WorldWideScience

Sample records for synthetic antifungal undecapeptides

  1. Antifungal properties of durancins isolated from Enterococcus durans A5-11 and of its synthetic fragments.

    Science.gov (United States)

    Belguesmia, Y; Choiset, Y; Rabesona, H; Baudy-Floc'h, M; Le Blay, G; Haertlé, T; Chobert, J-M

    2013-04-01

    The aim of this work was to study the antifungal properties of durancins isolated from Enterococcus durans A5-11 and of their chemically synthesized fragments. Enterococcus durans A5-11 is a lactic acid bacteria strain isolated from traditional Mongolian airag cheese. This strain inhibits the growth of several fungi including Fusarium culmorum, Penicillium roqueforti and Debaryomyces hansenii. It produces two bacteriocins: durancin A5-11a and durancin A5-11b, which have similar antimicrobial properties. The whole durancins A5-11a and A5-11b, as well as their N- and C-terminal fragments were synthesized, and their antifungal properties were studied. C-terminal fragments of both durancins showed stronger antifungal activities than other tested peptides. Treatment of D. hansenii LMSA2.11.003 strain with 2 mmol l(-1) of the synthetic peptides led to the loss of the membrane integrity and to several changes in the ultra-structure of the yeast cells. Chemically synthesized durancins and their synthetic fragments showed different antimicrobial properties from each other. N-terminal peptides show activities against both bacterial and fungal strains tested. C-terminal peptides have specific activities against tested fungal strain and do not show antibacterial activity. However, the C-terminal fragment enhances the activity of the N-terminal fragment in the whole bacteriocins against bacteria. © 2012 The Society for Applied Microbiology.

  2. Anti-Bacterial and Anti-Fungal Activity of Xanthones Obtained via Semi-Synthetic Modification of α-Mangostin from Garcinia mangostana

    Directory of Open Access Journals (Sweden)

    Srinivasan Narasimhan

    2017-02-01

    Full Text Available The microbial contamination in food packaging has been a major concern that has paved the way to search for novel, natural anti-microbial agents, such as modified α-mangostin. In the present study, twelve synthetic analogs were obtained through semi-synthetic modification of α-mangostin by Ritter reaction, reduction by palladium-carbon (Pd-C, alkylation, and acetylation. The evaluation of the anti-microbial potential of the synthetic analogs showed higher bactericidal activity than the parent molecule. The anti-microbial studies proved that I E showed high anti-bacterial activity whereas I I showed the highest anti-fungal activity. Due to their microbicidal potential, modified α-mangostin derivatives could be utilized as active anti-microbial agents in materials for the biomedical and food industry.

  3. Antifungal activity of rice straw extract on some phytopathogenic fungi

    African Journals Online (AJOL)

    user

    2012-09-04

    Sep 4, 2012 ... antifungal properties, thus it can be used as a natural alternative approach to synthetic ..... composition and antifungal activity of essential oils of seven ... Leaf Extracts on Seed-borne Fungi of African Yam Bean Seeds,.

  4. 6-O-Branched Oligo-β-glucan-Based Antifungal Glycoconjugate Vaccines.

    Science.gov (United States)

    Liao, Guochao; Zhou, Zhifang; Liao, Jun; Zu, Luning; Wu, Qiuye; Guo, Zhongwu

    2016-02-12

    With the rapid growth in fungal infections and drug-resistant fungal strains, antifungal vaccines have become an especially attractive strategy to tackle this important health problem. β-Glucans, a class of extracellular carbohydrate antigens abundantly and consistently expressed on fungal cell surfaces, are intriguing epitopes for antifungal vaccine development. β-Glucans have a conserved β-1,3-glucan backbone with sporadic β-1,3- or β-1,6-linked short glucans as branches at the 6-O-positions, and the branches may play a critical role in their immunologic functions. To study the immunologic properties of branched β-glucans and develop β-glucan-based antifungal vaccines, three branched β-glucan oligosaccharides with 6-O-linked β-1,6-tetraglucose, β-1,3-diglucose, and β-1,3-tetraglucose branches on a β-1,3-nonaglucan backbone, which mimic the structural epitopes of natural β-glucans, were synthesized and coupled with keyhole limpet hemocyanin (KLH) to form novel synthetic conjugate vaccines. These glycoconjugates were proved to elicit strong IgG antibody responses in mice. It was also discovered that the number, size, and structure of branches linked to the β-glucan backbone had a significant impact on the immunologic property. Moreover, antibodies induced by the synthetic oligosaccharide-KLH conjugates were able to recognize and bind to natural β-glucans and fungal cells. Most importantly, these conjugates elicited effective protection against systemic Candida albicans infection in mice. Thus, branched oligo-β-glucans were identified as functional epitopes for antifungal vaccine design and the corresponding protein conjugates as promising antifungal vaccine candidates.

  5. Comparing antifungal effects of Zatariamultiflora and Punicagranatum extract with Nystatin on Candida Albicans

    Directory of Open Access Journals (Sweden)

    F. Nouri

    2016-12-01

    Full Text Available Background: Despite all the progress that has been made in the manufacture of synthetic drugs, herbal drugs are increasingly taken into account. This is due to the growing belief that they have fewer side effects compared to synthetic ones. Objective: To compare the antifungal effects of extracts of Zatariamultiflora and Punicagranatum with Nystatin on Candida Albicans. Methods: This inviro trial accomplished in the school of dentistry of Tehran University in 2012. From the mouths of 25 patients with denture stomatitis were sampled using sterile swabs. Candida Albicans strains were isolated from samples and standard Candida Albicans PTCC 5027 were cultured too. Then extract of Zatariamultiflora and Punicagranatum to be obtained and antifungal of extract studied with disk diffusion method. Antifungal power of each of the extracts on the inhibition zone diameter was created in the medium. Data were analyzed by ANOVA and Friedman statistical tests. Findings: Results showed extracts of Zataria and pomegranate flowers have antifungal significant effects (P<0.001. Diameter of inhabitation zone was 17.66±./75 mm in Nystatin group and in the Zataria and pomegranate flowers extracts groups was lower (P<0.001. None of the negative control disc did inhibition zone in the medium. Conclusion: With due attention of Zataria and pomegranate flowers extracts exhibited antifungal effects on Candida Albincans.

  6. Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies.

    Science.gov (United States)

    Correa, Néstor; Covarrubias, Cristian; Rodas, Paula I; Hermosilla, Germán; Olate, Verónica R; Valdés, Cristián; Meyer, Wieland; Magne, Fabien; Tapia, Cecilia V

    2017-01-01

    Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans ( n = 4) and C. gattii ( n = 4) were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range): 13.7/(7.8-15.6) and 19.5/(15.6-31.2) μg/mL, respectively, for human melanin; 273.4/(125->500) and 367.2/(125.5->500) μg/mL for C. neoformans melanin and 125/(62.5-250) and 156.2/(62-250) μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR) showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal melanin extracts. We

  7. Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies

    Directory of Open Access Journals (Sweden)

    Néstor Correa

    2017-07-01

    Full Text Available Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an important virulence factor. To evaluate if cryptococcal and human melanins have antifungal activity against Cryptococcus species they both were assayed for their antifungal properties and physico-chemical characters. Melanin extracts from human hair and different strains of C. neoformans (n = 4 and C. gattii (n = 4 were investigated. The following minimum inhibitory concentrations were found for different melanins against C. neoformans and C. gattii were (average/range: 13.7/(7.8–15.6 and 19.5/(15.6–31.2 μg/mL, respectively, for human melanin; 273.4/(125–>500 and 367.2/(125.5–>500 μg/mL for C. neoformans melanin and 125/(62.5–250 and 156.2/(62–250 μg/mL for C. gattii melanin. Using Scanning Electron Microscopy we observed that human melanin showed a compact conformation and cryptococcal melanins exposed an amorphous conformation. Infrared spectroscopy (FTIR showed some differences in the signals related to C-C bonds of the aromatic ring of the melanin monomers. High Performance Liquid Chromatography established differences in the chromatograms of fungal melanins extracts in comparison with human and synthetic melanin, particularly in the retention time of the main compound of fungal melanin extracts and also in the presence of minor unknown compounds. On the other hand, MALDI-TOF-MS analysis showed slight differences in the spectra, specifically the presence of a minor intensity ion in synthetic and human melanin, as well as in some fungal

  8. Synthesis and antifungal activity of new bis-{gamma}-lactones analogous to avenaciolide

    Energy Technology Data Exchange (ETDEWEB)

    Magaton, Andreia da Silva; Rubinger, Mayura M. M.; Macedo Junior, Fernando C. de [Vicosa Univ., MG (Brazil). Dept. de Quimica]. E-mail: mayura@ufv.br; Zambolim, Laercio [Vicosa Univ., MG (Brazil). Dept. de Fitopatologia

    2007-03-15

    In a study of the antifungal activity of selected compounds as potentials agrochemicals, we have prepared and characterized by elemental analyses, infrared and NMR spectroscopies three new bis-{gamma}-lactones analogous to avenaciolide, where the octyl group of this natural product was replaced by heptyl, hexyl and pentyl groups. The effects on the mycelia development and conidia germination of Colletotrichum gloesporioides of these compounds and their synthetic precursors were evaluated in vitro. The title compounds were active in the tested conditions, while all the synthetic precursors were inactive. The preparation and characterization of 15 new synthetic intermediates are also described. (author)

  9. Design, synthesis of novel chitosan derivatives bearing quaternary phosphonium salts and evaluation of antifungal activity.

    Science.gov (United States)

    Tan, Wenqiang; Zhang, Jingjing; Luan, Fang; Wei, Lijie; Chen, Yuan; Dong, Fang; Li, Qing; Guo, Zhanyong

    2017-09-01

    Two novel chitosan derivatives modified with quaternary phosphonium salts were successfully synthesized, including tricyclohexylphosphonium acetyl chitosan chloride (TCPACSC) and triphenylphosphonium acetyl chitosan chloride (TPPACSC), and characterized by FTIR, 1 H NMR, and 13 C NMR spectra. The degree of substitution was also calculated by elemental analysis results. Their antifungal activities against Colletotrichum lagenarium, Watermelon fusarium, and Fusarium oxysporum were investigated in vitro using the radial growth assay, minimal inhibitory concentration, and minimum bactericidal concentration assay. The fungicidal assessment revealed that the synthesized chitosan derivatives had superior antifungal activity compared with chitosan. Especially, TPPACSC exhibited the best antifungal property with inhibitory indices of over 75% at 1.0mg/mL. The results obviously showed that quaternary phosphonium groups could effectively enhance antifungal activity of the synthesized chitosan derivatives. Meanwhile, it was also found that their antifungal activity was influenced by electron-withdrawing ability of the quaternary phosphonium salts. The synthetic strategy described here could be utilized for the development of chitosan as antifungal biomaterials. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Antifungal activity of natural and synthetic amides from Piper species

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Joaquim V.; Oliveira, Alberto de; Kato, Massuo J., E-mail: majokato@iq.usp.b [Universidade de Sao Paulo (IQ/USP), SP (Brazil). Inst. de Quimica; Raggi, Ludmila; Young, Maria C. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas

    2010-07-01

    The antifungal leaves extract from Piper scutifolium was submitted to bioactivity-guided chromatographic separation against Cladosporium cladosporioides and C. sphaerospermum yielding piperine, piperlonguminine and corcovadine as the active principles which displayed a detection limit of 1 {mu}g. Structure-activity relationships were investigated with the preparation of twelve analogs having differences in the number of unsaturations, aromatic ring substituents and in the amide moiety. Analogs having a single double-bond and no substituent in the aromatic ring displayed higher activity, while N,N,-diethyl analogs displayed higher dose-dependent activity. (author)

  11. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis

    Directory of Open Access Journals (Sweden)

    Gilbert Ian

    2011-01-01

    Full Text Available Abstract Background Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51, but other enzymes of this pathway, such as squalene synthase (SQS which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Methods Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. Results The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy-phenyl}]-quinuclidine-2-ene (WSP1267 had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a loss of cell wall integrity, (b detachment of the plasma membrane from the fungal cell wall, (c accumulation of small vesicles in the periplasmic region, (d presence of large electron-dense vacuoles and (e significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Conclusion Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new

  12. Preliminary antifungal and cytotoxic evaluation of synthetic cycloalkyl[b]thiophene derivatives with PLS-DA analysis.

    Science.gov (United States)

    Souza, Beatriz C C; De Oliveira, Tiago B; Aquino, Thiago M; de Lima, Maria C A; Pitta, Ivan R; Galdino, Suely L; Lima, Edeltrudes O; Gonçalves-Silva, Teresinha; Militão, Gardênia C G; Scotti, Luciana; Scotti, Marcus T; Mendonça, Francisco J B

    2012-06-01

    A series of 2-[(arylidene)amino]-cycloalkyl[b]thiophene-3-carbonitriles (2a-x) was synthesized by incorporation of substituted aromatic aldehydes in Gewald adducts (1a-c). The title compounds were screened for their antifungal activity against Candida krusei and Criptococcus neoformans and for their antiproliferative activity against a panel of 3 human cancer cell lines (HT29, NCI H-292 and HEP). For antiproliferative activity, the partial least squares (PLS) methodology was applied. Some of the prepared compounds exhibited promising antifungal and proliferative properties. The most active compounds for antifungal activity were cyclohexyl[b]thiophene derivatives, and for antiproliferative activity cycloheptyl[b]thiophene derivatives, especially 2-[(1H-indol-2-yl-methylidene)amino]- 5,6,7,8-tetrahydro-4H-cyclohepta[b]thiophene-3-carbonitrile (2r), which inhibited more than 97 % growth of the three cell lines. The PLS discriminant analysis (PLS-DA) applied generated good exploratory and predictive results and showed that the descriptors having shape characteristics were strongly correlated with the biological data.

  13. Antifungal Effect of Chitosan as Ca²⁺ Channel Blocker

    Directory of Open Access Journals (Sweden)

    Choon Geun Lee

    2016-06-01

    Full Text Available The aim of this study was to investigate antifungal activity of a range of different molecular weight (MW chitosan against Penicillium italicum. Our results demonstrate that the antifungal activity was dependent both the MW and concentration of the chitosan. Among a series of chitosan derived from the hydrolysis of high MW chitosan, the fractions containing various sizes of chitosan ranging from 3 to 15 glucosamine units named as chitooligomers-F2 (CO-F2 was found to show the highest antifungal activity against P. italicum. Furthermore, the effect of CO-F2 toward this fungus was significantly reduced in the presence of Ca²⁺, whereas its effect was recovered by ethylenediaminetetraacetic acid, suggesting that the CO-F2 acts via disruption of Ca²⁺ gradient required for survival of the fungus. Our results suggest that CO-F2 may serve as potential compounds to develop alternatives to synthetic fungicides for the control of the postharvest diseases.

  14. Chemical composition and antifungal activity of thyme (Thymus vulgaris essential oil

    Directory of Open Access Journals (Sweden)

    S. Farsaraei*

    2017-11-01

    Full Text Available Background and objectives: The antifungal activity of the essential oils and their constituents against some phytopathogenic fungi has been reported. Thymus vulgaris (Lamiaceae is one of the Thymus species.  A large number of studies have concerned the chemical compositions and antifungal activity of thyme’s oil. In order to reduce the use of synthetic fungicides, recently considerable attention has been given to search for naturally occurring compounds. The aim of the present work was to determine the chemical composition and antifungal activity of T. vulgaris oil cultivated in Iran. Methods: The essential oil from aerial parts of the plant at full flowering stage was subjected to hydrodistillation and chemical compounds were analyzed by GC/GC-MS. The in vitro antifungal activity against three phytopathogenic fungi (Drechslera spicifera, Fusarium oxysporum f.sp. ciceris and Macrophomina phaseolinaby of the oil was evaluated by agar dilution method. The data were subjected to ANOVA according to the SPSS 21 software. Results: Totally 45 compounds representing 96.75% of the oil were found. Thymol (36.81% and ρ-cymene (30.90% were the main components of thyme oil. According to the results, the antifungal activity of the oil increased with a rising in concentration. All of the tested fungi growth was completely inhibited on 1600 µL/L. In this study fungicidal activity was only observed on F. oxysporum and D. spicifera at concentrations higher than 800 µL/L.  Conclusion: The antifungal activity of T. vulgaris essential oil could be probably due to the high concentration of oxygenated monoterpenes (thymol and monoterpene hydrocarbons (ρ-cymene.

  15. Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies

    OpenAIRE

    Néstor Correa; Néstor Correa; Néstor Correa; Cristian Covarrubias; Paula I. Rodas; Germán Hermosilla; Verónica R. Olate; Verónica R. Olate; Cristián Valdés; Wieland Meyer; Fabien Magne; Cecilia V. Tapia; Cecilia V. Tapia

    2017-01-01

    Melanin is a pigment found in all biological kingdoms, and plays a key role in protection against ultraviolet radiation, oxidizing agents, and ionizing radiation damage. Melanin exerts an antimicrobial activity against bacteria, fungi, and parasites. We demonstrated an antifungal activity of synthetic and human melanin against Candida sp. The members of the Cryptococcus neoformans and C. gattii species complexes are capsulated yeasts, which cause cryptococcosis. For both species melanin is an...

  16. Efficient click chemistry towards fatty acids containing 1,2,3-triazole: Design and synthesis as potential antifungal drugs for Candida albicans.

    Science.gov (United States)

    Fu, Nina; Wang, Suiliang; Zhang, Yuqian; Zhang, Caixia; Yang, Dongliang; Weng, Lixing; Zhao, Baomin; Wang, Lianhui

    2017-08-18

    Candida is an important opportunistic human fungal pathogen. The cis-2-dodecenoic acid (BDSF) showing in vitro activity of against C. albicans growth, germ-tube germination and biofilm formation has been a potential inhibitor for Candida and other fungi. In this study, facile synthetic strategies toward a novel family of BDSF analogue, 1-alkyl-1H-1,2,3-triazole-4-carboxylic acids (ATCs) was developed. The straightforward synthetic method including converting the commercial available alkyl bromide to alkyl azide, consequently with a typical click chemistry method, copper(II) sulfate and sodium ascorbate as catalyst in water to furnish ATCs with mild to good yields. According to antifungal assay, 1-decyl-4,5-dihydro-1H-1,2,3-triazole-4-carboxylic acid (5d) showed antifungal capability slightly better than BDSF. The 1,2,3-triazole unit played a crucial role for the bioactivity of ATCs was also confirmed when compared with two alkyl-aromatic carboxylic acids. Given its simplicity, high antifungal activity, and wide availability of compounds with halide atoms on the end part of the alkyl chains, the method can be extended to develop more excellent ATC drugs for accomplishing the challenges in future antifungal applications. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Antifungal compounds from cyanobacteria.

    Science.gov (United States)

    Shishido, Tânia K; Humisto, Anu; Jokela, Jouni; Liu, Liwei; Wahlsten, Matti; Tamrakar, Anisha; Fewer, David P; Permi, Perttu; Andreote, Ana P D; Fiore, Marli F; Sivonen, Kaarina

    2015-04-13

    Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.

  18. Antifungal Compounds from Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Tânia K. Shishido

    2015-04-01

    Full Text Available Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.

  19. Impact of Transgenic Brassica napus Harboring the Antifungal Synthetic Chitinase (NiC Gene on Rhizosphere Microbial Diversity and Enzyme Activities

    Directory of Open Access Journals (Sweden)

    Mohammad S. Khan

    2017-07-01

    Full Text Available Transgenic Brassica napus harboring the synthetic chitinase (NiC gene exhibits broad-spectrum antifungal resistance. As the rhizosphere microorganisms play an important role in element cycling and nutrient transformation, therefore, biosafety assessment of NiC containing transgenic plants on soil ecosystem is a regulatory requirement. The current study is designed to evaluate the impact of NiC gene on the rhizosphere enzyme activities and microbial community structure. The transgenic lines with the synthetic chitinase gene (NiC showed resistance to Alternaria brassicicola, a common disease causing fungal pathogen. The rhizosphere enzyme analysis showed no significant difference in the activities of fivesoil enzymes: alkalyine phosphomonoestarase, arylsulphatase, β-glucosidase, urease and sucrase between the transgenic and non-transgenic lines of B. napus varieties, Durr-e-NIFA (DN and Abasyne-95 (AB-95. However, varietal differences were observed based on the analysis of molecular variance. Some individual enzymes were significantly different in the transgenic lines from those of non-transgenic but the results were not reproducible in the second trail and thus were considered as environmental effect. Genotypic diversity of soil microbes through 16S–23S rRNA intergenic spacer region amplification was conducted to evaluate the potential impact of the transgene. No significant diversity (4% for bacteria and 12% for fungal between soil microbes of NiC B. napus and the non-transgenic lines was found. However, significant varietal differences were observed between DN and AB-95 with 79% for bacterial and 54% for fungal diversity. We conclude that the NiC B. napus lines may not affect the microbial enzyme activities and community structure of the rhizosphere soil. Varietal differences might be responsible for minor changes in the tested parameters.

  20. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    Directory of Open Access Journals (Sweden)

    Sanjib K. Shrestha

    2014-12-01

    Full Text Available K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate, 20 to 25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30 to 80% in 15 min of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

  1. New microbial source of the antifungal allylamine “Terbinafine”

    Directory of Open Access Journals (Sweden)

    Maged S. Abdel-Kader

    2017-03-01

    Full Text Available The isolated active compound “F12” from the culture media of the Streptomyces sp. KH-F12 was identified using different spectroscopic techniques. Both 1D- and 2D-NMR as well as HRESIMS were utilized to characterize the structure of the isolated compound. ‘F12” was found to be the known systemic antifungal drug terbinafine marketed under the name “Lamisil”. Full analysis of the COSY, HSQC and HMBC enables the full assignment of proton and carbon atoms. Terbinafine is a synthetic allylamine and is reported here for the first time from natural source.

  2. Identification of a New Class of Antifungals Targeting the Synthesis of Fungal Sphingolipids

    Science.gov (United States)

    Mor, Visesato; Rella, Antonella; Farnoud, Amir M.; Singh, Ashutosh; Munshi, Mansa; Bryan, Arielle; Naseem, Shamoon; Konopka, James B.; Ojima, Iwao; Bullesbach, Erika; Ashbaugh, Alan; Linke, Michael J.; Cushion, Melanie; Collins, Margaret; Ananthula, Hari Krishna; Sallans, Larry; Desai, Pankaj B.; Wiederhold, Nathan P.; Fothergill, Annette W.; Kirkpatrick, William R.; Patterson, Thomas; Wong, Lai Hong; Sinha, Sunita; Giaever, Guri; Nislow, Corey; Flaherty, Patrick; Pan, Xuewen; Cesar, Gabriele Vargas; de Melo Tavares, Patricia; Frases, Susana; Miranda, Kildare; Rodrigues, Marcio L.; Luberto, Chiara; Nimrichter, Leonardo

    2015-01-01

    ABSTRACT Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N′-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N′-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. PMID:26106079

  3. Antifungal resistance in mucorales.

    Science.gov (United States)

    Dannaoui, E

    2017-11-01

    The order Mucorales, which includes the agents of mucormycosis, comprises a large number of species. These fungi are characterised by high-level resistance to most currently available antifungal drugs. Standardised antifungal susceptibility testing methods are now available, allowing a better understanding of the in vitro activity of antifungal drugs against members of Mucorales. Such tests have made apparent that antifungal susceptibility within this group may be species-specific. Experimental animal models of mucormycosis have also been developed and are of great importance in bridging the gap between in vitro results and clinical trials. Amphotericin B, posaconazole and isavuconazole are currently the most active agents against Mucorales; however, their activity remains suboptimal and new therapeutic strategies are needed. Combination therapy could be a promising approach to overcome resistance, but further studies are required to confirm its benefits and safety for patients. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  4. The Elements of Antifungal Drug Discovery

    DEFF Research Database (Denmark)

    Kjellerup, Lasse

    In this PhD thesis I will explore the development of antifungal drugs. Fungal infections are estimated to cause the death of 1.5 million patients each year. There is currently a need for new antifungal drugs as the existing drugs are hampered by lack of broad-spectrum antifungal activity, resista...

  5. Antifungal potential of Bacillus vallismortis R2 against different phytopathogenic fungi

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, P.K.; Kaur, J.; Saini, H.S.

    2015-07-01

    The cash crops grown in an agro-climatic region are prone to infection by various fungal pathogens. The use of chemical fungicides over the years has resulted in emergence of resistant fungal strains, thereby necessitating the development of effective and environmental friendly alternatives. The natural antagonistic interactions among different microbial populations have been exploited as an eco-friendly approach for controlling fungal pathogens resistant to synthetic chemicals. Morphologically distinct bacterial cultures (150), isolated from rhizospheric soils of wheat, rice, onion and tomato plants were screened for their antifungal potential against seven phytopathogenic fungi prevalent in the State of Punjab (India). The bacterial isolate R2, identified as Bacillus vallismortis, supported more than 50% inhibition of different phytopathogenic fungi (Alternaria alternata, Rhizoctonia oryzae, Fusarium oxysporum, Fusarium moniliforme, Colletotrichum sp, Helminthosporium sp and Magnaporthe grisea) in dual culture plate assay. The thin layer chromatography based bio-autography of acid-precipitated biomolecules (APB) indicated the presence of more than one type of antifungal molecule, as evidenced from zones of inhibition against the respective fungal pathogen. The initial analytical studies indicated the presence of surfactin, iturin A and fengycin-like compounds in APB. The antifungal activity of whole cells and APB of isolate R2 was evaluated by light and scanning electron microscopy. The wheat grains treated with APB and exposed to spores of A. alternata showed resistance to the development of black point disease, thereby indicating the potential application of R2 and its biomolecules at field scale level. (Author)

  6. Antifungal stewardship considerations for adults and pediatrics.

    Science.gov (United States)

    Hamdy, Rana F; Zaoutis, Theoklis E; Seo, Susan K

    2017-08-18

    Antifungal stewardship refers to coordinated interventions to monitor and direct the appropriate use of antifungal agents in order to achieve the best clinical outcomes and minimize selective pressure and adverse events. Antifungal utilization has steadily risen over time in concert with the increase in number of immunocompromised adults and children at risk for invasive fungal infections (IFI). Challenges in diagnosing IFI often lead to delays in treatment and poorer outcomes. There are also emerging data linking prior antifungal exposure and suboptimal dosing to the emergence of antifungal resistance, particularly for Candida. Antimicrobial stewardship programs can take a multi-pronged bundle approach to ensure suitable prescribing of antifungals via post-prescription review and feedback and/or prior authorization. Institutional guidelines can also be developed to guide diagnostic testing in at-risk populations; appropriate choice, dose, and duration of antifungal agent; therapeutic drug monitoring; and opportunities for de-escalation and intravenous-to-oral conversion.

  7. Candida Species Biofilms’ Antifungal Resistance

    Science.gov (United States)

    Silva, Sónia; Rodrigues, Célia F.; Araújo, Daniela; Rodrigues, Maria Elisa; Henriques, Mariana

    2017-01-01

    Candida infections (candidiasis) are the most prevalent opportunistic fungal infection on humans and, as such, a major public health problem. In recent decades, candidiasis has been associated to Candida species other than Candida albicans. Moreover, biofilms have been considered the most prevalent growth form of Candida cells and a strong causative agent of the intensification of antifungal resistance. As yet, no specific resistance factor has been identified as the sole responsible for the increased recalcitrance to antifungal agents exhibited by biofilms. Instead, biofilm antifungal resistance is a complex multifactorial phenomenon, which still remains to be fully elucidated and understood. The different mechanisms, which may be responsible for the intrinsic resistance of Candida species biofilms, include the high density of cells within the biofilm, the growth and nutrient limitation, the effects of the biofilm matrix, the presence of persister cells, the antifungal resistance gene expression and the increase of sterols on the membrane of biofilm cells. Thus, this review intends to provide information on the recent advances about Candida species biofilm antifungal resistance and its implication on intensification of the candidiasis. PMID:29371527

  8. Topical antifungal agents: an update.

    Science.gov (United States)

    Diehl, K B

    1996-10-01

    So many topical antifungal agents have been introduced that it has become very difficult to select the proper agent for a given infection. Nonspecific agents have been available for many years, and they are still effective in many situations. These agents include Whitfield's ointment, Castellani paint, gentian violet, potassium permanganate, undecylenic acid and selenium sulfide. Specific antifungal agents include, among others, the polyenes (nystatin, amphotericin B), the imidazoles (metronidazole, clotrimazole) and the allylamines (terbinafine, naftifine). Although the choice of an antifungal agent should be based on an accurate diagnosis, many clinicians believe that topical miconazole is a relatively effective agent for the treatment of most mycotic infections. Terbinafine and other newer drugs have primary fungicidal effects. Compared with older antifungal agents, these newer drugs can be used in lower concentrations and shorter therapeutic courses. Studies are needed to evaluate the clinical efficacies and cost advantages of both newer and traditional agents.

  9. Antifungal pharmacodynamics: Latin America's perspective

    Directory of Open Access Journals (Sweden)

    Javier M. Gonzalez

    2017-01-01

    Full Text Available The current increment of invasive fungal infections and the availability of new broad-spectrum antifungal agents has increased the use of these agents by non-expert practitioners, without an impact on mortality. To improve efficacy while minimizing prescription errors and to reduce the high monetary cost to the health systems, the principles of pharmacokinetics (PK and pharmacodynamics (PD are necessary. A systematic review of the PD of antifungals agents was performed aiming at the practicing physician without expertise in this field. The initial section of this review focuses on the general concepts of antimicrobial PD. In vitro studies, fungal susceptibility and antifungal serum concentrations are related with different doses and dosing schedules, determining the PD indices and the magnitude required to obtain a specific outcome. Herein the PD of the most used antifungal drug classes in Latin America (polyenes, azoles, and echinocandins is discussed.

  10. Antifungal Resistance, Metabolic Routes as Drug Targets, and New Antifungal Agents: An Overview about Endemic Dimorphic Fungi

    Directory of Open Access Journals (Sweden)

    Juliana Alves Parente-Rocha

    2017-01-01

    Full Text Available Diseases caused by fungi can occur in healthy people, but immunocompromised patients are the major risk group for invasive fungal infections. Cases of fungal resistance and the difficulty of treatment make fungal infections a public health problem. This review explores mechanisms used by fungi to promote fungal resistance, such as the mutation or overexpression of drug targets, efflux and degradation systems, and pleiotropic drug responses. Alternative novel drug targets have been investigated; these include metabolic routes used by fungi during infection, such as trehalose and amino acid metabolism and mitochondrial proteins. An overview of new antifungal agents, including nanostructured antifungals, as well as of repositioning approaches is discussed. Studies focusing on the development of vaccines against antifungal diseases have increased in recent years, as these strategies can be applied in combination with antifungal therapy to prevent posttreatment sequelae. Studies focused on the development of a pan-fungal vaccine and antifungal drugs can improve the treatment of immunocompromised patients and reduce treatment costs.

  11. Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex.

    Science.gov (United States)

    Dananjaya, S H S; Erandani, W K C U; Kim, Cheol-Hee; Nikapitiya, Chamilani; Lee, Jehee; De Zoysa, Mahanama

    2017-12-01

    Though the metal nanoparticles (NPs) have been shown favorable results against fungal diseases, erratic environmental toxicity of NPs have raised serious concerns against their applications. Hence, it is vital to modify antifungal compounds into safe substitutes over synthetic chemicals. In this study, antifungal effects of chitosan nanoparticles (CNPs) and chitosan silver nanocomposites (CAgNCs) were compared against Fusarium oxysporum species complex. CNPs and CAgNCs were synthesized, characterized and compared based on the transmission electron microscope, X-ray diffraction, UV-vis absorbance spectra, particle size distribution, zeta potential and thermal stability analysis. Ultra-structural analysis on mycelium membrane of treated F. oxysporum showed that CNPs and CAgNCs could induce a pronounced membrane damage and disruption of the mycelium surface, increase the membrane permeability, and even cell disintegration. CAgNCs showed a significantly higher radial growth inhibition than CNPs in all the tested concentrations. Both CNPs and CAgNCs were not only effective in reducing the fungal growth, but also caused morphological and ultrastructural changes in the pathogen, thereby suggesting its usage as an antifungal dispersion system to control F. oxysporum. Additionally, CNPs and CAgNCs therapy reduced the F. oxysporum infection in zebrafish. Data demonstrates biologically active CNPs and CAgNCs are promising antifungal agents against F. oxysporum. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Molecular basis of antifungal drug resistance in yeasts

    DEFF Research Database (Denmark)

    Morio, Florent; Jensen, Rasmus Hare; Le Pape, Patrice

    2017-01-01

    Besides inherent differences in in vitro susceptibilities, clinically-relevant yeast species may acquire resistance upon exposure to most antifungal drugs used in the clinic. In recent years, major fundamental research studies have been conducted to improve our understanding of the molecular basis...... of antifungal resistance. This topic is of major interest as antifungal resistance in yeast is clearly evolving and is correlated with clinical failure. This minireview is an overview of the most recent findings about key molecular mechanisms evolving in human pathogenic yeasts, particularly Candida spp......., in the context of antifungal drug resistance. Also included are the methods currently available for in vitro antifungal susceptibility testing and for molecular detection of mutations associated with resistance. Finally, the genetic drivers of antifungal resistance are discussed in light of the spectra...

  13. Antifungal Edible Coatings for Fresh Citrus Fruit: A Review

    Directory of Open Access Journals (Sweden)

    Lluís Palou

    2015-12-01

    Full Text Available According to their origin, major postharvest losses of citrus fruit are caused by weight loss, fungal diseases, physiological disorders, and quarantine pests. Cold storage and postharvest treatments with conventional chemical fungicides, synthetic waxes, or combinations of them are commonly used to minimize postharvest losses. However, the repeated application of these treatments has led to important problems such as health and environmental issues associated with fungicide residues or waxes containing ammoniacal compounds, or the proliferation of resistant pathogenic fungal strains. There is, therefore, an increasing need to find non-polluting alternatives to be used as part of integrated disease management (IDM programs for preservation of fresh citrus fruit. Among them, the development of novel natural edible films and coatings with antimicrobial properties is a technological challenge for the industry and a very active research field worldwide. Chitosan and other edible coatings formulated by adding antifungal agents to composite emulsions based on polysaccharides or proteins and lipids are reviewed in this article. The most important antifungal ingredients are selected for their ability to control major citrus postharvest diseases like green and blue molds, caused by Penicillium digitatum and Penicillium italicum, respectively, and include low-toxicity or natural chemicals such as food additives, generally recognized as safe (GRAS compounds, plant extracts, or essential oils, and biological control agents such as some antagonistic strains of yeasts or bacteria.

  14. Synthesis and preliminary evaluation of N-acylhydrazone compounds as antibacterial and antifungal agents

    International Nuclear Information System (INIS)

    Cachiba, Thomas Haruo; Carvalho, Bruno Demartini; Carvalho, Diogo Teixeira; Cusinato, Marina; Prado, Clara Gaviao; Dias, Amanda Latercia Tranches

    2012-01-01

    We describe the synthesis and evaluation of N-acylhydrazone compounds bearing different electron-donating groups in one of its aromatic rings, obtained using a four-step synthetic route. IC 50 values against pathogenic fungi and bacteria were determined by serial microdilution. Compounds showed low activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. By contrast, a derivative with a meta-oriented electron-donating group showed significant activity (IC50) against Candida albicans (17 μM), C. krusei (34 μM) and C. tropicalis (17 μM). Results suggest this is a promising lead-compound for synthesis of potent antifungal agents. (author)

  15. Effect of agitation rate on the production of antifungal metabolites by Streptomyces hygroscopicus in a lab-scale bioreactor

    Directory of Open Access Journals (Sweden)

    Mitrović Ivana Ž.

    2017-01-01

    Full Text Available The application of antifungal compounds produced by microorganisms in the control of plant diseases caused by phytopathogenic fungi is a promising alternative to synthetic pesticides. Among phytopathogenic fungi, Alternaria alternata and Fusarium avenaceum are significant pathogens responsible for the storage rot of apple fruits. During storage, transport and marketing A. alternata and F. avenaceum can cause significant losses of apple fruits and their control is of great importance for the producers and consumers. In the present study, the effects of agitation rate on the production of antifungal methabolite( s by Streptomyces hygroscopicus in a 3-L lab-scale bioreactor (Biostat® Aplus, Sartorius AG, Germany against two isolates of A. alternata and two isolates of F. avenaceum were investigated. The cultivation of S. hygroscopicus was carried out at 27°C with agitation rates of 100 rpm and 200 rpm during 7 days. The aim was to analyze the bioprocess parameters of biofungicide production in a medium containing glycerol as a carbon source, and examine the effect of agitation rate on the production of antifungal metabolite(s. The in vitro antifungal activity of the produced metabolites against fungi from the genera Alternaria and Fusarium grown on potato dextrose agar medium was determined every 24 h using wells technique. In the experiments conducted in the bioreactor at different stirring speeds, it was found that the maximum production of antifungal metabolites occurred after 96 hours of cultivation. A higher consumption of nutrients and a larger inhibition zone diameter was registered in the experiment with an agitation rate of 200 rpm. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR-31002

  16. Antifungal activity of synthetic di(hetero)arylamines based on the benzo[b]thiophene moiety.

    Science.gov (United States)

    Pinto, Eugénia; Queiroz, Maria-João R P; Vale-Silva, Luís A; Oliveira, João F; Begouin, Agathe; Begouin, Jeanne-Marie; Kirsch, Gilbert

    2008-09-01

    The antifungal activity of several di(hetero)arylamine derivatives of the benzo[b]thiophene system was evaluated against clinically relevant Candida, Aspergillus, and dermatophyte species by a broth macrodilution test based on CLSI (formerly NCCLS) guidelines. The most active compound showed a broad spectrum of activity (against all tested fungal strains, including fluconazole-resistant fungi), with particularly low MICs for dermatophytes. Results from the inhibition of the dimorphic transition in Candida albicans and flow cytometry studies further confirmed their biological activity. With this study it was possible to establish some structure-activity relationships (SARs). The hydroxy groups proved to be essential for the activity in the aryl derivatives. Furthermore, the spectrum of activity in the pyridine derivatives was broadened by the absence of the ester group on position 2 of the benzo[b]thiophene system.

  17. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products.

    Science.gov (United States)

    Ryan, Liam A M; Zannini, Emanuele; Dal Bello, Fabio; Pawlowska, Agata; Koehler, Peter; Arendt, Elke K

    2011-04-29

    Mould spoilage is the main cause of substantial economic loss in bakery industry and might also cause public health problems due to the production of mycotoxins. The reduction of mould growth in bakery products is thus of crucial importance and there is great interest to develop safe and efficient strategies for this purpose. In this study Lactobacillus amylovorus DSM19280 has been shown to produce a wide spectrum of antifungal compounds active against common bread spoilage fungi. Among the indicator moulds, Aspergillus fumigatus and Fusarium culmorum were the most sensitive organisms. Several antifungal compounds were found to be present in synthetic medium inoculated with L. amylovorus DSM19280 strain, some of them being reported here for the first time. Wheat doughs fermented with L. amylovorus DSM19280 had good rheological properties and the breads thereof were of high quality as shown by rheofermentometer and texture analyser measurements. The results were compared with those obtained with a control non-antifungal L. amylovorus DSM20531(T) strain, a non-acidified and a chemically acidified dough. The quality of sourdough and bread fermented with L. amylovorus DSM 19280 was comparable to that obtained by using L. amylovorus DSM20531 (T). Additionally, breads were evaluated for the ability to retard the growth of Fusarium culmorum FST 4.05, Aspergillus niger FST4.21, Penicillium expansum FST 4.22, Penicillium roqueforti FST 4.11 and fungal flora from the bakery environment. The biological preservation of bread with L. amylovorus DSM 19280 was also compared to the most commonly used antifungal agent Calcium propionate. Breads containing sourdough fermented with L. amylovorus DSM 19280 were more effective in extending the shelf life of bread than the calcium propionate. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Protective antifungal activity of essential oils extracted from Buddleja perfoliata and Pelargonium graveolens against fungi isolated from stored grains.

    Science.gov (United States)

    Juárez, Z N; Bach, H; Sánchez-Arreola, E; Bach, H; Hernández, L R

    2016-05-01

    The chemical composition and antifungal activity of essential oils extracted from Buddleja perfoliata and Pelargonium graveolens were analysed to assess their efficacy as a potential alternative to synthetic chemical fungicides to protect stored grain. Essential oils were obtained by hydrodistillation, while GC-MS were used to characterize the components of theses oils. The main components identified from the essential oil of B. perfoliata were cubenol, eudesmol, germacrene D-4-ol and cis-verbenol; whereas (-)-aristolene, β-citronellol and geraniol, were identified in P. graveolens. These essential oils were tested against a panel of fungal strains isolated from stored grains. Toxicity of the essential oils was assessed using two models represented by human-derived macrophages and the brine shrimp assay. Moreover, inflammatory response of the oils was assessed by measuring secretion of the pro-inflammatory cytokines IL-6 and TNF-α using a human-derived macrophage cell line. Results show potent antifungal activity against a collection of fungi, with minimal inhibitory concentrations ranging from 0·3 to 50 μg ml(-1) for both plants. A moderated cytotoxicity was observed, but no inflammatory responses. These oils can be used as an alternative for synthetic chemical fungicides used to protect stored grains. Synthetic chemical fungicides are used to protect stored grains, but their broad use raises concerns about effects on the environment and human health. The impact of the present report is that the use of essential oils is an eco-friendly alternative for fungal control in postharvest grains with a low impact to the environment. © 2016 The Society for Applied Microbiology.

  19. Cuticular antifungals in spiders: density- and condition dependence.

    Directory of Open Access Journals (Sweden)

    Daniel González-Tokman

    Full Text Available Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities. For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.

  20. Cuticular antifungals in spiders: density- and condition dependence.

    Science.gov (United States)

    González-Tokman, Daniel; Ruch, Jasmin; Pulpitel, Tamara; Ponton, Fleur

    2014-01-01

    Animals living in groups face a high risk of disease contagion. In many arthropod species, cuticular antimicrobials constitute the first protective barrier that prevents infections. Here we report that group-living spiders produce cuticular chemicals which inhibit fungal growth. Given that cuticular antifungals may be costly to produce, we explored whether they can be modulated according to the risk of contagion (i.e. under high densities). For this purpose, we quantified cuticular antifungal activity in the subsocial crab spider Diaea ergandros in both natural nests and experimentally manipulated nests of varying density. We quantified the body-condition of spiders to test whether antifungal activity is condition dependent, as well as the effect of spider density on body-condition. We predicted cuticular antifungal activity to increase and body-condition to decrease with high spider densities, and that antifungal activity would be inversely related to body-condition. Contrary to our predictions, antifungal activity was neither density- nor condition-dependent. However, body-condition decreased with density in natural nests, but increased in experimental nests. We suggest that pathogen pressure is so important in nature that it maintains high levels of cuticular antifungal activity in spiders, impacting negatively on individual energetic condition. Future studies should identify the chemical structure of the isolated antifungal compounds in order to understand the physiological basis of a trade-off between disease prevention and energetic condition caused by group living, and its consequences in the evolution of sociality in spiders.

