viktor V

    2016-03-09

    The preparation, structure, and chemistry of hypervalent iodine compounds are reviewed with emphasis on their synthetic application. Compounds of iodine possess reactivity similar to that of transition metals, but have the advantage of environmental sustainability and efficient utilization of natural resources. These compounds are widely used in organic synthesis as selective oxidants and environmentally friendly reagents. Synthetic uses of hypervalent iodine reagents in halogenation reactions, various oxidations, rearrangements, aminations, C-C bond-forming reactions, and transition metal-catalyzed reactions are summarized and discussed. Recent discovery of hypervalent catalytic systems and recyclable reagents, and the development of new enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important achievement in the field of hypervalent iodine chemistry. One of the goals of this Review is to attract the attention of the scientific community as to the benefits of using hypervalent iodine compounds as an environmentally sustainable alternative to heavy metals.

  4. Application of instrument platform based embedded Linux system on intelligent scaler

    International Nuclear Information System (INIS)

    Wang Jikun; Yang Run'an; Xia Minjian; Yang Zhijun; Li Lianfang; Yang Binhua

    2011-01-01

    It designs a instrument platform based on embedded Linux system and peripheral circuit, by designing Linux device driver and application program based on QT Embedded, various functions of the intelligent scaler are realized. The system architecture is very reasonable, so the stability and the expansibility and the integration level are increased, the development cycle is shorten greatly. (authors)

  5. Active and passive component embedding into low-cost plastic substrates aimed at smart system applications

    NARCIS (Netherlands)

    Cauwe, M.; Vandecasteele, B.; Baets, J. de; Brand, J. van den; Kusters, R.; Sridhar, A.

    2013-01-01

    The technology development for a low-cost, roll-to-roll compatible chip embedding process is described in this paper. Target applications are intelligent labels and disposable sensor patches. Two generations of the technology are depicted. In the first version of the embedding technology, the chips

  6. Microwave de-embedding from theory to applications

    CERN Document Server

    Crupi, Giovanni

    2013-01-01

    This groundbreaking book is the first to give an introduction to microwave de-embedding, showing how it is the cornerstone for waveform engineering. The authors of each chapter clearly explain the theoretical concepts, providing a foundation that supports linear and non-linear measurements, modelling and circuit design. Recent developments and future trends in the field are covered throughout, including successful strategies for low-noise and power amplifier design. This book is a must-have for those wishing to understand the full potential of the microwave de-embedding concept to achieve suc

  7. Synthetic

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2010-06-01

    Full Text Available Traditionally materials have been associated with a series of physical properties that can be used as inputs to production and manufacturing. Recently we witnessed an interest in materials considered not only as ‘true matter’, but also as new breeds where geometry, texture, tooling and finish are able to provoke new sensations when they are applied to a substance. These artificial materials can be described as synthetic because they are the outcome of various qualities that are not necessarily true to the original matter, but they are the combination of two or more parts, whether by design or by natural processes. The aim of this paper is to investigate the potential of architectural surfaces to produce effects through the invention of new breeds of artificial matter, using micro-scale details derived from Nature as an inspiration.

  8. Recent applications of synthetic biology tools for yeast metabolic engineering.

    Science.gov (United States)

    Jensen, Michael K; Keasling, Jay D

    2015-02-01

    The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed synthetic biology tools and their application to improve production of chemicals and fuels in yeast. Finally, we provide a perspective for the challenges that lie ahead. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  9. Joint Application Mapping/Interconnect Synthesis Techniques for Embedded Chip-Scale Multiprocessors

    National Research Council Canada - National Science Library

    Bambha, Neal K; Bhattacharyya, Shuvra S

    2005-01-01

    .... In this paper, we present high-level scheduling and interconnect topology synthesis techniques for embedded multiprocessor systems-on-chip that are streamlined for one or more digital signal processing applications...

  10. The designing of SDH embedded with RPR and its applications in MAN

    Science.gov (United States)

    Zhang, Jijun; Li, Guangcheng

    2004-04-01

    This paper discusses and analyzes the designing of SDH embedded with RPR and its applications in MAN. The main contents of this paper include: First of all, we discuss the disadvantages of the traditional Ethernet module embedded in SDH node while it carrying dada service in perspective of network organization, of QoS guarantee and network security. Secondly, we introduce the designing of SDH embedded with RPR, which can resolve the above problems. And finally, this paper puts emphases on analyzing the application models of this kind of SDH nodes in the metro area transport network, and the performance optimization for data services provided by the nodes.

  11. Enabling Next-Generation Multicore Platforms in Embedded Applications

    Science.gov (United States)

    2014-04-01

    or a preemptive resource. This gives rise to four different classes of allocation policies, depending upon whether the processor or the cache is...transitive closure of direct contention, D. We define each equivalence class in D+ to be a logical cache processor. By definition, all tasks on the same...J.V.B. Mataix. Static use of locking caches in multitask preemptive real-time systems. In Proceedings of the IEEE Real-Time Embedded Systems

  12. Transcription control engineering and applications in synthetic biology

    Directory of Open Access Journals (Sweden)

    Michael D. Engstrom

    2017-09-01

    Full Text Available In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein, a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors, giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  13. Transcription control engineering and applications in synthetic biology.

    Science.gov (United States)

    Engstrom, Michael D; Pfleger, Brian F

    2017-09-01

    In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators ( cis -factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators ( trans- factors), giving examples of how cis- and trans -acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli , we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  14. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Loo, Yihua; Hauser, Charlotte A E

    2016-01-01

    Three-dimensional (3D) bioprinting is a disruptive technology for creating organotypic constructs for high-throughput screening and regenerative medicine. One major challenge is the lack of suitable bioinks. Short synthetic self-assembling peptides are ideal candidates. Several classes of peptides self-assemble into nanofibrous hydrogels resembling the native extracellular matrix. This is a conducive microenvironment for maintaining cell survival and physiological function. Many peptides also demonstrate stimuli-responsive gelation and tuneable mechanical properties, which facilitates extrusion before dispensing and maintains the shape fidelity of the printed construct in aqueous media. The inherent biocompatibility and biodegradability bodes well for in vivo applications as implantable tissues and drug delivery matrices, while their short length and ease of functionalization facilitates synthesis and customization. By applying self-assembling peptide inks to bioprinting, the dynamic complexity of biological tissue can be recreated, thereby advancing current biomedical applications of peptide hydrogel scaffolds. (paper)

  15. Fat polygonal partitions with applications to visualization and embeddings

    Directory of Open Access Journals (Sweden)

    Mark de Berg

    2013-12-01

    Full Text Available Let T be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high.We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes.We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in ℝd. We use these partitions with slack for embedding ultrametrics into d-dimensional Euclidean space:  we give a polylog(Δ-approximation algorithm for embedding n-point ultrametrics into ℝd with minimum distortion, where Δ denotes the spread of the metric. The previously best-known approximation ratio for this problem was polynomial in n. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.

  16. Organometallic-Peptide Bioconjugates: Synthetic Strategies and Medicinal Applications.

    Science.gov (United States)

    Albada, Bauke; Metzler-Nolte, Nils

    2016-10-12

    Peptides are important biological molecular entities in biomedical research. They can be prepared in a large variety of shapes, with a host of chemical functions, and tailored for specific applications. Organometallic medicinal chemistry is a relatively young field that explores biomedical and bioanalytical applications of organometallic complexes, that is, metal compounds with at least one direct, covalent metal-carbon bond. The conjugation of peptides to such medicinally active organometallic moieties started only about 20 years ago, and it has been very beneficial for the development of bioorganometallic chemistry in general. Similarly, the biomedical properties of peptides have been altered by their conjugation to organometallic (OM) moieties. In this review, synthetic methods by which OM moieties can be conjugated to peptides via a carbon-metal bond are described, and selected medicinal applications of such conjugates are discussed. Inorganic coordination complexes between metal ions and peptides are excluded from this review. Also, the labeling of peptides with radiometals and applications of radiolabeled peptides will not be treated herein. First, modifications of the peptide backbone (either N- or C-terminally, or both) with organometallic moieties will be described, including the insertion of OM moieties as part of the peptide backbone. Then side-chain modifications will be reported, among them the most recent strategies for chemoselective arene metalation on peptides. Finally, approaches by which multiple metalation can be achieved are explored. In each section, selected examples of biological applications are highlighted.

  17. Real-time systems design principles for distributed embedded applications

    CERN Document Server

    Kopetz, Hermann

    1997-01-01

    The book explains the relevance of recent scientific insights to the solution of everyday problems in the design and implementation of distributed and embedded real-time systems. Thus, as a reference source the book presents real-time technology in a concise and understandable manner. Because the cost-effectiveness of a particular method is of major concern in an industrial setting, design decisions are examined from an economic viewpoint. The recent appearance of cost-effective powerful system chips has tremendous influence on the architecture and economics of future distributed system soluti

  18. Feature Importance in Nonlinear Embeddings (FINE): Applications in Digital Pathology.

    Science.gov (United States)

    Ginsburg, Shoshana B; Lee, George; Ali, Sahirzeeshan; Madabhushi, Anant

    2016-01-01

    Quantitative histomorphometry (QH) refers to the process of computationally modeling disease appearance on digital pathology images by extracting hundreds of image features and using them to predict disease presence or outcome. Since constructing a robust and interpretable classifier is challenging in a high dimensional feature space, dimensionality reduction (DR) is often implemented prior to classifier construction. However, when DR is performed it can be challenging to quantify the contribution of each of the original features to the final classification result. We have previously presented a method for scoring features based on their importance for classification on an embedding derived via principal components analysis (PCA). However, nonlinear DR involves the eigen-decomposition of a kernel matrix rather than the data itself, compounding the issue of classifier interpretability. In this paper we present feature importance in nonlinear embeddings (FINE), an extension of our PCA-based feature scoring method to kernel PCA (KPCA), as well as several NLDR algorithms that can be cast as variants of KPCA. FINE is applied to four digital pathology datasets to identify key QH features for predicting the risk of breast and prostate cancer recurrence. Measures of nuclear and glandular architecture and clusteredness were found to play an important role in predicting the likelihood of recurrence of both breast and prostate cancers. Compared to the t-test, Fisher score, and Gini index, FINE was able to identify a stable set of features that provide good classification accuracy on four publicly available datasets from the NIPS 2003 Feature Selection Challenge.

  19. The Embedded Counseling Model: An Application to Dental Students.

    Science.gov (United States)

    Adams, David Francis

    2017-01-01

    Prior research has suggested that dental students experience high rates of stress, anxiety, and mood concerns, which have been linked to poor academic performance, health concerns, and substance abuse. The aim of this study was to evaluate the impact of an embedded counseling office at the University of Iowa College of Dentistry & Dental Clinics in its first three academic semesters. Data were gathered from students attending appointments, and two inventories were used to monitor students' counseling progress and gather psychological outcomes data: the Counseling Center Assessment of Psychological Symptoms-34 (CCAPS-34) and the Outcome Rating Scale (ORS). In the three semesters, 55 students attended 251 counseling appointments, with an average of 4.5 appointments per student. Their presenting psychological concerns included academic concerns, time management, test anxiety, study skills, low self-esteem, self-care, interpersonal conflicts, anxiety, depression, stress management, sexual concerns, substance abuse, eating/body image concerns, work-life balance, and financial issues. The CCAPS-34 data showed that, at initial clinical assessment, students experienced moderate levels of depression, generalized anxiety, social anxiety, academic distress, and overall psychological distress; 45 (82%) showed clinically significant symptoms on at least one CCAPS-34 subscale. The ORS data further showed that the students entered counseling experiencing high levels of psychological distress. A positive relationship was found between number of counseling appointments and increased overall functioning. These results suggest that an embedded counseling office can help dental schools meet the needs of their students.

  20. Semantic Model of Variability and Capabilities of IoT Applications for Embedded Software Ecosystems

    DEFF Research Database (Denmark)

    Tomlein, Matus; Grønbæk, Kaj

    2016-01-01

    Applications in embedded open software ecosystems for Internet of Things devices open new challenges regarding how their variability and capabilities should be modeled. In collaboration with an industrial partner, we have recognized that such applications have complex constraints on the context. We...

  1. Exponential local discriminant embedding and its application to face recognition.

    Science.gov (United States)

    Dornaika, Fadi; Bosaghzadeh, Alireza

    2013-06-01

    Local discriminant embedding (LDE) has been recently proposed to overcome some limitations of the global linear discriminant analysis method. In the case of a small training data set, however, LDE cannot directly be applied to high-dimensional data. This case is the so-called small-sample-size (SSS) problem. The classical solution to this problem was applying dimensionality reduction on the raw data (e.g., using principal component analysis). In this paper, we introduce a novel discriminant technique called "exponential LDE" (ELDE). The proposed ELDE can be seen as an extension of LDE framework in two directions. First, the proposed framework overcomes the SSS problem without discarding the discriminant information that was contained in the null space of the locality preserving scatter matrices associated with LDE. Second, the proposed ELDE is equivalent to transforming original data into a new space by distance diffusion mapping (similar to kernel-based nonlinear mapping), and then, LDE is applied in such a new space. As a result of diffusion mapping, the margin between samples belonging to different classes is enlarged, which is helpful in improving classification accuracy. The experiments are conducted on five public face databases: Yale, Extended Yale, PF01, Pose, Illumination, and Expression (PIE), and Facial Recognition Technology (FERET). The results show that the performances of the proposed ELDE are better than those of LDE and many state-of-the-art discriminant analysis techniques.

  2. Application of the Organic Synthetic Designs to Astrobiology

    Science.gov (United States)

    Kolb, V. M.

    2009-12-01

    In this paper we propose a synthesis of the heterocyclic compounds and the insoluble materials on the meteorites. Our synthetic scheme involves the reaction of sugars and amino acids, the so-called Maillard reaction. We have developed this scheme based on the combined analysis of the regular and retrosynthetic organic synthetic principles. The merits of these synthetic methods for the prebiotic design are addressed.

  3. A Synthetic Teammate for UAV Applications: A Prospective Look

    National Research Council Canada - National Science Library

    Gluck, Kevin A; Ball, Jerry T; Gunzelmann, Glenn; Krusmark, Michael A; Lyon, Don R; Cooke, Nancy J

    2006-01-01

    ..., computational cognitive process modeling of aircraft maneuvering and reconnaissance missions, verbal interaction between human operators and synthetic entities, and the formal analysis of team skill...

  4. Applications of factorization embeddings for Lévy processes

    NARCIS (Netherlands)

    Dieker, A.B.

    2006-01-01

    We give three applications of the Pecherskii-Rogozin-Spitzer identity for Lévy processes. First, we find the joint distribution of the supremum and the epoch at which it is `attained' if a Lévy process has phase-type upward jumps. We also find the characteristics of the ladder process. Second, we

  5. Application of Data Clustering Embedded in Fuzzy Classifier Expert ...

    African Journals Online (AJOL)

    minerals, rocks, soil and water). In most cases the quantity of water obtains from its different sources are not quality enough for human usage due to the presence of contaminants. The application of several criteria for the recognition of water ...

  6. Embedded Control in Wearable Medical Devices: Application to the Artificial Pancreas

    Directory of Open Access Journals (Sweden)

    Stamatina Zavitsanou

    2016-09-01

    Full Text Available Significant increases in processing power, coupled with the miniaturization of processing units operating at low power levels, has motivated the embedding of modern control systems into medical devices. The design of such embedded decision-making strategies for medical applications is driven by multiple crucial factors, such as: (i guaranteed safety in the presence of exogenous disturbances and unexpected system failures; (ii constraints on computing resources; (iii portability and longevity in terms of size and power consumption; and (iv constraints on manufacturing and maintenance costs. Embedded control systems are especially compelling in the context of modern artificial pancreas systems (AP used in glucose regulation for patients with type 1 diabetes mellitus (T1DM. Herein, a review of potential embedded control strategies that can be leveraged in a fully-automated and portable AP is presented. Amongst competing controllers, emphasis is provided on model predictive control (MPC, since it has been established as a very promising control strategy for glucose regulation using the AP. Challenges involved in the design, implementation and validation of safety-critical embedded model predictive controllers for the AP application are discussed in detail. Additionally, the computational expenditure inherent to MPC strategies is investigated, and a comparative study of runtime performances and storage requirements among modern quadratic programming solvers is reported for a desktop environment and a prototype hardware platform.

  7. Synthetic Micro/Nanomachines and Their Applications: Towards 'Fantastic Voyage'

    Science.gov (United States)

    Gao, Wei

    The 1966 movie Fantastic Voyage captured the world's imagination, portraying a tiny submarine navigating through the human bloodstream and treating life-threatening medical conditions. My PhD research focuses on the synthetic nano/microscale machines to realize the Fantastic Voyage vision. Various biomedical and environmental areas would benefit from the developments of efficient fuel-free and fuel-driven nano/microscale machines. The polymer-based catalytic tubular microengine is synthesized using a template based electrodeposition method. The oxygen bubble propelled microengine harvests the energy from chemical fuels (such as H2O2) and displays very efficient propulsion. It can serve as an ideal platform for diverse biomedical and environmental applications. For example, lectin modified polyaniline based microengines can be used for selective bacteria (E. Coli) isolation from food, clinical and environmental samples; poly(3-aminophenylboronic acid)/Ni/Pt microengine itself provides the 'built in' glucose recognition capability for 'on-the-fly' capture, transport and release of yeast cells. A series of micromotors which can be self-propelled in natural environments without additional chemical fuels are developed, holding great promise for in vivo biomedical applications: the polyaniline/zinc microrockets display effective autonomous motion in extreme acidic environments (such as human stomach); the Al-Ga/Ti based Janus micromotor can be propelled by the hydrogen bubbles generated from the rapid aluminum and water reaction; alkanethiols modified seawater-driven Mg Janus micromotors, which utilize macrogalvanic corrosion and chloride pitting corrosion processes, can be used for environmental oil remediation. Magnetically powered nanoswimmers have attracted considerable attention due to their great biocompatibility. A high-speed magnetically-propelled nanowire swimmer which mimics swimming microorganisms by exploiting the flexible nanowire as artificial flagella

  8. Embedding scenario analysis and application in delta planning processes in Bangladesh

    NARCIS (Netherlands)

    Seijger, Chris; Alam, Saiful; Saikat, Tahmidul Haq; Terwisscha van Scheltinga, C.T.H.M.; Aalst, van Maaike; Navera, Umme Kulsum

    2017-01-01

    The objective of this research was to explore how scenario analysis and application in delta planning could be embedded in institutions in Bangladesh, on a continuous and enduring basis. By reviewing the National Water Management Plan, the 5 Year Plan and the Bangladesh Delta Plan it can be

  9. On properties of modeling control software for embedded control applications with CSP/CT framework

    NARCIS (Netherlands)

    Jovanovic, D.S.; Hilderink, G.H.; Broenink, Johannes F.; Karelse, F.

    2003-01-01

    This PROGRESS project (TES.5224) traces a design framework for implementing embedded real-time software for control applications by exploiting its natural concurrency. The paper illustrates the stage of yielded automation in the process of structuring complex control software architectures, modeling

  10. A HARDWARE SUPPORTED OPERATING SYSTEM KERNEL FOR EMBEDDED HARD REAL-TIME APPLICATIONS

    NARCIS (Netherlands)

    COLNARIC, M; HALANG, WA; TOL, RM

    1994-01-01

    The concept of the kernel, i.e. the time critical part of a real-time operating system, and its dedicated co-processor, especially tailored for embedded applications, are presented. The co-processor acts as a system controller and operates in conjunction with one or more conventional processors in

  11. Bistatic Synthetic Aperture Radar with Application to Moving Target Detection

    National Research Council Canada - National Science Library

    Whitewood, A. P; Mueller, B. R; Griffiths, H. D; Baker, C. J

    2005-01-01

    .... This paper describes a bistatic radar system which uses the combination of a spaceborne synthetic aperture radar transmitter on board the European Space Agency's Envisat satellite, and a low-cost...

  12. Quality-Driven Model-Based Design of MultiProcessor Embedded Systems for Highlydemanding Applications

    DEFF Research Database (Denmark)

    Jozwiak, Lech; Madsen, Jan

    2013-01-01

    opportunities have been created. The traditional applications can be served much better and numerous new sorts of embedded systems became technologically feasible and economically justified. Various monitoring, control, communication or multi-media systems that can be put on or embedded in (mobile, poorly......C optimization, adequate resolution of numerous complex design tradeoffs, reduction of the design productivity gap for the increasingly complex and sophisticated systems, reduction of the time-to market and development costs without compromising the system quality, etc. These challenges cannot be well addressed...... of contemporary and future embedded systems and introduction of the quality-driven model-based design methodology based on the paradigms of life-inspired systems and quality-driven design earlier proposed by the first presenter of this tutorial. Subsequently, the actual industrial Intel's ASIP-based MPSo...

  13. Applications of cell-free protein synthesis in synthetic biology: Interfacing bio-machinery with synthetic environments.

    Science.gov (United States)

    Lee, Kyung-Ho; Kim, Dong-Myung

    2013-11-01

    Synthetic biology is built on the synthesis, engineering, and assembly of biological parts. Proteins are the first components considered for the construction of systems with designed biological functions because proteins carry out most of the biological functions and chemical reactions inside cells. Protein synthesis is considered to comprise the most basic levels of the hierarchical structure of synthetic biology. Cell-free protein synthesis has emerged as a powerful technology that can potentially transform the concept of bioprocesses. With the ability to harness the synthetic power of biology without many of the constraints of cell-based systems, cell-free protein synthesis enables the rapid creation of protein molecules from diverse sources of genetic information. Cell-free protein synthesis is virtually free from the intrinsic constraints of cell-based methods and offers greater flexibility in system design and manipulability of biological synthetic machinery. Among its potential applications, cell-free protein synthesis can be combined with various man-made devices for rapid functional analysis of genomic sequences. This review covers recent efforts to integrate cell-free protein synthesis with various reaction devices and analytical platforms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. [Application of synthetic biology to sustainable utilization of Chinese materia medica resources].

    Science.gov (United States)

    Huang, Lu-Qi; Gao, Wei; Zhou, Yong-Jin

    2014-01-01

    Bioactive natural products are the material bases of Chinese materia medica resources. With successful applications of synthetic biology strategies to the researches and productions of taxol, artemisinin and tanshinone, etc, the potential ability of synthetic biology in the sustainable utilization of Chinese materia medica resources has been attracted by many researchers. This paper reviews the development of synthetic biology, the opportunities of sustainable utilization of Chinese materia medica resources, and the progress of synthetic biology applied to the researches of bioactive natural products. Furthermore, this paper also analyzes how to apply synthetic biology to sustainable utilization of Chinese materia medica resources and what the crucial factors are. Production of bioactive natural products with synthetic biology strategies will become a significant approach for the sustainable utilization of Chinese materia medica resources.

  15. Application of the invariant embedding method to analytically solvable transport problems

    International Nuclear Information System (INIS)

    Wahlberg, Malin

    2005-05-01

    The applicability and performance of the invariant embedding method for calculating various transport quantities is investigated in this thesis. The invariant embedding method is a technique to calculate the reflected or transmitted fluxes in homogeneous half-spaces and slabs, without the need for solving for the flux inside the medium. In return, the embedding equations become non-linear, and in practical cases they need to be solved by numerical methods. There are, however, fast and effective iterative methods available for this purpose. The objective of this thesis is to investigate the performance of these iterative methods in model problems, in which also an exact analytical solution can be obtained. Some of these analytical solutions are also new, hence their derivation constitutes a part of the thesis work. The cases investigated in the thesis all concern the calculation of reflected fluxes from half-spaces. The first problem treated was the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production (i.e. like binary fission), when bombarded by o flux of monoenergetic particles of the same type. Both constant cross sections and energy dependent cross sections with a power law dependence were used in the calculations. The second class of problems concerned the calculation of the path length distribution of reflected particles from a medium without multiplication. It is an interesting new observation that the distribution of the path length travelled in the medium before reflection can be calculated with invariant embedding methods, which actually do not solve the flux distribution in the medium. We have tested the accuracy and the convergence properties of the embedding method also for this case. Finally, very recently a theory of connecting the infinite and half-space medium solutions by embedding-like integral equations was developed and reported in the literature

  16. Cation exchange applications of synthetic tobermorite for the ...

    Indian Academy of Sciences (India)

    Immobilization and solidification of hazardous cations like Cs137 and Sr90 are required while handling the radioactive waste of nuclear power plants. Efforts are on to find a fail proof method of safe disposal of nuclear wastes. In this context, various materials like borosilicate glass, zeolites, cements and synthetic rocks have ...

  17. Strategic Design of Synthetic Consortium with embedded Wastewater Treatment Potential: Deciphering the Competence of Isolates from Diverse Microbiome

    Directory of Open Access Journals (Sweden)

    Shikha eDahiya

    2016-05-01

    Full Text Available Microorganisms plays vital role in efficient biological treatment. Supplementation of external microorganisms with high degradation rates can enhance the process efficiency significantly. Potential strains were isolated from long term wastewater treating reactors and identified using phylogenetic analysis of 16S rRNA gene fragments with the nearest neighbours extracted during BLAST search. Later the study was designed in two phases which revealed interesting findings. Phase I evaluates the potential of isolated strains viz., Pseudomonas otitidis, Bacillus firmus, Bacillus subtilis and Bacillus circulans for their individual ability in terms of COD and nutrients removal. Bacillus circulans showed highest carbon (COD removal (70%; 0.56 kg CODR/m3-day, while maximum nutrients removal (nitrate, 81%; phosphates, 90% was observed with Bacillus subtilis. B. firmus showed maximum volatile fatty acid (VFA production. Based on Phase I results, four synthetic consortia were designed in phase II with diverse combination of isolates and evaluated for its remediation efficiencies. Consortium 4 (P. otitidis, B. subtilis and B. firmus illustrated higher treatment potential [COD, 86%; SDR (cum: 0.64 kg CODR/m3-day; Nitrates, 87%; Phosphates, 97%]. The exploitation of such explicit consortia can overcome the inefficiencies pre-existing with the biological wastewater treatment plants by acting as prospective candidates for bio-augmenting the native microflora. This communication illustrated development of the efficient consortia using lab isolated strains to improve the performance of wastewater treatment.

  18. A novel 2-T structure memory device using a Si nanodot for embedded application

    Science.gov (United States)

    Xiaonan, Yang; Yong, Wang; Manhong, Zhang; Zongliang, Huo; Jing, Liu; Bo, Zhang; Ming, Liu

    2011-12-01

    Performance and reliability of a 2 transistor Si nanocrystal nonvolatile memory (NVM) are investigated. A good performance of the memory cell has been achieved, including a fast program/erase (P/E) speed under low voltages, an excellent data retention (maintaining for 10 years) and good endurance with a less threshold voltage shift of less than 10% after 104 P/E cycles. The data show that the device has strong potential for future embedded NVM applications.

  19. Embedding Repetition (Takrir Technique in Developing Al-Quran Memorizing Mobile Application for Autism Children

    Directory of Open Access Journals (Sweden)

    Senan Norhalina

    2017-01-01

    Full Text Available Nowadays, there are various types of learning materials used in the process of teaching and learning of Al-Quran including the use of mobile application. However, the features of mobile application that are appropriate for the process of memorizing the Al-Quran, especially for the needs of children with autism is still limited. Thus, this paper proposes an interactive Al-Quran mobile application namely iHafaz to facilitate autism children recite and memorizing Al-Quran. A takrir (repetition technique in Islamic learning approach is embedded in this mobile application in order to assist autism children memorizing the Al-Quran easily. This mobile application consists of two main modules which are Hafaz (Memorize and Latihan (Exercise. Result from the user testing shows that 72.4% of respondents agree that the takrir technique embedded in the mobile application able to improve the usability of the mobile application in helping the autism children to recite and memorize the Al-Quran easily.

  20. Synthetic Biology and Human Health: Potential Applications for Spaceflight

    Science.gov (United States)

    Karouia, Fathi; Carr, Christopher; Cai, Yizhi; Chen, Y.; Grenon, Marlene; Larios-Sanz, Maia; Jones, Jeffrey A.; Santos, Orlando

    2011-01-01

    Human space travelers experience a unique environment that affects homeostasis and physiologic adaptation. Spaceflight-related changes have been reported in the musculo-skeletal, cardiovascular, neurovestibular, endocrine, and immune systems. The spacecraft environment further subjects the traveler to noise and gravitational forces, as well as airborne chemical, microbiological contaminants, and radiation exposure. As humans prepare for longer duration missions effective countermeasures must be developed, verified, and implemented to ensure mission success. Over the past ten years, synthetic biology has opened new avenues for research and development in areas such as biological control, biomaterials, sustainable energy production, bioremediation, and biomedical therapies. The latter in particular is of great interest to the implementation of long-duration human spaceflight capabilities. This article discusses the effects of spaceflight on humans, and reviews current capabilities and potential needs associated with the health of the astronauts where synthetic biology could play an important role in the pursuit of space exploration.

  1. Recent applications of synthetic biology tools for yeast metabolic engineering

    DEFF Research Database (Denmark)

    Jensen, Michael Krogh; Keasling, Jay

    2015-01-01

    The last 20 years of metabolic engineering has enabled bio-based production of fuels and chemicals from renewable carbon sources using cost-effective bioprocesses. Much of this work has been accomplished using engineered microorganisms that act as chemical factories. Although the time required...... to engineer microbial chemical factories has steadily decreased, improvement is still needed. Through the development of synthetic biology tools for key microbial hosts, it should be possible to further decrease the development times and improve the reliability of the resulting microorganism. Together...... with continuous decreases in price and improvements in DNA synthesis, assembly and sequencing, synthetic biology tools will rationalize time-consuming strain engineering, improve control of metabolic fluxes, and diversify screening assays for cellular metabolism. This review outlines some recently developed...

  2. Natural and synthetic polymers in fabric and home care applications

    Science.gov (United States)

    Paderes, Monissa; Ahirwal, Deepak; Fernández Prieto, Susana

    2017-07-01

    Polymers can be tailored to provide different benefits in Fabric & Home Care formulations depending on the monomers and modifications used, such as avoiding dye transfer inhibition in the wash, modifying the surface of tiles or increasing the viscosity and providing suspension properties to consumer products. Specifically, the rheology modification properties of synthetic and natural polymers are discussed in this chapter. The choice of a polymeric rheology modifier will depend on the formulation ingredients (charges, functional groups), the type and the amount of surfactants, the pH and the desired rheology modification. Natural polymeric rheology modifiers have been traditionally used in the food industry, being xanthan gum one of the most well-known ones. On the contrary, synthetic rheology modifiers are preferably used in paints & coats, textile printing and cleaning products.

  3. Application of Linear Prediction Technique to Passive Synthetic Aperture Processing

    Directory of Open Access Journals (Sweden)

    Hou Yunshan

    2010-01-01

    Full Text Available A method for the synthesis of an aperture with improved angular resolution and array gain is described. The proposed method explores the merit of linear prediction technique to improve the performance of conventional ETAM (extended towed array measurements method. Previous efforts to improve the ETAM method generally focused on how to get more accurate estimation of overlap correlator, with an aim to reduce bearing estimation variance. In this paper, however, we discuss how to further improve the angular resolution when the effective synthetic aperture is rather limited. We resort to linear prediction technique to further extend the synthetic aperture obtained by ETAM, which produces a much longer virtual aperture. Results from simulations and lake experiment showed that the proposed LP-ETAM method achieved better angular resolution than ETAM.

  4. Application of Linear Prediction Technique to Passive Synthetic Aperture Processing

    Science.gov (United States)

    Hou, Yunshan; Huang, Jianguo; Jiang, Min; Jin, Yong

    2010-12-01

    A method for the synthesis of an aperture with improved angular resolution and array gain is described. The proposed method explores the merit of linear prediction technique to improve the performance of conventional ETAM (extended towed array measurements) method. Previous efforts to improve the ETAM method generally focused on how to get more accurate estimation of overlap correlator, with an aim to reduce bearing estimation variance. In this paper, however, we discuss how to further improve the angular resolution when the effective synthetic aperture is rather limited. We resort to linear prediction technique to further extend the synthetic aperture obtained by ETAM, which produces a much longer virtual aperture. Results from simulations and lake experiment showed that the proposed LP-ETAM method achieved better angular resolution than ETAM.

  5. Formal synthesis of application and platform behaviors of embedded software systems

    DEFF Research Database (Denmark)

    Kim, Jin Hyun; Kang, Inhye; Choi, Jin-Young

    2015-01-01

    Two main embedded software components, application software and platform software, i.e., the real-time operating system (RTOS), interact with each other in order to achieve the functionality of the system. However, they are so different in behaviors that one behavior modeling language....... In this approach, each of them is modeled with its adequate modeling language and then is composed into a system model for analysis. Moreover, this paper also presents a consistent way of analyzing the application software with respect to both functional requirements and timing requirements. To show...

  6. An inkjet printed near isotropic 3-D antenna with embedded electronics for wireless sensor applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-07-01

    A 3-D (cube-shaped) antenna, which has been inkjet printed on a paper substrate and integrated with embedded electronics, is presented for the first time. A 1.5λ0 dipole is uniquely implemented on all the faces of the cube to achieve near isotropic radiation pattern. The antenna measures 13mm × 13mm × 13mm, where each side of the cube corresponds to only 0.1λ0 (at 2.4 GHz). Measurements with driving electronics placed inside the cube have shown that the antenna performance is not affected by the presence of embedded circuits. The cube antenna design is highly suitable for mobile sensing applications.

  7. Future Synthetic Fuels. A Scientific and Technical Applications Forecast

    Science.gov (United States)

    1975-09-01

    pro- duced. From the standpoint of the production of fuels from shale based synthetic crudes, this means that further processing would be essential...R*N c Alicycllc firm of N corbon«. RN ■ Alkyl jido chain of N corbcni. R’N — Umofuroled ol*yl tide choir» of N coroont. CB •» Crou bonding by O...separated from the total sand-water-bitumen mixture by means of a hot water extraction process (j>) . Athabasca bitumen (4) is similar to a heavy

  8. Development of a formaldehyde biosensor with application to synthetic methylotrophy.

    Science.gov (United States)

    Woolston, Benjamin M; Roth, Timothy; Kohale, Ishwar; Liu, David R; Stephanopoulos, Gregory

    2018-01-01

    Formaldehyde is a prevalent environmental toxin and a key intermediate in single carbon metabolism. The ability to monitor formaldehyde concentration is, therefore, of interest for both environmental monitoring and for metabolic engineering of native and synthetic methylotrophs, but current methods suffer from low sensitivity, complex workflows, or require expensive analytical equipment. Here we develop a formaldehyde biosensor based on the FrmR repressor protein and cognate promoter of Escherichia coli. Optimization of the native repressor binding site and regulatory architecture enabled detection at levels as low as 1 µM. We then used the sensor to benchmark the in vivo activity of several NAD-dependent methanol dehydrogenase (Mdh) variants, the rate-limiting enzyme that catalyzes the first step of methanol assimilation. In order to use this biosensor to distinguish individuals in a mixed population of Mdh variants, we developed a strategy to prevent cross-talk by using glutathione as a formaldehyde sink to minimize intercellular formaldehyde diffusion. Finally, we applied this biosensor to balance expression of mdh and the formaldehyde assimilation enzymes hps and phi in an engineered E. coli strain to minimize formaldehyde build-up while also reducing the burden of heterologous expression. This biosensor offers a quick and simple method for sensitively detecting formaldehyde, and has the potential to be used as the basis for directed evolution of Mdh and dynamic formaldehyde control strategies for establishing synthetic methylotrophy. © 2017 Wiley Periodicals, Inc.

  9. [Application of microelectronics CAD tools to synthetic biology].

    Science.gov (United States)

    Madec, Morgan; Haiech, Jacques; Rosati, Élise; Rezgui, Abir; Gendrault, Yves; Lallement, Christophe

    2017-02-01

    Synthetic biology is an emerging science that aims to create new biological functions that do not exist in nature, based on the knowledge acquired in life science over the last century. Since the beginning of this century, several projects in synthetic biology have emerged. The complexity of the developed artificial bio-functions is relatively low so that empirical design methods could be used for the design process. Nevertheless, with the increasing complexity of biological circuits, this is no longer the case and a large number of computer aided design softwares have been developed in the past few years. These tools include languages for the behavioral description and the mathematical modelling of biological systems, simulators at different levels of abstraction, libraries of biological devices and circuit design automation algorithms. All of these tools already exist in other fields of engineering sciences, particularly in microelectronics. This is the approach that is put forward in this paper. © 2017 médecine/sciences – Inserm.

  10. Assessing Task Migration Impact on Embedded Soft Real-Time Streaming Multimedia Applications

    Directory of Open Access Journals (Sweden)

    Alimonda Andrea

    2008-01-01

    Full Text Available Abstract Multiprocessor systems on chips (MPSoCs are envisioned as the future of embedded platforms such as game-engines, smart-phones and palmtop computers. One of the main challenge preventing the widespread diffusion of these systems is the efficient mapping of multitask multimedia applications on processing elements. Dynamic solutions based on task migration has been recently explored to perform run-time reallocation of task to maximize performance and optimize energy consumption. Even if task migration can provide high flexibility, its overhead must be carefully evaluated when applied to soft real-time applications. In fact, these applications impose deadlines that may be missed during the migration process. In this paper we first present a middleware infrastructure supporting dynamic task allocation for NUMA architectures. Then we perform an extensive characterization of its impact on multimedia soft real-time applications using a software FM Radio benchmark.

  11. Assessing Task Migration Impact on Embedded Soft Real-Time Streaming Multimedia Applications

    Directory of Open Access Journals (Sweden)

    Andrea Acquaviva

    2008-01-01

    Full Text Available Multiprocessor systems on chips (MPSoCs are envisioned as the future of embedded platforms such as game-engines, smart-phones and palmtop computers. One of the main challenge preventing the widespread diffusion of these systems is the efficient mapping of multitask multimedia applications on processing elements. Dynamic solutions based on task migration has been recently explored to perform run-time reallocation of task to maximize performance and optimize energy consumption. Even if task migration can provide high flexibility, its overhead must be carefully evaluated when applied to soft real-time applications. In fact, these applications impose deadlines that may be missed during the migration process. In this paper we first present a middleware infrastructure supporting dynamic task allocation for NUMA architectures. Then we perform an extensive characterization of its impact on multimedia soft real-time applications using a software FM Radio benchmark.

  12. Performance Evaluation of UML2-Modeled Embedded Streaming Applications with System-Level Simulation

    Directory of Open Access Journals (Sweden)

    Arpinen Tero

    2009-01-01

    Full Text Available This article presents an efficient method to capture abstract performance model of streaming data real-time embedded systems (RTESs. Unified Modeling Language version 2 (UML2 is used for the performance modeling and as a front-end for a tool framework that enables simulation-based performance evaluation and design-space exploration. The adopted application meta-model in UML resembles the Kahn Process Network (KPN model and it is targeted at simulation-based performance evaluation. The application workload modeling is done using UML2 activity diagrams, and platform is described with structural UML2 diagrams and model elements. These concepts are defined using a subset of the profile for Modeling and Analysis of Realtime and Embedded (MARTE systems from OMG and custom stereotype extensions. The goal of the performance modeling and simulation is to achieve early estimates on task response times, processing element, memory, and on-chip network utilizations, among other information that is used for design-space exploration. As a case study, a video codec application on multiple processors is modeled, evaluated, and explored. In comparison to related work, this is the first proposal that defines transformation between UML activity diagrams and streaming data application workload meta models and successfully adopts it for RTES performance evaluation.

  13. Development and Application of Smart Geogrid Embedded with Fiber Bragg Grating Sensors

    Directory of Open Access Journals (Sweden)

    Zheng-fang Wang

    2015-01-01

    Full Text Available Smart geogrids embedded with fiber Bragg grating (FBG for reinforcement as well as measurement of geotechnical structures have been developed. After the fabricating process of the geogrids is detailed, finite element (FE simulations are conducted to analyze the strain distribution of geogrids and the strain transfer characteristics from geogrids to fiber optic. Results indicate that FBG should be deployed in the middle of the geogrids rib to make sure that uniform strain distribution along the FBG. Also, PVC protective sleeves, which are used to protect fiber optic when integrated with geogrids, have smaller strain transfer loss than nylon sleeves. Tensile experiments are conducted to test strain measurement performance of proposed geogrids, and the results demonstrate that proposed smart geogrids have good linearity and consistency. Temperature experiments show that FBG embedded in geogrids has higher temperature sensitivity, and the temperature induced error can be compensated by an extra FBG strain-independent sensor. Furthermore, designed smart geogrids are used in a geotechnical model test to monitor strain during tunnel excavation. The strain tendency measured by smart geogrids and traditional strain sensor agree very well. The results indicate that smart geogrids embedded with FBGs can be an effective method to measure strains for geological engineering related applications.

  14. Testing of Synthetic Biological Membranes for Forward Osmosis Applications

    Science.gov (United States)

    Parodi, Jurek; Mangado, Jaione Romero; Stefanson, Ofir; Flynn, Michael; Mancinelli, Rocco; Kawashima, Brian; Trieu, Serena; Brozell, Adrian; Rosenberg, Kevan

    2016-01-01

    Commercially available forward osmosis membranes have been extensively tested for human space flight wastewater treatment. Despite the improvements achieved in the last decades, there is still a challenge to produce reliable membranes with anti-fouling properties, chemical resistance, and high flux and selectivity. Synthetic biological membranes that mimic the ones present in nature, which underwent millions of years of evolution, represent a potential solution for further development and progress in membrane technology. Biomimetic forward osmosis membranes based on a polymeric support filter and coated with surfactant multilayers have been engineered to investigate how different manufacturing processes impact the performance and structure of the membrane. However, initial results of the first generation prototype membranes tests reveal a high scatter in the data, due to the current testing apparatus set up. The testing apparatus has been upgraded to improve data collection, reduce errors, and to allow higher control of the testing process.

  15. Spectral embedding based active contour (SEAC): application to breast lesion segmentation on DCE-MRI

    Science.gov (United States)

    Agner, Shannon C.; Xu, Jun; Rosen, Mark; Karthigeyan, Sudha; Englander, Sarah; Madabhushi, Anant

    2011-03-01

    Spectral embedding (SE), a graph-based manifold learning method, has previously been shown to be useful in high dimensional data classification. In this work, we present a novel SE based active contour (SEAC) segmentation scheme and demonstrate its applications in lesion segmentation on breast dynamic contrast enhance magnetic resonance imaging (DCE-MRI). In this work, we employ SE on DCE-MRI on a per voxel basis to embed the high dimensional time series intensity vector into a reduced dimensional space, where the reduced embedding space is characterized by the principal eigenvectors. The orthogonal eigenvector-based data representation allows for computation of strong tensor gradients in the spectrally embedded space and also yields improved region statistics that serve as optimal stopping criteria for SEAC. We demonstrate both analytically and empirically that the tensor gradients in the spectrally embedded space are stronger than the corresponding gradients in the original grayscale intensity space. On a total of 50 breast DCE-MRI studies, SEAC yielded a mean absolute difference (MAD) of 3.2+/-2.1 pixels and mean Dice similarity coefficient (DSC) of 0.74+/-0.13 compared to manual ground truth segmentation. An active contour in conjunction with fuzzy c-means (FCM+AC), a commonly used segmentation method for breast DCE-MRI, produced a corresponding MAD of 7.2+/-7.4 pixels and mean DSC of 0.58+/-0.32. In conjunction with a set of 6 quantitative morphological features automatically extracted from the SEAC derived lesion boundary, a support vector machine (SVM) classifier yielded an area under the curve (AUC) of 0.73, for discriminating between 10 benign and 30 malignant lesions; the corresponding SVM classifier with the FCM+AC derived morphological features yielded an AUC of 0.65.

  16. Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications.

    Science.gov (United States)

    Karyotis, Vasileios; Tsitseklis, Konstantinos; Sotiropoulos, Konstantinos; Papavassiliou, Symeon

    2018-04-15

    In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan-Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing.

  17. An Embedded Database Application for the Aggregation of Farming Device Data

    DEFF Research Database (Denmark)

    Iftikhar, Nadeem; Pedersen, Torben Bach

    2010-01-01

    In order to store massive amounts of data produced by the farming devices and to keep data that spans long intervals of time for analysis, reporting and maintenance purposes; it is desirable to reduce the size of the data by maintaining the data at different aggregate levels. The older data can...... be made coarse-grained while keeping the newest data fine-grained. Considering the availability of a limited amount of storage capacity on the farm machinery, an application written in C was developed to collect the data from a CAN-BUS, store it into the embedded database efficiently and perform gradual...

  18. Performance Analysis of a Reconfigurable Shared Memory Multiprocessor System for Embedded Applications

    Directory of Open Access Journals (Sweden)

    Darcy Cook

    2014-11-01

    Full Text Available This paper presents a method to predict performance of multiple processor cores in a reconfigurable system for embedded applications. A multiprocessor framework is developed with the capability of reconfigurable processors in a shared memory system optimized for stream-oriented data and signal processing applications. The framework features a discrete time Markov based stochastic tool, which is used to analyze memory contention in the shared memory architecture, and to predict the performance increase (speed of execution when the number of processors is varied. Performance predictions for variations of other system parameters, such as different task allocations and the number of pipeline stages are possible as well. The results of the prediction tool were verified by experimental results of a green screen application developed and run on a Xilinx Virtex-II Pro FPGA with MicroBlaze soft processors.

  19. New catalysts and new synthetic applications for hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Breit, B. [Albert-Ludwigs-Univ. Freiburg (Germany). Inst. fuer Organische Chemie und Biochemie

    2006-07-01

    In the course of this lecture most recent advances in rhodium catalyzed hydroformylation and its use in organic synthesis are presented. Particular emphasis is given to regioselective hydroformylation of terminal alkenes and its application to fine chemical synthesis as well as latest results and applications of asymmetric hydroformylation. Furthermore, a new concept for simultaneous control of regio- and stereochemistry employing catalyst-directing groups will be discussed in detail. Finally, a new concept for catalyst library generation based on ligand-self-assembly through complementary hydrogen bonding and its application to regioselective hydroformylation as well as asymmetric hydrogenation is presented. (orig.)

  20. Macroporous synthetic hydroxyapatite bioceramics for bone substitute applications

    CSIR Research Space (South Africa)

    Thomas, ME

    1999-08-01

    Full Text Available An improved strategy is described for the manufacture of macroporous hydroxyapatite bioceramics for bone substitute applications. This is based on a modified fugitive phase technique, which allows production of relatively open, high-strength devices...

  1. Constructing a working taxonomy of functional Ada software components for real-time embedded system applications

    Science.gov (United States)

    Wallace, Robert

    1986-01-01

    A major impediment to a systematic attack on Ada software reusability is the lack of an effective taxonomy for software component functions. The scope of all possible applications of Ada software is considered too great to allow the practical development of a working taxonomy. Instead, for the purposes herein, the scope of Ada software application is limited to device and subsystem control in real-time embedded systems. A functional approach is taken in constructing the taxonomy tree for identified Ada domain. The use of modular software functions as a starting point fits well with the object oriented programming philosophy of Ada. Examples of the types of functions represented within the working taxonomy are real time kernels, interrupt service routines, synchronization and message passing, data conversion, digital filtering and signal conditioning, and device control. The constructed taxonomy is proposed as a framework from which a need analysis can be performed to reveal voids in current Ada real-time embedded programming efforts for Space Station.

  2. Thermal performance of a PCB embedded pulsating heat pipe for power electronics applications

    International Nuclear Information System (INIS)

    Kearney, Daniel J.; Suleman, Omar; Griffin, Justin; Mavrakis, Georgios

    2016-01-01

    Highlights: • Planar, compact PCB embedded pulsating heat pipe for heat spreading applications. • Embedded heat pipe operates at sub-ambient pressure with environmentally. • Compatible fluids. • Range of optimum operating conditions, orientations and fill ratios identified. - Abstract: Low voltage power electronics applications (<1.2 kV) are pushing the design envelope towards increased functionality, better reliability, low profile and reduced cost. One packaging method to enable these constraints is the integration of active power electronic devices into the printed circuit board improving electrical and thermal performance. This development requires a reliable passive thermal management solution to mitigate hot spots due to the increased heat flux density. To this end, a 44 channel open looped pulsating heat pipe (OL-PHP) is experimentally investigated for two independent dielectric working fluids – Novec TM 649 and Novec TM 774 – due to their lower pressure operation and low global warming potential compared to traditional two-phase coolants. The OL-PHP is investigated in vertical (90°) orientation with fill ratios ranging from 0.30 to 0.70. The results highlight the steady state operating conditions for each working fluid with instantaneous plots of pressure, temperature, and thermal resistance; the minimum potential bulk thermal resistance for each fill ratio and the effective thermal conductivity achievable for the OL-PHP.

  3. Design and fabrication of an IPMC-embedded tube for minimally invasive surgery applications

    Science.gov (United States)

    Liu, Jiayu; Wang, Yanjie; Zhao, Dongxu; Zhang, Chi; Chen, Hualing; Li, Dichen

    2014-03-01

    Minimally Invasive Surgery (MIS) is receiving much attention for a number of reasons, including less trauma, faster recovery and enhanced precision. The traditional robotic actuators do not have the capabilities required to fulfill the demand for new applications in MIS. Ionic Polymer-Metal Composite (IPMC), one of the most promising smart materials, has extensive desirable characteristics such as low actuation voltage, large bending deformation and high functionality. Compared with traditional actuators, IPMCs can mimic biological muscle and are highly promising for actuation in robotic surgery. In this paper, a new approach which involves molding and integrating IPMC actuators into a soft silicone tube to create an active actuating tube capable of multi-degree-of-freedom motion is presented. First, according to the structure and performance requirements of the actuating tube, the biaxial bending IPMC actuators fabricated by using solution casting method have been implemented. The silicone was cured at a suitable temperature to form a flexible tube using molds fabricated by 3D Printing technology. Then an assembly based fabrication process was used to mold or integrate biaxial bending IPMC actuators into the soft silicone material to create an active control tube. The IPMC-embedded tube can generate multi-degree-of-freedom motions by controlling each IPMC actuator. Furthermore, the basic performance of the actuators was analyzed, including the displacement and the response speed. Experimental results indicate that IPMC-embedded tubes are promising for applications in MIS.

  4. Chemical vapour deposition synthetic diamond: materials, technology and applications

    International Nuclear Information System (INIS)

    Balmer, R S; Brandon, J R; Clewes, S L; Dhillon, H K; Dodson, J M; Friel, I; Inglis, P N; Madgwick, T D; Markham, M L; Mollart, T P; Perkins, N; Scarsbrook, G A; Twitchen, D J; Whitehead, A J; Wilman, J J; Woollard, S M

    2009-01-01

    Substantial developments have been achieved in the synthesis of chemical vapour deposition (CVD) diamond in recent years, providing engineers and designers with access to a large range of new diamond materials. CVD diamond has a number of outstanding material properties that can enable exceptional performance in applications as diverse as medical diagnostics, water treatment, radiation detection, high power electronics, consumer audio, magnetometry and novel lasers. Often the material is synthesized in planar form; however, non-planar geometries are also possible and enable a number of key applications. This paper reviews the material properties and characteristics of single crystal and polycrystalline CVD diamond, and how these can be utilized, focusing particularly on optics, electronics and electrochemistry. It also summarizes how CVD diamond can be tailored for specific applications, on the basis of the ability to synthesize a consistent and engineered high performance product.

  5. Multi-board kernel communication using socket programming for embedded applications

    Science.gov (United States)

    Mishra, Ashish; Girdhar, Neha; Krishnia, Nikita

    2016-03-01

    It is often seen in large application projects, there is a need to communicate between two different processors or two different kernels. The aim of this paper is to communicate between two different kernels and use efficient method to do so. The TCP/IP protocol is implemented to communicate between two boards via the Ethernet port and use lwIP (lightweight IP) stack, which is a smaller independent implementation of the TCP/IP stack suitable for use in embedded systems. While retaining TCP/IP functionality, lwIP stack reduces the use of memory and even size of the code. In this process of communication we made Raspberry pi as an active client and Field programmable gate array(FPGA) board as a passive server and they are allowed to communicate via Ethernet. Three applications based on TCP/IP client-server network communication have been implemented. The Echo server application is used to communicate between two different kernels of two different boards. Socket programming is used as it is independent of platform and programming language used. TCP transmit and receive throughput test applications are used to measure maximum throughput of the transmission of data. These applications are based on communication to an open source tool called iperf. It is used to measure the throughput transmission rate by sending or receiving some constant piece of data to the client or server according to the test application.

  6. An Actuator Control Unit for Safety-Critical Mechatronic Applications with Embedded Energy Storage Backup

    Directory of Open Access Journals (Sweden)

    Sergio Saponara

    2016-03-01

    Full Text Available This paper presents an actuator control unit (ACU with a 450-J embedded energy storage backup to face safety critical mechatronic applications. The idea is to ensure full operation of electric actuators, even in the case of battery failure, by using supercapacitors as a local energy tank. Thanks to integrated switching converter circuitry, the supercapacitors provide the required voltage and current levels for the required time to guarantee actuator operation until the system enters into safety mode. Experimental results are presented for a target application related to the control of servomotors for a robotized prosthetic arm. Mechatronic devices for rehabilitation or assisted living of injured and/or elderly people are available today. In most cases, they are battery powered with lithium-based cells, providing high energy density and low weight, but at the expense of a reduced robustness compared to lead-acid- or nickel-based battery cells. The ACU of this work ensures full operation of the wearable robotized arm, controlled through acceleration and electromyography (EMG sensor signals, even in the case of battery failure, thanks to the embedded energy backup unit. To prove the configurability and scalability of the proposed solution, experimental results related to the electric actuation of the car door latch and of a robotized gearbox in vehicles are also shown. The reliability of the energy backup device has been assessed in a wide temperature range, from −40 to 130 °C, and in a durability test campaign of more than 10,000 cycles. Achieved results prove the suitability of the proposed approach for ACUs requiring a burst of power of hundreds of watts for only a few seconds in safety-critical applications. Alternatively, the aging and temperature characterizations of energy backup units is limited to supercapacitors of thousands of farads for high power applications (e.g., electric/hybrid propulsion and with a temperature range limited to

  7. Highly tunable perpendicularly magnetized synthetic antiferromagnets for biotechnology applications

    OpenAIRE

    Vemulkar, T; Mansell, Rhodri; Petit, Dorothee Celine; Cowburn, Russell Paul; Lesniak, MS

    2015-01-01

    Magnetic micro and nanoparticles are increasingly used in biotechnological applications due to the ability to control their behavior through an externally applied field. We demonstrate the fabrication of particles made from ultrathin perpendicularly magnetized CoFeB/Pt layers with antiferromagnetic interlayer coupling. The particles are characterized by zero moment at remanence, low susceptibility at low fields, and a large saturated moment created by the stacking of the basic coupled bilayer...

  8. ANTIMICROBIAL REAGENTS AS FUNCTIONAL FINISHING FOR TEXTILES INTENDED FOR BIOMEDICAL APPLICATIONS. I. SYNTHETIC ORGANIC COMPOUNDS

    Directory of Open Access Journals (Sweden)

    Madalina Zanoaga

    2014-06-01

    Full Text Available This article offers an overview of some contemporary antimicrobial (biocides and biostatics agents used as functional finishing for textiles intended for biomedical applications. It reviews only synthetic agents, namely quaternary ammonium compounds, halogenated phenols, polybiguanides, N-halamines, and renewable peroxides, as a part of an extensive study currently in progress.

  9. Lanthanide-Based Metal Organic Frameworks: Synthetic Strategies and Catalytic Applications

    NARCIS (Netherlands)

    Pagis, C.; Ferbinteanu, M.; Rothenberg, G.; Grecea, S.

    2016-01-01

    This short critical review outlines the main synthetic strategies used in the designed synthesis of lanthanide-based metal organic frameworks (Ln-MOFs). It explains the impact of the choice of organic linker on the final network topology, and it highlights the applications of Ln-MOFs in the

  10. A 4-kbit low-cost antifuse one-time programmable memory macro for embedded applications

    International Nuclear Information System (INIS)

    Li Xian; Zhong Huicai; Jia Cheng; Li Xin

    2014-01-01

    A 4-kbit low-cost one-time programmable (OTP) memory macro for embedded applications is designed and implemented in a 0.18-μm standard CMOS process. The area of the proposed 1.5 transistor (1.5T) OTP cell is 2.13 μm 2 , which is a 49.3% size reduction compared to the previously reported cells. The 1.5T cell is fabricated and measured and shows a large programming window without any disturbance. A novel high voltage switch (HVSW) circuit is also proposed to make sure the OTP macro, implemented in a standard CMOS process, works reliably with the high program voltage. The OTP macro is embedded in negative radio frequency identification (RFID) tags. The full chip size, including the analog front-end, digital controller and the 4-kbit OTP macro, is 600 × 600 μm 2 . The 4-kbit OTP macro only consumes 200 × 260 μm 2 . The measurement shows a 100% program yield by adjusting the program time and has obvious advantages in the core area and power consumption compared to the reported 3T and 2T OTP cores. (semiconductor integrated circuits)

  11. The research and application of multi-biometric acquisition embedded system

    Science.gov (United States)

    Deng, Shichao; Liu, Tiegen; Guo, Jingjing; Li, Xiuyan

    2009-11-01

    The identification technology based on multi-biometric can greatly improve the applicability, reliability and antifalsification. This paper presents a multi-biometric system bases on embedded system, which includes: three capture daughter boards are applied to obtain different biometric: one each for fingerprint, iris and vein of the back of hand; FPGA (Field Programmable Gate Array) is designed as coprocessor, which uses to configure three daughter boards on request and provides data path between DSP (digital signal processor) and daughter boards; DSP is the master processor and its functions include: control the biometric information acquisition, extracts feature as required and responsible for compare the results with the local database or data server through network communication. The advantages of this system were it can acquire three different biometric in real time, extracts complexity feature flexibly in different biometrics' raw data according to different purposes and arithmetic and network interface on the core-board will be the solution of big data scale. Because this embedded system has high stability, reliability, flexibility and fit for different data scale, it can satisfy the demand of multi-biometric recognition.

  12. Including shielding effects in application of the TPCA method for detection of embedded radiation sources.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, William C.; Shokair, Isaac R.

    2011-12-01

    Conventional full spectrum gamma spectroscopic analysis has the objective of quantitative identification of all the radionuclides present in a measurement. For low-energy resolution detectors such as NaI, when photopeaks alone are not sufficient for complete isotopic identification, such analysis requires template spectra for all the radionuclides present in the measurement. When many radionuclides are present it is difficult to make the correct identification and this process often requires many attempts to obtain a statistically valid solution by highly skilled spectroscopists. A previous report investigated using the targeted principal component analysis method (TPCA) for detection of embedded sources for RPM applications. This method uses spatial/temporal information from multiple spectral measurements to test the hypothesis of the presence of a target spectrum of interest in these measurements without the need to identify all the other radionuclides present. The previous analysis showed that the TPCA method has significant potential for automated detection of target radionuclides of interest, but did not include the effects of shielding. This report complements the previous analysis by including the effects of spectral distortion due to shielding effects for the same problem of detection of embedded sources. Two examples, one with one target radionuclide and the other with two, show that the TPCA method can successfully detect shielded targets in the presence of many other radionuclides. The shielding parameters are determined as part of the optimization process using interpolation of library spectra that are defined on a 2D grid of atomic numbers and areal densities.

  13. OPERATIONAL PERFORMANCES DEMONSTRATION OF POLYMER-CERAMIC EMBEDDED CAPACITORS FOR MMIC APPLICATIONS

    OpenAIRE

    Bord-Majek, Isabelle; Kertesz, Philippe; Mazeau, Julie; Caban-Chastas, Daniel; Levrier, Bruno; Bechou, Laurent; Ousten, Yves

    2011-01-01

    International audience; Embedded passives are becoming increasingly important for the manufacture of highly integrated electronic boards and packages. The need for embedded passives emerges from the growing consumer demand for product miniaturization thus requiring smaller components and space efficient packaging. This can be realized by replacing discrete components that demands a higher volume than embedded passives. Embedded passives have already been investigated in the last few years. Ho...

  14. Design and visualization of synthetic holograms for security applications

    International Nuclear Information System (INIS)

    Škeren, M; Nývlt, M; Svoboda, J

    2013-01-01

    In this paper we present a software for the design and visualization of holographic elements containing full scale of visual effects. It enables to simulate an observation of the holographic elements under general conditions including different light sources with various spectral and coherence properties and various geometries of reconstruction. Furthermore, recent technologies offer interesting possibilities for the 3D visualization such as the 3D techniques based on shutter or polarization glasses, anaglyphs, etc. The presented software is compatible with the mentioned techniques and enables an application of the 3D hardware tools for visualization. The software package can be used not only for visualization of the existing designs, but also for a fine tuning of the spatial, kinetic, and color properties of the hologram. Moreover, the holograms containing all types of the 3D effects, general color mixing, kinetic behavior, diffractive cryptograms, etc. can be translated using the software directly to a high resolution micro-structure.

  15. Microparticles based on natural and synthetic polymers for ophthalmic applications.

    Science.gov (United States)

    Tataru, G; Popa, M; Costin, D; Desbrieres, J

    2012-05-01

    Sodium salt of carboxymethylcellulose/poly(vinyl alcohol) particles suitable for application in ocular drug administration were prepared by crosslinking with epichlorohydrin in an alkaline medium, in reverse emulsion. The influence of parameters related with the particles elaboration process (ratio between polymer mixture and crosslinking agent, concentration of polymer solution, duration of crosslinking reaction, stirring intensity, etc.) based on their composition, size, and swelling ability was studied. Obtained microparticles fulfill the requirements for biomaterials-they are formed from biocompatible polymers; the acute toxicity value (LD(50)) is high enough to consider these materials as weakly toxic (hence able to introduce within the organism); they are able to include and release drugs in a controlled way. The in vivo adrenalin ocular delivery from the microparticles was tested on voluntary human patient. The particles showed good adhesion properties without irritation to the patient and proved the capability to treat the ocular congestion. Copyright © 2012 Wiley Periodicals, Inc.

  16. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications.

    Science.gov (United States)

    Kang, Zhen; Huang, Hao; Zhang, Yunfeng; Du, Guocheng; Chen, Jian

    2017-01-01

    Pichia pastoris: (reclassified as Komagataella phaffii), a methylotrophic yeast strain has been widely used for heterologous protein production because of its unique advantages, such as readily achievable high-density fermentation, tractable genetic modifications and typical eukaryotic post-translational modifications. More recently, P. pastoris as a metabolic pathway engineering platform has also gained much attention. In this mini-review, we addressed recent advances of molecular toolboxes, including synthetic promoters, signal peptides, and genome engineering tools that established for P. pastoris. Furthermore, the applications of P. pastoris towards synthetic biology were also discussed and prospected especially in the context of genome-scale metabolic pathway analysis.

  17. Escher: A Web Application for Building, Sharing, and Embedding Data-Rich Visualizations of Biological Pathways

    DEFF Research Database (Denmark)

    King, Zachary A.; Draeger, Andreas; Ebrahim, Ali

    2015-01-01

    Escher is a web application for visualizing data on biological pathways. Three key features make Escher a uniquely effective tool for pathway visualization. First, users can rapidly design new pathway maps. Escher provides pathway suggestions based on user data and genome-scale models, so users can......IP)-in conjunction with metabolite-and reaction-oriented data types (e.g. metabolomics, fluxomics). Third, Escher harnesses the strengths of web technologies (SVG, D3, developer tools) so that visualizations can be rapidly adapted, extended, shared, and embedded. This paper provides examples of each...... of these features and explains how the development approach used for Escher can be used to guide the development of future visualization tools....

  18. System-Platforms-Based SystemC TLM Design of Image Processing Chains for Embedded Applications

    Directory of Open Access Journals (Sweden)

    Lacassagne Lionel

    2007-01-01

    Full Text Available Intelligent vehicle design is a complex task which requires multidomains modeling and abstraction. Transaction-level modeling (TLM and component-based software development approaches accelerate the process of an embedded system design and simulation and hence improve the overall productivity. On the other hand, system-level design languages facilitate the fast hardware synthesis at behavioral level of abstraction. In this paper, we introduce an approach for hardware/software codesign of image processing applications targeted towards intelligent vehicle that uses platform-based SystemC TLM and component-based software design approaches along with HW synthesis using SystemC to accelerate system design and verification process. Our experiments show the effectiveness of our methodology.

  19. System-Platforms-Based SystemC TLM Design of Image Processing Chains for Embedded Applications

    Directory of Open Access Journals (Sweden)

    Omar Hammami

    2007-08-01

    Full Text Available Intelligent vehicle design is a complex task which requires multidomains modeling and abstraction. Transaction-level modeling (TLM and component-based software development approaches accelerate the process of an embedded system design and simulation and hence improve the overall productivity. On the other hand, system-level design languages facilitate the fast hardware synthesis at behavioral level of abstraction. In this paper, we introduce an approach for hardware/software codesign of image processing applications targeted towards intelligent vehicle that uses platform-based SystemC TLM and component-based software design approaches along with HW synthesis using SystemC to accelerate system design and verification process. Our experiments show the effectiveness of our methodology.

  20. Development of graphene nanoplatelet embedded polymer microcantilever for vapour phase explosive detection applications

    International Nuclear Information System (INIS)

    Ray, Prasenjit; Pandey, Swapnil; Ramgopal Rao, V.

    2014-01-01

    In this work, a graphene based strain sensor has been reported for explosive vapour detection applications by exploiting the piezoresistive property of graphene. Instead of silicon based cantilevers, a low cost polymeric micro-cantilever platform has been used to fabricate this strain sensor by embedding the graphene nanoplatelet layer inside the beam. The fabricated devices were characterized for their mechanical and electromechanical behaviour. This device shows a very high gauge factor which is around ∼144. Also the resonant frequency of these cantilevers is high enough such that the measurements are not affected by environmental noise. These devices have been used in this work for reliable detection of explosive vapours such as 2,4,6-Trinitrotoluene down to parts-per-billion concentrations in ambient conditions.

  1. Generation and analyses of human synthetic antibody libraries and their application for protein microarrays

    DEFF Research Database (Denmark)

    Säll, Anna; Walle, Maria; Wingren, Christer

    2016-01-01

    in a high-throughput manner. To address this we designed and constructed two human synthetic antibody fragment (scFv) libraries denoted HelL-11 and HelL-13. By the use of phage display technology, in total 466 unique scFv antibodies specific for 114 different antigens were generated. The specificities...... of these antibodies were analyzed in a variety of immunochemical assays and a subset was further evaluated for functionality in protein microarray applications. This high-throughput approach demonstrates the ability to rapidly generate a wealth of reagents not only for proteome research, but potentially also...... for diagnostics and therapeutics. In addition, this work provides a great example on how a synthetic approach can be used to optimize library designs. By having precise control of the diversity introduced into the antigen-binding sites, synthetic libraries offer increased understanding of how different diversity...

  2. Internet-based hardware/software co-design framework for embedded 3D graphics applications

    Directory of Open Access Journals (Sweden)

    Wong Weng-Fai

    2011-01-01

    Full Text Available Abstract Advances in technology are making it possible to run three-dimensional (3D graphics applications on embedded and handheld devices. In this article, we propose a hardware/software co-design environment for 3D graphics application development that includes the 3D graphics software, OpenGL ES application programming interface (API, device driver, and 3D graphics hardware simulators. We developed a 3D graphics system-on-a-chip (SoC accelerator using transaction-level modeling (TLM. This gives software designers early access to the hardware even before it is ready. On the other hand, hardware designers also stand to gain from the more complex test benches made available in the software for verification. A unique aspect of our framework is that it allows hardware and software designers from geographically dispersed areas to cooperate and work on the same framework. Designs can be entered and executed from anywhere in the world without full access to the entire framework, which may include proprietary components. This results in controlled and secure transparency and reproducibility, granting leveled access to users of various roles.

  3. Smart device definition and application on embedded system: performance and optimi-zation on a RGBD sensor

    Directory of Open Access Journals (Sweden)

    Jose-Luis JIMÉNEZ-GARCÍA

    2014-10-01

    Full Text Available Embedded control systems usually are characterized by its limitations in terms of computational power and memory. Although this systems must deal with perpection and actuation signal adaptation and calculate control actions ensuring its reliability and providing a certain degree of fault tolerance. The allocation of these tasks between some different embedded nodes conforming a distributed control system allows to solve many of these issues. For that reason is proposed the application of smart devices aims to perform the data processing tasks related with the perception and actuation and offer a simple interface to be configured by other nodes in order to share processed information and raise QoS based alarms. In this work is introduced the procedure of implementing a smart device as a sensor as an embedded node in a distributed control system. In order to analyze its benefits an application based on a RGBD sensor implemented as an smart device is proposed.

  4. Research on applications of ARM-LINUX embedded systems in manufacturing the nuclear equipment

    International Nuclear Information System (INIS)

    Nguyen Van Sy; Phan Luong Tuan; Nguyen Xuan Vinh; Dang Quang Bao

    2016-01-01

    A new microprocessor system that is ARM processor with open source Linux operating system is studied with the objective to apply ARM-Linux embedded systems in manufacturing the nuclear equipment. We use the development board of the company to learn and to build the workflow for an embedded system, then basing on the knowledge we design a motherboard embedded systems interface with the peripherals is buttons, LEDs through GPIO interface and connected with GM counting system via RS232 interface. The results of this study are: i) The procedures for working with embedded systems: process customization, installation embedded operating system and installation process, configure the development tools on the host computer; ii) ARM-Linux motherboard embedded systems interface with the peripherals and GM counting system, indicating the counts from GM counting system on the touch screen. (author)

  5. Voice-to-Phoneme Conversion Algorithms for Voice-Tag Applications in Embedded Platforms

    Directory of Open Access Journals (Sweden)

    Yan Ming Cheng

    2008-08-01

    Full Text Available We describe two voice-to-phoneme conversion algorithms for speaker-independent voice-tag creation specifically targeted at applications on embedded platforms. These algorithms (batch mode and sequential are compared in speech recognition experiments where they are first applied in a same-language context in which both acoustic model training and voice-tag creation and application are performed on the same language. Then, their performance is tested in a cross-language setting where the acoustic models are trained on a particular source language while the voice-tags are created and applied on a different target language. In the same-language environment, both algorithms either perform comparably to or significantly better than the baseline where utterances are manually transcribed by a phonetician. In the cross-language context, the voice-tag performances vary depending on the source-target language pair, with the variation reflecting predicted phonological similarity between the source and target languages. Among the most similar languages, performance nears that of the native-trained models and surpasses the native reference baseline.

  6. Application of embedded database to digital power supply system in HIRFL

    International Nuclear Information System (INIS)

    Wu Guanghua; Yan Huaihai; Chen Youxin; Huang Yuzhen; Zhou Zhongzu; Gao Daqing

    2014-01-01

    Background: This paper introduces the application of embedded MySQL database in the real-time monitoring system of the digital power supply system in Heavy Ion Research Facility in Lanzhou (HIRFL). Purpose: The aim is to optimize the real-time monitoring system of the digital power supply system for better performance. Methods: The MySQL database is designed and implemented under Linux operation system running on ARM processor, together with the related functions for real-time data monitoring, such as collection, storage and query. All status parameters of digital power supply system is collected and communicated with ARM by a FPGA, whilst the user interface is realized by Qt toolkits at ARM end. Results: The actual operation indicates that digital power supply can realize the function of real-time data monitoring, collection, storage and so on. Conclusion: Through practical application, we have found some aspects we can improve and we will try to optimize them in the future. (authors)

  7. Biomedical applications of synthetic, biodegradable polymers for the development of anti-infective strategies.

    Science.gov (United States)

    Bertesteanu, Serban; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Printza, Atnanasia G; Marie-Paule, Thill; Grumezescu, Valentina; Mihaela, Vlad; Lazar, Veronica; Grigore, Raluca

    2014-01-01

    The emergence of antibiotic resistance in microbial strains is representing one of the major threats to public health worldwide, due to the decreased or total cancelling of the available antibiotics effectiveness, correlated with the slow development of novel antibiotics. Due to their excellent biodegradability and biocompatibility, the synthetic polymers could find a lot of biomedical applications, such as the development of biomaterials with optimized properties and of drug delivery systems. This review is focusing on the applications of synthetic, biodegradable polymers for the improvement of antiinfective therapeutic and prophylactic agents (i.e., antimicrobial and anti-inflammatory agents and vaccines) activity, as well as for the design of biomaterials with increased biocompatibility and resistance to microbial colonization.

  8. Application of the 'GammaGen' Computer Code for NORM Synthetic Spectra Analysis

    International Nuclear Information System (INIS)

    Sarusi, B.; Levinson, S.; German, U.; Antropov, S.; Kovler, K.

    2014-01-01

    'GammaGen' (GG) is a computer software developed to simulate gamma ray spectra obtained from NaI(Tl) or Ge detectors. The detector efficiency, resolution and peak to Compton ratios are used to generate synthetic pulse height spectra for specific detector and geometrical configurations. GG was used in the past for several applications, as to predict the detector response to different radio-nuclides mixtures, to predict the pulse height spectra near a nuclear spent fuel site as a function of the shielding thickness and cooling time and for homeland security purposes. An updated version of the GG program was developed, and the application presented in the present work consists of building a library and simulating the detection and analysis of synthetic spectra to check the performance of a commercial spectrometry system based on a NaI(Tl) detector intended for NORM analysis, which was developed by Amplituda/Russia

  9. Application of fuzzy synthetic assessment to assess human factors design level on reactor control panel

    International Nuclear Information System (INIS)

    Peng Xuecheng

    1999-01-01

    Reactor control panel design level on human factors must be considered by designer. The author evaluated the human factor design level of arrangement and combinations including the switch buttons, meter dials and indication lamps on Minjiang Reactor and High-Flux Engineer Test Reactor (HFETR) critical device by application of fuzzy synthetic assessment method in mathematics. From the assessment results, the advantages and shortcomings are fount, and some modification suggestions have also been proposed

  10. Frontiers in biomaterials the design, synthetic strategies and biocompatibility of polymer scaffolds for biomedical application

    CERN Document Server

    Cao, Shunsheng

    2014-01-01

    Frontiers in Biomaterials: The Design, Synthetic Strategies and Biocompatibility of Polymer Scaffolds for Biomedical Application, Volume 1" highlights the importance of biomaterials and their interaction with biological system. The need for the development of biomaterials as scaffold for tissue regeneration is driven by the increasing demands for materials that mimic functions of extracellular matrices of body tissues.This ebook covers the latest challenges on the biocompatibility of scaffold overtime after implantation and discusses the requirement of innovative technologies and strategies f

  11. Application of Synthetic Mineral Alloys as Materials for Bulletproof Vests and Products for Different Objects Protection

    Directory of Open Access Journals (Sweden)

    Anna Ignatova.

    2015-11-01

    Full Text Available Authors study ballistic properties of the material which has never been used for impact protection and the presented results prove that synthetic mineral alloys belong to the field of bulletproof ballistic protection and particularly to the means of objects’ protection from kinetic threats. Although the material has been described in connection with such specific embodiments as SVD and a cumulative jet, it is evident that many alternatives and modifications of their application for various protective articles are possible.

  12. Performance-improved nonvolatile memory with aluminum nanocrystals embedded in Al2O3 for high temperature applications

    Science.gov (United States)

    Xu, Zhongguang; Huo, Zongliang; Zhu, Chenxin; Cui, Yanxiang; Wang, Ming; Zheng, Zhiwei; Liu, Jing; Wang, Yumei; Li, Fanghua; Liu, Ming

    2011-11-01

    In this paper, we demonstrate a charge trapping memory with aluminum nanocrystals (Al- NCs) embedded in Al2O3 high-k dielectric. Compared to metal/Al2O3/SiO2/Si structure, this device exhibits a larger memory window (6.7 V at ±12 V), faster program/erase speed and good endurance. In particular, data retention is improved greatly both at room temperature and in high-temperature (up to 150 °C). The results indicate that the device with the embedding Al-NCs in Al2O3 film has a strong potential for future high-performance nonvolatile memory application.

  13. Tunable bandpass filter based on partially magnetized ferrite LTCC with embedded windings for SoP applications

    KAUST Repository

    Arabi, Eyad A.

    2015-01-01

    Tunable filters that are based on ferrite materials often require large and bulky electromagnets. In this work, we present a tunable filter in the Ku-band, which is realized in multilayer ferrite LTCC substrate with embedded bias windings, thus negating the need of a large electromagnet. Also, because of the embedded windings, the bias fields are not lost at the air-substrate interface and therefore the field and current requirements are reduced by an order of magnitude as compared to the previously reported filters. A simulation strategy that uses full permeability tensor with arbitrarily directed magnetic fields has been used to model the filter on a partially magnetized ferrite substrate. Special attention has also been paid to approximate the non-uniform magneto-static fields produced by the embedded windings. The complete design is implemented in 10 layers of ferrite LTCC, making it the first magnetically tunable filter with embedded windings and extremely small size [(5 × 5 × 1.1)mm3]. The filter demonstrates a measured tunability of 4% and an insertion loss of 2.3 dB. With the small form factor, embedded windings, and low bias requirements, the design is highly suitable for compact and tunable SoP applications.

  14. Discussion on Application of Polarimetric Synthetic Aperture Radar in Marine Surveillance

    Directory of Open Access Journals (Sweden)

    Zhang Jie

    2016-12-01

    Full Text Available Synthetic Aperture Radar (SAR, an important earth observation sensor, has been used in a wide range of applications for land and marine surveillance. Polarimetric SAR (PolSAR can obtain abundant scattering information of a target to improve the ability of target detection, classification, and quantitative inversion. In this paper, the important role of PolSAR in ocean monitoring is discussed with factors such as sea ice, ships, oil spill, waves, internal waves, and seabed topography. Moreover, the future development direction of PolSAR is put forward to get an inspiration for further research of PolSAR in marine surveillance applications.

  15. Large scale fabrication of nitrogen vacancy-embedded diamond nanostructures for single-photon source applications

    Science.gov (United States)

    Jiang, Qianqing; Li, Wuxia; Tang, Chengchun; Chang, Yanchun; Hao, Tingting; Pan, Xinyu; Ye, Haitao; Li, Junjie; Gu, Changzhi

    2016-11-01

    Some color centers in diamond can serve as quantum bits which can be manipulated with microwave pulses and read out with laser, even at room temperature. However, the photon collection efficiency of bulk diamond is greatly reduced by refraction at the diamond/air interface. To address this issue, we fabricated arrays of diamond nanostructures, differing in both diameter and top end shape, with HSQ and Cr as the etching mask materials, aiming toward large scale fabrication of single-photon sources with enhanced collection efficiency made of nitrogen vacancy (NV) embedded diamond. With a mixture of O2 and CHF3 gas plasma, diamond pillars with diameters down to 45 nm were obtained. The top end shape evolution has been represented with a simple model. The tests of size dependent single-photon properties confirmed an improved single-photon collection efficiency enhancement, larger than tenfold, and a mild decrease of decoherence time with decreasing pillar diameter was observed as expected. These results provide useful information for future applications of nanostructured diamond as a single-photon source. Project supported by the National Key Research and Development Plan of China (Grant No. 2016YFA0200402), the National Natural Science Foundation of China (Grants Nos. 11574369, 11574368, 91323304, 11174362, and 51272278), and the FP7 Marie Curie Action (project No. 295208) sponsored by the European Commission.

  16. OpenVX-based Python Framework for real-time cross platform acceleration of embedded computer vision applications

    Directory of Open Access Journals (Sweden)

    Ori Heimlich

    2016-11-01

    Full Text Available Embedded real-time vision applications are being rapidly deployed in a large realm of consumer electronics, ranging from automotive safety to surveillance systems. However, the relatively limited computational power of embedded platforms is considered as a bottleneck for many vision applications, necessitating optimization. OpenVX is a standardized interface, released in late 2014, in an attempt to provide both system and kernel level optimization to vision applications. With OpenVX, Vision processing are modeled with coarse-grained data flow graphs, which can be optimized and accelerated by the platform implementer. Current full implementations of OpenVX are given in the programming language C, which does not support advanced programming paradigms such as object-oriented, imperative and functional programming, nor does it have runtime or type-checking. Here we present a python-based full Implementation of OpenVX, which eliminates much of the discrepancies between the object-oriented paradigm used by many modern applications and the native C implementations. Our open-source implementation can be used for rapid development of OpenVX applications in embedded platforms. Demonstration includes static and real-time image acquisition and processing using a Raspberry Pi and a GoPro camera. Code is given as supplementary information. Code project and linked deployable virtual machine are located on GitHub: https://github.com/NBEL-lab/PythonOpenVX.

  17. EnviroAtlas - Synthetic N fertilizer application to agricultural lands by 12-digit HUC in the Conterminous United States, 2006

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset contains data on the mean synthetic nitrogen (N) fertilizer application to cultivated crop and hay/pasture lands per 12-digit Hydrologic...

  18. Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking.

    Science.gov (United States)

    Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen

    2017-01-01

    An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.

  19. Blueprints for green biotech: development and application of standards for plant synthetic biology.

    Science.gov (United States)

    Patron, Nicola J

    2016-06-15

    Synthetic biology aims to apply engineering principles to the design and modification of biological systems and to the construction of biological parts and devices. The ability to programme cells by providing new instructions written in DNA is a foundational technology of the field. Large-scale de novo DNA synthesis has accelerated synthetic biology by offering custom-made molecules at ever decreasing costs. However, for large fragments and for experiments in which libraries of DNA sequences are assembled in different combinations, assembly in the laboratory is still desirable. Biological assembly standards allow DNA parts, even those from multiple laboratories and experiments, to be assembled together using the same reagents and protocols. The adoption of such standards for plant synthetic biology has been cohesive for the plant science community, facilitating the application of genome editing technologies to plant systems and streamlining progress in large-scale, multi-laboratory bioengineering projects. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  20. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Mingji; Borodina, Irina

    2015-02-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof-of-concept chemicals have been made in yeast, only a very small fraction of those has reached commercial-scale production so far. The limiting factor is the high research cost associated with the development of a robust cell factory that can produce the desired chemical at high titer, rate, and yield. Synthetic biology has the potential to bring down this cost by improving our ability to predictably engineer biological systems. This review highlights synthetic biology applications for design, assembly, and optimization of non-native biochemical pathways in baker's yeast Saccharomyces cerevisiae We describe computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  1. Invention and Application of Synthetic Experiment System of Machine Equipment Fault Diagnosis

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available All kinds of faults were engendered during machine equipment working process. Diagnosing them accurately has important significance in actual production. The invention and manufacturing of the synthetic experiment system of machine equipment fault diagnosis filled in the blank of this kind of experiment equipment in China and obtained national practical new type patent. By the motor speed regulation system, machine equipment fault imitation system, measuring and monitoring system and analysis and diagnosis system of the synthetic experiment system, students can regulate motor speed arbitrarily, imitate multi-kinds of machine equipment parts fault, collect the signals of acceleration, speed, displacement, force and temperature and make multi-kinds of time field, frequency field and figure analysis. The application of the synthetic experiment system in our university’s teaching practice has obtained good effect on fostering professional eligibility in measuring, monitoring and fault diagnosis of machine equipment. If the systematic software was installed in portable computer, user can fulfill measuring, monitoring, signal processing and fault diagnosis on multi- kinds of field machine equipment conveniently. In this paper, the three dimensions waterfall spectrum matrix analysis was made on two compact mesh gears. Energy attenuation analysis was made on vibration signal. Wavelet analysis was made on bearing fault.

  2. A novel 2 T P-channel nano-crystal memory for low power/high speed embedded NVM applications

    International Nuclear Information System (INIS)

    Zhang Junyu; Wang Yong; Liu Jing; Zhang Manhong; Xu Zhongguang; Huo Zongliang; Liu Ming

    2012-01-01

    We introduce a novel 2 T P-channel nano-crystal memory structure for low power and high speed embedded non-volatile memory (NVM) applications. By using the band-to-band tunneling-induced hot-electron (BTBTIHE) injection scheme, both high-speed and low power programming can be achieved at the same time. Due to the use of a select transistor, the 'erased states' can be set to below 0 V, so that the periphery HV circuit (high-voltage generating and management) and read-out circuit can be simplified. Good memory cell performance has also been achieved, including a fast program/erase (P/E) speed (a 1.15 V memory window under 10 μs program pulse), an excellent data retention (only 20% charge loss for 10 years). The data shows that the device has strong potential for future embedded NVM applications. (semiconductor devices)

  3. Chemoselective Deprotection of Sulfonamides Under Acidic Conditions: Scope, Sulfonyl Group Migration, and Synthetic Applications.

    Science.gov (United States)

    Javorskis, Tomas; Orentas, Edvinas

    2017-12-15

    Chemoselective acidic hydrolysis of sulfonamides with trifluoromethanesulfonic acid has been evaluated as a deprotection method and further extended to more complex synthetic applications. In contrast to conventional troublesome sulfonamide hydrolysis, a near-stoichiometric amount of acid was found to be sufficient to bring about efficient deprotection of various neutral or electron-deficient N-arylsulfonamides, whereas electron-rich substrates provided sulfonyl group migration products. The deprotection method developed is fully selective for N-arylsulfonamides, and the possibility to discriminate among various different sulfonamides is demonstrated.

  4. Fluorinated compounds in medicinal chemistry: recent applications, synthetic advances and matched-pair analyses.

    Science.gov (United States)

    Barnes-Seeman, David; Beck, Jeremy; Springer, Clayton

    2014-01-01

    In recent years, several new fluorinated functional groups have been employed in medicinal chemistry. This review will highlight some recent developments in this area. We draw attention to useful synthetic advances for the installation of fluorine-containing groups. In addition, we examine the application of some fluorinated functional groups that have recently been gaining popularity in drug discovery. We use matched-pair analysis to assemble aggregate data on the impact on potency of one of these groups, pentafluorosulfanyl, as compared to trifluoromethyl. We further used matchedpair analysis to identify some interesting effects on in vitro ADME properties of replacing H by F on certain moieties.

  5. Embedded Leverage

    DEFF Research Database (Denmark)

    Frazzini, Andrea; Heje Pedersen, Lasse

    find that asset classes with embedded leverage offer low risk-adjusted returns and, in the cross-section, higher embedded leverage is associated with lower returns. A portfolio which is long low-embedded-leverage securities and short high-embedded-leverage securities earns large abnormal returns...

  6. Development of peptide-functionalized synthetic hydrogel microarrays for stem cell and tissue engineering applications.

    Science.gov (United States)

    Jia, Jia; Coyle, Robert C; Richards, Dylan J; Berry, Christopher Lloyd; Barrs, Ryan Walker; Biggs, Joshua; James Chou, C; Trusk, Thomas C; Mei, Ying

    2016-11-01

    Synthetic polymer microarray technology holds remarkable promise to rapidly identify suitable biomaterials for stem cell and tissue engineering applications. However, most of previous microarrayed synthetic polymers do not possess biological ligands (e.g., peptides) to directly engage cell surface receptors. Here, we report the development of peptide-functionalized hydrogel microarrays based on light-assisted copolymerization of poly(ethylene glycol) diacrylates (PEGDA) and methacrylated-peptides. Using solid-phase peptide/organic synthesis, we developed an efficient route to synthesize methacrylated-peptides. In parallel, we identified PEG hydrogels that effectively inhibit non-specific cell adhesion by using PEGDA-700 (M. W.=700) as a monomer. The combined use of these chemistries enables the development of a powerful platform to prepare peptide-functionalized PEG hydrogel microarrays. Additionally, we identified a linker composed of 4 glycines to ensure sufficient exposure of the peptide moieties from hydrogel surfaces. Further, we used this system to directly compare cell adhesion abilities of several related RGD peptides: RGD, RGDS, RGDSG and RGDSP. Finally, we combined the peptide-functionalized hydrogel technology with bioinformatics to construct a library composed of 12 different RGD peptides, including 6 unexplored RGD peptides, to develop culture substrates for hiPSC-derived cardiomyocytes (hiPSC-CMs), a cell type known for poor adhesion to synthetic substrates. 2 out of 6 unexplored RGD peptides showed substantial activities to support hiPSC-CMs. Among them, PMQKMRGDVFSP from laminin β4 subunit was found to support the highest adhesion and sarcomere formation of hiPSC-CMs. With bioinformatics, the peptide-functionalized hydrogel microarrays accelerate the discovery of novel biological ligands to develop biomaterials for stem cell and tissue engineering applications. In this manuscript, we described the development of a robust approach to prepare peptide

  7. Nuclear magnetic resonance technology in acupoint catgut embedding therapy for the treatment of menopausal panic disorder: its applications

    Science.gov (United States)

    Chen, Gui-zhen; Zhang, Sha-sha; Xu, Yun-xiang; Wang, Xiao-yun

    2012-03-01

    Nuclear Magnetic Resonance (NMR) is a diagnostic method which is non-invasive and non-ionizing irradiative to the human body. It not only suits structural, but also functional imaging. The NMR technique develops rapidly in its application in life science, which has become the hotspot in recent years. Menopausal panic disorder (MPD) is a typical psychosomatic disease during climacteric period, which may affect physical and mental health. Looking for a convenient, effective, and safe method, which is free of toxic-side effects to control the disease, is a modern medical issue. Based on reviewing the etiology and pathogenesis of MPD according to dual traditional Chinese medicine (TCM) and western medicine, further analyzed the advantages and principles for selecting acupoint prescription by tonifying kidney and benefiting marrow therapy for acupoint catgut-embedding to this disease. The application of Nuclear Magnetic Resonance Spectroscopy (NMRS) and Magnetic Resonance Imaging (MRI) technologies in mechanism research on acupoint catgut embedding for the treatment of MPD was discussed. It's pointed out that this intervention method is safe and effective to treat MPD. Breakthrough will be achieved from the research of the selection of acupoint prescription and therapeutic mechanism of acupoint catgut embedding for the treatment of menopausal panic disorder by utilizing the Functional Nuclear Magnetic Resonance Imaging (fMRI) and Metabonomics technologies.

  8. Synthetic oils

    Science.gov (United States)

    Hatton, R. E.

    1973-01-01

    Synthetic lubricants are discussed by chemical class and their general strengths and weaknesses in terms of lubrication properties are analyzed. Comparative ratings are given for 14 chemical classes and are used as a guide for lubricant selection. The effects of chemical structure on the properties of the lubricant are described with special emphasis on thermal stability. The diversity of synthetic lubricants which is provided by the wide range of properties permits many applications, some of which are reported.

  9. Glycoproteins functionalized natural and synthetic polymers for prospective biomedical applications: A review.

    Science.gov (United States)

    Tabasum, Shazia; Noreen, Aqdas; Kanwal, Arooj; Zuber, Mohammad; Anjum, Muhammad Naveed; Zia, Khalid Mahmood

    2017-05-01

    Glycoproteins have multidimensional properties such as biodegradability, biocompatibility, non-toxicity, antimicrobial and adsorption properties; therefore, they have wide range of applications. They are blended with different polymers such as chitosan, carboxymethyl cellulose (CMC), polyvinyl pyrrolidone (PVP), polycaprolactone (PCL), heparin, polystyrene fluorescent nanoparticles (PS-NPs) and carboxyl pullulan (PC) to improve their properties like thermal stability, mechanical properties, resistance to pH, chemical stability and toughness. Considering the versatile charateristics of glycoprotein based polymers, this review sheds light on synthesis and characterization of blends and composites of glycoproteins, with natural and synthetic polymers and their potential applications in biomedical field such as drug delivery system, insulin delivery, antimicrobial wound dressing uses, targeting of cancer cells, development of anticancer vaccines, development of new biopolymers, glycoproteome research, food product and detection of dengue glycoproteins. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. NATO Advanced Study Institute on Synthetic Membranes : Science, Engineering and Applications

    CERN Document Server

    Lonsdale, H; Pinho, M

    1986-01-01

    The chapters in this book are based upon lectures given at the NATO Advanced Study Institute on Synthetic Membranes (June 26-July 8, 1983, Alcabideche, Portugal), which provided an integrated presentation of syn­ thetic membrane science and technology in three broad areas. Currently available membrane formation mechanisms are reviewed, as well as the manner in which synthesis conditions can be controlled to achieve desired membrane structures. Membrane performance in a specific separa­ tionprocess involves complex phenomena, the understanding of which re­ quires a multidisciplinary approach encompassing polymer chemistry, phys­ ical chemistry, and chemical engineering. Progress toward a global understanding of membrane phenomena is described in chapters on the principles of membrane transport. The chapters on membrane processes and applications highlight both established and emerging membrane processes, and elucidate their myriad applications. It is our hope that this book will be an enduring, comprehensi...

  11. Synthetic graph generation for data-intensive HPC benchmarking: Scalability, analysis and real-world application

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Sarah S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lothian, Joshua [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-12-01

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allows the emulation of a broad spectrum of application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report described the in-depth analysis of the generated synthetic graphs' properties at a variety of scales using different generator implementations and examines their applicability to replicating real world datasets.

  12. Design Optimization of Multi-Cluster Embedded Systems for Real-Time Applications

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2006-01-01

    We present an approach to design optimization of multi-cluster embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. In this paper, we address design problems which are characteristic to multi-clusters: partitioning of the system functionality in...

  13. Design Optimization of Multi-Cluster Embedded Systems for Real-Time Applications

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2004-01-01

    We present an approach to design optimization of multi-cluster embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. In this paper, we address design problems which are characteristic to multi-clusters: partitioning of the system functionality in...

  14. Molecular quantum mechanical gradients within the polarizable embedding approach—Application to the internal vibrational Stark shift of acetophenone

    DEFF Research Database (Denmark)

    List, Nanna Holmgaard; Beerepoot, Maarten; Olsen, Jógvan Magnus Haugaard

    2015-01-01

    We present an implementation of analytical quantum mechanical molecular gradients within the polarizable embedding (PE) model to allow for efficient geometry optimizations and vibrational analysis of molecules embedded in large, geometrically frozen environments. We consider a variational ansatz...... for the quantum region, covering (multiconfigurational) self-consistent-field and Kohn–Sham density functional theory. As the first application of the implementation, we consider the internal vibrational Stark effect of the C=O group of acetophenone in different solvents and derive its vibrational linear Stark...... and water is essential in order to capture the structural modifications and the associated frequency shifts observed in water. For more apolar solvents, a proper description of dispersion and exchange–repulsion becomes increasingly important, and the quality of the optimized structures relies to a larger...

  15. Embedded data representations

    DEFF Research Database (Denmark)

    Willett, Wesley; Jansen, Yvonne; Dragicevic, Pierre

    2017-01-01

    We introduce embedded data representations, the use of visual and physical representations of data that are deeply integrated with the physical spaces, objects, and entities to which the data refers. Technologies like lightweight wireless displays, mixed reality hardware, and autonomous vehicles ......-situated, situated, and embedded data displays, including both visualizations and physicalizations. Based on our observations, we identify a variety of design challenges for embedded data representation, and suggest opportunities for future research and applications....

  16. Characterization and application of shape-changing panels with embedded rubber muscle actuators

    International Nuclear Information System (INIS)

    Peel, Larry D; Molina, Enrique Jr; Baur, Jeffery W; Justice, Ryan S

    2013-01-01

    Cylindrical soft actuators efficiently convert fluid pressure into mechanical energy and thus offer excellent force-to-weight ratios while behaving similar to biological muscle. McKibben-like rubber muscle actuators (RMAs) were embedded into neat elastomer and act as shape-changing panels. The effect of actuator spacing and modeling methods on the performance of these panels was investigated. Simulations from nonlinear finite element models were compared with results from test panels containing four RMAs that were spaced 0, 1/2, 1, and 1.3 RMA diameters apart. Nonlinear ‘laminated plate’ and ‘rod and plate’ finite element (FE) models of individual (non-embedded) RMAs and panels with embedded RMAs were developed. Due to model complexity and resource limitations, several simplified 2D and 3D FE model types, including a 3D ‘Unit Cell’ were created. After subtracting the ‘activation pressure’ needed to initiate contraction, all the models for the individual actuators produced forces consistent with experimental values, but only the more resource-intensive rod and plate models replicated fiber/braid re-orientation and produced more realistic values for actuator contraction. For panel models, the Full 3D rod and plate model appeared to be the most accurate for panel contraction and force, but was not completed for all configurations due to resource limitations. Most embedded panel FE models produced maximum panel actuator force and maximum contraction when the embedded actuators are spaced between 1/2 and 1 diameter apart. Seven panels with embedded RMAs were experimentally fabricated and tested. Panel tests confirmed that maximum or optimal performance occurs when the RMAs are spaced between 1/2 and 1 diameter apart. The tested actuator force was fairly constant in this range, suggesting that minor design or manufacturing differences may not significantly affect panel performance. However, the amount of axial force and contraction decreases significantly

  17. Attribute Synthetic Evaluation Model for the CBM Recoverability and Its Application

    Directory of Open Access Journals (Sweden)

    Xiao-gang Xia

    2015-01-01

    Full Text Available The coal-bed methane (CBM recoverability is the basic premise of CBM development practice; in order to effectively evaluate the CBM recoverability, the attribute synthetic evaluation model is established based on the theory and method of attribute mathematics. Firstly, five indexes are chosen to evaluate the recoverability through analyzing the influence factors of CBM, including seam thickness, gas saturation, permeability, reservoir pressure gradient, and hydrogeological conditions. Secondly, the attribute measurement functions of each index are constructed based on the attribute mathematics theory, and the calculation methods of the single index attribute measurement and the synthetic attribute measurement also are provided. Meanwhile, the weight of each index is given with the method of similar number and similar weight; the evaluation results also are determined by the confidence criterion reliability code. At last, according to the application results of the model in some coal target area of Fuxin and Hancheng mine, the evaluation results are basically consistent with the actual situation, which proves that the evaluation model can be used in the CBM recoverability prediction, and an effective method of the CBM recoverability evaluation is also provided.

  18. Application of evolutionary algorithms for multi-objective optimization in VLSI and embedded systems

    CERN Document Server

    2015-01-01

    This book describes how evolutionary algorithms (EA), including genetic algorithms (GA) and particle swarm optimization (PSO) can be utilized for solving multi-objective optimization problems in the area of embedded and VLSI system design. Many complex engineering optimization problems can be modelled as multi-objective formulations. This book provides an introduction to multi-objective optimization using meta-heuristic algorithms, GA and PSO, and how they can be applied to problems like hardware/software partitioning in embedded systems, circuit partitioning in VLSI, design of operational amplifiers in analog VLSI, design space exploration in high-level synthesis, delay fault testing in VLSI testing, and scheduling in heterogeneous distributed systems. It is shown how, in each case, the various aspects of the EA, namely its representation, and operators like crossover, mutation, etc. can be separately formulated to solve these problems. This book is intended for design engineers and researchers in the field ...

  19. [Application of improved locally linear embedding algorithm in dimensionality reduction of cancer gene expression data].

    Science.gov (United States)

    Liu, Wenyuan; Wang, Chunlei; Wang, Baowen; Wang, Changwu

    2014-02-01

    Cancer gene expression data have the characteristics of high dimensionalities and small samples so it is necessary to perform dimensionality reduction of the data. Traditional linear dimensionality reduction approaches can not find the nonlinear relationship between the data points. In addition, they have bad dimensionality reduction results. Therefore a multiple weights locally linear embedding (LLE) algorithm with improved distance is introduced to perform dimensionality reduction in this study. We adopted an improved distance to calculate the neighbor of each data point in this algorithm, and then we introduced multiple sets of linearly independent local weight vectors for each neighbor, and obtained the embedding results in the low-dimensional space of the high-dimensional data by minimizing the reconstruction error. Experimental result showed that the multiple weights LLE algorithm with improved distance had good dimensionality reduction functions of the cancer gene expression data.

  20. Synthetic environments

    Science.gov (United States)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  1. Metal oxide nanoparticles embedded in rare-earth matrix for low temperature thermal imaging applications

    Science.gov (United States)

    Rauwel, E.; Galeckas, A.; Rauwel, P.; Hansen, P.-A.; Wragg, D.; Nilsen, O.; Fjellvåg, H.

    2016-05-01

    We report on the synthesis and characterization of nanocomposites comprising of oxide nanoparticles (NPs) (ZnO, CaHfO3 and SrHfO3) embedded in rare-earth oxide (Eu2O3, Nd2O3) matrices by using atomic layer deposition. The different oxide surroundings allowed highlighting the role of interface defects in the recombination processes of charge carriers in the NPs. We provide a comparative analysis of optical absorption and emission properties of the constituents: thin films, free-standing and embedded NPs, and discuss the intrinsic and extrinsic nature of the luminescent sites in different nanocomposites. The photoluminescence properties of ZnO nanocomposites are clearly distinguishable from those of free-standing NPs in terms of overall quantum efficiency as well as intensity ratios of the characteristic blue and green emission bands associated with radiative transitions involving excitons and intrinsic defects, respectively. In contrast to PL enhancement due to surface-passivating effect of the surrounding media in the case of ZnO nanocomposites, the embedment of hafnia perovskites into oxide matrices generally leads to suppressed luminescence in the visible range, thus confirming its extrinsic, surface-defect related nature.

  2. Synthetic Applications of Chiral Unsaturated Epoxy Alcohols Prepared by Sharpless Asymmetric Epoxidation

    Directory of Open Access Journals (Sweden)

    María Moreno

    2010-02-01

    Full Text Available An overview of the synthesis and applications of chiral 2,3-epoxy alcohols containing unsaturated chains is presented. One of the fundamental synthetic routes to these compounds is Sharpless asymmetric epoxidation, which is reliable, highly chemoselective and enables easy prediction of the product enantioselectivity. Thus, unsaturated epoxy alcohols are readily obtained by selective oxidation of the allylic double bond in the presence of other carbon-carbon double or triple bonds. The wide availability of epoxy alcohols with unsaturated chains, the versatility of the epoxy alcohol functionality (e.g. regio- and stereo-selective ring opening; oxidation; and reduction, and the arsenal of established alkene chemistries, make unsaturated epoxy alcohols powerful starting materials for the synthesis of complex targets such as biologically active molecules. The popularization of ring-closing metathesis has further increased their value, making them excellent precursors to cyclic compounds.

  3. Tips and Tricks for Exogenous Application of Synthetic Post-translationally Modified Peptides to Plants.

    Science.gov (United States)

    Czyzewicz, Nathan; Stes, Elisabeth; De Smet, Ive

    2017-01-01

    The first signaling peptide discovered and purified was insulin in 1921. However, it was not until 1991 that the first peptide signal, systemin, was discovered in plants. Since the discovery of systemin, peptides have emerged as a potent and diverse class of signaling molecules in plant systems. Peptides consist of small amino acid sequences, which often act as ligands of receptor kinases. However, not all peptides are created equal, and signaling peptides are grouped into several subgroups dependent on the type of post-translational processing they undergo. Here, we focus on the application of synthetic, post-translationally modified peptides (PTMPs) to plant systems, describing several methods appropriate for the use of peptides in Arabidopsis thaliana and crop models.

  4. Etching behavior of fission fragment tracks in synthetic quartz and its application to neutron detection

    International Nuclear Information System (INIS)

    Sawamura, Teruko; Baba, Satoshi; Narita, Masakuni; Yamazaki, Hatsuo

    1994-01-01

    The etching behavior of fission fragment tracks in synthetic quartz plates concerning to +x, y and z planes was studied using NaOH solution as an etchant. Systematic experiments gave an optimum etching condition of 65% NaOH at 150degC suitable for track detection. Under this etching condition, following several properties were studied; the bulk etching rate, the etched track opening shape and its growth rate, the critical angle of track etching, and the irradiation effect of low LET radiation. All of three different cuts were demonstrated to be useful for plates as fission track detectors. An application to neutron detection was studied for the +x-plane of an x-cut plate. The detection sensitivity of the plane in close contact with a Th-radiator was 2.7x10 -6 tracks/fluence for 14 MeV neutrons. (author)

  5. In Vitro Studies on a Microfluidic Sensor with Embedded Obstacles Using New Antibacterial Synthetic Compounds (1-TDPPO Mixed Prop-2-en-1-one with Difluoro Phenyl

    Directory of Open Access Journals (Sweden)

    Changhyun Roh

    2017-04-01

    Full Text Available This paper describes the use of an analytical microfluidic sensor for accelerating chemo-repellent response and strong anti-bacterial 1-(Thien-2-yl-3-(2, 6-difluoro phenyl prop-2-en-1-one (1-TDPPO. The chemically-synthesized antimicrobial agent, which included prop-2-en-1-one and difluoro phenyl groups, was moving through an optically transparent polydimethylsiloxane (PDMS microfluidic sensor with circular obstacles arranged evenly. The response, growth and distribution of fluorescent labeling Pseudomonas aeruginosa PAO1 against the antimicrobial agent were monitored by confocal laser scanning microscope (CLSM. The microfluidic sensor along with 1-TDPPOin this study exhibits the following advantages: (i Real-time chemo-repellent responses of cell dynamics; (ii Rapid eradication of biofilm by embedded obstacles and powerful antibacterial agents, which significantly reduce the response time compared to classical methods; (iii Minimal consumption of cells and antimicrobial agents; and (iv Simplifying the process of the normalization of the fluorescence intensity and monitoring of biofilm by captured images and datasets.

  6. Colchicine application significantly affects plant performance in the second generation of synthetic polyploids and its effects vary between populations.

    Science.gov (United States)

    Münzbergová, Zuzana

    2017-08-01

    Understanding the direct consequences of polyploidization is necessary for assessing the evolutionary significance of this mode of speciation. Previous studies have not studied the degree of between-population variation that occurs due to these effects. Although it is assumed that the effects of the substances that create synthetic polyploids disappear in second-generation synthetic polyploids, this has not been tested. The direct consequences of polyploidization were assessed and separated from the effects of subsequent evolution in Vicia cracca , a naturally occurring species with diploid and autotetraploid cytotypes. Synthetic tetraploids were created from diploids of four mixed-ploidy populations. Performance of natural diploids and tetraploids was compared with that of synthetic tetraploids. Diploid offspring of the synthetic tetraploid mothers were also included in the comparison. In this way, the effects of colchicine application in the maternal generation on offspring performance could be compared independently of the effects of polyploidization. The sizes of seeds and stomata were primarily affected by cytotype, while plant performance differed between natural and synthetic polyploids. Most performance traits were also determined by colchicine application to the mothers, and most of these results were largely population specific. Because the consequences of colchicine application are still apparent in the second generation of the plants, at least the third-generation polyploids should be considered in future comparisons. The specificities of the colchicine-treated plants may also be caused by strong selection pressures during the creation of synthetic polyploids. This could be tested by comparing the initial sizes of plants that survived the colchicine treatments with those of plants that did not. High variation between populations also suggests that different polyploids follow different evolutionary trajectories, and this should be considered when

  7. Design Optimization of Multi-Cluster Embedded Systems for Real-Time Applications

    DEFF Research Database (Denmark)

    Pop, Paul; Eles, Petru; Peng, Zebo

    2004-01-01

    We present an approach to design optimization of multi-cluster embedded systems consisting of time-triggered and event-triggered clusters, interconnected via gateways. In this paper, we address design problems which are characteristic to multi-clusters: partitioning of the system functionality...... into time-triggered and event-triggered domains, process mapping, and the optimization of parameters corresponding to the communication protocol. We present several heuristics for solving these problems. Our heuristics are able to find schedulable implementations under limited resources, achieving...

  8. The results of application of anterior cruciate ligament two-bundle plastics by synthetic implant in its complete tears

    Directory of Open Access Journals (Sweden)

    Shormanov A.M.

    2015-12-01

    Full Text Available Objective: to improve surgical results of patients with complete tears of anterior cruciate ligament by synthetic implant Don-M. Materials and Methods. 7 patients with ACL complete tear who underwent two-bundle plastics with synthetic en-doprosthetic implant Don-M were investigated. Results. The application of ACL two-bundle plastics with synthetic Don-M implant allowed reaching complete knee joint stability during the first several hours after surgery and completely restore knee joint motion range in the course of 6 months. Conclusion. The application of ACL two-bundle plastics is anatomically justified and provides knee joint stability as well as early activation and rehabilitation opportunities.

  9. Development and application of remote video monitoring system for combine harvester based on embedded Linux

    Science.gov (United States)

    Chen, Jin; Wang, Yifan; Wang, Xuelei; Wang, Yuehong; Hu, Rui

    2017-01-01

    Combine harvester usually works in sparsely populated areas with harsh environment. In order to achieve the remote real-time video monitoring of the working state of combine harvester. A remote video monitoring system based on ARM11 and embedded Linux is developed. The system uses USB camera for capturing working state video data of the main parts of combine harvester, including the granary, threshing drum, cab and cut table. Using JPEG image compression standard to compress video data then transferring monitoring screen to remote monitoring center over the network for long-range monitoring and management. At the beginning of this paper it describes the necessity of the design of the system. Then it introduces realization methods of hardware and software briefly. And then it describes detailedly the configuration and compilation of embedded Linux operating system and the compiling and transplanting of video server program are elaborated. At the end of the paper, we carried out equipment installation and commissioning on combine harvester and then tested the system and showed the test results. In the experiment testing, the remote video monitoring system for combine harvester can achieve 30fps with the resolution of 800x600, and the response delay in the public network is about 40ms.