  1. In vitro antifungal susceptibility to six antifungal agents of 229 Candida isolates from patients with diabetes mellitus.

    Science.gov (United States)

    Manfredi, M; McCullough, M J; Polonelli, L; Conti, S; Al-Karaawi, Z M; Vescovi, P; Porter, S R

    2006-06-01

    The most common antifungal drugs in current clinical use for the treatment of oral candidosis are polyenes and azoles, mainly used topically. Poor glycaemic control in association with other local factors, such as the presence of oral dental prostheses, salivary pH, salivary flow rate and tobacco habits, may lead to the development of oral candidosis. Topical antifungal agents are frequently used to prevent the development of candidal infections in patients with poor metabolic control, particularly in the elderly wearing dentures. The aim of this study was to assess the antifungal susceptibility of Candida isolates to six antifungal agents using a commercially available kit, Fungitest. The isolated were collected from patients affected by diabetes mellitus from two different geographic localities (London, UK, and Parma, Italy) and from a group of healthy non-diabetic subjects. No differences in antifungal susceptibility to the six agents tested were observed between Candida isolates from diabetic and non-diabetic subjects. However, differences were observed between the two geographically different diabetes mellitus populations. Oral yeast isolates from diabetes mellitus patients in the UK more often displayed resistance or intermediate resistance to fluconazole (P=0.02), miconazole (Pdiabetes mellitus patients in Italy. In addition, more C. albicans isolates were found in diabetic and non-diabetic subjects that were susceptible to fluconazole (P=0.0008 and P=0.01, respectively) than non-albicans isolates. The difference in the antifungal resistance of isolates from the two populations of diabetes mellitus patients may be related to differences in the therapeutic management of candidal infections between the two centres.

  2. Synthesis and antifungal activity of halogenated aromatic bis-γ-lactones analogous to avenaciolide

    Directory of Open Access Journals (Sweden)

    Pedro A. Castelo-Branco

    2012-01-01

    Full Text Available Here we describe the total syntheses and characterization by elemental analyses, infrared and NMR spectroscopy of three new compounds analogous to avenaciolide, a bis-γ-lactone isolated from Aspergillus avenaceus that possesses antifungal activity, where the octyl group of the natural product was replaced by aromatic groups containing chlorine and fluorine atoms. The effects of the avenaciolide, the novel compounds and their synthetic precursors on mycelia development and conidia germination of Colletotrichum gloeosporioides and Fusarium solani were evaluated in vitro. The title compounds were almost as active as avenaciolide. The absolute structures of the chlorinated analogs were determined by X-ray diffraction analysis.

  3. Common drug-drug interactions in antifungal treatments for superficial fungal infections.

    Science.gov (United States)

    Gupta, Aditya K; Versteeg, Sarah G; Shear, Neil H

    2018-04-01

    Antifungal agents can be co-administered alongside several other medications for a variety of reasons such as the presence of comorbidities. Pharmacodynamic interactions such as synergistic and antagonistic interactions could be the result of co-administered medications. Pharmacokinetic interactions could also transpire through the inhibition of metabolizing enzymes and drug transport systems, altering the absorption, metabolism and excretion of co-administered medications. Both pharmacodynamic and pharmacokinetic interactions can result in hospitalization due to serious adverse effects associated with antifungal agents, lower therapeutic doses required to achieve desired antifungal activity, and prevent antifungal resistance. Areas covered: The objective of this review is to summarize pharmacodynamic and pharmacokinetic interactions associated with common antifungal agents used to treat superficial fungal infections. Pharmacodynamic and pharmacokinetic interactions that impact the therapeutic effects of antifungal agents and drugs that are influenced by the presence of antifungal agents was the context to which these antifungal agents were addressed. Expert opinion: The potential for drug-drug interactions is minimal for topical antifungals as opposed to oral antifungals as they have minimal exposure to other co-administered medications. Developing non-lipophilic antifungals that have unique metabolizing pathways and are topical applied are suggested properties that could help limit drug-drug interactions associated with future treatments.

  4. Antifungal activity of medicinal plant extracts; preliminary screening studies.

    Science.gov (United States)

    Webster, Duncan; Taschereau, Pierre; Belland, René J; Sand, Crystal; Rennie, Robert P

    2008-01-04

    In the setting of HIV and organ transplantation, opportunistic fungal infections have become a common cause of morbidity and mortality. Thus antifungal therapy is playing a greater role in health care. Traditional plants are a valuable source of novel antifungals. To assess in vitro antifungal activity of aqueous plant extracts. The minimum inhibitory concentrations were determined for each extract in the setting of human pathogenic fungal isolates. Plants were harvested and identification verified. Aqueous extracts were obtained and antifungal susceptibilities determined using serial dilutional extracts with a standardized microdilution broth methodology. Twenty-three fungal isolates were cultured and exposed to the plant extracts. Five known antifungals were used as positive controls. Results were read at 48 and 72 h. Of the 14 plants analyzed, Fragaria virginiana Duchesne, Epilobium angustifolium L. and Potentilla simplex Michx. demonstrated strong antifungal potential overall. Fragaria virginiana had some degree of activity against all of the fungal pathogens. Alnus viridis DC., Betula alleghaniensis Britt. and Solidago gigantea Ait. also demonstrated a significant degree of activity against many of the yeast isolates. Fragaria virginiana, Epilobium angustifolium and Potentilla simplex demonstrate promising antifungal potential.

  5. Potato dextrose agar antifungal susceptibility testing for yeasts and molds: evaluation of phosphate effect on antifungal activity of CMT-3.

    Science.gov (United States)

    Liu, Yu; Tortora, George; Ryan, Maria E; Lee, Hsi-Ming; Golub, Lorne M

    2002-05-01

    The broth macrodilution method (BMM) for antifungal susceptibility testing, approved by the National Committee for Clinical Laboratory Standards (NCCLS), was found to have deficiencies in testing of the antifungal activity of a new type of antifungal agent, a nonantibacterial chemically modified tetracycline (CMT-3). The high content of phosphate in the medium was found to greatly increase the MICs of CMT-3. To avoid the interference of phosphate in the test, a new method using potato dextrose agar (PDA) as a culture medium was developed. Eight strains of fungi, including five American Type Culture Collection strains and three clinical isolates, were used to determine the MICs of amphotericin B and itraconazole with both the BMM and the PDA methods. The MICs of the two antifungal agents determined with the PDA method showed 99% agreement with those determined with the BMM method within 1 log(2) dilution. Similarly, the overall reproducibility of the MICs with the PDA method was above 97%. Three other antifungal agents, fluconazole, ketoconazole, and CMT-3, were also tested in parallel against yeasts and molds with both the BMM and the PDA methods. The MICs of fluconazole and ketoconazole determined with the PDA method showed 100% agreement within 1 log(2) dilution of those obtained with the BMM method. However, the MICs of CMT-3 determined with the BMM method were as high as 128 times those determined with the PDA method. The effect of phosphate on the antifungal activity of CMT-3 was evaluated by adding Na2HPO4 to PDA in the new method. It was found that the MIC of CMT-3 against a Penicillium sp. increased from 0.5 microg/ml (control) to 2.0 microg/ml when the added phosphate was used at a concentration of 0.8 mg/ml, indicating a strong interference of Na2HPO4 with the antifungal activity of CMT-3. Except for fluconazole, all the other antifungal agents demonstrated clear end points among the yeasts and molds tested. Nevertheless, with its high reproducibility

  6. Penetratin and derivatives acting as antifungal agents

    NARCIS (Netherlands)

    Masman, Marcelo F.; Rodriguez, Ana M.; Raimondi, Marcela; Zacchino, Susana A.; Luiten, Paul G. M.; Somlai, Csaba; Kortvelyesi, Tamas; Penke, Botond; Enriz, Ricardo D.

    The synthesis, in vitro evaluation, and conformational study of RQIKTWFQNRRMKWKK-NH(2) (penetratin) and related derivatives acting as antifungal agents are reported. Penetratin and some of its derivatives displayed antifungal activity against the human opportunistic pathogenic standardized ATCC

  7. Antifungal effect and action mechanism of antimicrobial peptide polybia-CP.

    Science.gov (United States)

    Wang, Kairong; Jia, Fengjing; Dang, Wen; Zhao, Yanyan; Zhu, Ranran; Sun, Mengyang; Qiu, Shuai; An, Xiaoping; Ma, Zelin; Zhu, Yuanyuan; Yan, Jiexi; Kong, Ziqing; Yan, Wenjin; Wang, Rui

    2016-01-01

    The incidence of life-threatening invasive fungal infections increased significantly in recent years. However, the antifungal therapeutic options are very limited. Antimicrobial peptides are a class of potential lead chemical for the development of novel antifungal agents. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and determined its antifungal effects against a series of Candidian species. Our results showed that polybia-CP has potent antifungal activity and fungicidal activity against the tested fungal cells with a proposed membrane-active action mode. In addition, polybia-CP could induce the increase of cellular reactive oxygen species production, which would attribute to its antifungal activity. In conclusion, the present study suggests that polybia-CP has potential as an antifungal agent or may offer a new strategy for antifungal therapeutic option. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.

  8. INVESTIGATION OF ANTIFUNGAL ACTIVITY OF QUINOLINIUM DERIVATIVES

    Directory of Open Access Journals (Sweden)

    G. A. Alexandrova

    2013-01-01

    Full Text Available Abstract. Antifungal activity (Candida albicans, Candida krusei of some substituted quinolinium derivatives has been investigated. It was established that the most perspective compound for detail investigation of antifungal activity by labeled biomarkers method was N-phenylbenzoquinaldinium tetrafluoroborate.

  9. Antifungal Effect of (+-Pinoresinol Isolated from Sambucus williamsii

    Directory of Open Access Journals (Sweden)

    Bomi Hwang

    2010-05-01

    Full Text Available In this study, we investigated the antifungal activity and mechanism of action of (+-pinoresinol, a biphenolic compound isolated from the herb Sambucus williamsii,used in traditional medicine. (+-Pinoresinol displays potent antifungal properties without hemolytic effects on human erythrocytes. To understand the antifungal mechanism of (+-pinoresinol, we conducted fluorescence experiments on the human pathogen Candida albicans. Fluorescence analysis using 1,6-diphenyl-1,3,5-hexatriene (DPH indicated that the (+-pinoresinol caused damage to the fungal plasma membrane. This result was confirmed by using rhodamine-labeled giant unilamellar vesicle (GUV experiments. Therefore, the present study indicates that (+-pinoresinol possesses fungicidal activities and therapeutic potential as an antifungal agent for the treatment of fungal infectious diseases in humans.

  10. A Novel Variant of Narrow-Spectrum Antifungal Bacterial Lipopeptides That Strongly Inhibit Ganoderma boninense.

    Science.gov (United States)

    Pramudito, Theodorus Eko; Agustina, Delia; Nguyen, Thi Kim Ngan; Suwanto, Antonius

    2018-03-01

    Bacterial antifungal cyclic lipopeptides (ACLs) have become a promising alternative to synthetic fungicide to control pathogenic fungi. Bacillus sp. is known to produce three families of ACL, namely iturin, surfactin, and fengycin. In this paper, we characterized the ACLs produced by B. methylotrophicus HC51 (referred as HC51) mainly regarding its composition and effectivity against fungal plant pathogen. HC51 culture was tested against various pathogenic fungi and the ACLs were extracted and analyzed using liquid chromatography-electrospray ionization mass spectrometry. HC51 showed strong antifungal activity against the plant pathogens Ganoderma sp. and Fusarium sp. Cell-free methanol extract of HC51 contains iturin A and various variants of fengycin. C16 fengycin A was present in four fractions which indicates it as a major component of ACL from HC51. Five variants of fengycin were detected, four of which had been previously reported. We found a novel C17 fengycin F that is characterized by a substitution of L-ornithine into lysine. Considering that L-ornithine is an important building block of fengycin, this substitution suggests the possibility of an alternative pathway for fengycin biosynthesis.

  11. Antifungal Poly(lactic acid Films Containing Thymol and Carvone

    Directory of Open Access Journals (Sweden)

    Boonruang Kanchana

    2016-01-01

    Full Text Available The goal of this study was to develop antifungal poly(lactic acid films for food packaging applications. The antifungal compounds, thymol and R-(--carvone were incorporated into poly(lactic acid (PLA-based polymer at 10, 15 and 20% by weight. Film converting process consists of three steps including melt blending, sheet extrusion and biaxial stretching. The incorporation of antifungal compounds into the polymer matrix resulted in decreased Tg and Tm, increased gas permeabilility, reduced tensile strength and increased elongation at break of the antifungal PLA films.

  12. ANTIFUNGAL SUSCEPTIBILITY TESTING: CURRENT ROLE FROM THE CLINICAL LABORATORY PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Brunella Posteraro

    2014-04-01

    Full Text Available Despite availability of many antifungal agents, antifungal clinical resistance occurs, perhaps as a result of an infecting organism found to be resistant in vitro to one or more antifungals tested. Thus, antifungal susceptibility testing (AFST results, if timely generated by the clinical microbiology and communicated to clinicians, can aid them in the therapeutic decision making, especially for difficult-to-treat invasive candidiasis and aspergillosis. Although recently refined AFST methods are commercially available to allow a close antifungal resistance surveillance in many clinical setting, novel assays, relying on short-time antifungal drug exposure of fungal isolates, are upcoming tools for AFST. Based on emerging technologies such as flow cytometry, MALDI-TOF mass spectrometry, and isothermal microcalorimetry, these assays could provide a reliable means for quicker and sensitive assessment of AFST.

  13. Synthetic Aziridines in Medicinal Chemistry: A Mini-Review.

    Science.gov (United States)

    Singh, Girija S

    2016-01-01

    Azaheterocyclic compounds are well-known to have diverse types of biological activity. Among them, azacyclopropanes, commonly referred as aziridines, occupy a prominent place in synthetic organic and medicinal chemistry due to its occurrence in natural resources, complexity involved in synthesis due to ring-strain, building blocks in organic synthesis, and its biological properties. Several novel compounds containing aziridine ring have been designed and synthesized recently by medicinal chemists for evaluating their biological profile. A number of compounds are reported as cysteine protease inhibitors, antibacterial, antifungal, anticancer, antileishmanial, and antimalarial agents. This review article summarizes the biological activity of such compounds. The preparation of such compounds is also described.

  14. Nosocomial Candidiasis: Antifungal Stewardship and the Importance of Rapid Diagnosis.

    Science.gov (United States)

    Pfaller, Michael A; Castanheira, Mariana

    2016-01-01

    Candidemia and other forms of candidiasis are associated with considerable excess mortality and costs. Despite the addition of several new antifungal agents with improved spectrum and potency, the frequency of Candida infection and associated mortality have not decreased in the past two decades. The lack of rapid and sensitive diagnostic tests has led to considerable overuse of antifungal agents resulting in increased costs, selection pressure for resistance, unnecessary drug toxicity, and adverse drug interactions. Both the lack of timely diagnostic tests and emergence of antifungal resistance pose considerable problems for antifungal stewardship. Whereas antifungal stewardship with a focus on nosocomial candidiasis should be able to improve the administration of antifungal therapy in terms of drug selection, proper dose and duration, source control and de-escalation therapy, an important parameter, timeliness of antifungal therapy, remains a victim of slow and insensitive diagnostic tests. Fortunately, new proteomic and molecular diagnostic tools are improving the time to species identification and detection. In this review we will describe the potential impact that rapid diagnostic testing and antifungal stewardship can have on the management of nosocomial candidiasis. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. EFFECT OF EXTRACTION METHODS ON ANTIFUNGAL ACTIVITY OF SEA CUCUMBER (Stichopus japonicus

    Directory of Open Access Journals (Sweden)

    Amir Husni

    2014-05-01

    Both SM and CS exhibited their highest antifungal activity when extracted by HRE with 70% ethanol and by HRE with water, respectively, while their highest yields were obtained when extracted by PSE with water. SM has more antifungal than potassium sorbate but weaker than propyl paraben, while CS has more antifungal than the two antifungal agents. Keywords: Antifungal, heat reflux extraction, pressurized solvent extraction, Stichopus japonicus

  16. Chemical Composition and Antifungal Effect of Echinophora platyloba Essential Oil against Aspergillus flavus, Penicillium expansum and Fusarium graminearum

    Directory of Open Access Journals (Sweden)

    Mohammad Hashemi

    2016-03-01

    Full Text Available Molds are one of the most important causes of food spoilage that produce toxic substances called mycotoxins, which endanger the consumer health. The adverse effects of synthetic food preservatives consumption made researches to focus on application of natural preservatives in order to increase shelf life of food as well as prevention of harmful effects of chemical preservatives. The present study was conducted to investigate the effects of Echinophora platyloba essential oil on spore growth of Aspergillus flavus, Penicillium expansum and Fusarium graminearum. The essential oil composition of E. platyloba was analyzed by gas chromatography–mass spectrometry (GC-MS and its antifungal effect was evaluated by disk diffusion and micro dilution methods. Results revealed that the MIC values of essential oil for A. flavus, P. expansum and F. graminearum were 0.625 mg.mL-1, 0.625 mg.mL-1 and 0.3125 mg.mL-1 and the MFC values were 0.625 mg.mL-1, 1.250 mg.mL-1 and 0.625 mg.mL-1. The essential oil had the highest and the lowest anti-fungal effect on F. graminearum and A. flavus respectively. In conclusion, due to notable antifungal effects of E. platyloba essential oil, it can be practically applied as a natural alternative to chemical preservatives in food industry.

  17. Defining the frontiers between antifungal resistance, tolerance and the concept of persistence.

    Science.gov (United States)

    Delarze, Eric; Sanglard, Dominique

    2015-11-01

    A restricted number of antifungal agents are available for the therapy of fungal diseases. With the introduction of epidemiological cut-off values for each agent in important fungal pathogens based on the distribution of minimal inhibitory concentration (MIC), the distinction between wild type and drug-resistant populations has been facilitated. Antifungal resistance has been described for all currently available antifungal agents in several pathogens and most of the associated resistance mechanisms have been deciphered at the molecular level. Clinical breakpoints for some agents have been proposed and can have predictive value for the success or failure of therapy. Tolerance to antifungals has been a much more ignored area. By definition, tolerance operates at antifungal concentrations above individual intrinsic inhibitory values. Important is that tolerance to antifungal agents favours the emergence of persister cells, which are able to survive antifungal therapy and can cause relapses. Here we will review the current knowledge on antifungal tolerance, its potential mechanisms and also evaluate the role of antifungal tolerance in the efficacy of drug treatments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Antifungal properties of Brazilian cerrado plants

    Directory of Open Access Journals (Sweden)

    Souza Lúcia Kioko Hasimoto e

    2002-01-01

    Full Text Available Ethanolic extracts from leaves of Hyptis ovalifolia, H. suaveolens, H. saxatilis, Hyptidendrum canum, Eugenia uniflora, E. dysenterica, Caryocar brasiliensis and Lafoensia pacari were investigated for their antifungal activity against dermatophytes. The most effective plants were H. ovalifolia and E. uniflora, while Trichophyton rubrum was the most sensitive among the four dermatophytes species evaluated. This study has demonstrated antifungal properties of Brazilian Cerrado plant extracts in "in vitro" assays.

  19. Antifungal Poly(lactic acid) Films Containing Thymol and Carvone

    OpenAIRE

    Boonruang Kanchana; Chinsirikul Wannee; Hararak Bongkot; Kerddonfag Noppadon; Chonhenchob Vanee

    2016-01-01

    The goal of this study was to develop antifungal poly(lactic acid) films for food packaging applications. The antifungal compounds, thymol and R-(-)-carvone were incorporated into poly(lactic acid) (PLA)-based polymer at 10, 15 and 20% by weight. Film converting process consists of three steps including melt blending, sheet extrusion and biaxial stretching. The incorporation of antifungal compounds into the polymer matrix resulted in decreased Tg and Tm, increased gas permeabilility, reduced ...

  20. Antifungal activity of multifunctional Fe3O4-Ag nanocolloids

    International Nuclear Information System (INIS)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R.V.; Mehta, R.V.

    2011-01-01

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3 O 4 -Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3 O 4 ) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients. - Research Highlights: →Synthesis of Fe 3 O 4 -Ag core-shell nanocolloids. →Antifungal activity of Fe 3 O 4 -Ag nanocolloids against Aspergillus glaucus isolates. →The MIC value for A. glaucus is 2000 μg/mL. →Antifungal activity is better or comparable with most prominent antibiotics.

  1. Antifungal activity of essential oils against selected terverticillate penicillia

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2015-02-01

    Full Text Available The aim of this study was to screen 15 essential oils of selected plant species, viz. Lavandula angustifolia, Carum carvi, Pinus mungo var. pulmilio, Mentha piperita, Chamomilla recutita L., Pinus sylvestris, Satureia hortensis L., Origanum vulgare L., Pimpinella anisum, Rosmarinus officinalis L., Salvia officinalis L., Abietis albia etheroleum, Chamomilla recutita, L. Rausch, Thymus vulgaris L., Origanum vulgare L. for antifungal activity against five Penicillium species: Penicillium brevicompactum, Penicillium citrinum, Penicillium crustosum, Penicillium expansum and Penicillium griseofulvum. The method used for screening included the disc diffusion method. The study points out the wide spectrum of antifungal activity of essential oils against Penicillium fungi. There were five essential oils of the 15 mentioned above which showed a hopeful antifungal activity: Pimpinella anisum, Chamomilla recutita L., Thymus vulgaris, Origanum vulgare L. The most hopeful antifungal activity and killing effect against all tested penicillia was found to be Origanum vulgare L. and Pimpinella anisum. The lowest level of antifungal activity was demonstrated by the oils Pinus mungo var. pulmilio, Salvia officinalis L., Abietis albia etheroleum, Chamomilla recutita L. Rausch, Rosmarinus officinalis.

  2. Design, Synthesis and Antifungal Activity of Psoralen Derivatives

    Directory of Open Access Journals (Sweden)

    Xiang Yu

    2017-10-01

    Full Text Available A series of linear furanocoumarins with different substituents have been designed and synthesized. Their structures were confirmed by 1H-NMR spectroscopy, high resolution mass spectra (EI-MS, IR, and X-ray single-crystal diffraction. All of the target compounds were evaluated in vitro for their antifungal activity against Rhizoctorzia solani, Botrytis cinerea, Alternaria solani, Gibberella zeae, Cucumber anthrax, and Alternaria leaf spot at 100 μg/mL, and some of the designed compounds exhibited potential antifungal activities. Compound 3a (67.9% exhibited higher activity than the control Osthole (66.1% against Botrytis cinerea. Furthermore, compound 4b (62.4% represented equivalent antifungal activity as Osthole (69.5% against Rhizoctonia solani. The structure-activity relationship (SAR study demonstrates that linear furanocoumarin moiety has an important effect on the antifungal activity, promoting the idea of the coumarin ring as a framework that might be exploited in the future.

  3. Functional characterization of a synthetic hydrophilic antifungal peptide derived from the marine snail Cenchritis muricatus.

    Science.gov (United States)

    López-Abarrategui, Carlos; Alba, Annia; Silva, Osmar N; Reyes-Acosta, Osvaldo; Vasconcelos, Ilka M; Oliveira, Jose T A; Migliolo, Ludovico; Costa, Maysa P; Costa, Carolina R; Silva, Maria R R; Garay, Hilda E; Dias, Simoni C; Franco, Octávio L; Otero-González, Anselmo J

    2012-04-01

    Antimicrobial peptides have been found in mollusks and other sea animals. In this report, a crude extract of the marine snail Cenchritis muricatus was evaluated against human pathogens responsible for multiple deleterious effects and diseases. A peptide of 1485.26 Da was purified by reversed-phase HPLC and functionally characterized. This trypsinized peptide was sequenced by MS/MS technology, and a sequence (SRSELIVHQR), named Cm-p1 was recovered, chemically synthesized and functionally characterized. This peptide demonstrated the capacity to prevent the development of yeasts and filamentous fungi. Otherwise, Cm-p1 displayed no toxic effects against mammalian cells. Molecular modeling analyses showed that this peptide possible forms a single hydrophilic α-helix and the probable cationic residue involved in antifungal activity action is proposed. The data reported here demonstrate the importance of sea animals peptide discovery for biotechnological tools development that could be useful in solving human health and agribusiness problems. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. In vitro Antifungal Activity of Limonene against Trichophyton rubrum

    OpenAIRE

    Chee, Hee Youn; Kim, Hoon; Lee, Min Hee

    2009-01-01

    In this study, the antifungal activities of limonene against Trichophyton rubrum were evaluated via broth microdilution and vapor contact assays. In both assays, limonene was shown to exert a potent antifungal effect against T. rubrum. The volatile vapor of limonene at concentrations above 1 ?l/800 ml air space strongly inhibited the growth of T. rubrum. The MIC value was 0.5% v/v in the broth microdilution assay. The antifungal activity of limonene against T. rubrum was characterized as a fu...

  5. Antifungal activity of plant essential oils and selected Pseudomonas strains against Phomopsis theicola

    Directory of Open Access Journals (Sweden)

    Starović Mira

    2017-01-01

    Full Text Available Development of natural plant protection products as an alternative to synthetic fungicides is of significant importance regarding the environment. This study was carried out with an objective to investigate in vitro antifungal activities of several essential oils extracted from oregano, basil, myrtle and Turkish pickling herb, and the plant growth-promoting rhizobacteria in the genus Pseudomonas, against the phytopathogenic fungus Phomopsis theicola. Microdilution methods were used to determine the minimum inhibitory concentrations (MIC of selected antimicrobial essential oils (EOs. All EOs exhibited significant levels of antifungal activity against the tested fungal isolates. The oregano EO was found the most potent one (MIC - 5.5 µg/mL, followed by basil (MIC - 75.0µg/mL, myrtle (MIC - 775 µg/mL and Turkish pickling herb (MIC - 7750 µg/mL. Inhibition of Ph. theicola mycelial growth was observed for all tested Pseudomonas spp. strains. K113 and L1 strains were highly effective and achieved more than 60% of fungal growth inhibition using the overnight culture and more than 57% inhibition by applying cell-free supernatants of both strains. A future field trial with K113 and L1 cultures and cell-free supernatants, containing extracellular metabolites toward Ph. theicola, will estimate their effectiveness and applicability as an alternative to chemical protection of apple trees.

  6. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Directory of Open Access Journals (Sweden)

    Mahoney Noreen

    2011-05-01

    Full Text Available Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI. Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ and two mitogen-activated protein kinase (MAPK mutants of A. fumigatus (sakAΔ, mpkCΔ, indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC or fungicidal (MFC

  7. Topical antifungals for seborrhoeic dermatitis

    Science.gov (United States)

    Okokon, Enembe O; Verbeek, Jos H; Ruotsalainen, Jani H; Ojo, Olumuyiwa A; Bakhoya, Victor Nyange

    2015-01-01

    Background Seborrhoeic dermatitis is a chronic inflammatory skin condition that is distributed worldwide. It commonly affects the scalp, face and flexures of the body. Treatment options include antifungal drugs, steroids, calcineurin inhibitors, keratolytic agents and phototherapy. Objectives To assess the effects of antifungal agents for seborrhoeic dermatitis of the face and scalp in adolescents and adults. A secondary objective is to assess whether the same interventions are effective in the management of seborrhoeic dermatitis in patients with HIV/AIDS. Search methods We searched the following databases up to December 2014: the Cochrane Skin Group Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL) (2014, Issue 11), MEDLINE (from 1946), EMBASE (from 1974) and Latin American Caribbean Health Sciences Literature (LILACS) (from 1982). We also searched trials registries and checked the bibliographies of published studies for further trials. Selection criteria Randomised controlled trials of topical antifungals used for treatment of seborrhoeic dermatitis in adolescents and adults, with primary outcome measures of complete clearance of symptoms and improved quality of life. Data collection and analysis Review author pairs independently assessed eligibility for inclusion, extracted study data and assessed risk of bias of included studies. We performed fixed-effect meta-analysis for studies with low statistical heterogeneity and used a random-effects model when heterogeneity was high. Main results We included 51 studies with 9052 participants. Of these, 45 trials assessed treatment outcomes at five weeks or less after commencement of treatment, and six trials assessed outcomes over a longer time frame. We believe that 24 trials had some form of conflict of interest, such as funding by pharmaceutical companies. Among the included studies were 12 ketoconazole trials (N = 3253), 11 ciclopirox trials (N = 3029), two lithium trials (N = 141

  8. Catalytic Synthesis and Antifungal Activity of New Polychlorinated Natural Terpenes

    Directory of Open Access Journals (Sweden)

    Hana Ighachane

    2017-01-01

    Full Text Available Various unsaturated natural terpenes were selectively converted to the corresponding polychlorinated products in good yields using iron acetylacetonate in combination with nucleophilic cocatalyst. The synthesized compounds were evaluated for their in vitro antifungal activity. The antifungal bioassays showed that 2c and 2d possessed significant antifungal activity against Fusarium oxysporum f. sp. albedinis (Foa, Fusarium oxysporum f. sp. canariensis (Foc, and Verticillium dahliae (Vd.

  9. Two functional motifs define the interaction, internalization and toxicity of the cell-penetrating antifungal peptide PAF26 on fungal cells.

    Directory of Open Access Journals (Sweden)

    Alberto Muñoz

    Full Text Available The synthetic, cell penetrating hexapeptide PAF26 (RKKWFW is antifungal at low micromolar concentrations and has been proposed as a model for cationic, cell-penetrating antifungal peptides. Its short amino acid sequence facilitates the analysis of its structure-activity relationships using the fungal models Neurospora crassa and Saccharomyces cerevisiae, and human and plant pathogens Aspergillus fumigatus and Penicillium digitatum, respectively. Previously, PAF26 at low fungicidal concentrations was shown to be endocytically internalized, accumulated in vacuoles and then actively transported into the cytoplasm where it exerts its antifungal activity. In the present study, two PAF26 derivatives, PAF95 (AAAWFW and PAF96 (RKKAAA, were designed to characterize the roles of the N-terminal cationic and the C-terminal hydrophobic motifs in PAF26's mode-of-action. PAF95 and PAF96 exhibited substantially reduced antifungal activity against all the fungi analyzed. PAF96 localized to fungal cell envelopes and was not internalized by the fungi. In contrast, PAF95 was taken up into vacuoles of N. crassa, wherein it accumulated and was trapped without toxic effects. Also, the PAF26 resistant Δarg1 strain of S. cerevisiae exhibited increased PAF26 accumulation in vacuoles. Live-cell imaging of GFP-labelled nuclei in A. fumigatus showed that transport of PAF26 from the vacuole to the cytoplasm was followed by nuclear breakdown and dissolution. This work demonstrates that the amphipathic PAF26 possesses two distinct motifs that allow three stages in its antifungal action to be defined: (i its interaction with the cell envelope; (ii its internalization and transport to vacuoles mediated by the aromatic hydrophobic domain; and (iii its transport from vacuoles to the cytoplasm. Significantly, cationic residues in PAF26 are important not only for the electrostatic attraction and interaction with the fungal cell but also for transport from the vacuole to the

  10. Antifungal cyclic peptides from the marine sponge Microscleroderma herdmani

    Science.gov (United States)

    Screening natural product extracts from National Cancer Institute Open Repository for antifungal discovery afforded hits for bioassay-guided fractionation. Upon LC-MS analysis of column fractions with antifungal activities to generate information on chemical structure, two new cyclic hexapeptides, m...

  11. Experimental models in predicting topical antifungal efficacy: practical aspects and challenges.

    Science.gov (United States)

    Lai, J; Maibach, H I

    2009-01-01

    What are efficient screening models for improved topical antifungals? The use of minimum inhibitory concentrations (MICs) as one such parameter is discussed; we focus on the use of animal membranes for in vitro testing while highlighting the pros and cons of each model, exploring alternatives and discussing the importance of data transferability to humans and the influence of penetration kinetics in topical antifungal efficacy. Ultimately, the gold standard of testing is in vivo in humans; however, initiating with human testing, especially for novel topical antifungal agents, may be impractical, which is why we seek the ideal experimental model that most closely mimics human skin. We conclude that the pig may be an appropriate model membrane for topical antifungal testing based on its similarities in anatomical structure, physiology and permeation to human skin. Most importantly, pig and human skins appear equally permeable to several antifungals in prior in vitro and in vivo work. We do not discuss all prior work but highlight important issues in designing the protocol and parameters of the ideal experimental model for topical antifungals. Copyright 2009 S. Karger AG, Basel.

  12. In vitro antifungal activity of methanol extracts of some Indian ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-03

    Dec 3, 2008 ... vitro antifungal activity against some yeasts including Candida albicans (1) ATCC2091, ... Key words: medicinal plants, antifungal activity, methanol extracts, yeast, mould, Saussurea lappa. ... Caesalpinia pulcherrima.

  13. Aspergillus--classification and antifungal susceptibilities.

    Science.gov (United States)

    Buzina, Walter

    2013-01-01

    Aspergillus is one of the most important fungal genera for the man, for its industrial use, its ability to spoil food and not least its medical impact as cause of a variety of diseases. Currently hundreds of species of Aspergillus are known; nearly fifty of them are able to cause infections in humans and animals. Recently, the genus Aspergillus is subdivided into 8 subgenera and 22 sections. The spectrum of diseases caused by Aspergillus species varies from superficial cutaneous to invasive and systemic infections. All species of Aspergillus investigated so far are resistant against the antifungals fluconazole and 5-fluorocytosine, the range of susceptibilities to currently available antifungals is discussed in this paper.

  14. In vitro antifungal activities of 26 plant extracts on mycelial growth of ...

    African Journals Online (AJOL)

    Antifungal activities of 26 plant extracts were tested against Phytophthora infestans using radial growth technique. While all tested plant extracts produced some antifungal activities Xanthium strumarium, Lauris nobilis, Salvia officinalis and Styrax officinalis were the most active plants that showed potent antifungal activity.

  15. Mode of Antifungal Drugs Interaction with Cytochrome P- 450

    Directory of Open Access Journals (Sweden)

    M- Mahmodian

    1991-07-01

    Full Text Available Computer was used to identify the interactions of substrates and antifungal drugs with the enzyme, Cytochrome P-450; and then Molplot.bas computer program was applied to get three dimensional figures of 5-hydroxy camphor.oxidation products of camphor analogues, and antifungal drugs.Cartesian characteristics of atoms building molecules, are taken from Buildz. for program, which can calculate X,Y,Z coordinates of atoms by Zmatrix data. The other program which can calculate X,Y,Z coordinates, using fractional characteristics, is the Coord, for program that, gives our cartesian characteristics of the atoms of molecule, then by using these data, we obtain three dimensional figures and distance between active atoms in compounds under consideration. Results show that distance between two oxygen atoms in 5-exo-hydroxy- camphor and the other compounds obtained from oxidation of camphor analogues, with the distance of two oxygen atoms in antifungal compounds under discussion are equal. Therefore, we can conclude that, the antifungal molecule also interacts with enzyme's active site, by its own sites, in a similar manner to the 5-hydroxy camphor molecule, which is:"n1. Nitrogen atom (N of Imidazole and Triazole ring in antifungal molecule with Iron atom in heam molecule belonging to Cytochrome P-450 enzyme, are coordinated."n2. The other atoms such as : 0,S or N in structure of the antifungal drug are coordinated with hydrogen atom of hydroxyl group belong ing to Tyr-96 in the structure of enzyme, forming hydrogen bonding.

  16. Systemic Antifungal Agents: Current Status and Projected Future Developments

    NARCIS (Netherlands)

    Seyedmousavi, S.; Rafati, H.; Ilkit, M.; Tolooe, A.; Hedayati, M.T.; Verweij, P.E.

    2017-01-01

    By definition, an antifungal agent is a drug that selectively destroys fungal pathogens with minimal side effects to the host. Despite an increase in the prevalence of fungal infections particularly in immunocompromised patients, only a few classes of antifungal drugs are available for therapy, and

  17. Functionalised isocoumarins as antifungal compounds: Synthesis and biological studies.

    Science.gov (United States)

    Simic, Milena; Paunovic, Nikola; Boric, Ivan; Randjelovic, Jelena; Vojnovic, Sandra; Nikodinovic-Runic, Jasmina; Pekmezovic, Marina; Savic, Vladimir

    2016-01-01

    A series of novel 3-substituted isocoumarins was prepared via Pd-catalysed coupling processes and screened in vitro for antifungal activity against Candida species. The study revealed antifungal potential of isocoumarins possessing the azole substituents, which, in some cases, showed biological properties equal to those of clinically used voriconazole. Selected compounds were also screened against voriconazole resistant Candida krusei 6258 and a clinical isolate Candida parapsilosis CA-27. Although the activity against these targets needs to be improved further, the results emphasise additional potential of this new class of antifungal compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Antifungal activity of multifunctional Fe 3O 4-Ag nanocolloids

    Science.gov (United States)

    Chudasama, Bhupendra; Vala, Anjana K.; Andhariya, Nidhi; Upadhyay, R. V.; Mehta, R. V.

    2011-05-01

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe 3O 4-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe 3O 4) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 μg/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients.

  19. Production of transgenic brassica juncea with the synthetic chitinase gene (nic) conferring resistance to alternaria brassicicola

    International Nuclear Information System (INIS)

    Munir, I.; Hussan, W.; Kazi, M.; Mian, A.

    2016-01-01

    Brassica juncea is an important oil seed crop throughout the world. The demand and cultivation of oil seed crops has gained importance due to rapid increase in world population and industrialization. Fungal diseases pose a great threat to Brassica productivity worldwide. Absence of resistance genes against fungal infection within crossable germplasms of this crop necessitates deployment of genetic engineering approaches to produce transgenic plants with resistance against fungal infections. In the current study, hypocotyls and cotyledons of Brassica juncea, used as explants, were transformed with Agrobacterium tumefacien strain EHA101 harboring binary vector pEKB/NIC containing synthetic chitinase gene (NIC), an antifungal gene under the control of cauliflower mosaic virus promoter (CaMV35S). Bar genes and nptII gene were used as selectable markers. Presence of chitinase gene in trangenic lines was confirmed by PCR and southern blotting analysis. Effect of the extracted proteins from non-transgenic and transgenic lines was observed on the growth of Alternaria brassicicola, a common disease causing pathogen in brassica crop. In comparison to non-transgenic control lines, the leaf tissue extracts of the transgenic lines showed considerable resistance and antifungal activity against A. brassicicola. The antifungal activity in transgenic lines was observed as corresponding to the transgene copy number. (author)

  20. Synergy and antagonism between iron chelators and antifungal drugs in Cryptococcus.

    Science.gov (United States)

    Lai, Yu-Wen; Campbell, Leona T; Wilkins, Marc R; Pang, Chi Nam Ignatius; Chen, Sharon; Carter, Dee A

    2016-10-01

    Fungal infections remain very difficult to treat, and developing new antifungal drugs is difficult and expensive. Recent approaches therefore seek to augment existing antifungals with synergistic agents that can lower the therapeutic dose, increase efficacy and prevent resistance from developing. Iron limitation can inhibit microbial growth, and iron chelators have been employed to treat fungal infections. In this study, chequerboard testing was used to explore combinations of iron chelators with antifungal agents against pathogenic Cryptococcus spp. with the aim of determining how disruption to iron homeostasis affects antifungal susceptibility. The iron chelators ethylenediaminetetraacetic acid (EDTA), deferoxamine (DFO), deferiprone (DFP), deferasirox (DSX), ciclopirox olamine and lactoferrin (LF) were paired with the antifungal agents amphotericin B (AmB), fluconazole, itraconazole, voriconazole and caspofungin. All chelators except for DFO increased the efficacy of AmB, and significant synergy was seen between AmB and LF for all Cryptococcus strains. Addition of exogenous iron rescued cells from the antifungal effect of LF alone but could not prevent inhibition by AmB + LF, indicating that synergy was not due primarily to iron chelation but to other properties of LF that were potentiated in the presence of AmB. Significant synergy was not seen consistently for other antifungal-chelator combinations, and EDTA, DSX and DFP antagonised the activity of azole drugs in strains of Cryptococcus neoformans var. grubii. This study highlights the range of interactions that can be induced by chelators and indicates that most antifungal drugs are not enhanced by iron limitation in Cryptococcus. Copyright © 2016 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  1. Antifungal activity of nicotine and its cobalt complex

    International Nuclear Information System (INIS)

    Zaidi, M.I.; Gul, A.

    2005-01-01

    Nicotine and its metal complex; Co(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activity against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cobalt(II) chloride was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine had antifungal activity against all species of fungi studied except Candida albicans, Microsporum canis, Epidermophyton floccosum, Candida tropicalis, and Alternaria infectoria. Cobalt(II) nicotine was found to be effective against all selected species of fungi but ineffective against Candida solani, Penicillium notalum, Microsporum canis, Fusarium solani and Fusarium moniliforme. (author)

  2. Antibacterial and antifungal properties of guanylhydrazones

    Directory of Open Access Journals (Sweden)

    Ajdačić Vladimir

    2017-01-01

    Full Text Available A series of novel guanylhydrazones were designed, synthesized and characterized. All the compounds were screened for their antibacterial and antifungal activity. Compounds 26 and 27 showed excellent antibacterial activities against Staphylococcus aureus ATCC 25923 and Micrococcus luteus ATCC 379 with minimal inhibitory concentrations of 4 μg mL-1, and good antifungal activity against Candida parapsilosis ATCC 22019. These results suggested that the selected guanylhydrazones could serve as promising leads for improved antimicrobial development. [Project of the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 172008 and Grant No. 173048

  3. Cryptic antifungal compounds active by synergism with polyene antibiotics.

    Science.gov (United States)

    Kinoshita, Hiroshi; Yoshioka, Mariko; Ihara, Fumio; Nihira, Takuya

    2016-04-01

    The majority of antifungal compounds reported so far target the cell wall or cell membrane of fungi, suggesting that other types of antibiotics cannot exert their activity because they cannot penetrate into the cells. Therefore, if the permeability of the cell membrane could be enhanced, many antibiotics might be found to have antifungal activity. We here used the polyene antibiotic nystatin, which binds to ergosterol and forms pores at the cell membrane, to enhance the cellular permeability. In the presence of nystatin, many culture extracts from entomopathogenic fungi displayed antifungal activity. Among all the active extracts, two active components were purified and identified as helvolic acid and terramide A. Because the minimum inhibitory concentration of either compound was reduced four-fold in the presence of nystatin, it can be concluded that this screening method is useful for detecting novel antifungal activity. Copyright © 2015 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Evaluation of Antifungal Potentials and Antioxidant Capacities of Some Foliose Lichen Species

    Directory of Open Access Journals (Sweden)

    Bahar BİLGİN SÖKMEN

    2018-03-01

    Full Text Available This work is aimed to assess of antioxidant and antifungal potential of the foliose lichen species: Flavoparmelia caperata, Xanthoparmelia stenophylla and Xanthoparmelia conspersa. The antifungal activity of lichens were studied against some pathogenic fungi by disc diffusion method. The acetonitrile extracts of these lichens were obtained with Soxhlet extraction. While F. caperata exhibited maximum antifungal activity (32 mm against the C. albicans, the minimum antifungal activity (10 mm was obtained from X. stenophylla lichen against S. cerevisiae. In CUPRAC assay, absorbance values was in order of BHT>X. conspersa>F. caperata>X. stenophylla. As a result of the study, it was concluded that these lichen species may be a potential source for the development of new antifungal and antioxidant compounds.

  5. ANTI-FUNGAL ACTIVITIES OF m-IODOBENZOIC ACID AND SOME ...

    African Journals Online (AJOL)

    The anti-fungal activities of alkali and alkaline earth metal iodobenzoates were studied. Calcium iodobenzoate exhibited the highest anti-fungal activities of 74.60% inhibition for 15 ppm while sodium iodobenzoate exhibited the least inhibition of 61.64%. An optimum concentration of all the metal complexes for inhibition ...

  6. Update on antifungal therapy with terbinafine.

    Science.gov (United States)

    Gianni, C

    2010-06-01

    Terbinafine, a synthetic antifungal of allylamine class, has fungicidal activity against dermatophytes, moulds and certain dimorphic fungi and fungistatic activity against Candida albicans. Following oral administration the terbinafine is absorbed rapidly (>70%) and reaches within 2 hours the peak plasma concentration. The drug is highly lipophilic and keratophilic and is highly bound to plasma protein (>90%) with a bioavailability of 70% to 80%. The drug is rapidly delivered and it is present in the stratum corneum, sebum, nails and hair for months after stopping the medication. The drug has been proven to be the choice treatment in the therapy of onychomycosis as it is very effective, well tolerated and has a relatively low potential for drug interactions. The pharmacologic and pharmacokinetic properties of terbinafine give strong support to the possibility that the pulse therapy may be equally effective in onychomycoses, possibly reducing medication costs and drug exposure. Several therapeutic patterns have been proposed: weekly intermittent terbinafine (500 mg/d for 1 week each month for 4 months), or single-dose terbinafine (1000 mg per month for 4 months). Use of topical terbinafine 1% may be practical where the tinea involvement is not extensive or chronic. Recently, the terbinafine is available in a novel topical solution (film-forming solution--FFS) effective in the treatment of tinea pedis (athlete's foot).

  7. Antifungal Activity of Endemic Salvia tigrina in Turkey | Dulger ...

    African Journals Online (AJOL)

    Ketoconazole was used as a positive reference standard to determine the sensitivity of the strains. Results: The minimum inhibitory concentration (MIC) ranged from 3.12 to 25 mg/mL. All the extracts exhibited a strong antifungal effect against the fungal cultures. The extracts exhibited greater antifungal effect against C.

  8. Epidemiology and antifungal resistance in invasive candidiasis

    Directory of Open Access Journals (Sweden)

    Rodloff AC

    2011-04-01

    Full Text Available Abstract The epidemiology of Candida infections has changed over the last two decades: The number of patients suffering from such infections has increased dramatically and the Candida species involved have become more numerous as Candida albicans is replaced as an infecting agent by various non-C. albicans species (NAC. At the same time, additional antifungal agents have become available. The different Candida species may vary in their susceptibility for these various antifungals. This draws more attention to in vitro susceptibility testing. Unfortunately, several different test methods exist that may deliver different results. Moreover, clinical breakpoints (CBP that classify test results into susceptible, intermediate and resistant are controver- sial between CLSI and EUCAST. Therefore, clinicians should be aware that interpretations may vary with the test system being followed by the microbiological laboratory. Thus, knowledge of actual MIC values and pharmacokinetic properties of individual antifungal agents is important in delivering appropriate therapy to patients

  9. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils

    Directory of Open Access Journals (Sweden)

    MARIA E.A. PINTO

    2017-08-01

    Full Text Available ABSTRACT Fatty acid methyl esters (FAMEs were obtained from vegetable oils of soybean, corn and sunflower. The current study was focused on evaluating the antifungal activity of FAMEs mainly against Paracoccidioides spp., as well as testing the interaction of these compounds with commercial antifungal drugs and also their antioxidant potential. FAMEs presented small IC50 values (1.86-9.42 μg/mL. All three FAMEs tested showed antifungal activity against isolates of Paracoccidioides spp. with MIC values ranging from 15.6-500 µg/mL. Sunflower FAMEs exhibited antifungal activity that extended also to other genera, with an MIC of 15.6 μg/mL against Candida glabrata and C. krusei and 31.2 μg/mL against C. parapsilosis. FAMEs exhibited a synergetic effect with itraconazole. The antifungal activity of the FAMEs against isolates of Paracoccidioides spp. is likely due to the presence of methyl linoleate, the major compound present in all three FAMEs. The results obtained indicate the potential of FAMEs as sources for antifungal and antioxidant activity.

  10. Candidiasis and the impact of flow cytometry on antifungal drug discovery.

    Science.gov (United States)

    Ku, Tsun Sheng N; Bernardo, Stella; Walraven, Carla J; Lee, Samuel A

    2017-11-01

    Invasive candidiasis continues to be associated with significant morbidity and mortality as well as substantial health care costs nationally and globally. One of the contributing factors is the development of resistance to antifungal agents that are already in clinical use. Moreover, there are known treatment limitations with all of the available antifungal agents. Since traditional techniques in novel drug discovery are time consuming, high-throughput screening using flow cytometry presents as a potential tool to identify new antifungal agents that would be useful in the management of these patients. Areas covered: In this review, the authors discuss the use of automated high-throughput screening assays based upon flow cytometry to identify potential antifungals from a library comprised of a large number of bioactive compounds. They also review studies that employed the use of this research methodology that has identified compounds with antifungal activity. Expert opinion: High-throughput screening using flow cytometry has substantially decreased the processing time necessary for screening thousands of compounds, and has helped enhance our understanding of fungal pathogenesis. Indeed, the authors see this technology as a powerful tool to help scientists identify new antifungal agents that can be added to the clinician's arsenal in their fight against invasive candidiasis.

  11. Antibacterial and Antifungal Potential of Himalayan Medicinal Plants for Treating Wound Infections

    International Nuclear Information System (INIS)

    Habiba, U.; Ahmad, M.; Shinwari, S.; Sultana, S.; Zafar, M.; Shinwari, Z. K.

    2016-01-01

    Many bacterial and fungal strains are involved in wound infectious diseases as most of these strains become resistant to the most commonly used synthetic drugs in Himalayan region. Plant based natural products seem to be an alternative to this problem. The aim of this investigation was to evaluate the In vitro antibacterial and antifungal activities of 30 medicinal plants used in folk recipes by Himalayan people to treat wound infections against multi-drug resistant pathogens. In total of six medically important Myco-bacterial strains Streptococcus pyogenes, Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Candida albicans and Aspergillus niger were tested against methanolic plant extracts at 5 mg/ml concentration using agar disc well diffusion method to determined Minimum inhibitory concentrations (MICs). The plant extracts showed varied levels of MICs against test microorganisms. The strongest antibacterial activity was reported in methanolic extract of Cynadon dactylon (L.) Pers. against Klebsiella pneumoniae with 20.67±1.36 mm MICs, while Candida albicans was considered to be the most resistant pathogen with MICs 9.6±0.57 mm. The findings were compared with results obtained using standard antibiotics, aminooxanilic, ciprofloxacin, cefotaxime, fluconazole and itraconazole at conc. 5mg/ ml. The results provide an evidence of folk medicinal uses of plants among the Himalayan communities to treat wounds. Further research needs to be carried out to identify the active molecules and evaluate the in vivo antibacterial and antifungal activities as well as toxicity level with clinical trials to use full potential of these plants for drug discovery development to control wounds globally. (author)

  12. Biosynthesis of components with antifungal activity against Aspergillus spp. using Streptomyces hygroscopicus

    Directory of Open Access Journals (Sweden)

    Dodić Jelena M.

    2015-01-01

    Full Text Available Losses of apple fruit during storage are mainly caused by fungal phytopathogens. Traditionally, postharvest fungal disease is controlled by the application of synthetic fungicides. However, the harmful impact on environment as well as human health largely limits their application. To reduce these problems in agrochemicals usage, new compounds for plant protection, which are eco-friendly, should be developed. The aim of this study is optimization of medium composition in terms of glucose, soybean meal and phosphates content, by applying response surface methodology, for the production of agents with antifungal activity against Aspergillus spp. For biosynthesis was used strain of Streptomyces hygroscopicus isolated from the environment. Experiments were carried out in accordance with Box-Behnken design with three factors on three levels and three repetitions in the central point. Antifungal activity of the obtained cultivation mediums against Aspergillus oryzae and Aspergillus niger was determined, in vitro, using the diffusion - disc method. For determination optimal medium components desirability function was used. Achieved model predicts that the maximum inhibition zone diameter (40.93 mm against test microorganisms is produced when the initial content of glucose, soybean meal and phosphates are 47.77 g/l, 24.54 g/l and 0.98 g/l, respectively. To minimize the consumption of medium components and costs of effluents processing, additional three sets of optimization were made. The chosen method for optimization of medium components was efficient, relatively simple and time and material saving. Obtained results can be used for the further techno-economic analysis of the process to select optimal medium composition for industrial application.

  13. In vitro control of Alternaria citri using antifungal potentials of ...

    African Journals Online (AJOL)

    In vitro control of Alternaria citri using antifungal potentials of Trichoderma species. Asma Murtaza, Shazia Shafique, Tehmina Anjum, Sobiya Shafique. Abstract. The antifungal potential of five species of Trichoderma viz., Trichoderma viride, Trichoderma aureoviride, Trichoderma reesei, Trichoderma koningii and ...

  14. Isolation of antifungally active lactobacilli from edam cheese

    DEFF Research Database (Denmark)

    Tuma, S.; Vogensen, Finn Kvist; Plocková, M.

    2007-01-01

    The antifungal activity of 322 lactobacilli strains isolated from Edam cheese at different stages of the ripening process was tested against Fusarium proliferatum M 5689 using a dual overlay spot assay. Approximately 21% of the isolates showed a certain level of inhibitory activity. Seven strains...... as Lb. paracasei and three as Lb. fermentum. Lb. paracasei ST 68 was chosen for further testing as antifungal protective adjunct for Edam cheese production.  ...

  15. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014.

    Directory of Open Access Journals (Sweden)

    HaiKuan Wang

    Full Text Available Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis. It is the first report that lactic acid bacteria produce antifungal Benzeneacetic acid, 2-propenyl ester. Of these, the antifungal products also have a broad spectrum of antifungal activity, namely against Botrytis cinerea, Glomerella cingulate, Phytophthora drechsleri Tucker, Penicillium citrinum, Penicillium digitatum and Fusarium oxysporum, which was identified by the overlay and well-diffusion assay. F. oxysporum, P. citrinum and P. drechsleri Tucker were the most sensitive among molds.

  16. Quantitative structure-activity relationship of some 1-benzylbenzimidazole derivatives as antifungal agents

    Directory of Open Access Journals (Sweden)

    Podunavac-Kuzmanović Sanja O.

    2007-01-01

    Full Text Available In the present study, the antifungal activity of some 1-benzylbenzimidazole derivatives against yeast Saccharomyces cerevisiae was investigated. The tested benzimidazoles displayed in vitro antifungal activity and minimum inhibitory concentration (MIC was determined for all the compounds. Quantitative structure-activity relationship (QSAR has been used to study the relationships between the antifungal activity and lipophilicity parameter, logP, calculated by using CS Chem-Office Software version 7.0. The results are discussed on the basis of statistical data. The best QSAR model for prediction of antifungal activity of the investigated series of benzimidazoles was developed. High agreement between experimental and predicted inhibitory values was obtained. The results of this study indicate that the lipophilicity parameter has a significant effect on antifungal activity of this class of compounds, which simplify design of new biologically active molecules.

  17. Antifungal activity of multifunctional Fe{sub 3}O{sub 4}-Ag nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Chudasama, Bhupendra, E-mail: bnchudasama@thapar.ed [School of Physics and Materials Science, Thapar University, Patiala 147004 (India); Vala, Anjana K.; Andhariya, Nidhi [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India); Upadhyay, R.V. [P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388421 (India); Mehta, R.V. [Department of Physics, Bhavnagar University, Bhavnagar 364022 (India)

    2011-05-15

    In recent years, rapid increase has been observed in the population of microbes that are resistant to conventionally used antibiotics. Antifungal drug therapy is no exception and now resistance to many of the antifungal agents in use has emerged. Therefore, there is an inevitable and urgent medical need for antibiotics with novel antimicrobial mechanisms. Aspergillus glaucus is the potential cause of fatal brain infections and hypersensitivity pneumonitis in immunocompromised patients and leads to death despite aggressive multidrug antifungal therapy. In the present article, we describe the antifungal activity of multifunctional core-shell Fe{sub 3}O{sub 4}-Ag nanocolloids against A. glaucus isolates. Controlled experiments are also carried out with Ag nanocolloids in order to understand the role of core (Fe{sub 3}O{sub 4}) in the antifungal action. The minimum inhibitory concentration (MIC) of nanocolloids is determined by the micro-dilution method. MIC of A. glaucus is 2000 {mu}g/mL. The result is quite promising and requires further investigations in order to develop a treatment methodology against this death causing fungus in immunocompromised patients. - Research Highlights: Synthesis of Fe{sub 3}O{sub 4}-Ag core-shell nanocolloids. Antifungal activity of Fe{sub 3}O{sub 4}-Ag nanocolloids against Aspergillus glaucus isolates. The MIC value for A. glaucus is 2000 {mu}g/mL. Antifungal activity is better or comparable with most prominent antibiotics.

  18. In vitro antifungal activity of Dorstenia mannii leaf extracts (Moraceae)

    African Journals Online (AJOL)

    Owner

    The active ingredients of this plant could be an addition to the antifungal arsenal to opportunistic fungal yeast pathogens. Key words: Antifungal activity, Dorstenia mannii, yeasts, opportunistic candidiasis. INTRODUCTION. Nowadays, fungal diseases have emerged and are being increasingly recognized as important public ...

  19. Trypanocide, cytotoxic, and antifungal activities of Momordica charantia.

    Science.gov (United States)

    Santos, Karla K A; Matias, Edinardo F F; Sobral-Souza, Celestina E; Tintino, Saulo R; Morais-Braga, Maria F B; Guedes, Glaucia M M; Santos, Francisco A V; Sousa, Ana Carla A; Rolón, Miriam; Vega, Celeste; de Arias, Antonieta Rojas; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique D M

    2012-02-01

    Chagas disease, caused by Trypanosoma cruzi, is a public health problem. Currently, chemotherapy is the only available treatment for this disease, and the drugs used, nifurtimox and benzonidazol, present high toxicity levels. An alternative for replacing these drugs are natural extracts from Momordica charantia L. (Cucurbitaceae) used in traditional medicine because of their antimicrobial and biological activities. In this study, we evaluated the extract of M. charantia for its antiepimastigote, antifungal, and cytotoxic activities. An ethanol extract of leaves from M. charantia was prepared. To research in vitro antiepimastigote activity, T. cruzi CL-B5 clone was used. Epimastigotes were inoculated at a concentration of 1 × 10(5) cells/mL in 200 µl tryptose-liver infusion. For the cytotoxicity assay, J774 macrophages were used. The antifungal activity was evaluated by microdilution using strains of Candida albicans, Candida tropicalis, and Candida krusei. The effective concentration capable of killing 50% of parasites (IC(50)) was 46.06 µg/mL. The minimum inhibitory concentration (MIC) was ≤ 1024 µg/mL. Metronidazole showed a potentiation of its antifungal effect when combined with an extract of M. charantia. Our results indicate that M. charantia could be a source of plant-derived natural products with antiepimastigote and antifungal-modifying activity with moderate toxicity.

  20. Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

    Directory of Open Access Journals (Sweden)

    Julia Breger

    2007-02-01

    Full Text Available There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2% that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.

  1. Hydrogel of Ketoconazole and PAMAM Dendrimers: Formulation and Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Elzbieta Tryniszewska

    2012-04-01

    Full Text Available Ketoconazole (KET, an imidazole derivative with well-known antifungal properties, is lipophilic and practically insoluble in water, therefore its clinical use has some practical disadvantages. The aim of the present study was to investigate the influence of PAMAM-NH2 and PAMAM-OH dendrimers generation 2 and generation 3 on the solubility and antifungal activity of KET and to design and evaluate KET hydrogel with PAMAM dendrimers. It was shown that the surface charge of PAMAM dendrimers strongly affects their influence on the improvement of solubility and antifungal activity of KET. The MIC and MFC values obtained by broth dilution method indicate that PAMAM-NH2 dendrimers significantly (up to 16-fold increased the antifungal activity of KET against Candida strains (e.g., in culture Candida albicans 1103059/11 MIC value was 0.008 μg/mL and 0.064 μg/mL, and MFC was 2 μg/mL and 32 μg/mL for KET in 10 mg/mL solution of PAMAM-NH2 G2 and pure KET, respectively. Antifungal activity of designed KET hydrogel with PAMAM-NH2 dendrimers measured by the plate diffusion method was definitely higher than pure KET hydrogel and than commercial available product. It was shown that the improvement of solubility and in the consequence the higher KET release from hydrogels seems to be a very significant factor affecting antifungal activity of KET in hydrogels containing PAMAM dendrimers.

  2. IIn vitro antifungal evaluation of various plant extracts against early ...

    African Journals Online (AJOL)

    Antifungal activities of 27 plant extracts were tested against Alternaria solani (E. & M.) Jones and Grout using radial growth technique. While all tested plant extracts produced some antifungal activities, the results revealed that Circium arvense, Humulus lupulus, Lauris nobilis and Salvia officinalis showed significant ...

  3. Synthesis and Antifungal Activity of Novel 3-Caren-5-One Oxime Esters.

    Science.gov (United States)

    Huang, Min; Duan, Wen-Gui; Lin, Gui-Shan; Li, Kun; Hu, Qiong

    2017-09-12

    A series of novel 3-caren-5-one oxime esters were designed and synthesized by multi-step reactions in an attempt to develop potent antifungal agents. Two E - Z stereoisomers of the intermediate 3-caren-5-one oxime were separated by column chromatography for the first time. The structures of all the intermediates and target compounds were confirmed by UV-Vis, FTIR, NMR, ESI-MS, and elemental analysis. The antifungal activity of the target compounds was preliminarily evaluated by the in vitro method against Fusarium oxysporum f. sp. cucumerinum , Physalospora piricola , Alternaria solani , Cercospora arachidicola , Gibberella zeae, Rhizoeotnia solani , Bipolaris maydis , and Colleterichum orbicalare at 50 µg/mL. The target compounds exhibited best antifungal activity against P. piricola , in which compounds ( Z )- 4r (R = β -pyridyl), ( Z )- 4q (R = α -thienyl), ( E )- 4f' (R = p -F Ph), ( Z )- 4i (R = m -Me Ph), ( Z )- 4j (R = p -Me Ph), and ( Z )- 4p (R = α -furyl) had inhibition rates of 97.1%, 87.4%, 87.4%, 85.0%, 81.9%, and 77.7%, respectively, showing better antifungal activity than that of the commercial fungicide chlorothanil. Also, compound ( Z )- 4r (R = β -pyridyl) displayed remarkable antifungal activity against all the tested fungi, with inhibition rates of 76.7%, 82.7%, 97.1%, 66.3%, 74.7%, 93.9%, 76.7% and 93.3%, respectively, showing better or comparable antifungal activity than that of the commercial fungicide chlorothanil. Besides, the E-Z isomers of the target oxime esters were found to show obvious differences in antifungal activity. These results provide an encouraging framework that could lead to the development of potent novel antifungal agents.

  4. Synthesis of inulin derivatives with quaternary phosphonium salts and their antifungal activity.

    Science.gov (United States)

    Chen, Yuan; Tan, Wenqiang; Li, Qing; Dong, Fang; Gu, Guodong; Guo, Zhanyong

    2018-03-13

    Inulin is a kind of renewable and biodegradable carbohydrate with good water solubility and numerous physiological functions. For further utilization of inulin, chemical modification can be applied to improve its bioactivities. In this paper, five novel inulin derivatives were synthesized via chemical modification with quaternary phosphonium salt. Their antifungal activity against three kinds of plant pathogens including Colletotrichum lagenarium, Phomopsis asparagi, and Fusarium oxysporum was assessed with radial growth assay in vitro. Results revealed that all the inulin derivatives exhibited improved antifungal activity compared with inulin. Particularly, inulin modified with triphenylphosphine (TPhPAIL) exhibited the best antifungal activity with inhibitory indices of 80.0%, 78.8%, and 87.4% against Colletotrichum lagenarium, Phomopsis asparagi, and Fusarium oxysporum at 1.0mg/mL respectively. The results clearly showed that chemical modification of inulin with quaternary phosphonium salt could efficiently improve derivatives' antifungal activity. Further analysis of results indicated that the antifungal activity was influenced by alkyl chain length or electron-withdrawing ability of the grafted quaternary phosphonium salts. Longer alkyl chain lengths or the stronger electron-withdrawing groups would lead to enhanced antifungal efficacy. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Azole Antifungal Resistance in Candida albicans and Emerging Non-albicans Candida Species

    Science.gov (United States)

    Whaley, Sarah G.; Berkow, Elizabeth L.; Rybak, Jeffrey M.; Nishimoto, Andrew T.; Barker, Katherine S.; Rogers, P. David

    2017-01-01

    Within the limited antifungal armamentarium, the azole antifungals are the most frequent class used to treat Candida infections. Azole antifungals such as fluconazole are often preferred treatment for many Candida infections as they are inexpensive, exhibit limited toxicity, and are available for oral administration. There is, however, extensive documentation of intrinsic and developed resistance to azole antifungals among several Candida species. As the frequency of azole resistant Candida isolates in the clinical setting increases, it is essential to elucidate the mechanisms of such resistance in order to both preserve and improve upon the azole class of antifungals for the treatment of Candida infections. This review examines azole resistance in infections caused by C. albicans as well as the emerging non-albicans Candida species C. parapsilosis, C. tropicalis, C. krusei, and C. glabrata and in particular, describes the current understanding of molecular basis of azole resistance in these fungal species. PMID:28127295

  6. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  7. Antifungal activity of crude extracts of Gladiolus dalenii van Geel ...

    African Journals Online (AJOL)

    Bulb extracts of Gladiolus dalenii reportedly used in the treatment of fungal infections in HIV/AIDS patients in the Lake Victoria region were tested for antifungal activity using the disc diffusion assay technique. Commercially used antifungal drugs, Ketaconazole and Griseofulvin (Cosmos Pharmaceuticals) were used as ...

  8. Antifungal Activity of Maytenin and Pristimerin

    Directory of Open Access Journals (Sweden)

    Fernanda P. Gullo

    2012-01-01

    Full Text Available Fungal infections in humans have increased alarmingly in recent years, particularly in immunocompromised individuals. Among the infections systemic candidiasis, aspergillosis, cryptococcosis, paracoccidioidomycosis, and histoplasmosis mortality are more prevalent and more severe in humans. The current high incidence of dermatophytosis is in humans, especially as the main etiologic agents Trichophyton rubrum and Trichophyton mentagrophytes. Molecules pristimerin and maytenin obtained from the plant Maytenus ilicifolia (Celastraceae are known to show various pharmacological activities. This study aimed to evaluate the spectrum of antifungal activity of maytenin and pristimerin and their cytotoxicity in human keratinocytes (NOK cells of the oral mucosa. It was concluded that the best spectrum of antifungal activity has been shown to maytenin with MIC varying from 0.12 to 125 mg/L, although it is also active with pristimerin MIC ranging between 0.12 and 250 mg/L. Regarding the toxicity, both showed to have high IC50. The SI showed high pristimerin against some species of fungi, but SI maytenin was above 1.0 for all fungi tested, showing a selective action of fungi. However, when comparing the two substances, maytenin also showed better results. The two molecules can be a possible prototype with a broad spectrum of action for the development of new antifungal agents.

  9. Antifungal Activity of Maytenin and Pristimerin

    Science.gov (United States)

    Gullo, Fernanda P.; Sardi, Janaina C. O.; Santos, Vânia A. F. F. M.; Sangalli-Leite, Fernanda; Pitangui, Nayla S.; Rossi, Suélen A.; de Paula e Silva, Ana C. A.; Soares, Luciana A.; Silva, Julhiany F.; Oliveira, Haroldo C.; Furlan, Maysa; Silva, Dulce H. S.; Bolzani, Vanderlan S.; Mendes-Giannini, Maria José S.; Fusco-Almeida, Ana Marisa

    2012-01-01

    Fungal infections in humans have increased alarmingly in recent years, particularly in immunocompromised individuals. Among the infections systemic candidiasis, aspergillosis, cryptococcosis, paracoccidioidomycosis, and histoplasmosis mortality are more prevalent and more severe in humans. The current high incidence of dermatophytosis is in humans, especially as the main etiologic agents Trichophyton rubrum and Trichophyton mentagrophytes. Molecules pristimerin and maytenin obtained from the plant Maytenus ilicifolia (Celastraceae) are known to show various pharmacological activities. This study aimed to evaluate the spectrum of antifungal activity of maytenin and pristimerin and their cytotoxicity in human keratinocytes (NOK cells of the oral mucosa). It was concluded that the best spectrum of antifungal activity has been shown to maytenin with MIC varying from 0.12 to 125 mg/L, although it is also active with pristimerin MIC ranging between 0.12 and 250 mg/L. Regarding the toxicity, both showed to have high IC50. The SI showed high pristimerin against some species of fungi, but SI maytenin was above 1.0 for all fungi tested, showing a selective action of fungi. However, when comparing the two substances, maytenin also showed better results. The two molecules can be a possible prototype with a broad spectrum of action for the development of new antifungal agents. PMID:22675379

  10. Antifungal Efficacy of Myrtus communis Linn

    Directory of Open Access Journals (Sweden)

    Sadeghi Nejad

    2014-08-01

    Full Text Available Background The ethanolic extract of Myrtus communis Linn. leaves was assayed in vitro as a growth inhibitor against opportunistic fungi such as Candida and Aspergillus species. Myrtus communis Linn. (Family, Myrtaceae is an aromatic evergreen shrub or small tree. It is native to the Mediterranean region. Objectives This study aimed to assess antifungal activity (in vitro of the ethanolic extracts of Myrtus communis leaves as a growth inhibitor against 24 clinical isolates of Candida, including C. albicans, C. glabrata, and C. tropicalis also three species of Aspergillus, including A. niger, A. flavus, and A. terreus. Materials and Methods The ethanolic extract of myrtle leaves was prepared by maceration method and minimal inhibitory concentration (MIC of Myrtus communis leaves extract was determined by agar-well diffusion technique. Amphotericin B and clotrimazole were used as the positive control in this assay. Results The minimal inhibitory concentration (MICs values of Myrtus communis leaves extract ranged 0.625-5.0 µg/µL and 5-40 µg/µL against tested Candida spp. and Aspergillus spp., respectively. Conclusions Results revealed that the ethanolic extract of Myrtus communis leaves have antifungal potency against both pathogenic tested fungi, and it can be used as a natural antifungal agent.

  11. Antifungal susceptibility profiles of 1698 yeast reference strains revealing potential emerging human pathogens.

    Directory of Open Access Journals (Sweden)

    Marie Desnos-Ollivier

    Full Text Available New molecular identification techniques and the increased number of patients with various immune defects or underlying conditions lead to the emergence and/or the description of novel species of human and animal fungal opportunistic pathogens. Antifungal susceptibility provides important information for ecological, epidemiological and therapeutic issues. The aim of this study was to assess the potential risk of the various species based on their antifungal drug resistance, keeping in mind the methodological limitations. Antifungal susceptibility profiles to the five classes of antifungal drugs (polyens, azoles, echinocandins, allylamines and antimetabolites were determined for 1698 yeast reference strains belonging to 992 species (634 Ascomycetes and 358 Basidiomycetes. Interestingly, geometric mean minimum inhibitory concentrations (MICs of all antifungal drugs tested were significantly higher for Basidiomycetes compared to Ascomycetes (p<0.001. Twenty four strains belonging to 23 species of which 19 were Basidiomycetes seem to be intrinsically "resistant" to all drugs. Comparison of the antifungal susceptibility profiles of the 4240 clinical isolates and the 315 reference strains belonging to 53 shared species showed similar results. Even in the absence of demonstrated in vitro/in vivo correlation, knowing the in vitro susceptibility to systemic antifungal agents and the putative intrinsic resistance of yeast species present in the environment is important because they could become opportunistic pathogens.

  12. DMPD: C-type lectin receptors in antifungal immunity. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18160296 C-type lectin receptors in antifungal immunity. Willment JA, Brown GD. Tre...nds Microbiol. 2008 Jan;16(1):27-32. Epub 2007 Dec 21. (.png) (.svg) (.html) (.csml) Show C-type lectin receptors in antifun...gal immunity. PubmedID 18160296 Title C-type lectin receptors in antifungal immunity. Author

  13. In vitro Antifungal, Antioxidant and Cytotoxic Activities of a Partially ...

    African Journals Online (AJOL)

    Purpose: To determine the in vitro antifungal and antioxidant activities of the aqueous extract and protein fraction of Atlantia monophylla Linn (Rutaceae) leaf. Methods: Ammonium sulphate (0 – 80 %) precipitation method was used to extract protein from the leaves of A. monophylla Linn (Rutaceae). In vitro antifungal ...

  14. Ebselen exerts antifungal activity by regulating glutathione (GSH) and reactive oxygen species (ROS) production in fungal cells.

    Science.gov (United States)

    Thangamani, Shankar; Eldesouky, Hassan E; Mohammad, Haroon; Pascuzzi, Pete E; Avramova, Larisa; Hazbun, Tony R; Seleem, Mohamed N

    2017-01-01

    Ebselen, an organoselenium compound and a clinically safe molecule has been reported to possess potent antifungal activity, but its antifungal mechanism of action and in vivo antifungal activity remain unclear. The antifungal effect of ebselen was tested against Candida albicans, C. glabrata, C. tropicalis, C. parapsilosis, Cryptococcus neoformans, and C. gattii clinical isolates. Chemogenomic profiling and biochemical assays were employed to identify the antifungal target of ebselen. Ebselen's antifungal activity in vivo was investigated in a Caenorhabditis elegans animal model. Ebselen exhibits potent antifungal activity against both Candida spp. and Cryptococcus spp., at concentrations ranging from 0.5 to 2μg/ml. Ebselen rapidly eradicates a high fungal inoculum within 2h of treatment. Investigation of the drug's antifungal mechanism of action indicates that ebselen depletes intracellular glutathione (GSH) levels, leading to increased production of reactive oxygen species (ROS), and thereby disturbs the redox homeostasis in fungal cells. Examination of ebselen's in vivo antifungal activity in two Caenorhabditis elegans models of infection demonstrate that ebselen is superior to conventional antifungal drugs (fluconazole, flucytosine and amphotericin) in reducing Candida and Cryptococcus fungal load. Ebselen possesses potent antifungal activity against clinically relevant isolates of both Candida and Cryptococcus by regulating GSH and ROS production. The potent in vivo antifungal activity of ebselen supports further investigation for repurposing it for use as an antifungal agent. The present study shows that ebselen targets glutathione and also support that glutathione as a potential target for antifungal drug development. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Synthesis and Antifungal Activity of Novel 3-Caren-5-One Oxime Esters

    Directory of Open Access Journals (Sweden)

    Min Huang

    2017-09-01

    Full Text Available A series of novel 3-caren-5-one oxime esters were designed and synthesized by multi-step reactions in an attempt to develop potent antifungal agents. Two E-Z stereoisomers of the intermediate 3-caren-5-one oxime were separated by column chromatography for the first time. The structures of all the intermediates and target compounds were confirmed by UV-Vis, FTIR, NMR, ESI-MS, and elemental analysis. The antifungal activity of the target compounds was preliminarily evaluated by the in vitro method against Fusarium oxysporum f. sp. cucumerinum, Physalospora piricola, Alternaria solani, Cercospora arachidicola, Gibberella zeae, Rhizoeotnia solani, Bipolaris maydis, and Colleterichum orbicalare at 50 µg/mL. The target compounds exhibited best antifungal activity against P. piricola, in which compounds (Z-4r (R = β-pyridyl, (Z-4q (R = α-thienyl, (E-4f′ (R = p-F Ph, (Z-4i (R = m-Me Ph, (Z-4j (R = p-Me Ph, and (Z-4p (R = α-furyl had inhibition rates of 97.1%, 87.4%, 87.4%, 85.0%, 81.9%, and 77.7%, respectively, showing better antifungal activity than that of the commercial fungicide chlorothanil. Also, compound (Z-4r (R = β-pyridyl displayed remarkable antifungal activity against all the tested fungi, with inhibition rates of 76.7%, 82.7%, 97.1%, 66.3%, 74.7%, 93.9%, 76.7% and 93.3%, respectively, showing better or comparable antifungal activity than that of the commercial fungicide chlorothanil. Besides, the E-Z isomers of the target oxime esters were found to show obvious differences in antifungal activity. These results provide an encouraging framework that could lead to the development of potent novel antifungal agents.

  16. Nepenthes rafflesiana pitcher liquid has antifungal activity against Candida spp.

    Directory of Open Access Journals (Sweden)

    Hanna Yolanda

    2014-08-01

    Full Text Available Background To develop new effective antifungals, it is essential to search for antifungal compounds from plants such as Nepenthes spp., which have their greatest diversity in Indonesia. Since chitin-induced liquid (CIL from Nepenthes khasiana pitchers has antifungal activity, due to their naphthoquinone content, this study aimed to evaluate antifungal activity of Nepenthes rafflesiana pitcher liquids on Candida spp. Methods Collected pitcher liquids were of 3 types: non-induced liquid (NIL, prey-induced liquid (PIL, and chitin-induced liquid (CIL. Non-induced liquid (NIL was collected from fresh naturally opened pitchers, PIL from opened pitchers after 3 hours of induction with Zophobas morio larvae, and CIL from closed pitchers after 5 days of chitin solution injection. The antifungal activity of the liquids against C. albicans, C. glabrata, C. krusei, and C. tropicalis were detected by disc diffusion and macrodilution methods. Results Inhibition zone diameters of NIL, PIL, and CIL against C. albicans were 35.00 (35.00 – 39.33 mm, 26.33 (23.00 – 40.00 mm, and 30.00 ( 28.00 – 32.00 mm, respectively, while for C. glabrata the zone diameters were 22.22 ± 3.66 mm, 29.89 ± 2.79 mm, and 28.89 ± 1.17 mm, respectively. No inhibition zones were found for NIL, PIL, and CIL against C. krusei and C. tropicalis. At concentrations of 80%, almost all samples showed visually apparent inhibition of fungal growth. Conclusion The pitcher liquid of N. rafflesiana has antifungal properties, presumably due to the presence of many potentially active substances, such as naphthoquinones, as has been proven in other studies.

  17. Antifungal therapy in European hospitals

    DEFF Research Database (Denmark)

    Zarb, P; Amadeo, B; Muller, A

    2012-01-01

    The study aimed to identify targets for quality improvement in antifungal use in European hospitals and determine the variability of such prescribing. Hospitals that participated in the European Surveillance of Antimicrobial Consumption Point Prevalence Surveys (ESAC-PPS) were included. The WHO...

  18. Antifungal activities of ethanolic extract from Jatropha curcas seed cake.

    Science.gov (United States)

    Saetae, Dolaporn; Suntornsuk, Worapot

    2010-02-01

    Phorbol ester extraction was carried out from Jatropha curcas seed cake, a by-product from the bio-diesel fuel industry. Four repeated extractions from 5 g J. curcas seed cake using 15 ml of 90% (v/v) ethanol and a shaking speed of 150 rev/min gave the highest yield of phosbol esters. The ethanolic extract of J. curcas seed cake showed antifungal activities against important phytofungal pathogens: Fusarium oxysporum, Pythium aphanidermatum, Lasiodiplodia theobromae, Curvularia lunata, Fusarium semitectum, Colletotrichum capsici and Colletotrichum gloeosporiodes. The extract contained phorbol esters mainly responsible for antifungal activities. The extract could therefore be used as an antifungal agent for agricultural applications.

  19. Training should be the first step toward an antifungal stewardship program.

    Science.gov (United States)

    Valerio, Maricela; Muñoz, Patricia; Rodríguez-González, Carmen; Sanjurjo, María; Guinea, Jesús; Bouza, Emilio

    2015-04-01

    The frequency of use of systemic antifungal agents has increased significantly in most tertiary centers. However, antifungal stewardship has received very little attention. The objective of this article was to assess the knowledge of prescribing physicians in our institution as a first step in the development of an antifungal stewardship program. Attending physicians from the departments that prescribe most antifungals were invited to complete a questionnaire based on current guidelines on diagnosis and therapy of invasive candidiasis and invasive aspergillosis (IA). The survey was completed by 60.8% (200/329) of the physicians who were invited to participate. The physicians belonged to the following departments: medical (60%), pediatric (19%), intensive care (15.5%), and surgical (5.5%). The mean (±SD) score of correct responses was 5.16±1.73. In the case of candidiasis, only 55% of the physicians clearly distinguished between colonization and infection, and 17.5% knew the local rate of fluconazole resistance. Thirty-three percent knew the accepted indications for antifungal prophylaxis, and 23% the indications for empirical therapy. However, most physicians knew which antifungals to choose when starting empirical therapy (73.5%). As for aspergillosis, most physicians (67%) could differentiate between colonization and infection, and 34.5% knew the diagnostic value of galactomannan. The radiological features of IA were well recognized by 64%, but only 31.5% were aware of the first line of treatment for IA, and 36% of the recommended duration of therapy. The usefulness of antifungal levels was known by 67%. This simple, easily completed questionnaire enabled us to identify which areas of our training strategy could be improved. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  20. Epidemiology and antifungal susceptibility of Candida species in a tertiary care hospital, Kolkata, India

    Directory of Open Access Journals (Sweden)

    Partha Bhattacharjee

    2016-06-01

    Conclusion: Species-level identification of Candida and their antifungal sensitivity testing should to be performed to achieve better clinical result and to select an appropriate and effective antifungal therapy. High resistance to antifungal agents is an alarming sign to the healthcare professionals.

  1. Antifungal activity of essential oils against selected terverticillate penicillia

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2015-02-01

    Full Text Available The aim of this study was to screen 15 essential oils of selected plant species, viz. [i]Lavandula angustifolia[/i], [i]Carum carvi[/i], [i]Pinus mungo var. pulmilio[/i], [i]Mentha piperita[/i], [i]Chamomilla recutita[/i] L.,[i] Pinus sylvestris[/i], [i]Satureia hortensis[/i] L., [i]Origanum vulgare[/i] L., [i]Pimpinella anisum[/i], [i]Rosmarinus officinali[/i]s L., [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L. [i]Rausch[/i], [i]Thymus vulgaris[/i] L., [i]Origanum vulgare[/i] L. for antifungal activity against five [i]Penicillium[/i] species: [i]Penicillium brevicompactum[/i], [i]Penicillium citrinum[/i], [i]Penicillium crustosum[/i], [i]Penicillium expansum[/i] and [i]Penicillium griseofulvum[/i]. The method used for screening included the disc diffusion method. The study points out the wide spectrum of antifungal activity of essential oils against [i]Penicillium[/i] fungi. There were five essential oils of the 15 mentioned above which showed a hopeful antifungal activity: [i]Pimpinella anisum[/i], [i]Chamomilla recutita[/i] L., [i]Thymus vulgaris[/i], [i]Origanum vulgare[/i] L. The most hopeful antifungal activity and killing effect against all tested penicillia was found to be [i]Origanum vulgare[/i] L. and [i]Pimpinella anisum[/i]. The lowest level of antifungal activity was demonstrated by the oils [i]Pinus mungo var. pulmilio[/i], [i]Salvia officinalis[/i] L., [i]Abietis albia etheroleum[/i], [i]Chamomilla recutita[/i] L.[i] Rausch[/i], [i]Rosmarinus officinalis[/i].

  2. A novel and exploitable antifungal peptide from kale (Brassica alboglabra) seeds.

    Science.gov (United States)

    Lin, Peng; Ng, Tzi Bun

    2008-10-01

    The aim of this study was to purify and characterize antifungal peptides from kale seeds in view of the paucity of information on antifungal peptides from the family Brassicaceae, and to compare its characteristics with those of published Brassica antifungal peptides. A 5907-Da antifungal peptide was isolated from kale seeds. The isolation procedure comprised affinity chromatography on Affi-gel blue gel, ion exchange chromatography on SP-Sepharose and Mono S, and gel filtration on Superdex Peptide. The peptide was adsorbed on the first three chromatographic media. It inhibited mycelial growth in a number of fungal species including Fusarium oxysporum, Helminthosporium maydis, Mycosphaerella arachidicola and Valsa mali, with an IC(50) of 4.3microM, 2.1microM, 2.4microM, and 0.15microM, respectively and exhibited pronounced thermostability and pH stability. It inhibited proliferation of hepatoma (HepG2) and breast cancer (MCF7) cells with an IC(50) of 2.7microM and 3.4microM, and the activity of HIV-1 reverse transcriptase with an IC(50) of 4.9microM. Its N-terminal sequence differed from those of antifungal proteins which have been reported to date.