  10. An Embedded Web based Real Time Application for Remote Monitoring & Controlling of MST RADAR Transmitters

    Directory of Open Access Journals (Sweden)

    Nagabhushan Raju KONDURU

    2012-01-01

    Full Text Available An embedded web based radar transmitters control & interlock system is developed in the present work. This research activity facilitates controlling and monitoring 53-MHz, 2.5 Mega-watt peak power MST radar triode based transmitters via internet. This radar is a prime instrument for atmospheric science research with 32 transmitters powering 1024-element antenna array. A comprehensive safety interlock is built in to protect expensive devices; by sensing anode voltages, heater currents and airflow etc. It automatically prevents fatal damages by switching transmitter / RF off. The system is designed and developed using RISC microcontroller ARM LPC 2148 based on a 32- bit ARM7 TDMI-S CPU with real-time emulation and embedded trace support and 512 kB high speed flash memory. The microcontroller is a blend of serial communication interface, dual 10-bit ADC’s and fast GPIO. Ethernet controller LM3S6432 is used to send sensors’ digitalized data over internet.

  11. Application of Synthetic Peptide Arrays To Uncover Cyclic Di-GMP Binding Motifs.

    Science.gov (United States)

    Düvel, Juliane; Bense, Sarina; Möller, Stefan; Bertinetti, Daniela; Schwede, Frank; Morr, Michael; Eckweiler, Denitsa; Genieser, Hans-Gottfried; Jänsch, Lothar; Herberg, Friedrich W; Frank, Ronald; Häussler, Susanne

    2016-01-01

    the opportunistic pathogen P. aeruginosa. The application of synthetic peptide arrays will facilitate the search for additional c-di-GMP receptor proteins and aid in the characterization of c-di-GMP binding motifs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Combining UML2 Application and SystemC Platform Modelling for Performance Evaluation of Real-Time Embedded Systems

    Directory of Open Access Journals (Sweden)

    Qu Yang

    2008-01-01

    Full Text Available Abstract Future mobile devices will be based on heterogeneous multiprocessing platforms accommodating several stand-alone applications. The network-on-chip communication and device networking combine the design challenges of conventional distributed systems and resource constrained real-time embedded systems. Interoperable design space exploration for both the application and platform development is required. Application designer needs abstract platform models to rapidly check the feasibility of a new feature or application. Platform designer needs abstract application models for defining platform computation and communication capacities. We propose a layered UML application/workload and SystemC platform modelling approach that allow application and platform to be modelled at several levels of abstraction, which enables early performance evaluation of the resulting system. The overall approach has been experimented with a mobile video player case study, while different load extraction methods have been validated by applying them to MPEG-4 encoder, Quake2 3D game, and MP3 decoder case studies previously.

  13. The data embedding method

    Energy Technology Data Exchange (ETDEWEB)

    Sandford, M.T. II; Bradley, J.N.; Handel, T.G.

    1996-06-01

    Data embedding is a new steganographic method for combining digital information sets. This paper describes the data embedding method and gives examples of its application using software written in the C-programming language. Sandford and Handel produced a computer program (BMPEMBED, Ver. 1.51 written for IBM PC/AT or compatible, MS/DOS Ver. 3.3 or later) that implements data embedding in an application for digital imagery. Information is embedded into, and extracted from, Truecolor or color-pallet images in Microsoft{reg_sign} bitmap (.BMP) format. Hiding data in the noise component of a host, by means of an algorithm that modifies or replaces the noise bits, is termed {open_quote}steganography.{close_quote} Data embedding differs markedly from conventional steganography, because it uses the noise component of the host to insert information with few or no modifications to the host data values or their statistical properties. Consequently, the entropy of the host data is affected little by using data embedding to add information. The data embedding method applies to host data compressed with transform, or {open_quote}lossy{close_quote} compression algorithms, as for example ones based on discrete cosine transform and wavelet functions. Analysis of the host noise generates a key required for embedding and extracting the auxiliary data from the combined data. The key is stored easily in the combined data. Images without the key cannot be processed to extract the embedded information. To provide security for the embedded data, one can remove the key from the combined data and manage it separately. The image key can be encrypted and stored in the combined data or transmitted separately as a ciphertext much smaller in size than the embedded data. The key size is typically ten to one-hundred bytes, and it is in data an analysis algorithm.

  14. Synthetic diamond devices for radiotherapy applications: Thermoluminescent dosimeter and ionisation chamber

    International Nuclear Information System (INIS)

    Descamps, C.; Tromson, D.; Mer, C.; Nesladek, M.; Bergonzo, P.

    2006-01-01

    In radiotherapy field, the major usage of dosimeters is in the measurement of the dose received by the patient during radiotherapy (in-vivo measurements) and in beam calibration and uniformity checks. Diamond exhibits several interesting characteristics that make it a good candidate for radiation detection. It is indeed soft-tissue equivalent (Z=6 compared to Z=7.42 for human tissue), mechanically robust and relatively insensitive to radiation damage, chemically stable and non toxic. Moreover, the recent availability of synthetic samples, grown under controlled conditions using the chemical vapour deposition (C.V.D.) technique, allowed decreasing the high cost and the long delivery time of diamond devices. Diamond can be use for off-line dosimetry as thermoluminescent dosimeters or for on-line dosimetry as ionisation chamber [2,3]. These both applications are reported here. For this study, samples were grown in the laboratory and devices were then tested under X-ray irradiations and in clinical environment under medical cobalt source. The work described in this paper was performed in the framework of the European Integrated Project M.A.E.S.T.R.O., Methods and Advanced Equipment for Simulation and Treatment in Radio-Oncology, (6. FP) which is granted by the European Commission.The first results of this study clearly show that C.V.D. diamond detectors are suitable for dosimetry in radiotherapy applications. Moreover, for both T.L. dosimeters and ionisation chambers applications, and even though the sensitivity is subsequently reduced, nitrogen incorporation in films seems to significantly improve the dosimetric characteristics of the devices. Therefore, the optimisation of the material quality appears as a very important issue in order to increase the dosimetric characteristics of devices and more particularly, for use as thermoluminescent dosimeters, other impurities (Nickel, Phosphorus) will be tested. For ionisation chamber applications, experiments with

  15. Societal Risk Evaluation Scheme (SRES: Scenario-Based Multi-Criteria Evaluation of Synthetic Biology Applications.

    Directory of Open Access Journals (Sweden)

    Christopher L Cummings

    Full Text Available Synthetic biology (SB applies engineering principles to biology for the construction of novel biological systems designed for useful purposes. From an oversight perspective, SB products come with significant uncertainty. Yet there is a need to anticipate and prepare for SB applications before deployment. This study develops a Societal Risk Evaluation Scheme (SRES in order to advance methods for anticipatory governance of emerging technologies such as SB. The SRES is based upon societal risk factors that were identified as important through a policy Delphi study. These factors range from those associated with traditional risk assessment, such as health and environmental consequences, to broader features of risk such as those associated with reversibility, manageability, anticipated levels of public concern, and uncertainty. A multi-disciplinary panel with diverse perspectives and affiliations assessed four case studies of SB using the SRES. Rankings of the SRES components are compared within and across the case studies. From these comparisons, we found levels of controllability and familiarity associated with the cases to be important for overall SRES rankings. From a theoretical standpoint, this study illustrates the applicability of the psychometric paradigm to evaluating SB cases. In addition, our paper describes how the SRES can be incorporated into anticipatory governance models as a screening tool to prioritize research, information collection, and dialogue in the face of the limited capacity of governance systems. To our knowledge, this is the first study to elicit data on specific cases of SB with the goal of developing theory and tools for risk governance.

  16. A novel optimal design for an application-oriented synthetic jet actuator

    Directory of Open Access Journals (Sweden)

    Deng Xiong

    2014-06-01

    Full Text Available The evaluation indicator for the performance of a synthetic jet actuator (SJA is well-defined because of its various applications, which require optimal design to improve its performance and extend its field of application. This paper presents a novel approach to the optimal design of an SJA applied to enhance fuel/air mixture. It optimizes the combination of an actuator’s geometric parameters by selecting the strength of vortex pairs as the evaluation indicator, coupled with orthogonal experiments and analysis of variance (AOV. The results indicate that slot width is the most notable factor influencing the strength of vortex pairs, followed by cavity height and slot depth. The optimal value of the strength of vortex pairs increases by 32.5% over the experimental data of the base case, and more than 8.4% compared with the simulation results of the orthogonal experiments. It is concluded that the optimal method can effectively improve the performance of an SJA applied in mixing enhancement, reducing the test numbers and the associated design cycle and cost.

  17. Removal of a synthetic organic chemical by PAC-UF systems. II: Model application.

    Science.gov (United States)

    Matsui, Y; Colas, F; Yuasa, A

    2001-02-01

    This paper describes several application potentials with a recently developed model for predicting the synthetic organic chemical (SOC) removal by powdered activated carbon (PAC) adsorption during ultrafiltration (UF) and discusses the removal mechanism. The model was successfully applied, without any modification, to dead-end mode operation as well as to cross-flow mode operation, validating the assumption of the internal diffusion control mechanism and the continuously-stirred-tank-reactor (CSTR) concept. Even when UF was operated in a cross-flow mode, PAC added was re-circulating in suspension for only a short time. Then, solute uptake took place mostly by PAC immobilized in membrane tubes not only for dead-end operation but also for cross-flow operation. Therefore, cross-flow operation did not have any advantage regarding the SOC mass transfer on PAC in UF loop over dead-end operation. The model simulation implied that pulse PAC addition at the beginning of filtration cycle resulted better SOC removal than continuous PAC addition. However, for the pulse PAC addition mode, the model predicted somewhat lower effluent SOC concentration than the observed values, and the benefit of pulse PAC application in terms of reducing SOC over its continuous dosage was not confirmed. Longer detention time of PAC dosed in a pulse than continuously dosed PAC could possibly further decrease internal diffusivity.

  18. Synthetic tooth enamel: SEM characterization of a fluoride hydroxyapatite coating for dentistry applications

    Directory of Open Access Journals (Sweden)

    Marise Oliveira

    2007-06-01

    Full Text Available An alternative to etching enamel for retention of an adhesive is to grow crystals on the enamel surface. The potential advantages of crystal growth include easy procedure and less damage to the enamel. These crystals retain the adhesive or are the actual dental restoration. In this work, a paste of synthetic enamel was used to grow crystals of fluoride hydroxyapatite (F-HA onto the human tooth surface. This technique can be used for several dentistry applications like enamel whitening, strengthening and restoration of early carie lesions. The low cost of reagents and simplicity of the technique along with the biocompatibility of the paste render possible the utilization on the market. The samples were prepared through the application of the paste by the incremental technique. The results obtained by scanning electron microscope (SEM/EDX have indicated the deposition of a homogeneous layer of calcium phosphate that was grown onto the enamel substrate. The average thickness of the deposited film was in the range of 50-100 µm and with a similar density from the natural enamel observed by radiographic images.

  19. Synthetic Resins in Aircraft Construction - Their Composition, Properties, Present State of Development and Application to Light Structures

    Science.gov (United States)

    Riechers, K

    1937-01-01

    This report gives a brief review of the properties that have been attained with the synthetic materials with which we are at present familiar. Results of investigations are presented as well as possibilities for construction applications. Endurance strength and bonding tests are also presented.

  20. Distributed embedded controller development with petri nets application to globally-asynchronous locally-synchronous systems

    CERN Document Server

    Moutinho, Filipe de Carvalho

    2016-01-01

    This book describes a model-based development approach for globally-asynchronous locally-synchronous distributed embedded controllers.  This approach uses Petri nets as modeling formalism to create platform and network independent models supporting the use of design automation tools.  To support this development approach, the Petri nets class in use is extended with time-domains and asynchronous-channels. The authors’ approach uses models not only providing a better understanding of the distributed controller and improving the communication among the stakeholders, but also to be ready to support the entire lifecycle, including the simulation, the verification (using model-checking tools), the implementation (relying on automatic code generators), and the deployment of the distributed controller into specific platforms. Uses a graphical and intuitive modeling formalism supported by design automation tools; Enables verification, ensuring that the distributed controller was correctly specified; Provides flex...

  1. Determination of organic products resulting of chemical and radiochemical decompositions of bitumen. Applications to embedded bitumens

    International Nuclear Information System (INIS)

    Walczak, I.

    2000-01-01

    Bitumen can be used for embedding most of wastes because of its high impermeability and its relatively low reactivity with of chemicals. Bituminization is one of selected solutions in agreement with nuclear safety, waste compatibility and economic criteria. Bitumen, during storage, undergoes an auto-irradiation due to embedded radio-elements. During this stage,drums are not airtight then oxygen is present. In disposal configuration, water, which is a potential vector of radioactivity and organic matter, is an other hazard factor liable to deteriorate the containment characteristics of bitumen wastes. The generation of water-soluble organic complexing agents can affect the integrity of the wasteform due to an increase of the radionuclides solubility. The first aim of this work is the quantitative and qualitative characterisation of soluble organic matter in bitumen leachates. Different leaching solutions were tested (various pH, ionic strength, ratio S/V). When the pH of the leaching solutions increases, the total organic carbon released increases as well. Identified molecules are aromatics like naphthalene, oxidised compounds like alcohols, linear carbonyls, aromatics, glycols and nitrogen compounds. For the cement equilibrated solution (pH 13.5), the effect of ionic strength becomes significative and influences the release of soluble organic matter. This soluble organic matter can be bio-degraded if microorganisms can growth. The second aim of this work is to study the effect of radio-oxidative ageing on the bitumen confinement properties. During radio-oxidation, the chemical properties of bitumen are modified. The μ-IRTF analysis shows the formation of hydroxyl compounds and aromatic acids. The formation of these polar groups does not influence in our study the water uptake. However the organic matter release increases significantly with the irradiation dose. (author)

  2. Semibullvalene and diazasemibullvalene: recent advances in the synthesis, reaction chemistry, and synthetic applications.

    Science.gov (United States)

    Zhang, Shaoguang; Zhang, Wen-Xiong; Xi, Zhenfeng

    2015-07-21

    Semibullvalene (SBV) and its aza analogue 2,6-diazasemibullvalene (NSBV) are theoretically interesting and experimentally challenging organic molecules because of four unique features: highly strained ring systems, intramolecular skeletal rearrangement, extremely rapid degenerate (aza-)Cope rearrangement, and the predicted existence of neutral homoaromatic delocalized structures. SBV has received much attention in the past 50 years. In contrast, after NSBV was predicted in 1971 and the first in situ synthesis was realized in 1982, no progress on NSBV chemistry was made until our results in 2012. We have been interested in the reaction chemistry of 1,4-dilithio-1,3-butadienes (dilithio reagents for short), especially for their applications in the synthesis of SBV and NSBV, because (i) the cyclodimerization of dilithio reagents could provide the potential eight-carbon skeleton of SBV from four-carbon butadiene units and (ii) the insertion reaction of dilithio reagents with C≡N bonds of two nitriles could provide a 6C + 2N skeleton that might be a good precursor for the synthesis of NSBV. Therefore, we initiated a journey into the synthesis and reaction chemistry of SBV and NSBV starting from dilithio reagents that has been ongoing since 2006. In this Account, we outline mainly our recent achievements in the synthesis, structural characterization, reaction chemistry, synthetic application, and theoretical/computational analysis of NSBV. Two efficient strategies for the synthesis of NSBV from dilithio reagents and nitriles via oxidant-induced C-N bond formation are described. Structural investigations of NSBV, including X-ray crystal structure analysis, determination of the activation barrier for the aza-Cope rearrangement, and theoretical analysis, show that the localized structure of NSBV is the predominant form and that the homoaromatic delocalized structure exists as a minor component in the equilibrium. We also discuss the reaction chemistry and synthetic

  3. Low-Cost Heterogeneous Embedded Multiprocessor Architecture for Real-Time Stream Processing Applications

    NARCIS (Netherlands)

    Dekens, B.H.J.

    2015-01-01

    SDR applications are often stream processing applications that are computationally intensive which results in a low throughput on homogeneous multi-core architectures and thus could benefit significantly from the use of stream processing accelerators. The integration of stream processing

  4. Electrochemical behaviour of titanium coated stainless steel by r.f. sputtering in synthetic sweat solutions for electrode applications

    International Nuclear Information System (INIS)

    Fonseca, C.; Vaz, F.; Barbosa, M.A.

    2004-01-01

    The r.f. sputtering technique was used to deposit titanium thin films on stainless steel substrates, aiming at the application of the coated samples as skin contact materials for 'dry' active electrodes. In this work the electrochemical behaviour of the coated samples was investigated in synthetic sweat solutions and their performance was compared with that of uncoated stainless steel and bulk titanium. The characterisation of the samples was carried out by electrochemical techniques and scanning electron microscopy. The coated samples displayed corrosion resistance values in synthetic sweat solutions much higher than stainless steel samples and of the same order of the values measured for bulk titanium in the same conditions

  5. Embedded engineering education

    CERN Document Server

    Kaštelan, Ivan; Temerinac, Miodrag; Barak, Moshe; Sruk, Vlado

    2016-01-01

    This book focuses on the outcome of the European research project “FP7-ICT-2011-8 / 317882: Embedded Engineering Learning Platform” E2LP. Additionally, some experiences and researches outside this project have been included. This book provides information about the achieved results of the E2LP project as well as some broader views about the embedded engineering education. It captures project results and applications, methodologies, and evaluations. It leads to the history of computer architectures, brings a touch of the future in education tools and provides a valuable resource for anyone interested in embedded engineering education concepts, experiences and material. The book contents 12 original contributions and will open a broader discussion about the necessary knowledge and appropriate learning methods for the new profile of embedded engineers. As a result, the proposed Embedded Computer Engineering Learning Platform will help to educate a sufficient number of future engineers in Europe, capable of d...

  6. Composite films of highly ordered Si nanowires embedded in SiGe0.3 for thermoelectric applications

    Science.gov (United States)

    Kikuchi, Akiou; Yao, Akifumi; Mori, Isamu; Ono, Takahito; Samukawa, Seiji

    2017-10-01

    We fabricated a high-density array of silicon nanowires (SiNWs) with a diameter of 10 nm embedded in silicon germanium (SiGe0.3) to give a composite thin film for thermoelectric device applications. The SiNW array was first fabricated by bio-template mask and neutral beam etching techniques. The SiNW array was then embedded in SiGe0.3 by thermal chemical vapor deposition. The cross-plane thermal conductivity of the SiNW-SiGe0.3 composite film with a thickness of 100 nm was 3.5 ± 0.3 W/mK in the temperature range of 300-350 K. Moreover, the temperature dependences of the in-plane electrical conductivity and in-plane Seebeck coefficient of the SiNW-SiGe0.3 composite were evaluated. The fabricated SiNW-SiGe0.3 composite film displayed a maximum power factor of 1 × 103 W/m K2 (a Seebeck coefficient of 4.8 × 103 μV/K and an electrical conductivity of 4.4 × 103 S/m) at 873 K. The present high-density SiNW array structure represents a new route to realize practical thermoelectric devices using mature Si processes without any rare metals.

  7. Numerically constructed internal-coordinate Hamiltonian with Eckart embedding and its application for the inversion tunneling of ammonia.

    Science.gov (United States)

    Fábri, Csaba; Mátyus, Edit; Császár, Attila G

    2014-02-05

    It is shown that the use of an Eckart-frame embedding with a kinetic energy operator expressed in curvilinear internal coordinates becomes feasible and straightforward to implement for arbitrary molecular compositions and internal coordinates if the operator is defined numerically over a (discrete variable representation) grid. The algorithm proposed utilizes the transformation method of Dymarsky and Kudin to maintain the rotational Eckart condition. In order to demonstrate the applicability and flexibility of our approach the non-rigid ammonia molecule is considered and the corresponding rotational-vibrational energy levels and wave functions are computed using kinetic energy operators with three different embeddings. Two of them fulfill the Eckart conditions corresponding to a trigonal pyramidal (C3v) and a trigonal planar (D3h) reference structure and the third one is a non-Eckart frame. The computed energy levels are, of course, identical, and the structure of the three different wave-function representations are analyzed in terms of the rigid rotor functions for a symmetric top. The possible advantages of one frame representation over another are discussed concerning the interpretation of the rovibrational states in terms of the traditional rigid rotor labels. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Practical Application of a Synthetic Linking Function on Small-Sample Equating

    Science.gov (United States)

    Kim, Sooyeon; von Davier, Alina A.; Haberman, Shelby

    2011-01-01

    The synthetic function is a weighted average of the identity (the linking function for forms that are known to be completely parallel) and a traditional equating method. The purpose of the present study was to investigate the benefits of the synthetic function on small-sample equating using various real data sets gathered from different…

  9. Design and Application of Synthetic Receptors for Recognition of Methylated Lysine and Supramolecular Affinity Labeling

    Science.gov (United States)

    Gober, Isaiah Nathaniel

    This dissertation involves the design and synthesis of new synthetic receptors and their application in the molecular recognition of methylated lysine and their use as tools for chemical biology. The dissertation is divided into four parts. The first section focuses on the development of a novel labeling method that is based on ligand-directed affinity labeling principles. In this labeling method, a synthetic receptor that binds to trimethyl lysine (Kme3) is attached through a linker to an electrophilic tag group that can react with a nucleophilic amine in a histone peptide. This affinity labeling probe, which we called CX4-ONBD, is equipped with an electrophilic tag that allows for turn-on fluorescence labeling of Kme3 histone peitdes. We show that the probe gives a pronounced turn-on fluorescence response when it is incubated with a histone peptide that contains Kme3 and a nearby reactive lysine. This probe also displays >5-fold selectivity in covalent labeling over an unmethylated lysine peptide. This represents the first time a synthetic receptor has been used for affinity labeling purposes, and it also expands on the chemical toolkit that is available for sensing PTMs like lysine methylation. In the second section, the supramolecular affinity labeling method that was optimized using CX4-ONBD was applied to the development of a real-time assay for measuring enzymatic activity. More specifically, the probe was used to create a turn-on fluorescence assay for histone deacetylase (HDAC) activity and for inhibitor screening and IC50 determination. Most commercial kits for HDAC activity have limited substrate scope, and other common methods used for characterizing enzymatic activity often require chromatographic separation and are therefore not high-throughput. This small molecule receptor-mediated affinity labeling strategy allowed for facile readout of HDAC activity and inhibition. Overall, this application of supramolecular affinity labeling expands on the

  10. Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications.

    Science.gov (United States)

    Tran Thi, Thu Nhi; Morse, J; Caliste, D; Fernandez, B; Eon, D; Härtwig, J; Barbay, C; Mer-Calfati, C; Tranchant, N; Arnault, J C; Lafford, T A; Baruchel, J

    2017-04-01

    Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature etc. ) within the crystal. This allows easy and quick comparison of the crystal quality of diamond plates available from various commercial suppliers. When needed, rocking curve imaging (RCI) is also employed, which is the quantitative counterpart of monochromatic Bragg diffraction imaging. RCI enables the local determination of both the effective misorientation, which results from lattice parameter variation and the local lattice tilt, and the local Bragg position. Maps derived from these parameters are used to measure the magnitude of the distortions associated with polishing damage and the depth of this damage within the volume of the crystal. For overgrown layers, these maps also reveal the distortion induced by the incorporation of impurities such as boron, or the lattice parameter variations associated with the presence of growth-incorporated nitrogen. These techniques are described, and their capabilities for studying the quality of diamond substrates and overgrown layers, and the surface damage caused by mechanical polishing, are illustrated by examples.

  11. Algorithm for calculating synthetic seismograms in a layered half-space with application of matrix impedance

    Science.gov (United States)

    Pavlov, V. M.

    2013-01-01

    A new algorithm is proposed for calculating the complete synthetic seismograms from a point source in the form of the sum of a single force and a dipole with an arbitrary seismic moment tensor in a plane layered medium composed of homogenous elastic isotropic layers. Following the idea of (Alekseev and Mikhailenko, 1978), an artificial cylindrical boundary is introduced, on which the boundary conditions are specified. For this modified problem, the exact solution (in terms of the displacements and stresses on the horizontal plane areal element) in the frequency domain is derived and substantiated. The unknown depth-dependent coefficients form the motion-stress vector, whose components satisfy the known system of ordinary differential equations. This system is solved by the method that involves the matrix impedance and propagator for the vector of motion, as previously suggested by the author in (Pavlov, 2009). In relation to the initial problem, the reflections from the artificial boundary are noise, which, to a certain degree, can be suppressed by selecting a long enough distance to this boundary and owing to the presence of a purely imaginary addition to the frequency. The algorithm is not constrained by the thickness of the layers, is applicable for any frequency range, and is suitable for computing the static offset.

  12. An Application Programming Interface for Synthetic Snowflake Particle Structure and Scattering Data

    Science.gov (United States)

    Lammers, Matthew; Kuo, Kwo-Sen

    2017-01-01

    The work by Kuo and colleagues on growing synthetic snowflakes and calculating their single-scattering properties has demonstrated great potential to improve the retrievals of snowfall. To grant colleagues flexible and targeted access to their large collection of sizes and shapes at fifteen (15) microwave frequencies, we have developed a web-based Application Programming Interface (API) integrated with NASA Goddard's Precipitation Processing System (PPS) Group. It is our hope that the API will enable convenient programmatic utilization of the database. To help users better understand the API's capabilities, we have developed an interactive web interface called the OpenSSP API Query Builder, which implements an intuitive system of mechanisms for selecting shapes, sizes, and frequencies to generate queries, with which the API can then extract and return data from the database. The Query Builder also allows for the specification of normalized particle size distributions by setting pertinent parameters, with which the API can also return mean geometric and scattering properties for each size bin. Additionally, the Query Builder interface enables downloading of raw scattering and particle structure data packages. This presentation will describe some of the challenges and successes associated with developing such an API. Examples of its usage will be shown both through downloading output and pulling it into a spreadsheet, as well as querying the API programmatically and working with the output in code.

  13. Embedded Systems

    Indian Academy of Sciences (India)

    sumer electronic systems, they are cost sensitive. Thus their cost must be low. Robustness: Embedded systems should be robust since they operate in a harsh environment. They should endure vibrations, power supply fluctuations and excessive heat. Due to limited power supply in an embedded system, the power ...

  14. Transparent conductive oxide films embedded with plasmonic nanostructure for light-emitting diode applications.

    Science.gov (United States)

    Chuang, Shih-Hao; Tsung, Cheng-Sheng; Chen, Ching-Ho; Ou, Sin-Liang; Horng, Ray-Hua; Lin, Cheng-Yi; Wuu, Dong-Sing

    2015-02-04

    In this study, a spin coating process in which the grating structure comprises an Ag nanoparticle layer coated on a p-GaN top layer of InGaN/GaN light-emitting diode (LED) was developed. Various sizes of plasmonic nanoparticles embedded in a transparent conductive layer were clearly observed after the deposition of indium tin oxide (ITO). The plasmonic nanostructure enhanced the light extraction efficiency of blue LED. Output power was 1.8 times the magnitude of that of conventional LEDs operating at 350 mA, but retained nearly the same current-voltage characteristic. Unlike in previous research on surface-plasmon-enhanced LEDs, the metallic nanoparticles were consistently deposited over the surface area. However, according to microstructural observation, ITO layer mixed with Ag-based nanoparticles was distributed at a distance of approximately 150 nm from the interface of ITO/p-GaN. Device performance can be improved substantially by using the three-dimensional distribution of Ag-based nanoparticles in the transparent conductive layer, which scatters the propagating light randomly and is coupled between the localized surface plasmon and incident light internally trapped in the LED structure through total internal reflection.

  15. Application of discrete function and software control flow to dependability assessment of embedded digital system

    International Nuclear Information System (INIS)

    Choi, Jong Gyun; Seong, Poong Hyun

    2001-01-01

    This article describes a combinatorial model for estimating the reliability of the embedded digital system by means of discrete function theory and software control flow. This model includes a coverage model for fault processing mechanisms implemented in digital system. Furthermore, the model considers the interaction between hardware and software. The fault processing mechanisms make it difficult for many types of components in digital system to be treated as binary state, good or bad. The discrete function theory provides a complete analysis of multi-state system as which the digital system can be regarded Through adaptation software control flow to discrete function theory, the HW/SW interaction is considered for estimation of the reliability of digital system. Using this model, we predict the reliability of one board controller in a digital system, Interposing Logic System(ILS), which is installed in YGN nuclear power units 3 and 4. Since the proposed model is general combinatinal model, the simplification of this model becomes a conservative model that treats the system as binary state. Moreover, if information for coverage factor of fault tolerance mechanisms implemented in system through fault injection experiment is obtained, this model can consider detailed interaction of system components

  16. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications

    Science.gov (United States)

    Loss, Caroline; Gonçalves, Ricardo; Lopes, Catarina; Pinho, Pedro; Salvado, Rita

    2016-01-01

    The Internet of Things (IoT) scenario is strongly related with the advance of the development of wireless sensor networks (WSN) and radio frequency identification (RFID) systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM) 900 and digital cellular system (DCS) 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these “emblem” antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna. PMID:27338407

  17. Towards Resilient Critical Infrastructures: Application of Type-2 Fuzzy Logic in Embedded Network Security Cyber Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Todd Vollmer; Jim Alves-Foss; Milos Manic

    2011-08-01

    Resiliency and cyber security of modern critical infrastructures is becoming increasingly important with the growing number of threats in the cyber-environment. This paper proposes an extension to a previously developed fuzzy logic based anomaly detection network security cyber sensor via incorporating Type-2 Fuzzy Logic (T2 FL). In general, fuzzy logic provides a framework for system modeling in linguistic form capable of coping with imprecise and vague meanings of words. T2 FL is an extension of Type-1 FL which proved to be successful in modeling and minimizing the effects of various kinds of dynamic uncertainties. In this paper, T2 FL provides a basis for robust anomaly detection and cyber security state awareness. In addition, the proposed algorithm was specifically developed to comply with the constrained computational requirements of low-cost embedded network security cyber sensors. The performance of the system was evaluated on a set of network data recorded from an experimental cyber-security test-bed.

  18. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications.

    Science.gov (United States)

    Loss, Caroline; Gonçalves, Ricardo; Lopes, Catarina; Pinho, Pedro; Salvado, Rita

    2016-06-22

    The Internet of Things (IoT) scenario is strongly related with the advance of the development of wireless sensor networks (WSN) and radio frequency identification (RFID) systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM) 900 and digital cellular system (DCS) 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these "emblem" antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna.

  19. Smart Coat with a Fully-Embedded Textile Antenna for IoT Applications

    Directory of Open Access Journals (Sweden)

    Caroline Loss

    2016-06-01

    Full Text Available The Internet of Things (IoT scenario is strongly related with the advance of the development of wireless sensor networks (WSN and radio frequency identification (RFID systems. Additionally, in the WSN context, for a continuous feed, the integration of textile antennas for energy harvesting into smart clothing is a particularly interesting solution when the replacement of batteries is not easy to practice, such as in wearable devices. This paper presents the E-Caption: Smart and Sustainable Coat. It has an embedded dual-band textile antenna for electromagnetic energy harvesting, operating at global system for mobile communication (GSM 900 and digital cellular system (DCS 1800 bands. This printed antenna is fully integrated, as its dielectric is the textile material composing the coat itself. The E-Caption illustrates the innovative concept of textile antennas that can be manipulated as simple emblems. Seven prototypes of these “emblem” antennas, manufactured by lamination and embroidering techniques are also presented. It is shown that the orientation of the conductive fabric does not influence the performance of the antenna. It is also shown that the direction and number of the stitches in the embroidery may influence the performance of the antenna. Moreover, the comparison of results obtained before and after the integration of the antenna into cloth shows the integration does not affect the behavior of the antenna.

  20. Embedded Systems Design with FPGAs

    CERN Document Server

    Pnevmatikatos, Dionisios; Sklavos, Nicolas

    2013-01-01

    This book presents methodologies for modern applications of embedded systems design, using field programmable gate array (FPGA) devices.  Coverage includes state-of-the-art research from academia and industry on a wide range of topics, including advanced electronic design automation (EDA), novel system architectures, embedded processors, arithmetic, dynamic reconfiguration and applications. Describes a variety of methodologies for modern embedded systems design;  Implements methodologies presented on FPGAs; Covers a wide variety of applications for reconfigurable embedded systems, including Bioinformatics, Communications and networking, Application acceleration, Medical solutions, Experiments for high energy physics, Astronomy, Aerospace, Biologically inspired systems and Computational fluid dynamics (CFD).

  1. The two-dimensional Gaussian beam synthetic method: Testing and application

    Science.gov (United States)

    Nowack, R.; Aki, K.

    1984-09-01

    The Gaussian beam method of Červený et al. (1982) is an asymptotic method for the computation of wave fields in inhomogeneous media. The method consists of tracing rays and then solving the wave equation in "ray-centered coordinates." The parabolic approximation is applied to find the asymptotic local solution in the neighborhod of each ray. The approximate global solution for a given source is then constructed by a superposition of Gaussian beams along nearby rays. The Gaussian beam method is tested in a two-dimensional inhomogeneous medium using two approaches. One is the application of the reciprocal theorem for Green's functions in an arbitrarily heterogeneous medium. The discrepancy between synthetic seismograms for reciprocal cases is considered as a measure of the error. The other approach is to apply Gaussian beam synthesis to cases for which solutions are known by other approximate methods. This includes the soft basin problem that has been studied by finite difference, finite element, discrete wavenumber, and glorified optics. We found that the results of these tests were in general satisfactory. We have used the Gaussian beam method for two applications. First, the method is used to study volcanic earthquakes at Mount Saint Helens. The observed large differences in amplitude and arrival time between a station inside the crater and stations on the flanks can be explained by the combined effects of an anomalous velocity structure and a shallow focal depth. The method is also applied to scattering of teleseismic P waves by a lithosphere with randomly fluctuating velocities.

  2. Embedded, everywhere: a research agenda for networked systems of embedded computers

    National Research Council Canada - National Science Library

    Committee on Networked Systems of Embedded Computers; National Research Council Staff; Division on Engineering and Physical Sciences; Computer Science and Telecommunications Board; National Academy of Sciences

    2001-01-01

    .... Embedded, Everywhere explores the potential of networked systems of embedded computers and the research challenges arising from embedding computation and communications technology into a wide variety of applicationsâ...

  3. Automating Embedded Analysis Capabilities and Managing Software Complexity in Multiphysics Simulation, Part II: Application to Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Roger P. Pawlowski

    2012-01-01

    Full Text Available A template-based generic programming approach was presented in Part I of this series of papers [Sci. Program. 20 (2012, 197–219] that separates the development effort of programming a physical model from that of computing additional quantities, such as derivatives, needed for embedded analysis algorithms. In this paper, we describe the implementation details for using the template-based generic programming approach for simulation and analysis of partial differential equations (PDEs. We detail several of the hurdles that we have encountered, and some of the software infrastructure developed to overcome them. We end with a demonstration where we present shape optimization and uncertainty quantification results for a 3D PDE application.

  4. Smart Multicore Embedded Systems

    DEFF Research Database (Denmark)

    This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very...... specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention...... and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generation. Describes tools and programming models for multicore embedded systems Emphasizes throughout performance per watt scalability Discusses realistic limits of software parallelization Enables...

  5. Supervised embedding of textual predictors with applications in clinical diagnostics for pediatric cardiology.

    Science.gov (United States)

    Perry, Thomas Ernest; Zha, Hongyuan; Zhou, Ke; Frias, Patricio; Zeng, Dadan; Braunstein, Mark

    2014-02-01

    Electronic health records possess critical predictive information for machine-learning-based diagnostic aids. However, many traditional machine learning methods fail to simultaneously integrate textual data into the prediction process because of its high dimensionality. In this paper, we present a supervised method using Laplacian Eigenmaps to enable existing machine learning methods to estimate both low-dimensional representations of textual data and accurate predictors based on these low-dimensional representations at the same time. We present a supervised Laplacian Eigenmap method to enhance predictive models by embedding textual predictors into a low-dimensional latent space, which preserves the local similarities among textual data in high-dimensional space. The proposed implementation performs alternating optimization using gradient descent. For the evaluation, we applied our method to over 2000 patient records from a large single-center pediatric cardiology practice to predict if patients were diagnosed with cardiac disease. In our experiments, we consider relatively short textual descriptions because of data availability. We compared our method with latent semantic indexing, latent Dirichlet allocation, and local Fisher discriminant analysis. The results were assessed using four metrics: the area under the receiver operating characteristic curve (AUC), Matthews correlation coefficient (MCC), specificity, and sensitivity. The results indicate that supervised Laplacian Eigenmaps was the highest performing method in our study, achieving 0.782 and 0.374 for AUC and MCC, respectively. Supervised Laplacian Eigenmaps showed an increase of 8.16% in AUC and 20.6% in MCC over the baseline that excluded textual data and a 2.69% and 5.35% increase in AUC and MCC, respectively, over unsupervised Laplacian Eigenmaps. As a solution, we present a supervised Laplacian Eigenmap method to embed textual predictors into a low-dimensional Euclidean space. This method allows many

  6. On Building a Scalable Real-Time Fault-Tolerant System for Embedded Applications

    National Research Council Canada - National Science Library

    Abdelzaher, T

    2001-01-01

    .... This raises the challenge of constructing dependable and predictable real-time services for application developers on top of the inexpensive hardware and software components which has minimal support...

  7. Quantum Embedding Theories.

    Science.gov (United States)

    Sun, Qiming; Chan, Garnet Kin-Lic

    2016-12-20

    In complex systems, it is often the case that the region of interest forms only one part of a much larger system. The idea of joining two different quantum simulations-a high level calculation on the active region of interest, and a low level calculation on its environment-formally defines a quantum embedding. While any combination of techniques constitutes an embedding, several rigorous formalisms have emerged that provide for exact feedback between the embedded system and its environment. These three formulations: density functional embedding, Green's function embedding, and density matrix embedding, respectively, use the single-particle density, single-particle Green's function, and single-particle density matrix as the quantum variables of interest. Many excellent reviews exist covering these methods individually. However, a unified presentation of the different formalisms is so far lacking. Indeed, the various languages commonly used, functional equations for density functional embedding, diagrammatics for Green's function embedding, and entanglement arguments for density matrix embedding, make the three formulations appear vastly different. In this Account, we introduce the basic equations of all three formulations in such a way as to highlight their many common intellectual strands. While we focus primarily on a straightforward theoretical perspective, we also give a brief overview of recent applications and possible future developments. The first section starts with density functional embedding, where we introduce the key embedding potential via the Euler equation. We then discuss recent work concerning the treatment of the nonadditive kinetic potential, before describing mean-field density functional embedding and wave function in density functional embedding. We finish the section with extensions to time-dependence and excited states. The second section is devoted to Green's function embedding. Here, we use the Dyson equation to obtain equations that

  8. High molecular weight DNA assembly in vivo for synthetic biology applications.

    Science.gov (United States)

    Juhas, Mario; Ajioka, James W

    2017-05-01

    DNA assembly is the key technology of the emerging interdisciplinary field of synthetic biology. While the assembly of smaller DNA fragments is usually performed in vitro, high molecular weight DNA molecules are assembled in vivo via homologous recombination in the host cell. Escherichia coli, Bacillus subtilis and Saccharomyces cerevisiae are the main hosts used for DNA assembly in vivo. Progress in DNA assembly over the last few years has paved the way for the construction of whole genomes. This review provides an update on recent synthetic biology advances with particular emphasis on high molecular weight DNA assembly in vivo in E. coli, B. subtilis and S. cerevisiae. Special attention is paid to the assembly of whole genomes, such as those of the first synthetic cell, synthetic yeast and minimal genomes.

  9. Embedded systems handbook networked embedded systems

    CERN Document Server

    Zurawski, Richard

    2009-01-01

    Considered a standard industry resource, the Embedded Systems Handbook provided researchers and technicians with the authoritative information needed to launch a wealth of diverse applications, including those in automotive electronics, industrial automated systems, and building automation and control. Now a new resource is required to report on current developments and provide a technical reference for those looking to move the field forward yet again. Divided into two volumes to accommodate this growth, the Embedded Systems Handbook, Second Edition presents a comprehensive view on this area

  10. Operational Mapping of Soil Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France

    Directory of Open Access Journals (Sweden)

    Jean François Desprats

    2007-10-01

    Full Text Available Soil moisture is a key parameter in different environmental applications, suchas hydrology and natural risk assessment. In this paper, surface soil moisture mappingwas carried out over a basin in France using satellite synthetic aperture radar (SARimages acquired in 2006 and 2007 by C-band (5.3 GHz sensors. The comparisonbetween soil moisture estimated from SAR data and in situ measurements shows goodagreement, with a mapping accuracy better than 3%. This result shows that themonitoring of soil moisture from SAR images is possible in operational phase. Moreover,moistures simulated by the operational Météo-France ISBA soil-vegetation-atmospheretransfer model in the SIM-Safran-ISBA-Modcou chain were compared to radar moistureestimates to validate its pertinence. The difference between ISBA simulations and radarestimates fluctuates between 0.4 and 10% (RMSE. The comparison between ISBA andgravimetric measurements of the 12 March 2007 shows a RMSE of about 6%. Generally,these results are very encouraging. Results show also that the soil moisture estimatedfrom SAR images is not correlated with the textural units defined in the European Soil Geographical Database (SGDBE at 1:1000000 scale. However, dependence was observed between texture maps and ISBA moisture. This dependence is induced by the use of the texture map as an input parameter in the ISBA model. Even if this parameter is very important for soil moisture estimations, radar results shown that the textural map scale at 1:1000000 is not appropriate to differentiate moistures zones.

  11. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at National Taipei University of Technology)

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at National Taipei University of Technology. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  12. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at National Sun Yat-sen University) 

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at National Sun Yat-sen University. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  13. Organic Synthetic Advanced Materials for Optoelectronic and Energy Applications (at Center for Condensed Matter Sciences)

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hung-Ju [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Chemistry Division

    2016-11-14

    These slides cover Hung-Ju Yen's recent work in the synthesis and structural design of functional materials, which were further used for optoelectronic and energy applications, such as lithium ion battery, solar cell, LED, electrochromic, and fuel cells. This was for a job interview at Center for Condensed Matter Sciences. The following topics are detailed: current challenges for lithium-ion batteries; graphene, graphene oxide and nanographene; nanographenes with various functional groups; fine tune d-spacing through organic synthesis: varying functional group; schematic view of LIBs; nanographenes as LIB anode; rate performance (charging-discharging); electrochromic technology; electrochromic materials; advantages of triphenylamine; requirement of electrochromic materials for practical applications; low driving voltage and long cycle life; increasing the electroactive sites by multi-step synthetic procedures; synthetic route to starburst triarylamine-based polyamide; electrochromism ranging from visible to NIR region; transmissive to black electrochromism; RGB and CMY electrochromism.

  14. Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications.

    Science.gov (United States)

    Lu, Hua; Wang, Jing; Song, Ziyuan; Yin, Lichen; Zhang, Yanfeng; Tang, Haoyu; Tu, Chunlai; Lin, Yao; Cheng, Jianjun

    2014-01-07

    Polypeptides are fascinating materials with unique properties for various biological materials. We highlight here recent advances in amino acid N-carboxyanhydrides (NCAs) and synthetic polypeptides from the aspects of chemistry, self-assembly and biological applications. New synthetic methodologies, mechanistic studies and optimization of polymerization conditions for the preparation of well-defined novel polypeptides are comprehensively reviewed and evaluated. Functional polypeptides, mostly prepared from novel NCA monomers, with ultra-stable helical conformation, stimuli-sensitive properties, or glycoprotein mimetics are summarized. We also highlight a number of interesting self-assembled structures of polypeptides in solid state and solution, with particular emphasis on those structures other than amphiphilic self-assembly. The biological applications of polypeptides in drug and gene delivery are also reviewed. Future directions and perspectives are discussed in the conclusion.

  15. Embedded Linux projects using Yocto project cookbook

    CERN Document Server

    González, Alex

    2015-01-01

    If you are an embedded developer learning about embedded Linux with some experience with the Yocto project, this book is the ideal way to become proficient and broaden your knowledge with examples that are immediately applicable to your embedded developments. Experienced embedded Yocto developers will find new insight into working methodologies and ARM specific development competence.

  16. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica

    Directory of Open Access Journals (Sweden)

    Luis Miguel Peci

    2014-01-01

    Full Text Available This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARMTM processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (DebianTM as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS described has been deployed on the active Deception Island (Antarctica volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  17. Embedded ARM system for volcano monitoring in remote areas: application to the active volcano on Deception Island (Antarctica).

    Science.gov (United States)

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-02

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis.

  18. Perpendicular spin transfer torque magnetic random access memories with high spin torque efficiency and thermal stability for embedded applications (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Luc, E-mail: luc.thomas@headway.com; Jan, Guenole; Zhu, Jian; Liu, Huanlong; Lee, Yuan-Jen; Le, Son; Tong, Ru-Ying; Pi, Keyu; Wang, Yu-Jen; Shen, Dongna; He, Renren; Haq, Jesmin; Teng, Jeffrey; Lam, Vinh; Huang, Kenlin; Zhong, Tom; Torng, Terry; Wang, Po-Kang [TDK-Headway Technologies, Inc., Milpitas, California 95035 (United States)

    2014-05-07

    Magnetic random access memories based on the spin transfer torque phenomenon (STT-MRAMs) have become one of the leading candidates for next generation memory applications. Among the many attractive features of this technology are its potential for high speed and endurance, read signal margin, low power consumption, scalability, and non-volatility. In this paper, we discuss our recent results on perpendicular STT-MRAM stack designs that show STT efficiency higher than 5 k{sub B}T/μA, energy barriers higher than 100 k{sub B}T at room temperature for sub-40 nm diameter devices, and tunnel magnetoresistance higher than 150%. We use both single device data and results from 8 Mb array to demonstrate data retention sufficient for automotive applications. Moreover, we also demonstrate for the first time thermal stability up to 400 °C exceeding the requirement of Si CMOS back-end processing, thus opening the realm of non-volatile embedded memory to STT-MRAM technology.

  19. Embedded ARM System for Volcano Monitoring in Remote Areas: Application to the Active Volcano on Deception Island (Antarctica)

    Science.gov (United States)

    Peci, Luis Miguel; Berrocoso, Manuel; Fernández-Ros, Alberto; García, Alicia; Marrero, José Manuel; Ortiz, Ramón

    2014-01-01

    This paper describes the development of a multi-parameter system for monitoring volcanic activity. The system permits the remote access and the connection of several modules in a network. An embedded ARM™™ processor has been used, allowing a great flexibility in hardware configuration. The use of a complete Linux solution (Debian™) as Operating System permits a quick, easy application development to control sensors and communications. This provides all the capabilities required and great stability with relatively low energy consumption. The cost of the components and applications development is low since they are widely used in different fields. Sensors and commercial modules have been combined with other self-developed modules. The Modular Volcano Monitoring System (MVMS) described has been deployed on the active Deception Island (Antarctica) volcano, within the Spanish Antarctic Program, and has proved successful for monitoring the volcano, with proven reliability and efficient operation under extreme conditions. In another context, i.e., the recent volcanic activity on El Hierro Island (Canary Islands) in 2011, this technology has been used for the seismic equipment and GPS systems deployed, thus showing its efficiency in the monitoring of a volcanic crisis. PMID:24451461

  20. Review of Synthetically Focused Guided Wave Imaging Techniques With Application to Defect Sizing

    Science.gov (United States)

    Davies, J.; Simonetti, F.; Lowe, M.; Cawley, P.

    2006-03-01

    Synthetically focused imaging has been used for some time in the NDE community. The techniques have primarily been directed towards imaging using bulk waves. There has recently been use of SAFT (Synthetic Aperture Focusing Technique) using guided waves in plates. Here, we review three different synthetically focused imaging algorithms for a linear array aperture: CSM (Common Source Method), SAFT and TFM (Total Focusing Method). The resolution of the different techniques is obtained from scalar diffraction theory and then validated by means of a low frequency (50kHz) steel plate experiment using PZT excitation and laser reception of the A0 mode. Imaging of through thickness slits parallel to the array is then discussed.

  1. Smart multicore embedded systems

    CERN Document Server

    Bertels, Koen; Karlsson, Sven; Pacull, François

    2014-01-01

    This book provides a single-source reference to the state-of-the-art of high-level programming models and compilation tool-chains for embedded system platforms. The authors address challenges faced by programmers developing software to implement parallel applications in embedded systems, where very often they are forced to rewrite sequential programs into parallel software, taking into account all the low level features and peculiarities of the underlying platforms. Readers will benefit from these authors’ approach, which takes into account both the application requirements and the platform specificities of various embedded systems from different industries. Parallel programming tool-chains are described that take as input parameters both the application and the platform model, then determine relevant transformations and mapping decisions on the concrete platform, minimizing user intervention and hiding the difficulties related to the correct and efficient use of memory hierarchy and low level code generati...

  2. Energy Usage in an Embedded Space Vision Application on a Tiled Architecture

    Science.gov (United States)

    Kogge, Peter M.; Bornstein, Benjamin J.; Estlin, Tara A.

    2011-01-01

    The need for greater autonomy in platforms such as planetary rovers is driving rapidly to codes that far overwhelm the capabilities of conventional space-qualified single core processors to run them in real-time. However, a new generation of potentially space-qualified 2D "tiled" multi-core microprocessor chips is emerging with significant performance potential. Leveraging such inherently parallel hardware for space platforms requires consideration of both time and power limitations - the latter of which is not normally done in conventional parallel computing. This paper takes one such application, Rockster, and analyzes it for energy usage when ported to a multi-core tiled chip such as may come from the Maestro program. The results demonstrate not only the criticality of memory and interconnect in the energy of real-time parallel codes, but also the effects of possible "energy-aware" changes in partitioning and algorithm design.

  3. Embedded software verification and debugging

    CERN Document Server

    Winterholer, Markus

    2017-01-01

    This book provides comprehensive coverage of verification and debugging techniques for embedded software, which is frequently used in safety critical applications (e.g., automotive), where failures are unacceptable. Since the verification of complex systems needs to encompass the verification of both hardware and embedded software modules, this book focuses on verification and debugging approaches for embedded software with hardware dependencies. Coverage includes the entire flow of design, verification and debugging of embedded software and all key approaches to debugging, dynamic, static, and hybrid verification. This book discusses the current, industrial embedded software verification flow, as well as emerging trends with focus on formal and hybrid verification and debugging approaches. Includes in a single source the entire flow of design, verification and debugging of embedded software; Addresses the main techniques that are currently being used in the industry for assuring the quality of embedded softw...

  4. Applications of plastic embedding to electron microscopic immunocytochemistry and in situ hybridization in observations of production and secretion of peptide hormones.

    Science.gov (United States)

    Osamura, R Y; Itoh, Y; Matsuno, A

    2000-07-01

    Plastic embedding has been used to localize various antigens in conjunction with immunohistochemistry. Peptide hormones have been among the antigens that have been studied extensively. Recent application of water-soluble plastics such as LR White and Lowicryl has extended the ranges of detectable antigens and enabled the observation of antigen-antigen or mRNA-antigen combinations. This review article deals with technical aspects, procedures, and applications in endocrine cells.

  5. Development of a methodology for the application of synthetic DNA in stream tracer injection experiments

    NARCIS (Netherlands)

    Foppen, J.W.; Seopa, J.; Bakobie, N.; Bogaard, T.

    2013-01-01

    Stream tracer injection experiments are useful for characterizing hydrological and biogeochemical processes in streams. We used nonconservative synthetic DNA and conservative NaCl in six instantaneous tracer injection experiments in streams in the Benelux. The main aim was to compare the performance

  6. An embedded wireless sensor network at 433 MHz for agricultural applications

    Science.gov (United States)

    James, Daniel A.; Channells, Justin; MadhusudanRao, Neeli; Thiel, David V.

    2005-12-01

    The use of environmental sensors in agriculture and precision agriculture applications is becoming more common, although implementation strategies and capital costs prohibit widespread adoption by many in the industry. Typical costs for agricultural monitoring systems can be in the tens of thousands of dollars per site. This paper presents low cost, wireless sensor nodes and a corresponding low power network. The nodes use biodegradable plastic to house the sensor, support electronics, RF transceiver and a 433 MHz antenna. In this paper the antenna design and network topology is discussed together with the propagation problems associated with a field environment in which the vegetation changes weekly. It is envisaged that such a platform could be ploughed in to the field at the end of its working life. The total cost of construction of the prototype platform is approximately $US10 per sensor. A communication protocol was also developed to allow many of these devices to be installed simultaneously and for the transmission of collected data and dynamic configuration and reprogramming. A receiver system allows for the collation and presentation of collected data. Low cost soil moisture sensors were coupled to the platform and installed in a commercial nursery wholesaler. Field trials of the network were successfully conducted.

  7. Multi-level hp-finite cell method for embedded interface problems with application in biomechanics.

    Science.gov (United States)

    Elhaddad, Mohamed; Zander, Nils; Bog, Tino; Kudela, László; Kollmannsberger, Stefan; Kirschke, Jan; Baum, Thomas; Ruess, Martin; Rank, Ernst

    2017-12-19

    This work presents a numerical discretization technique for solving 3-dimensional material interface problems involving complex geometry without conforming mesh generation. The finite cell method (FCM), which is a high-order fictitious domain approach, is used for the numerical approximation of the solution without a boundary-conforming mesh. Weak discontinuities at material interfaces are resolved by using separate FCM meshes for each material sub-domain and weakly enforcing the interface conditions between the different meshes. Additionally, a recently developed hierarchical hp-refinement scheme is used to locally refine the FCM meshes to resolve singularities and local solution features at the interfaces. Thereby, higher convergence rates are achievable for nonsmooth problems. A series of numerical experiments with 2- and 3-dimensional benchmark problems is presented, showing that the proposed hp-refinement scheme in conjunction with the weak enforcement of the interface conditions leads to a significant improvement of the convergence rates, even in the presence of singularities. Finally, the proposed technique is applied to simulate a vertebra-implant model. The application showcases the method's potential as an accurate simulation tool for biomechanical problems involving complex geometry, and it demonstrates its flexibility in dealing with different types of geometric description. Copyright © 2017 John Wiley & Sons, Ltd.

  8. Synthetic strategies for controlling inter- and intramolecular interactions: Applications in single-molecule fluorescence imaging, bioluminescence imaging, and palladium catalysis

    Science.gov (United States)

    Conley, Nicholas R.

    The field of synthetic organic chemistry has reached such maturity that, with sufficient effort and resources, the synthesis of virtually any small molecule which exhibits reasonable stability at room temperature can be realized. While representing a monumental achievement for the field, the ability to exert precise control over molecular structure is just a means to an end, and it is frequently the responsibility of the synthetic chemist to determine which molecules should actually be synthesized. For better or worse, there exists no competitive free market in academia for new molecules, and as a result, the decision of which compounds should be synthesized is seldom driven by the forces of supply and demand; rather, it is guided by the synthetic chemist's interest in an anticipated structure-function relationship or in the properties of a previously unstudied class of molecules. As a consequence, there exists a pervasive need for chemists with synthetic expertise in fields (e.g., molecular imaging) and subdisciplines of chemistry (e.g., physical chemistry) in which the identification of promising synthetic targets dramatically outpaces the synthetic output in that field or subdiscipline, and ample opportunities are available for synthetic chemists who choose to pursue such cross-disciplinary research. This thesis describes synthetic efforts that leverage these opportunities to realize applications in biological imaging and in palladium catalysis. In Part I, the synthesis and characterization of three novel luminophores and their imaging applications are discussed. The first is a molecular beacon that utilizes a fluorophorefluorophore pair which exhibits H-dimer quenching in the closed conformation. This probe offers several advantages over conventional fluorophore-quencher molecular beacons in the detection of oligonucleotides, both in bulk and at the single-molecule level. Secondly, a fluorescent, Cy3-Cy5 covalent heterodimer is reported, which on account of the

  9. Applications of New Synthetic Uranium Reference Materials for Geochemistry Research (Invited)

    Science.gov (United States)

    Richter, S.; Weyer, S.; Alonso, A.; Aregbe, Y.; Kuehn, H.; Eykens, R.; Verbruggen, A.; Wellum, R.

    2009-12-01

    For many applications in geochemistry research isotope ratio measurements play a significant role. In geochronology isotope abundances of uranium and its daughter products thorium and lead are being used to determine the age and history of various samples of geological interest. For measuring the isotopic compositions of these elements by mass spectrometry, suitable isotope reference materials are needed to validate measurement procedures and to calibrate multi-collector and ion counting detector systems. IRMM is a recognized provider for nuclear isotope reference materials to the nuclear industry and nuclear safeguards authorities, which are also being applied widely for geochemical applications. The preparation of several new synthetic uranium reference materials at IRMM during the recent five years has provided significant impacts on geochemical research. As an example, the IRMM-074 series of gravimetrically prepared uranium mixtures for linearity testing of secondary electron multipliers (SEMs) has been applied for the redetermination of the secular equilibrium 234U/238U value and the 234U half-life by Cheng et al (2009). Due to the use of IRMM-074, results with smaller uncertainties were obtained, which are shifted by about 0.04% compared to the commonly used values published earlier by Cheng et al. in 2000. This has a significant impact for U isotope measurements in geochemistry.. As a further example, the new double spike IRMM-3636 with a 233U/236U ratio of 1:1 and an expanded uncertainty as low as 0.016% (coverage factor k=2, 95% confidence level) was prepared gravimetrically. This double spike allows internal mass fractionation correction for high precision 235U/238U ratio measurements of close to natural samples. Using the new double spike IRMM-3636, the 235U/238U ratios for several commonly used natural U standard materials from NIST/NBL and IRMM, such as e.g. NBS960 (=NBL CRM-112a), NBS950a,b and IRMM-184, have been re-measured with improved precision

  10. Light-erasable embedded charge-trapping memory based on MoS2 for system-on-panel applications

    Science.gov (United States)

    He, Long-Fei; Zhu, Hao; Xu, Jing; Liu, Hao; Nie, Xin-Ran; Chen, Lin; Sun, Qing-Qing; Xia, Yang; Wei Zhang, David

    2017-11-01

    The continuous scaling and challenges in device integrations in modern portable electronic products have aroused many scientific interests, and a great deal of effort has been made in seeking solutions towards a more microminiaturized package assembled with smaller and more powerful components. In this study, an embedded light-erasable charge-trapping memory with a high-k dielectric stack (Al2O3/HfO2/Al2O3) and an atomically thin MoS2 channel has been fabricated and fully characterized. The memory exhibits a sufficient memory window, fast programming and erasing (P/E) speed, and high On/Off current ratio up to 107. Less than 25% memory window degradation is observed after projected 10-year retention, and the device functions perfectly after 8000 P/E operation cycles. Furthermore, the programmed device can be fully erased by incident light without electrical assistance. Such excellent memory performance originates from the intrinsic properties of two-dimensional (2D) MoS2 and the engineered back-gate dielectric stack. Our integration of 2D semiconductors in the infrastructure of light-erasable charge-trapping memory is very promising for future system-on-panel applications like storage of metadata and flexible imaging arrays.

  11. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application.

    Science.gov (United States)

    Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng

    2014-06-01

    To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.

  12. Photophysical Behavior of Modified Xanthenic Dyes Embedded into Silsesquioxane Hybrid Films: Application in Photooxidation of Organic Molecules

    Directory of Open Access Journals (Sweden)

    Carolina V. Waiman

    2017-01-01

    Full Text Available Polymeric materials based on a bridged silsesquioxane with pendant dodecyl chains were synthesized and modified with different xanthenic dyes with the aim of developing a material with potential application in photooxidation of organic compounds. The employed dyes constitute a family of novel xanthenic chromophores with outstanding properties as singlet oxygen photosensitizers. The hybrid matrix was chosen for its enhanced properties such as flexibility and chemical resistance. The employed dyes were easily incorporated into the hybrid polymer obtaining homogeneous, transparent, and low-refractive-index materials. The polymeric films were characterized using UV-Vis absorption, fluorescence, and laser flash photolysis techniques. The ability of these materials to produce singlet oxygen was tested following the photooxidation of 9,10-dimethylanthracene which is a well-known chemical trap for singlet oxygen. High photooxidation efficiencies were observed for these materials, which present the advantage of being easily removed/collected from the solution where photooxidation takes place. While photobleaching of the incorporated dyes is commonly observed in the solution, it takes place very slowly when dyes are embedded in the hybrid matrix. These properties bode well for the potential use of these materials in novel wastewater purification strategies.

  13. Design of C18 Organic Phases with Multiple Embedded Polar Groups for Ultraversatile Applications with Ultrahigh Selectivity.

    Science.gov (United States)

    Mallik, Abul K; Qiu, Hongdeng; Oishi, Tomohiro; Kuwahara, Yutaka; Takafuji, Makoto; Ihara, Hirotaka

    2015-07-07

    by the separation of sulfa drugs, β-blockers, xanthines, nucleic acid bases, nucleosides, and water-soluble vitamins. Both of the phases showed the best performance for the separation of shape-constrained isomers, nonpolar, polar, and basic compounds in RPLC- and HILIC-mode separation of sulfa drugs, and other polar and basic analytes compared to the conventional alkyl phases with and without embedded polar groups and HILIC phases. Surprisingly, one phase would be able to serve the performance of three different types of phases with very high selectivity, and we named this phase the "smart phase". Versatile applications with a single column will reduce the column purchasing cost for the analyst as well as achieve high separation, which is challenging with the commercially available columns.

  14. Embedded Systems

    Indian Academy of Sciences (India)

    system programmers should take into consideration all possi- bilities and write programs that do not fail. Responsiveness: Embedded systems should respond to events as soon as possible. For example, a patient monitoring system should process the patient'S heart signals quickly and immedi- ately notify if any abnormality ...

  15. Embedded defects

    International Nuclear Information System (INIS)

    Barriola, M.; Vachaspati, T.; Bucher, M.

    1994-01-01

    We give a prescription for embedding classical solutions and, in particular, topological defects in field theories which are invariant under symmetry groups that are not necessarily simple. After providing examples of embedded defects in field theories based on simple groups, we consider the electroweak model and show that it contains the Z string and a one-parameter family of strings called the W(α) string. It is argued that although the members of this family are gauge equivalent when considered in isolation, each member becomes physically distinct when multistring configurations are considered. We then turn to the issue of stability of embedded defects and demonstrate the instability of a large class of such solutions in the absence of bound states or condensates. The Z string is shown to be unstable for all values of the Higgs boson mass when θ W =π/4. W strings are also shown to be unstable for a large range of parameters. Embedded monopoles suffer from the Brandt-Neri-Coleman instability. Finally, we connect the electroweak string solutions to the sphaleron

  16. Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Borodina, Irina; Li, Mingji

    2015-01-01

    Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof-of-concept ch......Synthetic biology and metabolic engineering enable generation of novel cell factories that efficiently convert renewable feedstocks into biofuels, bulk, and fine chemicals, thus creating the basis for biosustainable economy independent on fossil resources. While over a hundred proof...... computational tools for the prediction of biochemical pathways, molecular biology methods for assembly of DNA parts into pathways, and for introducing the pathways into the host, and finally approaches for optimizing performance of the introduced pathways....

  17. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  18. Defining the Construct of Synthetic Androgen Intoxication: An Application of General Brain Arousal

    Directory of Open Access Journals (Sweden)

    Tom Hildebrandt

    2018-03-01

    Full Text Available Synthetic androgens (i. e., anabolic-androgenic steroids are the primary component to the majority of problematic appearance and performance enhancing drug (APED use. Despite evidence that these substances are associated with increased risk for aggression, violence, body image disturbances, and polypharmacy and can develop a pattern of chronic use consistent with drug dependence, there are no formal definitions of androgen intoxication. Consequently, the purpose of this paper is to establish a testable theory of androgen intoxication. We present evidence and theorize that synthetic androgen intoxication can be defined by a pattern of poor self-regulation characterized by increased propensity for a range of behaviors (e.g., aggression, sex, drug seeking, exercise, etc. via androgen mediated effects on general brain arousal. This theory posits that androgens reduce threshold for emotional reactivity, motor response, and alertness to sensory stimuli and disrupt inhibitory control over the behaviors associated with synthetic androgen use. These changes result from alteration to basic neurocircuitry that amplifies limbic activation and reduces top-down cortical control. The implications for this definition are to inform APED specific hypotheses about the behavioral and psychological effects of APED use and provide a basis for establishing clinical, legal, and public health guidelines to address the use and misuse of these substances.

  19. Development and application of course-embedded assessment system for program outcome evaluation in the Korean nursing education: A pilot study.

    Science.gov (United States)

    Park, Jee Won; Seo, Eun Ji; You, Mi-Ae; Song, Ju-Eun

    2016-03-01

    Program outcome evaluation is important because it is an indicator for good quality of education. Course-embedded assessment is one of the program outcome evaluation methods. However, it is rarely used in Korean nursing education. The study purpose was to develop and apply preliminarily a course-embedded assessment system to evaluate one program outcome and to share our experiences. This was a methodological study to develop and apply the course-embedded assessment system based on the theoretical framework in one nursing program in South Korea. Scores for 77 students generated from the three practicum courses were used. The course-embedded assessment system was developed following the six steps suggested by Han's model as follows. 1) One program outcome in the undergraduate program, "nursing process application ability", was selected and 2) the three clinical practicum courses related to the selected program outcome were identified. 3) Evaluation tools including rubric and items were selected for outcome measurement and 4) performance criterion, the educational goal level for the program, was established. 5) Program outcome was actually evaluated using the rubric and evaluation items in the three practicum courses and 6) the obtained scores were analyzed to identify the achievement rate, which was compared with the performance criterion. Achievement rates for the selected program outcome in adult, maternity, and pediatric nursing practicum were 98.7%, 100%, and 66.2% in the case report and 100% for all three in the clinical practice, and 100%, 100%, and 87% respectively for the conference. These are considered as satisfactory levels when compared with the performance criterion of "at least 60% or more". Course-embedded assessment can be used as an effective and economic method to evaluate the program outcome without running an integrative course additionally. Further studies to develop course-embedded assessment systems for other program outcomes in nursing

  20. PVA/K{sub 2}Ti{sub 6}O{sub 13} synthetic composite for dielectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Mayank; Joshi, Girish M., E-mail: varadgm@gmail.com, E-mail: girish.joshi@vit.ac.in; Khutia, Moumita [Polymer Nanocomposite Labrotory, Material Physics Division, School of Advanced Sciences, VIT University, Vellore-632014, Tamilnadu (India); Rao, N. Madhusudhana; Kaleemulla, S. [Thinfilm Labrotory, Material Physics Division, School of Advanced Sciences, VIT University, Vellore-632014, Tamilnadu (India); Kumer, Ramesh K. [Thermal and Automotive Division, School of Mechanical and Building Sciences, VIT University, Vellore-632014, Tamilnadu (India); Cuberes, M. Teresa [Laboratory of Nanotechnology, University of Castilla-La Mancha, Plaza Manuel Meca 1, 13400 Almadén (Spain)

    2016-05-23

    We demonstrated the preparation of polyvinyl alcohol (PVA) /Potassium titanate (K{sub 2}Ti{sub 6}O{sub 13}) synthetic composite by solution blending. The loading of K{sub 2}Ti{sub 6}O{sub 13} well dispersed in PVA and improved electrical performance. The dielectric constant and loss as a function of temperature were recorded under frequency (200 Hz-1 kHz). The real dielectric constant value obtained is (ε=1000) feasible for various electronic and non-conventional energy applications.

  1. Implementation of density functional embedding theory within the projector-augmented-wave method and applications to semiconductor defect states

    International Nuclear Information System (INIS)

    Yu, Kuang; Libisch, Florian; Carter, Emily A.

    2015-01-01

    We report a new implementation of the density functional embedding theory (DFET) in the VASP code, using the projector-augmented-wave (PAW) formalism. Newly developed algorithms allow us to efficiently perform optimized effective potential optimizations within PAW. The new algorithm generates robust and physically correct embedding potentials, as we verified using several test systems including a covalently bound molecule, a metal surface, and bulk semiconductors. We show that with the resulting embedding potential, embedded cluster models can reproduce the electronic structure of point defects in bulk semiconductors, thereby demonstrating the validity of DFET in semiconductors for the first time. Compared to our previous version, the new implementation of DFET within VASP affords use of all features of VASP (e.g., a systematic PAW library, a wide selection of functionals, a more flexible choice of U correction formalisms, and faster computational speed) with DFET. Furthermore, our results are fairly robust with respect to both plane-wave and Gaussian type orbital basis sets in the embedded cluster calculations. This suggests that the density functional embedding method is potentially an accurate and efficient way to study properties of isolated defects in semiconductors

  2. Applications of New Synthetic Uranium Reference Materials for Research in Geochemistry

    Science.gov (United States)

    Richter, Stephan; Alonso, Adolfo; Aregbe, Yetunde; Eykens, Roger; Jacobsson, Ulf; Kuehn, Heinz; Verbruggen, Andre; Weyer, Stefan

    2010-05-01

    For many applications in geochemistry research isotope ratio measurements play a significant role. In geochronology isotope abundances of uranium and its daughter products thorium and lead are being used to determine the age and history of various samples of geological interest. For measuring the isotopic compositions of these elements by mass spectrometry, suitable isotope reference materials are needed to validate measurement procedures and to calibrate multi-collector and ion counting detector systems. IRMM is a recognized provider for nuclear isotope reference materials to the nuclear industry and nuclear safeguards authorities, which are also being applied widely for geochemical applications. Firstly, the double spike IRMM-3636 with a 233U/236U ratio of 1:1 was prepared which allows internal mass fractionation correction for high precision 235U/238U ratio measurements. The 234U abundance of this double spike material is low enough to allow an accurate and precise correction of 234U/238U ratios, even for measurements of close to equilibrium uranium samples. The double spike IRMM-3636 is offered in 3 concentrations: 1mg/g, 0.1mg/g and 0.005mg/g. Secondly, the 236U single spike IRMM-3660 was prepared and is offered in 3 concentrations: 1mg/g, 0.1mg/g and 0.01mg/g. Thirdly, a "Quad"-isotope reference material, IRMM-3101, has been prepared which is characterized by 233U/235U/236U/238U=1/1/1/1. This material is useful for checking Faraday cup efficiencies and inter-calibration of MIC (multiple ion counting) detectors. The quad-IRM is offered in 3 concentrations: 1mg/g, 0.1mg/g and 0.01mg/g. As one example for the significant influence of synthetic reference materials for geochemical research, the IRMM-074 series of gravimetrically prepared uranium mixtures for linearity testing of secondary electron multipliers (SEMs) has been applied for the redetermination of the secular equilibrium 234U/238U value and the 234U half-life by Cheng et al (2009). Due to the use of

  3. Advances in embedded computer vision

    CERN Document Server

    Kisacanin, Branislav

    2014-01-01

    This illuminating collection offers a fresh look at the very latest advances in the field of embedded computer vision. Emerging areas covered by this comprehensive text/reference include the embedded realization of 3D vision technologies for a variety of applications, such as stereo cameras on mobile devices. Recent trends towards the development of small unmanned aerial vehicles (UAVs) with embedded image and video processing algorithms are also examined. The authoritative insights range from historical perspectives to future developments, reviewing embedded implementation, tools, technolog

  4. Modeling and Deployment of Model-Based Decentralized Embedded Diagnosis inside Vehicles: Application to Smart Distance Keeping Function

    Directory of Open Access Journals (Sweden)

    Othman Nasri

    2012-01-01

    Full Text Available The deployment of a fault diagnosis strategy in the Smart Distance Keeping (SDK system with a decentralized architecture is presented. The SDK system is an advanced Adaptive Cruise Control (ACC system implemented in a Renault-Volvo Trucks vehicle to increase safety by overcoming some ACC limitations. One of the main differences between this new system and the classical ACC is the choice of the safe distance. This latter is the distance between the vehicle equipped with the ACC or the SDK system and the obstacle-in-front (which may be another vehicle. It is supposed fixed in the case of the ACC, while variable in the case of the SDK. The variation of this distance depends essentially on the relative velocity between the vehicle and the obstacle-in-front. The main goal of this work is to analyze measurements, issued from the SDK elements, in order to detect, to localize, and to identify some faults that may occur. Our main contribution is the proposition of a decentralized approach permitting to carry out an on-line diagnosis without computing the global model and to achieve most of the work locally avoiding huge extra diagnostic information traffic between components. After a detailed description of the SDK system, this paper explains the model-based decentralized solution and its application to the embedded diagnosis of the SDK system inside Renault-Volvo Truck with five control units connected via a CAN-bus using “Hardware in the Loop” (HIL technique. We also discuss the constraints that must be fulfilled.

  5. Embedded Systems Design: Optimization Challenges

    DEFF Research Database (Denmark)

    Pop, Paul

    2005-01-01

    Summary form only given. Embedded systems are everywhere: from alarm clocks to PDAs, from mobile phones to cars, almost all the devices we use are controlled by embedded systems. Over 99% of the microprocessors produced today are used in embedded systems, and recently the number of embedded systems...... in use has become larger than the number of humans on the planet. The complexity of embedded systems is growing at a very high pace and the constraints in terms of functionality, performance, low energy consumption, reliability, cost and time-to-market are getting tighter. Therefore, the task...... of designing such systems is becoming increasingly important and difficult at the same time. New automated design optimization techniques are needed, which are able to: successfully manage the complexity of embedded systems, meet the constraints imposed by the application domain, shorten the time...

  6. A Novel Application of Synthetic Biology and Directed Evolution to Engineer Phage-based Antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Meiye [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    The emergence of multiple drug resistant bacteria poses threats to human health, agriculture and food safety. Annually over 100,000 deaths and up to $20 billion loss to the U.S. economy are attributed to multiple drug resistant bacteria. With only four new chemical antibiotics in the drug development pipeline, we are in dire need of new solutions to address the emerging threat of multiple drug resistance. We propose a paradigm-changing approach to address the multi-drug resistant bacteria problem by utilizing Synthetic Biology (SynBio) methodologies to create and evolve “designer” bacteriophages or phages – viruses that specifically infect bacteria – to infect and kill newly emerging pathogenic bacterial strains WITHOUT the need for chemical antibiotics. A major advantage of using phage to combat pathogenic bacteria is that phages can co-evolve with their bacterial host, and Sandia can be the first in the world to establish an industrial scale Synthetic Biology pipeline for phage directed evolution for safe, targeted, customizable solution to bacterial drug resistance. Since there is no existing phage directed evolution effort within or outside of Sandia, this proposal is suitable as a high-risk LDRD effort to create the first pipeline for such an endeavor. The high potential reward nature of this proposal will be the immediate impact in decontamination and restoration of surfaces and infrastructure, with longer term impact in human or animal therapeutics. The synthetic biology and screening approaches will lead to fundamental knowledge of phage/bacteria co-evolution, making Sandia a world leader in directed evolution of bacteriophages.

  7. Application of membrane technologies for the treatment of textile wastewater and synthetic textile dyes

    International Nuclear Information System (INIS)

    Aouni, A.; Bes-Pia, A.; Fersi, C.; Dhahbi, M.; Cuartas-Uribe, B.; Alcaina-Miranda, M. I.

    2009-01-01

    Textile industry is characterized by using a great variety of chemicals and by large water consumption. In this way, textile effluents contains many types of dyes, detergents, solvents and salts depending on the particular textile mill processes (dyeing, printing, finishing...) and on the raw matter. For those reasons, textile industry is one of the main sources of industrial pollution, producing effluents discharges characterized by high conductivities and chemical oxygen demand (COD) values and strong colour. Process selection and operating conditions are important issues to optimize technically and economically the textile effluent treatment. This work presents the results of the laboratory-scale membrane experiments of textile industry effluents and synthetic textile dyes. Different types of Ultrafiltration (UF) and Nano filtration (NF) membranes were evaluated for permeate flux and their suitability in separating COD, colour, conductivity. Experiments demonstrated that membrane treatment is a very promising advanced treatment option for pollution control for textile industry effluents. The results of this work show that the direct ultrafiltration seems to be a realistic method in the pretreatment of the textile wastewater. In fact, NF process was successfully used to improve permeate quality of synthetic dyeing textile wastewater, but this process presented some limitations in the treatment of textile industry effluents because of membrane fouling problems. So, this process requires an efficient and appropriate technique such as ultrafiltration as a pre-treatment step for textile wastewater reuse. For direct nano filtration of synthetic textile dyes aqueous solutions, with a weak salt concentration (500 ppm), good results were obtained. More than 95 pour cent of color was removed from the treated water accompanied with a reduction of 92 pour cent of conductivity and COD. Based on the experiments; NF membranes are suitable for producing permeate of reusable

  8. Application of Laser Induced Breakdown Spectroscopy to the identification of emeralds from different synthetic processes

    International Nuclear Information System (INIS)

    Agrosì, G.; Tempesta, G.; Scandale, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Palleschi, V.; Mangone, A.; Lezzerini, M.

    2014-01-01

    Laser Induced Breakdown Spectroscopy can provide a useful contribution in mineralogical field in which the quantitative chemical analyses (including the evaluation of light elements) can play a key role in the studies on the origin of the emeralds. In particular, the chemical analyses permit to determine those trace elements, known as fingerprints, that can be useful to study their provenance. This technique, not requiring sample preparation results particularly suitable for gemstones, that obviously must be studied in a non-destructive way. In this paper, the LIBS technique was applied to distinguish synthetic emeralds grown by Biron hydrothermal method from those grown by Chatham flux method. The analyses performed by collinear double-pulse LIBS give a signal enhancement useful for the quantitative chemical analyses while guaranteeing a minimal sample damage. In this way it was obtained a considerable improvement on the detection limit of the trace elements, whose determination is essential for determining the origin of emerald gemstone. The trace elements V, Cr, and Fe and their relative amounts allowed the correct attribution of the manufacturer. Two different methods for quantitative analyses were used for this study: the standard Calibration-Free LIBS (CF-LIBS) method and its recent evolution, the One Point Calibration LIBS (OPC-LIBS). This is the first approach to the evaluation of the emerald origin by means of the LIBS technique. - Highlights: • A LIBS method for discrimination between synthetic emeralds is presented. • Only one standard of known composition is needed for the analysis. • A set of two kind of synthetic emeralds has been analyzed. • The cromophoric elements Cr, V and Fe amounts have been used to determine the origin of emerald gemstone

  9. Application of Laser Induced Breakdown Spectroscopy to the identification of emeralds from different synthetic processes

    Energy Technology Data Exchange (ETDEWEB)

    Agrosì, G. [Department of Scienze della Terra e Geoambientali, University of Bari, Bari (Italy); Tempesta, G., E-mail: gioacchino.tempesta@uniba.it [Department of Scienze della Terra e Geoambientali, University of Bari, Bari (Italy); Scandale, E. [Department of Scienze della Terra e Geoambientali, University of Bari, Bari (Italy); Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Palleschi, V. [Institute of Chemistry of Organometallic Compounds, CNR, Pisa (Italy); Mangone, A. [Department of Chemistry, University of Bari, Bari (Italy); Lezzerini, M. [Department of Earth Sciences, University of Pisa, Pisa (Italy)

    2014-12-01

    Laser Induced Breakdown Spectroscopy can provide a useful contribution in mineralogical field in which the quantitative chemical analyses (including the evaluation of light elements) can play a key role in the studies on the origin of the emeralds. In particular, the chemical analyses permit to determine those trace elements, known as fingerprints, that can be useful to study their provenance. This technique, not requiring sample preparation results particularly suitable for gemstones, that obviously must be studied in a non-destructive way. In this paper, the LIBS technique was applied to distinguish synthetic emeralds grown by Biron hydrothermal method from those grown by Chatham flux method. The analyses performed by collinear double-pulse LIBS give a signal enhancement useful for the quantitative chemical analyses while guaranteeing a minimal sample damage. In this way it was obtained a considerable improvement on the detection limit of the trace elements, whose determination is essential for determining the origin of emerald gemstone. The trace elements V, Cr, and Fe and their relative amounts allowed the correct attribution of the manufacturer. Two different methods for quantitative analyses were used for this study: the standard Calibration-Free LIBS (CF-LIBS) method and its recent evolution, the One Point Calibration LIBS (OPC-LIBS). This is the first approach to the evaluation of the emerald origin by means of the LIBS technique. - Highlights: • A LIBS method for discrimination between synthetic emeralds is presented. • Only one standard of known composition is needed for the analysis. • A set of two kind of synthetic emeralds has been analyzed. • The cromophoric elements Cr, V and Fe amounts have been used to determine the origin of emerald gemstone.

  10. Application of synthetic fire-resistant oils in oil systems of turbine equipment for NPPs

    Science.gov (United States)

    Galimova, L. A.

    2017-10-01

    Results of the investigation of the synthetic fire-resistant turbine oil Fyrquel-L state in oil systems of turbosets under their operation in the equipment and oil supply facilities of nuclear power plants (NPPs) are presented. On the basis of the analysis of the operating experience, it is established that, for reliable and safe operation of the turbine equipment, at which oil systems synthetic fire-resistant oils on the phosphoric acid esters basis are used, special attention should be paid to two main factors, namely, both the guarantee of the normalized oil water content under the operation and storage and temperature regime of the operation. Methods of the acid number maintenance and reduction are shown. Results of the analysis and investigation of influence of temperature and of the variation of the qualitative state of the synthetic fair-resistant oil on its water content are reported. It is shown that the fire-resistant turbine oils are characterized by high hydrophilicity, and, in distinction to the mineral turbine oils, are capable to contain a significant amount of dissolved water, which is not extracted under the use of separation technologies. It is shown that the more degradation products are contained in oil and higher acid number, the more amount of dissolved water it is capable to retain. It is demonstrated that the organization of chemical control of the total water content of fireresistant oils with the use of the coulometric method is an important element to support the reliable operation of oil systems. It is recommended to use automatic controls of water content for organization of daily monitoring of oil state in the oil system. Recommendations and measures for improvement of oil operation on the NPP, the water content control, the use of oil cleaning plants, and the oil transfer for storage during repair works are developed.

  11. Recent Advance in Heterocyclic Organozinc and Organomanganese Compounds; Direct Synthetic Routes and Application in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Reuben D. Rieke

    2010-11-01

    Full Text Available A practical synthetic route for the preparation of 2-pyridyl and 3-pyridyl derivatives has been accomplished by utilizing a simple coupling reaction of stable 2-pyridylzinc bromides and 3-pyridylzinc bromides. The organozincs used in this study were easily prepared via the direct insertion of active zinc into the corresponding bromopyridines. The subsequent coupling reactions with a variety of different electrophiles have afforded the corresponding coupling products. Using highly active manganese, a variety of Grignard-type organomanganese reagents have been obtained. The subsequent coupling reactions of the resulting organomanganese reagents with several electrophiles have also been accomplished under mild conditions.

  12. Recent advance in heterocyclic organozinc and organomanganese compounds; direct synthetic routes and application in organic synthesis.

    Science.gov (United States)

    Kim, Seung-Hoi; Rieke, Reuben D

    2010-11-08

    A practical synthetic route for the preparation of 2-pyridyl and 3-pyridyl derivatives has been accomplished by utilizing a simple coupling reaction of stable 2-pyridylzinc bromides and 3-pyridylzinc bromides. The organozincs used in this study were easily prepared via the direct insertion of active zinc into the corresponding bromopyridines. The subsequent coupling reactions with a variety of different electrophiles have afforded the corresponding coupling products. Using highly active manganese, a variety of Grignard-type organomanganese reagents have been obtained. The subsequent coupling reactions of the resulting organomanganese reagents with several electrophiles have also been accomplished under mild conditions.

  13. Origin of Mechanoluminescence from Cu-Doped ZnS Particles Embedded in an Elastomer Film and Its Application in Flexible Electro-mechanoluminescent Lighting Devices.

    Science.gov (United States)

    Shin, Seung Wook; Oh, Jeung Pyo; Hong, Chang Woo; Kim, Eun Mi; Woo, Jeong Ju; Heo, Gi-Seok; Kim, Jin Hyeok

    2016-01-20

    Mechanically driven light emission from particles embedded in elastomer films has recently attracted interest as a strong candidate for next-generation light sources on display devices because it is nondestructive, reproducible, real-time, environmentally friendly, and reliable. The origin of mechanoluminescence (ML) obtained from particles embedded in elastomer films have been proposed as the trapping of drifting charge carriers in the presence of a piezoelectric field. However, in this study, we propose a new origin of ML through the study of the microstructure of a Cu-doped ZnS particles embedded in an elastomer composite film with high brightness using transmission electron microscopy (TEM) to clearly demonstrate the origin of ML with respect to the microstructure of ML composite films. The TEM characterization of the ML composite film demonstrated that the Cu-doped ZnS particles were fully encapsulated by a 500 nm thick Al layer, which acts as an electron source for ML emission. Furthermore, we fabricated a flexible electro-mechanoluminescence (EML) device using a Cu-doped ZnS particles embedded in a flexible elastomer composite film. Our research results on a new emission mechanism for ML and its application in flexible light generating elastomer films represent an important step toward environmentally benign and ecofriendly flexible electro-mechanoluminescent lighting devices.

  14. Methodological approach for performance and durability assessment of distributed fiber optic sensors: application to a specific fiber optic cable embedded in concrete

    International Nuclear Information System (INIS)

    Henault, Jean-Marie

    2013-01-01

    Structural Health Monitoring is a key factor in life-cycle management of civil structures. Truly distributed fiber optic sensors, composed by an optoelectronic device paired with an optical fiber in a cable, provide strain profiles over several kilometers with a centimeter resolution. They are thus able to provide relevant information on large structures. However, a preliminary performance assessment is required prior to any industrial application. Due to shear deformation of the cable's protective coating, strain measurements provided by the measuring system may differ from actual strains in the embedding medium. A methodology, based on mechanical tests and modelling, was thus developed to determine the relationship between measured/actual strains. It was applied to determine the mechanical response of a specific cable embedded in concrete. Performance assessment method was applied to a specific measuring system. Tests were carried out under laboratory conditions on the fiber optic cable, out of the concrete medium in a first stage, and then embedded in concrete structures. It enabled to evaluate its components and standard uncertainties. The cable could not be replaced after being embedded in concrete. It is necessary to evaluate the ageing effects on its mechanical properties to use it for a long term period. A specific study was carried out to determine the cable durability under chemical, thermal and mechanical solicitations. (author)

  15. Genome Partitioner: A web tool for multi-level partitioning of large-scale DNA constructs for synthetic biology applications.

    Directory of Open Access Journals (Sweden)

    Matthias Christen

    Full Text Available Recent advances in lower-cost DNA synthesis techniques have enabled new innovations in the field of synthetic biology. Still, efficient design and higher-order assembly of genome-scale DNA constructs remains a labor-intensive process. Given the complexity, computer assisted design tools that fragment large DNA sequences into fabricable DNA blocks are needed to pave the way towards streamlined assembly of biological systems. Here, we present the Genome Partitioner software implemented as a web-based interface that permits multi-level partitioning of genome-scale DNA designs. Without the need for specialized computing skills, biologists can submit their DNA designs to a fully automated pipeline that generates the optimal retrosynthetic route for higher-order DNA assembly. To test the algorithm, we partitioned a 783 kb Caulobacter crescentus genome design. We validated the partitioning strategy by assembling a 20 kb test segment encompassing a difficult to synthesize DNA sequence. Successful assembly from 1 kb subblocks into the 20 kb segment highlights the effectiveness of the Genome Partitioner for reducing synthesis costs and timelines for higher-order DNA assembly. The Genome Partitioner is broadly applicable to translate DNA designs into ready to order sequences that can be assembled with standardized protocols, thus offering new opportunities to harness the diversity of microbial genomes for synthetic biology applications. The Genome Partitioner web tool can be accessed at https://christenlab.ethz.ch/GenomePartitioner.

  16. Molecular recognition by synthetic receptors: Application in field-effect transistor based chemosensing.

    Science.gov (United States)

    Iskierko, Zofia; Noworyta, Krzysztof; Sharma, Piyush Sindhu

    2018-03-06

    Molecular recognition, i.e., ability of one molecule to recognize another through weak bonding interactions, is one of the bases of life. It is often implemented to sensing systems of high merits. Preferential recognition of the analyte (guest) by the receptor (host) induces changes in physicochemical properties of the sensing system. These changes are measured by using suitable signal transducers. Because of possibility of miniaturization, fast response, and high sensitivity, field-effect transistors (FETs) are more frequently being used for that purpose. A FET combined with a biological material offers the potential to overcome many challenges approached in sensing. However, low stability of biological materials under measurement conditions is a serious problem. To circumvent this problem, synthetic receptors were integrated with the gate surface of FETs to provide robust performance. In the present critical review, the approach utilized to devise chemosensors integrating synthetic receptors and FET transduction is discussed in detail. The progress in this field was summarized and important outcome was provided. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Application of Synthetic Polymeric Scaffolds in Breast Cancer 3D Tissue Cultures and Animal Tumor Models

    Directory of Open Access Journals (Sweden)

    Girdhari Rijal

    2017-01-01

    Full Text Available Preparation of three-dimensional (3D porous scaffolds from synthetic polymers is a challenge to most laboratories conducting biomedical research. Here, we present a handy and cost-effective method to fabricate polymeric hydrogel and porous scaffolds using poly(lactic-co-glycolic acid (PLGA or polycaprolactone (PCL. Breast cancer cells grown on 3D polymeric scaffolds exhibited distinct survival, morphology, and proliferation compared to those on 2D polymeric surfaces. Mammary epithelial cells cultured on PLGA- or PCL-coated slides expressed extracellular matrix (ECM proteins and their receptors. Estrogen receptor- (ER- positive T47D breast cancer cells are less sensitive to 4-hydroxytamoxifen (4-HT treatment when cultured on the 3D porous scaffolds than in 2D cultures. Finally, cancer cell-laden polymeric scaffolds support consistent tumor formation in animals and biomarker expression as seen in human native tumors. Our data suggest that the porous synthetic polymer scaffolds satisfy the basic requirements for 3D tissue cultures both in vitro and in vivo. The scaffolding technology has appealing potentials to be applied in anticancer drug screening for a better control of the progression of human cancers.

  18. Three-dimensional bubble field resolution using synthetic aperture imaging: application to a plunging jet

    Science.gov (United States)

    Belden, Jesse; Ravela, Sai; Truscott, Tadd T.; Techet, Alexandra H.

    2012-09-01

    A methodology for resolving three-dimensional (3D) bubble fields using 3D synthetic aperture imaging (SA imaging) is developed and applied to the bubbly flows induced by a turbulent circular plunging jet. 3D SA imaging involves capturing entirely in-focus images in an array of cameras with multiple viewpoints, then reprojecting the images into the measurement volume and combining them post capture. The result is a stack of synthetically refocused images that span the measurement volume with each refocused image having a narrow focus on a particular plane. In this paper, bubble shadow images are captured by projecting diffuse backlight onto the measurement volume. 3D SA imaging is ideally suited to investigate optically dense multiphase flows due to the ability to reconstruct volumes that contain partial occlusions. Instantaneous bubble sizes and locations in the plunging jet bubble fields are extracted from the volumes using two feature extraction algorithms and presented for various jet heights. The data are compared with existing literature on bubble penetration depth and size distributions. A scaling law for the integrated air concentration as a function of depth below the free-surface is proposed. Coupled with scaling laws for a parameter describing the radius of the bubble cone and radial concentration profiles, this new scaling law can be used to determine the entire air concentration profile given a minimal number of single-point measurements.

  19. Performance evaluation of synthetic diamond to realize ionisation chamber for radiotherapy application

    International Nuclear Information System (INIS)

    Guerrero Waryn, M.J.

    2005-09-01

    This work focuses on the optimisation of synthetic CVD diamond quality to realize ionisation chambers for radiotherapy. Diamonds samples have been synthesized and characterized using thermally stimulated measurement. These measurements showed the presence of trapping levels due to crystalline defects or impurities in material. The study of the response of these samples under irradiation has showed a correlation between the charged state of traps (priming and overshoot phenomena) and the response of the detector (stabilization of the signal). To remove the overshoot phenomenon which prevents from reproducible measurements, we used a specific operating set up controlling the device temperature. This technique enables to neutralize these instable phenomena and to use CVD diamond for ionisation chamber fabrication. (author)

  20. Innovative Application of Biopolymer Keratin as a Filler of Synthetic Acrylonitrile-Butadiene Rubber NBR

    Directory of Open Access Journals (Sweden)

    Mirosława Prochoń

    2013-01-01

    Full Text Available The current investigations show the influence of keratin, recovered from the tanning industry, on the thermal and mechanical properties of vulcanizates with synthetic rubber acrylonitrile-butadiene rubber NBR. The addition of waste protein to NBR vulcanizates influences the improvement of resistance at high temperatures and mechanical properties like tensile strength and hardness. The introduction of keratin to the mixes of rubber previously blended with zinc oxide (ZnO before vulcanization process leads to an increase in the cross-linking density of vulcanizates. The polymer materials received including addition of proteins will undergo biodecomposition in natural conditions. After soil test, vulcanizates with keratin especially keratin with ZnO showed much more changes on the surface area than vulcanizates without protein. In that aerobic environment, microorganisms, bacteria, and fungus digested better polymer materials containing natural additives.

  1. Synthetic Biology Approaches to Engineer Probiotics and Members of the Human Microbiota for Biomedical Applications.

    Science.gov (United States)

    Bober, Josef R; Beisel, Chase L; Nair, Nikhil U

    2018-03-12

    An increasing number of studies have strongly correlated the composition of the human microbiota with many human health conditions and, in several cases, have shown that manipulating the microbiota directly affects health. These insights have generated significant interest in engineering indigenous microbiota community members and nonresident probiotic bacteria as biotic diagnostics and therapeutics that can probe and improve human health. In this review, we discuss recent advances in synthetic biology to engineer commensal and probiotic lactic acid bacteria, bifidobacteria, and Bacteroides for these purposes, and we provide our perspective on the future potential of these technologies. 277 Expected final online publication date for the Annual Review of Biomedical Engineering Volume 20 is June 4, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  2. Augmenting real data with synthetic data: an application in assessing radio-isotope identification algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Burr, Tom L [Los Alamos National Laboratory; Hamada, Michael [Los Alamos National Laboratory; Graves, Todd [Los Alamos National Laboratory; Myers, Steve [Los Alamos National Laboratory

    2008-01-01

    The performance of Radio-Isotope Identification (RIID) algorithms using gamma spectroscopy is increasingly important. For example, sensors at locations that screen for illicit nuclear material rely on isotope identification to resolve innocent nuisance alarms arising from naturally occurring radioactive material. Recent data collections for RIID testing consist of repeat measurements for each of several scenarios to test RIID algorithms. Efficient allocation of measurement resources requires an appropriate number of repeats for each scenario. To help allocate measurement resources in such data collections for RIID algorithm testing, we consider using only a few real repeats per scenario. In order to reduce uncertainty in the estimated RIID algorithm performance for each scenario, the potential merit of augmenting these real repeats with realistic synthetic repeats is also considered. Our results suggest that for the scenarios and algorithms considered, approximately 10 real repeats augmented with simulated repeats will result in an estimate having comparable uncertainty to the estimate based on using 60 real repeats.

  3. Blood Group Typing: From Classical Strategies to the Application of Synthetic Antibodies Generated by Molecular Imprinting.

    Science.gov (United States)

    Mujahid, Adnan; Dickert, Franz L

    2015-12-31

    Blood transfusion requires a mandatory cross-match test to examine the compatibility between donor and recipient blood groups. Generally, in all cross-match tests, a specific chemical reaction of antibodies with erythrocyte antigens is carried out to monitor agglutination. Since the visual inspection is no longer useful for obtaining precise quantitative information, therefore there is a wide variety of different technologies reported in the literature to recognize the agglutination reactions. Despite the classical methods, modern biosensors and molecular blood typing strategies have also been considered for straightforward, accurate and precise analysis. The interfacial part of a typical sensor device could range from natural antibodies to synthetic receptor materials, as designed by molecular imprinting and which is suitably integrated with the transducer surface. Herein, we present a comprehensive overview of some selected strategies extending from traditional practices to modern procedures in blood group typing, thus to highlight the most promising approach among emerging technologies.

  4. Synthetic schlieren—application to the visualization and characterization of air convection

    Science.gov (United States)

    Taberlet, Nicolas; Plihon, Nicolas; Auzémery, Lucile; Sautel, Jérémy; Panel, Grégoire; Gibaud, Thomas

    2018-05-01

    Synthetic schlieren is a digital image processing optical method relying on the variation of optical index to visualize the flow of a transparent fluid. In this article, we present a step-by-step, easy-to-implement and affordable experimental realization of this technique. The method is applied to air convection caused by a warm surface. We show that the velocity of rising convection plumes can be linked to the temperature of the warm surface and propose a simple physical argument to explain this dependence. Moreover, using this method, one can reveal the tenuous convection plumes rising from one’s hand, a phenomenon invisible to the naked eye. This spectacular result may help students to realize the power of careful data acquisition combined with astute image processing techniques. This spectacular result may help students to realize the power of careful data acquisition combined with astute image processing techniques (refer to the video abstract).

  5. Application of Minicircle Technology of Self-Reproducing Synthetic Protein Drugs in Preventing Skin Allograft Rejection.

    Science.gov (United States)

    Lim, Sun Woo; Kim, Young Kyun; Park, Narae; Jin, Long; Jin, Jian; Doh, Kyoung Chan; Ju, Ji Hyeon; Yang, Chul Woo

    2015-07-30

    Recently, it has been reported that minicircle vectors could allow the expression of transgenes using the protein synthesis system of the host. Here, we tested a novel strategy to permit the production of synthetic biologics using minicircle technology and evaluated their feasibility as a therapeutic tool in a skin allograft model. We engineered vectors to carry cassette sequences for tocilizumab [anti-soluble interleukin-6 receptor (sIL-6R) antibody] and/or etanercept [tumor necrosis factor receptor 2 (TNFR2)-Fc fusion protein], and then isolated minicircle vectors from the parent vectors. We verified the production of proteins from minicircles and their duration in HEK293T cells and mice. We also evaluated whether these proteins were expressed at levels sufficient to ameliorate skin allograft rejection in mice. Each minicircle transfected into cells was detectable for at least 30 days. In mice, the drugs were mainly expressed in the liver and were detectable for at least 10 days after a single injection. These drugs were also detected in the blood. Treatment of mice with minicircles prolonged skin allograft survival, which was accompanied by a reduction of the number of interferon-γ+ or interleukin-17+ lymphocytes and an induction of forkhead box P3 expression. These findings suggest that blocking of sIL-6R and/or TNF-α using minicircles encoding tocilizumab and/or etanercept was functionally active and relevant for preventing acute allograft rejection. Self-reproducing synthetic protein drugs produced using minicircle technology are potentially powerful tools for preventing acute rejection in transplantation.

  6. Promoter Screening from Bacillus subtilis in Various Conditions Hunting for Synthetic Biology and Industrial Applications.

    Directory of Open Access Journals (Sweden)

    Yafeng Song

    Full Text Available The use of Bacillus subtilis in synthetic biology and metabolic engineering is highly desirable to take advantage of the unique metabolic pathways present in this organism. To do this, an evaluation of B. subtilis' intrinsic biological parts is required to determine the best strategies to accurately regulate metabolic circuits and expression of target proteins. The strengths of promoter candidates were evaluated by measuring relative fluorescence units of a green fluorescent protein reporter, integrated into B. subtilis' chromosome. A total of 84 predicted promoter sequences located upstream of different classes of proteins including heat shock proteins, cell-envelope proteins, and proteins resistant against toxic metals (based on similarity and other kinds of genes were tested. The expression levels measured ranged from 0.0023 to 4.53-fold of the activity of the well-characterized strong promoter P43. No significant shifts were observed when strains, carrying different promoter candidates, were cultured at high temperature or in media with ethanol, but some strains showed increased activity when cultured under high osmotic pressure. Randomly selected promoter candidates were tested and found to activate transcription of thermostable β-galactosidase (bgaB at a similar level, implying the ability of these sequences to function as promoter elements in multiple genetic contexts. In addition, selected promoters elevated the final production of both cytoplasmic bgaB and secreted protein α-amylase to about fourfold and twofold, respectively. The generated data allows a deeper understanding of B. subtilis' metabolism and will facilitate future work to develop this organism for synthetic biology.

  7. Application of Sargassum biomass to remove heavy metal ions from synthetic multi-metal solutions and urban storm water runoff.

    Science.gov (United States)

    Vijayaraghavan, K; Teo, Ting Ting; Balasubramanian, R; Joshi, Umid Man

    2009-05-30

    The ability of Sargassum sp. to biosorb four metal ions, namely lead, copper, zinc, and manganese from a synthetic multi-solute system and real storm water runoff has been investigated for the first time. Experiments on synthetic multi-solute systems revealed that Sargassum performed well in the biosorption of all four metal ions, with preference towards Pb, followed by Cu, Zn, and Mn. The solution pH strongly affected the metal biosorption, with pH 6 being identified as the optimal condition for achieving maximum biosorption. Experiments at different biosorbent dosages revealed that good biosorption capacity as well as high metal removal efficiency was observed at 3g/L. The biosorption kinetics was found to be fast with equilibrium being attained within 50 min. According to the Langmuir isotherm model, Sargassum exhibited maximum uptakes of 214, 67.5, 24.2 and 20.2mg/g for lead, copper, zinc, and manganese, respectively in single-solute systems. In multi-metal systems, strong competition between four metal ions in terms of occupancy binding sites was observed, and Sargassum showed preference in the order of Pb>Cu>Zn>Mn. The application of Sargassum to remove four heavy metal ions in real storm water runoff revealed that the biomass was capable of removing the heavy metal ions. However, the biosorption performance was slightly lower compared to that of synthetic metal solutions. Several factors were responsible for this difference, and the most important factor is the presence of other contaminants such as anions, organics, and other trace metals in the runoff.

  8. Application of a matched filter approach for finite aperture transducers for the synthetic aperture imaging of defects.

    Science.gov (United States)

    Satyanarayan, L; Muralidharan, Ajith; Krishnamurthy, Chittivenkata; Balasubramaniam, Krishnan

    2010-06-01

    The suitability of the synthetic aperture imaging of defects using a matched filter approach on finite aperture transducers was investigated. The first part of the study involved the use a finite-difference time-domain (FDTD) algorithm to simulate the phased array ultrasonic wave propagation in an aluminum block and its interaction with side-drilled hole-like defects. B-scans were generated using the FDTD method for three active aperture transducer configurations of the phased array (a) single element and (b) 16-element linear scan mode, and (c) 16-element steering mode. A matched filter algorithm (MFA) was developed using the delay laws and the spatial impulse response of a finite size rectangular phased array transducer. The conventional synthetic aperture focusing technique (SAFT) algorithm and the MFA were independently applied on the FDTD signals simulated with the probe operating at a center frequency of 5 MHz and the processed B-scans were compared. The second part of the study investigated the capability of the MFA approach to improve the SNR. Gaussian white noise was added to the FDTD generated defect signals. The noisy B-scans were then processed using the SAFT and the MFA and the improvements in the SNR were estimated. The third part of the study investigated the application of the MFA to image and size surface-crack-like defects in pipe specimens obtained using a 45 degrees steered beam from a phased array probe. These studies confirm that MFA is an alternative to SAFT with little additional computational burden. It can also be applied blindly, like SAFT, to effect synthetic focusing with distinct advantages in treating finite transducer effects, and in handling steered beam inspections. Finally, limitations of the MFA in dealing with larger-sized transducers are discussed.

  9. Fabrication of thick silicon nitride blocks embedded in low-resistivity silicon substrates for radio frequency applications

    NARCIS (Netherlands)

    Fernandez, L.J.; Berenschot, Johan W.; Wiegerink, Remco J.; Flokstra, Jakob; Flokstra, Jan; Jansen, Henricus V.; Elwenspoek, Michael Curt

    2006-01-01

    Thick silicon nitride blocks embedded in silicon wafers were recently proposed as a substrate for RF devices. In this paper we show that deep trenches filled with silicon nitride—having thin slices of monocrystalline silicon in between—already result in a significantly improved RF behavior.

  10. Compression embedding

    Science.gov (United States)

    Sandford, M.T. II; Handel, T.G.; Bradley, J.N.

    1998-07-07

    A method and apparatus for embedding auxiliary information into the digital representation of host data created by a lossy compression technique and a method and apparatus for constructing auxiliary data from the correspondence between values in a digital key-pair table with integer index values existing in a representation of host data created by a lossy compression technique are disclosed. The methods apply to data compressed with algorithms based on series expansion, quantization to a finite number of symbols, and entropy coding. Lossy compression methods represent the original data as ordered sequences of blocks containing integer indices having redundancy and uncertainty of value by one unit, allowing indices which are adjacent in value to be manipulated to encode auxiliary data. Also included is a method to improve the efficiency of lossy compression algorithms by embedding white noise into the integer indices. Lossy compression methods use loss-less compression to reduce to the final size the intermediate representation as indices. The efficiency of the loss-less compression, known also as entropy coding compression, is increased by manipulating the indices at the intermediate stage. Manipulation of the intermediate representation improves lossy compression performance by 1 to 10%. 21 figs.

  11. Coastal Flooding in Florida's Big Bend Region with Application to Sea Level Rise Based on Synthetic Storms Analysis

    Directory of Open Access Journals (Sweden)

    Scott C. Hagen Peter Bacopoulos

    2012-01-01

    Full Text Available Flooding is examined by comparing maximum envelopes of water against the 0.2% (= 1-in-500-year return-period flooding surface generated as part of revising the Federal Emergency Management Agency¡¦s flood insurance rate maps for Franklin, Wakulla, and Jefferson counties in Florida¡¦s Big Bend Region. The analysis condenses the number of storms to a small fraction of the original 159 used in production. The analysis is performed by assessing which synthetic storms contributed to inundation extent (the extent of inundation into the floodplain, coverage (the overall surface area of the inundated floodplain and the spatially variable 0.2% flooding surface. The results are interpreted in terms of storm attributes (pressure deficit, radius to maximum winds, translation speed, storm heading, and landfall location and the physical processes occurring within the natural system (storms surge and waves; both are contextualized against existing and new hurricane scales. The approach identifies what types of storms and storm attributes lead to what types of inundation, as measured in terms of extent and coverage, in Florida¡¦s Big Bend Region and provides a basis in the identification of a select subset of synthetic storms for studying the impact of sea level rise. The sea level rise application provides a clear contrast between a dynamic approach versus that of a static approach.

  12. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  13. Consumption estimation in system design for real time embedded applications; Estimation de la consommation dans la conception systeme des applications embarquees temps reel

    Energy Technology Data Exchange (ETDEWEB)

    Laurent, J.

    2002-12-15

    Today, power and energy consumption have become, as time and area, an important constraint when you design a system. Indeed modern applications use more and more processing and memory resources so these lead a significant increase of consumption. Furthermore, embedded software impact is preponderant in real time system so the code optimisation has a great impact onto the consumption constraint. Several research teams have already developed estimation methodologies for processor but almost are at instruction level (ILPA). With this kind of method you have to measure the consumption of each instruction of the instruction set and also the inter-instruction consumption overhead. For complex architecture, this kind of methodology is not adapted due to the prohibitive number of consumption measures. So the characterisation time of this kind of architecture is too important furthermore with this method is very difficult to take into account the external environment. For actual architecture another method is needed to reduce the characterisation time while preserving the accuracy. The reduction of the characterisation time have to be realized by increasing the abstraction level. So, we propose here a new approach based on a functional and architectural analysis of the target in consumption point of view (FLPA). Our methodology has two steps: the first one is a modeling step and the second is estimation step. (author)

  14. Magnetic polymer beads: Recent trends and developments in synthetic design and applications

    KAUST Repository

    Philippova, Olga

    2011-04-01

    The paper describes the synthesis, properties and applications of magnetic polymer beads. State-of-the-art, future challenges, and promising trends in this field are analyzed. New applications in oil recovery are described. © 2010 Elsevier Ltd. All rights reserved.

  15. Synthetic Brainbows

    KAUST Repository

    Wan, Y.

    2013-06-01

    Brainbow is a genetic engineering technique that randomly colorizes cells. Biological samples processed with this technique and imaged with confocal microscopy have distinctive colors for individual cells. Complex cellular structures can then be easily visualized. However, the complexity of the Brainbow technique limits its applications. In practice, most confocal microscopy scans use different florescence staining with typically at most three distinct cellular structures. These structures are often packed and obscure each other in rendered images making analysis difficult. In this paper, we leverage a process known as GPU framebuffer feedback loops to synthesize Brainbow-like images. In addition, we incorporate ID shuffing and Monte-Carlo sampling into our technique, so that it can be applied to single-channel confocal microscopy data. The synthesized Brainbow images are presented to domain experts with positive feedback. A user survey demonstrates that our synthetic Brainbow technique improves visualizations of volume data with complex structures for biologists.