  3. The fungal resistome: a risk and an opportunity for the development of novel antifungal therapies.

    Science.gov (United States)

    Reales-Calderón, Jose A; Molero, Gloria; Gil, Concha; Martínez, José L

    2016-08-01

    The risks for toxicity of novel antifungal compounds, together with the emergence of resistance, makes the use of inhibitors of resistance, in combination with antifungal compounds, a suitable strategy for developing novel antifungal formulations. Among them, inhibitors of efflux pumps are suitable candidates. Increasing drug influx or interfering with the stress response may also improve the efficacy of antifungals. Therapies as induction of fungal apoptosis or immunostimulation are also good strategies for reducing the risks for resistance and to improve antifungals' efficacy. Understanding the effect of the acquisition of resistance on the fungal physiology and determining the collateral sensitivity networks are useful for the development of novel strategies based on combination of antifungals for improving the efficacy of the therapy.

  4. Radiation application for upgrading of bioresources - Development of antifungal and/or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Ko, Dong Kyu; Han, Gab Jin [Paichai University, Taejon (Korea)

    2000-04-01

    (1) In this study, the antifungal bacteria six strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Strains KL3362 and KL3397 were identified as Pseudomonas aurantiaca and Alcaligenes faecalis, respectively. Considering antifungal(AF) spectrum, strain KL3303, 3334, and 3341 show the broad range, KL3362 and KL3397 the narrow range of AF activity on a number of pathogenic fungi. Therefore, strains KL3341 and KL3362 were selected as the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) KL3341 producing-antifungal substances were consisted of five different kinds of low molecular weight polypeptides (3) Optimal conditions for the production of antifungal substances were analyzed under various environmental conditions. Growth rates were different according to carbon and nitrogen source, antifungal substance production yields were not different, however. Product of antifungal substances according t phosphate is proportional to the concentration. And productivity of antifungal substances was generally high in the range 30 {approx} 37 deg. C at pH 7. In case of adding vitamin B1 or lysine to medium, the antifungal activity was enhanced. (4) Mutants with enhanced antifungal activities were constructed by radiation of {gamma}-ray. (5) AF strains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. 35 refs., 17 figs., 15 tabs. (Author)

  5. Correlation between Plant Secondary Metabolites and Their Antifungal Mechanisms–A Review

    DEFF Research Database (Denmark)

    Freiesleben, Sara; Jäger, Anna

    2014-01-01

    the biosynthetic group of terpenes and their antifungal mechanisms of action, all of them exhibiting their antifungal action through cell membrane disruption, although some of the terpenes also seemed to work through mitochondrial dysfunction. A clear correlation has not been demonstrated between the two other......The search for new antifungal drugs often involves secondary metabolites from plants because of their pharmacological activity against foreign pathogens. Among the modern drugs in use today about 40% are of natural origin. To distinguish the secondary metabolites they can be divided into groups...... based on their structure or biosynthetic origin. When searching for new antifungal agents it is crucial to search for a mechanism of action for which unwanted side effects can be avoided. This can be done if the mechanism of action only involves fungal cells and not mammalian cells. For that reason...

  6. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens

    Science.gov (United States)

    The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant ...

  7. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness

    Directory of Open Access Journals (Sweden)

    Nadal Anna

    2012-09-01

    Full Text Available Abstract Background The Biopeptide BP100 is a synthetic and strongly cationic α-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. Results Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER, analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptII transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP, had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. Conclusions Constitutive expression of transgenes encoding short cationic α-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM

  8. Mechanisms of antifungal drug resistance in Candida dubliniensis.

    LENUS (Irish Health Repository)

    Coleman, David C

    2010-06-01

    Candida dubliniensis was first described in 1995 and is the most closely related species to the predominant human fungal pathogen Candida albicans. C. dubliniensis is significantly less prevalent and less pathogenic than C. albicans and is primarily associated with infections in HIV-infected individuals and other immunocompromised cohorts. The population structure of C. dubliniensis consists of three well-defined major clades and is significantly less diverse than C. albicans. The majority of C. dubliniensis isolates are susceptible to antifungal drugs commonly used to treat Candida infections. To date only two major patterns of antifungal drug resistance have been identified and the molecular mechanisms of these are very similar to the resistance mechanisms that have been described previously in C. albicans. However, significant differences are evident in the predominant antifungal drug mechanisms employed by C. dubliniensis, differences that reflect its more clonal nature, its lower prevalence and characteristics of its genome, the complete sequence of which has only recently been determined.

  9. Tolerability and safety of antifungal drugs

    Directory of Open Access Journals (Sweden)

    Francesco Scaglione

    2013-08-01

    Full Text Available When treating critically ill patients, as those with fungal infections, attention should be focused on the appropriate use of drugs, especially in terms of dose, safety, and tolerability. The fungal infection itself and the concomitant physiological disorders concur to increase the risk of mortality in these patients, therefore the use of any antifungal agent should be carefully evaluated, considering both the direct action on the target fungus and the adverse effects eventually caused. Among antifungal drugs, echinocandins have the greatest tolerability. In fact, unlike amphotericin B, showing nephrotoxicity, and azoles, which are hepatotoxic, the use of echinocandins doesn’t result in major adverse events.http://dx.doi.org/10.7175/rhc.v4i2s.873

  10. ANTIFUNGAL POTENTIAL OF LEAF EXTRACTS OF LEGUMINOUS TREES AGAINST SCLEROTIUM ROLFSII.

    Science.gov (United States)

    Sana, Nighat; Shoaib, Amna; Javaid, Arshad

    2016-01-01

    Sclerotium rolfsii Sacc. is a destructive soil-borne plant pathogen that infects over 500 plant species and causes significant yield losses in many economically important plant species. Synthetic fungicides used to combat the menace also pollute the environment and cause health hazards. In order to search environmental friendly alternatives from natural resources, methanolic extracts of three leguminous tree species namely Acacia nilotica (L.) Willd. ex Delile subsp. indica (Benth.) Brenan, Prosopis juliflora (Sw.) DC. and Albizia lebbeck (L.) Benth. were evaluated for their antifungal activity against S. rolfsii and A. nilotica subsp. indica exhibited the maximum fungicidal potential. Two hundred grams dried leaf material of each of the three test plant species were extracted with methanol for two weeks. After filtration, methanol was evaporated on a rotary evaporator. Malt extract broth was used to make various concentrations of the crude methanolic extracts and their antifungal potential was determined by comparing the fungal biomass in various treatments with control. Chemical composition of methanolic leaf extract of A. nilotica subsp. indica was determined through GC-MS analysis. Methanolic leaf extract of A. nilotica subsp. indica showed the highest fungicidal activity. Fungal biomass was decreased by 17-55% due to various concentrations of this extract over control. Different concentrations of P. juliflora reduced fungal biomass by 3-52%. Fourteen compounds were identified in methanolic extract of A. nilotica subsp. indica . 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z,)- (16.59%) was the most abundant compound followed by 1-pentanol, 2 methyl-, acetate (14.80%); hexanedioic acid, dimethyl ester (13.10%) and cyclotriaconta- 1, 7, 16, 22-tetraone (10.28%). This study concludes that methanolic leaf extract of A. nilotica subsp. indica can be used for management of S. rolfsii .

  11. ANTIFUNGAL POTENTIAL OF LEAF EXTRACTS OF LEGUMINOUS TREES AGAINST SCLEROTIUM ROLFSII

    Science.gov (United States)

    Sana, Nighat; Shoaib, Amna; Javaid, Arshad

    2016-01-01

    Background: Sclerotium rolfsii Sacc. is a destructive soil-borne plant pathogen that infects over 500 plant species and causes significant yield losses in many economically important plant species. Synthetic fungicides used to combat the menace also pollute the environment and cause health hazards. In order to search environmental friendly alternatives from natural resources, methanolic extracts of three leguminous tree species namely Acacia nilotica (L.) Willd. ex Delile subsp. indica (Benth.) Brenan, Prosopis juliflora (Sw.) DC. and Albizia lebbeck (L.) Benth. were evaluated for their antifungal activity against S. rolfsii and A. nilotica subsp. indica exhibited the maximum fungicidal potential. Materials and Methods: Two hundred grams dried leaf material of each of the three test plant species were extracted with methanol for two weeks. After filtration, methanol was evaporated on a rotary evaporator. Malt extract broth was used to make various concentrations of the crude methanolic extracts and their antifungal potential was determined by comparing the fungal biomass in various treatments with control. Chemical composition of methanolic leaf extract of A. nilotica subsp. indica was determined through GC-MS analysis. Results: Methanolic leaf extract of A. nilotica subsp. indica showed the highest fungicidal activity. Fungal biomass was decreased by 17-55% due to various concentrations of this extract over control. Different concentrations of P. juliflora reduced fungal biomass by 3-52%. Fourteen compounds were identified in methanolic extract of A. nilotica subsp. indica. 9,12,15-octadecatrienoic acid, methyl ester, (Z,Z,Z,)- (16.59%) was the most abundant compound followed by 1-pentanol, 2 methyl-, acetate (14.80%); hexanedioic acid, dimethyl ester (13.10%) and cyclotriaconta- 1, 7, 16, 22-tetraone (10.28%). Conclusion: This study concludes that methanolic leaf extract of A. nilotica subsp. indica can be used for management of S. rolfsii. PMID:28487894

  12. Potent In Vitro Antifungal Activities of Naturally Occurring Acetylenic Acids▿

    Science.gov (United States)

    Li, Xing-Cong; Jacob, Melissa R.; Khan, Shabana I.; Ashfaq, M. Khalid; Babu, K. Suresh; Agarwal, Ameeta K.; ElSohly, Hala N.; Manly, Susan P.; Clark, Alice M.

    2008-01-01

    Our continuing effort in antifungal natural product discovery has led to the identification of five 6-acetylenic acids with chain lengths from C16 to C20: 6-hexadecynoic acid (compound 1), 6-heptadecynoic acid (compound 2), 6-octadecynoic acid (compound 3), 6-nonadecynoic acid (compound 4), and 6-icosynoic acid (compound 5) from the plant Sommera sabiceoides. Compounds 2 and 5 represent newly isolated fatty acids. The five acetylenic acids were evaluated for their in vitro antifungal activities against Candida albicans, Candida glabrata, Candida krusei, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Trichophyton mentagrophytes, and Trichophyton rubrum by comparison with the positive control drugs amphotericin B, fluconazole, ketoconazole, caspofungin, terbinafine, and undecylenic acid. The compounds showed various degrees of antifungal activity against the 21 tested strains. Compound 4 was the most active, in particular against the dermatophytes T. mentagrophytes and T. rubrum and the opportunistic pathogens C. albicans and A. fumigatus, with MICs comparable to several control drugs. Inclusion of two commercially available acetylenic acids, 9-octadecynoic acid (compound 6) and 5,8,11,14-eicosatetraynoic acid (compound 7), in the in vitro antifungal testing further demonstrated that the antifungal activities of the acetylenic acids were associated with their chain lengths and positional triple bonds. In vitro toxicity testing against mammalian cell lines indicated that compounds 1 to 5 were not toxic at concentrations up to 32 μM. Furthermore, compounds 3 and 4 did not produce obvious toxic effects in mice at a dose of 34 μmol/kg of body weight when administered intraperitoneally. Taking into account the low in vitro and in vivo toxicities and significant antifungal potencies, these 6-acetylenic acids may be excellent leads for further preclinical studies. PMID:18458131

  13. Potent in vitro antifungal activities of naturally occurring acetylenic acids.

    Science.gov (United States)

    Li, Xing-Cong; Jacob, Melissa R; Khan, Shabana I; Ashfaq, M Khalid; Babu, K Suresh; Agarwal, Ameeta K; Elsohly, Hala N; Manly, Susan P; Clark, Alice M

    2008-07-01

    Our continuing effort in antifungal natural product discovery has led to the identification of five 6-acetylenic acids with chain lengths from C(16) to C(20): 6-hexadecynoic acid (compound 1), 6-heptadecynoic acid (compound 2), 6-octadecynoic acid (compound 3), 6-nonadecynoic acid (compound 4), and 6-icosynoic acid (compound 5) from the plant Sommera sabiceoides. Compounds 2 and 5 represent newly isolated fatty acids. The five acetylenic acids were evaluated for their in vitro antifungal activities against Candida albicans, Candida glabrata, Candida krusei, Candida tropicalis, Candida parapsilosis, Cryptococcus neoformans, Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Trichophyton mentagrophytes, and Trichophyton rubrum by comparison with the positive control drugs amphotericin B, fluconazole, ketoconazole, caspofungin, terbinafine, and undecylenic acid. The compounds showed various degrees of antifungal activity against the 21 tested strains. Compound 4 was the most active, in particular against the dermatophytes T. mentagrophytes and T. rubrum and the opportunistic pathogens C. albicans and A. fumigatus, with MICs comparable to several control drugs. Inclusion of two commercially available acetylenic acids, 9-octadecynoic acid (compound 6) and 5,8,11,14-eicosatetraynoic acid (compound 7), in the in vitro antifungal testing further demonstrated that the antifungal activities of the acetylenic acids were associated with their chain lengths and positional triple bonds. In vitro toxicity testing against mammalian cell lines indicated that compounds 1 to 5 were not toxic at concentrations up to 32 muM. Furthermore, compounds 3 and 4 did not produce obvious toxic effects in mice at a dose of 34 mumol/kg of body weight when administered intraperitoneally. Taking into account the low in vitro and in vivo toxicities and significant antifungal potencies, these 6-acetylenic acids may be excellent leads for further preclinical studies.

  14. In Vitro Investigation of Antifungal Activities of Actinomycetes against Microsporum gypseum

    Directory of Open Access Journals (Sweden)

    Naser Keikha

    2013-02-01

    Conclusion: The findings of the present research show that terrigenous actinomycetes have an antifungal effect upon Microsporum gypseum. So, one hopes that-in future-rather than administering antifungal chemicals that have side-effects, dermatophytic infections can be cured by applying these actinomycetes.

  15. Isolation and antifungal screening of endophytic fungi from Erigeron canadensis

    Directory of Open Access Journals (Sweden)

    Xuelian Bai

    2017-07-01

    Full Text Available Sixteen fungal strains isolated from the Erigeron canadensis, one of traditional Chinese medicines used to treat the pathogenic infection and dysentery, were evaluated for their antifungal activities against one human pathogen Candida albicans, and two phytopathogens, Colletotrichum fructicola and Rhizoctonia cerealis. The bioassay results indicated that the ethyl acetate extract of the fermentation broth of these fungal endophytes had stronger antimicrobial activities. Among these endophytic strains, the ethyl acetate extracts of strains NPR003 and NPR005 showed the strongest inhibitory effects and has potential application in the discovery of new antifungal agents. This was the first report on the isolation of endophytic fungi from E. canadensis and evaluation of their antifungal activities.

  16. Antifungal activity of fabrics knitted by metalized Silver/Polyester composite yarn

    Science.gov (United States)

    Özkan, İ.; Duru Baykal, P.

    2017-10-01

    In this study, antifungal properties of fabric knitted from metalized silver/polyester composite yarn were investigated. Intermingling is an alternative technique for yarn blending process. Yarns having different features can be combined by feeding the same intermingling jet. This process is defined as commingling. In the study, intermingling process was used to produce metalized silver/polyester composite yarn. Commingled yarns were knitted to single jersey fabrics by IPM brand sample type circular knitting machine. Antifungal activity test was applied to samples against Aspergillus Niger according to AATCC 30 test procedure. It has been identified that the application provides antifungal activity to fabric.

  17. Design of amphotericin B oral formulation for antifungal therapy.

    Science.gov (United States)

    Liu, Min; Chen, Meiwan; Yang, Zhiwen

    2017-11-01

    Amphotericin B (AmB) remains the "gold standard" for systemic antifungal therapy, even though new drugs are emerging as the attractive antifungal agents. Since AmB has negligible oral absorption as a consequence of its unfavorable physicochemical characterizations, its use is restricted to parenteral administration which is accompanied by severe side effects. As greater understanding of the gastrointestinal tract has developed, the advanced drug delivery systems are emerging with the potential to overcome the barriers of AmB oral delivery. Much research has demonstrated that oral AmB formulations such as lipid formulations may have beneficial therapeutic efficacy with reduced adverse effects and suitable for clinical application. Here we reviewed the different formulation strategies to enhance oral drug efficacy, and discussed the current trends and future perspectives for AmB oral administration in the treatment of antifungal infections.

  18. Dynamics of Mixed- Candida Species Biofilms in Response to Antifungals.

    Science.gov (United States)

    Vipulanandan, G; Herrera, M; Wiederhold, N P; Li, X; Mintz, J; Wickes, B L; Kadosh, D

    2018-01-01

    Oral infections caused by Candida species, the most commonly isolated human fungal pathogen, are frequently associated with biofilms. Although Candida albicans is the predominant organism found in patients with oral thrush, a biofilm infection, there is an increasing incidence of oral colonization and infections caused by non- albicans Candida species, including C. glabrata, C. dubliniensis, and C. tropicalis, which are frequently more resistant to antifungal treatment. While single-species Candida biofilms have been well studied, considerably less is known about the dynamics of mixed- Candida species biofilms and how these dynamics are altered by antifungal treatment. To address these questions, we developed a quantitative polymerase chain reaction-based approach to determine the precise species composition of mixed- Candida species biofilms formed by clinical isolates and laboratory strains in the presence and absence of clinically relevant concentrations of 3 commonly used antifungals: fluconazole, caspofungin, and amphotericin B. In monospecies biofilms, fluconazole exposure favored growth of C. glabrata and C. tropicalis, while caspofungin generally favored significant growth of all species to a varying degree. Fluconazole was not effective against preformed mixed- Candida species biofilms while amphotericin B was potent. As a general trend, in mixed- Candida species biofilms, C. albicans lost dominance in the presence of antifungals. Interestingly, presence in mixed versus monospecies biofilms reduced susceptibility to amphotericin B for C. tropicalis and C. glabrata. Overall, our data suggest that antifungal treatment favors the growth of specific non- albicans Candida species in mixed- Candida species biofilms.

  19. In vitro antifungal effect of mouth rinses containing chlorhexidine and thymol

    Directory of Open Access Journals (Sweden)

    Ashish Shrestha

    2011-03-01

    Conclusions: Antimicrobial agents used in the study had good in vitro activity against the two Candida species. Mouth rinses containing chlorhexidine showed superior antifungal and fungicidal activities compared to the thymol-containing mouth rinse. Both antimicrobial agents may be suggested for use as topical antifungal agents.

  20. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi.

    Science.gov (United States)

    Ryu, Eun Hye; Yang, Eun Ju; Woo, Eun Rhan; Chang, Hae Choon

    2014-08-01

    Strain HD1 with antifungal activity was isolated from kimchi and identified as Lactobacillus plantarum. Antifungal compounds from Lb. plantarum HD1 were active against food- and feed-borne filamentous fungi and yeasts in a spot-on-the-lawn assay. Antifungal activity of Lb. plantarum HD1 was stronger against filamentous fungi than yeast. Antifungal compounds were purified using solid phase extraction (SPE) and recycling preparative-HPLC. Structures of the antifungal compounds were elucidated by electrospray ionization-mass spectrometry and nuclear magnetic resonance. Active compounds from Lb. plantarum HD1 were identified as 5-oxododecanoic acid (MW 214), 3-hydroxy decanoic acid (MW 188), and 3-hydroxy-5-dodecenoic acid (MW 214). To investigate the potential application of these antifungal compounds for reduction of fungal spoilage in foods, Korean draft rice wine was used as a food model. White film-forming yeasts were observed in control draft rice wine after 11 days of incubation. However, film-forming yeasts were not observed in draft rice wine treated with SPE-prepared culture supernatant of Lb. plantarum HD1 (equivalent to 2.5% addition of culture supernatant) until 27 days of incubation. The addition of antifungal compounds to Korean draft rice wine extended shelf-life up to 27 days at 10 °C without any sterilization process. Therefore, the antifungal activity of Lb. plantarum HD1 may lead to the development of powerful biopreservative systems capable of preventing food- and feed-borne fungal spoilage. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Antifungal susceptibility testing method for resource constrained laboratories

    Directory of Open Access Journals (Sweden)

    Khan S

    2006-01-01

    Full Text Available Purpose: In resource-constrained laboratories of developing countries determination of antifungal susceptibility testing by NCCLS/CLSI method is not always feasible. We describe herein a simple yet comparable method for antifungal susceptibility testing. Methods: Reference MICs of 72 fungal isolates including two quality control strains were determined by NCCLS/CLSI methods against fluconazole, itraconazole, voriconazole, amphotericin B and cancidas. Dermatophytes were also tested against terbinafine. Subsequently, on selection of optimum conditions, MIC was determined for all the fungal isolates by semisolid antifungal agar susceptibility method in Brain heart infusion broth supplemented with 0.5% agar (BHIA without oil overlay and results were compared with those obtained by reference NCCLS/CLSI methods. Results: Comparable results were obtained by NCCLS/CLSI and semisolid agar susceptibility (SAAS methods against quality control strains. MICs for 72 isolates did not differ by more than one dilution for all drugs by SAAS. Conclusions: SAAS using BHIA without oil overlay provides a simple and reproducible method for obtaining MICs against yeast, filamentous fungi and dermatophytes in resource-constrained laboratories.

  2. Antifungal activity of the lemongrass oil and citral against Candida spp.

    Directory of Open Access Journals (Sweden)

    Cristiane de Bona da Silva

    Full Text Available Superficial mycoses of the skin are among the most common dermatological infections, and causative organisms include dermatophytic, yeasts, and non-dermatophytic filamentous fungi. The treatment is limited, for many reasons, and new drugs are necessary. Numerous essential oils have been tested for both in vitro and in vivo antifungal activity and some pose much potential as antifungal agents. By using disk diffusion assay, we evaluated the antifungal activity of lemongrass oil and citral against yeasts of Candida species (Candida albicans, C. glabrata, C. krusei, C. parapsilosis and C. tropicalis. This study showed that lemongrass oil and citral have a potent in vitro activity against Candida spp.

  3. Antibacterial and antifungal effect of high pH and paraffin wax ...

    African Journals Online (AJOL)

    The antibacterial and antifungal effects of high pH (9, 10) and paraffin wax were determined. Determination of antibacterial and antifungal activity of the combined treatments was achieved by aerobic mesophilic count of bacteria and fungi on the surface of the tomatoes, peppers and oranges using serial dilution and pour ...

  4. Preparations based on minerals extracts of Calicotome villosa roots and bovine butyrate matter: Evaluation in vitro of their antifungal activity.

    Science.gov (United States)

    Barhouchi, B; Aouadi, S; Abdi, A

    2017-06-01

    The use of preparations based on minerals extracts of Calicotome villosa and butter is born from the misuse of drugs without specific microbiological analyzes. Seventeen different preparations were performed. The antibacterial and antifungal activities were determined on five bacteria and two fungi strains respectively. C. villosa ashes are obtained by incineration of roots plant at 498°C for 4hours. They are analyzed to determine the shape of the particles and the mineral constituents by scanning electronic microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) techniques respectively. The effectiveness of preparations or tablets is measured in solid medium. It allows to measure the diameter of the inhibition zone for the antibacterial activity as well as the diameter of mycelia growth and the critical values (MIC, MFC, IC 50 and IC 90 ) for the antifungal activity. Finally, the results are compared to the activity of a commercial positive control aiming to give value of the observed activity. SEM observations reveal the presence of nanoparticles agglomerated with size of about 50nm. The EDX analyzes indicate the presence of Fe, Na, Al, Mg, Si, K, Ca, O 2 and C. Among all the results, the preparation (B s +A) or (B sd +A) can completely inhibit the growth of two fungal pathogens. The activity of the preparation is faced with the activity of the synthetic fungicide nystatin. The efficacy of the preparation (B s +A) or (B sd +A) is higher than that of nystatin against Aspergillus sp. and Fusarium sp. The preparation could serve as natural antifungal for the pharmaceutical industry. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Antioxidant and antifungal activities of two spices of mangrove plant extract

    Directory of Open Access Journals (Sweden)

    Somayeh Rastegar

    2016-10-01

    Full Text Available Objective: To evaluate the antifungal and the radical scavenging capacity related to antioxidant potential of ethanol and water extracts of leaves of Rhizophora mucronata (R. mucronata and Avicennia marina (A. marina mangrove plant species against five postharvest pathogenic bacteria. Methods: In vitro assessment of antioxidant and antifungal activities was evaluated in this present study for both aqueous and ethanol extracts prepared from leaves of A. marina and R. mucronata. The antioxidant activities of these mangroves were evaluated by using reducing power and 1,1-diphenyl-2-picrylhydrazyl assays with butylated hydroxytoluene and L-(+- ascorbic acid as standards. Results: The result showed that the antioxidant activities of all extracts increased with increasing concentration of extracts. However, the ethanol extracts of both species showed the highest antioxidant activities. Antimicrobial tests were then carried out by the disk diffusion method. The ethanol extracts of both species showed antifungal activities on Penicillium purpurogenum, Penicillium chrysogenum, Penicillium notatum, Aspergillus niger, Alternaria alternata and Penicillium italicum. However, none of the water extracts exhibited antifungal activity on the studied fungi. Among all the pathogens, tested Aspergillus flavus was the most resistant fungi. Different concentrations of extracts from A. marina and R. mucronata showed different amounts of control against tested fungal strains. Conclusions: This study indicated that mangrove species has natural antioxidant and antifungal properties.

  6. Activity of the pterophyllins 2 and 4 against postharvest fruit pathogenic fungi. Comparison with a synthetic analog and related intermediates.

    Science.gov (United States)

    Pergomet, Jorgelina L; Di Liberto, Melina G; Derita, Marcos G; Bracca, Andrea B J; Kaufman, Teodoro S

    2018-03-01

    The antifungal activity of pterophyllin 2, pterophyllin 4, a 5-desmethyl analog of the latter and some of their synthetic intermediates, against three postharvest phytopathogenic fungi, was evaluated. The target fungi were Rhizopus stolonifer, Botrytis cinerea and Monilinia fructicola, which affect fruits worldwide, causing important economic losses. The tests were carried out with imazalil and carbendazim as positive controls. Minimum inhibitory concentrations and minimum fungicidal concentrations were determined, and the morphology of the colonies was examined microscopically. In liquid medium, it was found that pterophyllin 4 exhibited selective fungicidal activity toward M. fructicola, whereas its congener pterophyllin 2 proved to be less potent and not selective and the 5-desmethyl analog of pterophyllin 4 displayed a different activity profile. Morphological changes were observed in the colonies exposed to pterophyllin 4. The results highlighted the importance of small structural features for the antifungal behavior and also suggested that, in Nature, the pterophyllins may act as plant defenses against pathogens. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Atmospheric pressure cold plasma as an antifungal therapy

    International Nuclear Information System (INIS)

    Sun Peng; Wu Haiyan; Sun Yi; Liu Wei; Li Ruoyu; Zhu Weidong; Lopez, Jose L.; Zhang Jue; Fang Jing

    2011-01-01

    A microhollow cathode based, direct-current, atmospheric pressure, He/O 2 (2%) cold plasma microjet was used to inactive antifungal resistants Candida albicans, Candida krusei, and Candida glabrata in air and in water. Effective inactivation (>90%) was achieved in 10 min in air and 1 min in water. Antifungal susceptibility tests showed drastic reduction of the minimum inhibitory concentration after plasma treatment. The inactivation was attributed to the reactive oxygen species generated in plasma or in water. Hydroxyl and singlet molecular oxygen radicals were detected in plasma-water system by electron spin resonance spectroscopy. This approach proposed a promising clinical dermatology therapy.

  8. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections.

    Directory of Open Access Journals (Sweden)

    Sarah Sze Wah Wong

    Full Text Available Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC 0.2-1.6 µg/ml. In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use.

  9. SHORT COMMUNICATION EVALUATION OF ANTIFUNGAL AND ...

    African Journals Online (AJOL)

    Preferred Customer

    The target substrates were characterized by UV, IR, 1H-NMR and 13C-NMR .... Also substituents like methyl, methoxy and hydroxyl, having +M effect that ... antibacterial and antifungal agents and can find use in biomedical area in near future.

  10. Antimicrobial and antifungal activities of Cordia dichotoma (Forster F.) bark extracts.

    Science.gov (United States)

    Nariya, Pankaj B; Bhalodia, Nayan R; Shukla, V J; Acharya, R N

    2011-10-01

    Cordia dichotoma Forst.f. bark, identified as botanical source of Shlesmataka in Ayurvedic pharmacopoeias. Present study was carried out with an objective to investigate the antibacterial and antifungal potentials of Cordia dichotoma bark. Antibacterial activity of methanol and butanol extracts of the bark was carried out against two gram negative bacteria (Escherichia coli, and Pseudomonas aeruginosa) and two Gram positive bacteria (St. pyogenes and Staphylococcus aureus). The antifungal activity of the extracts was carried out against three common pathogenic fungi (Aspergillus niger, A.clavatus, and Candida albicans). Zone of inhibition of extracts was compared with that of different standards like Amplicilline, Ciprofloxacin, Norfloxacin and Chloramphenicol for antibacterial activity and Nystain and Greseofulvin for antifungal activity. The extracts showed remarkable inhibition of zone of bacterial growth and fungal growth and the results obtained were comparable with that of standards drugs against the organisms tested. The activity of extracts increased linearly with increase in concentration of extract (mg/ml). The results showed the antibacterial and antifungal activity against the organisms tested.

  11. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt.

    Science.gov (United States)

    Aunsbjerg, S D; Honoré, A H; Marcussen, J; Ebrahimi, P; Vogensen, F K; Benfeldt, C; Skov, T; Knøchel, S

    2015-02-02

    Lactic acid bacteria with antifungal properties can be used to control spoilage of food and feed. Previously, most of the identified metabolites have been isolated from cell-free fermentate of lactic acid bacteria with methods suboptimal for detecting possible contribution from volatiles to the antifungal activity. The role of volatile compounds in the antifungal activity of Lactobacillus paracasei DGCC 2132 in a chemically defined interaction medium (CDIM) and yogurt was therefore investigated with a sampling technique minimizing volatile loss. Diacetyl was identified as the major volatile produced by L. paracasei DGCC 2132 in CDIM. When the strain was added to a yogurt medium diacetyl as well as other volatiles also increased but the metabolome was more complex. Removal of L. paracasei DGCC 2132 cells from CDIM fermentate resulted in loss of both volatiles, including diacetyl, and the antifungal activity towards two strains of Penicillium spp. When adding diacetyl to CDIM or yogurt without L. paracasei DGCC 2132, marked inhibition was observed. Besides diacetyl, the antifungal properties of acetoin were examined, but no antifungal activity was observed. Overall, the results demonstrate the contribution of diacetyl in the antifungal effect of L. paracasei DGCC 2132 and indicate that the importance of volatiles may have been previously underestimated. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. In vitro antifungal susceptibility testing of Scopulariopsis brevicaulis strains using agar diffusion method.

    Science.gov (United States)

    Skóra, Magdalena; Macura, Anna B

    2011-01-01

    The genus Scopulariopsis is a common soil saprotroph and has been isolated from air, organic waste and also from plant, animal and human tissues. Scopulariopsis has mainly been associated in humans with superficial mycoses, but it has also been described as the cause of subcutaneous and invasive infections. The most common aetiological agent of infections in humans is Scopulariopsis brevicaulis. This species has been reported to be resistant in vitro to broad-spectrum antifungal agents available today. The aim of the study was to establish in vitro antifungal susceptibility of 35 S. brevicaulis strains against amphotericin B (AMB), flucytosine (FC), caspofungin (CAS), terbinafine (TER), ciclopirox (CIC), voriconazole (VOR), clotrimazole (CTR), miconazole (MCZ), econazole (ECO), ketoconazole (KET), itraconazole (ITR), and fluconazole (FLU). Antifungal susceptibility tests were evaluated by an agar diffusion method (Neo-Sensitabs, Rosco, Denmark). AMB, FC, CAS, ITR and FLU showed no antifungal activity against S. brevicaulis. TER, CIC, CTR, KET, VOR, ECO, and MCZ revealed inhibitory activity for S. brevicaulis, but it varied for each of the drugs. The best antifungal effect was observed for TER and CIC. All isolates had large inhibition zones for TER and CIC. CTR was also inhibitory for all tested S. brevicaulis isolates, but the diameters of inhibition zones were smaller than for TER and CIC. Nearly 89% isolates showed inhibition zones for KET and the mean diameter of the inhibition zone was comparable to CTR. The least antifungal activity exhibited VQR, ECO and MCZ. Because of the multiresistance of S. brevicaulis, infections due to this species may not respond to particular antifungal treatment and other therapeutic approaches should be considered, e.g., combined therapy and/or surgery.

  13. Identification and quantification of antifungal compounds produced by lactic acid bacteria and propionibacteria.

    Science.gov (United States)

    Le Lay, Céline; Coton, Emmanuel; Le Blay, Gwenaëlle; Chobert, Jean-Marc; Haertlé, Thomas; Choiset, Yvan; Van Long, Nicolas Nguyen; Meslet-Cladière, Laurence; Mounier, Jérôme

    2016-12-19

    Fungal growth in bakery products represents the most frequent cause of spoilage and leads to economic losses for industrials and consumers. Bacteria, such as lactic acid bacteria and propionibacteria, are commonly known to play an active role in preservation of fermented food, producing a large range of antifungal metabolites. In a previous study (Le Lay et al., 2016), an extensive screening performed both in vitro and in situ allowed for the selection of bacteria exhibiting an antifungal activity. In the present study, active supernatants against Penicillium corylophilum and Aspergillus niger were analyzed to identify and quantify the antifungal compounds associated with the observed activity. Supernatant treatments (pH neutralization, heating and addition of proteinase K) suggested that organic acids played the most important role in the antifungal activity of each tested supernatant. Different methods (HPLC, mass spectrometry, colorimetric and enzymatic assays) were then applied to analyze the supernatants and it was shown that the main antifungal compounds corresponded to lactic, acetic and propionic acids, ethanol and hydrogen peroxide, as well as other compounds present at low levels such as phenyllactic, hydroxyphenyllactic, azelaic and caproic acids. Based on these results, various combinations of the identified compounds were used to evaluate their effect on conidial germination and fungal growth of P. corylophilum and Eurotium repens. Some combinations presented the same activity than the bacterial culture supernatant thus confirming the involvement of the identified molecules in the antifungal activity. The obtained results suggested that acetic acid was mainly responsible for the antifungal activity against P. corylophilum and played an important role in E. repens inhibition. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    Directory of Open Access Journals (Sweden)

    Seung-Bae Lee

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV and sweet bee venom (SBV against Candida albicans (C. albicans clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates.

  15. nanohybrid composites as antimicrobial, antifungal and anticancer platforms

    Directory of Open Access Journals (Sweden)

    D. Demircan

    2018-08-01

    Full Text Available This work presents a new approach to synthesize the colloidal ODA-MMT-poly(maleic anhydride-alt-1-dodecene-g-α,ω-methoxyhydroxyl-PEO/silver nanoparticles (AgNPs nanohybrid composites (NHC using the following synthetic pathways: (1 complex-radical alternating copolymerization of maleic anhydride with 1-dodecene α-olefin comonomer, (2 grafting of PEO onto alternating copolymer through esterification, (3 intercalating a copolymer-g-PEO between organoclay layers via complex formation of maleate carboxyl with octadecyl amine, and (4 in situ generation of AgNPs in polymer nanocomposite by annealing method under vacuum. The obtained multifunctional NHCs with different contents of AgNPs were characterized by UV spectroscopy, ζ-potential and size analysis methods. It was demonstrated that annealing of the colloidal NHC is accompanied with in situ generation of stable and partially protonated AgNPs due to specific reducing and stabilizing effects of multifunctional matrix polymer contained positively charged reactive and bioactive sites. Antibacterial and antifungal activities against Gram-negative and Gram-positive bacteria and fungal microorganism were investigated. The cytotoxic, apoptotic and necrotic effects in NHC/L929 fibroblast cells systems were evaluated. The synthesized watersoluble, biocompatible, and bioactive colloidal NHCs are promising candidate for a wide-range of applications in air filtration, food packaging systems, bioengineering, especially in tissue regeneration and nanomedicine.

  16. Enhancement of the antifungal activity of antimicrobial drugs by Eugenia uniflora L.

    Science.gov (United States)

    Santos, Karla K A; Matias, Edinardo F F; Tintino, Saulo R; Souza, Celestina E S; Braga, Maria F B M; Guedes, Gláucia M M; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique Douglas Melo

    2013-07-01

    Candidiasis is the most frequent infection by opportunistic fungi such as Candida albicans, Candida tropicalis, and Candida krusei. Ethanol extract from Eugenia uniflora was assayed, for its antifungal activity, either alone or combined with four selected chemotherapeutic antimicrobial agents, including anphotericin B, mebendazole, nistatin, and metronidazole against these strains. The obtained results indicated that the association of the extract of E. uniflora to metronidazole showed a potential antifungal activity against C. tropicalis. However, no synergistic activity against the other strains was observed, as observed when the extract was associated with the other, not enhancing their antifungal activity.

  17. Antifungal Activity of Bacillus coagulans TQ33, Isolated from Skimmed Milk Powder, against Botrytis cinerea

    Directory of Open Access Journals (Sweden)

    Rui Feng Xiao

    2013-01-01

    Full Text Available Bacillus coagulans TQ33 is isolated from the skimmed milk powder and has a broad antifungal activity against pathogens such as Botrytis cinerea, Alternaria solani, Phytophthora drechsleri Tucker, Fusarium oxysporum and Glomerella cingulata. The characteristics of active antifungal substances produced by B. coagulans TQ33 and its antifungal effects against the growth of plant pathogenic fungi has been evaluated. The effect of pH, temperature and protease on the antifungal activity of B. coagulans TQ33 was determined. The results of partial characterization of the antifungal compound indicated that its activity is likely to be due to the production of a proteinaceous substance together with other substances. The greenhouse trials suggest that B. coagulans TQ33 has a great potential for the control of plant pathogenic fungi.

  18. Determination of antifungal susceptibility patterns among the clinical isolates of Candida species

    Directory of Open Access Journals (Sweden)

    Kamiar Zomorodian

    2011-01-01

    Full Text Available Context: Candida species are opportunistic yeasts that cause infections ranging from simple dermatosis to potentially life-threatening fungemia. The emergence of resistance to antifungal drugs has been increased in the past two decades. Aim: the present study we determined to find out the susceptibility profiles of clinical isolates of Candida species against four antifungal drugs, including amphotericin B, ketoconazole, fluconazole and itraconazole. Materials and Methods: Antifungal susceptibility testing of the yeasts was done in accordance with the proposed guidelines for antifungal disk diffusion susceptibility testing of yeasts based on the CLSI document M44-A. Results: A total of 206 yeast isolates were assessed. Among the evaluated Candida species, the highest rates of resistance to ketoconazole were seen in Candida glabrata (16.6% and Candida albicans (3.2%. Susceptibility and intermediate response to fluconazole were seen in 96.6% and 3.4% of the Candida isolates, respectively. A total of 19 (9.2% yeast isolates showed petite phenomenon including 11 C. glabrata, 3 C. albicans, 2 Candida dubliniensis and one isolate of each Candida krusei and Candida parapsilosis. Conclusion: The high number of petite mutation in the isolated yeasts should be seriously considered since it may be one of the reasons of antifungal treatment failure.

  19. Study on mutagenic breeding of bacillus subtilis and properties of its antifungal substances

    International Nuclear Information System (INIS)

    Liu Jing; Yao Jianming

    2004-01-01

    Bacillus subtilis JA isolated by our laboratory produced a large amount of antifungal substances, which had strong inhibitory activity against various plant pathogenic fungi, such as Rhizoctonia solani, Fusarium graminearum and so on. Ion beam implantation as a new mutagenic methods was applied in our study. After B. subtilis JA was implanted by N + ions, a strain designated as B. Subtilis JA-026 was screened and obtained, which had a higher ability to produce those antifungal substances. A series of experiments indicated that the antifungal substances were thermostable and partially sensitive to proteinases K and tryproteinase. When the fermentating broth was fractionated with ammonium sulphate of a final saturation of 70%, the precipitate enhanced inhibitory activity while the supernatant lost this activity. It appeared that the antifungal substances were likely to be protein. (authors)

  20. Antifungal effect of thymol, thymoquinone and thymohydroquinone ...

    African Journals Online (AJOL)

    Several human pathogenic fungi can acquire resistance against the available antifungal compounds or need ... Thymol, thymoquinone (TQ) and thymohydroquinone (THQ) are principle constituents of the essential oil of Nigella sativa seeds.

  1. Candidal colonization, strain diversity, and antifungal susceptibility among adult diabetic patients.

    Science.gov (United States)

    Al-Attas, Safia A; Amro, Soliman O

    2010-01-01

    Candidal colonization in diabetics is a matter of debate. The aim of this study is to investigate oral candidal colonization, strain diversity, antifungal susceptibility, and the influence of local and systemic host factors on candidal colonization in adult diabetics. We conducted a case-control study that compared 150 diabetics (49 type 1, 101 type 2) with 50 healthy controls. Two salivary samples were collected, using the oral rinse sampling method: one for salivary flow rate and pH determination, and the other for candidal colonization assessment. The candidal isolates were identified and tested in vitro for antifungal susceptibility using the commercial kit, Candifast. The relationship between specific host factors and candidal colonization was also investigated. Diabetics had a higher candidal carriage rate compared to controls, but not density. Candida albicans was the most frequently isolated species, but diabetics had a variety of other candidal species present. None of the control samples were resistant to any tested antifungal, while the diabetic samples had differing resistances to azole antifungals. Although there was a significant positive correlation between glycemic control and candidal colonization in type 2 diabetics, there was a negative correlation between salivary pH and candidal carriage in the controls versus density in type 2 diabetics. Diabetic patients not only had a higher candidal carriage rate, but also a variety of candidal species that were resistant to azole antifungals. Oral candidal colonization was significantly associated with glycemic control, type of diabetes, and salivary pH.