  16. Competitive effects on mercury removal by an agricultural waste: application to synthetic and natural spiked waters.

    Science.gov (United States)

    Rocha, Luciana S; Lopes, Cláudia B; Henriques, Bruno; Tavares, Daniela S; Borges, J A; Duarte, Armando C; Pereira, Eduarda

    2014-01-01

    In this work, the efficiency of a local and highly, available agricultural waste, the raw rice husk, was used to remove mercury (Hg) from synthetic and natural waters, spiked with concentrations that reflect the contamination problems found in the environment. Different operating conditions were tested, including initial pH, ionic strength, the presence of co-ions (cadmium) and organic matter. The sorption efficiency of rice husk was slightly affected by the presence H+ ions (pH range between 3 and 9), but in the presence of NaNO3 and NaCl electrolytes and in binary solutions containing Cd2+ and H2+, the sorption efficiency was dependent on the nature and levels of the interfering ion and on the initial concentration of Hg+ used. Nevertheless, in a situation of equilibrium the effect of those ions was negligible and the removal efficiency ranged between 82% and 94% and between 90% and 96% for an initial Hg2+ concentration of 0.05 mg L(-1) and 0.50 mg L(-1), respectively. In more complex matrices, i.e. in the presence ofhumic substances and in natural river waters, the speciation and dynamics of Hg was changed and a fraction of the metal becomes unavailable in solution. Even then, the values obtained for Hg removal were satisfactory, i.e. between 59% and 76% and 81% and 85% for an initial concentration of Hg2+ of 0.05 and 0.50 mg L(-1), respectively.

  17. Applicability of Synthetic Aperture Radar Wind Retrievals on Offshore Wind Resources Assessment in Hangzhou Bay, China

    Directory of Open Access Journals (Sweden)

    Rui Chang

    2014-05-01

    Full Text Available In view of the high cost and sparse spatial resolution of offshore meteorological observations, ocean winds retrieved from satellites are valuable in offshore wind resource assessment as a supplement to in situ measurements. This study examines satellite synthetic aperture radar (SAR images from ENVISAT advanced SAR (ASAR for mapping wind resources with high spatial resolution. Around 181 collected pairs of wind data from SAR wind maps and from 13 meteorological stations in Hangzhou Bay are compared. The statistical results comparing in situ wind speed and SAR-based wind speed show a standard deviation (SD of 1.99 m/s and correlation coefficient of R = 0.67. The model wind directions, which are used as input for the SAR wind speed retrieval, show a high correlation coefficient (R = 0.89 but a large standard deviation (SD = 42.3° compared to in situ observations. The Weibull probability density functions are compared at one meteorological station. The SAR-based results appear not to estimate the mean wind speed, Weibull scale and shape parameters and wind power density from the full in situ data set so well due to the lower number of satellite samples. Distributions calculated from the concurrent 81 SAR and in situ samples agree well.

  18. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images

    Directory of Open Access Journals (Sweden)

    Guandong Chen

    2017-09-01

    Full Text Available Polarimetric synthetic aperture radar (SAR remote sensing provides an outstanding tool in oil spill detection and classification, for its advantages in distinguishing mineral oil and biogenic lookalikes. Various features can be extracted from polarimetric SAR data. The large number and correlated nature of polarimetric SAR features make the selection and optimization of these features impact on the performance of oil spill classification algorithms. In this paper, deep learning algorithms such as the stacked autoencoder (SAE and deep belief network (DBN are applied to optimize the polarimetric feature sets and reduce the feature dimension through layer-wise unsupervised pre-training. An experiment was conducted on RADARSAT-2 quad-polarimetric SAR image acquired during the Norwegian oil-on-water exercise of 2011, in which verified mineral, emulsions, and biogenic slicks were analyzed. The results show that oil spill classification achieved by deep networks outperformed both support vector machine (SVM and traditional artificial neural networks (ANN with similar parameter settings, especially when the number of training data samples is limited.

  19. Application of Laser Induced Breakdown Spectroscopy to the identification of emeralds from different synthetic processes

    Science.gov (United States)

    Agrosì, G.; Tempesta, G.; Scandale, E.; Legnaioli, S.; Lorenzetti, G.; Pagnotta, S.; Palleschi, V.; Mangone, A.; Lezzerini, M.

    2014-12-01

    Laser Induced Breakdown Spectroscopy can provide a useful contribution in mineralogical field in which the quantitative chemical analyses (including the evaluation of light elements) can play a key role in the studies on the origin of the emeralds. In particular, the chemical analyses permit to determine those trace elements, known as fingerprints, that can be useful to study their provenance. This technique, not requiring sample preparation results particularly suitable for gemstones, that obviously must be studied in a non-destructive way. In this paper, the LIBS technique was applied to distinguish synthetic emeralds grown by Biron hydrothermal method from those grown by Chatham flux method. The analyses performed by collinear double-pulse LIBS give a signal enhancement useful for the quantitative chemical analyses while guaranteeing a minimal sample damage. In this way it was obtained a considerable improvement on the detection limit of the trace elements, whose determination is essential for determining the origin of emerald gemstone. The trace elements V, Cr, and Fe and their relative amounts allowed the correct attribution of the manufacturer. Two different methods for quantitative analyses were used for this study: the standard Calibration-Free LIBS (CF-LIBS) method and its recent evolution, the One Point Calibration LIBS (OPC-LIBS). This is the first approach to the evaluation of the emerald origin by means of the LIBS technique.

  20. General applicability of synthetic gene-overexpression for cell-type ratio control via reprogramming.

    Science.gov (United States)

    Ishimatsu, Kana; Hata, Takashi; Mochizuki, Atsushi; Sekine, Ryoji; Yamamura, Masayuki; Kiga, Daisuke

    2014-09-19

    Control of the cell-type ratio in multistable systems requires wide-range control of the initial states of cells. Here, using a synthetic circuit in E. coli, we describe the use of a simple gene-overexpression system combined with a bistable toggle switch, for the purposes of enabling the wide-range control of cellular states and thus generating arbitrary cell-type ratios. Theoretically, overexpression induction temporarily alters the bistable system to a monostable system, in which the location of the single steady state of cells can be manipulated over a wide range by regulating the overexpression levels. This induced cellular state becomes the initial state of the basal bistable system upon overexpression cessation, which restores the original bistable system. We experimentally demonstrated that the overexpression induced a monomodal cell distribution, and subsequent overexpression withdrawal generated a bimodal distribution. Furthermore, as designed theoretically, regulating the overexpression levels by adjusting the concentrations of small molecules generated arbitrary cell-type ratios.

  1. Ultrahigh performance supercritical fluid chromatography of lipophilic compounds with application to synthetic and commercial biodiesel.

    Science.gov (United States)

    Ashraf-Khorassani, M; Yang, J; Rainville, P; Jones, M D; Fountain, K J; Isaac, G; Taylor, L T

    2015-03-01

    Ultrahigh performance supercritical fluid chromatography (UHPSFC) in combination with sub-2μm particles and either diode array ultraviolet (UV), evaporative light scattering, (ELSD), or mass spectrometric (MS) detection has been shown to be a valuable technique for the determination of acylglycerols in soybean, corn, sesame, and tobacco seed oils. Excellent resolution on an un-endcapped single C18 column (3.0mm×150mm) with a mobile phase gradient of acetonitrile and carbon dioxide in as little as 10min served greatly as an improvement on first generation packed column SFC instrumentation. Unlike high resolution gas chromatography and high performance liquid chromatography with mass spectrometric detection, UHPSFC/MS was determined to be a superior analytical tool for both separation and detection of mono-, di-, and tri-acylglycerols as well as free glycerol itself in biodiesel without derivatization. Baseline separation of residual tri-, di-, and mono-acylglycerols alongside glycerol at 0.05% (w/w) was easily obtained employing packed column SFC. The new analytical methodology was applied to both commercial B100 biodiesel (i.e. fatty acid methyl esters) derived from vegetable oil and to an "in-house" synthetic biodiesel (i.e. fatty acid ethyl esters) derived from tobacco seed oil and ethanol both before and after purification via column chromatography on bare silica. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. A review of: application of synthetic scaffold in tissue engineering heart valves.

    Science.gov (United States)

    Fallahiarezoudar, Ehsan; Ahmadipourroudposht, Mohaddeseh; Idris, Ani; Mohd Yusof, Noordin

    2015-03-01

    The four heart valves represented in the mammalian hearts are responsible for maintaining unidirectional, non-hinder blood flow. The heart valve leaflets synchronically open and close approximately 4 million times a year and more than 3 billion times during the life. Valvular heart dysfunction is a significant cause of morbidity and mortality around the world. When one of the valves malfunctions, the medical choice is may be to replace the original valves with an artificial one. Currently, the mechanical and biological artificial valves are clinically used with some drawbacks. Tissue engineering heart valve concept represents a new technique to enhance the current model. In tissue engineering method, a three-dimensional scaffold is fabricated as the template for neo-tissue development. Appropriate cells are seeded to the matrix in vitro. Various approaches have been investigated either in scaffold biomaterials and fabrication techniques or cell source and cultivation methods. The available results of ongoing experiments indicate a promising future in this area (particularly in combination of bone marrow stem cells with synthetic scaffold), which can eliminate the need for lifelong anti-coagulation medication, durability and reoperation problems. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Application of Synthetic Aperture Focusing Technique for inspection of plate-like structures using EMAT generated Lamb waves

    Directory of Open Access Journals (Sweden)

    Mirchev Yordan

    2018-01-01

    Full Text Available The main challenge for guided wave inspection is exact defect characterization and sizing. EMAT generated Lamb waves usually have low signal-to-noise ratio which reduces the defect detection, characterization and sizing capabilities. That's why in most cases the method is used only as a screening tool. The Synthetic Aperture Focusing Technique is a process that increases the signal-to-noise ratio by numerically focusing the acoustic fields. In this paper the application of SAFT is tested over EMAT generated Lamb waves. The improvement of lateral resolution and signal-to-noise ratio is evaluated. Results are presented as a comparison between standard B-scan and SAFT processed data.

  4. Synthetic Base Fluids

    Science.gov (United States)

    Brown, M.; Fotheringham, J. D.; Hoyes, T. J.; Mortier, R. M.; Orszulik, S. T.; Randles, S. J.; Stroud, P. M.

    The chemical nature and technology of the main synthetic lubricant base fluids is described, covering polyalphaolefins, alkylated aromatics, gas-to-liquid (GTL) base fluids, polybutenes, aliphatic diesters, polyolesters, polyalkylene glycols or PAGs and phosphate esters.Other synthetic lubricant base oils such as the silicones, borate esters, perfluoroethers and polyphenylene ethers are considered to have restricted applications due to either high cost or performance limitations and are not considered here.Each of the main synthetic base fluids is described for their chemical and physical properties, manufacture and production, their chemistry, key properties, applications and their implications when used in the environment.

  5. Compactness in quasi-Banach function spaces and applications to compact embeddings of Besov-type spaces

    Czech Academy of Sciences Publication Activity Database

    Caetano, A.M.; Gogatishvili, Amiran; Opic, B.

    2016-01-01

    Roč. 146, č. 5 (2016), s. 905-927 ISSN 0308-2105 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : quasi-Banach function space * compactness * compact embedding Subject RIV: BA - General Mathematics Impact factor: 1.158, year: 2016 http://journals.cambridge.org/action/displayAbstract?fromPage=online& aid =10379393&fileId=S0308210515000761

  6. Compactness in quasi-Banach function spaces and applications to compact embeddings of Besov-type spaces

    Czech Academy of Sciences Publication Activity Database

    Caetano, A.M.; Gogatishvili, Amiran; Opic, B.

    2016-01-01

    Roč. 146, č. 5 (2016), s. 905-927 ISSN 0308-2105 R&D Projects: GA ČR GA13-14743S Institutional support: RVO:67985840 Keywords : quasi-Banach function space * compactness * compact embedding Subject RIV: BA - General Mathematics Impact factor: 1.158, year: 2016 http:// journals .cambridge.org/action/displayAbstract?fromPage=online&aid=10379393&fileId=S0308210515000761

  7. Organophosphorus pentavalent compounds: history, synthetic methods of preparation and application as insecticides and antitumor agents

    International Nuclear Information System (INIS)

    Santos, Viviane Martins Rebello dos; Donnici, Claudio Luis; DaCosta, Joao Batista Neves; Caixeiro, Janaina Marques Rodrigues

    2007-01-01

    This paper is a review of the history, synthesis and application of organophosphorus compounds, especially of those of pentavalent phosphorus, such as phosphoramidates, phosphorothioates, phosphonates and phosphonic acids with insecticide and anticancer activities. The organophosphorus compounds with agrochemical applications show great structural variety, They include not only insecticides, but also fungicides, herbicides, and others. The large variety of commercially available organophosphorus pesticides is remarkable. Even more interesting is the high efficiency of some organophosphorus compounds as anticancer agents such as cyclophosphamide and its derivatives. (author)

  8. Aspect Suite Automation for Embedded Mission Systems

    National Research Council Canada - National Science Library

    Ellis, Brian J; Stankovic, John A

    2005-01-01

    .... The toolkit focuses on using language independent notions of aspects to deal with distributed embedded system issues that include application domain specific code, middleware, the OS, prescriptive...

  9. Development and design of nanomaterial reagents in conjunction with new methods for their synthetic applications

    Science.gov (United States)

    Kwaramba, Farai Brian

    This Ph.D. deals with the integration of nanotechnology with organometallic/ organic synthetic technologies. The first part of this research sought to develop a library of novel molecular gears programmed to exploit photo-switching and electrostatic repulsion to control the molecular rotation of covalently linked triptypyrazines. Incorporation of these two modes allows for control of triptycene based gear systems using unexplored external methods. The triptypyrazine was an attractive scaffold because of its intrinsic pH and electrochemical activity, thus providing a novel construct for controlling molecular motion. This design finds relevance in the fabrication of nano-electromechanical devices and understanding controlled molecular motion. This Ph.D. also sought to address the need to generate and recycle low cost hydrosilylation catalysts. Metal nanoparticle catalysts can potentially meet this need due to their high surface area and reactivity. Their morphology and surface texture provide avenues for selectivity in reactions. Metal-nanoparticles on a silicon matrix can be formed by reducing metal salts with silicon hydrides. Investigations towards iron-nanoparticle catalyzed hydrosilylation of unsaturated bonds were conducted. Furthermore, this research sought to develop highly functionalized silanes, as guiding scaffolds for generating chiral silicon hydrides. Fabrication of metal-nanoparticle catalysts with the same, could install surface definition on these heterogeneous green catalysts, thus allowing selectivity in their catalysis. A bottom up approach to nanofabrication, started with the generation of a library of highly functionalized alkynyl-silane building blocks using the hydrosilylation reaction. Hydrosilylation of carbon-carbon and carbon-heteroatom unsaturated bonds has proven to be an important reaction in organic syntheses. Additionally, silicon tethers have been utilized in complex organic syntheses as a way to increase reaction rates, and

  10. Durango: Scalable Synthetic Workload Generation for Extreme-Scale Application Performance Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Carothers, Christopher D. [Rensselaer Polytechnic Institute (RPI); Meredith, Jeremy S. [ORNL; Blanco, Marc [Rensselaer Polytechnic Institute (RPI); Vetter, Jeffrey S. [ORNL; Mubarak, Misbah [Argonne National Laboratory; LaPre, Justin [Rensselaer Polytechnic Institute (RPI); Moore, Shirley V. [ORNL

    2017-05-01

    Performance modeling of extreme-scale applications on accurate representations of potential architectures is critical for designing next generation supercomputing systems because it is impractical to construct prototype systems at scale with new network hardware in order to explore designs and policies. However, these simulations often rely on static application traces that can be difficult to work with because of their size and lack of flexibility to extend or scale up without rerunning the original application. To address this problem, we have created a new technique for generating scalable, flexible workloads from real applications, we have implemented a prototype, called Durango, that combines a proven analytical performance modeling language, Aspen, with the massively parallel HPC network modeling capabilities of the CODES framework.Our models are compact, parameterized and representative of real applications with computation events. They are not resource intensive to create and are portable across simulator environments. We demonstrate the utility of Durango by simulating the LULESH application in the CODES simulation environment on several topologies and show that Durango is practical to use for simulation without loss of fidelity, as quantified by simulation metrics. During our validation of Durango's generated communication model of LULESH, we found that the original LULESH miniapp code had a latent bug where the MPI_Waitall operation was used incorrectly. This finding underscores the potential need for a tool such as Durango, beyond its benefits for flexible workload generation and modeling.Additionally, we demonstrate the efficacy of Durango's direct integration approach, which links Aspen into CODES as part of the running network simulation model. Here, Aspen generates the application-level computation timing events, which in turn drive the start of a network communication phase. Results show that Durango's performance scales well when

  11. Nonlinear soil-structure interaction analysis based on the boundary-element method in time domain with application to embedded foundation

    International Nuclear Information System (INIS)

    Wolf, J.P.; Darbre, G.R.

    1985-01-01

    The computational procedure of the so-called truncated indirect boundary-element method is derived. The latter, which is non-local in space and time, represents a rigorous generally applicable procedure for taking into account a layered halfspace in a non-linear soil-structure interaction analysis. As an example, the non-linear soil-structure interaction analysis of a structure embedded in a halfspace with partial uplift of the basement and separation of the side wall is investigated. (orig.)

  12. Application of linear graph embedding as a dimensionality reduction technique and sparse representation classifier as a post classifier for the classification of epilepsy risk levels from EEG signals

    Science.gov (United States)

    Prabhakar, Sunil Kumar; Rajaguru, Harikumar

    2015-12-01

    The most common and frequently occurring neurological disorder is epilepsy and the main method useful for the diagnosis of epilepsy is electroencephalogram (EEG) signal analysis. Due to the length of EEG recordings, EEG signal analysis method is quite time-consuming when it is processed manually by an expert. This paper proposes the application of Linear Graph Embedding (LGE) concept as a dimensionality reduction technique for processing the epileptic encephalographic signals and then it is classified using Sparse Representation Classifiers (SRC). SRC is used to analyze the classification of epilepsy risk levels from EEG signals and the parameters such as Sensitivity, Specificity, Time Delay, Quality Value, Performance Index and Accuracy are analyzed.

  13. Isometric embeddings of polyhedra

    Science.gov (United States)

    Minemyer, Barry

    An indefinite metric polyhedron is a triple (X, T, g) where X is a topological space, T is a simplicial triangulation of X with edge set E, and g is a function from E to the reals. g assigns to each k-dimensional simplex S a unique quadratic form on Rk, denoted by G(S). An indefinite metric polyhedron is called a Euclidean polyhedron if the form G(S) is positive definite for every simplex S. Rpq denotes R p + q endowed with the inner product of signature (p, q). Our first result is that every compact n-dimensional indefinite metric polyhedron with vertex set V admits a simplicial isometric embedding into Rqq where q = max{d, 2n + 1} and d = max{deg(v) | v is in V}. We can use the compact case to extend to the non-compact case, but only if we assume that d = max{deg(v) | v is in V} is less than infinity. Specifically, every (non-compact) indefinite metric polyhedron admits a simplicial isometric embedding into Rpp where p = 2q(d3 - d2 + d + 1) and q and d are defined as above. Finally we use results of Akopyan and Greene to prove that every n-dimensional indefinite metric polyhedron admits a piecewise linear isometric embedding into Rn2n. In Chapter 2 we prove that every short (1-Lipschitz) map from an n-dimensional Euclidean polyhedron into EN is epsilon close to a pl isometric embedding (for anyepsilon > 0) provided N ≥ 3n. We can relax the dimensionality of the Euclidean space to 2n + 1 if we allow our map to be continuous instead of pl. These results are extensions of a result due to Akopyan. We provide a detailed proof of Akopyan's Theorem, as the only currently available proof is in Russian. The remaining results in this work are applications of our continuous isometric embedding theorem above. This result is used to prove that every Pro-Euclidean space of rank at most n admits an isometric embedding into E2n + 1. The result, as well as a theorem due to Bridson, also allows for an approximate isometric embedding theorem for geodesic metric spaces with

  14. LC/ESI-MS/MS method for quantification of 28 synthetic cannabinoids in neat oral fluid and its application to preliminary studies on their detection windows.

    Science.gov (United States)

    Kneisel, Stefan; Speck, Michael; Moosmann, Bjoern; Corneillie, Todd M; Butlin, Nathaniel G; Auwärter, Volker

    2013-05-01

    Serum and urine samples are commonly used for the analysis of synthetic cannabinoids in biofluids; however, their utilization as analytical matrices for drug abstinence control features some substantial drawbacks. While for blood collection invasive sampling is inevitable, the urinary analysis of synthetic cannabinoids is limited by the lack of available reference standards of the respective major metabolites. Moreover, the long detectability of synthetic cannabinoids in both matrices hampers the identification of a recent synthetic cannabinoid use. This article describes the development, validation and application of an LC/ESI-MS/MS method for the quantification of 28 synthetic cannabinoids in neat oral fluid (OF) samples. OF samples were prepared by protein precipitation using ice-cold acetonitrile. Chromatographic separation was achieved by gradient elution on a Luna Phenyl Hexyl column (50 × 2 mm, 5 μm), while detection was carried out on a QTrap 4000 instrument in positive ionization mode. The limits of detection ranged from 0.02 to 0.40 ng/mL, whereas the lower limits of quantification ranged from 0.2 to 4.0 ng/mL. The method was applied to authentic samples collected during two preliminary studies in order to obtain insights into the general detectability and detection windows of synthetic cannabinoids in this matrix. The results indicate that synthetic cannabinoids are transferred from the blood stream into OF and vice versa only at a very low rate. Therefore, positive OF samples are due to contamination of the oral cavity during smoking. As these drug-contaminations could be detected up to approximately 2 days, neat oral fluid appears to be well suited for detection of a recent synthetic cannabinoid use.

  15. Embedded Systems Design: Optimization Challenges

    DEFF Research Database (Denmark)

    Pop, Paul

    2005-01-01

    -to-market, and reduce development and manufacturing costs. In this paper, the author introduces several embedded systems design problems, and shows how they can be formulated as optimization problems. Solving such challenging design optimization problems are the key to the success of the embedded systems design...... of designing such systems is becoming increasingly important and difficult at the same time. New automated design optimization techniques are needed, which are able to: successfully manage the complexity of embedded systems, meet the constraints imposed by the application domain, shorten the time...

  16. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells.

    Science.gov (United States)

    He, Yunfan; Lu, Feng

    2016-01-01

    Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  17. Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

    Directory of Open Access Journals (Sweden)

    Yunfan He

    2016-01-01

    Full Text Available Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

  18. Study of the application potential of synthetic and natural polymeric coatings in stem cell research

    OpenAIRE

    Perestrelo, Ana Rubina

    2014-01-01

    Self-renewability and the ability to differentiate into various functional cells are characteristics of embryonic stem cells (ESCs) that make them attractive for applications in biomedical field, namely in restoring the function of damaged cells/tissues. In research, ESCs are usually cultured in gelatin or over a monolayer of mitotically inactivated mouse embryonic fibroblasts (MEFsi). The latter is the gold standard to maintain pluripotent ESCs in culture. A variety of alterna...

  19. Embedding Fragment ab Initio Model Potentials in CASSCF/CASPT2 Calculations of Doped Solids: Implementation and Applications.

    Science.gov (United States)

    Swerts, Ben; Chibotaru, Liviu F; Lindh, Roland; Seijo, Luis; Barandiaran, Zoila; Clima, Sergiu; Pierloot, Kristin; Hendrickx, Marc F A

    2008-04-01

    In this article, we present a fragment model potential approach for the description of the crystalline environment as an extension of the use of embedding ab initio model potentials (AIMPs). The biggest limitation of the embedding AIMP method is the spherical nature of its model potentials. This poses problems as soon as the method is applied to crystals containing strongly covalently bonded structures with highly nonspherical electron densities. The newly proposed method addresses this problem by keeping the full electron density as its model potential, thus allowing one to group sets of covalently bonded atoms into fragments. The implementation in the MOLCAS 7.0 quantum chemistry package of the new method, which we call the embedding fragment ab inito model potential method (embedding FAIMP), is reported here, together with results of CASSCF/CASPT2 calculations. The developed methodology is applied for two test problems: (i) the investigation of the lowest ligand field states (2)A1 and (2)B1 of the Cr(V) defect in the YVO4 crystal and (ii) the investigation of the lowest ligand field and ligand-metal charge transfer (LMCT) states at the Mn(II) substitutional impurity doped into CaCO3. Comparison with similar calculations involving AIMPs for all environmental atoms, including those from covalently bounded units, shows that the FAIMP treatment of the YVO4 units surrounding the CrO4(3-) cluster increases the excitation energy (2)B1 → (2)A1 by ca. 1000 cm(-1) at the CASSCF level of calculation. In the case of the Mn(CO3)6(10-) cluster, the FAIMP treatment of the CO3(2-) units of the environment give smaller corrections, of ca. 100 cm(-1), for the ligand-field excitation energies, which is explained by the larger ligands of this cluster. However, the correction for the energy of the lowest LMCT transition is found to be ca. 600 cm(-1) for the CASSCF and ca. 1300 cm(-1) for the CASPT2 calculation.

  20. Brief Analysis on the Development and Application of Multi-Input Multi-Output Synthetic Aperture Radar

    Directory of Open Access Journals (Sweden)

    Zhou Wei

    2014-02-01

    Full Text Available Recently, a novel conception of Synthetic Aperture Radar (SAR based on Multi-Input Multi-Output (MIMO technology draws much attention for its potential advantages. MIMO-SAR could obtain much more equivalent channels than the number of the physical array elements by simultaneously utilizing multiple antennas at transmission and reception. These additional channels are demonstrated to be useful for the application of High-Resolution Wide-Swath (HRWS imaging and slowly moving target indication. In this paper, a detailed discussion on the conception and connotation of MIMO-SAR is made firstly, and then the investigation states of MIMO-SAR, such as high range resolution SAR imaging, three-dimensional down-looking SAR imaging, HRWS imaging and Ground Moving Target Indication (GMTI, are discussed. Base on the discussion mentioned above, the advantages and disadvantages of MIMO-SAR system are analyzed, and the key technical issues in MIMO-SAR are summarized. At last, the prospects of MIMO-SAR application are pointed out.

  1. Molecular Properties through Polarizable Embedding

    DEFF Research Database (Denmark)

    Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2011-01-01

    We review the theory related to the calculation of electric and magnetic molecular properties through polarizable embedding. In particular, we derive the expressions for the response functions up to the level of cubic response within the density functional theory-based polarizable embedding (PE......-DFT) formalism. In addition, we discuss some illustrative applications related to the calculation of nuclear magnetic resonance parameters, nonlinear optical properties, and electronic excited states in solution....

  2. Thermal Properties and Phonon Spectral Characterization of Synthetic Boron Phosphide for High Thermal Conductivity Applications.

    Science.gov (United States)

    Kang, Joon Sang; Wu, Huan; Hu, Yongjie

    2017-12-13

    Heat dissipation is an increasingly critical technological challenge in modern electronics and photonics as devices continue to shrink to the nanoscale. To address this challenge, high thermal conductivity materials that can efficiently dissipate heat from hot spots and improve device performance are urgently needed. Boron phosphide is a unique high thermal conductivity and refractory material with exceptional chemical inertness, hardness, and high thermal stability, which holds high promises for many practical applications. So far, however, challenges with boron phosphide synthesis and characterization have hampered the understanding of its fundamental properties and potential applications. Here, we describe a systematic thermal transport study based on a synergistic synthesis-experimental-modeling approach: we have chemically synthesized high-quality boron phosphide single crystals and measured their thermal conductivity as a record-high 460 W/mK at room temperature. Through nanoscale ballistic transport, we have, for the first time, mapped the phonon spectra of boron phosphide and experimentally measured its phonon mean free-path spectra with consideration of both natural and isotope-pure abundances. We have also measured the temperature- and size-dependent thermal conductivity and performed corresponding calculations by solving the three-dimensional and spectral-dependent phonon Boltzmann transport equation using the variance-reduced Monte Carlo method. The experimental results are in good agreement with that predicted by multiscale simulations and density functional theory, which together quantify the heat conduction through the phonon mode dependent scattering process. Our finding underscores the promise of boron phosphide as a high thermal conductivity material for a wide range of applications, including thermal management and energy regulation, and provides a detailed, microscopic-level understanding of the phonon spectra and thermal transport mechanisms of

  3. New industrial heat pump applications to a synthetic rubber plant. Final report, Phase IIA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    This report summarizes the results of the Phase IIA of the DOE sponsored study titled, Advanced Industrial Heat Pump Application and Evaluation. The scope of this phase of the study was to finalize the process design of the heat pump scheme, develop a process and instrumentation diagram, and a detailed cost estimate for the project. This information is essential for the site management to evaluate the economic viability and operability of the proposed heat pump design, prior to the next phase of installation and testing.

  4. Silicon-Containing Amino Acids: Synthetic Aspects, Conformational Studies, and Applications to Bioactive Peptides.

    Science.gov (United States)

    Rémond, Emmanuelle; Martin, Charlotte; Martinez, Jean; Cavelier, Florine

    2016-10-12

    Unnatural α-amino acids form a family of essential molecules used for, among other applications, the synthesis of modified peptides, to improve resistance to proteolytic enzyme degradation, and to modulate physico- and biochemical properties of bioactive peptides as well as chiral inducers in asymmetric synthesis. Among them, silicon-containing unnatural amino acids are becoming an interesting new class of building blocks. The replacement of carbon atoms in bioactive substances with silicon is becoming increasingly popular. Peptides containing silyl amino acids hold great promise for maintaining or reinforcing the biological activity of active compounds, while they simultaneously enhance their resistance to enzyme degradation. In addition, the lipophilicity of the silicon atom facilitates their membrane crossing and their bioavailability. Nowadays, the interest of the pharmaceutical industry in peptide- and protein-based therapies is increasing. In this respect, silicon-containing amino acids and peptides are likely to be a significant part of future innovations in this area, and more generally in the area of biomolecules. In this process, commercial availability of silicon-containing amino acids is necessary: new syntheses have been developed, and work in this area is ongoing. This review aims to be a comprehensive and general summary of the different methods used to prepare silicon-containing amino acids and their implications on conformational structures and biological applications when they are incorporated into bioactive molecules.

  5. Implementation of an Embedded Web Server Application for Wireless Control of Brain Computer Interface Based Home Environments.

    Science.gov (United States)

    Aydın, Eda Akman; Bay, Ömer Faruk; Güler, İnan

    2016-01-01

    Brain Computer Interface (BCI) based environment control systems could facilitate life of people with neuromuscular diseases, reduces dependence on their caregivers, and improves their quality of life. As well as easy usage, low-cost, and robust system performance, mobility is an important functionality expected from a practical BCI system in real life. In this study, in order to enhance users' mobility, we propose internet based wireless communication between BCI system and home environment. We designed and implemented a prototype of an embedded low-cost, low power, easy to use web server which is employed in internet based wireless control of a BCI based home environment. The embedded web server provides remote access to the environmental control module through BCI and web interfaces. While the proposed system offers to BCI users enhanced mobility, it also provides remote control of the home environment by caregivers as well as the individuals in initial stages of neuromuscular disease. The input of BCI system is P300 potentials. We used Region Based Paradigm (RBP) as stimulus interface. Performance of the BCI system is evaluated on data recorded from 8 non-disabled subjects. The experimental results indicate that the proposed web server enables internet based wireless control of electrical home appliances successfully through BCIs.

  6. Palladium/PC-Phos-Catalyzed Enantioselective Arylation of General Sulfenate Anions: Scope and Synthetic Applications.

    Science.gov (United States)

    Wang, Lei; Chen, Mingjie; Zhang, Peichao; Li, Wenbo; Zhang, Junliang

    2018-03-07

    Herein we reported an efficient palladium-catalyzed enantioselective arylation of both alkyl and aryl sulfenate anions to deliver various chiral sulfoxides in good yields (up to 98%) with excellent enantioselectivities (up to 99% ee) by the use of our developed chiral O,P-ligands (PC-Phos). PC-Phos are easily prepared in short steps from inexpensive commercially available starting materials. The single-crystal structure of the PC4/PdCl 2 showed that a rarely observed 11-membered ring was formed via the O,P-coordination with the palladium(II) center. The salient features of this method include general substrate scope, ease of scale-up, applicable to the late-stage modification of bioactive compounds, and the synthesis of a marketed medicine Sulindac.

  7. Certifiable Java for Embedded Systems

    DEFF Research Database (Denmark)

    Schoeberl, Martin; Dalsgaard, Andreas Engelbredt; Hansen, Rene Rydhof

    2014-01-01

    The Certifiable Java for Embedded Systems (CJ4ES) project aimed to develop a prototype development environment and platform for safety-critical software for embedded applications. There are three core constituents: A profile of the Java programming language that is tailored for safety......-critical applications, a predictable Java processor built with FPGA technology, and an Eclipse based application development environment that binds the profile and the platform together and provides analyses that help to provide evidence that can be used as part of a safety case. This paper summarizes key contributions...

  8. Embedded Processor Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Embedded Processor Laboratory provides the means to design, develop, fabricate, and test embedded computers for missile guidance electronics systems in support...

  9. Mammalian Synthetic Biology

    OpenAIRE

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-01-01

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-pote...

  10. An overview of synthetic strategies and current applications of gold nanorods in cancer treatment

    Science.gov (United States)

    Manish Lakhani, Prit; Vishnu Kiran Rompicharla, Sri; Ghosh, Balaram; Biswas, Swati

    2015-10-01

    Photothermal therapy, also referred to as optical hyperthermia or photothermal ablation, is an emerging strategy for treating solid tumours. Colloidal gold converts the absorbed light into localized heat via a non-radiative mechanism, surface plasmon resonance, which ablates the solid tumours. Several plasmon resonating nanostructures, including gold nanoparticles (AuNPs), gold nanorods (AuNRs), gold nanoshells, gold nanocages, copper sulphide and carbon nanotubes, have shown potential for photo-activated cancer therapy. Generally, spherical AuNPs display absorption maxima between 500-550 nm, making them inefficient due to low tissue penetration. On the other hand, AuNRs absorb light in the near-infrared (NIR) region that penetrates deeper with higher spatial precision, and causes no damage to the surrounding healthy tissues due to the low energy absorption of NIR light by normal tissue. Moreover, the absorption range of light can be fine-tuned to the NIR region by adjusting the aspect ratios of AuNRs. However, large-scale synthesis and stability of this colloidal system still poses challenges for clinical translation. In this review, we discuss various strategies applied up to now for the synthesis of AuNRs. Current trends in the pre-clinical development of multifunctional AuNRs with emphasis on preparation and application strategies in cancer therapy have been delineated.

  11. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  12. Entropy Generation Analysis of Open Parallel Microchannels Embedded Within a Permeable Continuous Moving Surface: Application to Magnetohydrodynamics (MHD

    Directory of Open Access Journals (Sweden)

    Mohammad H. Yazdi

    2011-12-01

    Full Text Available This paper presents a new design of open parallel microchannels embedded within a permeable continuous moving surface due to reduction of exergy losses in magnetohydrodynamic (MHD flow at a prescribed surface temperature (PST. The entropy generation number is formulated by an integral of the local rate of entropy generation along the width of the surface based on an equal number of microchannels and no-slip gaps interspersed between those microchannels. The velocity, the temperature, the velocity gradient and the temperature gradient adjacent to the wall are substituted into this equation resulting from the momentum and energy equations obtained numerically by an explicit Runge-Kutta (4, 5 formula, the Dormand-Prince pair and shooting method. The entropy generation number, as well as the Bejan number, for various values of the involved parameters of the problem are also presented and discussed in detail.

  13. Silver nanoparticle deposition on inverse opal SiO2 films embedded in protective polypropylene micropits for SERS applications

    Science.gov (United States)

    Ammosova, Lena; Ankudze, Bright; Philip, Anish; Jiang, Yu; Pakkanen, Tuula T.; Pakkanen, Tapani A.

    2018-01-01

    Common methods to fabricate surface enhanced Raman scattering (SERS) substrates with controlled micro-nanohierarchy are often complex and expensive. In this study, we demonstrate a simple and cost effective method to fabricate SERS substrates with complex geometries. Microworking robot structuration is used to pattern a polypropylene (PP) substrate with micropits, facilitating protective microenvironment for brittle SiO2 inverse opal (IO) structure. Hierarchical SiO2 IO patterns were obtained using polystyrene (PS) spheres as a sacrificial template, and were selectively embedded into the hydrophilized PP micropits. The same microworking robot technique was subsequently used to deposit silver nanoparticle ink into the SiO2 IO cavities. The fabricated multi-level micro-nanohierarchy surface was studied to enhance Raman scattering of the 4-aminothiophenol (4-ATP) analyte molecule. The results show that the SERS performance of the micro-nanohierarchical substrate increases significantly the Raman scattering intensity compared to substrates with structured 2D surface geometries.

  14. Characterization of a Reconfigurable Free-Space Optical Channel for Embedded Computer Applications with Experimental Validation Using Rapid Prototyping Technology

    Directory of Open Access Journals (Sweden)

    Lim Theodore

    2007-01-01

    Full Text Available Free-space optical interconnects (FSOIs are widely seen as a potential solution to current and future bandwidth bottlenecks for parallel processors. In this paper, an FSOI system called optical highway (OH is proposed. The OH uses polarizing beam splitter-liquid crystal plate (PBS/LC assemblies to perform reconfigurable beam combination functions. The properties of the OH make it suitable for embedding complex network topologies such as completed connected mesh or hypercube. This paper proposes the use of rapid prototyping technology for implementing an optomechanical system suitable for studying the reconfigurable characteristics of a free-space optical channel. Additionally, it reports how the limited contrast ratio of the optical components can affect the attenuation of the optical signal and the crosstalk caused by misdirected signals. Different techniques are also proposed in order to increase the optical modulation amplitude (OMA of the system.

  15. Characterization of a Reconfigurable Free-Space Optical Channel for Embedded Computer Applications with Experimental Validation Using Rapid Prototyping Technology

    Directory of Open Access Journals (Sweden)

    Rafael Gil-Otero

    2007-02-01

    Full Text Available Free-space optical interconnects (FSOIs are widely seen as a potential solution to current and future bandwidth bottlenecks for parallel processors. In this paper, an FSOI system called optical highway (OH is proposed. The OH uses polarizing beam splitter-liquid crystal plate (PBS/LC assemblies to perform reconfigurable beam combination functions. The properties of the OH make it suitable for embedding complex network topologies such as completed connected mesh or hypercube. This paper proposes the use of rapid prototyping technology for implementing an optomechanical system suitable for studying the reconfigurable characteristics of a free-space optical channel. Additionally, it reports how the limited contrast ratio of the optical components can affect the attenuation of the optical signal and the crosstalk caused by misdirected signals. Different techniques are also proposed in order to increase the optical modulation amplitude (OMA of the system.

  16. Synthesis, characterization and application of Lagerstroemia speciosa embedded magnetic nanoparticle for Cr(VI) adsorption from aqueous solution.

    Science.gov (United States)

    Srivastava, Shalini; Agrawal, Shashi Bhushan; Mondal, Monoj Kumar

    2017-05-01

    Lagerstroemia speciosa bark (LB) embedded magnetic nanoparticles were prepared by co-precipitation of Fe 2+ and Fe 3+ salt solution with ammonia and LB for Cr(VI) removal from aqueous solution. The native LB, magnetic nanoparticle (MNP), L. speciosa embedded magnetic nanoparticle (MNPLB) and Cr(VI) adsorbed MNPLB particles were characterized by SEM-EDX, TEM, BET-surface area, FT-IR, XRD and TGA methods. TEM analysis confirmed nearly spherical shape of MNP with an average diameter of 8.76nm and the surface modification did not result in the phase change of MNP as established by XRD analysis, while led to the formation of secondary particles of MNPLB with diameter of 18.54nm. Characterization results revealed covalent binding between the hydroxyl group of MNP and carboxyl group of LB particles and further confirmed its physico-chemical nature favorable for Cr(VI) adsorption. The Cr(VI) adsorption on to MNPLB particle as an adsorbent was tested under different contact time, initial Cr(VI) concentration, adsorbent dose, initial pH, temperature and agitation speed. The results of the equilibrium and kinetics of adsorption were well described by Langmuir isotherm and pseudo-second-order model, respectively. The thermodynamic parameters suggest spontaneous and endothermic nature of Cr(VI) adsorption onto MNPLB. The maximum adsorption capacity for MNPLB was calculated to be 434.78mg/g and these particles even after Cr(VI) adsorption were collected effortlessly from the aqueous solution by a magnet. The desorption of Cr(VI)-adsorbed MNPLB was found to be more than 93.72% with spent MNPLB depicting eleven successive adsorption-desorption cycles. Copyright © 2016. Published by Elsevier B.V.

  17. New overlay measurement technique with an i-line stepper using embedded standard field image alignment marks for wafer bonding applications

    Science.gov (United States)

    Kulse, P.; Sasai, K.; Schulz, K.; Wietstruck, M.

    2017-06-01

    In the last decades the semiconductor technology has been driven by Moore's law leading to high performance CMOS technologies with feature sizes of less than 10 nm [1]. It has been pointed out that not only scaling but also the integration of novel components and technology modules into CMOS/BiCMOS technologies is becoming more attractive to realize smart and miniaturized systems [2]. Driven by new applications in the area of communication, health and automation, new components and technology modules such as BiCMOS embedded RF-MEMS, high-Q passives, Sibased microfluidics and InP-SiGe BiCMOS heterointegration have been demonstrated [3-6]. In contrast to standard VLSI processes fabricated on front side of the silicon wafer, these new technology modules require addition backside processing of the wafer; thus an accurate alignment between the front and backside of the wafer is mandatory. In previous work an advanced back to front side alignment technique and implementation into IHP's 0.25/0.13 μm high performance SiGe:C BiCMOS backside process module has been presented [7]. The developed technique enables a high resolution and accurate lithography on the backside of BiCMOS wafer for additional backside processing. In addition to the aforementioned back side process technologies, new applications like Through-Silicon Vias (TSV) for interposers and advanced substrate technologies for 3D heterogeneous integration demand not only single wafer fabrication but also processing of wafer stacks provided by temporary and permanent wafer bonding [8]. Therefore, the available overlay measurement techniques are not suitable if overlay and alignment marks are realized at the bonding interface of a wafer stack which consists of both a silicon device and a silicon carrier wafer. The former used EVG 40NT automated overlay measurement system, which use two opposite positioned microscopes inspecting simultaneous the wafer back and front side, is not capable measuring embedded overlay

  18. Al2O3 nanocrystals embedded in amorphous Lu2O3 high-k gate dielectric for floating gate memory application

    International Nuclear Information System (INIS)

    Yuan, C L; Chan, M Y; Lee, P S; Darmawan, P; Setiawan, Y

    2007-01-01

    The integration of nanoparticles has high potential in technological applications and opens up possibilities of the development of new devices. Compared to the conventional floating gate memory, a structure containing nanocrystals embedded in dielectrics shows high potential to produce a memory with high endurance, low operating voltage, fast write-erase speeds and better immunity to soft errors [S. Tiwari, F. Rana, H. Hanafi et al. 1996 Appl.Phys. Lett. 68, 1377]. A significant improvement on data retention [J. J. Lee, X. Wang et al. 2003 Proceedings of the VLSI Technol. Symposium, p33] can be observed when discrete nanodots are used instead of continuous floating gate as charge storage nodes because local defect related leakage can be reduced efficiently. Furthermore, using a high-k dielectric in place of the conventional SiO2 based dielectric, nanodots flash memory is able to achieve significantly improved programming efficiency and data retention [A. Thean and J. -P. Leburton, 2002 IEEE Potentials 21, 35; D. W. Kim, T. Kim and S. K. Banerjee, 2003 IEEE Trans. Electron Devices 50, 1823]. We have recently successfully developed a method to produce nanodots embedded in high-k gate dielectrics [C. L. Yuan, P. Darmawan, Y. Setiawan and P. S. Lee, 2006 Electrochemical and Solid-State Letters 9, F53; C. L. Yuan, P. Darmawan, Y. Setiawan and P. S. Lee, 2006 Europhys. Lett. 74, 177]. In this paper, we fabricated the memory structure of Al 2 O 3 nanocrystals embedded in amorphous Lu 2 O 3 high k dielectric using pulsed laser ablation. The mean size and density of the Al 2 O 3 nanocrystals are estimated to be about 5 nm and 7x1011 cm -2 , respectively. Good electrical performances in terms of large memory window and good data retention were observed. Our preparation method is simple, fast and economical

  19. Al2O3 nanocrystals embedded in amorphous Lu2O3 high-k gate dielectric for floating gate memory application

    Science.gov (United States)

    Yuan, C. L.; Chan, M. Y.; Lee, P. S.; Darmawan, P.; Setiawan, Y.

    2007-04-01

    The integration of nanoparticles has high potential in technological applications and opens up possibilities of the development of new devices. Compared to the conventional floating gate memory, a structure containing nanocrystals embedded in dielectrics shows high potential to produce a memory with high endurance, low operating voltage, fast write-erase speeds and better immunity to soft errors [S. Tiwari, F. Rana, H. Hanafi et al. 1996 Appl.Phys. Lett. 68, 1377]. A significant improvement on data retention [J. J. Lee, X. Wang et al. 2003 Proceedings of the VLSI Technol. Symposium, p33] can be observed when discrete nanodots are used instead of continuous floating gate as charge storage nodes because local defect related leakage can be reduced efficiently. Furthermore, using a high-k dielectric in place of the conventional SiO2 based dielectric, nanodots flash memory is able to achieve significantly improved programming efficiency and data retention [A. Thean and J. -P. Leburton, 2002 IEEE Potentials 21, 35; D. W. Kim, T. Kim and S. K. Banerjee, 2003 IEEE Trans. Electron Devices 50, 1823]. We have recently successfully developed a method to produce nanodots embedded in high-k gate dielectrics [C. L. Yuan, P. Darmawan, Y. Setiawan and P. S. Lee, 2006 Electrochemical and Solid-State Letters 9, F53; C. L. Yuan, P. Darmawan, Y. Setiawan and P. S. Lee, 2006 Europhys. Lett. 74, 177]. In this paper, we fabricated the memory structure of Al2O3 nanocrystals embedded in amorphous Lu2O3 high k dielectric using pulsed laser ablation. The mean size and density of the Al2O3 nanocrystals are estimated to be about 5 nm and 7x1011 cm-2, respectively. Good electrical performances in terms of large memory window and good data retention were observed. Our preparation method is simple, fast and economical.

  20. Synchrotron Bragg diffraction imaging characterization of synthetic diamond crystals for optical and electronic power device applications1 1

    Science.gov (United States)

    Tran Thi, Thu Nhi; Morse, J.; Caliste, D.; Fernandez, B.; Eon, D.; Härtwig, J.; Mer-Calfati, C.; Tranchant, N.; Arnault, J. C.; Lafford, T. A.; Baruchel, J.

    2017-01-01

    Bragg diffraction imaging enables the quality of synthetic single-crystal diamond substrates and their overgrown, mostly doped, diamond layers to be characterized. This is very important for improving diamond-based devices produced for X-ray optics and power electronics applications. The usual first step for this characterization is white-beam X-ray diffraction topography, which is a simple and fast method to identify the extended defects (dislocations, growth sectors, boundaries, stacking faults, overall curvature etc.) within the crystal. This allows easy and quick comparison of the crystal quality of diamond plates available from various commercial suppliers. When needed, rocking curve imaging (RCI) is also employed, which is the quantitative counterpart of monochromatic Bragg diffraction imaging. RCI enables the local determination of both the effective misorientation, which results from lattice parameter variation and the local lattice tilt, and the local Bragg position. Maps derived from these parameters are used to measure the magnitude of the distortions associated with polishing damage and the depth of this damage within the volume of the crystal. For overgrown layers, these maps also reveal the distortion induced by the incorporation of impurities such as boron, or the lattice parameter variations associated with the presence of growth-incorporated nitrogen. These techniques are described, and their capabilities for studying the quality of diamond substrates and overgrown layers, and the surface damage caused by mechanical polishing, are illustrated by examples. PMID:28381981

  1. Assay of hybrid ribonuclease using a membrane filter-immobilized synthetic hybrid: application to the human leukemic cell

    International Nuclear Information System (INIS)

    Papaphilis, A.D.; Kamper, E.F.

    1985-01-01

    A method for assaying hybrid ribonuclease has been devised which utilizes as substrate the synthetic hybrid [ 3 H]polyriboadenylic acid [poly(rA)]:polydeoxythymidylic acid [poly(dT)] immobilized on the solid matrix of nitrocellulose filters. The hybridization on filter of [ 3 H]poly(rA) to poly(dT) has been explored in terms of efficacy of the process and the response of the product to RNase H. A pulse of uv irradiation of poly(dT) while in dry state on the filter increased its firm binding to the filter in a concentration-dependent manner, resulting in a concomitant increase of the yield of hybrid formation. The filter-immobilized hybrid was 95% resistant to RNase A but sensitive to RNase H. When stored in toluene in the cold the hybrid maintained its stability for over 6 months, as judged by its resistance to RNase A. The method offers a number of advantages over assays that use solution hybrids as substrates and was readily applicable in the screening of leukemic patients, in the leukocytes of which it has demonstrated increased RNase H levels

  2. Application of Eggshell as a Natural Sorbent for the Removal of Reactive Red 123 Dye from Synthetic Textile Wastewater

    Directory of Open Access Journals (Sweden)

    Ghaderinasab Fatemeh

    2010-03-01

    Full Text Available Background: Dye is one of the most important pollutants in textile industrial wastewater. The scope of this study was to evaluate the feasibility application of eggshell as a sorbent for the removal of reactive red 123 dyes from synthetic wastewater. Materials and Methods: This study is an applied- experimental research which was performed in laboratory scale and in environmental chemistry laboratory of Baqiyatallah (a.s university of medical sciences. Eggshell as a sorbent was prepared in laboratory condition (20-25°C and pulverized by standard ASTM sieves. The effective size (D10 and D60 were 3 and 5.1mm, respectively and uniformity coefficient (UC was 1.7. The concentrations of dye in wastewater were 25 and 50 mg/l. Results: In this study increasing of adsorbent dose from 1 to 5 g/100ml led to increase of the adsorption efficiency from 48 to 80.7 %. The maximum adsorption took place in first 60min of reaction. With increasing the temperature up to 45°C the pollutant adsorption was increased and increasing of pH from 5 to 8 led to increase of process efficiency from 30 to 48%. Also absorption characteristics of this pollutant on eggshell accommodated with Langmuir isotherm. Conclusion: Eggshell can be used as a natural adsorbent in water and wastewater treatment. This adsorbent is an appropriate media for the treatment of textile wastewater that usually have alkaline condition and high temperature.

  3. New Derivatives of Pyridoxine Exhibit High Antibacterial Activity against Biofilm-Embedded Staphylococcus Cells

    Directory of Open Access Journals (Sweden)

    Airat R. Kayumov

    2015-01-01

    Full Text Available Opportunistic bacteria Staphylococcus aureus and Staphylococcus epidermidis often form rigid biofilms on tissues and inorganic surfaces. In the biofilm bacterial cells are embedded in a self-produced polysaccharide matrix and thereby are inaccessible to biocides, antibiotics, or host immune system. Here we show the antibacterial activity of newly synthesized cationic biocides, the quaternary ammonium, and bisphosphonium salts of pyridoxine (vitamin B6 against biofilm-embedded Staphylococci. The derivatives of 6-hydroxymethylpyridoxine were ineffective against biofilm-embedded S. aureus and S. epidermidis at concentrations up to 64 μg/mL, although all compounds tested exhibited low MICs (2 μg/mL against planktonic cells. In contrast, the quaternary ammonium salt of pyridoxine (N,N-dimethyl-N-((2,2,8-trimethyl-4H-[1,3]dioxino[4,5-c]pyridin-5-ylmethyloctadecan-1-aminium chloride (3 demonstrated high biocidal activity against both planktonic and biofilm-embedded bacteria. Thus, the complete death of biofilm-embedded S. aureus and S. epidermidis cells was obtained at concentrations of 64 and 16 μg/mL, respectively. We suggest that the quaternary ammonium salts of pyridoxine are perspective to design new synthetic antibiotics and disinfectants for external application against biofilm-embedded cells.

  4. Topical application of the synthetic triterpenoid RTA 408 activates Nrf2 and induces cytoprotective genes in rat skin.

    Science.gov (United States)

    Reisman, Scott A; Lee, Chun-Yue I; Meyer, Colin J; Proksch, Joel W; Ward, Keith W

    2014-07-01

    RTA 408 is a member of the synthetic oleanane triterpenoid class of compounds known to potently activate the cytoprotective transcription factor Nrf2. Because skin is constantly exposed to external oxidative stress, such as that from ultraviolet radiation, from chemical exposure, during improper wound healing, and throughout the course of cancer radiation therapy, it may benefit from activation of Nrf2. This study was conducted to evaluate the transdermal penetration properties and Nrf2 activation potential of RTA 408 in normal rat skin. RTA 408 (0.1, 1.0, or 3.0%) was applied topically to the shaved skin of male Sprague-Dawley rats twice daily for 4 days and once on Day 5. Topical application of RTA 408 resulted in transdermal penetration, with low but dose-dependent plasma exposure with AUC(0-24 h) values of 3.6, 26.0, and 41.1 h ng/mL for the 0.1, 1.0, and 3.0% doses, respectively. Further, topical application of RTA 408 resulted in increased translocation of Nrf2 to the nucleus, dose-dependent mRNA induction of Nrf2 target genes (e.g. Nqo1, Srxn1, Gclc, and Gclm), and induction of the protein expression of the prototypical Nrf2 target gene Nqo1 and increased total glutathione (GSH) in normal rat skin. Immunohistochemistry demonstrated that increased staining for Nqo1 and total GSH of structures in both the epidermis and dermis was consistent with the full transdermal penetration of RTA 408. Finally, topically administered RTA 408 was well tolerated with no adverse in-life observations and normal skin histology. Thus, the data support the further development of RTA 408 for the potential treatment of skin diseases.