  2. First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus.

    Science.gov (United States)

    Skouri-Gargouri, Houda; Gargouri, Ali

    2008-11-01

    A novel antifungal peptide produced by an indigenous fungal strain (VR) of Aspergillus clavatus was purified. The antifungal peptide was enriched in the supernatant after heat treatment at 70 degrees C. The thermostable character was exploited in the first purification step, as purified peptide was obtained after ultrafiltration and reverse phase-HPLC on C18 column application. The purified peptide named "AcAFP" for A. clavatus antifungal peptide, has molecular mass of 5773Da determined by MALDI-ToF spectrometry. The N-terminal sequence showed a notable identity to the limited family of antifungal peptides produced by ascomycetes fungi. The AcAFP activity remains intact even after heat treatment at 100 degrees C for 1h confirming its thermostability. It exhibits a strong inhibitory activity against mycelial growth of several serious human and plant pathogenic fungi: Fusariuym oxysporum, Fusarium solani, Aspergillus niger, Botrytis cinerea, Alternaria solani, whereas AcAFP did not affect yeast and bacterial growth.

  3. Antifungal activity and molecular identification of endophytic fungi ...

    African Journals Online (AJOL)

    Antifungal activity and molecular identification of endophytic fungi from the angiosperm Rhodomyrtus tomentosa. Juthatip Jeenkeawpieam, Souwalak Phongpaichit, Vatcharin Rukachaisirikul, Jariya Sakayaroj ...

  4. Antimycotoxigenic and antifungal activities of Citrullus colocynthis ...

    African Journals Online (AJOL)

    user

    2013-10-23

    Oct 23, 2013 ... may have significant potential for biological control of fungi and theirs toxins. Key words: Citrullus .... antifungal, antiaflatoxigenic and antiochratoxigenic effect ... C. colocynthis Schrad. fruits were collected in December (2010).

  5. EPICO 3.0. Antifungal prophylaxis in solid organ transplant recipients.

    Science.gov (United States)

    Zaragoza, Rafael; Aguado, José María; Ferrer, Ricard; Rodríguez, Alejandro H; Maseda, Emilio; Llinares, Pedro; Grau, Santiago; Muñoz, Patricia; Fortún, Jesús; Bouzada, Mercedes; Pozo, Juan Carlos Del; León, Rafael

    Although over the past decade the management of invasive fungal infection has improved, considerable controversy persists regarding antifungal prophylaxis in solid organ transplant recipients. To identify the key clinical knowledge and make by consensus the high level recommendations required for antifungal prophylaxis in solid organ transplant recipients. Spanish prospective questionnaire, which measures consensus through the Delphi technique, was conducted anonymously and by e-mail with 30 national multidisciplinary experts, specialists in invasive fungal infections from six national scientific societies, including intensivists, anesthetists, microbiologists, pharmacologists and specialists in infectious diseases that responded to 12 questions prepared by the coordination group, after an exhaustive review of the literature in the last few years. The level of agreement achieved among experts in each of the categories should be equal to or greater than 70% in order to make a clinical recommendation. In a second term, after extracting the recommendations of the selected topics, a face-to-face meeting was held with more than 60 specialists who were asked to validate the pre-selected recommendations and derived algorithm. Echinocandin antifungal prophylaxis should be considered in liver transplant with major risk factors (retransplantation, renal failure requiring dialysis after transplantation, pretransplant liver failure, not early reoperation, or MELD>30); heart transplant with hemodialysis, and surgical re-exploration after transplantation; environmental colonization by Aspergillus, or cytomegalovirus (CMV) infection; and pancreas and intestinal transplant in case of acute graft rejection, hemodialysis, initial graft dysfunction, post-perfusion pancreatitis with anastomotic problems or need for laparotomy after transplantation. Antifungal fluconazole prophylaxis should be considered in liver transplant without major risk factors and MELD 20-30, split or living

  6. Antifungal activity of streptomycetes isolated bentonite clay

    Directory of Open Access Journals (Sweden)

    V. P. Shirobokov

    2016-12-01

    Full Text Available Aim. To investigate the biological activity of streptomycetes, isolated from Ukrainian bentonite clay. Methods. For identification of the investigated microorganisms there were used generally accepted methods for study of morpho-cultural and biochemical properties and sequencing of 16Ѕ rRNA producer. Antagonistic activity of the strain was determined by agar diffusion and agar block method using gram-positive, gram-negative microorganisms and fungi. Results. Research of autochthonous flora from bentonite clay of Ukrainian various deposits proved the existence of stable politaxonomic prokaryotic-eukaryotic consortia there. It was particularly interesting that the isolated microorganisms had demonstrated clearly expressed antagonistic properties against fungi. During bacteriological investigation this bacterial culture was identified like representative of the genus Streptomyces. Bentonite streptomycetes, named as Streptomyces SVP-71, inagar mediums (agar block method inhibited the growth of fungi (yeast and mold; zones of growth retardation constituted of 11-36 mm, and did not affect the growth of bacteria. There were investigated the inhibitory effects of supernatant culture fluid, ethanol and butanol extracts of biomass streptomycetes on museum and clinical strains of fungi that are pathogenic for humans (Candida albicans, C. krusei, C. utilis, C. parapsilosis, C. tropicalis, C. kefir, S. glabrata, C. lusitaniae, Aspergillus niger, Mucor pusillus, Fusarium sporotrichioides. It has been shown that research antifungal factor had 100% of inhibitory effect against all fungi used in experiments in vitro. In parallel, it was found that alcohol extracts hadn’t influence to the growth of gram-positive and gram-negative bacteria absolutely. It was shown that the cultural fluid supernatant and alcoholic extracts of biomass had the same antagonistic effect, but with different manifestation. This evidenced about identity of antifungal substances

  7. Clinico-mycological study of dermatophytic infections and their sensitivity to antifungal drugs in a tertiary care center

    Directory of Open Access Journals (Sweden)

    Soniya Mahajan

    2017-01-01

    Conclusion: Inadequate and irregular use of antifungal drugs has led to the emergence of resistant strains, which cause poor treatment outcomes. Thus, it is very important to test for antifungal sensitivity to check for resistance to antifungals.

  8. In Vitro Antifungal Activity of Allium Hirtifolium in Comparison With Miconazole

    Directory of Open Access Journals (Sweden)

    Manijheh Motevallian

    2010-05-01

    Full Text Available Objective:Shallots are important part of the diet for many people and there is long-held belief in their health enhancing properties. The aim of this study was to determine antifungal activity of shallot against reference fungal strains.Methods:Alcoholic and aqueous extracts of shallot (Allium hirtifoliumwere tested for in vitro antifungal activities against Aspergillus fumigatus, Aspergillus   flavus, Aspergillus niger, Penicillium gryseogenum, Alternaria, Microsporum canis and Trichophyton mentagrophytes. The minimal inhibitory concentration (MICwas determined using broth macrodilution method. The effects of shallot extracts   were also compared with those of miconazole.Results:Allium hirtifolium showed antifungal activity against all the fungi species tested with MIC values ranging from 0.058 to 0.8 mg/ml for alcoholic extract and 0.26 to 3.84 mg/ml for aqueous extract.The minimum fungicidal concentration (MFC of alcoholic and aqueous extracts ranged from 0.1 to 12.8 mg/ml and 0.6 to 68.26mg/ml, respectively.Conclusions: The results indicate that crude juice of shallot has antifungal activity and might be promising, at least, in treatment of fungal-associated diseases from mentioned fungi.  

  9. Plant latex: a promising antifungal agent for post harvest disease control.

    Science.gov (United States)

    Sibi, G; Wadhavan, Rashmi; Singh, Sneha; Shukla, Abhilasha; Dhananjaya, K; Ravikumar, K R; Mallesha, H

    2013-12-01

    Bioactive compounds from plant latex are potential source of antifungic against post harvest pathogens. Latex from a total of seven plant species was investigated for its phytochemical and antifungal properties. Six fungi namely Aspergillus fumigatus, A. niger, A. terreus, F. solani, P. digitatum and R. arrhizus were isolated from infected fruits and vegetables and tested against various solvent extracts of latex. Analysis of latex extracts with phytochemical tests showed the presence of alkaloids, flavonoids, glycosides, phenols, saponins, steroids, tannins and terpenoids. Antifungal assay revealed the potential inhibitory activity of petroleum ether extracts against the postharvest fungal isolates. Various degree of sensitivity was observed irrespective of plant species studied with A. terreus and P. digitatum as the most susceptible ones. F. solani and A. fumigatus were moderately sensitive to the latex extracts tested. Among the plants, latex of Thevetia peruviana (75.2%) and Artocarpus heterophyllus (64.8%) were having potential antifungal activity against the isolates followed by Manilkara zapota (51.1%). In conclusion, use of plant latex makes interest to control postharvest fungal diseases and is fitting well with the concept of safety for human health and environment.

  10. Synthesis and preliminary evaluation of N-acylhydrazone compounds as antibacterial and antifungal agents; Sintese e avaliacao preliminar da atividade antibacteriana e antifungica de derivados N-acilidrazonicos

    Energy Technology Data Exchange (ETDEWEB)

    Cachiba, Thomas Haruo; Carvalho, Bruno Demartini; Carvalho, Diogo Teixeira [Universidade Federal de Alfenas, MG (Brazil). Fac. de Ciencias Farmaceuticas. Dept. de Alimentos e Medicamentos; Cusinato, Marina; Prado, Clara Gaviao; Dias, Amanda Latercia Tranches, E-mail: diogo.carvalho@unifal-mg.edu.br [Universidade Federal de Alfenas, MG (Brazil). Inst. de Ciencias Biomedicas

    2012-07-01

    We describe the synthesis and evaluation of N-acylhydrazone compounds bearing different electron-donating groups in one of its aromatic rings, obtained using a four-step synthetic route. IC{sub 50} values against pathogenic fungi and bacteria were determined by serial microdilution. Compounds showed low activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. By contrast, a derivative with a meta-oriented electron-donating group showed significant activity (IC50) against Candida albicans (17 {mu}M), C. krusei (34 {mu}M) and C. tropicalis (17 {mu}M). Results suggest this is a promising lead-compound for synthesis of potent antifungal agents. (author)

  11. Antibacterial and Antifungal Activities of Spices

    Science.gov (United States)

    Liu, Qing; Meng, Xiao; Li, Ya; Zhao, Cai-Ning; Tang, Guo-Yi; Li, Hua-Bin

    2017-01-01

    Infectious diseases caused by pathogens and food poisoning caused by spoilage microorganisms are threatening human health all over the world. The efficacies of some antimicrobial agents, which are currently used to extend shelf-life and increase the safety of food products in food industry and to inhibit disease-causing microorganisms in medicine, have been weakened by microbial resistance. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Many spices—such as clove, oregano, thyme, cinnamon, and cumin—possessed significant antibacterial and antifungal activities against food spoilage bacteria like Bacillus subtilis and Pseudomonas fluorescens, pathogens like Staphylococcus aureus and Vibrio parahaemolyticus, harmful fungi like Aspergillus flavus, even antibiotic resistant microorganisms such as methicillin resistant Staphylococcus aureus. Therefore, spices have a great potential to be developed as new and safe antimicrobial agents. This review summarizes scientific studies on the antibacterial and antifungal activities of several spices and their derivatives. PMID:28621716

  12. Lipid Biosynthesis as an Antifungal Target

    Directory of Open Access Journals (Sweden)

    Jiao Pan

    2018-04-01

    Full Text Available Lipids, commonly including phospholipids, sphingolipids, fatty acids, sterols, and triacylglycerols (TAGs, are important biomolecules for the viability of all cells. Phospholipids, sphingolipids, and sterols are important constituents of biological membranes. Many lipids play important roles in the regulation of cell metabolism by acting as signaling molecules. Neutral lipids, including TAGs and sterol esters (STEs, are important storage lipids in cells. In view of the importance of lipid molecules, this review briefly summarizes the metabolic pathways for sterols, phospholipids, sphingolipids, fatty acids, and neutral lipids in fungi and illustrates the differences between fungal and human (or other mammalian cells, especially in relation to lipid biosynthetic pathways. These differences might provide valuable clues for us to find target proteins for novel antifungal drugs. In addition, the development of lipidomics technology in recent years has supplied us with a shortcut for finding new antifungal drug targets; this ability is important for guiding our research on pathogenic fungi.

  13. Activation of Melanin Synthesis in Alternaria infectoria by Antifungal Drugs.

    Science.gov (United States)

    Fernandes, Chantal; Prados-Rosales, Rafael; Silva, Branca M A; Nakouzi-Naranjo, Antonio; Zuzarte, Mónica; Chatterjee, Subhasish; Stark, Ruth E; Casadevall, Arturo; Gonçalves, Teresa

    2015-12-28

    The importance of Alternaria species fungi to human health ranges from their role as etiological agents of serious infections with poor prognoses in immunosuppressed individuals to their association with respiratory allergic diseases. The present work focuses on Alternaria infectoria, which was used as a model organism of the genus, and was designed to unravel melanin production in response to antifungals. After we characterized the pigment produced by A. infectoria, we studied the dynamics of 1,8-dihydroxynaphthalene (DHN)-melanin production during growth, the degree of melanization in response to antifungals, and how melanization affected susceptibility to several classes of therapeutic drugs. We demonstrate that A. infectoria increased melanin deposition in cell walls in response to nikkomycin Z, caspofungin, and itraconazole but not in response to fluconazole or amphotericin B. These results indicate that A. infectoria activates DHN-melanin synthesis in response to certain antifungal drugs, possibly as a protective mechanism against these drugs. Inhibition of DHN-melanin synthesis by pyroquilon resulted in a lower minimum effective concentration (MEC) of caspofungin and enhanced morphological changes (increased hyphal balloon size), characterized by thinner and less organized A. infectoria cell walls. In summary, A. infectoria synthesizes melanin in response to certain antifungal drugs, and its susceptibility is influenced by melanization, suggesting the therapeutic potential of drug combinations that affect melanin synthesis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Essential oil of Algerian Eucalyptus citriodora: Chemical composition, antifungal activity.

    Science.gov (United States)

    Tolba, H; Moghrani, H; Benelmouffok, A; Kellou, D; Maachi, R

    2015-12-01

    Essential oil of Eucalyptus citriodora is a natural product which has been attributed for various medicinal uses. In the present investigation, E. citriodora essential oil was used to evaluate its antifungal effect against medically important dermatophytes. Essential oil from the Algerian E. citriodora leaves was analyzed by GC and GC/MS. The antifungal effect of E. citriodora essential oil was evaluated against four dermatophytes: Microsporum canis, Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum using disc diffusion method, disc volatilization method, and agar dilution method. The chemical composition of the oil revealed the presence of 22 compounds accounting for 95.27% of the oil. The dominant compounds were citronellal (69.77%), citronellol (10.63%) and isopulegol (4.66%). The disc diffusion method, MIC and MFC determination, indicated that E. citriodora essential oil had a higher antifungal potential against the tested strains with inhibition zone diameter which varied from (12 to 90mm) and MIC and MFC values ranged from (0.6 to 5μL/mL and 1.25 to 5μL/mL) respectively. The M. gypseum was the most resistant to the oil. The results of the present study indicated that E. citriodora essential oil may be used as a new antifungal agent recommended by the pharmaceutical industries. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. Some Antifungal Properties of Sorbic Acid Extracted from Berries of Rowan (Sorbus Aucuparia).

    Science.gov (United States)

    Brunner, Ulrich

    1985-01-01

    The food preservative sorbic acid can be extracted from Eurasian mountain ash berries (commercially available) and used to show antifungal properties in microbiological investigations. Techniques for extraction, purification, ultraviolet analysis, and experiments displaying antifungal activity are described. A systematic search for similar…

  16. Effect of 2-Phenylethanol as Antifungal Agent and Common Antifungals (Amphotericin B, Fluconazole, and Itraconazole) on Candida Species Isolated from Chronic and Recurrent Cases of Candidal Vulvovaginitis.

    Science.gov (United States)

    Majdabadi, Niloufar; Falahati, Mehraban; Heidarie-Kohan, Fariba; Farahyar, Shirin; Rahimi-Moghaddam, Parvaneh; Ashrafi-Khozani, Mahtab; Razavi, Tandis; Mohammadnejad, Sina

    2018-04-01

    The antifungal effects of 2-phenylethanol are clearly visible through its intervention in Candida morphogenesis. Chronic and recurrent vulvovaginitis, however, does not respond to this standard experimental therapy; therefore, the study presented in this article investigated the effect of common antifungal drugs (amphotericin B [AMB], fluconazole [FLU], and itraconazole [ITC]), in combination with 2-phenylethanol, on the Candida species isolated from cases of chronic and recurrent vulvovaginitis, thereby allowing the recommendation of a more appropriate treatment option. Forty isolates from patients with chronic and recurrent vaginal candidiasis were investigated in this experimental study. The specimens were examined by direct microscopy, culturing, and PCR to identify the species. The antifungal effects of 2-phenylethanol and conventional drugs, both alone and in combination, were determined in duplicate. Finally, the findings were analyzed. In this study, 40 strains of Candida species were identified, whose agents were Candida albicans (95%) and Candida africana (5%). After 48 h, the minimum inhibitory concentration (MIC) range of the 2-phenylethanol was 800-3,200 μg/mL. Also, in the final study on the MIC levels of common antifungal drugs, AMB (0.42 μg/mL) had the lowest MIC, FLU (40.51 μg/mL) had the highest MIC, and the combination of ITC and 2-phenylethanol had the lowest fractional inhibitory concentration index (FICI) of any of the combinations (FICI range, 0.26-1.03). Combining FLU and ITC with 2-phenylethanol can effectively increase their antifungal effect.

  17. Antifungal activity of polycyclic aromatic hydrocarbons against Ligninolytic fungi

    Directory of Open Access Journals (Sweden)

    Memić Mustafa

    2011-01-01

    Full Text Available Environmental contamination by polycyclic aromatic hydrocarbons (PAHs has caused increasing concern because of their known, or suspected, carcinogenic and mutagenic effects. Polycyclic aromatic hydrocarbons occurring in the environment are usually the result of the incomplete combustion of carbon containing materials. The main sources of severe PAHs contamination in soil come from fossil fuels, i.e. production or use of fossil fuels or their products, such as coal tar and creosote. Creosote is used as a wood preservation for railway ties, bridge timbers, pilling and large-sized lumber. It consists mainly of PAHs, phenol and cresol compounds that cause harmful health effects. Research on biodegradation has shown that a special group of microorganisms, the white-rot fungi and brown-rot fungi, has a remarkable potential to degrade PAHs. This paper presents a study of the antifungal activity of 12 selected PAHs against two ligninolytic fungi Hypoxylon fragiforme (white rot and Coniophora puteana (brown rot. The antifungal activity of PAHs was determined by the disc-diffusion method by measuring the diameter of the zone of inhibition. The results showed that the antifungal activity of the tested PAHs (concentration of 2.5 mmol/L depends on the their properties such as molar mass, solubility in water, values of log Kow, ionization potential and Henry’s Law constant as well as number of aromatic rings, molecule topology or pattern of ring linkage. Among the 12 investigated PAHs, benzo(k fluoranthene with five rings, and pyrene with four cyclic condensed benzene rings showed the highest antifungal activity.

  18. In vitro and in vivo antifungal activities of selected Cameroonian dietary spices.

    Science.gov (United States)

    Dzoyem, Jean Paul; Tchuenguem, Roland T; Kuiate, Jules R; Teke, Gerald N; Kechia, Frederick A; Kuete, Victor

    2014-02-17

    Spices and herbs have been used in food since ancient times to give taste and flavor and also as food preservatives and disease remedies. In Cameroon, the use of spices and other aromatic plants as food flavoring is an integral part of dietary behavior, but relatively little is known about their antifungal potential.The present work was designed to assess the antifungal properties of extracts from spices used in Cameroonian dietary. The in vitro antifungal activities of twenty three extracts from twenty one spices were assessed by the broth micro-dilution method against eight fungi. Also, the in vivo activity of Olax subscorpioidea extract (the most active extract) was evaluated in rat model of disseminated candidiasis due to Candida albicans by estimating the fungal burden in blood and kidney. Seven extracts (30%) exhibited moderate to significant antifungal activities, inhibiting the growth of the microorganisms at concentrations ranging from 0.048 to 0.39 mg/mL. Olax subscorpioidea extract exhibited the highest antifungal activity particularly against Candida albicans and Candida tropicalis (MIC of 0.097 mg/mL and 0.048 mg/mL respectively). Sixteen extracts (70%) were weakly active (MICs > 6.25 mg/mL). Oral administration of O. subscorpioidea extract at the dose 2 g/kg of body weight (bw) to artificially infected rats revealed a drop in the number of colony forming units per milliliter (cfu/mL) of Candida albicans cells in the blood below the detection limit (100 cfu/mL) while a modest decrease was observed in the kidney. The present work shows that some of the spices studied possess interesting antifungal properties and could be used to treat candidiasis. Among the plant species tested, Olax subscorpioidea displayed the most promising result.

  19. Prenatal exposure to antifungal medication may change anogenital distance in male offspring

    DEFF Research Database (Denmark)

    Mogensen, Djamilla Madelung; Pihl, Maria Bergkvist; Skakkebæk, Niels Erik

    2017-01-01

    (AGDap) and penile width; measured at the base of the penis. Results: Eighty seven women had used antifungal medicine during pregnancy. Maternal use of oral fluconazole (n = 4) was associated with a 6.4 mm shorter AGDas (95% CI: -11.9;-0.9) in the male offspring. Use of antifungal vaginal tablets (n = 21...

  20. pH-Dependant Antifungal Activity of Valproic Acid against the Human Fungal Pathogen Candida albicans

    Directory of Open Access Journals (Sweden)

    Julien Chaillot

    2017-10-01

    Full Text Available Current antifungal drugs suffer from limitations including toxicity, the emergence of resistance and decreased efficacy at low pH that are typical of human vaginal surfaces. Here, we have shown that the antipsychotic drug valproic acid (VPA exhibited a strong antifungal activity against both sensitive and resistant Candida albicans in pH condition similar to that encountered in vagina. VPA exerted a strong anti-biofilm activity and attenuated damage of vaginal epithelial cells caused by C. albicans. We also showed that VPA synergizes with the allylamine antifungal, Terbinafine. We undertook a chemogenetic screen to delineate biological processes that underlies VPA-sensitivity in C. albicans and found that vacuole-related genes were required to tolerate VPA. Confocal fluorescence live-cell imaging revealed that VPA alters vacuole integrity and support a model where alteration of vacuoles contributes to the antifungal activity. Taken together, this study suggests that VPA could be used as an effective antifungal against vulvovaginal candidiasis.

  1. Nanoparticles as safe and effective delivery systems of antifungal agents: Achievements and challenges.

    Science.gov (United States)

    Soliman, Ghareb M

    2017-05-15

    Invasive fungal infections are becoming a major health concern in several groups of patients leading to severe morbidity and mortality. Moreover, cutaneous fungal infections are a major cause of visits to outpatient dermatology clinics. Despite the availability of several effective agents in the antifungal drug arena, their therapeutic outcome is less than optimal due to limitations related to drug physicochemical properties and toxicity. For instance, poor aqueous solubility limits the formulation options and efficacy of several azole antifungal drugs while toxicity limits the benefits of many other drugs. Nanoparticles hold great promise to overcome these limitations due to their ability to enhance drug aqueous solubility, bioavailability and antifungal efficacy. Further, drug incorporation into nanoparticles could greatly reduce its toxicity. Despite these interesting nanoparticle features, there are only few marketed nanoparticle-based antifungal drug formulations. This review sheds light on different classes of nanoparticles used in antifungal drug delivery, such as lipid-based vesicles, polymeric micelles, solid lipid nanoparticles, nanostructured lipid carriers, nanoemulsions and dendrimers with emphasis on their advantages and limitations. Translation of these nanoformulations from the lab to the clinic could be facilitated by focusing the research on overcoming problems related to nanoparticle stability, drug loading and high cost of production and standardization. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Antifungal and Antibacterial Metabolites from a French Poplar Type Propolis

    Directory of Open Access Journals (Sweden)

    Séverine Boisard

    2015-01-01

    Full Text Available During this study, the in vitro antifungal and antibacterial activities of different extracts (aqueous and organic obtained from a French propolis batch were evaluated. Antifungal activity was evaluated by broth microdilution on three pathogenic strains: Candida albicans, C. glabrata, and Aspergillus fumigatus. Antibacterial activity was assayed using agar dilution method on 36 Gram-negative and Gram-positive strains including Staphylococcus aureus. Organic extracts showed a significant antifungal activity against C. albicans and C. glabrata (MIC80 between 16 and 31 µg/mL but only a weak activity towards A. fumigatus (MIC80 = 250 µg/mL. DCM based extracts exhibited a selective Gram-positive antibacterial activity, especially against S. aureus (SA and several of its methicillin-resistant (MRSA and methicillin-susceptible (MSSA strains (MIC100 30–97 µg/mL. A new and active derivative of catechin was also identified whereas a synergistic antimicrobial effect was noticed during this study.

  3. Chemical Composition of Essential Oilsof Thymus and Mentha Speciesand Their Antifungal Activities

    Directory of Open Access Journals (Sweden)

    Leo J. L. D. van Griensven

    2009-01-01

    Full Text Available The potential antifungal effects of Thymus vulgaris L., Thymus tosevii L., Mentha spicata L., and Mentha piperita L. (Labiatae essential oils and their components against 17 micromycetal food poisoning, plant, animal and human pathogens are presented. The essential oils were obtained by hydrodestillation of dried plant material. Their composition was determined by GC-MS. Identification of individual constituents was made by comparison with analytical standards, and by computer matching mass spectral data with those of the Wiley/NBS Library of Mass Spectra. MIC’s and MFC’s of the oils and their components were determined by dilution assays. Thymol (48.9% and p-cymene (19.0% were the main components of T. vulgaris, while carvacrol (12.8%, a-terpinyl acetate (12.3%, cis-myrtanol (11.2% and thymol (10.4% were dominant in T. tosevii. Both Thymus species showed very strong antifungal activities. In M. piperita oil menthol (37.4%, menthyl acetate (17.4% and menthone (12.7% were the main components, whereas those of M. spicata oil were carvone (69.5% and menthone (21.9%. Mentha sp. showed strong antifungal activities, however lower than Thymus sp. The commercial fungicide, bifonazole, used as a control, had much lower antifungal activity than the oils and components investigated. It is concluded that essential oils of Thymus and Mentha species possess great antifungal potential and could be used as natural preservatives and fungicides.

  4. Synthesis, Structure Optimization and Antifungal Screening of Novel Tetrazole Ring Bearing Acyl-Hydrazones

    Directory of Open Access Journals (Sweden)

    Manzoor A. Malik

    2012-08-01

    Full Text Available Azoles are generally fungistatic, and resistance to fluconazole is emerging in several fungal pathogens. In an attempt to find novel azole antifungal agents with improved activity, a series of tetrazole ring bearing acylhydrazone derivatives were synthesized and screened for their in vitro antifungal activity. The mechanism of their antifungal activity was assessed by studying their effect on the plasma membrane using flow cytometry and determination of the levels of ergosterol, a fungal-specific sterol. Propidium iodide rapidly penetrated a majority of yeast cells when they were treated with the synthesized compounds at concentrations just above MIC, implying that fungicidal activity resulted from extensive lesions of the plasma membrane. Target compounds also caused a considerable reduction in the amount of ergosterol. The results also showed that the presence and position of different substituents on the phenyl ring of the acylhydrazone pendant seem to play a role on the antifungal activity as well as in deciding the fungistatic and fungicidal nature of the compounds.

  5. Antifungal activity of essential oils on Aspergillus parasiticus isolated from peanuts

    Directory of Open Access Journals (Sweden)

    Yooussef Mina M.

    2016-04-01

    Full Text Available Aspergillus parasiticus is one of the most common fungi which contaminates peanuts by destroying peanut shells before they are harvested and the fungus produces aflatoxins. The aim of this study was to evaluate the antifungal activities of seventeen essential oils on the growth of the aflatoxigenic form of A. parasiticus in contaminated peanuts from commercial outlets in Georgia. The agar dilution method was used to test the antifungal activity of essential oils against this form of A. parasiticus at various concentrations: 500; 1,000; 1,500; 2,000; 2,500 ppm. Among the seventeen essential oils tested, the antifungal effect of cinnamon, lemongrass, clove and thyme resulted in complete inhibition of mycelial growth. Cinnamon oil inhibited mycelial growth at ≥ 1,000 ppm, lemongrass and clove oils at ≥ 1,500 ppm and thyme at 2,500 ppm. However, cedar wood, citronella, cumin and peppermint oils showed partial inhibition of mycelial growth. Eucalyptus oil, on the other hand, had less antifungal properties against growth of A. parasiticus, irrespective of its concentration. Our results indicate that the aflatoxigenic form of A. parasiticus is sensitive to selected essential oils, especially cinnamon. These findings clearly indicate that essential oils may find a practical application in controlling the growth of A. parasiticus in stored peanuts.

  6. Synthesis and characterization of dithiocarbamate chitosan derivatives with enhanced antifungal activity.

    Science.gov (United States)

    Qin, Yukun; Liu, Song; Xing, Ronge; Yu, Huahua; Li, Kecheng; Meng, Xiangtao; Li, Rongfeng; Li, Pengcheng

    2012-06-20

    In this study, ammonium dithiocarbamate chitosan (ADTCCS) and triethylene diamine dithiocarbamate chitosan (TEDADTCCS) derivatives were obtained respectively by mixing chitosan with carbon disulfide and ammonia (triethylenediamine). Their structures were confirmed by FT-IR, 1H NMR, XRD, DSC, SEM, and elemental analysis. Antifungal properties of them against the plant pathogenic fungi Fusarium oxysporum and Alternaria porri were investigated at concentrations ranged from 31.25 to 500 mg/L. The dithiocarbamate chitosan derivatives had enhanced antifungal activity compared with chitosan. Particularly, they showed obvious inhibitory effect on Fusarium oxysporum. At 500 mg/L, TEDADTCCS inhibited growth of F. oxysporum at 60.4%, stronger than polyoxin and triadimefon whose antifungal indexes were found to be 25.3% and 37.7%. The chitosan derivatives described here deserve further study for use in crop protection. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  7. Risk of serious skin disorders among users of oral antifungals: a population-based study

    Directory of Open Access Journals (Sweden)

    Duque Alberto

    2002-11-01

    Full Text Available Abstract Background Serious skin disorders have been associated with the use of oral antifungals in a number of case reports and series of cases. However the incidence of these disorders remains unknown. Methods We estimated the risk of serious skin disorders in a cohort of users of oral antifungals identified in the general population of the General Practice Research Database in the UK. The cohort included 61,858 patients, 20 to 79 years old, who had received at least one prescription for either oral fluconazole, griseofulvin, itraconazole, ketoconazole, or terbinafine. Results The background rate of serious cutaneous adverse reactions (the one corresponding to non use of oral antifungals was 3.9 per 10,000 person-years (95% CI 2.9–5.2. Incidence rates for current use were 15.4 per 10,000 person-years (1.9–55.7 for itraconazole, 11.1 (3.0–28.5 for terbinafine, 10.4 (1.3–37.5 for fluconazole, and 4.6 (0.1–25.8 for griseofulvin. Itraconazole was the antifungal associated with the highest relative risk, 3.9 (0.5–15.0, when compared to the risk among non users, followed by terbinafine and fluconazole, with relative risks of 2.8 (0.7–7.8 and 2.6 (0.3–10.1, respectively. Conclusions We conclude that cutaneous disorders associated with the use of oral antifungals in this study were all of mild severity and that the risk associated with the use of oral antifungals was slightly higher than the risk in non-users. The safety profile of terbinafine regarding cutaneous disorders is similar to other antifungals and in the very low range of risks associated with other drugs.

  8. Production, optimization, characterization and antifungal activity of ...

    African Journals Online (AJOL)

    SAM

    2014-04-02

    Apr 2, 2014 ... the present study, the antifungal activity of crude A. terrus chitinase was investigated against Apergillus niger, Aspergillus oryzae .... Chitinase activity was determined spectrophotometrically by estimating the amount of ..... characterization of two. Bifunctional chitinases lysozyme extracellularly produced by.

  9. Insufficient Antifungal Potential of Crude Extracts of Carissa Carandas Linn. & Nerium Oleander Linn.”

    Energy Technology Data Exchange (ETDEWEB)

    Fartyal, M.; Kumar, P.

    2016-07-01

    Objective: To evaluate the antifungal potential of crude extracts from different parts of Carissa carandas Linn. (Leaf, stem & root) and Nerium oleander Linn. (Leaf, stem & root). Material & method: Different parts of plants were collected, dried and then extracted by using soxhlet extraction method in different polar and non-polar solvents (Water, Methanol & petroleum ether). Extracts were then screened for antifungal activity using ‘Disc Diffusion Assay’ against Candida albicans (Yeast), Aspergillus flavus & Tricophyton mentagrophyte (fungi). Minimum inhibitory concentration, Minimum fungicidal concentration & Total activity were studied. Mean and Standard Deviation have also been calculated. Result: The results indicate that all the tested extracts were found to have no antifungal activity against all the tested microorganisms. Conclusion: The tested extracts did not have, or had too little, antifungal activity. Hence, may not be explored as promising source of new antimicrobial drugs.

  10. Synthesis and antifungal evaluation of PCA amide analogues.

    Science.gov (United States)

    Qin, Chuan; Yu, Di-Ya; Zhou, Xu-Dong; Zhang, Min; Wu, Qing-Lai; Li, Jun-Kai

    2018-04-18

    To improve the physical and chemical properties of phenazine-1-carboxylic acid (PCA) and find higher antifungal compounds, a series of PCA amide analogues were designed and synthesized and their structures were confirmed by 1 H NMR, HRMS, and X-ray. Most compounds showed some antifungal activities in vitro. Particularly, compound 3d exhibited inhibition effect against Pyriculariaoryzac Cavgra with EC 50 value of 28.7 μM and compound 3q exhibited effect against Rhizoctonia solani with EC 50 value of 24.5 μM, more potently active than that of the positive control PCA with its EC 50 values of 37.3 μM (Pyriculariaoryzac Cavgra) and 33.2 μM (Rhizoctonia solani), respectively.

  11. Another point of view on side effects of antifungal compounds used in veterinary medicine

    Directory of Open Access Journals (Sweden)

    Carmen Lidia Chitescu,

    2011-06-01

    Full Text Available The release of pharmaceuticals into environment has become an increasing concern in recent years. Fungi are part of the microbial flora of many animals, humans and foodstuffs, and some species can cause disease. An antimycotic or antifungal product is one that is used in the treatment of fungal infections. Even at low concentrations, antifungals exert an action against micro-organisms and exhibit selective toxicity towards them. The use of antimicrobials selects for resistant populations of micro-organisms. Development of resistance to antifungals is an increasing problem in veterinary and human medicine.

  12. Occidiofungin is an important component responsible for the antifungal activity of Burkholderia pyrrocinia strain Lyc2.

    Science.gov (United States)

    Wang, X Q; Liu, A X; Guerrero, A; Liu, J; Yu, X Q; Deng, P; Ma, L; Baird, S M; Smith, L; Li, X D; Lu, S E

    2016-03-01

    To identify the taxonomy of tobacco rhizosphere-isolated strain Lyc2 and investigate the mechanisms of the antifungal activities, focusing on antimicrobials gene clusters identification and function analysis. Multilocus sequence typing and 16S rRNA analyses indicated that strain Lyc2 belongs to Burkholderia pyrrocinia. Bioassay results indicated strain Lyc2 showed significant antifungal activities against a broad range of plant and animal fungal pathogens and control efficacy on seedling damping off disease of cotton. A 55·2-kb gene cluster which was homologous to ocf gene clusters in Burkholderia contaminans MS14 was confirmed to be responsible for antifungal activities by random mutagenesis; HPLC was used to verify the production of antifungal compounds. Multiple antibiotic and secondary metabolized biosynthesis gene clusters predicated by antiSMASH revealed the broad spectrum of antimicrobials activities of the strain. Our results revealed the mechanisms of antifungal activities of strain Lyc2 and expand our knowledge about production of occidiofungin in the bacteria Burkholderia. Understanding the mechanisms of antifungal activities of strain Lyc2 has contributed to discovery of new antibiotics and expand our knowledge of production of occidiofungin in the bacteria Burkholderia. © 2015 The Society for Applied Microbiology.

  13. Antifungal diterpenes from Hypoestes serpens (Acanthaceae).

    Science.gov (United States)

    Rasoamiaranjanahary, Lalao; Marston, Andrew; Guilet, David; Schenk, Kurt; Randimbivololona, Fanantenanirainy; Hostettmann, Kurt

    2003-02-01

    Two new diterpenes, fusicoserpenol A and dolabeserpenoic acid A, with antifungal activity, were isolated from leaves of Hypoestes serpens (Acanthaceae). Their structures were elucidated by means of spectrometric methods including 1D and 2D NMR experiments and MS analysis. X-ray crystallographic analysis confirmed the structure of fusicoserpenol A and established the relative configuration.

  14. Microbial Biotransformation to Obtain New Antifungals

    Science.gov (United States)

    Bianchini, Luiz F.; Arruda, Maria F. C.; Vieira, Sergio R.; Campelo, Patrícia M. S.; Grégio, Ana M. T.; Rosa, Edvaldo A. R.

    2015-01-01

    Antifungal drugs belong to few chemical groups and such low diversity limits the therapeutic choices. The urgent need of innovative options has pushed researchers to search new bioactive molecules. Literature regarding the last 15 years reveals that different research groups have used different approaches to achieve such goal. However, the discovery of molecules with different mechanisms of action still demands considerable time and efforts. This review was conceived to present how Pharmaceutical Biotechnology might contribute to the discovery of molecules with antifungal properties by microbial biotransformation procedures. Authors present some aspects of (1) microbial biotransformation of herbal medicines and food; (2) possibility of major and minor molecular amendments in existing molecules by biocatalysis; (3) methodological improvements in processes involving whole cells and immobilized enzymes; (4) potential of endophytic fungi to produce antimicrobials by bioconversions; and (5) in silico research driving to the improvement of molecules. All these issues belong to a new conception of transformation procedures, so-called “green chemistry,” which aims the highest possible efficiency with reduced production of waste and the smallest environmental impact. PMID:26733974

  15. Antifungal Microbial Agents for Food Biopreservation-A Review.

    Science.gov (United States)

    Leyva Salas, Marcia; Mounier, Jérôme; Valence, Florence; Coton, Monika; Thierry, Anne; Coton, Emmanuel

    2017-07-08

    Food spoilage is a major issue for the food industry, leading to food waste, substantial economic losses for manufacturers and consumers, and a negative impact on brand names. Among causes, fungal contamination can be encountered at various stages of the food chain (e.g., post-harvest, during processing or storage). Fungal development leads to food sensory defects varying from visual deterioration to noticeable odor, flavor, or texture changes but can also have negative health impacts via mycotoxin production by some molds. In order to avoid microbial spoilage and thus extend product shelf life, different treatments-including fungicides and chemical preservatives-are used. In parallel, public authorities encourage the food industry to limit the use of these chemical compounds and develop natural methods for food preservation. This is accompanied by a strong societal demand for 'clean label' food products, as consumers are looking for more natural, less severely processed and safer products. In this context, microbial agents corresponding to bioprotective cultures, fermentates, culture-free supernatant or purified molecules, exhibiting antifungal activities represent a growing interest as an alternative to chemical preservation. This review presents the main fungal spoilers encountered in food products, the antifungal microorganisms tested for food bioprotection, and their mechanisms of action. A focus is made in particular on the recent in situ studies and the constraints associated with the use of antifungal microbial agents for food biopreservation.

  16. Evaluation of semisolid agar method for antifungal susceptibility test of T. rubrum

    Directory of Open Access Journals (Sweden)

    Sultana Razia

    2016-08-01

    Full Text Available Background: With increasing fungal disease many newer antifungal drugs are available with different spectrum of activ­ity. Antifungal susceptibility test will help clinicians for selection of effective drug and thereby treatment of patient. Objective: The study was undertaken to perform a simple screening drug susceptibility test of T. rnbrum by Semi Solid Agar Antifungal Susceptibility (SAAS Method: Perfonnance of susceptibility method was assessed by comparing the MICs of three commonly prescribed antifungal agents namely- tluconazole (FCZ, itraconazole (ITZ and terbinafine (TER to the CLSI (Clinical and Laboratory Standard Institute recommended M-38, a broth microdilution method. Results: In SAAS method, among twenty nine T. rubrum, twenty five (86.2% were susceptible (MIC range 0.5-64 µg/ml to Fluconazole (FCZ and four (13.7% were resistant (MIC value >64 µg/ml. In broth microdilution method, among twenty nine T. rubrum, twenty six (89.6% were susceptible (MIC range 0.3-64 µg/ml to FCZ and three (10.3% were resistant (MIC value >64 µg/ml. In case of both ITZ and TER, all were susceptible (MIC range 0.3-64 µg/ml to both methods. The SAAS method demonstrated the susceptibility pattern of T. rubrum against FCZ, ITZ and TER usually within 72 to 96 hours after organism isolation and results were concordance with the results of CLSI broth microdilution method. Conclusion: Though it is a newer method with proper standardization of the test method, SAAS method is simple and easily applicable screening method for susceptibility testing of antifungal agents against dermatophytes in any microbiology laboratories.

  17. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L.

    Science.gov (United States)

    Ali, Intzar; Khan, Farrah G; Suri, Krishan A; Gupta, Bishan D; Satti, Naresh K; Dutt, Prabhu; Afrin, Farhat; Qazi, Ghulam N; Khan, Inshad A

    2010-02-03

    Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 microg/ml for yeasts, 125 to 500 microg/ml for Aspergillus species, and 7.81 to 62.5 microg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 x MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 x MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 x to 8 x MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida

  18. Quantitative and qualitative analysis of the antifungal activity of allicin alone and in combination with antifungal drugs.

    Directory of Open Access Journals (Sweden)

    Young-Sun Kim

    Full Text Available The antifungal activity of allicin and its synergistic effects with the antifungal agents flucytosine and amphotericin B (AmB were investigated in Candida albicans (C. albicans. C. albicans was treated with different conditions of compounds alone and in combination (allicin, AmB, flucytosine, allicin + AmB, allicin + flucytosine, allicin + AmB + flucytosine. After a 24-hour treatment, cells were examined by scanning electron microscopy (SEM and atomic force microscopy (AFM to measure morphological and biophysical properties associated with cell death. The clearing assay was conducted to confirm the effects of allicin. The viability of C. albicans treated by allicin alone or with one antifungal drug (AmB, flucytosine in addition was more than 40% after a 24-hr treatment, but the viability of groups treated with combinations of more than two drugs was less than 32%. When the cells were treated with allicin alone or one type of drug, the morphology of the cells did not change noticeably, but when cells were treated with combinations of drugs, there were noticeable morphological changes. In particular, cells treated with allicin + AmB had significant membrane damage (burst or collapsed membranes. Classification of cells according to their cell death phase (CDP allowed us to determine the relationship between cell viability and treatment conditions in detail. The adhesive force was decreased by the treatment in all groups compare to the control. Cells treated with AmB + allicin had a greater adhesive force than cells treated with AmB alone because of the secretion of molecules due to collapsed membranes. All cells treated with allicin or drugs were softer than the control cells. These results suggest that allicin can reduce MIC of AmB while keeping the same efficacy.