  5. Developments in Synthetic Application of Selenium(IV Oxide and Organoselenium Compounds as Oxygen Donors and Oxygen-Transfer Agents

    Directory of Open Access Journals (Sweden)

    Jacek Młochowski

    2015-06-01

    Full Text Available A variety of selenium compounds were proven to be useful reagents and catalysts for organic synthesis over the past several decades. The most interesting aspect, which emerged in recent years, concerns application of hydroperoxide/selenium(IV oxide and hydroperoxide/organoselenium catalyst systems, as “green reagents” for the oxidation of different organic functional groups. The topic of oxidations catalyzed by organoselenium derivatives has rapidly expanded in the last fifteen years This paper is devoted to the synthetic applications of the oxidation reactions mediated by selenium compounds such as selenium(IV oxide, areneseleninic acids, their anhydrides, selenides, diselenides, benzisoselenazol-3(2H-ones and other less often used other organoselenium compounds. All these compounds have been successfully applied for various oxidations useful in practical organic syntheses such as epoxidation, 1,2-dihydroxylation, and α-oxyfunctionalization of alkenes, as well as for ring contraction of cycloalkanones, conversion of halomethyl, hydroxymethyl or active methylene groups into formyl groups, oxidation of carbonyl compounds into carboxylic acids and/or lactones, sulfides into sulfoxides, and secondary amines into nitrones and regeneration of parent carbonyl compounds from their azomethine derivatives. Other reactions such as dehydrogenation and aromatization, active carbon-carbon bond cleavage, oxidative amidation, bromolactonization and oxidation of bromide for subsequent reactions with alkenes are also successfully mediated by selenium (IV oxide or organoselenium compounds. The oxidation mechanisms of ionic or free radical character depending on the substrate and oxidant are discussed. Coverage of the literature up to early 2015 is provided. Links have been made to reviews that summarize earlier literature and to the methods of preparation of organoselenium reagents and catalysts.

  6. Capacitance characteristics of metal-oxide-semiconductor capacitors with a single layer of embedded nickel nanoparticles for the application of nonvolatile memory

    International Nuclear Information System (INIS)

    Wei, Li; Ling, Xu; Wei-Ming, Zhao; Hong-Lin, Ding; Zhong-Yuan, Ma; Jun, Xu; Kun-Ji, Chen

    2010-01-01

    This paper reports that metal-oxide-semiconductor (MOS) capacitors with a single layer of Ni nanoparticles were successfully fabricated by using electron-beam evaporation and rapid thermal annealing for application to nonvolatile memory. Experimental scanning electron microscopy images showed that Ni nanoparticles of about 5 nm in diameter were clearly embedded in the SiO 2 layer on p-type Si (100). Capacitance–voltage measurements of the MOS capacitor show large flat-band voltage shifts of 1.8 V, which indicate the presence of charge storage in the nickel nanoparticles. In addition, the charge-retention characteristics of MOS capacitors with Ni nanoparticles were investigated by using capacitance–time measurements. The results showed that there was a decay of the capacitance embedded with Ni nanoparticles for an electron charge after 10 4 s. But only a slight decay of the capacitance originating from hole charging was observed. The present results indicate that this technique is promising for the efficient formation or insertion of metal nanoparticles inside MOS structures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. Polymorphic Embedding of DSLs

    DEFF Research Database (Denmark)

    Hofer, Christian; Ostermann, Klaus; Rendel, Tillmann

    2008-01-01

    propose polymorphic embedding of DSLs, where many different interpretations of a DSL can be provided as reusable components, and show how polymorphic embedding can be realized in the programming language Scala. With polymorphic embedding, the static type-safety, modularity, composability and rapid...... prototyping of pure embedding are reconciled with the flexibility attainable by external toolchains....

  8. Hybrid brain-computer interface for biomedical cyber-physical system application using wireless embedded EEG systems.

    Science.gov (United States)

    Chai, Rifai; Naik, Ganesh R; Ling, Sai Ho; Nguyen, Hung T

    2017-01-07

    One of the key challenges of the biomedical cyber-physical system is to combine cognitive neuroscience with the integration of physical systems to assist people with disabilities. Electroencephalography (EEG) has been explored as a non-invasive method of providing assistive technology by using brain electrical signals. This paper presents a unique prototype of a hybrid brain computer interface (BCI) which senses a combination classification of mental task, steady state visual evoked potential (SSVEP) and eyes closed detection using only two EEG channels. In addition, a microcontroller based head-mounted battery-operated wireless EEG sensor combined with a separate embedded system is used to enhance portability, convenience and cost effectiveness. This experiment has been conducted with five healthy participants and five patients with tetraplegia. Generally, the results show comparable classification accuracies between healthy subjects and tetraplegia patients. For the offline artificial neural network classification for the target group of patients with tetraplegia, the hybrid BCI system combines three mental tasks, three SSVEP frequencies and eyes closed, with average classification accuracy at 74% and average information transfer rate (ITR) of the system of 27 bits/min. For the real-time testing of the intentional signal on patients with tetraplegia, the average success rate of detection is 70% and the speed of detection varies from 2 to 4 s.

  9. Application of relativistic coupled cluster linear response theory to helium-like ions embedded in plasma environment

    Science.gov (United States)

    Das, Madhulita; Chaudhuri, Rajat K.; Chattopadhyay, Sudip; Sinha Mahapatra, Uttam; Mukherjee, P. K.

    2011-08-01

    Ionization potential and low lying 1S0\\longrightarrow1P1 excitation energies (EE) of highly stripped He-like ions C4 +, Al11 +, and Ar16 + embedded in plasma environment are calculated for the first time using the state-of-the-art coupled cluster (CC)-based linear response theory (LRT) with the four-component relativistic spinors and compared with available experimental data from laser plasma experiments. Debye's screening model is used to estimate the effect of plasma on the ions within the relativistic and non-relativistic framework. The transition energies computed at the CCLRT level using the Debye model agree well with experiment and with other available theoretical data. To our knowledge, no prior CCLRT calculations within the Dirac-Fock framework are available for these systems. Our calculated transition energies for helium-like ions are in accord with experiment; we trust that our predicted EE might be acceptably good for the systems considered. Our preliminary result indicates that CCLRT with the four-component relativistic spinors appears to be a valuable tool for studying the atomic systems where accurate treatments of correlation effects play a crucial role in shaping the spectral lines of ions subjected to plasma environment.

  10. Software for Manipulating and Embedding Data Interrogation Algorithms into Integrated Systems: Special Application to Structural Health Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Allen, David W. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2004-12-01

    In this study a software package for easily creating and embedding structural health monitoring (SHM) data interrogation processes in remote hardware is presented. The software described herein is comprised of two pieces. The first is a client to allow graphical construction of data interrogation processes. The second is node software for remote execution of processes on remote sensing and monitoring hardware. The client software is created around a catalog of data interrogation algorithms compiled over several years of research at Los Alamos National Laboratory known as DIAMOND II. This study also includes encapsulating the DIAMOND II algorithms into independent interchangeable functions and expanding the catalog with work in feature extraction and statistical discrimination. The client software also includes methods for interfacing with the node software over an Internet connection. Once connected, the client software can upload a developed process to the integrated sensing and processing node. The node software has the ability to run the processes and return results. This software creates a distributed SHM network without individual nodes relying on each other or a centralized server to monitor a structure.

  11. Synthesis of silver embedded poly(o-anisidine molybdophosphate nano hybrid cation-exchanger applicable for membrane electrode.

    Directory of Open Access Journals (Sweden)

    Anish Khan

    Full Text Available Poly(o-anisidine molybdophosphate was expediently obtained by sol-gel mixing of Poly(o-anisidine into the inorganic matrices of molybdophosphate, which was allowed to react with silver nitrate to the formation of poly(o-anisidine molybdophosphate embedded silver nano composite. The composite was characterized by Fourier Transform Infrared Spectroscopy, X-ray powder diffraction, UV-Vis Spectrophotometry, Fluorescence Spectroscopy, Scanning Electron Microscopy/Energy-dispersive X-ray Spectroscopy and Thermogravimertic Analysis. Ion exchange capacity and distribution studies were carried out to understand the ion-exchange capabilities of the nano composite. On the basis of highest distribution studies, this nano composite cation exchanger was used as preparation of heavy metal ion selective membrane. Membrane was characterized for its performance as porosity and swelling later on was used for the preparation of membrane electrode for Hg(II, having better linear range, wide working pH range (2-4.5 with fast response in the real environment.

  12. Cooling Curve Analysis of Micro- and Nanographite Particle-Embedded Salt-PCMs for Thermal Energy Storage Applications

    Science.gov (United States)

    Sudheer, R.; Prabhu, K. N.

    2017-08-01

    In recent years, the focus of phase change materials (PCM) research was on the development of salt mixtures with particle additives to improve their thermal energy storage (TES) functionalities. The effect of addition of microsized (50 μm) and nanosized (400 nm) graphite particles on TES parameters of potassium nitrate was analyzed in this work. A novel technique of computer-aided cooling curve analysis was employed here to study the suitability of large inhomogeneous PCM samples. The addition of graphite micro- and nanoparticles reduced the solidification time of the PCM significantly enhancing the heat removal rates, in the first thermal cycle. The benefits of dispersing nanoparticles diminished in successive 10 thermal cycles, and its performance was comparable to the microparticle-embedded PCM thereafter. The decay of TES functionalities on thermal cycling is attributed to the agglomeration of nanoparticles which was observed in SEM images. The thermal diffusivity property of the PCM decreased with addition of graphite particles. With no considerable change in the cooling rates and a simultaneous decrease in thermal diffusivity, it is concluded that the addition of graphite particles increased the specific heat capacity of the PCM. It is also suggested that the additive concentration should not be greater than 0.1% by weight of the PCM sample.

  13. A synthetic map of the north-west European Shelf sedimentary environment for applications in marine science

    Science.gov (United States)

    Wilson, Robert J.; Speirs, Douglas C.; Sabatino, Alessandro; Heath, Michael R.

    2018-01-01

    Seabed sediment mapping is important for a wide range of marine policy, planning and scientific issues, and there has been considerable national and international investment around the world in the collation and synthesis of sediment datasets. However, in Europe at least, much of this effort has been directed towards seabed classification and mapping of discrete habitats. Scientific users often have to resort to reverse engineering these classifications to recover continuous variables, such as mud content and median grain size, that are required for many ecological and biophysical studies. Here we present a new set of 0.125° by 0.125° resolution synthetic maps of continuous properties of the north-west European sedimentary environment, extending from the Bay of Biscay to the northern limits of the North Sea and the Faroe Islands. The maps are a blend of gridded survey data, statistically modelled values based on distributions of bed shear stress due to tidal currents and waves, and bathymetric properties. Recent work has shown that statistical models can predict sediment composition in British waters and the North Sea with high accuracy, and here we extend this to the entire shelf and to the mapping of other key seabed parameters. The maps include percentage compositions of mud, sand and gravel; porosity and permeability; median grain size of the whole sediment and of the sand and the gravel fractions; carbon and nitrogen content of sediments; percentage of seabed area covered by rock; mean and maximum depth-averaged tidal velocity and wave orbital velocity at the seabed; and mean monthly natural disturbance rates. A number of applications for these maps exist, including species distribution modelling and the more accurate representation of sea-floor biogeochemistry in ecosystem models. The data products are available from https://doi.org/10.15129/1e27b806-1eae-494d-83b5-a5f4792c46fc.

  14. Reconstruction of spatially detailed global map of NH4+ and NO3- application in synthetic nitrogen fertilizer

    Science.gov (United States)

    Nishina, Kazuya; Ito, Akihiko; Hanasaki, Naota; Hayashi, Seiji

    2017-02-01

    Currently, available historical global N fertilizer map as an input data to global biogeochemical model is still limited and existing maps were not considered NH4+ and NO3- in the fertilizer application rates. This paper provides a method for constructing a new historical global nitrogen fertilizer application map (0.5° × 0.5° resolution) for the period 1961-2010 based on country-specific information from Food and Agriculture Organization statistics (FAOSTAT) and various global datasets. This new map incorporates the fraction of NH4+ (and NO3-) in N fertilizer inputs by utilizing fertilizer species information in FAOSTAT, in which species can be categorized as NH4+- and/or NO3--forming N fertilizers. During data processing, we applied a statistical data imputation method for the missing data (19 % of national N fertilizer consumption) in FAOSTAT. The multiple imputation method enabled us to fill gaps in the time-series data using plausible values using covariates information (year, population, GDP, and crop area). After the imputation, we downscaled the national consumption data to a gridded cropland map. Also, we applied the multiple imputation method to the available chemical fertilizer species consumption, allowing for the estimation of the NH4+ / NO3- ratio in national fertilizer consumption. In this study, the synthetic N fertilizer inputs in 2000 showed a general consistency with the existing N fertilizer map (Potter et al., 2010) in relation to the ranges of N fertilizer inputs. Globally, the estimated N fertilizer inputs based on the sum of filled data increased from 15 to 110 Tg-N during 1961-2010. On the other hand, the global NO3- input started to decline after the late 1980s and the fraction of NO3- in global N fertilizer decreased consistently from 35 to 13 % over a 50-year period. NH4+-forming fertilizers are dominant in most countries; however, the NH4+ / NO3- ratio in N fertilizer inputs shows clear differences temporally and geographically. This

  15. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  16. Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications

    Science.gov (United States)

    Sreejesh, M.; Shenoy, Sulakshana; Sridharan, Kishore; Kufian, D.; Arof, A. K.; Nagaraja, H. S.

    2017-07-01

    Electrochemical sensors and lithium-ion batteries are two important topics in electrochemistry that have attracted much attention owing to their extensive applications in enzyme-free biosensors and portable electronic devices. Herein, we report a simple hydrothermal approach for synthesizing composites of melt quenched vanadium oxide embedded on graphene oxide of equal proportion (MVGO50) for the fabrication of electrodes for nonenzymatic amperometic dopamine sensor and lithium-ion battery applications. The sensing performance of MVGO50 electrodes through chronoamperometry studies in 0.1 M PBS solution (at pH 7) over a wide range of dopamine concentration exhibited a highest sensitivity of 25.02 μA mM-1 cm-2 with the lowest detection limit of 0.07 μM. In addition, the selective sensing capability of MVGO50 was also tested through chronoamperometry studies by the addition of a very small concentration of dopamine (10 μM) in the presence of a fairly higher concentration of uric acid (10 mM) as the interfering species. Furthermore, the reversible lithium cycling properties of MVGO50 are evaluated by galvanostatic charge-discharge cycling studies. MVGO50 electrodes exhibited enhanced rate capacity of up to 200 mAhg-1 at a current of 0.1C rate and remained stable during cycling. These results indicate that MVGO composites are potential candidates for electrochemical device applications.

  17. A comparative study of the defluoridation efficiency of synthetic ...

    African Journals Online (AJOL)

    A comparative study of the defluoridation efficiency of synthetic dicalcium phosphate dihydrate (DCPD) and lacunar hydroxyapatite (L-HAp): An application of synthetic solution and Koundoumawa field water.

  18. Synthetic growth reference charts

    NARCIS (Netherlands)

    Hermanussen, Michael; Stec, Karol; Aßmann, Christian; Meigen, Christof; Van Buuren, Stef

    2016-01-01

    Objectives: To reanalyze the between-population variance in height, weight, and body mass index (BMI), and to provide a globally applicable technique for generating synthetic growth reference charts. Methods: Using a baseline set of 196 female and 197 male growth studies published since 1831, common

  19. Security Aspects of Smart Cards vs. Embedded Security in Machine-to-Machine (M2M) Advanced Mobile Network Applications

    Science.gov (United States)

    Meyerstein, Mike; Cha, Inhyok; Shah, Yogendra

    The Third Generation Partnership Project (3GPP) standardisation group currently discusses advanced applications of mobile networks such as Machine-to-Machine (M2M) communication. Several security issues arise in these contexts which warrant a fresh look at mobile networks’ security foundations, resting on smart cards. This paper contributes a security/efficiency analysis to this discussion and highlights the role of trusted platform technology to approach these issues.

  20. Embedding of bacterial cellulose nanofibers within PHEMA hydrogel matrices: tunable stiffness composites with potential for biomedical applications

    Czech Academy of Sciences Publication Activity Database

    Hobzová, Radka; Hrib, Jakub; Širc, Jakub; Karpushkin, Evgeny; Michálek, Jiří; Janoušková, Olga; Gatenholm, P.

    2018-01-01

    Roč. 2018, 17 January (2018), s. 1-11, č. článku 5217095. ISSN 1687-4110 R&D Projects: GA ČR(CZ) GA16-04863S; GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : bacterial cellulose * PHEMA * biomedical application Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.871, year: 2016

  1. Stereochemistry and synthetic applications of products of fermentation of alpha,beta-unsaturated aromatic aldehydes by baker's yeast.

    Science.gov (United States)

    Fuganti, C; Grasselli, P

    1985-01-01

    Baker's yeast fermenting on D-glucose converts 2-substituted C6-C3 alpha,beta-unsaturated aromatic aldehydes into the corresponding 3-phenylprop-2-en-1-ols and 3-phenylpropan-1-ols, and into the 4-substituted (2S,3R)-5-phenylpent-4-en-2,3-ols. The formation of the C6-C3 alcohols from the aldehydes by baker's yeast was already known, but the production of the methyl diols is new. The conversion of C6-C3 alpha,beta-unsaturated aldehydes into the C6-C5 methyl diols can be viewed as the overall consequence of two distinct chemical operations: (1) addition of a C2 unit equivalent to acetaldehyde onto the Si-face of the carbonyl carbon of the unsaturated aldehyde forms the (R)-alpha-hydroxy ketone in an acyloin-type condensation, and (2) reduction of this intermediate on the Re-face of the carbonyl gives the diol actually isolated. There is some tolerance by the enzymic system(s) involved in the reaction(s) leading from the C6-C3 alpha,beta-unsaturated aromatic aldehydes to the 4-substituted (2S,3R)-5-phenylpent-4-en-2,3-ols as far as the structure of the aromatic aldehydes and the substitutents in the alpha position are concerned, but acetaldehyde is the only aldehyde accepted as second terminus of the reaction. However, synthetic alpha-hydroxy ketones, prepared from aldehydes that cannot be directly converted by yeast into the corresponding methyl diols, are reduced by yeast. This indicates that the reason direct conversion of the aldehydes does not occur is that these materials probably cannot be accepted as substrates by the condensing enzyme(s). The (2S,3R)-diols can be used instead of natural carbohydrates as starting materials for the synthesis of optically active forms of natural products belonging to different structural classes. Applications of these diols in the synthesis of L-daunosamine, the natural form of vitamin E and other products are discussed.

  2. Synthetic Rutile

    International Nuclear Information System (INIS)

    Burastero, J.

    1975-01-01

    This work is about the laboratory scale investigation of the conditions in the rutile synthetic production from one me nita in Aguas Dulces reservoir. The iron mineral is chlorinated and volatilized selectively leaving a residue enriched in titanium dioxide which can be used as a substitute of rutile mineral

  3. Preparation of Fe3O4-Embedded Poly(styrene/Poly(thiophene Core/Shell Nanoparticles and Their Hydrogel Patterns for Sensor Applications

    Directory of Open Access Journals (Sweden)

    Yong Seok Kim

    2014-01-01

    Full Text Available This research describes the preparation and sensor applications of multifunctional monodisperse, Fe3O4 nanoparticles-embedded poly(styrene/poly(thiophene (Fe3O4-PSt/PTh, core/shell nanoparticles. Monodisperse Fe3O4-PSt/PTh nanoparticles were prepared by free-radical combination (mini-emulsion/emulsion polymerization for Fe3O4-PSt core and oxidative seeded emulsion polymerization for PTh shell in the presence of FeCl3/H2O2 as a redox catalyst, respectively. For applicability of Fe3O4-PSt/PTh as sensors, Fe3O4-PSt/PTh-immobilized poly(ethylene glycol (PEG-based hydrogels were fabricated by photolithography. The hydrogel patterns showed a good sensing performance under different H2O2 concentrations. They also showed a quenching sensitivity of 1 µg/mL for the Pd2+ metal ion within 1 min. The hydrogel micropatterns not only provide a fast water uptake property but also suggest the feasibility of both H2O2 and Pd2+ detection.

  4. Formation of SiGe nanocrystals embedded in Al2O3 for the application of write-once-read-many-times memory

    Science.gov (United States)

    Wu, Min-Lin; Wu, Yung-Hsien; Lin, Chia-Chun; Chen, Lun-Lun

    2012-10-01

    The structure of SiGe nanocrystals embedded in Al2O3 formed by sequential deposition of Al2O3/Si/Ge/Al2O3 and a subsequent annealing was confirmed by transmission electron microscopy and energy dispersive spectroscopy (EDS), and its application for write-once-read-many-times (WORM) memory devices was explored in this study. By applying a -10 V pulse for 1 s, a large amount of holes injected from Si substrate are stored in the nanocrystals and consequently, the current at +1.5 V increases by a factor of 104 as compared to that of the initial state. Even with a smaller -5 V pulse for 1 μs, a sufficiently large current ratio of 36 can still be obtained, verifying the low power operation. Since holes are stored in nanocrystals which are isolated from Si substrate by Al2O3 with good integrity and correspond to a large valence band offset with respect to Al2O3, desirable read endurance up to 105 cycles and excellent retention over 100 yr are achieved. Combining these promising characteristics, WORM memory devices are appropriate for high-performance archival storage applications.

  5. TinyCoAP: A Novel Constrained Application Protocol (CoAP Implementation for Embedding RESTful Web Services in Wireless Sensor Networks Based on TinyOS

    Directory of Open Access Journals (Sweden)

    Anna Calveras

    2013-05-01

    Full Text Available In this paper we present the design and implementation of the Constrained Application Protocol (CoAP for TinyOS, which we refer to as TinyCoAP. CoAP seeks to apply the same application transfer paradigm and basic features of HTTP to constrained networks, while maintaining a simple design and low overhead. The design constraints of Wireless Sensor Networks (WSNs require special attention in the design process of the CoAP implementation. We argue that better performance and minimal resource consumption can be achieved developing a native library for the operating system embedded in the network. TinyOS already includes in its distribution an implementation of CoAP called CoapBlip. However, this is based on a library not originally designed to meet the requirements of TinyOS. We demonstrate the effectiveness of our approach by a comprehensive performance evaluation. In particular, we test and evaluate TinyCoAP and CoapBlip in a real scenario, as well as solutions based on HTTP. The evaluation is performed in terms of latency, memory occupation, and energy consumption. Furthermore, we evaluate the reliability of each solution by measuring the goodput obtained in a channel affected by Rayleigh fading. We also include a study on the effects that high workloads have on a server.

  6. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  7. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  8. Development of an Erlang System Adaopted to Embedded Devices

    OpenAIRE

    Andersson, Fredrik; Bergström, Fabian

    2011-01-01

    Erlang is a powerful and robust language for writing massively parallel and distributed applications. With the introduction of multi-core ARM processors, the embedded market will be looking for ways of taking advantage of the newfound opportunities for parallelism. To support the development of embedded applications using Erlang we want to provide Erlang and Embedded developers with a run-time system suited for embedded devices. We have managed to shrink the disk size of the Erlang runtime sy...

  9. Critical points in an algebra of elementary embeddings

    OpenAIRE

    Dougherty, Randall

    1992-01-01

    Given two elementary embeddings from the collection of sets of rank less than $\\lambda$ to itself, one can combine them to obtain another such embedding in two ways: by composition, and by applying one to (initial segments of) the other. Hence, a single such nontrivial embedding $j$ generates an algebra of embeddings via these two operations, which satisfies certain laws (for example, application distributes over both composition and application). Laver has shown, among other things, that thi...

  10. Embedded multiprocessors scheduling and synchronization

    CERN Document Server

    Sriram, Sundararajan

    2009-01-01

    Techniques for Optimizing Multiprocessor Implementations of Signal Processing ApplicationsAn indispensable component of the information age, signal processing is embedded in a variety of consumer devices, including cell phones and digital television, as well as in communication infrastructure, such as media servers and cellular base stations. Multiple programmable processors, along with custom hardware running in parallel, are needed to achieve the computation throughput required of such applications. Reviews important research in key areas related to the multiprocessor implementation of multi

  11. Assessment of the level of microbial combination in cotton and synthetic fibers destined for the use in nonwoven applications

    Science.gov (United States)

    Microbial burden measurements are crucial for certain converter uses of nonwoven materials. Currently, the microbial burden of natural fibers such as cotton have not been quantified and little consideration has been given to the potential contamination introduced by synthetic fibers during the proc...

  12. Assessment of the level of microbial contamination in cotton and synthetic fibers destined for the use in nonwoven applications

    Science.gov (United States)

    Microbial burden measurements are crucial for certain converter uses of nonwoven materials. Currently, the microbial burden of natural fibers such as cotton have not been quantified and little consideration has been given to the potential contamination introduced by synthetic fibers during the proc...

  13. Passive synthetic aperture sonar techniques in combination with tow ship noise canceling: application to a triplet towed array

    NARCIS (Netherlands)

    Colin, M.E.G.D.; Groen, J.

    2002-01-01

    An important issue in research on passive ASW operations is improvement in signal-to-noise ratio (SNR) and bearing resolution for targets emitting low frequency signals. One of the techniques believed to improve these characteristics is Synthetic Aperture Sonar (SAS). The method is based on the

  14. Trusted computing for embedded systems

    CERN Document Server

    Soudris, Dimitrios; Anagnostopoulos, Iraklis

    2015-01-01

    This book describes the state-of-the-art in trusted computing for embedded systems. It shows how a variety of security and trusted computing problems are addressed currently and what solutions are expected to emerge in the coming years. The discussion focuses on attacks aimed at hardware and software for embedded systems, and the authors describe specific solutions to create security features. Case studies are used to present new techniques designed as industrial security solutions. Coverage includes development of tamper resistant hardware and firmware mechanisms for lightweight embedded devices, as well as those serving as security anchors for embedded platforms required by applications such as smart power grids, smart networked and home appliances, environmental and infrastructure sensor networks, etc. ·         Enables readers to address a variety of security threats to embedded hardware and software; ·         Describes design of secure wireless sensor networks, to address secure authen...

  15. Embedded nonvolatile memory devices with various silicon nitride energy band gaps on glass used for flat panel display applications

    International Nuclear Information System (INIS)

    Son, Dang Ngoc; Van Duy, Nguyen; Jung, Sungwook; Yi, Junsin

    2010-01-01

    Nonvolatile memory (NVM) devices with a nitride–nitride–oxynitride stack structure on a rough poly-silicon (poly-Si) surface were fabricated using a low-temperature poly-Si (LTPS) thin film transistor technology on glass substrates for application of flat panel display (FPD). The plasma-assisted oxidation/nitridation method is used to form a uniform oxynitride with an ultrathin tunneling layer on a rough LTPS surface. The NVMs, using a Si-rich silicon nitride film as a charge-trapping layer, were proposed as one of the solutions for the improvement of device performance such as the program/erase speed, the memory window and the charge retention characteristics. To further improve the vertical scaling and charge retention characteristics of NVM devices, the high-κ high-density N-rich SiN x films are used as a blocking layer. The fabricated NVM devices have outstanding electrical properties, such as a low threshold voltage, a high ON/OFF current ratio, a low subthreshold swing, a low operating voltage of less than ±9 V and a large memory window of 3.7 V, which remained about 1.9 V over a period of 10 years. These characteristics are suitable for electrical switching and data storage with in FPD application

  16. Application of gamma-ray radiography and gravimetric measurements after accelerated corrosion tests of steel embedded in mortar

    Energy Technology Data Exchange (ETDEWEB)

    Duffó, Gustavo, E-mail: duffo@cnea.gov.ar [Comisión Nacional de Energía Atómica, Gerencia Materiales, Depto. Corrosión, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, 1033 Buenos Aires (Argentina); Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Gaillard, Natalia [Universidad Nacional de San Martín, Av. Gral. Paz 1499, 1650 San Martín, Buenos Aires (Argentina); Mariscotti, Mario; Ruffolo, Marcelo [Tomografía de Hormigón Armado S.A. (THASA), Reclus 2017, 1609 Boulogne, Buenos Aires (Argentina)

    2015-08-15

    The accelerated corrosion by the impressed current technique is widely used in studies of concrete durability since it has the advantage that tests can be carried out within reasonable periods of time. In the present work the relationship between the applied current density and the resulting damage on the reinforcing steel, by applying optical microscopy, scanning electron microscopy, gamma-ray radiography and gravimetric measurements, was studied by means of the implementation of accelerated corrosion tests on reinforced mortar. The results show that the efficiency of the applied current is between 1 and 77%, regardless of the applied current density, the water/cement ratio and the mortar cover depth of the specimens. The results show the applicability of the gamma-ray radiography technique to detect localized corrosion of steel rebars in laboratory specimens.

  17. Conceptualizing Embedded Configuration

    DEFF Research Database (Denmark)

    Oddsson, Gudmundur Valur; Hvam, Lars; Lysgaard, Ole

    2006-01-01

    Installing and servicing complex electromechanical systems is more tedious than is necessary. By putting the product knowledge into the product itself, which then would allow automation in constructing the product from modules, could solve that. It would support personnel in aftersales installation...... and services. The general idea can be named embedded configuration. In this article we intend to conceptualize embedded configuration, what it is and is not. The difference between embedded configuration, sales configuration and embedded software is explained. We will look at what is needed to make embedded...... configuration systems. That will include requirements to product modelling techniques. An example with consumer electronics will illuminate the elements of embedded configuration in settings that most can relate to. The question of where embedded configuration would be relevant is discussed, and the current...

  18. Melt quenched vanadium oxide embedded in graphene oxide sheets as composite electrodes for amperometric dopamine sensing and lithium ion battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Sreejesh, M. [Materials Research Laboratory, Department of Physics, National Institute of Technology Karnataka, P.O. Srinivasnagar, Surathkal, Mangaluru 575 025 (India); Shenoy, Sulakshana [Functional Nanostructured Materials Research Laboratory, Department of Physics, National Institute of Technology Karnataka, P.O. Srinivasnagar, Surathkal, Mangaluru 575 025 (India); Sridharan, Kishore, E-mail: kishore@nitk.edu.in [Functional Nanostructured Materials Research Laboratory, Department of Physics, National Institute of Technology Karnataka, P.O. Srinivasnagar, Surathkal, Mangaluru 575 025 (India); Kufian, D.; Arof, A.K. [Centre for Ionics, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur (Malaysia); Nagaraja, H.S., E-mail: nagaraja@nitk.edu.in [Materials Research Laboratory, Department of Physics, National Institute of Technology Karnataka, P.O. Srinivasnagar, Surathkal, Mangaluru 575 025 (India)

    2017-07-15

    Highlights: • Layered vanadium oxides (MVO) are prepared through melt quenching process. • MVO is hydrothermally treated with graphene oxide to form MVGO composites. • Dopamine detection capacity using MVGO is 0.07 μM with good selectivity. • Sensitivity of dopamine detection is 25.02 μA mM{sup −1} cm{sup −2}. • Discharge capacity of MVGO electrode is 200 mAhg{sup −1} after 10 cycles. - Abstract: Electrochemical sensors and lithium-ion batteries are two important topics in electrochemistry that have attracted much attention owing to their extensive applications in enzyme-free biosensors and portable electronic devices. Herein, we report a simple hydrothermal approach for synthesizing composites of melt quenched vanadium oxide embedded on graphene oxide of equal proportion (MVGO50) for the fabrication of electrodes for nonenzymatic amperometic dopamine sensor and lithium-ion battery applications. The sensing performance of MVGO50 electrodes through chronoamperometry studies in 0.1 M PBS solution (at pH 7) over a wide range of dopamine concentration exhibited a highest sensitivity of 25.02 μA mM{sup −1} cm{sup −2} with the lowest detection limit of 0.07 μM. In addition, the selective sensing capability of MVGO50 was also tested through chronoamperometry studies by the addition of a very small concentration of dopamine (10 μM) in the presence of a fairly higher concentration of uric acid (10 mM) as the interfering species. Furthermore, the reversible lithium cycling properties of MVGO50 are evaluated by galvanostatic charge-discharge cycling studies. MVGO50 electrodes exhibited enhanced rate capacity of up to 200 mAhg{sup −1} at a current of 0.1C rate and remained stable during cycling. These results indicate that MVGO composites are potential candidates for electrochemical device applications.

  19. Application of atomic force microscopy to protein anatomy:. Imaging of supramolecular structures of self-assemblies formed from synthetic peptides

    Science.gov (United States)

    Shibata-Seki, T.; Masai, J.; Ogawa, Y.; Sato, K.; Yanagawa, H.

    This paper reports morphological studies of structures of self-assemblies from synthetic peptide fragments with the use of atomic force microscope (AFM) and transmission electron microscope (TEM). Two systems of synthetic peptides have been examined: one is peptides from barnase (a ribonuclease) and the other is those from tau protein (Alzheimer's disease-related protein). The AFM observation was carried out by using a commercially available AFM operated in the tapping mode in air. The general appearance in shape and size of the peptide assemblies in AFM images was essentially similar to that in TEM images, except that the AFM images provide us with fruitful three-dimensional information about the assemblies. For assemblies from barnase peptides, possible formation processes of the supramolecular structures from the corresponding peptide fragment have been proposed on the basis of the AFM images.

  20. The Safety Evaluation of a Potent Angiogenic Activator, Synthetic Peptide (SFKLRY-NH2) for the Skin Application

    Science.gov (United States)

    Kim, Dong Ha; Lim, Yun Young; Kim, Hyeong Mi; Kim, So Young; Park, Sung-Gil; Lee, Taehoon

    2012-01-01

    A novel synthetic hexapeptide (SFKLRY-NH2) that displays angiogenic activity has been identified by positional scanning of a synthetic peptide combinatorial library (PS-SPCL). This study was carried out to investigate the irritation of the SFKLRY-NH2 on the skin. The tests were performed on the basis of Korea Food and Drug Administration (KFDA) guidelines. In results, cell toxicity is not appeared for SFKLRY-NH2 in HaCaT cells and B16F10 cells. SFKLRY-NH2 induced no skin irritation at low concentration (10 μM), mild irritation at high concentration (10mM). We consider that this result is helpful for saying about the safety of SFKLRY-NH2 in clinical use. PMID:24278589

  1. Does Certification Change the Trajectory of Tree Cover in Working Forests in The Tropics? An Application of the Synthetic Control Method of Impact Evaluation

    Directory of Open Access Journals (Sweden)

    Pushpendra Rana

    2018-02-01

    Full Text Available Certification by the Forest Stewardship Council (FSC remains rare among forest management units (FMUs in natural tropical forests, presenting a challenge for impact evaluation. We demonstrate application of the synthetic control method (SCM to evaluate the impact of FSC certification on a single FMU in each of three tropical forest landscapes. Specifically, we estimate causal effects on tree cover change from the year of certification to 2012 using SCM and open-access, pan-tropical datasets. We demonstrate that it is possible to construct synthetic controls, or weighted combinations of non-certified FMUs, that followed the same path of tree cover change as the certified FMUs before certification. By using these synthetic controls to measure counterfactual tree cover change after certification, we find that certification reduced tree cover loss in the most recent year (2012 in all three landscapes. However, placebo tests show that in one case, this effect was not significant, and in another case, it followed several years in which certification had the opposite effect (increasing tree cover loss. We conclude that SCM has promise for identifying temporally varying impacts of small-N interventions on land use and land cover change.

  2. Preparation of activated carbon based on synthetic and agricultural wastes: application to the adsorption of methyl orange

    OpenAIRE

    Chennouf-Abdellatif, Z.; Checknane, B.; Zermane, F.; Gaigneaux, Eric M.; Hadj Sadok, A.B.; Mohammedi, O.; Bouchenafa-Saib, N.

    2015-01-01

    This study focus on the optimization of operating conditions for activated carbons preparation starting from synthetic waste (tires) and agricultural waste (date pits) by chemical activation. The experimental design was used in order to determinate the optimal conditions for the preparation of a precursor with high properties. The results show that a temperature of 550°C and particle diameter of 800 μm are interesting. The specific surface area reached 770 and 1030m2/g respectively for the ac...

  3. Validated HPLC method for determination of caffeine level in human plasma using synthetic plasma: application to bioavailability studies.

    Science.gov (United States)

    Alvi, Syed N; Hammami, Muhammad M

    2011-04-01

    Several high-performance liquid chromatography (HPLC) methods have been described for the determination of caffeine in human plasma. However, none have been cross validated using synthetic plasma. The present study describes a simple and reliable HPLC method for the determination of the caffeine level in human plasma. Synthetic plasma was used to construct calibration curves and quality control samples to avoid interference by caffeine commonly present in donor's human plasma. After deproteination of plasma samples with perchloric acid, caffeine and antipyrine (internal standard, IS) were separated on a Waters Atlantis C18 column using a mobile phase of 15 mM potassium phosphate (pH 3.5) and acetonitrile (83:17, v/v), and monitored by photodiode array detector, with the wavelength set at 274 nm. The relationship between caffeine concentrations and peak area ratio (caffeine-IS) was linear over the range of 0.05-20 μg/mL. Inter-run coefficient of variation was ≤ 5.4% and ≤ 6.0% and bias was ≤ 3% and ≤ 7% using human and synthetic plasma, respectively. Mean extraction recovery from human plasma of caffeine and the IS was 91% and 86%, respectively. Caffeine in human plasma was stable for at least 24 h at room temperature or 12 weeks at -20 °C, and after three freeze-thaw cycles. The method was successfully applied to monitor caffeine levels in healthy volunteers with correction of caffeine levels using the mean ratio of the slopes of the calibration's curves constructed using human and synthetic plasma.

  4. Numerical modeling of block structure dynamics: Application to the Vrancea region and study of earthquakes sequences in the synthetic catalogs

    International Nuclear Information System (INIS)

    Soloviev, A.A.; Vorobieva, I.A.

    1995-08-01

    A seismically active region is represented as a system of absolutely rigid blocks divided by infinitely thin plane faults. The interaction of the blocks along the fault planes and with the underlying medium is viscous-elastic. The system of blocks moves as a consequence of prescribed motion of boundary blocks and the underlying medium. When for some part of a fault plane the stress surpasses a certain strength level a stress-drop (''a failure'') occurs. It can cause a failure for other parts of fault planes. The failures are considered as earthquakes. As a result of the numerical simulation a synthetic earthquake catalogue is produced. This procedure is applied for numerical modeling of dynamics of the block structure approximating the tectonic structure of the Vrancea region. By numerical experiments the values of the model parameters were obtained which supplied the synthetic earthquake catalog with the space distribution of epicenters close to the real distribution of the earthquake epicenters in the Vrancea region. The frequency-magnitude relations (Gutenberg-Richter curves) obtained for the synthetic and real catalogs have some common features. The sequences of earthquakes arising in the model are studied for some artificial structures. It is found that ''foreshocks'', ''main shocks'', and ''aftershocks'' could be detected among earthquakes forming the sequences. The features of aftershocks, foreshocks, and catalogs of main shocks are analysed. (author). 5 refs, 12 figs, 16 tabs

  5. Characterization of commercial synthetic resins by pyrolysis-gas chromatography/mass spectrometry: application to modern art and conservation.

    Science.gov (United States)

    Peris-Vicente, J; Baumer, U; Stege, H; Lutzenberger, K; Gimeno Adelantado, J V

    2009-04-15

    To characterize a set of synthetic resins, a methodology by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) has been developed. The studied reference materials were commercial versions of a wide range of synthetic resins. For each polymer, the pyrolytic and chromatographic conditions were optimized to adequately resolve the fragment mixture in a short time. The proposed analytical method does not require previous treatment of the sample, and due to its high sensitivity, only a small sample quantity in the microgram range can be used. The pyrolysis temperature was found to have little effect on the obtained pyrograms. The summarized data set for the individual polymer materials, especially the characteristic fragments with a structure close to the monomeric unit, was useful to identify commercial synthetic resins. These materials were used in the art and conservation field, as binding media, paint additives, painting varnishes, coatings, or consolidants. Two case studies are introduced where direct Py-GC/MS and thermally assisted hydrolysis and methylation GC/MS were applied on art objects: first, a modern gluing material of a medieval reverse glass painting, and the second example, the binding medium of a painting by Georg Baselitz ("Senta", 1992/1993) from the Sammlung Moderne Kunst at the Pinakothek der Moderne, Munich.

  6. Optimization of surfactant application for synthetic drilling fluid; Otimizacao da aplicacao de emulsificante em fluidos de perfuracao sinteticos

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, Jefferson Teixeira [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Santos, Telma Pitanga; Medeiros, Ana Catarina da Rocha; Garcia, Rosangela Balaban [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Lab. de Pesquisa em Petroleo

    2008-07-01

    The most common synthetic drilling fluids are made of polymerized olefins, paraffin and esters, which have absence of aromatics hydrocarbons and biodegradability as advantages. These fluids have good performance during the drilling operations (high thermal stability) and have low toxicity. Nevertheless, their big disadvantage is the high cost, which limits their use. One of the biggest challenges in working with synthetic fluids is the control of water/oil emulsion stability, being the surfactant the main agent responsible for keeping this stability between both phases of the fluid. The water/oil and oil/water emulsion is defined by the chemical nature of the surfactant. The emulsions can be changed from oil/water to water/oil and vice versa by many mechanisms, such as temperature variation, addition of another surfactant and alteration of the disperse phase volumetric percentage. The aim of this work was the optimization of synthetic drilling fluids formulations by using commercial surfactants. The optimized formulations showed similar rheological properties. After aging at high temperature (300 deg F), some tendency to migration of oil phase in both fluids was observed. This result was associated to the fluid's viscosity. However, the formulations showed high electrical stability, indicating formation of stable emulsions. The HTHP filtration volumes were small. (author)

  7. Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: Application to food waste treatment.

    Science.gov (United States)

    Blanchet, Elise; Desmond, Elie; Erable, Benjamin; Bridier, Arnaud; Bouchez, Théodore; Bergel, Alain

    2015-06-01

    The objective was to replace synthetic medium by wastewater as a strategy to design low-cost scalable bioanodes. The addition of activated sludge was necessary to form primary bioanodes that were then used as the inoculum to form the secondary bioanodes. Bioanodes formed in synthetic medium with acetate 10mM provided current densities of 21.9±2.1A/m(2), while bioanodes formed in wastewater gave 10.3±0.1A/m(2). The difference was explained in terms of biofilm structure, electrochemical kinetics and redox charge content of the biofilms. In both media, current densities were straightforwardly correlated with the biofilm enrichment in Geobacteraceae but, inside this family, Geobacter sulfurreducens and an uncultured Geobacter sp. were dominant in the synthetic medium, while growth of another Geobacter sp. was favoured in wastewater. Finally, the primary/secondary procedure succeeded in designing bioanodes to treat food wastes by using wastewater as dilution medium, with current densities of 7±1.1A/m(2). Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Engaging in a Conversation with Synthetic Characters along the Virtuality Continuum

    DEFF Research Database (Denmark)

    André, Elisabeth; Dorfmueller-Ulhaas, Klaus; Rehm, Matthias

    2005-01-01

    During the last decade research groups as well as a number of commercial software developers have started to deploy embodied conversational characters in the user interface especially in those application areas where a close emulation of multimodal human-human communication is needed. Most...... of these characters have one thing in common: In order to enter the user’s physical world, they need to be physical themselves. The paper focuses on challenges that arise when embedding synthetic conversational agents in the user’s physical world. We will start from work on synthetic agents that populate virtual...... worlds and anthropomorphic robots that inhabit physical worlds and discuss how the two areas need to be combined in order to populate physical worlds with synthetic characters. Finally, we will report on so-called traversable interfaces that allow agents to cross the border from the physical space...

  9. LLE Score: A New Filter-Based Unsupervised Feature Selection Method Based on Nonlinear Manifold Embedding and Its Application to Image Recognition.

    Science.gov (United States)

    Chao Yao; Ya-Feng Liu; Bo Jiang; Jungong Han; Junwei Han

    2017-11-01

    The task of feature selection is to find the most representative features from the original high-dimensional data. Because of the absence of the information of class labels, selecting the appropriate features in unsupervised learning scenarios is much harder than that in supervised scenarios. In this paper, we investigate the potential of locally linear embedding (LLE), which is a popular manifold learning method, in feature selection task. It is straightforward to apply the idea of LLE to the graph-preserving feature selection framework. However, we find that this straightforward application suffers from some problems. For example, it fails when the elements in the feature are all equal; it does not enjoy the property of scaling invariance and cannot capture the change of the graph efficiently. To solve these problems, we propose a new filter-based feature selection method based on LLE in this paper, which is named as LLE score. The proposed criterion measures the difference between the local structure of each feature and that of the original data. Our experiments of classification task on two face image data sets, an object image data set, and a handwriting digits data set show that LLE score outperforms state-of-the-art methods, including data variance, Laplacian score, and sparsity score.

  10. Characterization of a Novel Anti-Human HB-EGF Monoclonal Antibody Applicable for Paraffin-Embedded Tissues and Diagnosis of HB-EGF-Related Cancers.

    Science.gov (United States)

    Iwamoto, Ryo; Takagi, Mika; Akatsuka, Jun-Ichi; Ono, Ken-Ichiro; Kishi, Yoshiro; Mekada, Eisuke

    2016-04-01

    Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that bind to and activate the EGF receptor (EGFR/ErbB1) and ErbB4. HB-EGF plays pivotal roles in pathophysiological processes, including cancer. Thus, monoclonal antibodies (mAbs) for HB-EGF detection could be an important tool in the therapeutic diagnosis of HB-EGF-related cancers and other diseases. However, few mAbs, especially those applicable for immunohistochemistry (IHC), have been established to date. In this study, we generated a clone of hybridoma-derived mAb 2-108 by immunizing mice with recombinant human HB-EGF protein expressed by human cells. The mAb 2-108 specifically bound to human HB-EGF but not to mouse HB-EGF and was successful in immunoblotting, even under reducing conditions, immunoprecipitation, and immunofluorescence for unfixed as well as paraformaldehyde-fixed cells. Notably, this mAb was effective in IHC of paraffin-embedded tumor specimens. Epitope mapping analysis showed that mAb 2-108 recognized the N-terminal prodomain in HB-EGF. These results indicate that this new anti-HB-EGF mAb 2-108 would be useful in the diagnosis of HB-EGF-related cancers and would be a strong tool in both basic and clinical research on HB-EGF.

  11. Consistent Alignment of World Embedding Models

    Science.gov (United States)

    2017-03-02

    MIT Lincoln Laboratory 244 Wood Street Lexington, MA 02421, USA ABSTRACT Word embedding models offer continuous vector representations that can...generated synthetic data points. This generative process is inspired by the observation that a variety of linguistic relationships is captured by simple...as images , and genomic data. In Wang et al. (2016) manifold alignment techniques are used to discover logical relationships in supervised settings. We

  12. Synthetic Applications of the Parkins Nitrile Hydration Catalyst [PtH{(PMe2O2H}(PMe2OH]: A Review

    Directory of Open Access Journals (Sweden)

    Victorio Cadierno

    2015-08-01

    Full Text Available The air-stable hydride-platinum(II complex [PtH{(PMe2O2H}(PMe2OH], reported by Parkins and co-workers in 1995, is the most versatile catalyst currently available for the hydration of C≡N bonds. It features remarkable activity under relatively mild conditions and exceptionally high functional group compatibility, facts that have allowed the implementation of this complex in the synthesis of a large number of structurally complex, biologically active molecules and natural products. In this contribution, synthetic applications of the Parkins catalyst are reviewed.

  13. Determining the age of young embedded clusters

    Science.gov (United States)

    Stead, J. J.; Hoare, M. G.

    2011-12-01

    A new Monte Carlo method has been developed in order to derive ages of young embedded clusters in massive star-forming regions where there is strong differential reddening. After foreground and infrared excess source candidates are removed, each cluster candidate star is individually dereddened. Simulated clusters are constructed using isochrones, an initial mass function, realistic photometric errors, simulated background field populations and extinction distributions. These synthetic clusters are then dereddened in the same way as the real data, obtained from a deep near-infrared survey, and used to derive the ages of three embedded clusters. Results were found to be consistent with those determined using spectrophotometric methods. This new method provides way to determine the ages of embedded clusters when only photometric data are available and there is strong differential reddening.

  14. Embedding beyond electrostatics

    DEFF Research Database (Denmark)

    Nåbo, Lina J.; Olsen, Jógvan Magnus Haugaard; Holmgaard List, Nanna

    2016-01-01

    We study excited states of cholesterol in solution and show that, in this specific case, solute wave-function confinement is the main effect of the solvent. This is rationalized on the basis of the polarizable density embedding scheme, which in addition to polarizable embedding includes non-electrostatic...... repulsion that effectively confines the solute wave function to its cavity. We illustrate how the inclusion of non-electrostatic repulsion results in a successful identification of the intense π → π∗ transition, which was not possible using an embedding method that only includes electrostatics....... This underlines the importance of non-electrostatic repulsion in quantum-mechanical embedding-based methods....

  15. Embedded systems handbook

    CERN Document Server

    Zurawski, Richard

    2005-01-01

    Embedded systems are nearly ubiquitous, and books on individual topics or components of embedded systems are equally abundant. Unfortunately, for those designers who thirst for knowledge of the big picture of embedded systems there is not a drop to drink. Until now. The Embedded Systems Handbook is an oasis of information, offering a mix of basic and advanced topics, new solutions and technologies arising from the most recent research efforts, and emerging trends to help you stay current in this ever-changing field.With preeminent contributors from leading industrial and academic institutions

  16. The embedded operating system project

    Science.gov (United States)

    Campbell, R. H.

    1984-01-01

    This progress report describes research towards the design and construction of embedded operating systems for real-time advanced aerospace applications. The applications concerned require reliable operating system support that must accommodate networks of computers. The report addresses the problems of constructing such operating systems, the communications media, reconfiguration, consistency and recovery in a distributed system, and the issues of realtime processing. A discussion is included on suitable theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based systems. In particular, this report addresses: atomic actions, fault tolerance, operating system structure, program development, reliability and availability, and networking issues. This document reports the status of various experiments designed and conducted to investigate embedded operating system design issues.

  17. Radiation damage studies on synthetic NaCl crystals and natural rock salt for waste disposal applications

    International Nuclear Information System (INIS)

    Klaffky, R.W.; Swyler, K.J.; Levy, P.W.

    1979-01-01

    Radiation damage studies are being made on synthetic NaCl and natural rock salt crystals from various localities, including potential repository sites. Measurements are being made with equipment for recording the radiation induced F-center and colloid particle absorption bands during irradiation with 1.5 MeV electrons at various temperatures. A technique has been developed to resolve the overlapping F-center and colloid bands. The resulting spectra and curves of absorption vs. dose provide information on colloid particle size and concentration, activation energies for processes occurring during colloid formation, and additional data suggesting that both strain and radiation induced dislocations contribute to the colloid formation process

  18. Recent studies on radiation damage formation in synthetic NaCl and natural rock salt for radioactive waste disposal applications

    International Nuclear Information System (INIS)

    Swyler, K.J.; Klaffky, R.W.; Levy, P.W.

    1980-01-01

    Radiation damage formation in natural rock salt is described as a function of irradiation temperature and plastic deformation. F-center formation decreases with increasing temperature while significant colloidal sodium formation occurs over a restricted temperature range around 150 0 C. Plastic deformation increases colloid formation; it is estimated that colloid concentrations may be increased by a factor of 3 if the rock salt near radioactive waste disposal canisters is heavily deformed. Optical bandshape analysis indicates systematic differences between the colloids formed in synthetic and natural rock salts

  19. Preparation of a non-woven poly(ε-caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly(ε-caprolactone) fibers.

    Science.gov (United States)

    Kim, In Ae; Rhee, Sang-Hoon

    2017-07-01

    This article describes a novel method for the preparation of a biodegradable non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface designed for application as a scaffold material for bone tissue engineering. The non-woven poly(ε-caprolactone) fabric was generated by the electro-spinning technique and then apatite was coated in simulated body fluid after coating the PVA solution containing CaCl 2 ·2H 2 O. The apatite crystals were partially embedded or fully embedded into the thermoplastic poly(ε-caprolactone) fibers by controlling the degree of poly(ε-caprolactone) fiber surface melting in a convection oven. Identical apatite-coated poly(ε-caprolactone) fabric that did not undergo heat-treatment was used as a control. The features of the embedded apatite crystals were evaluated by FE-SEM, AFM, EDS, and XRD. The adhesion strengths of the coated apatite layers and the tensile strengths of the apatite coated fabrics with and without heat-treatment were assessed by the tape-test and a universal testing machine, respectively. The degree of water absorbance was assessed by adding a DMEM droplet onto the fabrics. Moreover, cell penetrability was assessed by seeding preosteoblastic MC3T3-E1 cells onto the fabrics and observing the degrees of cell penetration after 1 and 4 weeks by staining nuclei with DAPI. The non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface showed good water absorbance, cell penetrability, higher apatite adhesion strength, and higher tensile strength compared with the control fabric. These results show that the non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface is a potential candidate scaffold for bone tissue engineering due to its strong apatite adhesion strength and excellent cell penetrability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1973-1983, 2017. © 2017 Wiley Periodicals, Inc.

  20. Synthetic Cannabinoids.

    Science.gov (United States)

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  1. Straightforward synthetic protocol for the introduction of stabilized C nucleophiles in the BODIPY core for advanced sensing and photonic applications.

    Science.gov (United States)

    Gutiérrez-Ramos, Brenda D; Bañuelos, Jorge; Arbeloa, Teresa; López Arbeloa, Iñigo; González-Navarro, Paulina E; Wrobel, Kazimierz; Cerdán, Luis; García-Moreno, Inmaculada; Costela, Angel; Peña-Cabrera, Eduardo

    2015-01-19

    A straightforward synthetic protocol to directly incorporate stabilized 1,3-dicarbonyl C nucleophiles to the meso position of BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) is reported. Soft nucleophiles generated by deprotonation of 1,3-dicarbonyl derivatives smoothly displace the 8-methylthio group from 8-(methylthio)BODIPY analogues in the presence of Cu(I) thiophenecarboxylate in stoichiometric amounts at room temperature. Seven highly fluorescent new derivatives are prepared with varying yields (20-92%) in short reaction times (5-30 min). The excellent photophysical properties of the new dyes allow focusing on applications never analyzed before for BODIPYs substituted with stabilized C nucleophiles such as pH sensors and lasers in liquid and solid state, highlighting the relevance of the synthetic protocol described in the present work. The attainment of these dyes, with strong UV absorption and highly efficient and stable laser emission in the green spectral region, concerns to one of the greatest challenges in the ongoing development of advanced photonic materials with relevant applications. In fact, organic dyes with emission in the green are the only ones that allow, by frequency-doubling processes, the generation of tunable ultraviolet (250-350 nm) radiation, with ultra-short pulses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fast and easy protocol for the purification of recombinant S-layer protein for synthetic biology applications

    KAUST Repository

    Norville, Julie E.

    2011-06-17

    A goal of synthetic biology is to make biological systems easier to engineer. One of the aims is to design, with nanometer-scale precision, biomaterials with well-defined properties. The surface-layer protein SbpA forms 2D arrays naturally on the cell surface of Lysinibacillus sphaericus, but also as the purified protein in solution upon the addition of divalent cations. The high propensity of SbpA to form crystalline arrays, which can be simply controlled by divalent cations, and the possibility to genetically alter the protein, make SbpA an attractive molecule for synthetic biology. To be a useful tool, however, it is important that a simple protocol can be used to produce recombinant wild-type and modified SbpA in large quantities and in a biologically active form. The present study addresses this requirement by introducing a mild and non-denaturing purification protocol to produce milligram quantities of recombinant, active SbpA.

  3. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.

    Science.gov (United States)

    Grzegorczyk, Marco; Husmeier, Dirk

    2012-07-12

    An important and challenging problem in systems biology is the inference of gene regulatory networks from short non-stationary time series of transcriptional profiles. A popular approach that has been widely applied to this end is based on dynamic Bayesian networks (DBNs), although traditional homogeneous DBNs fail to model the non-stationarity and time-varying nature of the gene regulatory processes. Various authors have therefore recently proposed combining DBNs with multiple changepoint processes to obtain time varying dynamic Bayesian networks (TV-DBNs). However, TV-DBNs are not without problems. Gene expression time series are typically short, which leaves the model over-flexible, leading to over-fitting or inflated inference uncertainty. In the present paper, we introduce a Bayesian regularization scheme that addresses this difficulty. Our approach is based on the rationale that changes in gene regulatory processes appear gradually during an organism's life cycle or in response to a changing environment, and we have integrated this notion in the prior distribution of the TV-DBN parameters. We have extensively tested our regularized TV-DBN model on synthetic data, in which we have simulated short non-homogeneous time series produced from a system subject to gradual change. We have then applied our method to real-world gene expression time series, measured during the life cycle of Drosophila melanogaster, under artificially generated constant light condition in Arabidopsis thaliana, and from a synthetically designed strain of Saccharomyces cerevisiae exposed to a changing environment.

  4. Rapid Communication Fast and easy protocol for the purification of recombinant S-layer protein for synthetic biology applications

    Science.gov (United States)

    Norville, Julie E; Kelly, Deborah F; Knight, Thomas F; Belcher, Angela M; Walz, Thomas

    2015-01-01

    A goal of synthetic biology is to make biological systems easier to engineer. One of the aims is to design – with nanometer-scale precision – biomaterials with well-defined properties. The surface layer protein SbpA forms two-dimensional (2D) arrays naturally on the cell surface of Lysinibacillus sphaericus but also as purified protein in solution upon addition of divalent cations. Its high propensity to form crystalline arrays, the simple way by which its crystallization can be controlled by divalent cations and the possibility to genetically alter the protein make SbpA an attractive molecule for synthetic biology. To be a useful tool, however, it is important that a simple protocol can be used to produce recombinant wild-type as well as modified SbpA in large quantities and in a biologically active form. The present study addresses this requirement by introducing a mild and non-denaturing purification protocol to produce milligram quantities of recombinant, active SbpA. PMID:21681963

  5. Perspectives of application of synthetic diamonds in polyurethane compositions for development of new high thermal conductivity system of isolation of powerful turbogenerators

    International Nuclear Information System (INIS)

    Kensits'kij, O.G.; Vigovs'kij, O.V.; Khvalyin, D.Yi.

    2017-01-01

    Reviewed and analyzed components of modern high-voltage insulation of electrical machines. The expediency of increasing of heat-conducting properties of the system of isolation of stator winding of powerful turbogenerators is justified. The main ways of improving heat transfer in the insulation system the stator windings of the turbogenerators are presented and analyzed. Perspectives of application of composite material based on polyurethane with additives of synthetic diamonds for development of new high thermal conductivity system of isolation of powerful electrical machines are analyzed. The technology by which was created the prototype of the insulating material with the application of diamond powder in a polyurethane composition is described. Executed laboratory experimental researches of the electrophysical parameters of the sample developed insulating material. That showed the perspective of this direction of perfection of isolation.

  6. Properties of Vector Embeddings in Social Networks

    Directory of Open Access Journals (Sweden)

    Fatemeh Salehi Rizi

    2017-09-01

    Full Text Available Embedding social network data into a low-dimensional vector space has shown promising performance for many real-world applications, such as node classification, node clustering, link prediction and network visualization. However, the information contained in these vector embeddings remains abstract and hard to interpret. Methods for inspecting embeddings usually rely on visualization methods, which do not work on a larger scale and do not give concrete interpretations of vector embeddings in terms of preserved network properties (e.g., centrality or betweenness measures. In this paper, we study and investigate network properties preserved by recent random walk-based embedding procedures like node2vec, DeepWalk or LINE. We propose a method that applies learning to rank in order to relate embeddings to network centralities. We evaluate our approach with extensive experiments on real-world and artificial social networks. Experiments show that each embedding method learns different network properties. In addition, we show that our graph embeddings in combination with neural networks provide a computationally efficient way to approximate the Closeness Centrality measure in social networks.

  7. Fabrication of β-CoV3O8 nanorods embedded in graphene sheets and their application for electrochemical charge storage electrode

    Science.gov (United States)

    Jeong, Gyoung Hwa; Lee, Ilbok; Lee, Donghyun; Lee, Hea-Min; Baek, Seungmin; Kwon, O.-Pil; Kumta, Prashant N.; Yoon, Songhun; Kim, Sang-Wook

    2018-05-01

    The fabrication of β-CoV3O8 nanorods embedded in graphene sheets and their application as electrochemical charge storage electrodes is reported. From the surfactant treatment of raw graphite, graphene was directly prepared and its nanocomposite with β-CoV3O8 nanorods distributed between graphene layers (β-CoV3O8-G) was synthesized by a hydrothermal method. When applied as an anode in lithium-ion batteries, the β-CoV3O8-G anode exhibits greatly improved charge and discharge capacities of 790 and 627 mAh · g-1, respectively, with unexpectedly high initial efficiency of 82%. The observed discharge capacity reflected that at least 3.7 mol of Li+ is selectively accumulated within the β-CoV3O8 phase (LixCoV3O8, x > 3.7), indicative of significantly improved Li+ uptake when compared with aggregated β-CoV3O8 nanorods. Moreover, very distinct peak plateaus and greatly advanced cycling performance are observed, showing more improved Li+ storage within the β-CoV3O8 phase. As a supercapacitor electrode, moreover, our composite electrode exhibits very high peak pseudocapacitances of 2.71 F · cm-2 and 433.65 F · g-1 in the β-CoV3O8 phase with extremely stable cycling performance. This remarkably enhanced performance in the individual electrochemical charge storage electrodes is attributed to the novel phase formation of β-CoV3O8 and its optimized nanocomposite structure with graphene, which yield fast electrical conduction through graphene, easy accessibility of ions through the open multilayer nanosheet structure, and a relaxation space between the β-CoV3O8-G.

  8. A wafer-scale packaging structure with monolithic microwave integrated circuits and passives embedded in a silicon substrate for multichip modules for radio frequency applications

    Science.gov (United States)

    Geng, Fei; Ding, Xiao-yun; Xu, Gao-wei; Luo, Le

    2009-10-01

    A wafer-level packaging structure with chips and passive components embedded in a silicon substrate for multichip modules (MCM) is proposed for radio frequency (RF) applications. The packaging structure consists of two layers of benzocyclobutene (BCB) films and three layers of metalized films, in which the monolithic microwave ICs (MMICs), thin film resistors, striplines and microstrip lines are integrated. The low resistivity silicon wafer with etched cavities is used as a substrate. The BCB films serve as interlayer dielectrics (ILDs). Wirebonding gold bumps are used as electric interconnections between different layers, which eliminate the need of preparing vias by costly procedures including dry etching, metal sputtering and electroplating. The chemical mechanical planarization (CMP) is used to uncover the gold bumps, and the BCB curing profile is optimized to obtain the appropriate BCB film for CMP process. In this work, the thermal, mechanical, electrical as well as RF properties of the packaging structure are investigated. The packaging thermal resistance can be controlled below 2 °C W-1. The average shear strength of the gold bumps on the BCB surface is about 70 MPa. In addition, a Kelvin test structure is fabricated for resistance testing of the vertical vias. The performances of MMIC and interconnection structure at high frequency are simulated and tested. The testing results reveal that the slight shifting of S-parameter curves of the packaged MMIC indicates perfect transmission characteristics at high frequency. For the transition structure of transmission line, the experimental results are compatible with the simulation results. The insertion loss (S21) is below 0.4 dB from 0 to 40 GHz and the return loss (S11) is less than -20 dB from 0 to 40 GHz. For a low noise amplifier (LNA) chip, the S21 shifting caused by the packaging structure is below 0.5 dB, and S11 is less than -10 dB from 8 GHz to 14 GHz.

  9. A wafer-scale packaging structure with monolithic microwave integrated circuits and passives embedded in a silicon substrate for multichip modules for radio frequency applications

    International Nuclear Information System (INIS)

    Geng, Fei; Ding, Xiao-yun; Xu, Gao-wei; Luo, Le

    2009-01-01

    A wafer-level packaging structure with chips and passive components embedded in a silicon substrate for multichip modules (MCM) is proposed for radio frequency (RF) applications. The packaging structure consists of two layers of benzocyclobutene (BCB) films and three layers of metalized films, in which the monolithic microwave ICs (MMICs), thin film resistors, striplines and microstrip lines are integrated. The low resistivity silicon wafer with etched cavities is used as a substrate. The BCB films serve as interlayer dielectrics (ILDs). Wirebonding gold bumps are used as electric interconnections between different layers, which eliminate the need of preparing vias by costly procedures including dry etching, metal sputtering and electroplating. The chemical mechanical planarization (CMP) is used to uncover the gold bumps, and the BCB curing profile is optimized to obtain the appropriate BCB film for CMP process. In this work, the thermal, mechanical, electrical as well as RF properties of the packaging structure are investigated. The packaging thermal resistance can be controlled below 2 °C W −1 . The average shear strength of the gold bumps on the BCB surface is about 70 MPa. In addition, a Kelvin test structure is fabricated for resistance testing of the vertical vias. The performances of MMIC and interconnection structure at high frequency are simulated and tested. The testing results reveal that the slight shifting of S-parameter curves of the packaged MMIC indicates perfect transmission characteristics at high frequency. For the transition structure of transmission line, the experimental results are compatible with the simulation results. The insertion loss (S 21 ) is below 0.4 dB from 0 to 40 GHz and the return loss (S 11 ) is less than −20 dB from 0 to 40 GHz. For a low noise amplifier (LNA) chip, the S 21 shifting caused by the packaging structure is below 0.5 dB, and S 11 is less than −10 dB from 8 GHz to 14 GHz

  10. Towards a synthetic chloroplast.

    Directory of Open Access Journals (Sweden)

    Christina M Agapakis

    2011-04-01

    Full Text Available The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.

  11. Polarizable Density Embedding

    DEFF Research Database (Denmark)

    Reinholdt, Peter; Kongsted, Jacob; Olsen, Jógvan Magnus Haugaard

    2017-01-01

    and diffuse basis sets that are otherwise questionable-due to electron spill-out effects-in standard embedding models. Based on our analysis, we find the PDE model to be robust and much more systematic than less sophisticated focused embedding models, and thus outline the PDE model as a very efficient...

  12. Embeddings of Heyting Algebras

    NARCIS (Netherlands)

    Jongh, D.H.J. de; Visser, A.

    In this paper we study embeddings of Heyting Algebras. It is pointed out that such embeddings are naturally connected with Derived Rules. We compare the Heyting Algebras embeddable in the Heyting Algebra of the Intuitionistic Propositional Calculus (IPC), i.e. the free Heyting Algebra on countably

  13. Synthetic Botany.

    Science.gov (United States)

    Boehm, Christian R; Pollak, Bernardo; Purswani, Nuri; Patron, Nicola; Haseloff, Jim

    2017-07-05

    Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  15. Improving the Compatibility of Natural and Synthetic Polymer Blends by Radiation Treatments for Using in Practical Application

    International Nuclear Information System (INIS)

    Abu-El Fadle, F.I.

    2011-01-01

    Different polymer blends based on the natural polymers carboxymethyl cellulose (CMC) and sodium alginate as well as the synthetic polymers poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO) and poly acrylamide (PAM) were prepared by solution casting in the form of films. The common solvent used was water. The different blends prepared in this study were subjected to gamma radiation. The compatibility and structure-property behaviour of these blends was studied by differential scanning calorimetry (DSC), Fourier-Transform Infrared (FTIR) analysis, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and tensile mechanical testing before and after irradiation. In addition, the swelling properties of different polymer blends were studied at different conditions of temperature and ph. The controlled release characters of the different blends of different drugs were investigated. In addition, the different polymer blends were used for the removal of heavy metals and dyes waste.

  16. Blood Group Typing: From Classical Strategies to the Application of Synthetic Antibodies Generated by Molecular Imprinting †

    Science.gov (United States)

    Mujahid, Adnan; Dickert, Franz L.

    2015-01-01

    Blood transfusion requires a mandatory cross-match test to examine the compatibility between donor and recipient blood groups. Generally, in all cross-match tests, a specific chemical reaction of antibodies with erythrocyte antigens is carried out to monitor agglutination. Since the visual inspection is no longer useful for obtaining precise quantitative information, therefore there is a wide variety of different technologies reported in the literature to recognize the agglutination reactions. Despite the classical methods, modern biosensors and molecular blood typing strategies have also been considered for straightforward, accurate and precise analysis. The interfacial part of a typical sensor device could range from natural antibodies to synthetic receptor materials, as designed by molecular imprinting and which is suitably integrated with the transducer surface. Herein, we present a comprehensive overview of some selected strategies extending from traditional practices to modern procedures in blood group typing, thus to highlight the most promising approach among emerging technologies. PMID:26729127

  17. Embedded Linux in het onderwijs

    NARCIS (Netherlands)

    Dr Ruud Ermers

    2008-01-01

    Embedded Linux wordt bij steeds meer grote bedrijven ingevoerd als embedded operating system. Binnen de opleiding Technische Informatica van Fontys Hogeschool ICT is Embedded Linux geïntroduceerd in samenwerking met het lectoraat Architectuur van Embedded Systemen. Embedded Linux is als vakgebied

  18. Improved results of LINE-1 methylation analysis in formalin-fixed, paraffin-embedded tissues with the application of a heating step during the DNA extraction process.

    Science.gov (United States)

    Wen, Xianyu; Jeong, Seorin; Kim, Younghoon; Bae, Jeong Mo; Cho, Nam Yun; Kim, Jung Ho; Kang, Gyeong Hoon

    2017-01-01

    Formalin-fixed, paraffin-embedded (FFPE) tissues are important resources for profiling DNA methylation changes and for studying a variety of diseases. However, formalin fixation introduces inter-strand crosslinking, which might cause incomplete bisulfite conversion of unmethylated cytosines, which might lead to falsely elevated measurements of methylation levels in pyrosequencing assays. Long interspersed nucleotide element-1 (LINE-1) is a major constituent of repetitive transposable DNA elements, and its methylation is referred to correlates with global DNA methylation. To identify whether formalin fixation might impact the measured values of methylation in LINE-1 repetitive elements and whether prolonged heat-induced denaturation of DNA might reduce the artificial increases in measured values caused by formalin fixation, we analyzed paired fresh-frozen (FF) and FFPE xenograft tissue samples for their methylation levels in LINE-1 using a pyrosequencing assay. To further confirm the effect of a heating step in the measurement of LINE-1 or single gene methylation levels, we analyzed FFPE tissue samples of gastric cancer and colorectal cancer for their methylation status in LINE-1 and eight single genes, respectively. Formalin fixation led to an increase in the measured values of LINE-1 methylation regardless of the duration of fixation. Prolonged heating of the DNA at 95 °C for 30 min before bisulfite conversion was found (1) to decrease the discrepancy in the measured values between the paired FF and FFPE tissue samples, (2) to decrease the standard deviation of the measured value of LINE-1 methylation levels in FFPE tissue samples of gastric cancer, and (3) to improve the performance in the measurement of single gene methylation levels in FFPE tissue samples of colorectal cancer. Formalin fixation leads to artificial increases in the measured values of LINE-1 methylation, and the application of prolonged heating of DNA samples decreases the discrepancy in the

  19. In vitro-chemosensitivity test using the collagen gel droplet embedded culture drug test (CD-DST) for malignant pleural mesothelioma: possibility of clinical application.

    Science.gov (United States)

    Higashiyama, Masahiko; Oda, Kazuyuki; Okami, Jiro; Maeda, Jun; Kodama, Ken; Takami, Koji; Morinaga, Kenji; Takano, Toshikazu; Kobayashi, Hisayuki

    2008-12-01

    An in vitro-chemosensitivity test using the collagen gel droplet embedded culture drug test (CD-DST), established by Kobayashi et al. (Jpn J Cancer Res 2001; 92: 203-10), has been widely used on various tumors. This study retrospectively evaluated its possibility of clinical application to patients with malignant pleural mesothelioma (MPM). CD-DST using 26 fresh specimens obtained by biopsy or surgery on MPM patients investigated in vitro responses to cisplatin (CDDP), carboplatin (CBDCA), doxorubicin (ADR), etoposide (VP-16), 5-fluoruracil (5-FU), gemcitabine (GEM), vinorelbine (VNR), irinotecan (SN-38), and docetaxel (TXT). Correlations between CD-DST data and clinical effects were then assessed for some MPM patients undergoing chemotherapy. The rate of in vitro sensitivity to each chemoagent (N=tested number) was 35% for CDDP (N=23), 14% for CBDCA (N=21), 7% for ADR (N=15), 15% for VP-16 (N=13), 0% for 5-FU (N=15), 45% for GEM (N=11), 25% for VNR (N=8), 40% for SN-38 (N=5), and 44% for TXT (N=9). No difference was observed between CD-DST data of each chemoagent and histological type. Of these MPM patients, 14 clinical effects on 13 patients who underwent chemotherapy for primary or recurrent disease were reviewed in comparison with CD-DST data of each chemoagent. Among 10 chemotherapies including in vitro-sensitive chemoagents, 3 led to partial response (PR), and 7 resulted in four stable diseases (SDs) and 3 to progressive diseases (PDs). In contrast, among 4 chemotherapies using in vitro-resistant chemoagents, SD and PD were observed in 1 and 3, respectively. In regard to the clinical response rate, CD-DST sensitivity, specificity, and accuracy in the 14 examined chemotherapies were respectively 100%, 36%, and 50%, and in regard to the disease control rate, they were 88%, 60%, and 71%. CD-DST data for the chemoagents were to a limited extent significantly correlated with the disease control status of chemotherapy (p=0.052). Although the number of tested MPM

  20. Professional Windows Embedded Compact 7

    CERN Document Server

    Phung, Samuel; Joubert, Thierry; Hall, Mike

    2011-01-01

    Learn to program an array of customized devices and solutions As a compact, highly efficient, scalable operating system, Windows Embedded Compact 7 (WEC7) is one of the best options for developing a new generation of network-enabled, media-rich, and service-oriented devices. This in-depth resource takes you through the benefits and capabilities of WEC7 so that you can start using this performance development platform today. Divided into several major sections, the book begins with an introduction and then moves on to coverage of OS design, application development, advanced application developm

  1. Synthetic Plant Defense Elicitors

    Directory of Open Access Journals (Sweden)

    Yasemin eBektas

    2015-01-01

    Full Text Available To defend themselves against invading pathogens plants utilize a complex regulatory network that coordinates extensive transcriptional and metabolic reprogramming. Although many of the key players of this immunity-associated network are known, the details of its topology and dynamics are still poorly understood. As an alternative to forward and reverse genetic studies, chemical genetics-related approaches based on bioactive small molecules have gained substantial popularity in the analysis of biological pathways and networks. Use of such molecular probes can allow researchers to access biological space that was previously inaccessible to genetic analyses due to gene redundancy or lethality of mutations. Synthetic elicitors are small drug like molecules that induce plant defense responses, but are distinct from known natural elicitors of plant immunity. While the discovery of the some synthetic elicitors had already been reported in the 1970s, recent breakthroughs in combinatorial chemical synthesis now allow for inexpensive high-throughput screens for bioactive plant defense-inducing compounds. Along with powerful reverse genetics tools and resources available for model plants and crop systems, comprehensive collections of new synthetic elicitors will likely allow plant scientists to study the intricacies of plant defense signaling pathways and networks in an unparalleled fashion. As synthetic elicitors can protect crops from diseases, without the need to be directly toxic for pathogenic organisms, they may also serve as promising alternatives to conventional biocidal pesticides, which often are harmful for the environment, farmers and consumers. Here we are discussing various types of synthetic elicitors that have been used for studies on the plant immune system, their modes-of-action as well as their application in crop protection.

  2. Operating system concepts for embedded multicores

    OpenAIRE

    Horst, Oliver; Schmidt, Adriaan

    2014-01-01

    Currently we can see an increasing adoption of multi-core platforms in the area of embedded systems. While these new hardware platforms offer the potential to satisfy the ever increasing demand for computational power, they pose considerable challenges with regard to software development. This affects the application software itself, but also the system design and architecture. Here, we address the consequences for operating system architecture in embedded systems. After dis-cussing current a...

  3. An Embedded Reconfigurable Logic Module

    Science.gov (United States)

    Tucker, Jerry H.; Klenke, Robert H.; Shams, Qamar A. (Technical Monitor)

    2002-01-01

    A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has been developed and verified. MERCAL was designed to be a general-purpose, universal module that that can provide significant hardware and software resources to meet the requirements of many of today's complex embedded applications. This is accomplished in the MERCAL module by combining a sub credit card size PC in a DIMM form factor with a XILINX Spartan I1 FPGA. The PC has the ability to download program files to the FPGA to configure it for different hardware functions and to transfer data to and from the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a compact package, the computational power of a 133 MHz PC with up to 150,000 gate equivalents of digital logic that can be reconfigured by software. The general architecture and functionality of the MERCAL hardware and system software are described.

  4. Application of zein-modified magnetite nanoparticles in dispersive magnetic micro-solid-phase extraction of synthetic food dyes in foodstuffs.

    Science.gov (United States)

    Jangju, Azam; Farhadi, Khalil; Hatami, Mehdi; Amani, Samireh; Esma-Ali, Farzan; Moshkabadi, Aisan; Hajilari, Fatemeh

    2017-03-01

    A simple method for the simultaneous and trace analysis of four synthetic food azo dyes including carmoisine, ponceau 4R, sunset yellow, and allura red from some foodstuff samples was developed by combining dispersive μ-solid-phase extraction and high-performance liquid chromatography with diode array detection. Zein-modified magnetic Fe 3 O 4 nanoparticles were prepared and used for μ-solid-phase extraction of trace amounts of mentioned food dyes. The prepared modified magnetic nanoparticles were characterized by scanning electron microscopy and FTIR spectroscopy. The factors affecting the extraction of the target analytes such as pH, amount of sorbent, extraction time, type and volume of the desorption eluent, and desorption time were investigated. Under the optimized conditions, the method provided good repeatability with relative standard deviations lower than 5.8% (n = 9). Limit of detection values ranged between 0.3 and 0.9 ng/mL with relatively high enrichment factors (224-441). Comparing the obtained results indicated that Fe 3 O 4 nanoparticles modified by zein biopolymer show better analytical application than bare magnetic nanoparticles. The proposed method was also applied for the determination of target synthetic food dyes in foodstuff samples such as carbonated beverage, snack, and candy samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A new synthetic methodology for the preparation of biocompatible and organo-soluble barbituric- and thiobarbituric acid based chitosan derivatives for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Shahzad, Sohail [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Shahzadi, Lubna [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Mahmood, Nasir [Department of Allied Health Sciences and Chemical Pathology, Department of Human Genetics and Molecular Biology, University of Health Sciences, Lahore (Pakistan); Siddiqi, Saadat Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rauf, Abdul [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Manzoor, Faisal; Chaudhry, Aqif Anwar [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Rehman, Ihtesham ur [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Materials Science and Engineering, The Kroto Research Institute, The University of Sheffield, North Campus, Broad Lane, Sheffield, S3 7HQ (United Kingdom); Yar, Muhammad, E-mail: drmyar@ciitlahore.edu.pk [Interdisciplinary Research Center in Biomedical Materials, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan)

    2016-09-01

    Chitosan's poor solubility especially in organic solvents limits its use with other organo-soluble polymers; however such combinations are highly required to tailor their properties for specific biomedical applications. This paper describes the development of a new synthetic methodology for the synthesis of organo-soluble chitosan derivatives. These derivatives were synthesized from chitosan (CS), triethyl orthoformate and barbituric or thiobarbituric acid in the presence of 2-butannol. The chemical interactions and new functional motifs in the synthesized CS derivatives were evaluated by FTIR, DSC/TGA, UV/VIS, XRD and {sup 1}H NMR spectroscopy. A cytotoxicity investigation for these materials was performed by cell culture method using VERO cell line and all the synthesized derivatives were found to be non-toxic. The solubility analysis showed that these derivatives were readily soluble in organic solvents including DMSO and DMF. Their potential to use with organo-soluble commercially available polymers was exploited by electrospinning; the synthesized derivatives in combination with polycaprolactone delivered nanofibrous membranes. - Highlights: • Development of a new synthetic methodology • Synthesis of organo-soluble chitosan (CS) derivatives • VERO cells proliferation • Nanofibrous membranes from the synthesized chitosan derivatives and polycaprolactone.

  6. Numerical and Experimental Characterization of Fiber-Reinforced Thermoplastic Composite Structures with Embedded Piezoelectric Sensor-Actuator Arrays for Ultrasonic Applications

    Directory of Open Access Journals (Sweden)

    Klaudiusz Holeczek

    2016-02-01

    Full Text Available The paper presents preliminary numerical and experimental studies of active textile-reinforced thermoplastic composites with embedded sensor-actuator arrays. The goal of the investigations was the assessment of directional sound wave generation capability using embedded sensor-actuator arrays and developed a wave excitation procedure for ultrasound measurement tasks. The feasibility of the proposed approach was initially confirmed in numerical investigations assuming idealized mechanical and geometrical conditions. The findings were validated in real-life conditions on specimens of elementary geometry. Herein, the technological aspects of unique automated assembly of thermoplastic films containing adapted thermoplastic-compatible piezoceramic modules and conducting paths were described.

  7. Brauer type embedding problems

    CERN Document Server

    Ledet, Arne

    2005-01-01

    This monograph is concerned with Galois theoretical embedding problems of so-called Brauer type with a focus on 2-groups and on finding explicit criteria for solvability and explicit constructions of the solutions. The advantage of considering Brauer type embedding problems is their comparatively simple condition for solvability in the form of an obstruction in the Brauer group of the ground field. This book presupposes knowledge of classical Galois theory and the attendant algebra. Before considering questions of reducing the embedding problems and reformulating the solvability criteria, the

  8. Targeted analysis with benchtop quadrupole–orbitrap hybrid mass spectrometer: Application to determination of synthetic hormones in animal urine

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen [Departament de Química Analítica, Universitat de Barcelona, Barcelona (Spain); Rúbies, Antoni; Centrich, Francesc [Laboratori Agència Salut Pública de Barcelona, Barcelona (Spain); CIBER of Epidemiology and Public Health (CIBERESP), Madrid (Spain); Granados, Mercè [Departament de Química Analítica, Universitat de Barcelona, Barcelona (Spain); Cortés-Francisco, Nuria; Caixach, Josep [Mass Spectrometry Laboratory-Organic Pollutants, IDAEA-CSIC, Barcelona (Spain); Companyó, Ramon, E-mail: compano@ub.edu [Departament de Química Analítica, Universitat de Barcelona, Barcelona (Spain)

    2013-05-30

    Graphical abstract: -- Highlights: •The quadrupole in Q Exactive acts as a powerful filter to reduce ion suppression. •Reducing mass range using quadrupole in targeted modes increases the S/N ratio. •Targeted SIM data dependent scan modes are the most suitable for residue analysis. •A HRMS confirmatory method for synthetic hormones in urine has been developed. •The Q Exactive provides similar sensitivity and enhanced selectivity compared to QqQ. -- Abstract: Sensitive and unequivocal determination of analytes/contaminants in complex matrices is a challenge in the field of food safety control. In this study, various acquisition modes (Full MS/AIF, Full MS + tMS/MS, Full MS/dd MS/MS and tSIM/ddMS/MS) and parameters of a quadrupole–orbitrap hybrid mass spectrometer (Q Exactive) were studied in detail. One of the main conclusions has been that, reducing the scan range for Full MS (using the quadrupole) and targeted modes give higher signal-to-noise (S/N) ratios and thereby better detection limits for analytes in matrix. The use of Q Exactive in a complex case, for the confirmatory analysis of hormones in animal urine is presented. A targeted SIM data dependent MS/MS (tSIM/ddMS/MS) acquisition method for determination of eight synthetic hormones (trenbolone, 17α ethinylestradiol, zeranol, stanozolol, dienestrol, diethylstilbestrol, hexestrol, taleranol) and a naturally occurring hormone (zearalenone) in animal urine were optimized to have sensitive precursors from targeted SIM mode and trigger MS/MS scans over the entire chromatograph peak. The method was validated according to EC/657/2002. CCα (decision limit) for the analytes ranged between 0.11 μg L{sup −1} and 0.69 μg L{sup −1} and CCβ (detection capability) ranged between 0.29 μg L{sup −1} and 0.90 μg L{sup −1}.

  9. Application of Fuzzy Synthetic Evaluation in Selection of Best Sludge Dewatering Option in Ghods Town WWTP in Tehran

    Directory of Open Access Journals (Sweden)

    Masoud Taheriyoun

    2015-03-01

    Full Text Available The design and upgrade of sludge treatment systems generally depend on the decision made regarding the appropriate system from among the options available. The selection process has become increasingly important and complex due to recent technological developments that have led to increased diversity in the available options which offer a wide variety of capabilities. The multi-criteria decision making method is one of the techniques recently developed which takes into account all the criteria involved in the decision making process. The Ghods Town WWTP in the west of Tehran located in the vicinity of residential areas has given rise to claims by citizens due to the odors emitted by the sludge sand drying bed, which justifies the replacement of the present sludge dewatering system. For this purpose, the multi-criteria decision making method based on the fuzzy synthetic evaluation method was used to identify the optimal sludge dewatering system appropriate for the WWTP under consideration. Furthermore, weighting of the subjective (social, environmental, and administrative criteria was accomplished using the analytical hierarchy process and the objective (i.e., economic criteria were weighted using the entropy concept. In this method, the triangular fuzzy membership function was also used to take into account the uncertainty associated with each of the decision making parameters. Based on the results obtained, the belt filter press dewatering system and the filter press were identified as the preferred solutions.

  10. Polarimetric synthetic aperture radar application for tropical peatlands classification: a case study in Siak River Transect, Riau Province, Indonesia

    Science.gov (United States)

    Novresiandi, Dandy Aditya; Nagasawa, Ryota

    2017-01-01

    Mapping spatial distributions of tropical peatlands is important for properly estimating carbon emissions and for providing information that aids in the sustainable management of tropical peatlands, particularly in Indonesia. This study evaluated the performance of phased array type L-band synthetic aperture radar (SAR) (PALSAR) dual-polarization and fully polarimetric data for tropical peatlands classification. The study area was in Siak River Transect, Riau Province, Indonesia, a rapidly developing region, where the peatland has been intensively converted mostly into oil palm plantations over the last two decades. Thus, polarimetric features derived after polarimetric decompositions, backscatter coefficients measurements, and the radar vegetation index were evaluated to classify tropical peatlands using the decision tree classifier. Overall, polarimetric features generated by the combination of dual-polarization and fully polarimetric data yielded an overall accuracy (OA) of 69% and a kappa coefficient (K) of 0.57. The integration of an additional feature, "distance to river," to the algorithm increased the OA to 76% and K to 0.66. These results indicated that the methodology in this study might serve as an efficient tool in tropical peatlands classification, especially when involving the use of L-band SAR dual-polarization and fully polarimetric data.

  11. Development and Application of a Synthetically-Derived Lead Biosensor Construct for Use in Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    Lara Bereza-Malcolm

    2016-12-01

    Full Text Available The use of lead in manufacturing has decreased significantly over the last few decades. However, previous widespread use of lead-containing products and their incorrect disposal has resulted in environmental contamination. Accumulation of harmful quantities of lead pose a threat to all living organisms, through inhalation, ingestion, or direct contact, resulting in lead poisoning. This study utilized synthetic biology principles to develop plasmid-based whole-cell bacterial biosensors for detection of lead. The genetic element of the lead biosensor construct consists of pbrR, which encodes the regulatory protein, together with its divergent promoter region and a promoterless gfp. GFP expression is controlled by PbrR in response to the presence of lead. The lead biosensor genetic element was cloned onto a low-copy number broad host range plasmid, which can stably exist in a range of laboratory and environmental isolates, including Pseudomonas, Shewanella, and Enterobacter. The biosensors constructed were found to be sensitive, rapid, and specific and could, as such, serve as monitoring tools for lead-contaminated water.

  12. Development of a broad-host synthetic biology toolbox for Ralstonia eutropha and its application to engineering hydrocarbon biofuel production.

    Science.gov (United States)

    Bi, Changhao; Su, Peter; Müller, Jana; Yeh, Yi-Chun; Chhabra, Swapnil R; Beller, Harry R; Singer, Steven W; Hillson, Nathan J

    2013-11-13

    The chemoautotrophic bacterium Ralstonia eutropha can utilize H2/CO2 for growth under aerobic conditions. While this microbial host has great potential to be engineered to produce desired compounds (beyond polyhydroxybutyrate) directly from CO2, little work has been done to develop genetic part libraries to enable such endeavors. We report the development of a toolbox for the metabolic engineering of Ralstonia eutropha H16. We have constructed a set of broad-host-range plasmids bearing a variety of origins of replication, promoters, 5' mRNA stem-loop structures, and ribosomal binding sites. Specifically, we analyzed the origins of replication pCM62 (IncP), pBBR1, pKT (IncQ), and their variants. We tested the promoters P(BAD), T7, P(xyls/PM), P(lacUV5), and variants thereof for inducible expression. We also evaluated a T7 mRNA stem-loop structure sequence and compared a set of ribosomal binding site (RBS) sequences derived from Escherichia coli, R. eutropha, and a computational RBS design tool. Finally, we employed the toolbox to optimize hydrocarbon production in R. eutropha and demonstrated a 6-fold titer improvement using the appropriate combination of parts. We constructed and evaluated a versatile synthetic biology toolbox for Ralstonia eutropha metabolic engineering that could apply to other microbial hosts as well.

  13. Potential applications of curcumin and its novel synthetic analogs and nanotechnology-based formulations in cancer prevention and therapy

    Directory of Open Access Journals (Sweden)

    Batra Surinder K

    2011-08-01

    Full Text Available Abstract Curcumin has attracted great attention in the therapeutic arsenal in clinical oncology due to its chemopreventive, antitumoral, radiosensibilizing and chemosensibilizing activities against various types of aggressive and recurrent cancers. These malignancies include leukemias, lymphomas, multiple myeloma, brain cancer, melanoma and skin, lung, prostate, breast, ovarian, liver, gastrointestinal, pancreatic and colorectal epithelial cancers. Curcumin mediates its anti-proliferative, anti-invasive and apoptotic effects on cancer cells, including cancer stem/progenitor cells and their progenies, through multiple molecular mechanisms. The oncogenic pathways inhibited by curcumin encompass the members of epidermal growth factor receptors (EGFR and erbB2, sonic hedgehog (SHH/GLIs and Wnt/β-catenin and downstream signaling elements such as Akt, nuclear factor-kappa B (NF-κB and signal transducers and activators of transcription (STATs. In counterbalance, the high metabolic instability and poor systemic bioavailability of curcumin limit its therapeutic efficacy in human. Of great therapeutic interest, the selective delivery of synthetic analogs or nanotechnology-based formulations of curcumin to tumors, alone or in combination with other anticancer drugs, may improve their chemopreventive and chemotherapeutic efficacies against cancer progression and relapse. Novel curcumin formulations may also be used to reverse drug resistance, eradicate the total cancer cell mass and improve the anticarcinogenic efficacy of the current anti-hormonal and chemotherapeutic treatments for patients with various aggressive and lethal cancers.

  14. A water-forming NADH oxidase from Lactobacillus pentosus and its potential application in the regeneration of synthetic biomimetic cofactors

    Directory of Open Access Journals (Sweden)

    Claudia eNowak

    2015-09-01

    Full Text Available The cell-free biocatalytic production of fine chemicals by oxidoreductases has continuously grown over the past years. Since especially dehydrogenases depend on the stoichiometric use of nicotinamide pyridine cofactors, an integrated efficient recycling system is crucial to allow process operation under economic conditions. Lately, the variety of cofactors for biocatalysis was broadened by the utilization of totally synthetic and cheap biomimetics. Though, to date the regeneration has been limited to chemical or electrochemical methods. Here, we report an enzymatic recycling by the flavoprotein NADH-oxidase from Lactobacillus pentosus (LpNox. Since this enzyme has not been described before, we first characterized it in regard to its optimal reaction parameters. We found that the heterologously overexpressed enzyme only contained 13 % FAD. In vitro loading of the enzyme with FAD, resulted in a higher specific activity towards its natural cofactor NADH as well as different nicotinamide derived biomimetics. Apart from the enzymatic recycling, which gives water as a by-product by transferring four electrons onto oxygen, unbound FAD can also catalyse the oxidation of biomimetic cofactors. Here a two electron process takes place yielding H2O2 instead. The enzymatic and chemical recycling was compared in regard to reaction kinetics for the natural and biomimetic cofactors. With LpNox and FAD, two recycling strategies for biomimetic cofactors are described with either water or hydrogen peroxide as a by-product.

  15. SNaPe: a versatile method to generate multiplexed protein fusions using synthetic linker peptides for in vitro applications.

    Science.gov (United States)

    Ulrich, Veronika; Cryle, Max J

    2017-01-01

    Understanding the structure and function of protein complexes and multi-domain proteins is highly important in biology, although the in vitro characterization of these systems is often complicated by their size or the transient nature of protein/protein interactions. To assist in the characterization of such protein complexes, we have developed a modular approach to fusion protein generation that relies upon Sortase-mediated and Native chemical ligation using synthetic Peptide linkers (SNaPe) to link two separately expressed proteins. In this approach, we utilize two separate linking steps - sortase-mediated and native chemical ligation - together with a library of peptide linkers to generate libraries of fusion proteins. We have demonstrated the viability of SNaPe to generate libraries from fusion protein constructs taken from the biosynthetic enzymes responsible for late stage aglycone assembly during glycopeptide antibiotic biosynthesis. Crucially, SNaPe was able to generate fusion proteins that are inaccessible via direct expression of the fusion construct itself. This highlights the advantages of SNaPe to not only access fusion proteins that have been previously unavailable for biochemical and structural characterization but also to do so in a manner that enables the linker itself to be controlled as an experimental parameter of fusion protein generation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.

  16. Application of synthetic diffusion method in the numerical solution of the equations of neutron transport in slab geometry

    International Nuclear Information System (INIS)

    Valdes Parra, J.J.

    1986-01-01

    One of the main problems in reactor physics is to determine the neutron distribution in reactor core, since knowing that, it is possible to calculate the rapidity of occurrence of different nuclear reaction inside the reactor core. Within different theories existing in nuclear reactor physics, is neutron transport the one in which equation who govern the exact behavior of neutronic distribution are developed even inside the proper neutron transport theory, there exist different methods of solution which are approximations to exact solution; still more, with the purpose to reach a more precise solution, the majority of methods have been approached to the obtention of solutions in numerical form with the aim of take the advantages of modern computers, and for this reason a great deal of effort is dedicated to numerical solution of the equations of neutron transport. In agreement with the above mentioned, in this work has been developed a computer program which uses a relatively new techniques known as 'acceleration of synthetic diffusion' which has been applied to solve the neutron transport equation with 'classical schemes of spatial integration' obtaining results with a smaller quantity of interactions, if they compare to done without using such equation (Author)

  17. Future of synthetic aperture radar

    Science.gov (United States)

    Barath, F. T.

    1978-01-01

    The present status of the applications of Synthetic Aperture Radars (SARs) is reviewed, and the technology state-of-the art as represented by the Seasat-A and SIR-A SARs examined. The potential of SAR applications, and the near- and longer-term technology trends are assessed.

  18. Embedding systematic quality assessments in supportive supervision at primary healthcare level: application of an electronic Tool to Improve Quality of Healthcare in Tanzania.

    Science.gov (United States)

    Mboya, Dominick; Mshana, Christopher; Kessy, Flora; Alba, Sandra; Lengeler, Christian; Renggli, Sabine; Vander Plaetse, Bart; Mohamed, Mohamed A; Schulze, Alexander

    2016-10-13

    Assessing quality of health services, for example through supportive supervision, is essential for strengthening healthcare delivery. Most systematic health facility assessment mechanisms, however, are not suitable for routine supervision. The objective of this study is to describe a quality assessment methodology using an electronic format that can be embedded in supervision activities and conducted by council health staff. An electronic Tool to Improve Quality of Healthcare (e-TIQH) was developed to assess the quality of primary healthcare provision. The e-TIQH contains six sub-tools, each covering one quality dimension: infrastructure and equipment of the facility, its management and administration, job expectations, clinical skills of the staff, staff motivation and client satisfaction. As part of supportive supervision, council health staff conduct quality assessments in all primary healthcare facilities in a given council, including observation of clinical consultations and exit interviews with clients. Using a hand-held device, assessors enter data and view results in real time through automated data analysis, permitting immediate feedback to health workers. Based on the results, quality gaps and potential measures to address them are jointly discussed and actions plans developed. For illustrative purposes, preliminary findings from e-TIQH application are presented from eight councils of Tanzania for the period 2011-2013, with a quality score job expectations (≤50 %) scored lowest of all quality dimensions at baseline. Clinical practice was unsatisfactory in six councils, with more mixed results for availability of infrastructure and equipment, and for administration and management. In contrast, client satisfaction scored surprisingly high. Over time, each council showed a significant overall increase of 3-7 % in mean score, with the most pronounced improvements in staff motivation and job expectations. Given its comprehensiveness, convenient handling

  19. Electronics for embedded systems

    CERN Document Server

    Bindal, Ahmet

    2017-01-01

    This book provides semester-length coverage of electronics for embedded systems, covering most common analog and digital circuit-related issues encountered while designing embedded system hardware. It is written for students and young professionals who have basic circuit theory background and want to learn more about passive circuits, diode and bipolar transistor circuits, the state-of-the-art CMOS logic family and its interface with older logic families such as TTL, sensors and sensor physics, operational amplifier circuits to condition sensor signals, data converters and various circuits used in electro-mechanical device control in embedded systems. The book also provides numerous hardware design examples by integrating the topics learned in earlier chapters. The last chapter extensively reviews the combinational and sequential logic design principles to be able to design the digital part of embedded system hardware.

  20. Embedded Fragments Registry (EFR)

    Data.gov (United States)

    Department of Veterans Affairs — In 2009, the Department of Defense estimated that approximately 40,000 service members who served in OEF/OIF may have embedded fragment wounds as the result of small...

  1. FCJ-130 Embedding response:

    DEFF Research Database (Denmark)

    Ramsgaard Thomsen, Mette; Bech, Karin

    2011-01-01

    Ubiquitous computing positions a world where computation is embedded into our surrounding environment. Rather than retrieving information and communication from distinct devices (PCs) removed from contexts and activities, ubiquitous computing proposes that the mediated can become an integral part...

  2. Methodology and Supporting Toolset Advancing Embedded Systems Quality

    DEFF Research Database (Denmark)

    Berger, Michael Stübert; Soler, José; Brewka, Lukasz Jerzy

    2013-01-01

    Software quality is of primary importance in the development of embedded systems that are often used in safety-critical applications. Moreover, as the life cycle of embedded products becomes increasingly tighter, productivity and quality are simultaneously required and closely interrelated towards...... delivering competitive products. In this context, the MODUS (Methodology and supporting toolset advancing embedded systems quality) project aims to provide a pragmatic and viable solution that will allow SMEs to substantially improve their positioning in the embedded-systems development market. This paper...... will describe the MODUS project with focus on the technical methodologies that will be developed advancing embedded system quality....

  3. Modern Embedded Computing Designing Connected, Pervasive, Media-Rich Systems

    CERN Document Server

    Barry, Peter

    2012-01-01

    Modern embedded systems are used for connected, media-rich, and highly integrated handheld devices such as mobile phones, digital cameras, and MP3 players. All of these embedded systems require networking, graphic user interfaces, and integration with PCs, as opposed to traditional embedded processors that can perform only limited functions for industrial applications. While most books focus on these controllers, Modern Embedded Computing provides a thorough understanding of the platform architecture of modern embedded computing systems that drive mobile devices. The book offers a comprehen

  4. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  5. Targeted analysis with benchtop quadrupole-orbitrap hybrid mass spectrometer: application to determination of synthetic hormones in animal urine.

    Science.gov (United States)

    Kumar, Praveen; Rúbies, Antoni; Centrich, Francesc; Granados, Mercè; Cortés-Francisco, Nuria; Caixach, Josep; Companyó, Ramon

    2013-05-30

    Sensitive and unequivocal determination of analytes/contaminants in complex matrices is a challenge in the field of food safety control. In this study, various acquisition modes (Full MS/AIF, Full MS+tMS/MS, Full MS/dd MS/MS and tSIM/ddMS/MS) and parameters of a quadrupole-orbitrap hybrid mass spectrometer (Q Exactive) were studied in detail. One of the main conclusions has been that, reducing the scan range for Full MS (using the quadrupole) and targeted modes give higher signal-to-noise (S/N) ratios and thereby better detection limits for analytes in matrix. The use of Q Exactive in a complex case, for the confirmatory analysis of hormones in animal urine is presented. A targeted SIM data dependent MS/MS (tSIM/ddMS/MS) acquisition method for determination of eight synthetic hormones (trenbolone, 17α ethinylestradiol, zeranol, stanozolol, dienestrol, diethylstilbestrol, hexestrol, taleranol) and a naturally occurring hormone (zearalenone) in animal urine were optimized to have sensitive precursors from targeted SIM mode and trigger MS/MS scans over the entire chromatograph peak. The method was validated according to EC/657/2002. CCα (decision limit) for the analytes ranged between 0.11 μg L(-1) and 0.69 μg L(-1) and CCβ (detection capability) ranged between 0.29 μg L(-1) and 0.90 μg L(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Interparameter tradeoff quantification and reduction in isotropic-elastic full-waveform inversion: synthetic experiments and Hussar land dataset application

    Science.gov (United States)

    Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu

    2018-01-01

    The problem of inverting for multiple physical parameters in the subsurface using seismic full-waveform inversion (FWI) is complicated by interparameter tradeoff arising from inherent ambiguities between different physical parameters. Parameter resolution is often characterized using scattering radiation patterns, but these neglect some important aspects of interparameter tradeoff. More general analysis and mitigation of interparameter tradeoff in isotropic-elastic FWI is possible through judiciously chosen multiparameter Hessian matrix-vector products. We show that products of multiparameter Hessian off-diagonal blocks with model perturbation vectors, referred to as interparameter contamination kernels, are central to the approach. We apply the multiparameter Hessian to various vectors designed to provide information regarding the strengths and characteristics of interparameter contamination, both locally and within the whole volume. With numerical experiments, we observe that S-wave velocity perturbations introduce strong contaminations into density and phase-reversed contaminations into P-wave velocity, but themselves experience only limited contaminations from other parameters. Based on these findings, we introduce a novel strategy to mitigate the influence of interparameter tradeoff with approximate contamination kernels. Furthermore, we recommend that the local spatial and interparameter tradeoff of the inverted models be quantified using extended multiparameter point spread functions (EMPSFs) obtained with preconditioned conjugate-gradient algorithm. Compared to traditional point spread functions, the EMPSFs appear to provide more accurate measurements for resolution analysis, by de-blurring the estimations, scaling magnitudes and mitigating interparameter contamination. Approximate eigenvalue volumes constructed with stochastic probing approach are proposed to evaluate the resolution of the inverted models within the whole model. With a synthetic Marmousi

  7. Embedding graphs in Lorentzian spacetime.

    Directory of Open Access Journals (Sweden)

    James R Clough

    Full Text Available Geometric approaches to network analysis combine simply defined models with great descriptive power. In this work we provide a method for embedding directed acyclic graphs (DAG into Minkowski spacetime using Multidimensional scaling (MDS. First we generalise the classical MDS algorithm, defined only for metrics with a Riemannian signature, to manifolds of any metric signature. We then use this general method to develop an algorithm which exploits the causal structure of a DAG to assign space and time coordinates in a Minkowski spacetime to each vertex. As in the causal set approach to quantum gravity, causal connections in the discrete graph correspond to timelike separation in the continuous spacetime. The method is demonstrated by calculating embeddings for simple models of causal sets and random DAGs, as well as real citation networks. We find that the citation networks we test yield significantly more accurate embeddings that random DAGs of the same size. Finally we suggest a number of applications in citation analysis such as paper recommendation, identifying missing citations and fitting citation models to data using this geometric approach.

  8. Direct Preparation of 2-Benzothiazolylzinc Bromide and its Applications: A Facile Synthetic Route to the Preparation of 2-Substituted Benzothiazole Derivatives

    International Nuclear Information System (INIS)

    Park, Sooyoul; Lee, Kyuhyuk; Kim, Seunghoi

    2014-01-01

    We have developed a novel approach for the direct preparation of 2-benzothiazolylzinc bromide and its application in organic synthesis. This protocol is a new tool for the convenient synthesis of 2-substituted benzothiazole derivatives. The resulting products obtained from this work can be utilized for further applications in the synthesis of many biologically active compounds. The benzothiazole moiety has been found in a variety of natural products and pharmaceuticals and demonstrates efficient biological activities. Specifically, 2-substituted benzothiazole derivatives have attracted considerable attention in a wide spectrum of chemical applications due to their unique structural properties. Therefore, the diversity of synthetic protocols has been an extensively discussed topic among scientists involved in organic synthesis for the past decades. In general, to build up the 2-substituted benzothiazole complexes, the strategic tools can be categorized as shown in Scheme 1: cross-coupling of benzothiazolylmetallic complexes (method A), coupling reaction of benzothiazole via direct oxidative C-H activation, cross-coupling of organometallic with halobenzothiazole, and ring-construction of N and S-containing compounds with the appropriate substrates

  9. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  10. US Competitiveness in Synthetic Biology.

    Science.gov (United States)

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized.

  11. Synthetic biology: Emerging bioengineering in Indonesia

    Science.gov (United States)

    Suhandono, Sony

    2017-05-01

    The development of synthetic biology will shape the new era of science and technology. It is an emerging bioengineering technique involving genetic engineering which can alter the phenotype and behavior of the cell or the new product. Synthetic biology may produce biomaterials, drugs, vaccines, biosensors, and even a recombinant secondary metabolite used in herbal and complementary medicine, such as artemisinin, a malaria drug which is usually extracted from the plant Artemisia annua. The power of synthetic biology has encouraged scientists in Indonesia, and is still in early development. This paper also covers some research from an Indonesian research institute in synthetic biology such as observing the production of bio surfactants and the enhanced production of artemisinin using a transient expression system. Synthetic biology development in Indonesia may also be related to the iGEM competition, a large synthetic biology research competition which was attended by several universities in Indonesia. The application of synthetic biology for drug discovery will be discussed.

  12. Patents on Therapeutic and Cosmetic Applications of Bioactives of Crocus Sativus L. and their Production through Synthetic Biology Methods: A Review.

    Science.gov (United States)

    Dawalbhakta, Mitali; Telang, Manasi

    2017-01-01

    Saffron (Crocus sativus L.) has a long history of use as a food additive and a traditional medicine for treating a number of disorders. Prominent bioactives of saffron are crocin, crocetin and safranal. The aim of this study was to carry out an extensive patent search to collect information on saffron bioactives and their derivatives as therapeutic and cosmeceutical agents. All patents related to the area of interest published globally till date have been reviewed. Moreover, a recent synthetic biology approach to cost effective and consistent production of saffron bioactives has been highlighted. A patent search strategy was designed based on keywords and concepts related to Crocus sativus L. and its bioactives- safranal, crocin and crocetin in combination with different patent classification codes relevant to the technology areas. This search strategy was employed to retrieve patents from various patent databases. The patents which focused on therapeutic or cosmetic applications and claimed compositions comprising crocin, crocetin or safranal as the main active component were selected and analysed. Maximum patenting activity was noticed towards the use of these bioactives in the treatment of neurological disorders followed by multiple uses of the same compound, use in treatment of metabolic disorders and use as cosmeceuticals. Interestingly, there were no patent records related to use of these bioactives in treating infectious disorders. Our patent analysis points out the populous and less explored uses of saffron bioactives and areas where there is further scope for research and growth. Recently developed synthetic biology approach is contributory in improving availability, consistency and cost effectiveness of saffron bioactives. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Application of a Barrier Filter at a High Purity Synthetic Graphite Plant, CRADA 99-F035, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    National Energy Technology Laboratory

    2000-08-31

    Superior Graphite Company and the US Department of Energy have entered into a Cooperative Research and Development Agreement (CRADA) to study the application of ceramic barrier filters at its Hopkinsville, Kentucky graphite plant. Superior Graphite Company is a worldwide leader in the application of advanced thermal processing technology to produce high purity graphite and carbons. The objective of the CRADA is to determine the technical and economic feasibility of incorporating the use of high-temperature filters to improve the performance of the offgas treatment system. A conceptual design was developed incorporating the ceramic filters into the offgas treatment system to be used for the development of a capital cost estimate and economic feasibility assessment of this technology for improving particulate removal. This CRADA is a joint effort of Superior Graphite Company, Parsons Infrastructure and Technology Group, and the National Energy Technology Laboratory (NETL) of the US Department of Energy (DOE).

  14. Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system.

    Science.gov (United States)

    Jang, J D; Barford, J P; Lindawati; Renneberg, R

    2004-03-15

    A bench scale reactor using a sequencing batch reactor process was used to evaluate the applicability of biosensors for the process optimization of biological carbon and nitrogen removal. A commercial biochemical oxygen demand (BOD) biosensor with a novel microbial membrane was used to determine the duration of each phase by measuring samples in real time in an SBR cycle with filling/anoxic-anaerobic/aerobic/sludge wasting/settling/withdrawal periods. Possible strategies to increase the efficiency for the biological removal of carbon and nitrogen from synthetic wastewater have been developed. The results show that application of a BOD biosensor enables estimation of organic carbon, in real time, allowing the optimization or reduction the SBR cycle time. Some typical consumption patterns for organic carbon in the non-aeration phase of a typical SBR operation were identified. The rate of decrease of BOD measured using a sensor BOD, was the highest in the initial glucose breakdown period and during denitrification. It then slowed down until a 'quiescent period' was observed, which may be considered as the commencement of the aeration period. Monitoring the BOD curve with a BOD biosensor allowed the reduction of the SBR cycle time, which leads to an increase in the removal efficiency. By reducing the cycle time from 8 to 4 h cycle, the removal efficiencies of nitrate, glucose, and phosphorus in a given time interval, were increased to nearly double, while the removal of nitrogen ammonium was increased by one-third.