  19. Phytochemical Analysis, Antifungal and Antioxidant Activity of Leaf ...

    African Journals Online (AJOL)

    Science, Technology and Arts Research Journal ... of total phenolics, antifungal and antioxidant activity of leaf and fruit extract of Zizyphus xylopyrus (Retz.) ... Flavonoids, saponins, terpenoids, tannins and phenols were found in both extracts.

  20. Synthetic biology, inspired by synthetic chemistry.

    Science.gov (United States)

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. The in vitro antifungal activity of sudanese medicinal plants against Madurella mycetomatis, the eumycetoma major causative agent.

    Science.gov (United States)

    Elfadil, Hassabelrasoul; Fahal, Ahmed; Kloezen, Wendy; Ahmed, Elhadi M; van de Sande, Wendy

    2015-03-01

    Eumycetoma is a debilitating chronic inflammatory fungal infection that exists worldwide but it is endemic in many tropical and subtropical regions. The major causative organism is the fungus Madurella mycetomatis. The current treatment of eumycetoma is suboptimal and characterized by low cure rate and high recurrence rates. Hence, an alternative therapy is needed to address this. Here we determined the antifungal activity of seven Sudanese medicinal plant species against Madurella mycetomatis. Of these, only three species; Boswellia papyrifera, Acacia nubica and Nigella sativa, showed some antifungal activity against M. mycetomatis and were further studied. Crude methanol, hexane and defatted methanol extracts of these species were tested for their antifungal activity. B. papyrifera had the highest antifungal activity (MIC50 of 1 ug/ml) and it was further fractionated. The crude methanol and the soluble ethyl acetate fractions of B. papyrifera showed some antifungal activity. The Gas-Liquid-Chromatography hybrid Mass-Spectrophotometer analysis of these two fractions showed the existence of beta-amyrin, beta-amyrone, beta-Sitosterol and stigmatriene. Stigmatriene had the best antifungal activity, compared to other three phytoconstituents, with an MIC-50 of 32 μg/ml. Although the antifungal activity of the identified phytoconstituents was only limited, the antifungal activity of the complete extracts is more promising, indicating synergism. Furthermore these plant extracts are also known to have anti-inflammatory activity and can stimulate wound-healing; characteristics which might also be of great value in the development of novel therapeutic drugs for this chronic inflammatory disease. Therefore further exploration of these plant species in the treatment of mycetoma is encouraging.

  2. Antifungal Monoterpene Derivatives from the Plant Endophytic Fungus Pestalotiopsis foedan.

    Science.gov (United States)

    Xu, Dan; Zhang, Bing-Yang; Yang, Xiao-Long

    2016-10-01

    A new monoterpene lactone, (1R,4R,5R,8S)-8-hydroxy-4,8-dimethyl-2-oxabicyclo[3.3.1]nonan-3-one (1), along with one related known compound, (2R)-2-[(1R)-4-methylcyclohex-3-en-1-yl]propanoic acid (2), were isolated from the liquid culture of the plant endophytic fungus Pestalotiopsis foedan obtained from the branch of Bruguiera sexangula. The structure and absolute configuration of 1 were determined on the basis of extensive analysis of NMR spectra combined with computational methods via calculation of the optical rotation (OR) and 13 C-NMR. Both compounds exhibited strong antifungal activities against Botrytis cinerea and Phytophthora nicotianae with MIC values of 3.1 and 6.3 μg/ml, respectively, which are comparable to those of the known antifungal drug ketoconazole. Compound 2 also showed modest antifungal activity against Candida albicans with a MIC value of 50 μg/ml. © 2016 Wiley-VHCA AG, Zürich.

  3. Antibacterial and antifungal effects of essential oils from coniferous trees.

    Science.gov (United States)

    Hong, Eui-Ju; Na, Ki-Jeung; Choi, In-Gyu; Choi, Kyung-Chul; Jeung, Eui-Bae

    2004-06-01

    Essential oils have potential biological effects, i.e., antibiotic, anticarcinogenic, and sedative effects during stress. In the present study, we investigated the antibacterial and antifungal effects of essential oils extracted from the coniferous species Pinus densiflora, Pinus koraiensis, and Chamaecyparis obtusa, because their biological activities have not been yet elucidated. The essential oils were quantified using gas chromatography and identified in gas chromatography-mass spectrometric analysis. Simultaneously, antibacterial and antifungal assays were performed using the essential oils distilled from the needles of coniferous trees. The major components and the percentage of each essential oil were: 19.33% beta-thujene in P. densiflora; 10.49% alpha-pinene in P. koraiensis; 10.88% bornyl acetate in C. obtusa. The essential oils from P. densiflora and C. obtusa have antibacterial effects, whereas essential oils from P. koraiensis and C. obtusa have antifungal effects. These results indicate that the essential oils from the three coniferous trees, which have mild antimicrobial properties, can inhibit the growth of gram-positive and gram-negative bacteria and fungi.

  4. Microemulsion and Microemulsion-Based Gels for Topical Antifungal Therapy with Phytochemicals.

    Science.gov (United States)

    Boonme, Prapaporn; Kaewbanjong, Jarika; Amnuaikit, Thanaporn; Andreani, Tatiana; Silva, Amélia M; Souto, Eliana B

    2016-01-01

    Skin fungal infections are regular injuries suffered by people living in tropical areas. Most common pathogens are Trichophyton, Microsporum and Epidermophyton which can cause skin lesions in many parts of body. Topical antifungal phytochemicals are commonly used to avoid systemic adverse events and are more convenient for patient application than those administered by other routes. However, the effectiveness of topical treatments in eradicating fungal infection is more limited since the stratum corneum acts as the skin barrier, resulting in long treatment duration and low patient's compliance. The goal of this work is to identify optimized drug delivery systems to improve topic clinical efficacy. Microemulsions i.e. liquid dispersions of oil and water stabilized with an interfacial film of surfactant are well known drug delivery systems. A thickening agent may be included to form microemulsion-based gels to increase skin adhesion. Microemulsions and microemulsion-based gels can be loaded with several hydrophilic and lipophilic drugs because they are composed of both water and oil phases. Microemulsions and microemulsion-based gels can also be used for the delivery of many drugs including antifungal drugs through stratum corneum due to their capacity to act as skin penetration enhancement. In addition to a comprehensive review of microemulsion and microemulsion-based gels as suitable carriers for skin delivery of various antifungal drugs, this review also aims to discuss the delivery of antifungal phytochemicals.

  5. Antifungal Activity of Commercial Essential Oils and Biocides against Candida Albicans.

    Science.gov (United States)

    Serra, Elisa; Hidalgo-Bastida, Lilia Araida; Verran, Joanna; Williams, David; Malic, Sladjana

    2018-01-25

    Management of oral candidosis, most frequently caused by Candida albicans , is limited due to the relatively low number of antifungal drugs and the emergence of antifungal tolerance. In this study, the antifungal activity of a range of commercial essential oils, two terpenes, chlorhexidine and triclosan was evaluated against C. albicans in planktonic and biofilm form. In addition, cytotoxicity of the most promising compounds was assessed using murine fibroblasts and expressed as half maximal inhibitory concentrations (IC50). Antifungal activity was determined using a broth microdilution assay. The minimum inhibitory concentration (MIC) was established against planktonic cells cultured in a range of concentrations of the test agents. The minimal biofilm eradication concentration (MBEC) was determined by measuring re-growth of cells after pre-formed biofilm was treated for 24 h with the test agents. All tested commercial essential oils demonstrated anticandidal activity (MICs from 0.06% ( v / v ) to 0.4% ( v / v )) against planktonic cultures, with a noticeable increase in resistance exhibited by biofilms (MBECs > 1.5% ( v / v )). The IC50s of the commercial essential oils were lower than the MICs, while a one hour application of chlorhexidine was not cytotoxic at concentrations lower than the MIC. In conclusion, the tested commercial essential oils exhibit potential as therapeutic agents against C. albicans , although host cell cytotoxicity is a consideration when developing these new treatments.

  6. Antifungal activity of extracts and phenolic compounds from ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-17

    Jun 17, 2009 ... Key words: Barringtonia racemosa, antifungal, HPLC, phenolic acids, flavonoids. ... Among them, phenolic acids and flavonoids have been the object of .... on the previous method as described by Crozier et al. ... Quantification.

  7. Antifungal activity of Momordica charantia seed extracts toward the pathogenic fungus Fusarium solani L.

    Science.gov (United States)

    Wang, Shuzhen; Zheng, Yongliang; Xiang, Fu; Li, Shiming; Yang, Guliang

    2016-10-01

    Momordica charantia L., a vegetable crop with high nutritional value, has been used as an antimutagenic, antihelminthic, anticancer, antifertility, and antidiabetic agent in traditional folk medicine. In this study, the antifungal activity of M. charantia seed extract toward Fusarium solani L. was evaluated. Results showed that M. charantia seed extract effectively inhibited the mycelial growth of F. solani, with a 50% inhibitory rate (IC 50 ) value of 108.934 μg/mL. Further analysis with optical microscopy and fluorescence microscopy revealed that the seed extract led to deformation of cells with irregular budding, loss of integrity of cell wall, as well as disruption of the fungal cell membrane. In addition, genomic DNA was also severely affected, as small DNA fragments shorter than 50 bp appeared on agarose gel. These findings implied that M. charantia seed extract containing α-momorcharin, a typical ribosome-inactivating protein, could be an effective agent in the control of fungal pathogens, and such natural products would represent a sustainable alternative to the use of synthetic fungicides. Copyright © 2016. Published by Elsevier B.V.

  8. Synthesis of heterocycle-attached methylidenebenzenesulfonohydrazones as antifungal agents.

    Science.gov (United States)

    Gao, Zhinan; Lv, Min; Li, Qin; Xu, Hui

    2015-11-15

    A series of heterocycle-attached methylidenebenzenesulfonohydrazone derivatives were synthesized and evaluated for their antifungal activities against seven phytopathogenic fungi such as Fusarium graminearum, Alternaria solani, Valsa mali, Phytophthora capsici, Fusarium solani, Botrytis cinerea, and Glomerella cingulata. Compounds 7b, 8d, 9a, 9b and 9d exhibited a good and broad-spectrum of antifungal activities against at least five phytopathogenic fungi at the concentration of 100 μg/mL. It demonstrated that addition of one double bond between the phenylsulfonylhydrazone fragment and the furan ring of 6a,b,d could afford more active compounds 9a,b,d; however, introduction of the nitro group on the phenyl ring of 6a-9a gave less potent compounds 6e-9e. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Studies on Buddleja asiatica antibacterial, antifungal, antispasmodic ...

    African Journals Online (AJOL)

    Jane

    2011-07-27

    Jul 27, 2011 ... Studies on Buddleja asiatica antibacterial, antifungal, antispasmodic and Ca. ++ ... strong cyclo-oxygenase inhibitory activities in elicited rat peritoneal ... A resting tension of 1 g was applied to each tissue and kept constant ... Statistical analysis .... through opening of VDCs, thus allowing the influx of extra.

  10. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil

    OpenAIRE

    Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Di?genes Aparicio Garcia

    2008-01-01

    This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested.

  11. Antifungal activity of the essential oil from Calendula officinalis L. (asteraceae) growing in Brazil.

    Science.gov (United States)

    Gazim, Zilda Cristiane; Rezende, Claudia Moraes; Fraga, Sandra Regina; Svidzinski, Terezinha Inez Estivaleti; Cortez, Diógenes Aparicio Garcia

    2008-01-01

    This study tested in vitro activity of the essential oil from flowers of Calendula officinalis using disk-diffusion techniques. The antifungal assay results showed for the first time that the essential oil has good potential antifungal activity: it was effective against all 23 clinical fungi strains tested.

  12. Synthesis and antifungal evaluation of (1,2,3-triazol-4-yl)methyl nicotinate chitosan.

    Science.gov (United States)

    Qin, Yukun; Liu, Song; Xing, Ronge; Li, Kecheng; Yu, Huahua; Li, Pengcheng

    2013-10-01

    With an aim to discover novel chitosan derivatives with significant activities against crop-threatening fungi, (1,2,3-triazol-4-yl)methyl nicotinate chitosan (TAMNCS) was prepared via azide-alkyne click reaction. Its structure was characterized by FT-IR, (1)H NMR, elemental analysis, DSC, and SEM. In vitro antifungal properties of TAMNCS against Rhizoctonia solani Kühn (R. solani), Stemphylium solani weber (S. solani), and Alternaria porri (A. porri) were studied at the concentrations ranged from 0.25 mg/mL to 1.0 mg/mL. Experiments conducted displayed the derivative had obviously enhanced antifungal activity after chemical modification compared with original chitosan. Moreover, it was shown that TAMNCS can 94.2% inhibit growth of A. porri at 1.0 mg/mL, while dose at which the fungicide triadimefon had lower inhibitory index (62.2%). The primary antifungal results described here indicate this derivative may be a promising candidate as an antifungal agent. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Treatment of gastric candidiasis in patients with gastric ulcer disease: are antifungal agents necessary?

    Science.gov (United States)

    Jung, Min Kyu; Jeon, Seong Woo; Cho, Chang Min; Tak, Won Young; Kweon, Young Oh; Kim, Sung Kook; Choi, Yong Hwan

    2009-03-01

    The inadequacy of information on the treatment of gastric candidiasis with antifungal agents promoted us to evaluate patients with fungal infections who had gastric ulcers and assess the need for proton-pump inhibitors or antifungal agents. Sixteen patients were included in the study. The criterion for the diagnosis of candidiasis was finding yeast and hyphae in the tissue or an ulcer on histological sections of biopsy samples. Surface fungi were not considered infections. In all cases with benign ulcers, follow-up endoscopy performed 6 weeks after proton-pump-inhibitor treatment revealed that the ulcer had improved without antifungal medication. However, in patients with malignant ulcers, surgical resection was necessary for a definitive cure. Two patients with lymphoma received combined chemotherapy and a proton-pump inhibitor, which improved their condition. The results of this study suggest that benign ulcers with candidiasis can be effectively treated by a proton-pump inhibitor without antifungal medication. However, surgical resection should be considered for malignant ulcers with candidiasis.

  14. Antifungal activity against postharvest fungi by extracts from Colombian propolis

    International Nuclear Information System (INIS)

    Meneses, Erick A.; Durango, Diego L.; Garcia, Carlos M.

    2009-01-01

    The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM), dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1), (+)-agathadiol (2) and epi-13-torulosol (3) were isolated as the main constituents from the active fractions. (author)

  15. Antifungal activity against postharvest fungi by extracts from Colombian propolis

    Energy Technology Data Exchange (ETDEWEB)

    Meneses, Erick A.; Durango, Diego L.; Garcia, Carlos M. [Universidad Nacional de Colombia, Medellin (Colombia). Facultad de Ciencias. Escuela de Quimica], e-mail: cmgarcia@unal.edu.co

    2009-07-01

    The aims of the present study were to evaluate the antifungal properties of Colombian propolis extracts against Colletotrichum gloeosporioides and Botryodiplodia theobromae, and to isolate and identify the main constituents from the active extracts. Therefore, propolis samples were thoroughly extracted with n-hexane/methanol (EPEM), dichloromethane, ethyl acetate, and methanol. Experimental results indicated that mycelial growth of all selected microorganisms was reduced in culture media containing EPEM and dichloromethane fractions. Furthermore, through antifungal bioassay-guided fractionation, three known labdane-type diterpenes: isocupressic acid (1), (+)-agathadiol (2) and epi-13-torulosol (3) were isolated as the main constituents from the active fractions. (author)

  16. Antifungal activity of Leuconostoc citreum and Weissella confusa in rice cakes.

    Science.gov (United States)

    Baek, Eunjong; Kim, Hyojin; Choi, Hyejung; Yoon, Sun; Kim, Jeongho

    2012-10-01

    The antifungal activity of organic acids greatly improves the shelf life of bread and bakery products. However, little is known about the effect of lactic acid fermentation on fungal contamination in rice cakes. Here, we show that lactic acid fermentation in rice dough can greatly retard the growth of three fungal species when present in rice cakes, namely Cladosporium sp. YS1, Neurospora sp. YS3, and Penicillium crustosum YS2. The antifungal activity of the lactic acid bacteria against these fungi was much better than that of 0.3% calcium propionate. We found that organic acids including lactic and acetic acid, which are byproducts of lactic fermentation or can be artificially added, were the main antifungal substances. We also found that some Leuconostoc citreum and Weissella confusa strains could be good starter species for rice dough fermentation. These results imply that these lactic acid bacteria can be applicable to improve the preservation of rice cakes.

  17. Analysis by UPLC-MS-QTOF and antifungal activity of guava (Psidium guajava L.).

    Science.gov (United States)

    Bezerra, Camila Fonseca; Rocha, Janaína Esmeraldo; Nascimento Silva, Maria Karollyna do; de Freitas, Thiago Sampaio; de Sousa, Amanda Karine; Dos Santos, Antônia Thassya Lucas; da Cruz, Rafael Pereira; Ferreira, Maciel Horácio; da Silva, Josefa Carolaine Pereira; Machado, Antonio Judson Targino; Carneiro, Joara Nályda Pereira; Sales, Débora Lima; Coutinho, Henrique Douglas Melo; Ribeiro, Paulo Riceli Vasconcelos; de Brito, Edy Sousa; Morais-Braga, Maria Flaviana Bezerra

    2018-05-08

    Psidium guajava L. is a plant widely used for food and in folk medicine all over the world. Studies have shown that guava leaves have antifungal properties. In this study, Flavonoid and Tannic fractions were tested to investigate their chemical composition and antifungal potential in vitro.21 compounds in the two fractions, presenting a higher content of phenolic compounds. The antifungal assays were performed against Candida albicans, Candida tropicalis and Candida krusei by microdilution to determine the IC 50 and the cell viability curve. Minimal Fungicidal Concentration(MFC) and the inhibitory effects of the association of the fractions with Fluconazole, as well as the assays used to verify any morphological changes were performed in microculture chambers based on the concentrations from the microdilution. The IC 50 of the isolated fractions and the fractions associated with each other were calculated, varying from 69.29 to 3444.62 μg/mL and the fractions associated with fluconazole varied from 925.56 to 1.57 μg/mL, it was clear that the association of the natural product with the antifungal presented a synergism. The fractions affected pleomorphism capacity and have a potential antifungal activity as they caused fungal inhibition in isolated use, potentiated the action of Fluconazole, reducing its concentration and impeding morphological transition, one of the virulence factors of the genus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Radiation application for upgrading of bioresources - Development of antifungal and-or nitrogen fixative microbes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Sung; Kim, Soo Ki; Lee, Sung Ho; Lee, Jung Suk [Paichai University, Taejon (Korea)

    1999-04-01

    (1) In this study, the antifungal bacterial eight strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Especially, strain KL2143, 2367 were identified as Bacillus subtilis (KL2143/KL2367) and strain KL2326, KL2314 identified as Pseudomonas aurantiaca have never been reported internationally. Considering antifungal(AF) spectrum of strain KL2143 show the broad range of AF activity on a number of pathogenic fungi. Therefore, strain KL2143 was selected with the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) Optimal conditions for the production of antifungal material were analyzed under various environmental conditions (carbon source, nitrogen source, phosphate concentration, pH, temperature, amino acids, vitamins). Growth rates were different according to carbon and nitrogen source, antifungal material production yield were not different, however. Product of antifungal material according to phosphate is proportional to concentration; the higher in high concentration and the low in lower concentration. And productivity of antifungal material is was generally high in the range 30 - 37 deg C at pH7 and in case of adding vitamin B12, lysine and aginine to medium it was enhanced. (3) Moreover, bio-degradability upon agricultural substance and organic substances by AF bacteria was strikingly effective. (4) AF stains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. (5) Establishment of a new technology for the

  19. Antifungal susceptibilities of Candida, Cryptococcus neoformans and Aspergillus fumigatus from the Asia and Western Pacific region: data from the SENTRY antifungal surveillance program (2010-2012).

    Science.gov (United States)

    Pfaller, Michael A; Messer, Shawn A; Jones, Ronald N; Castanheira, Mariana

    2015-09-01

    The SENTRY Antifungal Surveillance Program monitors global susceptibility rates of newer and established antifungal agents. We report the in vitro activity of seven antifungal agents against 496 contemporary clinical isolates of yeasts and molds. The isolates were obtained from 20 laboratories in the Asia-Western Pacific (APAC) region during 2010 through 2012. Anidulafungin, caspofungin, micafungin, fluconazole, itraconazole, posaconazole and voriconazole were susceptibility tested using CLSI methods and species-specific interpretive criteria. Sequencing of fks hot spots was performed for echinocandin-resistant strains. Isolates included 13 species of Candida (n=460), 5 species of non-Candida yeasts (21), 5 species of Aspergillus (11) and 4 other molds. Echinocandin resistance was uncommon among eight species of Candida and was only detected in three isolates of Candida glabrata, two from Australia harboring mutations in fks1 (F625S) and fks2 (S663P). Resistance to the azoles was much more common and was observed among all species with the exception of Candida dubliniensis. Fluconazole resistance rates observed with C. glabrata (6.8%) was comparable to that seen with Candida parapsilosis (5.7%) and Candida tropicalis (3.6%). Cross resistance among the triazoles was seen with each of these three species. The mold-active azoles and the echinocandins were all active against isolates of Aspergillus fumigatus. Azole resistance was not detected among the isolates of Cryptococcus neoformans. Antifungal resistance is uncommon among isolates of fungi causing invasive fungal infections in the APAC region. As in other regions of the world, emerging resistance to the echinocandins among invasive isolates of C. glabrata bears close monitoring.

  20. Screening of pharmacologically active small molecule compounds identifies antifungal agents against Candida biofilms

    Directory of Open Access Journals (Sweden)

    Takao eWatamoto

    2015-12-01

    Full Text Available Candida species have emerged as important and common opportunistic human pathogens, particularly in immunocompromised individuals. The current antifungal therapies either have toxic side effects or are insufficiently effect. The aim of this study is develop new small-molecule antifungal compounds by library screening methods using C. albicans, and to evaluate their antifungal effects on Candida biofilms and cytotoxic effects on human cells. Wild-type C. albicans strain SC5314 was used in library screening. To identify antifungal compounds, we screened a small-molecule library of 1,280 pharmacologically active compounds (LOPAC1280TM using an antifungal susceptibility test (AST. To investigate the antifungal effects of the hit compounds, ASTs were conducted using Candida strains in various growth modes, including biofilms. We tested the cytotoxicity of the hit compounds using human gingival fibroblast (hGF cells to evaluate their clinical safety. Only 35 compounds were identified by screening, which inhibited the metabolic activity of C. albicans by >50%. Of these, 26 compounds had fungistatic effects and 9 compounds had fungicidal effects on C. albicans. Five compounds, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate, ellipticine and CV-3988, had strong fungicidal effects and could inhibit the metabolic activity of Candida biofilms. However, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine were cytotoxic to hGF cells at low concentrations. CV-3988 showed no cytotoxicity at a fungicidal concentration.Four of the compounds identified, BAY11-7082, BAY11-7085, sanguinarine chloride hydrate and ellipticine, had toxic effects on Candida strains and hGF cells. In contrast, CV-3988 had fungicidal effects on Candida strains, but low cytotoxic effects on hGF cells. Therefore, this screening reveals agent, CV-3988 that was previously unknown to be antifungal agent, which could be a novel therapies for superficial mucosal

  1. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target.

    Directory of Open Access Journals (Sweden)

    Katharine S Dobb

    Full Text Available Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds.

  2. The in vitro antifungal activity of sudanese medicinal plants against Madurella mycetomatis, the eumycetoma major causative agent.

    Directory of Open Access Journals (Sweden)

    Hassabelrasoul Elfadil

    2015-03-01

    Full Text Available Eumycetoma is a debilitating chronic inflammatory fungal infection that exists worldwide but it is endemic in many tropical and subtropical regions. The major causative organism is the fungus Madurella mycetomatis. The current treatment of eumycetoma is suboptimal and characterized by low cure rate and high recurrence rates. Hence, an alternative therapy is needed to address this. Here we determined the antifungal activity of seven Sudanese medicinal plant species against Madurella mycetomatis. Of these, only three species; Boswellia papyrifera, Acacia nubica and Nigella sativa, showed some antifungal activity against M. mycetomatis and were further studied. Crude methanol, hexane and defatted methanol extracts of these species were tested for their antifungal activity. B. papyrifera had the highest antifungal activity (MIC50 of 1 ug/ml and it was further fractionated. The crude methanol and the soluble ethyl acetate fractions of B. papyrifera showed some antifungal activity. The Gas-Liquid-Chromatography hybrid Mass-Spectrophotometer analysis of these two fractions showed the existence of beta-amyrin, beta-amyrone, beta-Sitosterol and stigmatriene. Stigmatriene had the best antifungal activity, compared to other three phytoconstituents, with an MIC-50 of 32 μg/ml. Although the antifungal activity of the identified phytoconstituents was only limited, the antifungal activity of the complete extracts is more promising, indicating synergism. Furthermore these plant extracts are also known to have anti-inflammatory activity and can stimulate wound-healing; characteristics which might also be of great value in the development of novel therapeutic drugs for this chronic inflammatory disease. Therefore further exploration of these plant species in the treatment of mycetoma is encouraging.

  3. Antifungal activity of olive cake extracts

    OpenAIRE

    Ghandi H. Anfoka; Khalil I. Al-Mughrabi; Talal A. Aburaj; Wesam Shahrour

    2001-01-01

    Powdered, dried olive (Olea europaea) cake was extracted with hexane, methanol and butanol. Six phenolic compounds, coumaric acid, ferulic acid, oleuropein, caffeic acid, protocatechuic acid and cinnamic acid, were isolated from these extracts after fractionation. The fractions were tested for their antifungal activity against Verticillium sp., Fusarium oxysporum, Rhizopus sp., Penicillium italicum, Rhizoctonia solani, Stemphylium solani, Cladosporium sp., Mucor sp., Colletotrichu...

  4. New record of Scedosporium dehoogii from Chile: Phylogeny and susceptibility profiles to classic and novel putative antifungal agents.

    Science.gov (United States)

    Alvarez, Eduardo; Sanhueza, Camila

    Scedosporium species are considered emerging agents causing illness in immunocompromised patients. In Chile, only Scedosporium apiospermum, Scedosporium boydii and Lomentospora prolificans haven been reported previously. The study aimed to characterize genetically Scedosporium dehoogii strains from Chilean soil samples, and assessed the antifungal susceptibility profile to classic and novel putative antifungal molecules. In 2014, several samples were obtained during a survey of soil fungi in urban areas from Chile. Morphological and phylogenetic analyses of the internal transcribed spacer region (ITS), tubulin (TUB), and calmodulin (CAL) sequences were performed. In addition, the susceptibility profiles to classic antifungal and new putative antifungal molecules were determined. Four strains of Scedosporium dehoogii were isolated from soil samples. The methodology confirmed the species (reported here as a new record for Chile). Antifungal susceptibility testing demonstrates the low activity of terpenes (α-pinene and geraniol) against this species. Voriconazole (VRC), posaconazole (PSC), and the hydroxyquinolines (clioquinol, and 5,7-dibromo-8-hydroxyquinoline) showed the best antifungal activity. Our results demonstrate that Scedosporium dehoogii is present in soil samples from Chile. This study shows also that hydroxyquinolines have potential as putative antifungal molecules. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Antifungal Activity of Hypericum havvae Against Some Medical ...

    African Journals Online (AJOL)

    antifungal activity of the extracts was tested against medical yeast, Candida (C. albicans ATCC 10231, ... Tropical Journal of Pharmaceutical Research is indexed by Science Citation Index (SciSearch), .... It is important to bear in mind that the.

  6. Risk of Fungemia Due to Rhodotorula and Antifungal Susceptibility Testing of Rhodotorula Isolates

    OpenAIRE

    Zaas, Aimee K.; Boyce, Molly; Schell, Wiley; Lodge, Barbara Alexander; Miller, Jackie L.; Perfect, John R.

    2003-01-01

    Rhodotorula infections occur among patients with immunosuppression and/or central venous catheters. Using standardized methods (NCCLS M27-A), we determined the antifungal susceptibilities of 10 Rhodotorula bloodstream infection isolates. Patient information was collected for clinical correlation. The MICs of amphotericin B and posaconazole were the lowest, and the MICs of triazoles and echinocandins were higher than those of other antifungal agents.

  7. Antifungal defensins and their role in plant defense.

    Science.gov (United States)

    Lacerda, Ariane F; Vasconcelos, Erico A R; Pelegrini, Patrícia Barbosa; Grossi de Sa, Maria F

    2014-01-01

    Since the beginning of the 90s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP) have been studied. However, Broekaert et al. (1995) only coined the term "plant defensin," after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity toward microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM). Its low effective concentration towards fungi, ranging from 0.1 to 10 μM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i) the most studied plant defensins and their fungal targets; (ii) the molecular features of plant defensins and their relation with antifungal activity; (iii) the possibility of using plant defensin(s) genes to generate fungi resistant GM crops and biofungicides; and (iv) a brief discussion about the absence of products in the market containing plant antifungal defensins.

  8. Antifungal defensins and their role in plant defense

    Directory of Open Access Journals (Sweden)

    Ariane eLacerda

    2014-04-01

    Full Text Available Since the beginning of the 90’s lots of cationic plant, cysteine-rich antimicrobial peptides (AMP have been studied. However, Broekaert only coined the term plant defensin in 1995, after comparison of a new class of plant antifungal peptides with known insect defensins. From there, many plant defensins have been reported and studies on this class of peptides encompass its activity towards microorganisms and molecular features of the mechanism of action against bacteria and fungi. Plant defensins also have been tested as biotechnological tools to improve crop production through fungi resistance generation in organisms genetically modified (OGM. Its low effective concentration towards fungi, ranging from 0.1 to 10 µM and its safety to mammals and birds makes them a better choice, in place of chemicals, to control fungi infection on crop fields. Herein, is a review of the history of plant defensins since their discovery at the beginning of 90’s, following the advances on its structure conformation and mechanism of action towards microorganisms is reported. This review also points out some important topics, including: (i the most studied plant defensins and their fungal targets; (ii the molecular features of plant defensins and their relation with antifungal activity; (iii the possibility of using plant defensin(s genes to generate fungi resistant GM crops and biofungicides; and (iv a brief discussion about the absence of products in the market containing plant antifungal defensins.

  9. Inhibitors of amino acids biosynthesis as antifungal agents.

    Science.gov (United States)

    Jastrzębowska, Kamila; Gabriel, Iwona

    2015-02-01

    Fungal microorganisms, including the human pathogenic yeast and filamentous fungi, are able to synthesize all proteinogenic amino acids, including nine that are essential for humans. A number of enzymes catalyzing particular steps of human-essential amino acid biosynthesis are fungi specific. Numerous studies have shown that auxotrophic mutants of human pathogenic fungi impaired in biosynthesis of particular amino acids exhibit growth defect or at least reduced virulence under in vivo conditions. Several chemical compounds inhibiting activity of one of these enzymes exhibit good antifungal in vitro activity in minimal growth media, which is not always confirmed under in vivo conditions. This article provides a comprehensive overview of the present knowledge on pathways of amino acids biosynthesis in fungi, with a special emphasis put on enzymes catalyzing particular steps of these pathways as potential targets for antifungal chemotherapy.

  10. Antifungal activity of nicotine and its cadmium complex

    International Nuclear Information System (INIS)

    Zaidi, I.M.; Gul, A.

    2005-01-01

    Nicotine and its metal complex; Cd(II)-nicotine were isolated from leaves of Nicotiana tabacum using various metal ions by the reported techniques and studied for their antifungal activities against fourteen different species of fungi. For comparative study, pure sample of nicotine and metal salt used for complexation; cadmium(II) iodide was also subjected to antifungal tests with the same species of fungus under similar conditions. Results indicated that nicotine is quite effective against the rare pathogenic and Non pathogenic fungi but comparatively less effective against Pathogenic fungi. Nicotine was found to be completely ineffective against the selected species of Occasional pathogenic fungi. Cadmium(II) iodide effectively inhibited Pathogenic and Non pathogenic fungi whereas relatively ineffective against the Occasional pathogenic and Rare pathogenic fungi. On the other hand, Cadmium(II) nicotine complex inhibited all the selected species of fungi except Fusarium solani. (author)

  11. Antifungal effect of phenolic extract of fermented rice bran with Rhizopus oryzae and its potential use in loaf bread shelf life extension.

    Science.gov (United States)

    Denardi-Souza, Taiana; Luz, Carlos; Mañes, Jordi; Badiale-Furlong, Eliana; Meca, Giuseppe

    2018-03-30

    In this study the antifungal potential of a phenolic extract obtained from rice bran fermented with Rhizopus oryzae CECT 7560 and its application in the elaboration of bread was assessed. Eighteen compounds with antifungal potential were identified by LC-ESI-qTOF-MS in the extract: organic acids, gallates and gallotannins, flavonoids, ellagic acid and benzophenone derivatives. The extract was active against strains of Fusarium, Aspergillus and Penicillium, with minimum inhibitory concentration ranging from 390 to 3100 µg mL -1 and minimum fungicidal concentration variable from 780 to 6300 µg mL -1 . The strains that were most sensitive to the phenolic extract were F. graminearum, F. culmorum, F. poae, P. roqueforti, P. expansum and A. niger. The phenolic extract added at 5 and 1 g kg -1 concentrations in the preparation of bread loaves contaminated with P. expansum produced a reduction of 0.6 and 0.7 log CFU g -1 . The bread loaves treated with calcium propionate and 10 g kg -1 of the phenolic extract evidenced an improvement in their shelf lives of 3 days. The phenolic extract assessed in this study could be considered as an alternative for inhibiting toxigenic fungi and as a substitute for synthetic compounds in food preservation. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  12. Synthesis, antifungal activity and docking study of 2-amino-4H-benzochromene-3-carbonitrile derivatives

    Science.gov (United States)

    Mirjalili, BiBi Fatemeh; Zamani, Leila; Zomorodian, Kamiar; Khabnadideh, Soghra; Haghighijoo, Zahra; Malakotikhah, Zahra; Ayatollahi Mousavi, Seyyed Amin; Khojasteh, Shaghayegh

    2016-07-01

    Pathogenic fungi are associated with diseases ranging from simple dermatosis to life-threatening infections, particularly in immunocompromised patients. During the past two decades, resistance to established antifungal drugs has increased dramatically and has made it crucial to identify novel antimicrobial compounds. Here, we selected 12 new compounds of 2-amino-4H-benzochromene-3-carbonitrile drivetives (C1-C12) for synthesis by using nano-TiCl4.SiO2 as efficient and green catalyst, then nine of synthetic compounds were evaluated against different species of fungi, positive gram and negative gram of bacteria. Standard and clinical strains of antibiotics sensitive and resistant fungi and bacteria were cultured in appropriate media. Biological activity of the 2-amino-4H-benzochromene-3-carbonitrile derivatives against fungi and bacteries were estimated by the broth micro-dilution method as recommended by clinical and laboratory standard institute (CLSI). In addition minimal fangicidal and bactericial concenteration of the compounds were also determined. Considering our results showed that compound 2-amino-4-(4-methyl benzoate)-4H-benzo[f]chromen-3-carbonitrile (C9) had the most antifungal activity against Aspergillus clavatus, Candida glabarata, Candida dubliniensis, Candida albicans and Candida tropicalis at concentrations ranging from 8 to ≤128 μg/mL. Also compounds 2-amino-4-(3,4-dimethoxyphenyl)-4H-benzo[f]chromen-3-carbonitrile (C4) and 2-amino-4-(4-isopropylphenyl)-4H-benzo[f]chromen-3-carbonitrile (C3) had significant inhibitory activities against Epidermophyton floccosum following 2-amino-4-(4-methylbenzoate)-4H-benzo[f]chromen-3-carbonitrile (C9), respectively. Docking simulation was performed to insert compounds C3, C4 and C9 in to CYP51 active site to determine the probable binding model.

  13. Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents

    Directory of Open Access Journals (Sweden)

    Tatiana Takahasi Komoto

    2015-01-01

    Full Text Available Trichophyton rubrum is the most common causative agent of dermatomycoses worldwide, causing infection in the stratum corneum, nails, and hair. Despite the high prevalence of these infections, little is known about the molecular mechanisms involved in the fungal-host interaction, particularly during antifungal treatment. The aim of this work was to evaluate the gene expression of T. rubrum cocultured with keratinocytes and treated with the flavonoid trans-chalcone and the glycoalkaloid α-solanine. Both substances showed a marked antifungal activity against T. rubrum strain CBS (MIC = 1.15 and 17.8 µg/mL, resp.. Cytotoxicity assay against HaCaT cells produced IC50 values of 44.18 to trans-chalcone and 61.60 µM to α-solanine. The interaction of keratinocytes with T. rubrum conidia upregulated the expression of genes involved in the glyoxylate cycle, ergosterol synthesis, and genes encoding proteases but downregulated the ABC transporter TruMDR2 gene. However, both antifungals downregulated the ERG1 and ERG11, metalloprotease 4, serine proteinase, and TruMDR2 genes. Furthermore, the trans-chalcone downregulated the genes involved in the glyoxylate pathway, isocitrate lyase, and citrate synthase. Considering the urgent need for more efficient and safer antifungals, these results contribute to a better understanding of fungal-host interactions and to the discovery of new antifungal targets.

  14. Antifungal evaluation and phytochemical screening of methanolic ...

    African Journals Online (AJOL)

    The objective of the study was to further examine the medicinal value of Boswellia dalzielii plant by evaluating the antifungal activity and carrying out phytochemical screening of methanolic extract, hexane, ethyl acetate, aqueous fractions and the sub-fractions of the stem bark of the plant. Standard methods were used for ...

  15. Studies of antifungal activity of forsskalea tenacissima

    International Nuclear Information System (INIS)

    Qaisar, M.; Ahmad, V.U.; Nisar, M.; Gilani, S.N.; Pervez, S.

    2011-01-01

    Antifungal activity of different extracts from Forsskalea tenacissima prepared by solvent-solvent extraction and vacuum liquid chromatography (VLC) was determined. Extracts were found to be active against Candida albicans, Trichophyton mentagrophyte, Allescheria boydii, Microsporum canis, Aspergillus niger, Drechslera rostrata, Nigrospora oryzae, Stachybotrys atra, Curvularia lunata, Trichophyton semii and Trichophyton schoenleinii. (author)

  16. Tioconazole, a new imidazole-antifungal agent for the treatment of dermatomycoses. Antifungal and pharmacologic properties.

    Science.gov (United States)

    Marriott, M S; Baird, J R; Brammer, K W; Faulkner, J K; Halliwell, G; Jevons, S; Tarbit, M H

    1983-01-01

    Tioconazole is a new imidazole antifungal agent with broad-spectrum activity. Its in vitro activity against common dermal pathogens is generally better than miconazole by a factor of 2-8. This activity is paralleled by good topical efficacy in a guinea pig dermatomycosis model. Pharmacokinetic studies in animals have demonstrated minimal systemic exposure following dermal application. Acute general pharmacology studies have shown that the compound is well tolerated in animals and unlikely to produce side-effects in man.

  17. Antifungal Activity of Decyl Gallate against Several Species of Pathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Ana Carolina Alves de Paula e Silva

    2014-01-01

    Full Text Available This work aims to demonstrate that the gallic acid structure modification to the decyl gallate (G14 compound contributed to increase the antifungal activity against several species of pathogenic fungi, mainly, Candida spp., Cryptococcus spp., Paracoccidioides spp., and Histoplasma capsulatum, according to standardized microdilution method described by Clinical Laboratory Standard Institute (CLSI documents. Moreover this compound has a particularly good selectivity index value, which makes it an excellent candidate for broad-spectrum antifungal prototype and encourages the continuation of subsequent studies for the discovery of its mechanism of action.

  18. Antifungal Properties of Chenopodium ambrosioides Essential Oil Against Candida Species

    Directory of Open Access Journals (Sweden)

    Gerard Vilarem

    2010-09-01

    Full Text Available The essential oil of the aerial part (leaves, flowers and stem of Chenopodium ambrosioides was obtained by hydrodistillation and its chemical composition analyzed by GC and GC/MS, which permitted the identification of 14 components, representing 98.8% of the total oil. Major components were α-terpinene (51.3%, p-cymene (23.4% and p-mentha-1,8-diène (15.3%. The antifungal properties of this essential oil were investigated in vitro by the well diffusion and broth microdilution methods. The in vitro antifungal activity was concentration dependent and minimum inhibitory concentration values varied from 0.25 to 2 mg/mL. The in vivo antifungal activity was evaluated on an induced vaginal candidiasis rat model. The in vivo activity of the oil on mice vaginal candidiasis was not dose-dependent. Indeed, all the three tested doses; 0.1%, 1% and 10% led to the recovery of mice from the induced infection after 12 days of treatment. The effect of the essential oil on C. albicans ATCC 1663 fatty acid profile was studied. This oil has a relatively important dose-dependent effect on the fatty acids profile.

  19. Antifungal Efficacy of Myrtus communis Linn

    OpenAIRE

    Sadeghi Nejad; Erfani Nejad; Yusef Naanaie; Zarrin

    2014-01-01

    Background The ethanolic extract of Myrtus communis Linn. leaves was assayed in vitro as a growth inhibitor against opportunistic fungi such as Candida and Aspergillus species. Myrtus communis Linn. (Family, Myrtaceae) is an aromatic evergreen shrub or small tree. It is native to the Mediterranean region. Objectives This study aimed to assess antifungal activity (in vitro) of the ethanolic extracts of Myrtus communis leaves as a g...

  20. Risk of Fungemia Due to Rhodotorula and Antifungal Susceptibility Testing of Rhodotorula Isolates

    Science.gov (United States)

    Zaas, Aimee K.; Boyce, Molly; Schell, Wiley; Lodge, Barbara Alexander; Miller, Jackie L.; Perfect, John R.

    2003-01-01

    Rhodotorula infections occur among patients with immunosuppression and/or central venous catheters. Using standardized methods (NCCLS M27-A), we determined the antifungal susceptibilities of 10 Rhodotorula bloodstream infection isolates. Patient information was collected for clinical correlation. The MICs of amphotericin B and posaconazole were the lowest, and the MICs of triazoles and echinocandins were higher than those of other antifungal agents. PMID:14605170

  1. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L

    Directory of Open Access Journals (Sweden)

    Afrin Farhat

    2010-02-01

    Full Text Available Abstract Background Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. Methods The minimum inhibitory concentration (MIC and minimum fungicidal concentration (MFC of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Results Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 μg/ml for yeasts, 125 to 500 μg/ml for Aspergillus species, and 7.81 to 62.5 μg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 × MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 × MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 × to 8 × MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. Conclusions The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical

  2. Antifungal Effect of a Dental Tissue Conditioner Containing Nystatin-Loaded Alginate Microparticles.

    Science.gov (United States)

    Kim, Hyun-Jin; Son, Jun Sik; Kwon, Tae-Yub

    2018-02-01

    In this in vitro study, nystatin-alginate microparticles were successfully fabricated to control the release of nystatin from a commercial dental tissue conditioner. These nystatin-alginate microparticles were spherical and had a slightly rough surface. The microparticles incorporated into the tissue conditioner were distributed homogeneously throughout the tissue conditioner matrix. The incorporation of the microparticles did not deteriorate the mechanical properties of the original material. The agar diffusion test results showed that the tissue conditioner containing the microparticles had a good antifungal effect against Candida albicans. The nystatin-alginate microparticles efficiently controlled the release of nystatin from the tissue conditioner matrix over the experimental period of 14 days. Moreover, the nystatin-alginate microparticles incorporated in the tissue conditioner showed effective antifungal function even at lower concentrations of nystatin. The current study suggests that the tissue conditioner containing the nystatin-alginate microparticle carrier system has potential as an effective antifungal material.

  3. Antifungal Effects of Silver Nanoparticles (AgNPs) against Various Plant Pathogenic Fungi.

    Science.gov (United States)

    Kim, Sang Woo; Jung, Jin Hee; Lamsal, Kabir; Kim, Yun Seok; Min, Ji Seon; Lee, Youn Su

    2012-03-01

    This research is concerned with the fungicidal properties of nano-size silver colloidal solution used as an agent for antifungal treatment of various plant pathogens. We used WA-CV-WA13B, WA-AT-WB13R, and WA-PR-WB13R silver nanoparticles (AgNPs) at concentrations of 10, 25, 50, and 100 ppm. Eighteen different plant pathogenic fungi were treated with these AgNPs on potato dextrose agar (PDA), malt extract agar, and corn meal agar plates. We calculated fungal inhibition in order to evaluate the antifungal efficacy of silver nanoparticles against pathogens. The results indicated that AgNPs possess antifungal properties against these plant pathogens at various levels. Treatment with WA-CV-WB13R AgNPs resulted in maximum inhibition of most fungi. Results also showed that the most significant inhibition of plant pathogenic fungi was observed on PDA and 100 ppm of AgNPs.

  4. Minimal inhibitory concentration distributions and epidemiological cutoff values of five antifungal agents against Sporothrix brasiliensis

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeida-Paes

    Full Text Available BACKGROUND Sporothrix brasiliensis is the most virulent sporotrichosis agent. This species usually responds to antifungal drugs, but therapeutic failure can occur in some patients. Antifungal susceptibility tests have been performed on this species, but no clinical breakpoints (CBPs are available. In this situation, minimal inhibitory concentration (MIC distributions and epidemiological cutoff values (ECVs support the detection of identification of resistant strains. OBJECTIVES To study the MIC distributions of five antifungal drugs against S. brasiliensis and to propose tentative ECVs. METHODS MICs of amphotericin B (AMB, itraconazole (ITR, ketoconazole (KET, posaconazole (POS, and terbinafine (TRB against 335 S. brasiliensis strains were determined by the Clinical and Laboratory Standards Institute broth microdilution method. FINDINGS The proposed ECV, in µg/mL, for AMB, ITR, KET, POS, and TRB were 4.0, 2.0, 1.0, 2.0, and 0.25, respectively. Percentages of wild-type strains in our population for the above antifungal drugs were 98.48, 95.22, 95.33, 100, and 97.67%, respectively. MAIN CONCLUSIONS These ECVs will be useful to detect strains with resistance, to define CBPs, and to elaborate specific therapeutic guidelines for S. brasiliensis. Rational use of antifungals is strongly recommended to avoid the emergence of resistant strains and ensure the therapeutic effectiveness of sporotrichosis.

  5. Rational Discovery of (+) (S) Abscisic Acid as a Potential Antifungal Agent: a Repurposing Approach.

    Science.gov (United States)

    Khedr, Mohammed A; Massarotti, Alberto; Mohamed, Maged E

    2018-06-04

    Fungal infections are spreading widely worldwide, and the types of treatment are limited due to the lack of diverse therapeutic agents and their associated side effects and toxicity. The discovery of new antifungal classes is vital and critical. We discovered the antifungal activity of abscisic acid through a rational drug design methodology that included the building of homology models for fungal chorismate mutases and a pharmacophore model derived from a transition state inhibitor. Ligand-based virtual screening resulted in some hits that were filtered using molecular docking and molecular dynamic simulations studies. Both in silico methods and in vitro antifungal assays were used as tools to select and validate the abscisic acid repurposing. Abscisic acid inhibition assays confirmed the inhibitory effect of abscisic acid on chorismate mutase through the inhibition of phenylpyruvate production. The repositioning of abscisic acid, the well-known and naturally occurring plant growth regulator, as a potential antifungal agent because of its suggested action as an inhibitor to several fungal chorismate mutases was the main result of this work.

  6. Identification of antifungal activity substances on seedborn disease from garlic and taxus extracts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, I.M.; Paik, S.B. [Konkuk University, Seoul (Korea, Republic of)

    1999-02-01

    Antifungal substances were isolated and identified from garlic and taxus extracts to develop safe and broad fungicide. The inhibitory effect of seedborn disease of sesame, pepper, radish, chinese cabbage by formulation of antifungal substances was investigated. The antifungal substance isolated through column chromatography from garlic and taxus extracts was confirmed by GC-MS as allicin (C{sub 6}H{sub 10}OS{sub 2}) and taxol(C{sub 47}H{sub 51}NO{sub 14}) and the quantified content from each extracts by HPLC analysis was 0.62%, 0.29%, respectively. The formulation composed of garlic and taxus extracts controlled effectively the seedborn fungi tested in this study at 10X dilution, but at 100X dilution the inhibitory effect decreased. Phytotoxicity of these formulations did not recognized. 22 refs., 6 figs., 5 tabs.

  7. Antifungal susceptibilities of Candida species isolated from the patients with vaginal candidiasis.

    Science.gov (United States)

    Nagashima, Masahito; Yamagishi, Yuka; Mikamo, Hiroshige

    2016-02-01

    There have been the current Japanese data on susceptibility testing for Candida isolates from vaginal candidiasis. The in vitro activities of therapeutic antifungal drugs for vulvovaginal candidiasis (VVC); miconazole (MCZ), itraconazole (ITCZ), fluconazole (FLCZ), clotrimazole (CTZ), oxiconazole (OCZ), isoconazole (ICZ) and bifonazole (BFZ) against vaginal isolates. Fifty-four strains Candida albicans and 19 strains of Candida glabrata were evaluated using a broth microdilution method specified by Clinical Laboratories Standard Institute (CLSI) document M27-A3. The MIC90 of each drug, MCZ, ITCZ, FLCZ, CTZ, OCZ, ICZ and BFZ, against C. albicans and C. glabrata isolates were 0.25, 0.12, 1, 0.06, 0.12, 0.12 and 1 μg/ml and 1, 1, 8, 0.5, 0.25, 0.5 and 1 μg/ml respectively. The activities of these drugs, except for BFZ, against C. glabrata were lower than that of C. albicans. There was one azole-resistant isolate in C. glabrata of which MIC of FLCZ is > 64 μg/ml and this isolate had cross resistance to other antifungal drugs tested. These results suggest that antifungal drugs for treatment of VVC continues to have potent antifungal activities against C. albicans and C. glabrata isolates from vaginitis. CTZ, OCZ and ICZ susceptibility of FLCZ low susceptibility C. glabrata are relatively higher than MCZ, ITCZ and FLCZ. Copyright © 2015. Published by Elsevier Ltd.

  8. Evaluation of 1,3-benzoxathiol-2-one Derivatives as Potential Antifungal Agents.

    Science.gov (United States)

    Terra, Luciana; de L Chazin, Eliza; de S Sanches, Paola; Saito, Max; de Souza, Marcus V N; Gomes, Claudia R B; Wardell, James L; Wardell, Solange M S V; Sathler, Plinio C; Silva, Gabriela C C; Lione, Viviane O; Kalil, Marcos; Joffily, Ana; Castro, Helena C; Vasconcelos, Thatyana R A

    2018-01-01

    Over the last few years, fungal infections have emerged as a worrisome global public health problem. Candidiasis is a disease caused by Candida species and has been a problem worldwide mainly for immunosuppressed patients. Lately, the resistant strains and side effects have been reported as important issues for treating Candidiasis, which have to be solved by identifying new drugs. The goal of this work was to synthesize a series of 1,3-benzoxathiol-2-one derivatives, XYbenzo[ d][1,3]oxathiol-2-ones, and evaluate their antifungal activity against five Candida species. In vitro antifungal screening test and minimum inhibitory concentration determination were performed according to CLSI protocols using ketoconazole as the reference drug. The cytotoxicity of the most active compounds was evaluated by hemolysis and MTT (Vero cells) assays. Compounds 2 (XY = 6-hydroxy-5-nitro, MIC = 4-32 µg/mL) and 7 (XY = 6-acetoxy-5-nitro, MIC =16-64 µg/mL) showed good results when compared with current antifungals in CLSI values (MIC = 0.04-250 µg/mL). These compounds exhibited a safer cytotoxicity as well as a lower hemolytic profile than ketoconazole. Overall, the in vitro results pointed to the potential of compounds 2 and 7 as new antifungal prototypes to be further explored. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Whey permeate fermented with kefir grains shows antifungal effect against Fusarium graminearum.

    Science.gov (United States)

    Gamba, Raúl Ricardo; De Antoni, Graciela; Peláez, Angela León

    2016-05-01

    The objective of the work reported here was to study the antifungal capability of cell-free supernatants obtained from whey permeates after fermentation by the kefir grains CIDCA AGK1 against Fusarium graminearum growth and zearalenone (ZEA) production. The assays were performed in order to study the conidial germination inhibition -in liquid media- and the effect on fungal growth rate and the Latency phase -in solid media. We observed that fermented supernatants of pH 3·5 produced the highest percentages of inhibition of conidial germination. The dilution and, particularly, alkalinisation of them led to the gradual loss of antifungal activity. In the fungal inhibition assays on plates we found that only the highest proportion of supernatant within solid medium had significant antifungal activity, which was determined as fungicidal. There was no ZEA biosynthesis in the medium with the highest proportion of supernatant, whereas at lower concentrations, the mycotoxin production was strain-dependent. From the results obtained we concluded that kefir supernatants had antifungal activity on the F. graminearum strains investigated and inhibited mycotoxin production as well, but in a strain-dependent fashion. The present work constitutes the first report of the effect of the products obtained from the kefir-grain fermentation of whey permeates - a readily available by-product of the dairy industry - on F. graminearum germination, growth, and toxin production.

  10. In Vitro Antifungal Susceptibility of Neoscytalidium dimidiatum Clinical Isolates from Malaysia.

    Science.gov (United States)

    James, Jasper Elvin; Santhanam, Jacinta; Lee, Mei Chen; Wong, Choon Xian; Sabaratnam, Parameswari; Yusoff, Hamidah; Tzar, Mohd Nizam; Razak, Mohd Fuat Abdul

    2017-04-01

    Neoscytalidium dimidiatum is an opportunistic fungus causing cutaneous infections mostly, which are difficult to treat due to antifungal resistance. In Malaysia, N. dimidiatum is associated with skin and nail infections, especially in the elderly. These infections may be mistaken for dermatophyte infections due to similar clinical appearance. In this study, Neoscytalidium isolates from cutaneous specimens, identified using morphological and molecular methods (28 Neoscytalidium dimidiatum and 1 Neoscytalidium sp.), were evaluated for susceptibility towards antifungal agents using the CLSI broth microdilution (M38-A2) and Etest methods. Amphotericin B, voriconazole, miconazole and clotrimazole showed high in vitro activity against all isolates with MIC ranging from 0.0313 to 1 µg/mL. Susceptibility towards fluconazole and itraconazole was noted in up to 10% of isolates, while ketoconazole was inactive against all isolates. Clinical breakpoints for antifungal drugs are not yet available for most filamentous fungi, including Neoscytalidium species. However, the results indicate that clinical isolates of N. dimidiatum in Malaysia were sensitive towards miconazole, clotrimazole, voriconazole and amphotericin B, in vitro.

  11. Meta-Analysis and Cost Comparison of Empirical versus Pre-Emptive Antifungal Strategies in Hematologic Malignancy Patients with High-Risk Febrile Neutropenia.

    Directory of Open Access Journals (Sweden)

    Monica Fung

    Full Text Available Invasive fungal disease (IFD causes significant morbidity and mortality in hematologic malignancy patients with high-risk febrile neutropenia (FN. These patients therefore often receive empirical antifungal therapy. Diagnostic test-guided pre-emptive antifungal therapy has been evaluated as an alternative treatment strategy in these patients.We conducted an electronic search for literature comparing empirical versus pre-emptive antifungal strategies in FN among adult hematologic malignancy patients. We systematically reviewed 9 studies, including randomized-controlled trials, cohort studies, and feasibility studies. Random and fixed-effect models were used to generate pooled relative risk estimates of IFD detection, IFD-related mortality, overall mortality, and rates and duration of antifungal therapy. Heterogeneity was measured via Cochran's Q test, I2 statistic, and between study τ2. Incorporating these parameters and direct costs of drugs and diagnostic testing, we constructed a comparative costing model for the two strategies. We conducted probabilistic sensitivity analysis on pooled estimates and one-way sensitivity analyses on other key parameters with uncertain estimates.Nine published studies met inclusion criteria. Compared to empirical antifungal therapy, pre-emptive strategies were associated with significantly lower antifungal exposure (RR 0.48, 95% CI 0.27-0.85 and duration without an increase in IFD-related mortality (RR 0.82, 95% CI 0.36-1.87 or overall mortality (RR 0.95, 95% CI 0.46-1.99. The pre-emptive strategy cost $324 less (95% credible interval -$291.88 to $418.65 pre-emptive compared to empirical than the empirical approach per FN episode. However, the cost difference was influenced by relatively small changes in costs of antifungal therapy and diagnostic testing.Compared to empirical antifungal therapy, pre-emptive antifungal therapy in patients with high-risk FN may decrease antifungal use without increasing mortality

  12. Meta-Analysis and Cost Comparison of Empirical versus Pre-Emptive Antifungal Strategies in Hematologic Malignancy Patients with High-Risk Febrile Neutropenia.

    Science.gov (United States)

    Fung, Monica; Kim, Jane; Marty, Francisco M; Schwarzinger, Michaël; Koo, Sophia

    2015-01-01

    Invasive fungal disease (IFD) causes significant morbidity and mortality in hematologic malignancy patients with high-risk febrile neutropenia (FN). These patients therefore often receive empirical antifungal therapy. Diagnostic test-guided pre-emptive antifungal therapy has been evaluated as an alternative treatment strategy in these patients. We conducted an electronic search for literature comparing empirical versus pre-emptive antifungal strategies in FN among adult hematologic malignancy patients. We systematically reviewed 9 studies, including randomized-controlled trials, cohort studies, and feasibility studies. Random and fixed-effect models were used to generate pooled relative risk estimates of IFD detection, IFD-related mortality, overall mortality, and rates and duration of antifungal therapy. Heterogeneity was measured via Cochran's Q test, I2 statistic, and between study τ2. Incorporating these parameters and direct costs of drugs and diagnostic testing, we constructed a comparative costing model for the two strategies. We conducted probabilistic sensitivity analysis on pooled estimates and one-way sensitivity analyses on other key parameters with uncertain estimates. Nine published studies met inclusion criteria. Compared to empirical antifungal therapy, pre-emptive strategies were associated with significantly lower antifungal exposure (RR 0.48, 95% CI 0.27-0.85) and duration without an increase in IFD-related mortality (RR 0.82, 95% CI 0.36-1.87) or overall mortality (RR 0.95, 95% CI 0.46-1.99). The pre-emptive strategy cost $324 less (95% credible interval -$291.88 to $418.65 pre-emptive compared to empirical) than the empirical approach per FN episode. However, the cost difference was influenced by relatively small changes in costs of antifungal therapy and diagnostic testing. Compared to empirical antifungal therapy, pre-emptive antifungal therapy in patients with high-risk FN may decrease antifungal use without increasing mortality. We

  13. Antifungal Potential of Host Defense Peptide Mimetics in a Mouse Model of Disseminated Candidiasis

    Directory of Open Access Journals (Sweden)

    Mobaswar Hossain Chowdhury

    2018-02-01

    Full Text Available Invasive candidiasis caused by Candida albicans and non-albicans Candida (NAC present a serious disease threat. Although the echinocandins are recommended as the first line of antifungal drug class, resistance to these agents is beginning to emerge, demonstrating the need for new antifungal agents. Host defense peptides (HDP exhibit potent antifungal activity, but as drugs they are difficult to manufacture efficiently, and they are often inactivated by serum proteins. HDP mimetics are low molecular weight non-peptide compounds that can alleviate these problems and were shown to be membrane-active against C. albicans and NAC. Here, we expand upon our previous works to describe the in vitro and in vivo activity of 11 new HDP mimetics that are active against C. albicans and NAC that are both sensitive and resistant to standard antifungal drugs. These compounds exhibit minimum inhibitory/fungicidal concentration (MIC/MFC in the µg/mL range in the presence of serum and are inhibited by divalent cations. Rapid propidium iodide influx into the yeast cells following in vitro exposure suggested that these HDP mimetics were also membrane active. The lead compounds were able to kill C. albicans in an invasive candidiasis CD-1 mouse model with some mimetic candidates decreasing kidney burden by 3–4 logs after 24 h in a dose-dependent manner. The data encouraged further development of this new anti-fungal drug class for invasive candidiasis.

  14. Antifungal resistance of candida isolates obtained from various specimens of intensive care unit patients

    Directory of Open Access Journals (Sweden)

    Habibe Çolak Pirinççioğlu

    2012-06-01

    Full Text Available Objectives: In this study; we aimed to determine the identificationof yeasts from the samples of the patients thatcome from Anesthesia Intensive Care Unit of DiyarbakırEducation and Research Hospital and also we aimed toperform the antifungal susceptibility testing of yeasts.Materials and methods: Antifungal susceptibility test resultsof yeasts that isolated from 25 blood, 24 urine, 3sputum and 3 peritoneal fluid samples of the patients thatcome from Anesthesia Intensive Care Unit to our laboratoryduring the period December 2009 - Septemberl/2010were evaluated.The yeasts identified by germ tube test, cornmeal tween80 and VITEC 2 Compact® (Biomerieux, France yeastidentification system. The antifungal susceptibility testswere performed for amphotericin B, flucytosine, fluconazoleand voriconazole by using VITEC 2 Compact®(Biomerieux, France system.Results: 56.36% of the yeasts were determined asC.albicans which was the most common yeast followedby; C.parapsilosis (30.9%, C.tropicalis (10.6%,C.tropicalis (5.45%, C.dubliniensis (3,63%, C.glabrata(1.81% and C.guilliermondi (1.81%. According to theresults of antifungal susceptibility tests, the resistancerate for fluconazole and variconazole were 1.81% and3.63% respectively. However no resistance were detectedagainst amphotericin B and flucytosine.Conclusions: Our results shows that C.albicans is themost common yeast isolated from the patients at intensivecare unit in our hospital. Increased resistance to fluconazolewhich is frequently used for empirical treatmentdemostrates importance of antifungal susceptibility tests.

  15. Antifungal activities of diphenyl diselenide and ebselen against echinocandin-susceptible and -resistant strains of Candida parapsilosis.

    Science.gov (United States)

    Chassot, Francieli; Pozzebon Venturini, Tarcieli; Baldissera Piasentin, Fernanda; Morais Santurio, Janio; Estivalet Svidzinski, Terezinha Inez; Hartz Alves, Sydney

    2016-10-01

    We evaluated the in vitro antifungal activity of diphenyl diselenide and ebselen against echinocandin-susceptible and -resistant strains of Candida parapsilosis using the broth microdilution method. Diphenyl diselenide (MIC range =1-8 µg/mL) and ebselen (MIC range =0.25-4 µg/mL) showed in vitro activity against echinocandin-susceptible isolates. However, ebselen also showed the highest antifungal activity against echinocandin-resistant strains (MIC range =0.06-4 µg/mL). This study demonstrated that the antifungal potential of diphenyl diselenide and ebselen deserves further investigation using in vivo experimental protocols.

  16. Antifungal activity of salaceyin A against Colletotrichum orbiculare and Phytophthora capsici.

    Science.gov (United States)

    Park, C N; Lee, D; Kim, W; Hong, Y; Ahn, J S; Kim, B S

    2007-08-01

    The antifungal activities of novel salicylic acid derivatives, salaceyin A, 6-(9-methyldecyl) salicylic acid, and salaceyin B, 6-(9-methylundecyl) salicylic acid were evaluated against plant pathogenic fungi. Salaceyin A showed antifungal activity against Cladosporium cucumerinum, Colletotrichum orbiculare and Phytophthora capsici at 64 microg ml(-1) while salaceyin B was less effective. In vitro antifungal activities of the compounds were influenced by the experimental pH value of the MIC test medium wherein their antifungal activities were enhanced by increasingly acidic conditions. Salaceyin A showed potent in vivo control efficacy against Phytophthora blight in pepper plants. The disease was effectively suppressed at 500 microg ml(-1), which was comparable to the commercial fungicide, metalaxyl. Salaceyin A suppressed anthracnose development on cucumber leaves in a concentration dependent manner. The control efficacy of salaceyin A against C. orbiculare infection was similar to chlorothalonil when applied prior to pathogen inoculation. Since the salaceyins are derivatives of salicylic acid, a known important signal molecule critical to plant defenses against pathogen invasion, we investigated the possibility that exogenous application of the salaceyin A would activate a systemic acquired resistance against P. capsici infection and C. orbiculare development on pepper and cucumber plants respectively. The addition of 500 microg ml(-1) of salaceyin A to the plant root systems did not significantly decrease disease development in the hosts. We are led to conclude that the disease control efficacy of salaceyin A against the Phytophthora blight and anthracnose diseases, mainly originates from the direct interaction of the agent with the pathogens.

  17. Candida profiles and antifungal resistance evolution over a decade in Lebanon.

    Science.gov (United States)

    Araj, George Farah; Asmar, Rima George; Avedissian, Aline Zakaria

    2015-09-27

    Infection with and antifungal resistance of Candida species have been on the rise globally. Relevant data on these pathogens are relatively few in our region, including Lebanon, thus warranting this study. This retrospective study of Candida spp. profiles and their in vitro antifungal susceptibility was based on analysis requests for 186 Candida non-albicans and 61 C. albicans during three periods (2005-2007, 2009-2011, and 2012-2014) over the span of the last 10 years at the American University of Beirut Medical Center (AUBMC), a major tertiary care center in Lebanon. Identification of Candida was done using the API 20C AUX system, and the E-test was used to determine the minimum inhibitory concentrations (MICs) of antifungal agents. Among the 1,300-1,500 Candida isolates recovered yearly, C. albicans rates decreased from 86% in 2005 to around 60% in 2014. Simultaneously, the non-albicans rates increased from 14% in 2005 to around 40% in 2014, revealing 11 species, the most frequent of which were C. tropicalis, C. glabrata, and C. parapsilosis. All these demonstrated high resistance (35%-79%) against itraconazole, but remained uniformly susceptible (100%) to amphotericin B. Though C. albicans and the other species maintained high susceptibility against fluconazole and voriconazole, their MIC90 showed an elevated trend over time, and C. glabrata had the highest resistance rates. The observed rise in resistance among Candida spp. in Lebanon mandates the need for close surveillance and monitoring of antifungal drug resistance for both epidemiologic and treatment purposes.

  18. Chemical Composition and Antifungal Activity of Ocimum basilicum L. Essential Oil

    Directory of Open Access Journals (Sweden)

    Neveen Helmy Abou El-Soud

    2015-07-01

    Full Text Available BACKGROUND: The leaves of Ocimum basilicum L. (basil are used in traditional cuisine as spices; its essential oil has found a wide application in perfumery, dental products as well as antifungal agents. AIM: To assess the chemical composition as well as the in vitro antifungal activity of O. basilicum L. essential oil against Aspergillus flavus fungal growth and aflatoxin B1 production. MATERIAL AND METHODS: The essential oil of O. basilicum was obtained by hydrodistillation and analysed using gas chromatography (GC and GC coupled with mass spectrometry (GC/MS. The essential oil was tested for its effects on Aspergillus flavus (A. flavus mycelial growth and aflatoxin B1 production in Yeast Extract Sucrose (YES growth media. Aflatoxin B1 production was determined by high performance liquid chromatography (HPLC. RESULTS: Nineteen compounds, representing 96.7% of the total oil were identified. The main components were as follows: linalool (48.4%, 1,8-cineol (12.2%, eugenol (6.6%, methyl cinnamate (6.2%, α-cubebene (5.7%, caryophyllene (2.5%, β-ocimene (2.1% and α-farnesene (2.0%.The tested oil showed significant antifungal activity that was dependent on the used oil concentration. The complete inhibition of A. flavus growth was observed at 1000 ppm oil concentration, while marked inhibition of aflatoxin B1 production was observed at all oil concentrations tested (500, 750 and 1000 ppm. CONCLUSION: These results confirm the antifungal activities of O. basilicum L. oil and its potential use to cure mycotic infections and act as pharmaceutical preservative against A. flavus growth and aflatoxin B1 production.

  19. Cyclization Reaction of Acyl Thiourea Chitosan: Enhanced Antifungal Properties via Structural Optimization.

    Science.gov (United States)

    Qin, Yukun; Liu, Weixiang; Xing, Ronge; Liu, Song; Li, Kecheng; Li, Pengcheng

    2018-03-06

    In this study, 3-methyl-1,2,4-triazolyl chitosan (MTACS) and 3-chloromethyl-1,2,4-triazolyl chitosan (CMTACS) were prepared via cyclization of acyl thiourea chitosan (TUCS). Their structures were confirmed by FT-IR, ¹H-NMR, elemental analysis, DSC, XRD, and SEM. The conformations were predicted using the Gaussian 09 program. Additionally, the antifungal properties of MTACS and CMTACS against Stemphylium solani weber ( S. solani ), Alternaria porri ( A. porri ), and Gloeosporium theae-sinensis ( G. theae-sinensis ) were assayed in vitro and ranged from 250 μg/mL to 1000 μg/mL. The results showed that MTACS and CMTACS exhibited enhanced inhibitory effect on the selected fungi compared to the original chitosan and TUCS. In particular, they displayed better antifungal activities against A. porri and G. theae-sinensis than that of the positive control, Triadimefon. The findings described here may lead to them being used as antifungal agents for crop protection.

  20. Cyclization Reaction of Acyl Thiourea Chitosan: Enhanced Antifungal Properties via Structural Optimization

    Directory of Open Access Journals (Sweden)

    Yukun Qin

    2018-03-01

    Full Text Available In this study, 3-methyl-1,2,4-triazolyl chitosan (MTACS and 3-chloromethyl-1,2,4-triazolyl chitosan (CMTACS were prepared via cyclization of acyl thiourea chitosan (TUCS. Their structures were confirmed by FT-IR, 1H-NMR, elemental analysis, DSC, XRD, and SEM. The conformations were predicted using the Gaussian 09 program. Additionally, the antifungal properties of MTACS and CMTACS against Stemphylium solani weber (S. solani, Alternaria porri (A. porri, and Gloeosporium theae-sinensis (G. theae-sinensis were assayed in vitro and ranged from 250 μg/mL to 1000 μg/mL. The results showed that MTACS and CMTACS exhibited enhanced inhibitory effect on the selected fungi compared to the original chitosan and TUCS. In particular, they displayed better antifungal activities against A. porri and G. theae-sinensis than that of the positive control, Triadimefon. The findings described here may lead to them being used as antifungal agents for crop protection.

  1. Light-induced antifungal activity of TiO2 nanoparticles/ZnO nanowires

    International Nuclear Information System (INIS)

    Haghighi, N.; Abdi, Y.; Haghighi, F.

    2011-01-01

    Antifungal activity of TiO 2 /ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO 2 nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO 2 /ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO 2 (anatase and rutile) and ZnO. TiO 2 /ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO 2 nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO 2 nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  2. Antifungal Activity of Hypericum havvae Against Some Medical ...

    African Journals Online (AJOL)

    ... potency against Candida albicans and Cryptococcus laurentii, with the same MIC value of 1.56 mg/ml. Conclusion: Our findings support the use of Hypericum havvae in traditional medicine for the treatment of fungal infections, especially Candidiasis. Keywords: Antifungal activity, Candida, Hypericum havvae, Candidiasis ...

  3. In Vitro Study of the Antifungal Activity of Essential Oils Obtained from Mentha spicata, Thymus vulgaris, and Laurus nobilis.

    Science.gov (United States)

    Houicher, Abderrahmane; Hechachna, Hind; Teldji, Hanifa; Ozogul, Fatih

    2016-01-01

    The aim of this study was to determine the antifungal activity of the essential oils isolated from three aromatic plants against 13 filamentous fungal strains. The major constituents of Mentha spicata, Thymus vulgaris, and Laurus nobilis essential oils were carvone (52.2%), linalool (78.1%), and 1,8-cineole (45.6%), respectively. There are also some patents suggesting the use of essential oils as natural and safe alternatives to fungicides for plant protection. In the present work, M. spicata essential oil exhibited the strongest activity against all tested fungi in which Fusarium graminearum, F.moniliforme, and Penicillium expansum were the most sensitive to mint oil with lower minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) values of 2.5 μL mL-1 (v/v). Thymus vulgaris essential oil was less active compared to the oil of M. spicata. Aspergillus ochraceus was the most sensitive strain to thyme oil with MIC and MFC values of 2.5 and 5 μL mL-1, respectively. Thymus vulgaris essential oil also exhibited a moderate fungicidal effect against the tested fungi, except for A. niger (MFC >20 μL-1). L. nobilis essential oil showed a similar antifungal activity with thyme oil in which A. parasiticus was the most resistant strain to this oil (MFC >20 μL mL-1). Our findings suggested the use of these essential oils as alternatives to synthetic fungicides in order to prevent pre-and post-harvest infections and ensure product safety. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Antifungal saponins from Swartzia langsdorffii

    International Nuclear Information System (INIS)

    Marqui, Sara Regina de; Lemos, Renata Brionizio; Santos, Luciana Avila; Castro-Gamboa, Ian; Cavalheiro, Alberto Jose; Bolzani, Vanderlan da Silva; Silva, Dulce Helena Siqueira; Scorzoni, Liliana; Fusco-Almeida, Ana Maria; Mendes-Giannini, Maria Jose Soares; Young, Maria Claudia Marx; Torres, Luce Maria Brandao

    2008-01-01

    Chromatographic fractionation of the EtOH extract from the leaves of Swartzia langsdorffii afforded the pentacyclic triterpenes oleanolic acid and lupeol, and two saponins: oleanolic acid 3-sophoroside and the new ester 3-O-β-D-(6'-methyl)-glucopyranosyl-28-O-β-D-glucopyranosyl-oleanate.Their structures were elucidated from spectral data, including 2D NMR and HRESIMS experiments. Antifungal activity of all isolated compounds was evaluated, using phytopathogens Cladosporium cladosporioides and C. sphaerospermum, and human pathogens Candida albicans, C. krusei, C. parapsilosis and Cryptococcus neoformans. (author)

  5. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores

    NARCIS (Netherlands)

    Chitarra, G.S.; Breeuwer, P.; Nout, M.J.R.; Aelst, van A.C.; Rombouts, F.M.; Abee, T.

    2003-01-01

    Aims: To identify and characterize an antifungal compound produced by Bacillus subtilis YM 10-20 which prevents spore germination of Penicillium roqueforti . Methods and Results: The antifungal compound was isolated by acid precipitation with HCl. This compound inhibited fungal germination and

  6. COMPARISON OF POTENCY OF ANTIFUNGAL ACTION OF DANDRUFF SHAMPOOS AND DIFFERENT PLANT EXTRACTS

    Directory of Open Access Journals (Sweden)

    Naga Padma P, Anuradha K, Divya K

    2015-04-01

    Full Text Available Context: Dandruff a very common scalp disorder with high prevalence in population is caused by numerous host factors in conjunction with Malassezia furfur. Most of the commercially available anti-dandruff hair shampoos contain some form of antifungal agent(s that appear to reduce the incidence of the disease. There are no good scientific studies done to prove the antifungal activity of commercially available hair shampoos. Aim: In this study commercially available shampoos were assessed for antifungal activity against a human dandruff isolate of M. furfur. The shampoos were Head & Shoulders, Clinic All Clear, and Pantene etc. The results demonstrated that all six of the assayed hair shampoos have some antifungal effect on growth of M. furfur. These products have poor efficacies, more side effects and give scope for recurrence of symptoms. Methods and Materials: Therefore different plant extracts that possess various active compounds which have antifungal activity could help to overcome the incidence of the disease and also avoid the emergence of resistance in the pathogen. The plant extracts were tested in different concentrations like 1:5, 1:10, 1:20 and they were hibiscus, neem, soap nut, etc. The inhibitory action was studied using agar well assay and disc diffusion method and the results indicated in percentage of inhibition. Conclusion: The study was significant as not only efficient known plant products with anti-dandruff activity could be compared with commercially available shampoos but also their better efficacies at minimum concentrations could be identified. This can help make a polyherbal mixture that could be incorporated in hair oil or shampoos for better anti-dandruff activity.

  7. Antifungal Effects of Bee Venom Components on Trichophyton rubrum: A Novel Approach of Bee Venom Study for Possible Emerging Antifungal Agent.

    Science.gov (United States)

    Park, Joonsoo; Kwon, Osung; An, Hyun-Jin; Park, Kwan Kyu

    2018-04-01

    Bee venom (BV) has been widely investigated for potential medical uses. Recent inadvertent uses of BV based products have shown to mitigate signs of fungal infections. However, the component mediating the antifungal effect has not been identified. This investigation compares bee venom in its whole and partial forms to evaluate the possible component responsible for the antifungal effect. Forty-eight plates inoculated with Trichophyton rubrum were allocated into four groups. The groups were treated with raw BV (RBV), melittin, apamin and BV based mist (BBM) respectively and each group was further allocated accordingly to three different concentrations. The areas were measured every other day for 14 days to evaluate the kinetic changes of the colonies. The interactions of ratio differences over interval were confirmed in groups treated with RBV and BBM. In RBV, the level of differences were achieved in groups treated with 10 mg/100 µl ( p =0.026) and 40 mg/100 µl ( p =0.000). The mean difference of ratio in groups treated with RBV was evident in day 3 and day 5. The groups that were treated with melittin or apamin did not show any significant interaction. In BBM groups, the significant levels of ratio differences over time intervals were achieved in groups treated with 200 µl/100 µl ( p =0.000) and 300 µl/100 µl ( p =0.030). The the bee venom in its whole form delivered a significant level of inhibition and we concluded that the venom in separated forms are not effective. Moreover, BV based products may exert as potential antifungal therapeutics.

  8. The In Vitro Efficacy of Essential Oils and Antifungal Drugs Against Prototheca zopfii.

    Science.gov (United States)

    Grzesiak, Barbara; Głowacka, Anna; Krukowski, Henryk; Lisowski, Andrzej; Lassa, Henryka; Sienkiewicz, Monika

    2016-08-01

    The algae of the genus Prototheca are environmental pathogens whose main reservoir is the habitat of cows. They can cause protothecosis in domestic and wild animals, as well as human beings, with the main etiological agents being Prototheca zopfii in animals and Prototheca wickerhamii in humans. The aim of the study was to evaluate the in vitro activity of selected essential oils and antifungal antibiotics against P. zopfii isolates. The material consisted of nine P. zopfii strains isolated from the milk of cows suffering from mastitis. Eight essential oils produced by POLLENA-AROMA, Poland, and nine antifungal agents were tested. The effects of essential oils on P. zopfii were evaluated by microdilution with liquid Sabouraud dextrose broth, and susceptibility to antifungal agents was tested using the disk-diffusion method. All used essential oils inhibited the activity of P. zopfii isolates, with MIC values ranging from 0.2 to 10.5 μl/ml. Cinnamon, clove, and thyme demonstrated the highest activity against the tested P. zopfii strains at concentrations ranging from 0.6 to 1.0 μl/ml. Of the antifungal agents, the tested strains were the most sensitive to nystatin (100 %). The tested essential oils can be used to complement protothecosis therapy in animals and human beings.

  9. A Novel Mechanistic Approach to Identify New Antifungal Lead ...

    African Journals Online (AJOL)

    Available online at http://www.tjpr.org ... The MIC of the more effective compounds, delta-decalactone and mandelonitrile ... screening which is increasingly used as a cost- ..... AD. Lanomycin and glucolanomycin, antifungal agents produced by ...

  10. Biofilm antifungal susceptibility of Candida urine isolated from ambulatory patients

    Directory of Open Access Journals (Sweden)

    Débora da Luz Becker

    2016-07-01

    Full Text Available Background and Objectives: the association between the biofilm formations an antifungal resistance has been suggested to be an important factor in the pathogenesis of several Candida species. Besides, studies have included invasive candidiasis from hospitalized patients; however there are few studies that evaluated the species distribution, antifungal susceptibility and biofilm formation of Candida species isolated from ambulatory patients. Thus, the aim of this study was to evaluate whether biofilm producing contributes to antifungal resistance in Candida isolates from urine sample obtained from ambulatory patients. Methods: During one year, 25 urine samples positive for yeast were collected, stored and plated on agar supplemented with chloramphenicol and Sabouread left at room temperature for 5 days for subsequent: 52% (13/25 were C. albicans, 36% (9/25 C. tropicalis, 8% (2/25 C. krusei and 4% (1/25 C. parapsilosis. Results: The ability to form biofilm was detected in 23 (92% of the yeast studied and 15.4% (2/13 of C. albicans were fluconazole (FLU and ketoconazole (KET resistant, while 11.1% (1/9 of C. tropicalis were ketoconazole resistant and were anidulafungin (ANI non-susceptible. Conclusion: our results showed the high capacity for biofilm formation among Candida isolates from ambulatory patients.

  11. Anti-fungal properties of chitinolytic dune soil bacteria

    NARCIS (Netherlands)

    De Boer, W.; Klein Gunnewiek, P.J.A.; Lafeber, P.; Janse, J.H.; Spit, B.E.; Woldendorp, J.W.

    1998-01-01

    Anti-fungal properties of chitinolytic soil bacteria may enable them to compete successfully for chitin with fungi. Additionally, the production of chitinase may be part of a lytic system that enables the bacteria to use living hyphae rather than chitin as the actual growth substrate, since chitin

  12. In vivo screening antifungal activity of methanolic extract of Protoparmeliopsis muralis against Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Somaye Rashki

    2017-06-01

    Full Text Available Background & Objective: Lichens are the result of the symbiosis of fungi and algae or a cyanobacterium. Various biological activities of some lichen and their components such as: antifungal, anti-bacterial, anti-tumor, anti-inflammatory, antiprotozoal substances are known. In the present study, antifungal activity of methanolic extract of Protoparmeliopsis muralis against Aspergillus flavus is investigated on rats. Materials & Methods: 500 g of Protoparmeliopsis muralis was collected from KaneGonbad mountains in Ilam province, the methanol extract was prepared by soxhle. In order to determine the antifungal activity in in vivo conditions, a wound was created and infected with Aspergillus flavus. Having infected the wound, the researchers divided the rats into 4 subgroups: negative control group, treated with Kotrimoksazol, %5 ointment extract methanolic P. muralis, and with %10 ointment extract methanolic P. muralis. Treatment continued until complete healing of the wound. Finally, the percentage of wound healing was calculated. Results: The result of the present study demonstrated that methanolic extract of P. muralis decreased the area of wound in the treatment group compared to the control group. Conclusion: The antifungal and antioxidant activity of the extract of Protoparmeliopsis muralis accelerated the wound healing process.

  13. Cytochrome P450-mediated metabolism of the synthetic cannabinoids UR-144 and XLR-11

    DEFF Research Database (Denmark)

    Nielsen, Line Marie; Holm, Niels Bjerre; Olsen, Lars

    2016-01-01

    In recent years, synthetic cannabinoids have emerged in the illicit drug market, in particular via the Internet, leading to abuse of these drugs. There is currently limited knowledge about the specific enzymes involved in the metabolism of these drugs. In this study, we investigated the cytochrome...... of UR-144 and XLR-11, while inhibition of the other CYP enzymes in HLM had only minor effects. Thus, CYP3A4 is the major contributor to the CYP mediated metabolism of UR-144 and XLR-11 with minor contributions from CYP1A2. Users of UR-144 and XLR-11 are thus subject to the influence of potential drug-drug...... interactions, if they are concomitantly medicated with CYP3A4 inducers (e.g. some antiepileptics) or inhibitors (e.g. some antifungal drugs). Copyright © 2015 John Wiley & Sons, Ltd....

  14. Radiation application for upgrading of bioresources

    International Nuclear Information System (INIS)

    Lee, Young Keun; Kim, Jae Sung; Lee, Sang Jae; Chang, Hwa Hyoung; Jang, Yu Sin; Cho, Kyu Seong; Jang, Byung Il; Chung, Hye Young; Lee, Ki Sung; Lee, Yang Han

    2003-04-01

    The recent trends of agriculture in developed countries are to restrict the using of synthetic pesticides. The alternative to the above synthetic pesticide is the development of biological control system against plant pathogenic fungi using antifungal microbes. The antifungal microbes were isolated from various sources in Korea. The mutants of which antifungal activities were improved or disappeared were induced from the above antifungal microbes by radiation. By the 2-DE analysis, the antifugal proteins were identified and the N-terminal amino acid sequences were determined. Two antifungal materials of which molecular weights were 391 Da and 369 Da, respectively, were purified and analysed. From DNA microarray analysis of Bacillus lentimorbus WJ5 and its radiation induced antifungal activity deficient(AF-) mutants, we identified commonly down-regulated genes and selected the srb gene which regained the antifungal activity of WJ5m12 (AF-) mutant. We determined the formulations of biocontrollers to prevent plant pathogenic fungi. The natural plasmid (pWJ5) of B. lentimorbus WJ5 was isolated and sequenced completely. We isolated two biodegradable biopolymer (bioflocculant) producing microbes from soil and formulated to apply wastewater process and to develop bioflocculant-antifungal microbes complex

  15. Natural - synthetic - artificial!

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.......The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life....