  15. VisBOL: Web-Based Tools for Synthetic Biology Design Visualization.

    Science.gov (United States)

    McLaughlin, James Alastair; Pocock, Matthew; Mısırlı, Göksel; Madsen, Curtis; Wipat, Anil

    2016-08-19

    VisBOL is a Web-based application that allows the rendering of genetic circuit designs, enabling synthetic biologists to visually convey designs in SBOL visual format. VisBOL designs can be exported to formats including PNG and SVG images to be embedded in Web pages, presentations and publications. The VisBOL tool enables the automated generation of visualizations from designs specified using the Synthetic Biology Open Language (SBOL) version 2.0, as well as a range of well-known bioinformatics formats including GenBank and Pigeoncad notation. VisBOL is provided both as a user accessible Web site and as an open-source (BSD) JavaScript library that can be used to embed diagrams within other content and software.

  16. Investigation of Luminescence Characteristics of Some Synthetic Nano phosphors and Possibility of Application in Mixed Field Radiation Detection

    International Nuclear Information System (INIS)

    Ahmed, N.Y.A.

    2013-01-01

    The work given in this thesis aimed at Fabrication of high quality nano phosphor particles for getting high sensitive thermoluminescence material to use as ionizing radiation dosimeter. Ca Sr S nano phosphor has been prepared by solid state diffusion reaction method. The prepared nano phosphor was then activated with proper addition of some rare earth elements (dysprosium and gadolinium) for the sake of improving its TL sensitivity. The doped Ca Sr S nano phosphor was then treated by different courses of heat annealing for dual sake and regeneration. High temperature and high gamma dose sensitization are also used to increase sensitivity of Ca Sr S doped. By this means the TL-intensity of treated samples proved about 24 times observed enhancement. The prepared Ca Sr S: Dy nano phosphor is very reliable as pure gamma dosimeter for various applications such as personal, environmental and clinical dosimetry.

  17. Programming Windows® Embedded CE 60 Developer Reference

    CERN Document Server

    Boling, Douglas

    2010-01-01

    Get the popular, practical reference to developing small footprint applications-now updated for the Windows Embedded CE 6.0 kernel. Written by an authority on embedded application development, this book focuses in on core operating concepts and the Win32 API. It delivers extensive code samples and sample projects-helping you build proficiency creating innovative Windows applications for a new generation of devices. Discover how to: Create complex applications designed for the unique requirements of embedded devicesManage virtual memory, heaps, and the stack to minimize your memory footprintC

  18. Embedded-monolith armor

    Science.gov (United States)

    McElfresh, Michael W.; Groves, Scott E; Moffet, Mitchell L.; Martin, Louis P.

    2016-07-19

    A lightweight armor system utilizing a face section having a multiplicity of monoliths embedded in a matrix supported on low density foam. The face section is supported with a strong stiff backing plate. The backing plate is mounted on a spall plate.

  19. Synthesis and optical properties of CdS quantum dots embedded in silica matrix thin films and their applications as luminescent solar concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Reda, S.M. [Chemistry Department, Faculty of Science, Benha University, Benha (Egypt)], E-mail: safenazr@yahoo.com

    2008-01-15

    CdS quantum dot (QD) solar concentrators were prepared by a sol-gel spin coating method. Thin films were prepared at different annealing temperatures and characterized by X-ray diffraction and spectroscopic techniques. The effect of temperature on the optical properties of CdS QDs embedded in silica matrix was assessed before and after exposure of the samples to sunlight for up to 4 weeks. The results show that as the annealing temperature increases, the fluorescent intensity and Stokes shift decrease. Therefore lower temperatures are preferable for the preparation of highly efficient QD solar concentrator systems.

  20. Process of optical excitation and relaxation of color center in synthetic diamond and its application to optoelectronics

    International Nuclear Information System (INIS)

    Nishida, Yoshio

    1989-01-01

    Irradiation of high-pressure synthesized diamond is carried out by using a nuclear reactor or a linac. Then, the effect of annealing on the color centers is observed. A study is made to identify different color centers and to provide techniques to control their introduction. Investigations cover the relation of color center formation with annealing temperature, dependence of color center formation on radiation dose, migration of H3 center and hydrogen, and applicability of five different color centers to optoelectronics. Next, a study is made of the formation and relaxation of the nitrogen vacancy (NV) center in a metastable excited state produced by optical excitation. An optical gain is essential to provide laser. Optical amplification is measured at the vibronic emission band of the NV center. An increase in absorption is detected, indicating that the NV center will not provide laser. In the optical excitation-relaxation process, the relaxation proceeds via a metastable state. Finally, hole burning of ZPL of the NV center is observed in the temperature range from 20K to 80K, and some of its features are described. (N.K.)

  1. The embedded operating system project

    Science.gov (United States)

    Campbell, R. H.

    1985-01-01

    The design and construction of embedded operating systems for real-time advanced aerospace applications was investigated. The applications require reliable operating system support that must accommodate computer networks. Problems that arise in the construction of such operating systems, reconfiguration, consistency and recovery in a distributed system, and the issues of real-time processing are reported. A thesis that provides theoretical foundations for the use of atomic actions to support fault tolerance and data consistency in real-time object-based system is included. The following items are addressed: (1) atomic actions and fault-tolerance issues; (2) operating system structure; (3) program development; (4) a reliable compiler for path Pascal; and (5) mediators, a mechanism for scheduling distributed system processes.

  2. Discriminative graph embedding for label propagation.

    Science.gov (United States)

    Nguyen, Canh Hao; Mamitsuka, Hiroshi

    2011-09-01

    In many applications, the available information is encoded in graph structures. This is a common problem in biological networks, social networks, web communities and document citations. We investigate the problem of classifying nodes' labels on a similarity graph given only a graph structure on the nodes. Conventional machine learning methods usually require data to reside in some Euclidean spaces or to have a kernel representation. Applying these methods to nodes on graphs would require embedding the graphs into these spaces. By embedding and then learning the nodes on graphs, most methods are either flexible with different learning objectives or efficient enough for large scale applications. We propose a method to embed a graph into a feature space for a discriminative purpose. Our idea is to include label information into the embedding process, making the space representation tailored to the task. We design embedding objective functions that the following learning formulations become spectral transforms. We then reformulate these spectral transforms into multiple kernel learning problems. Our method, while being tailored to the discriminative tasks, is efficient and can scale to massive data sets. We show the need of discriminative embedding on some simulations. Applying to biological network problems, our method is shown to outperform baselines.

  3. Potential of indirect evaporative passive cooling with embedded tubes in a humid tropical climate : applications in a typical hot humid climate

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Chavez, J.R. [Univ. Autonoma Metropolitana-Azcapotzalco, Mexico City (Mexico). Dept. de Medio Ambiente, Laboratorio de Investigaciones en Arquitectura Bioclimatica; Givoni, B. [California Univ., Los Angeles, CA (United States); BGU, Beer Sheva (Israel); Viveros, O. [Cristobal Colon Univ., Veracruz (Mexico)

    2009-07-01

    The use of passive cooling techniques in buildings in hot and humid regions can reduce energy consumption while increasing thermal comfort for occupants. A study was conducted in the City of Veracruz, Mexico to investigate the performance of tubes embedded in the roof of the Gulf Meteorological Prevision Centre. Two identical insulated experimental cells were used, one serving as the control and the other one as the test unit, where the technique of embedded tubes in the roof was implemented and investigated during a typical overheating season. Results showed that this indirect evaporative cooling system is an effective strategy to reduce indoor temperatures without increasing the indoor humidity in buildings. The indoor maximum temperature was lowered by 2.72 K in the experimental test cell relative to the control unit. In addition, the resulting reduction of radiant temperatures in the test unit improved the thermal comfort of the occupants. It is expected that the implementation of this passive cooling technique will eventually contribute to reduced energy consumption and less use of air-conditioning systems in buildings, and thereby prevent emission of greenhouse gases to the atmosphere. 9 refs., 1 tab., 6 figs.

  4. Ultrasmall Tin Nanodots Embedded in Nitrogen-Doped Mesoporous Carbon: Metal-Organic-Framework Derivation and Electrochemical Application as Highly Stable Anode for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Dai, Ruoling; Sun, Weiwei; Wang, Yong

    2016-01-01

    Highlights: • Sn-based metal-organic-framework (MOF) is prepared. • Ultrasmall tin nanodots (2–3 nm) are embedded in nitrogen-doped mesoporous carbon. • The Sn/C composite anode shows high capacity and ultralong cycle life. - Abstract: This work reports a facile metal-organic-framework based approach to synthesize Sn/C composite, in which ultrasmall Sn nanodots with typical size of 2–3 nm are uniformly embedded in the nitrogen-doped porous carbon matrix (denoted as Sn@NPC). The effect of thermal treatment and nitrogen doping are also explored. Owing to the delicate size control and confined volume change within carbon matrix, the Sn@NPC composite can exhibit reversible capacities of 575 mAh g −1 (Sn contribution: 1091 mAh g −1 ) after 500 cycles at 0.2 A g −1 and 507 mAh g −1 (Sn contribution: 1077 mAh g −1 ) after 1500 cycles at 1 A g −1 . The excellent long-life electrochemical stability of the Sn@NPC anode has been mainly attributed to the uniform distribution of ultrasmall Sn nanodots and the highly-conductive and flexible N-doped carbon matrix, which can effectively facilitate lithium ion/electron diffusion, buffer the large volume change and improve the structure stability of the electrode during repetitive cycling with lithium ions.

  5. Application of in-situ hybridization for the detection and identification of avian malaria parasites in paraffin wax-embedded tissues from captive penguins

    Science.gov (United States)

    Dinhopl, Nora; Mostegl, Meike M.; Richter, Barbara; Nedorost, Nora; Maderner, Anton; Fragner, Karin; Weissenböck, Herbert

    2011-01-01

    In captive penguins, avian malaria due to Plasmodium parasites is a well-recognized disease problem as these protozoa may cause severe losses among valuable collections of zoo birds. In blood films from naturally infected birds, identification and differentiation of malaria parasites based on morphological criteria are difficult because parasitaemia is frequently light and blood stages, which are necessary for identification of parasites, are often absent. Post-mortem diagnosis by histological examination of tissue samples is sometimes inconclusive due to the difficulties in differentiating protozoal tissue stages from fragmented nuclei in necrotic tissue. The diagnosis of avian malaria would be facilitated by a technique with the ability to specifically identify developmental stages of Plasmodium in tissue samples. Thus, a chromogenic in-situ hybridization (ISH) procedure with a digoxigenin-labelled probe, targeting a fragment of the 18S rRNA, was developed for the detection of Plasmodium parasites in paraffin wax-embedded tissues. This method was validated in comparison with traditional techniques (histology, polymerase chain reaction), on various tissues from 48 captive penguins that died at the zoological garden Schönbrunn, Vienna, Austria. Meronts of Plasmodium gave clear signals and were easily identified using ISH. Potential cross-reactivity of the probe was ruled out by the negative outcome of the ISH against a number of protozoa and fungi. Thus, ISH proved to be a powerful, specific and sensitive tool for unambiguous detection of Plasmodium parasites in paraffin wax-embedded tissue samples. PMID:21711191

  6. Synthetic diamond devices for medical dosimetry applied to radiotherapy; Etude et developpement de dispositifs en diamant synthetique pour la dosimetrie medicale: applications en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Descamps, C

    2007-06-15

    The aim of this thesis, lead in the framework of an integrated European project entitled M.A.E.S.T.R.O. for ' Methods and Advanced Equipment for Simulation and Treatment in Radio Oncology', was to develop and test synthetic diamond detector in clinical environment for new modalities used in radiotherapy. Diamond is a good candidate for the detection of high energy beams in medical fields. It can be used for passive dosimetry, as thermoluminescent dosimeters or for active dosimetry as ionisation chambers. These two applications are presented here. Concerning the thermoluminescence, several impurities or dopants (boron, phosphorus, and nitrogen) have been incorporated in the diamond films during growth, in order to modify the material dosimetric properties and a detailed study of nitrogen-containing films is proposed. The second part presents the results obtained in active dosimetry. Two guide lines were followed: the measurement set-up optimisation and the material modification. The first dosimetric studies under radiotherapy beams concerning nitrogen-containing polycrystalline diamond as well as high purity single crystal diamond are conclusive. The detectors behaviours are in agreement with the recommendations of the International Atomic Energy Agency (IAEA). (author)

  7. One-step green synthetic approach for the preparation of multicolor emitting copper nanoclusters and their applications in chemical species sensing and bioimaging.

    Science.gov (United States)

    Bhamore, Jigna R; Jha, Sanjay; Mungara, Anil Kumar; Singhal, Rakesh Kumar; Sonkeshariya, Dhanshri; Kailasa, Suresh Kumar

    2016-06-15

    One-step green microwave synthetic approach was developed for the synthesis of copper nanoclusters (Cu NCs) and used as a fluorescent probe for the sensitive detection of thiram and paraquat in water and food samples. Unexpectedly, the prepared Cu NCs exhibited strong orange fluorescence and showed emission peak at 600 nm, respectively. Under optimized conditions, the quenching of Cu NCs emission peak at 600 nm was linearly proportional to thiram and paraquat concentrations in the ranges from 0.5 to 1000 µM, and from 0.2 to 1000 µM, with detection limits of 70 nM and 49 nM, respectively. In addition, bioimaging studies against Bacillus subtilis through confocal fluorescence microscopy indicated that Cu NCs showed strong blue and green fluorescence signals, good permeability and minimum toxicity against the various bacteria species, which demonstrates their potential feasibility for chemical species sensing and bioimaging applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Air Dispersion Modeling for the INL Application for a Synthetic Minor Sitewide Air Quality Permit to Construct with a Facility Emission Cap Component

    Energy Technology Data Exchange (ETDEWEB)

    Sondrup, Andrus Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    The Department of Energy Idaho Operations Office (DOE-ID) is applying for a synthetic minor, Sitewide, air quality permit to construct (PTC) with a facility emission cap (FEC) component from the Idaho Department of Environmental Quality (DEQ) for Idaho National Laboratory (INL) to limit its potential to emit to less than major facility limits for criteria air pollutants (CAPs) and hazardous air pollutants (HAPs) regulated under the Clean Air Act. This document is supplied as an appendix to the application, Idaho National Laboratory Application for a Synthetic Minor Sitewide Air Quality Permit to Construct with a Facility Emissions Cap Component, hereafter referred to as “permit application” (DOE-ID 2015). Air dispersion modeling was performed as part of the permit application process to demonstrate pollutant emissions from the INL will not cause a violation of any ambient air quality standards. This report documents the modeling methodology and results for the air dispersion impact analysis. All CAPs regulated under Section 109 of the Clean Air Act were modeled with the exception of lead (Pb) and ozone, which are not required to be modeled by DEQ. Modeling was not performed for toxic air pollutants (TAPs) as uncontrolled emissions did not exceed screening emission levels for carcinogenic and non-carcinogenic TAPs. Modeling for CAPs was performed with the EPA approved AERMOD dispersion modeling system (Version 14134) (EPA 2004a) and five years (2000-2004) of meteorological data. The meteorological data set was produced with the companion AERMET model (Version 14134) (EPA 2004b) using surface data from the Idaho Falls airport, and upper-air data from Boise International Airport supplied by DEQ. Onsite meteorological data from the Grid 3 Mesonet tower located near the center of the INL (north of INTEC) and supplied by the local National Oceanic and Atmospheric Administration (NOAA) office was used for surface wind directions and wind speeds. Surface data (i

  9. Synthetic methodologies for carbon nanomaterials.

    Science.gov (United States)

    Liu, Zhaoping; Zhou, Xufeng; Qian, Yitai

    2010-05-04

    Carbon nanomaterials have advanced rapidly over the last two decades and are among the most promising materials that have already changed and will keep on changing human life. Development of synthetic methodologies for these materials, therefore, has been one of the most important subjects of carbon nanoscience and nanotechnology, and forms the basis for investigating the physicochemical properties and applications of carbon nanomaterials. In this Research News article, several synthetic strategies, including solvothermal reduction, solvothermal pyrolysis, hydrothermal carbonization, and soft-chemical exfoliation are specifically discussed and highlighted, which have been developed for the synthesis of novel carbon nanomaterials over the last decade.

  10. Uptake and speciation of uranium in synthetic gypsum (CaSO4•2H2O): Applications to radioactive mine tailings.

    Science.gov (United States)

    Lin, Jinru; Sun, Wei; Desmarais, Jacques; Chen, Ning; Feng, Renfei; Zhang, Patrick; Li, Dien; Lieu, Arthur; Tse, John S; Pan, Yuanming

    2018-01-01

    Phosphogypsum formed from the production of phosphoric acid represents by far the biggest accumulation of gypsum-rich wastes in the world and commonly contains elevated radionuclides, including uranium, as well as other heavy metals and metalloids. Therefore, billions-of-tons of phosphogypsum stockpiled worldwide not only possess serious environmental problems but also represent a potential uranium resource. Gypsum is also a major solid constituent in many other types of radioactive mine tailings, which stems from the common usage of sulfuric acid in extraction processes. Therefore, management and remediation of radioactive mine tailings as well as future beneficiation of uranium from phosphogysum all require detailed knowledge about the nature and behavior of uranium in gypsum. However, little is known about the uptake mechanism or speciation of uranium in gypsum. In this study, synthesis experiments suggest an apparent pH control on the uptake of uranium in gypsum at ambient conditions: increase in U from 16 μg/g at pH = 6.5 to 339 μg/g at pH = 9.5. Uranium L 3 -edge synchrotron X-ray absorption spectroscopic analyses of synthetic gypsum show that uranyl (UO 2 ) 2+ at the Ca site is the dominant species. The EXAFS fitting results also indicate that uranyl in synthetic gypsum occurs most likely as carbonate complexes and yields an average U-O distance ∼0.25 Å shorter than the average Ca-O distance, signifying a marked local structural distortion. Applications to phosphogypsum from the New Wales phosphoric acid plant (Florida, USA) and uranium mine tailings from the Key Lake mill (Saskatchewan, Canada) show that gypsum is an important carrier of uranium over a wide range of pH and controls the fate of this radionuclide in mine tailings. Also, development of new technologies for recovering U from phosphogypsum in the future must consider lattice-bound uranyl in gypsum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  12. Synthetic biology - the state of play.

    Science.gov (United States)

    Kitney, Richard; Freemont, Paul

    2012-07-16

    Just over two years ago there was an article in Nature entitled "Five Hard Truths for Synthetic Biology". Since then, the field has moved on considerably. A number of economic commentators have shown that synthetic biology very significant industrial potential. This paper addresses key issues in relation to the state of play regarding synthetic biology. It first considers the current background to synthetic biology, whether it is a legitimate field and how it relates to foundational biological sciences. The fact that synthetic biology is a translational field is discussed and placed in the context of the industrial translation process. An important aspect of synthetic biology is platform technology, this topic is also discussed in some detail. Finally, examples of application areas are described. Copyright © 2012. Published by Elsevier B.V.

  13. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  14. Secure wireless embedded systems via component-based design

    DEFF Research Database (Denmark)

    Hjorth, T.; Torbensen, R.

    2010-01-01

    communication component for distributed wireless embedded devices. The components communicate using the Secure Embedded Exchange Protocol (SEEP), which has been designed for flexible trust establishment so that small, resource-constrained, wireless embedded systems are able to communicate short command messages......This paper introduces the method secure-by-design as a way of constructing wireless embedded systems using component-based modeling frameworks. This facilitates design of secure applications through verified, reusable software. Following this method we propose a security framework with a secure...

  15. Introduction to embedded system design using field programmable gate arrays

    CERN Document Server

    Dubey, Rahul

    2009-01-01

    Offers information on the use of field programmable gate arrays (FPGAs) in the design of embedded systems. This text considers a hypothetical robot controller as an embedded application and weaves around it related concepts of FPGA-based digital design. It is suitable for both students and designers who have worked with microprocessors.

  16. Model-based testing for embedded systems

    CERN Document Server

    Zander, Justyna; Mosterman, Pieter J

    2011-01-01

    What the experts have to say about Model-Based Testing for Embedded Systems: "This book is exactly what is needed at the exact right time in this fast-growing area. From its beginnings over 10 years ago of deriving tests from UML statecharts, model-based testing has matured into a topic with both breadth and depth. Testing embedded systems is a natural application of MBT, and this book hits the nail exactly on the head. Numerous topics are presented clearly, thoroughly, and concisely in this cutting-edge book. The authors are world-class leading experts in this area and teach us well-used

  17. Drilling azimuth gamma embedded design

    Directory of Open Access Journals (Sweden)

    Zhou Yi Ren

    2016-01-01

    Full Text Available Embedded drilling azimuth gamma design, the use of radioactive measuring principle embedded gamma measurement while drilling a short section analysis. Monte Carlo method, in response to the density of horizontal well logging numerical simulation of 16 orientation, the orientation of horizontal well analysed, calliper, bed boundary location, space, different formation density, formation thickness, and other factors inclined strata dip the impact by simulating 137Cs sources under different formation conditions of the gamma distribution, to determine the orientation of drilling density tool can detect window size and space, draw depth of the logging methods. The data 360° azimuth imaging, image processing method to obtain graph, display density of the formation, dip and strata thickness and other parameters, the logging methods obtain real-time geo-steering. To establish a theoretical basis for the orientation density logging while drilling method implementation and application of numerical simulation in-depth study of the MWD azimuth and density log response factors of horizontal wells.

  18. The photocatalytic application and regeneration of anatase thin films with embedded commercial TiO{sub 2} particles deposited on glass microrods

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Valtierra, Jorge [Departamento de Ingenieria Quimica y Bioquimica, Tecnologico de Aguascalientes, Av. Adolfo Lopez Mateos No. 182 Ote., Fracc. Bona Gens, Aguascalientes, Ags., 20256 (Mexico)]. E-mail: jormeval@yahoo.com; Garcia-Servin, Josafat [Departamento de Ingenieria Quimica y Bioquimica, Tecnologico de Aguascalientes, Av. Adolfo Lopez Mateos No. 182 Ote., Fracc. Bona Gens, Aguascalientes, Ags., 20256 (Mexico)]. E-mail: josgaser@yahoo.com.mx; Frausto-Reyes, Claudio [Centro de Investigaciones en Optica, A.C., Unidad Aguascalientes, Prol. Constitucion No. 607, Reserva de Loma Bonita, Aguascalientes, Ags., 20200 (Mexico)]. E-mail: cfraus@cio.mx; Calixto, Sergio [Centro de Investigaciones en Optica, A.C., Loma del Bosque No. 115, Col. Lomas del Campestre, Leon, Gto., 37150 (Mexico)]. E-mail: scalixto@cio.mx

    2006-03-15

    Anatase thin films (<200 nm in thickness) embedding Degussa P25 TiO{sub 2} were prepared by sol-gel method. TiO{sub 2}-anatase thin films were deposited on a fiberglass substrate and then ground to obtain glass microrods containing the composite films. The film structure was characterized using Raman spectroscopy, atomic absorption and UV-vis spectrophotometry, and atomic force microscopy. The photocatalytic activity of the composite films, calcined at 450 deg. C, and the regeneration of the activity under the same experimental conditions, were assessed using gas chromatography to study the photodegradation of phenol, an industrial pollutant, in water under 365 nm irradiation. The film with 15.0 wt.% of P25 TiO{sub 2} was found to be more photoactive (54 ppm of degraded phenol at 6 h of illumination) than the other ones.

  19. Integrated Equivalent Circuit and Thermal Model for Simulation of Temperature-Dependent LiFePO4 Battery in Actual Embedded Application

    Directory of Open Access Journals (Sweden)

    Zuchang Gao

    2017-01-01

    Full Text Available A computational efficient battery pack model with thermal consideration is essential for simulation prototyping before real-time embedded implementation. The proposed model provides a coupled equivalent circuit and convective thermal model to determine the state-of-charge (SOC and temperature of the LiFePO4 battery working in a real environment. A cell balancing strategy applied to the proposed temperature-dependent battery model balanced the SOC of each cell to increase the lifespan of the battery. The simulation outputs are validated by a set of independent experimental data at a different temperature to ensure the model validity and reliability. The results show a root mean square (RMS error of 1.5609 × 10−5 for the terminal voltage and the comparison between the simulation and experiment at various temperatures (from 5 °C to 45 °C shows a maximum RMS error of 7.2078 × 10−5.

  20. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Energy Efficiency of Task Allocation for Embedded JPEG Systems

    Directory of Open Access Journals (Sweden)

    Yang-Hsin Fan

    2014-01-01

    Full Text Available Embedded system works everywhere for repeatedly performing a few particular functionalities. Well-known products include consumer electronics, smart home applications, and telematics device, and so forth. Recently, developing methodology of embedded systems is applied to conduct the design of cloud embedded system resulting in the applications of embedded system being more diverse. However, the more energy consumes result from the more embedded system works. This study presents hyperrectangle technology (HT to embedded system for obtaining energy saving. The HT adopts drift effect to construct embedded systems with more hardware circuits than software components or vice versa. It can fast construct embedded system with a set of hardware circuits and software components. Moreover, it has a great benefit to fast explore energy consumption for various embedded systems. The effects are presented by assessing a JPEG benchmarks. Experimental results demonstrate that the HT, respectively, achieves the energy saving by 29.84%, 2.07%, and 68.80% on average to GA, GHO, and Lin.

  2. Energy efficiency of task allocation for embedded JPEG systems.

    Science.gov (United States)

    Fan, Yang-Hsin; Wu, Jan-Ou; Wang, San-Fu

    2014-01-01

    Embedded system works everywhere for repeatedly performing a few particular functionalities. Well-known products include consumer electronics, smart home applications, and telematics device, and so forth. Recently, developing methodology of embedded systems is applied to conduct the design of cloud embedded system resulting in the applications of embedded system being more diverse. However, the more energy consumes result from the more embedded system works. This study presents hyperrectangle technology (HT) to embedded system for obtaining energy saving. The HT adopts drift effect to construct embedded systems with more hardware circuits than software components or vice versa. It can fast construct embedded system with a set of hardware circuits and software components. Moreover, it has a great benefit to fast explore energy consumption for various embedded systems. The effects are presented by assessing a JPEG benchmarks. Experimental results demonstrate that the HT, respectively, achieves the energy saving by 29.84%, 2.07%, and 68.80% on average to GA, GHO, and Lin.

  3. Synergistic Synthetic Biology: Units in Concert

    Science.gov (United States)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications. PMID:25022769

  4. Synergistic Synthetic Biology: Units in Concert

    International Nuclear Information System (INIS)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications.

  5. Synthetic antifreeze peptide

    OpenAIRE

    1991-01-01

    A synthetic antifreeze peptide and a synthetic gene coding for the antifreeze peptide have been produced. The antifreeze peptide has a greater number of repeating amino acid sequences than is present in the native antifreeze peptides from winter flounder upon which the synthetic antifreeze peptide was modeled. Each repeating amino acid sequence has two polar amino acid residues which are spaced a controlled distance apart so that the antifreeze peptide may inhibit ice formation. The synthetic...

  6. Control theory meets synthetic biology.

    Science.gov (United States)

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. © 2016 The Author(s).

  7. Heterogeneous Multicore Processor Technologies for Embedded Systems

    CERN Document Server

    Uchiyama, Kunio; Kasahara, Hironori; Nojiri, Tohru; Noda, Hideyuki; Tawara, Yasuhiro; Idehara, Akio; Iwata, Kenichi; Shikano, Hiroaki

    2012-01-01

    To satisfy the higher requirements of digitally converged embedded systems, this book describes heterogeneous multicore technology that uses various kinds of low-power embedded processor cores on a single chip. With this technology, heterogeneous parallelism can be implemented on an SoC, and greater flexibility and superior performance per watt can then be achieved. This book defines the heterogeneous multicore architecture and explains in detail several embedded processor cores including CPU cores and special-purpose processor cores that achieve highly arithmetic-level parallelism. The authors developed three multicore chips (called RP-1, RP-2, and RP-X) according to the defined architecture with the introduced processor cores. The chip implementations, software environments, and applications running on the chips are also explained in the book. Provides readers an overview and practical discussion of heterogeneous multicore technologies from both a hardware and software point of view; Discusses a new, high-p...

  8. [SYNTHETIC PEPTIDE VACCINES].

    Science.gov (United States)

    Sergeyev, O V; Barinsky, I F

    2016-01-01

    An update on the development and trials of synthetic peptide vaccines is reviewed. The review considers the successful examples of specific protection as a result of immunization with synthetic peptides using various protocols. The importance of conformation for the immunogenicity of the peptide is pointed out. An alternative strategy of the protection of the organism against the infection using synthetic peptides is suggested.

  9. Space Synthetic Biology Project

    Science.gov (United States)

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  10. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array-Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique.

    Science.gov (United States)

    Yang, Chen; Li, Bingyi; Chen, Liang; Wei, Chunpeng; Xie, Yizhuang; Chen, He; Yu, Wenyue

    2017-06-24

    With the development of satellite load technology and very large scale integrated (VLSI) circuit technology, onboard real-time synthetic aperture radar (SAR) imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS) SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT), which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array-application-specific integrated circuit (FPGA-ASIC) hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS) technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  11. A Spaceborne Synthetic Aperture Radar Partial Fixed-Point Imaging System Using a Field- Programmable Gate Array−Application-Specific Integrated Circuit Hybrid Heterogeneous Parallel Acceleration Technique

    Directory of Open Access Journals (Sweden)

    Chen Yang

    2017-06-01

    Full Text Available With the development of satellite load technology and very large scale integrated (VLSI circuit technology, onboard real-time synthetic aperture radar (SAR imaging systems have become a solution for allowing rapid response to disasters. A key goal of the onboard SAR imaging system design is to achieve high real-time processing performance with severe size, weight, and power consumption constraints. In this paper, we analyse the computational burden of the commonly used chirp scaling (CS SAR imaging algorithm. To reduce the system hardware cost, we propose a partial fixed-point processing scheme. The fast Fourier transform (FFT, which is the most computation-sensitive operation in the CS algorithm, is processed with fixed-point, while other operations are processed with single precision floating-point. With the proposed fixed-point processing error propagation model, the fixed-point processing word length is determined. The fidelity and accuracy relative to conventional ground-based software processors is verified by evaluating both the point target imaging quality and the actual scene imaging quality. As a proof of concept, a field- programmable gate array−application-specific integrated circuit (FPGA-ASIC hybrid heterogeneous parallel accelerating architecture is designed and realized. The customized fixed-point FFT is implemented using the 130 nm complementary metal oxide semiconductor (CMOS technology as a co-processor of the Xilinx xc6vlx760t FPGA. A single processing board requires 12 s and consumes 21 W to focus a 50-km swath width, 5-m resolution stripmap SAR raw data with a granularity of 16,384 × 16,384.

  12. Multichannel analyzer embedded in FPGA

    International Nuclear Information System (INIS)

    Garcia D, A.; Hernandez D, V. M.; Vega C, H. R.; Ordaz G, O. O.; Bravo M, I.

    2017-10-01

    Ionizing radiation has different applications, so it is a very significant and useful tool, which in turn can be dangerous for living beings if they are exposed to uncontrolled doses. However, due to its characteristics, it cannot be perceived by any of the senses of the human being, so that in order to know the presence of it, radiation detectors and additional devices are required to quantify and classify it. A multichannel analyzer is responsible for separating the different pulse heights that are generated in the detectors, in a certain number of channels; according to the number of bits of the analog to digital converter. The objective of the work was to design and implement a multichannel analyzer and its associated virtual instrument, for nuclear spectrometry. The components of the multichannel analyzer were created in VHDL hardware description language and packaged in the Xilinx Vivado design suite, making use of resources such as the ARM processing core that the System on Chip Zynq contains and the virtual instrument was developed on the LabView programming graphics platform. The first phase was to design the hardware architecture to be embedded in the FPGA and for the internal control of the multichannel analyzer the application was generated for the ARM processor in C language. For the second phase, the virtual instrument was developed for the management, control and visualization of the results. The data obtained as a result of the development of the system were observed graphically in a histogram showing the spectrum measured. The design of the multichannel analyzer embedded in FPGA was tested with two different radiation detection systems (hyper-pure germanium and scintillation) which allowed determining that the spectra obtained are similar in comparison with the commercial multichannel analyzers. (Author)

  13. Advanced Technologies, Embedded and Multimedia for Human-Centric Computing

    CERN Document Server

    Chao, Han-Chieh; Deng, Der-Jiunn; Park, James; HumanCom and EMC 2013

    2014-01-01

    The theme of HumanCom and EMC are focused on the various aspects of human-centric computing for advances in computer science and its applications, embedded and multimedia computing and provides an opportunity for academic and industry professionals to discuss the latest issues and progress in the area of human-centric computing. And the theme of EMC (Advanced in Embedded and Multimedia Computing) is focused on the various aspects of embedded system, smart grid, cloud and multimedia computing, and it provides an opportunity for academic, industry professionals to discuss the latest issues and progress in the area of embedded and multimedia computing. Therefore this book will be include the various theories and practical applications in human-centric computing and embedded and multimedia computing.

  14. Unsteady Flame Embedding

    KAUST Repository

    El-Asrag, Hossam A.

    2011-01-01

    Direct simulation of all the length and time scales relevant to practical combustion processes is computationally prohibitive. When combustion processes are driven by reaction and transport phenomena occurring at the unresolved scales of a numerical simulation, one must introduce a dynamic subgrid model that accounts for the multiscale nature of the problem using information available on a resolvable grid. Here, we discuss a model that captures unsteady flow-flame interactions- including extinction, re-ignition, and history effects-via embedded simulations at the subgrid level. The model efficiently accounts for subgrid flame structure and incorporates detailed chemistry and transport, allowing more accurate prediction of the stretch effect and the heat release. In this chapter we first review the work done in the past thirty years to develop the flame embedding concept. Next we present a formulation for the same concept that is compatible with Large Eddy Simulation in the flamelet regimes. The unsteady flame embedding approach (UFE) treats the flame as an ensemble of locally one-dimensional flames, similar to the flamelet approach. However, a set of elemental one-dimensional flames is used to describe the turbulent flame structure directly at the subgrid level. The calculations employ a one-dimensional unsteady flame model that incorporates unsteady strain rate, curvature, and mixture boundary conditions imposed by the resolved scales. The model is used for closure of the subgrid terms in the context of large eddy simulation. Direct numerical simulation (DNS) data from a flame-vortex interaction problem is used for comparison. © Springer Science+Business Media B.V. 2011.

  15. Embedded microcontroller interfacing

    CERN Document Server

    Gupta, Gourab Sen

    2010-01-01

    Mixed-Signal Embedded Microcontrollers are commonly used in integrating analog components needed to control non-digital electronic systems. They are used in automatically controlled devices and products, such as automobile engine control systems, wireless remote controllers, office machines, home appliances, power tools, and toys. Microcontrollers make it economical to digitally control even more devices and processes by reducing the size and cost, compared to a design that uses a separate microprocessor, memory, and input/output devices. In many undergraduate and post-graduate courses, teachi

  16. Embedment of Employee?

    DEFF Research Database (Denmark)

    Buhl, Henrik

    1998-01-01

    and an empirical case study. My starting point will be a case study of a Danish ABB company which will form the framework of my discussion and reflect my present experience. This analysis will emphasize the possibilities of making employee participation a permanent part of the company at all levels.......The purpose of the paper is to discuss the influence of different approaches and work life conditions on the conception of embedment of employee participation. The discussion is based on three connected approaches: a theoretical research, a research into participation in working life...

  17. Physical and electrical characterization of atomic-layer-deposited Ru nanocrystals embedded into Al{sub 2}O{sub 3} for memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Min; Chen Wei; Ding Shijin; Liu Zhiying; Huang Yue; Liao Zhongwei; Zhang, David Wei [State Key Laboratory of ASIC and System, School of Microelectronics, Fudan University, Shanghai 200433 (China)

    2008-02-07

    Growth of uniformly distributed Ru nanocrystals on Al{sub 2}O{sub 3} is demonstrated via atomic layer deposition using bis(cyclopentadienyl)-ruthenium and oxygen precursors. X-ray photoelectron spectroscopy analyses reveal that metallic Ru nanocrystals were formed in this experiment, and the RuO{sub 2} surface is due to oxidation of Ru when exposed to air. The metal-oxide-silicon capacitors with Ru nanocrystals embedded into Al{sub 2}O{sub 3} are electrically measured, exhibiting obvious memory effects such as a large hysteresis memory window of 3.4 V for the sweeping gate voltage of -2.5/ + 8 V and a significant flat-band voltage shift of 3.2 V under the programming of 10 V/1 ms, i.e. an effective electron injection rate as fast as 1.78 x 10{sup -6} C cm{sup -2} ms{sup -1}. This relates to the program mechanism of direct tunnelling and a large potential well depth. (fast track communication)

  18. 21 CFR 178.3720 - Petroleum wax, synthetic.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Petroleum wax, synthetic. 178.3720 Section 178.3720... Certain Adjuvants and Production Aids § 178.3720 Petroleum wax, synthetic. Synthetic petroleum wax may be safely used in applications and under the same conditions where naturally derived petroleum wax is...

  19. Bandwidth Extension of Telephone Speech Aided by Data Embedding

    Directory of Open Access Journals (Sweden)

    David Malah

    2007-01-01

    Full Text Available A system for bandwidth extension of telephone speech, aided by data embedding, is presented. The proposed system uses the transmitted analog narrowband speech signal as a carrier of the side information needed to carry out the bandwidth extension. The upper band of the wideband speech is reconstructed at the receiving end from two components: a synthetic wideband excitation signal, generated from the narrowband telephone speech and a wideband spectral envelope, parametrically represented and transmitted as embedded data in the telephone speech. We propose a novel data embedding scheme, in which the scalar Costa scheme is combined with an auditory masking model allowing high rate transparent embedding, while maintaining a low bit error rate. The signal is transformed to the frequency domain via the discrete Hartley transform (DHT and is partitioned into subbands. Data is embedded in an adaptively chosen subset of subbands by modifying the DHT coefficients. In our simulations, high quality wideband speech was obtained from speech transmitted over a telephone line (characterized by spectral magnitude distortion, dispersion, and noise, in which side information data is transparently embedded at the rate of 600 information bits/second and with a bit error rate of approximately 3⋅10−4. In a listening test, the reconstructed wideband speech was preferred (at different degrees over conventional telephone speech in 92.5% of the test utterances.

  20. Bandwidth Extension of Telephone Speech Aided by Data Embedding

    Directory of Open Access Journals (Sweden)

    Sagi Ariel

    2007-01-01

    Full Text Available A system for bandwidth extension of telephone speech, aided by data embedding, is presented. The proposed system uses the transmitted analog narrowband speech signal as a carrier of the side information needed to carry out the bandwidth extension. The upper band of the wideband speech is reconstructed at the receiving end from two components: a synthetic wideband excitation signal, generated from the narrowband telephone speech and a wideband spectral envelope, parametrically represented and transmitted as embedded data in the telephone speech. We propose a novel data embedding scheme, in which the scalar Costa scheme is combined with an auditory masking model allowing high rate transparent embedding, while maintaining a low bit error rate. The signal is transformed to the frequency domain via the discrete Hartley transform (DHT and is partitioned into subbands. Data is embedded in an adaptively chosen subset of subbands by modifying the DHT coefficients. In our simulations, high quality wideband speech was obtained from speech transmitted over a telephone line (characterized by spectral magnitude distortion, dispersion, and noise, in which side information data is transparently embedded at the rate of 600 information bits/second and with a bit error rate of approximately . In a listening test, the reconstructed wideband speech was preferred (at different degrees over conventional telephone speech in of the test utterances.

  1. WISB: Warwick Integrative Synthetic Biology Centre.

    Science.gov (United States)

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. © 2016 The Author(s).

  2. A low complexity method for the optimization of network path length in spatially embedded networks

    International Nuclear Information System (INIS)

    Chen, Guang; Yang, Xu-Hua; Xu, Xin-Li; Ming, Yong; Chen, Sheng-Yong; Wang, Wan-Liang

    2014-01-01

    The average path length of a network is an important index reflecting the network transmission efficiency. In this paper, we propose a new method of decreasing the average path length by adding edges. A new indicator is presented, incorporating traffic flow demand, to assess the decrease in the average path length when a new edge is added during the optimization process. With the help of the indicator, edges are selected and added into the network one by one. The new method has a relatively small time computational complexity in comparison with some traditional methods. In numerical simulations, the new method is applied to some synthetic spatially embedded networks. The result shows that the method can perform competitively in decreasing the average path length. Then, as an example of an application of this new method, it is applied to the road network of Hangzhou, China. (paper)

  3. Effect of synthetic vernix biofilms on barrier recovery of damaged mouse skin.

    Science.gov (United States)

    Oudshoorn, Marion H M; Rissmann, Robert; van der Coelen, Dennis; Hennink, Wim E; Ponec, Maria; Bouwstra, Joke A

    2009-08-01

    The aim of this work was to investigate whether topical application of synthetic biofilms supports and accelerates the recovery of the murine skin barrier, disrupted by sequential tape stripping. Therefore, various biofilms were applied topically on disrupted mouse skin to determine which formulation could improve barrier function, as was observed previously for the natural biofilm vernix caseosa (VC). The biofilms [i.e. particles (synthetic corneocytes) embedded in a synthetic lipid matrix] mimic closely the physicochemical properties and structure of VC. Various formulations were prepared using different particle:lipid ratios, particles with different initial water content and uncoated or lipid-coated particles. It was observed that application of all tested formulations improved the skin barrier recovery rate and reduced crust formation and epidermal hyperproliferation. However, only one of the biofilms [i.e. B1; composed of uncoated particles with 50% (w/w) initial water content and particle:lipid ratio of 2:1] mimicked the effects of native VC most closely. This indicates the importance of the presence of individual components, i.e. barrier lipids and water, as well as the ratio of these components. Consequently, these observations suggest the potential use of this biofilm treatment clinically.

  4. Learning optimal embedded cascades.

    Science.gov (United States)

    Saberian, Mohammad Javad; Vasconcelos, Nuno

    2012-10-01

    The problem of automatic and optimal design of embedded object detector cascades is considered. Two main challenges are identified: optimization of the cascade configuration and optimization of individual cascade stages, so as to achieve the best tradeoff between classification accuracy and speed, under a detection rate constraint. Two novel boosting algorithms are proposed to address these problems. The first, RCBoost, formulates boosting as a constrained optimization problem which is solved with a barrier penalty method. The constraint is the target detection rate, which is met at all iterations of the boosting process. This enables the design of embedded cascades of known configuration without extensive cross validation or heuristics. The second, ECBoost, searches over cascade configurations to achieve the optimal tradeoff between classification risk and speed. The two algorithms are combined into an overall boosting procedure, RCECBoost, which optimizes both the cascade configuration and its stages under a detection rate constraint, in a fully automated manner. Extensive experiments in face, car, pedestrian, and panda detection show that the resulting detectors achieve an accuracy versus speed tradeoff superior to those of previous methods.

  5. Applying Distributed Object Technology to Distributed Embedded Control Systems

    DEFF Research Database (Denmark)

    Jørgensen, Bo Nørregaard; Dalgaard, Lars

    2012-01-01

    In this paper, we describe our Java RMI inspired Object Request Broker architecture MicroRMI for use with networked embedded devices. MicroRMI relieves the software developer from the tedious and error-prone job of writing communication protocols for interacting with such embedded devices. MicroR...... in developing control systems for distributed embedded platforms possessing severe resource restrictions.......RMI supports easy integration of high-level application specific control logic with low-level device specific control logic. Our experience from applying MicroRMI in the context of a distributed robotics control application, clearly demonstrates that it is feasible to use distributed object technology...

  6. Feasibility study on embedded transport core calculations

    International Nuclear Information System (INIS)

    Ivanov, B.; Zikatanov, L.; Ivanov, K.

    2007-01-01

    The main objective of this study is to develop an advanced core calculation methodology based on embedded diffusion and transport calculations. The scheme proposed in this work is based on embedded diffusion or SP 3 pin-by-pin local fuel assembly calculation within the framework of the Nodal Expansion Method (NEM) diffusion core calculation. The SP 3 method has gained popularity in the last 10 years as an advanced method for neutronics calculation. NEM is a multi-group nodal diffusion code developed, maintained and continuously improved at the Pennsylvania State University. The developed calculation scheme is a non-linear iteration process, which involves cross-section homogenization, on-line discontinuity factors generation, and boundary conditions evaluation by the global solution passed to the local calculation. In order to accomplish the local calculation, a new code has been developed based on the Finite Elements Method (FEM), which is capable of performing both diffusion and SP 3 calculations. The new code will be used in the framework of the NEM code in order to perform embedded pin-by-pin diffusion and SP 3 calculations on fuel assembly basis. The development of the diffusion and SP 3 FEM code is presented first following by its application to several problems. Description of the proposed embedded scheme is provided next as well as the obtained preliminary results of the C3 MOX benchmark. The results from the embedded calculations are compared with direct pin-by-pin whole core calculations in terms of accuracy and efficiency followed by conclusions made about the feasibility of the proposed embedded approach. (authors)

  7. Philosophy of Systems and Synthetic Biology

    DEFF Research Database (Denmark)

    Green, Sara

    2017-01-01

    This entry aims to clarify how systems and synthetic biology contribute to and extend discussions within philosophy of science. Unlike fields such as developmental biology or molecular biology, systems and synthetic biology are not easily demarcated by a focus on a specific subject area or level...... computational approaches, about the relation between living and artificial systems, and about the implications of interdisciplinary research for science and society. The entry can be openly accessed at the webpage of the Stanford Encyclopaedia of Philosophy: https://plato.stanford.edu/entries/systems-synthetic-biology/...... of organization. Rather, they are characterized by the development and application of mathematical, computational, and synthetic modeling strategies in response to complex problems and challenges within the life sciences. Proponents of systems and synthetic biology often stress the necessity of a perspective...

  8. Synthetic biology: an emerging engineering discipline.

    Science.gov (United States)

    Cheng, Allen A; Lu, Timothy K

    2012-01-01

    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  9. Experiences with Ada in an embedded system

    Science.gov (United States)

    Labaugh, Robert J.

    1988-01-01

    Recent experiences with using Ada in a real time environment are described. The application was the control system for an experimental robotic arm. The objectives of the effort were to experiment with developing embedded applications in Ada, evaluating the suitability of the language for the application, and determining the performance of the system. Additional objectives were to develop a control system based on the NASA/NBS Standard Reference Model for Telerobot Control System Architecture (NASREM) in Ada, and to experiment with the control laws and how to incorporate them into the NASREM architecture.

  10. [From synthetic biology to synthetic humankind].

    Science.gov (United States)

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Synthetic Cathinones ("Bath Salts")

    Science.gov (United States)

    ... cathinones? Behavioral therapy can be used to treat addiction to synthetic cathinones. Examples include: cognitive-behavioral therapy contingency management, or motivational incentives—providing rewards to ...

  12. Embedding potentials for excited states of embedded species

    International Nuclear Information System (INIS)

    Wesolowski, Tomasz A.

    2014-01-01

    Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-state energy of the total system and the corresponding embedded wavefunction by means of Euler-Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the expression for the embedding potential as a functional of the electron density of the embedded species, electron density of the environment, and the field generated by other charges in the environment. Under certain conditions, FDET leads to the exact ground-state energy and density of the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy functional, the other-than-ground-state stationary states of the FDET energy functional correspond to excited states. In the present work, we analyze such use of other-than-ground-state embedded wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is approximated. Three computational approaches based on FDET, that assure self-consistent excitation energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunctions for different states in a different manner, are proposed and discussed

  13. Smooth embeddings with Stein surface images

    OpenAIRE

    Gompf, Robert E.

    2011-01-01

    A simple characterization is given of open subsets of a complex surface that smoothly perturb to Stein open subsets. As applications, complex 2-space C^2 contains domains of holomorphy (Stein open subsets) that are exotic R^4's, and others homotopy equivalent to the 2-sphere but cut out by smooth, compact 3-manifolds. Pseudoconvex embeddings of Brieskorn spheres and other 3-manifolds into complex surfaces are constructed, as are pseudoconcave holomorphic fillings (with disagreeing contact and...

  14. Methane standards made in whole and synthetic air compared by cavity ring down spectroscopy and gas chromatography with flame ionization detection for atmospheric monitoring applications.

    Science.gov (United States)

    Flores, Edgar; Rhoderick, George C; Viallon, Joële; Moussay, Philippe; Choteau, Tiphaine; Gameson, Lyn; Guenther, Franklin R; Wielgosz, Robert Ian

    2015-03-17

    There is evidence that the use of whole air versus synthetic air can bias measurement results when analyzing atmospheric samples for methane (CH4) and carbon dioxide (CO2). Gas chromatography with flame ionization detection (GC-FID) and wavelength scanned-cavity ring down spectroscopy (WS-CRDS) were used to compare CH4 standards produced with whole air or synthetic air as the matrix over the mole fraction range of 1600-2100 nmol mol(-1). GC-FID measurements were performed by including ratios to a stable control cylinder, obtaining a typical relative standard measurement uncertainty of 0.025%. CRDS measurements were performed using the same protocol and also with no interruption for a limited time period without use of a control cylinder, obtaining relative standard uncertainties of 0.031% and 0.015%, respectively. This measurement procedure was subsequently used for an international comparison, in which three pairs of whole air standards were compared with five pairs of synthetic air standards (two each from eight different laboratories). The variation from the reference value for the whole air standards was determined to be 2.07 nmol mol(-1) (average standard deviation) and that of synthetic air standards was 1.37 nmol mol(-1) (average standard deviation). All but one standard agreed with the reference value within the stated uncertainty. No significant difference in performance was observed between standards made from synthetic air or whole air, and the accuracy of both types of standards was limited only by the ability to measure trace CH4 levels in the matrix gases used to produce the standards.

  15. Deepwater Horizon MC252 response data from the Environmental Resource Management Application (ERMA) containing Texture Classifying Neural Network Algorithm (TCNNA) from Synthetic Aperture Radar (SAR) nearshore potential oiling footprints collected from 2010-04-29 to 2010-08-11 in the Northern Gulf of Mexico (NCEI Accession 0163819)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival information package (AIP) contains Environmental Response Management Application (ERMA) GIS layers of outputs from Synthetic Aperture Radar (SAR)...

  16. Maximal Linear Embedding for Dimensionality Reduction.

    Science.gov (United States)

    Wang, Ruiping; Shan, Shiguang; Chen, Xilin; Chen, Jie; Gao, Wen

    2011-09-01

    Over the past few decades, dimensionality reduction has been widely exploited in computer vision and pattern analysis. This paper proposes a simple but effective nonlinear dimensionality reduction algorithm, named Maximal Linear Embedding (MLE). MLE learns a parametric mapping to recover a single global low-dimensional coordinate space and yields an isometric embedding for the manifold. Inspired by geometric intuition, we introduce a reasonable definition of locally linear patch, Maximal Linear Patch (MLP), which seeks to maximize the local neighborhood in which linearity holds. The input data are first decomposed into a collection of local linear models, each depicting an MLP. These local models are then aligned into a global coordinate space, which is achieved by applying MDS to some randomly selected landmarks. The proposed alignment method, called Landmarks-based Global Alignment (LGA), can efficiently produce a closed-form solution with no risk of local optima. It just involves some small-scale eigenvalue problems, while most previous aligning techniques employ time-consuming iterative optimization. Compared with traditional methods such as ISOMAP and LLE, our MLE yields an explicit modeling of the intrinsic variation modes of the observation data. Extensive experiments on both synthetic and real data indicate the effectivity and efficiency of the proposed algorithm.

  17. Quantum synthetic aperture radar

    Science.gov (United States)

    Lanzagorta, Marco; Jitrik, Oliverio; Uhlmann, Jeffrey; Venegas-Andraca, Salvador E.

    2017-05-01

    Synthetic aperture radar (SAR) uses sensor motion to generate finer spatial resolution of a given target area. In this paper we explore the theoretical potential of quantum synthetic aperture quantum radar (QSAR). We provide theoretical analysis and simulation results which suggest that QSAR can provide improved detection performance over classical SAR in the high-noise low-brightness regime.

  18. Application of feces extracts and synthetic analogues of the host marking pheromone of Anastrepha ludens significantly reduces fruit infestation by A. obliqua in tropical plum and mango backyard orchards.

    Science.gov (United States)

    Aluja, Martín; Díaz-Fleischer, F; Boller, E F; Hurter, J; Edmunds, A J F; Hagmann, L; Patrian, B; Reyes, J

    2009-12-01

    We determined the efficacy of three potential oviposition deterrents in reducing fruit infestation by Anastrepha obliqua in tropical plum and mango orchards. These were: (1) Extracts of feces of Mexican fruit fly, Anastrepha ludens, known to contain the A. ludens host marking pheromone (HMP) and (2) two fully synthetic simplified analogues of the naturally occurring compound, which we have named desmethyl A. ludens HMP (DM-HMP) and Anastrephamide. Two applications of feces extracts 2 or 3 wk before fruit color break reduced A. obliqua infestation in plums by 94.1, 75.9, and 72% when measured 8, 14, and 25 d, respectively, after application. The natural A. ludens-HMP containing extract retained its effectiveness despite considerable rainfall (112.5 mm) and high A. obliqua populations. The synthetic desmethyl HMP derivative (DM-HMP) also reduced infestation in plums by 53.3 and 58.7% when measured, 18 and 26 d, respectively, after application. Finally, applications of Anastrephamide resulted in fruit loss cut by half and an 80% reduction in numbers of fly larvae per fruit. Our results confirm previous findings indicating that there is interspecific cross-recognition of the HMP in two of the most pestiferous Anastrepha species and open the door for the development of a highly selective, biorational Anastrepha management scheme.

  19. Nullspace embeddings for outerplanar graphs

    NARCIS (Netherlands)

    L. Lovász (László); A. Schrijver (Alexander)

    2017-01-01

    textabstractWe study relations between geometric embeddings of graphs and the spectrum of associated matrices, focusing on outerplanar embeddings of graphs. For a simple connected graph G=(V,E), we define a "good" G-matrix as a V×V matrix with negative entries corresponding to adjacent nodes, zero

  20. Nullspace embeddings for outerplanar graphs

    NARCIS (Netherlands)

    L. Lovász (László); A. Schrijver (Alexander); M. Loebl (Martin); J. Nešetřil (Jaroslav); R. Thomas (Robin)

    2017-01-01

    htmlabstractWe study relations between geometric embeddings of graphs and the spectrum of associated matrices, focusing on outerplanar embeddings of graphs. For a simple connected graph G = (V, E), we define a "good” G-matrix as a V × V matrix with negative