  16. Antifungal activity of topical microemulsion containing a thiophene derivative

    Directory of Open Access Journals (Sweden)

    Geovani Pereira Guimarães

    2014-06-01

    Full Text Available Fungal infections have become a major problem of worldwide concern. Yeasts belonging to the Candida genus and the pathogenic fungus Cryptococcus neoformans are responsible for different clinical manifestations, especially in immunocompromised patients. Antifungal therapies are currently based on a few chemotherapeutic agents that have problems related to effectiveness and resistance profiles. Microemulsions are isotropic, thermodynamically stable transparent systems of oil, water and surfactant that can improve the solubilization of lipophilic drugs. Taking into account the need for more effective and less toxic drugs along with the potential of thiophene derivatives as inhibitors of pathogenic fungi growth, this study aimed to evaluate the antifungal activity of a thiophene derivative (5CN05 embedded in a microemulsion (ME. The minimum inhibitory concentration (MIC was determined using the microdilution method using amphotericin B as a control. The formulations tested (ME- blank and ME-5CN05 showed physico-chemical properties that would allow their use by the topical route. 5CN05 as such exhibited moderate or weak antifungal activity against Candida species (MIC = 270-540 µg.mL-1 and good activity against C. neoformans (MIC = 17 µg.mL-1. Candida species were susceptible to ME-5CN05 (70-140 µg.mL-1, but C. neoformans was much more, presenting a MIC value of 2.2 µg.mL-1. The results of this work proved promising for the pharmaceutical industry, because they suggest an alternative therapy against C. neoformans.

  17. Evaluation of antifungal activity from Bacillus strains against ...

    African Journals Online (AJOL)

    In this study, 30 bacterial strains isolated from marine biofilms were screened for their antifungal activity against Rhizoctonia solani by dual culture assay. Two bacterial strains, Bacillus subtilis and Bacillus cereus, showed a clear antagonism against R. solani on potato dextrose agar (PDA) medium. The antagonistic activity ...

  18. A non-polyene antifungal antibiotic from Streptomyces albidoflavus ...

    Indian Academy of Sciences (India)

    Out of these, 22% of the isolates exhibited activity against fungi. One promising strain, Streptomyces albidoflavus PU 23 with strong antifungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate. Aspergillus spp. was most sensitive to the antibiotic followed by ...

  19. Antifungal susceptibility profiles and risk factors of vaginal ...

    African Journals Online (AJOL)

    Contemporary young women often shift their preference from skirt to trousers and leggingswhich also coincides with a rise in auto-medication and over-the-counter drugs phenomena in our communities. These could result in increased occurrence of vaginal candidiasis infection and antifungal drug resistance. This was a ...

  20. Macrophage Reporter Cell Assay for Screening Immunopharmacological Activity of Cell Wall-Active Antifungals

    OpenAIRE

    Lewis, Russell E.; Liao, Guangling; Young, Katherine; Douglas, Cameron; Kontoyiannis, Dimitrios P.

    2014-01-01

    Antifungal exposure can elicit immunological effects that contribute to activity in vivo, but this activity is rarely screened in vitro in a fashion analogous to MIC testing. We used RAW 264.7 murine macrophages that express a secreted embryonic alkaline phosphatase (SEAP) gene induced by transcriptional activation of NF-κB and activator protein 1 (AP-1) to develop a screen for immunopharmacological activity of cell wall-active antifungal agents. Isolates of Candida albicans and Aspergillus f...

  1. Determination of a new promising natural antifungal product against Penicillium digitatum

    International Nuclear Information System (INIS)

    Balkan, S.

    2018-01-01

    The present study deals with the fungal infections, a great amount of food losses occur worldwide. The infections caused by Penicillium digitatum, green mold agent in Citrus fruits, are just one of those losses. In this study, determining a novel environmentally-friendly antifungal product against green mold agent is aimed. Total 39 plant species, naturally growing in Kirklareli (Turkey) were scanned in terms of antifungal activity against P. digitatum. Digitalis viridiflora, Medicago lupulina and Sambucus ebulus, inhibited the micelle development of P. digitatum completely (100%), while Lythrum salicaria, Epilobium roseum and Prunella vulgaris inhibited the micelle development over 75%. D. viridiflora has showed the least MIC value (250 mu g/ml) against P. digitatum. In SEM analysis, flattening, collapse and wrinkling effects of D. viridiflora on hyphae structure of P. digitatum were also observed during the present investigation. In the lemons treated with 8 mg/ml D. viridiflora aqueous extract, 73.99% regression in the lesion diameters has also been observed. As a result, in order to avoid green mold infection caused by P. digitatum occurring in lemon fruits, D. viridiflora can be used as a natural antifungal agent. (author)

  2. Antifungal activity of selected Malaysian honeys: a comparison with Manuka honey

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Sayadi

    2015-07-01

    Full Text Available Objective: To evaluate four selected Malaysian honey samples from different floral sources (Gelam, Tualang, Nenas and Acacia for their ability to inhibit the growth of fungi and yeast strains (Candida albicans, Aspergillus niger, Epidermophyton floccosum, Microsporum gypseum, Trichophyton rubrum and Trichophyton mentagrophytes. Methods: The broth microdilution method was used to assess the antifungal activity of honey against yeasts at different concentrations ranging from 0.01% to 70% (v/v. Minimum inhibitory concentration (MIC of the honeys were determined by visual inspection and spectrophotometric assay. Minimum fungicidal concentration test was performed by further sub-culturing from the plates which showed no visible growth in the MIC assay onto Sabroud dextrose agar. Results: All tested Malaysian honeys except Gelam showed antifungal activity against all species analysed, with the MIC ranging from 25% (v/v to 50% (v/v while MIC of Manuka honey ranged between 21% to 53% (v/v. Candida albicans was more susceptible to honey than other species tested. Conclusions: Locally produced honeys exhibited antifungal activity which is less than or equal to that of Manuka honey. Our data showed evidence in support of the therapeutic uses of Malaysian honeys.

  3. Synthesis and antifungal activity of nicotinamide derivatives as succinate dehydrogenase inhibitors.

    Science.gov (United States)

    Ye, Yong-Hao; Ma, Liang; Dai, Zhi-Cheng; Xiao, Yu; Zhang, Ying-Ying; Li, Dong-Dong; Wang, Jian-Xin; Zhu, Hai-Liang

    2014-05-07

    Thirty-eight nicotinamide derivatives were designed and synthesized as potential succinate dehydrogenase inhibitors (SDHI) and precisely characterized by (1)H NMR, ESI-MS, and elemental analysis. The compounds were evaluated against two phytopathogenic fungi, Rhizoctonia solani and Sclerotinia sclerotiorum, by mycelia growth inhibition assay in vitro. Most of the compounds displayed moderate activity, in which, 3a-17 exhibited the most potent antifungal activity against R. solani and S. sclerotiorum with IC50 values of 15.8 and 20.3 μM, respectively, comparable to those of the commonly used fungicides boscalid and carbendazim. The structure-activity relationship (SAR) of nicotinamide derivatives demonstrated that the meta-position of aniline was a key position contributing to the antifungal activity. Inhibition activities against two fungal SDHs were tested and achieved the same tendency with the data acquired from in vitro antifungal assay. Significantly, 3a-17 was demonstrated to successfully suppress disease development in S. sclerotiorum infected cole in vivo. In the molecular docking simulation, sulfur and chlorine of 3a-17 were bound with PHE291 and PRO150 of the SDH homology model, respectively, which could explain the probable mechanism of action between the inhibitory and target protein.

  4. Bacterial strains diversity in Musa spp. phyllosphere with antifungal activity against Mycosphaerella fijiensis Morelet

    Directory of Open Access Journals (Sweden)

    Mileidy Cruz-Martín

    2016-01-01

    Full Text Available The search for alternatives to agricultural pesticides used for the management of black Sigatoka (Mycosphaerella fijiensis Morelet includes the selection of microorganisms strains with potential for the control of this pathogen. The objective of the work was to characterize bacterial strains isolated from the phylosphere of Musa spp. with antifungal effect against M. fijiensis. A morphological, cultural, physiological and molecular characterization of the strains was performed and the antifungal activity of these strains was quantified by dual culture. It was verified the diversity of bacteria with antifungal properties against M. fijiensis present in the phylosphere of Musa spp.  In addition, it was found that the phyllosphere of these crops can be used as a source of obtaining possible biological controls of M. fijiensis.   Keywords: bacteria, biocontrol, Black Sigatoka, epiphytes

  5. Antifungal effect and pore-forming action of lactoferricin B like peptide derived from centipede Scolopendra subspinipes mutilans.

    Science.gov (United States)

    Choi, Hyemin; Hwang, Jae-Sam; Lee, Dong Gun

    2013-11-01

    The centipede Scolopendra subspinipes mutilans has been a medically important arthropod species by using it as a traditional medicine for the treatment of various diseases. In this study, we derived a novel lactoferricin B like peptide (LBLP) from the whole bodies of adult centipedes, S. s. mutilans, and investigated the antifungal effect of LBLP. LBLP exerted an antifungal and fungicidal activity without hemolysis. To investigate the antifungal mechanism of LBLP, a membrane study with propidium iodide was first conducted against Candida albicans. The result showed that LBLP caused fungal membrane permeabilization. The assays of the three dimensional flow cytometric contour plot and membrane potential further showed cell shrinkage and membrane depolarization by the membrane damage. Finally, we confirmed the membrane-active mechanism of LBLP by synthesizing model membranes, calcein and FITC-dextran loaded large unilamellar vesicles. These results showed that the antifungal effect of LBLP on membrane was due to the formation of pores with radii between 0.74nm and 1.4nm. In conclusion, this study suggests that LBLP exerts a potent antifungal activity by pore formation in the membrane, eventually leading to fungal cell death. © 2013.

  6. Molecular identification and antifungal susceptibility profile of Candida species isolated from patients with vulvovaginitis in Tehran, Iran.

    Science.gov (United States)

    Sharifynia, Somayeh; Falahati, Mehraban; Akhlaghi, Lame; Foroumadi, Alireza; Fateh, Roohollah

    2017-01-01

    Rapid and accurate identification and evaluation of antifungal susceptibility pattern of Candida isolates are crucial to determine suitable antifungal drugs for the treatment of patients with vulvovaginitis candidiasis. Vaginal samples were collected from 150 women with suspicious vaginal candidiasis, and then cultured on Sabouraoud's Dextrose Agar with chloramphenicol to isolate Candida species. After identification of Candida isolates using polymerase chain reaction-restriction fragment length polymorphism technique, antifungal susceptibility testing of four azolic antifungal drugs was carried out using broth microdilution method according to the CLSI M27-A3. Candida species were isolated from eighty suspected patients (61.79%). The most common pathogen was Candida albicans (63.75%). Resistance to fluconazole and ketoconazole was observed in 27.5% and 23.75% of Candida isolates, respectively, and only 2% of Candida isolates were resistant to miconazole. Interestingly, resistance to fluconazole in C. albicans was more than other Candida species. The results indicated that therapy should be selected according to the antifungal susceptibility tests for the prevention of treatment failure and miconazole therapy can be considered as the best therapeutic choice in the management of vulvovaginitis.

  7. Molecular identification and antifungal susceptibility profile of Candida species isolated from patients with vulvovaginitis in Tehran, Iran

    Directory of Open Access Journals (Sweden)

    Somayeh Sharifynia

    2017-01-01

    Full Text Available Background: Rapid and accurate identification and evaluation of antifungal susceptibility pattern of Candida isolates are crucial to determine suitable antifungal drugs for the treatment of patients with vulvovaginitis candidiasis. Materials and Methods: Vaginal samples were collected from 150 women with suspicious vaginal candidiasis, and then cultured on Sabouraoud's Dextrose Agar with chloramphenicol to isolate Candida species. After identification of Candida isolates using polymerase chain reaction-restriction fragment length polymorphism technique, antifungal susceptibility testing of four azolic antifungal drugs was carried out using broth microdilution method according to the CLSI M27-A3. Results: Candida species were isolated from eighty suspected patients (61.79%. The most common pathogen was Candida albicans (63.75%. Resistance to fluconazole and ketoconazole was observed in 27.5% and 23.75% of Candida isolates, respectively, and only 2% of Candida isolates were resistant to miconazole. Interestingly, resistance to fluconazole in C. albicans was more than other Candida species. Conclusion: The results indicated that therapy should be selected according to the antifungal susceptibility tests for the prevention of treatment failure and miconazole therapy can be considered as the best therapeutic choice in the management of vulvovaginitis.

  8. Invasive Fungal Infections in Patients with Hematological Malignancies: Emergence of Resistant Pathogens and New Antifungal Therapies

    Directory of Open Access Journals (Sweden)

    Maria N. Gamaletsou

    2018-02-01

    Full Text Available Invasive fungal infections caused by drug-resistant organisms are an emerging threat to heavily immunosuppressed patients with hematological malignancies. Modern early antifungal treatment strategies, such as prophylaxis and empirical and preemptive therapy, result in long-term exposure to antifungal agents, which is a major driving force for the development of resistance. The extended use of central venous catheters, the nonlinear pharmacokinetics of certain antifungal agents, neutropenia, other forms of intense immunosuppression, and drug toxicities are other contributing factors. The widespread use of agricultural and industrial fungicides with similar chemical structures and mechanisms of action has resulted in the development of environmental reservoirs for some drug-resistant fungi, especially azole-resistant Aspergillus species, which have been reported from four continents. The majority of resistant strains have the mutation TR34/L98H, a finding suggesting that the source of resistance is the environment. The global emergence of new fungal pathogens with inherent resistance, such as Candida auris, is a new public health threat. The most common mechanism of antifungal drug resistance is the induction of efflux pumps, which decrease intracellular drug concentrations. Overexpression, depletion, and alteration of the drug target are other mechanisms of resistance. Mutations in the ERG11 gene alter the protein structure of C-demethylase, reducing the efficacy of antifungal triazoles. Candida species become echinocandin-resistant by mutations in FKS genes. A shift in the epidemiology of Candida towards resistant non-albicans Candida spp. has emerged among patients with hematological malignancies. There is no definite association between antifungal resistance, as defined by elevated minimum inhibitory concentrations, and clinical outcomes in this population. Detection of genes or mutations conferring resistance with the use of molecular methods

  9. Synthesis of chitosan derivative with diethyldithiocarbamate and its antifungal activity.

    Science.gov (United States)

    Qin, Yukun; Xing, Ronge; Liu, Song; Li, Kecheng; Hu, Linfeng; Yu, Huahua; Chen, Xiaolin; Li, Pengcheng

    2014-04-01

    With an aim to discover novel chitosan derivatives with enhanced antifungal properties compared with chitosan. Diethyl dithiocarbamate chitosan (EtDTCCS) was investigated and its structure was well identified. The antifungal activity of EtDTCCS against Alternaria porri (A. porri), Gloeosporium theae sinensis Miyake (G. theae sinensis), and Stemphylium solani Weber (S. solani) was tested at 0.25, 0.5, and 1.0 mg/mL, respectively. Compared with plain chitosan, EtDTCCS shows better inhibitory effect with 93.2% inhibitory index on G. theae sinensis at 1.0 mg/mL, even stronger than for polyoxin (82.5%). It was inferred derivatives of this kind may find potential applications for the treatment of various crop-threatening diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. [Zygomycetes and zygomycosis in the new era of antifungal therapies].

    Science.gov (United States)

    Torres-Narbona, M; Guinea, J; Muñoz, P; Bouza, E

    2007-12-01

    Zygomycosis or mucormycosis is the third most invasive fungal infection after candidiasis and aspergillosis. Traditionally, it has been considered a community-acquired disease, but it is becoming a frequent nosocomial-acquired disease. Recently, several publications from different institutions have reported an increase in the number of cases of invasive zygomycosis as a result of the new antifungal and immunosuppresive therapies and the emerging immunocompromised population. In addition, the diagnosis of zygomycosis is elusive, mainly in pulmonary and disseminated forms. One of the main limitations in isolating Zygomycetes from clinical samples is the interpretation of results. The increasing number of invasive fungal infections caused by multiresistant fungi has led to the development of new antifungal drugs with variable activity against Zygomycetes.

  11. Antifungal Activity from Leaves of Acacia Nilotica against Pythium Aphanidermatum

    Directory of Open Access Journals (Sweden)

    A. J. Khan

    1996-01-01

    Full Text Available Gallic acid and methyl ester of gallic acid has been identified as antifungal compounds against the mycelial growth of Pythium aphanidermatum from acetone-water extracts of Acacia nilotica leaves. The growth of fungus was completely ceased by gallic acid and its methyl ester at 1000 ppm and 750 ppm, respectively. Antifungal properties of both compounds were found to be higher in combination than alone. The minimum inhibitory concentration for both compounds was 1000 ppm. No phytotoxic effect of the compounds was observed on watermelon seed germination. The growth of roots and shoots of watermelon seedlings was promoted by gallic acid but decreased with methyl ester of gallic acid. Nitrate reductase activity of the fungus was significantly inhibited by both compounds.

  12. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine.

    Science.gov (United States)

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies.

  13. Anti-Fungal activity of essential oil from Baeckea frutescens L against Pleuratus ostreatus

    Science.gov (United States)

    Jemi, Renhart; Barus, Ade Irma; Nuwa, Sarinah, Luhan, Gimson

    2017-11-01

    Ujung Atap is an herb that have distinctive odor on its leaves. The plant's essential oil contains bioactive compounds but has not been investigated its anti-fungal activity against Pleurotus ostreatus. Essential oil from Ujung Atap leaves is one environmentally friendly natural preservative. This study consisted of distillation Ujung Atap leaves with boiled method, determining the number of acid, essential oil ester, and anti-fungal activity against Pleurotus ostreatus. Analysis of the data to calculate anti-fungal activity used probit analysis method to determine the IC50. Results for the distillation of leaves Ujung Atap produce essential oil yield of 0.071% and the average yield of the acid number and the ester of essential oils Ujung Atap leaves are 5.24 and 12.15. Anti-fungal activity Pleurotus ostreatus at a concentration of 1000 µg/mL, 100 µg/mL, 75 µg/mL, 50 µg/mL and 100 µg/mL BA defunct or fungi was declared dead, while at a concentration of 25 µg/mL, 10 µg/mL and 5 µg/mL still occur inhibitory processes. Results obtained probit analysis method IC50 of 35.48 mg/mL; means the essential oil of Ujung Atap leaf can inhibit fungal growth by 50 percent to 35.48 µg/mL concentration.

  14. In vitro activities of antifungal drugs against environmental Exophiala isolates and review of the literature.

    Science.gov (United States)

    Gülmez, Dolunay; Doğan, Özlem; Boral, Barış; Döğen, Aylin; İlkit, Macit; de Hoog, G Sybren; Arikan-Akdagli, Sevtap

    2018-04-03

    Exophiala is a genus of black fungi isolated worldwide from environmental and clinical specimens. Data on antifungal susceptibility of Exophiala isolates are limited and the methodology on susceptibility testing is not yet standardized. In this study, we investigated in vitro antifungal susceptibilities of environmental Exophiala isolates. A total of 87 Exophiala isolated from dishwashers or railway ties were included. CLSI M38-A2 microdilution method with modifications was used to determine antifungal susceptibility for fluconazole, voriconazole, posaconazole, itraconazole, amphotericin B, and terbinafine. Minimum inhibitory concentration (MIC) values were determined visually at 48h, 72h, and 96h. MIC-0 endpoint (complete inhibition of growth) was used for amphotericin B and azoles, except fluconazole, for which MIC-2 endpoint (~50% inhibition compared to growth control) was used. Both MIC-0 and MIC-1 (~80% inhibition compared to growth control) results were analysed for terbinafine, to enable comparison with previous studies. Fungal growth was sufficient for determination of MICs at 48h for all isolates except two Exophiala dermatitidis strains. At 72h, most active antifungal agents according to GM MIC were voriconazole and terbinafine, followed by posaconazole, itraconazole, and amphotericin B in rank order of decreasing activity. While amphotericin B displayed adequate in vitro activity despite relatively high MICs, fluconazole showed no meaningful antifungal activity against Exophiala. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. In Vitro Activity of E1210, a Novel Antifungal, against Clinically Important Yeasts and Molds▿

    Science.gov (United States)

    Miyazaki, Mamiko; Horii, Takaaki; Hata, Katsura; Watanabe, Nao-aki; Nakamoto, Kazutaka; Tanaka, Keigo; Shirotori, Syuji; Murai, Norio; Inoue, Satoshi; Matsukura, Masayuki; Abe, Shinya; Yoshimatsu, Kentaro; Asada, Makoto

    2011-01-01

    E1210 is a new antifungal compound with a novel mechanism of action and broad spectrum of antifungal activity. We investigated the in vitro antifungal activities of E1210 compared to those of fluconazole, itraconazole, voriconazole, amphotericin B, and micafungin against clinical fungal isolates. E1210 showed potent activities against most Candida spp. (MIC90 of ≤0.008 to 0.06 μg/ml), except for Candida krusei (MICs of 2 to >32 μg/ml). E1210 showed equally potent activities against fluconazole-resistant and fluconazole-susceptible Candida strains. E1210 also had potent activities against various filamentous fungi, including Aspergillus fumigatus (MIC90 of 0.13 μg/ml). E1210 was also active against Fusarium solani and some black molds. Of note, E1210 showed the greatest activities against Pseudallescheria boydii (MICs of 0.03 to 0.13 μg/ml), Scedosporium prolificans (MIC of 0.03 μg/ml), and Paecilomyces lilacinus (MICs of 0.06 μg/ml) among the compounds tested. The antifungal action of E1210 was fungistatic, but E1210 showed no trailing growth of Candida albicans, which has often been observed with fluconazole. In a cytotoxicity assay using human HK-2 cells, E1210 showed toxicity as low as that of fluconazole. Based on these results, E1210 is likely to be a promising antifungal agent for the treatment of invasive fungal infections. PMID:21825291

  16. Antifungal Effect of Arabidopsis SGT1 Proteins via Mitochondrial Reactive Oxygen Species.

    Science.gov (United States)

    Park, Seong-Cheol; Cheong, Mi Sun; Kim, Eun-Ji; Kim, Jin Hyo; Chi, Yong Hun; Jang, Mi-Kyeong

    2017-09-27

    The highly conserved SGT1 (suppressor of the G2 alleles of skp1) proteins from Arabidopsis are known to contribute to plant resistance to pathogens. While SGT1 proteins respond to fungal pathogens, their antifungal activity is not reported and the mechanism for this inhibition is not well understood. Therefore, recombinant Arabidopsis SGT1 proteins were cloned, expressed, and purified to evaluate their antifungal activity, resulting in their potent inhibition of pathogen growth. Dye-labeled proteins are localized to the cytosol of Candida albicans cells without the disruption of the cell membrane. Moreover, we showed that entry of the proteins into C. albicans cells resulted in the accumulation of reactive oxygen species (ROS) and cell death via altered mitochondrial potential. Morphological changes of C. albicans cells in the presence of proteins were visualized by scanning electron microscopy. Our data suggest that AtSGT1 proteins play a critical role in plant resistance to pathogenic fungal infection and they can be classified to a new plant antifungal protein.

  17. Isolation and characterization of an antifungal protein from Bacillus licheniformis HS10.

    Science.gov (United States)

    Wang, Zhixin; Wang, Yunpeng; Zheng, Li; Yang, Xiaona; Liu, Hongxia; Guo, Jianhua

    2014-11-07

    Bacillus licheniformis HS10 is a good biocontrol agent against Pseudoperonospora cubensis which caused cucumber downy disease. To identify and characterize the antifungal proteins produced by B.licheniformis HS10, the proteins from HS10 were isolated by using 30-60% ammonium sulfate precipitation, and purified with column chromatography on DEAE Sepharose Fast Flow, RESOURCE Q and Sephadex G-75. And the SDS-PAGE and MALDI-TOF/TOF-MS analysis results demonstrated that the antifungal protein was a monomer with molecular weight of about 55 kDa, identified as carboxypeptidase. Our experiments also showed that the antifungal protein from B. licheniformis HS10 had significantly inhibition on eight different kinds of plant pathogenic fungi, and it was stable with good biological activity at as high as 100°C for 30 min and in pH value ranged from 6 to 10. The biological activity was negatively affected by protease K and 10mM metal cations except Ca(2+). Copyright © 2014 Elsevier Inc. All rights reserved.

  18. The comparative study of antifungal activity of Syzygium aromaticum, Punica granatum and nystatin on Candida albicans; an in vitro study.

    Science.gov (United States)

    Mansourian, A; Boojarpour, N; Ashnagar, S; Momen Beitollahi, J; Shamshiri, A R

    2014-12-01

    Candida species are opportunistic fungi, among which, Candida albicans is the most important species responsible for infections in immunocompromised patients with invasive fungal disease. Resistance of Candida species to antifungal drugs has led scientists to pay more attention to traditional medicine herbs. Due to the limitations in the treatment of fungal diseases such as shortages, high prices, antifungal side effects and drug resistance or reduced susceptibility to fungal drugs we decided to study the antifungal effects of herbal extracts of Syzygium aromaticum and Punica granatum. Twenty-one isolates of oral C. albicans in patients with denture stomatitis referred to prosthesis department, Dental faculty of Tehran University of Medical Sciences were prepared and cultured. Plant extracts were prepared from the herbs market. Tests on patient samples and standard strains 5027ATCC (PTCC10231) yeast C. albicans were performed via well diffusion method. In addition, nystatin and methanol were used as positive and negative control, respectively. Finally, the antifungal effect of extracts using Statistical Repeated measurement ANOVA test was investigated. Both S. aromaticum and P. granatum showed noticeable antifungal activity in well method. Syzygium aromaticum showed better anti candida activity than nystatin (Pgranatum showed good antifungal effects (P-value<0.001). S. aromaticum (inhibition zone diameter: 29.62) showed better antifungal effects than nystatin (inhibition zone diameter: 28.48). Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  19. Antimicrobial and antifungal activities of the extracts and essential oils of Bidens tripartita.

    Directory of Open Access Journals (Sweden)

    Michał Tomczyk

    2008-12-01

    Full Text Available The aim of this study was to determine the antibacterial and antifungal properties of the extracts, subextracts and essential oils of Bidens tripartita flowers and herbs. In the study, twelve extracts and two essential oils were investigated for activity against different Gram-positive Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Gram-negative bacteria Escherichia coli, E. coli (beta-laktamase+, Klebsiella pneumoniae (ESBL+, Pseudomonas aeruginosa and some fungal organisms Candida albicans, C. parapsilosis, Aspergillus fumigatus, A. terreus using a broth microdilution and disc diffusion methods. The results obtained indicate antimicrobial activity of the tested extracts (except butanolic extracts, which however did not inhibit the growth of fungi used in this study. Bacteriostatic effect of both essential oils is insignificant, but they have strong antifungal activity. These results support the use of B. tripartita to treat a microbial infections and it is indicated as an antimicrobial and antifungal agent, which may act as pharmaceuticals and preservatives.

  20. Light-induced antifungal activity of TiO{sub 2} nanoparticles/ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Haghighi, N. [Nano-Physics Research Lab., Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Abdi, Y., E-mail: y.abdi@ut.ac.ir [Nano-Physics Research Lab., Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Haghighi, F. [Department of Medical Mycology, School of Medical sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of)

    2011-09-15

    Antifungal activity of TiO{sub 2}/ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO{sub 2} nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO{sub 2}/ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO{sub 2} (anatase and rutile) and ZnO. TiO{sub 2}/ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO{sub 2} nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO{sub 2} nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  1. Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group

    Directory of Open Access Journals (Sweden)

    Xu K

    2015-03-01

    Full Text Available Kehan Xu,1,* Lei Huang,1,* Zheng Xu,2 Yanwei Wang,1,3 Guojing Bai,1 Qiuye Wu,1 Xiaoyan Wang,1 Shichong Yu,1 Yuanying Jiang1 1School of Pharmacy, Second Military Medical University, Shanghai, 2Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 3Number 422 Hospital of PLA, Zhanjiang, People’s Republic of China *These authors contributed equally to this work Abstract: In previous studies undertaken by our group, a series of 1-(1H-1,2,4-triazole-1-yl-2-(2,4-difluorophenyl-3-substituted-2-propanols (1a–r, which were analogs of fluconazole, was designed and synthesized by click chemistry. In the study reported here, the in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi. Compounds 1a, 1q, and 1r showed the more antifungal activity than the others. Keywords: triazole, synthesis, antifungal activity, CYP51

  2. Genetic determinants of antifungal resistance in Candida species ...

    African Journals Online (AJOL)

    In the previous decades, it has been an increase in cases of resistance to antifungal agents used in the prophylaxis and treatment of infections caused by Candida species. The emergence of resistance to drug classes, it is usually explained by genome alterations ranging from point mutations to gain or loss of whole ...

  3. Composition and antioxidant and antifungal activities of the ...

    African Journals Online (AJOL)

    In this study, the oil constituents of Lippia gracilis were identified by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). The antioxidant and antifungal activities were also evaluated. The leaf oil showed a yield of 3.7% and its main constituents were thymol (70.3%), p-cymene (9.2%), thymol ...

  4. Fluconazole for empiric antifungal therapy in cancer patients with fever and neutropenia

    Directory of Open Access Journals (Sweden)

    Peterson Josh F

    2006-12-01

    Full Text Available Abstract Background Several clinical trials have demonstrated the efficacy of fluconazole as empiric antifungal therapy in cancer patients with fever and neutropenia. Our objective was to assess the frequency and resource utilization associated with treatment failure in cancer patients given empiric fluconazole antifungal therapy in routine inpatient care. Methods We performed a retrospective cohort study of cancer patients treated with oral or intravenous fluconazole between 7/97 and 6/01 in a tertiary care hospital. The final study cohort included cancer patients with neutropenia (an absolute neutrophil count below 500 cells/mm3 and fever (a temperature above 38°C or 100.4°F, who were receiving at least 96 hours of parenteral antibacterial therapy prior to initiating fluconazole. Patients' responses to empiric therapy were assessed by reviewing patient charts. Results Among 103 cancer admissions with fever and neutropenia, treatment failure after initiating empiric fluconazole antifungal therapy occurred in 41% (95% confidence interval (CI 31% – 50% of admissions. Patients with a diagnosis of hematological malignancy had increased risk of treatment failure (OR = 4.6, 95% CI 1.5 – 14.8. When treatment failure occurred the mean adjusted increases in length of stay and total costs were 7.4 days (95% CI 3.3 – 11.5 and $18,925 (95% CI 3,289 – 34,563, respectively. Conclusion Treatment failure occurred in more than one-third of neutropenic cancer patients on fluconazole as empiric antifungal treatment for fever in routine clinical treatment. The increase in costs when treatment failure occurs is substantial.

  5. Evaluation of antifungal efficacy of QMix 2in1 as a final irrigant: An in ...

    African Journals Online (AJOL)

    Evaluation of antifungal efficacy of QMix 2in1 as a final irrigant: An in vitro study. E Kalyoncuoglu, E Sen Tunc, S Ozer, C Keskin, K Bilgin, A Birinci. Abstract. Background: It is known that no specific antifungal agent exists at present for irrigation of infected root canals. QMix 2in1 was investigated to determine whether they ...

  6. CYP3A4 Mediates Oxidative Metabolism of the Synthetic Cannabinoid AKB-48.

    Science.gov (United States)

    Holm, Niels Bjerre; Nielsen, Line Marie; Linnet, Kristian

    2015-09-01

    Synthetic cannabinoid designer drugs have emerged as drugs of abuse during the last decade, and acute intoxication cases are documented in the scientific literature. Synthetic cannabinoids are extensively metabolized, but our knowledge of the involved enzymes is limited. Here, we investigated the metabolism of N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide (AKB-48), a compound identified in herbal blends from 2012 and onwards. We screened for metabolite formation using a panel of nine recombinant cytochrome P450 (CYP) enzymes (CYP1A2, 2B6, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, and 3A4) and compared the formed metabolites to human liver microsomal (HLM) incubations with specific inhibitors against CYP2D6, 2C19, and 3A4, respectively. The data reported here demonstrate CYP3A4 to be the major CYP enzyme responsible for the oxidative metabolism of AKB-48, preferentially performing the oxidation on the adamantyl moiety. Genetic polymorphisms are likely not important with regard to toxicity given the major involvement of CYP3A4. Adverse drug-drug interactions (DDIs) could potentially occur in cases with co-intake of strong CYP3A4 inhibitors, e.g., HIV antivirals and azole antifungal agents.

  7. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    Directory of Open Access Journals (Sweden)

    Lidia Lipińska

    2016-01-01

    Full Text Available Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis and yeasts (Candida vini. We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  8. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol.

    Science.gov (United States)

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds.

  9. New Polyurethane Nail Lacquers for the Delivery of Terbinafine: Formulation and Antifungal Activity Evaluation.

    Science.gov (United States)

    Gregorí Valdes, Barbara S; Serro, Ana Paula; Gordo, Paulo M; Silva, Alexandra; Gonçalves, Lídia; Salgado, Ana; Marto, Joana; Baltazar, Diogo; Dos Santos, Rui Galhano; Bordado, João Moura; Ribeiro, Helena Margarida

    2017-06-01

    Onychomycosis is a fungal nail infection. The development of new topical antifungal agents for the treatment of onychomycosis has focused on formulation enhancements that optimize the pharmacological characteristics required for its effective treatment. Polyurethanes (PUs) have never been used in therapeutic nail lacquers. The aim of this work has been the development of new PU-based nail lacquers with antifungal activity containing 1.0% (wt/wt) of terbinafine hydrochloride. The biocompatibility, wettability, and the prediction of the free volume in the polymeric matrix were assessed using a human keratinocytes cell line, contact angle, and Positron Annihilation Lifetime Spectroscopy determinations, respectively. The morphology of the films obtained was confirmed by scanning electron microscopy, while the nail lacquers' bioadhesion to nails was determined by mechanical tests. Viscosity, in vitro release profiles, and antifungal activity were also assessed. This study demonstrated that PU-terbinafine-based nail lacquers have good keratinocyte compatibility, good wettability properties, and adequate free volume. They formed a homogenous film after application, with suitable adhesion to the nail plate. Furthermore, the antifungal test results demonstrated that the terbinafine released from the nail lacquer Formulation A PU 19 showed activity against dermatophytes, namely Trichophyton rubrum. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Antifungal Activity of Lactobacillus sp. Bacteria in the Presence of Xylitol and Galactosyl-Xylitol

    Science.gov (United States)

    Lipińska, Lidia; Klewicki, Robert; Klewicka, Elżbieta; Kołodziejczyk, Krzysztof; Sójka, Michał; Nowak, Adriana

    2016-01-01

    Lactic acid fermentation is a natural method of antimicrobial food protection. Antagonistic activity of Lactobacillus sp. bacteria, taking part in this process, is directed mainly against the same or other microorganisms. In this work we determine the impact of the presence of xylitol and galactosyl-xylitol on the antagonistic activity of 60 Lactobacillus sp. strains against indicator molds (Alternaria alternata, Alternaria brassicicola, Aspergillus niger, Fusarium latenicum, Geotrichum candidum, and Mucor hiemalis) and yeasts (Candida vini). We used double-layer method to select antifungal strains of Lactobacillus bacteria and poisoned medium method to confirm their fungistatic properties. Additionally, we examined the inhibition of Alternaria brassicicola by Lactobacillus paracasei ŁOCK 0921 cultivated with xylitol or galactosyl-xylitol directly on wild cherries. The presence of xylitol and its galactosyl derivative led to increase of spectrum of antifungal activity in most of the studied plant-associated lactobacilli strains. However, no single strain exhibited activity against all the indicator microorganisms. The antifungal activity of Lactobacillus bacteria against molds varied considerably and depended on both the indicator strain and the composition of the medium. The presence of xylitol and galactosyl-xylitol in the growth medium is correlated with the antifungal activity of the studied Lactobacillus sp. bacteria against selected indicator molds. PMID:27294124

  11. Synthesis and characterization of anti-bacterial and anti-fungal citrate-based mussel-inspired bioadhesives

    Science.gov (United States)

    Guo, Jinshan; Wang, Wei; Hu, Jianqing; Xie, Denghui; Gerhard, Ethan; Nisic, Merisa; Shan, Dingying; Qian, Guoying; Zheng, Siyang; Yang, Jian

    2016-01-01

    Bacterial and fungal infections in the use of surgical devices and medical implants remain a major concern. Traditional bioadhesives fail to incorporate anti-microbial properties, necessitating additional anti-microbial drug injection. Herein, by the introduction of the clinically used and inexpensive anti-fungal agent, 10-undecylenic acid (UA), into our recently developed injectable citrate-based mussel-inspired bioadhesives (iCMBAs), a new family of anti-bacterial and anti-fungal iCMBAs (AbAf iCs) was developed. AbAf iCs not only showed strong wet tissue adhesion strength, but also exhibited excellent in vitro cyto-compatibility, fast degradation, and strong initial and considerable long-term anti-bacterial and anti-fungal ability. For the first time, the biocompatibility and anti-microbial ability of sodium metaperiodate (PI), an oxidant used as a cross-linking initiator in the AbAf iCs system, was also thoroughly investigated. Our results suggest that the PI-based bioadhesives showed better anti-microbial properties compared to the unstable silver-based bioadhesive materials. In conclusion, AbAf iCs family can serve as excellent anti-bacterial and anti-fungal bioadhesive candidates for tissue/wound closure, wound dressing, and bone regeneration, especially when bacterial or fungal infections are a major concern. PMID:26874283

  12. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana).

    Science.gov (United States)

    Mousa, Walaa Kamel; Schwan, Adrian L; Raizada, Manish N

    2016-09-03

    Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s) of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H)-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone), and harpagoside (an iridoide glycoside). Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.

  13. Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum

    Science.gov (United States)

    Zhang, Fusheng; Chen, Qin; Chen, Cheng; Yu, Xiaorui; Liu, Qingya; Bao, Jinku

    2018-01-01

    Curcuma longa possesses powerful antifungal activity, as demonstrated in many studies. In this study, the antifungal spectrum of Curcuma longa alcohol extract was determined, and the resulting EC50 values (mg/mL) of its extract on eleven fungi, including Fusarium graminearum, Fusarium chlamydosporum, Alternaria alternate, Fusarium tricinctum, Sclerotinia sclerotiorum, Botrytis cinerea, Fusarium culmorum, Rhizopus oryzae, Cladosporium cladosporioides, Fusarium oxysporum and Colletotrichum higginsianum, were 0.1088, 0.1742, 0.1888, 0.2547, 0.3135, 0.3825, 0.4229, 1.2086, 4.5176, 3.8833 and 5.0183, respectively. Among them, F. graminearum was selected to determine the inhibitory effects of the compounds (including curdione, isocurcumenol, curcumenol, curzerene, β-elemene, curcumin, germacrone and curcumol) derived from Curcuma longa. In addition, the antifungal activities of curdione, curcumenol, curzerene, curcumol and isocurcumenol and the synergies of the complexes of curdione and seven other chemicals were investigated. Differential proteomics of F. graminearum was also compared, and at least 2021 reproducible protein spots were identified. Among these spots, 46 were classified as differentially expressed proteins, and these proteins are involved in energy metabolism, tRNA synthesis and glucose metabolism. Furthermore, several fungal physiological differences were also analysed. The antifungal effect included fungal cell membrane disruption and inhibition of ergosterol synthesis, respiration, succinate dehydrogenase (SDH) and NADH oxidase. PMID:29543859

  14. Antifungal activity of leaf extract of Crassocephalum repidiodes on ...

    African Journals Online (AJOL)

    The susceptibility profile of the dermatophytes tested was T. mentagrophytes. > T. rubrum > M. audouinii. The phytochemical studies of the extracts revealed that the aqueous extract lacked terpenes and anthraquinone while terpenes were absent in ethanolic extract. KEY WORDS: Antifungal, Dermatophytes, Extract, ...

  15. KB425796-A, a novel antifungal antibiotic produced by Paenibacillus sp. 530603.

    Science.gov (United States)

    Kai, Hirohito; Yamashita, Midori; Takase, Shigehiro; Hashimoto, Michizane; Muramatsu, Hideyuki; Nakamura, Ikuko; Yoshikawa, Koji; Ezaki, Masami; Nitta, Kumiko; Watanabe, Masato; Inamura, Noriaki; Fujie, Akihiko

    2013-08-01

    The novel antifungal macrocyclic lipopeptidolactone, KB425796-A (1), was isolated from the fermentation broth of bacterial strain 530603, which was identified as a new Paenibacillus species based on morphological and physiological characteristics, and 16S rRNA sequences. KB425796-A (1) was isolated as white powder by solvent extraction, HP-20 and ODS-B column chromatography, and lyophilization, and was determined to have the molecular formula C79H115N19O18. KB425796-A (1) showed antifungal activities against Aspergillus fumigatus and the micafungin-resistant infectious fungi Trichosporon asahii, Rhizopus oryzae, Pseudallescheria boydii and Cryptococcus neoformans.

  16. Antifungal Activity of Gallic Acid In Vitro and In Vivo.

    Science.gov (United States)

    Li, Zhi-Jian; Liu, Meng; Dawuti, Gulina; Dou, Qin; Ma, Yu; Liu, Heng-Ge; Aibai, Silafu

    2017-07-01

    Gallic acid (GA) is a polyphenol natural compound found in many medicinal plant species, including pomegranate rind (Punica granatum L.), and has been shown to have antiinflammatory and antibacterial properties. Pomegranate rind is used to treat bacterial and fungal pathogens in Uyghur and other systems of traditional medicine, but, surprisingly, the effects of GA on antifungal activity have not yet been reported. In this study, we aimed to investigate the inhibitory effects of GA on fungal strains both in vitro and in vivo. The minimal inhibitory concentration (MIC) was determined by the NCCLS (M38-A and M27-A2) standard method in vitro, and GA was found to have a broad spectrum of antifungal activity, with MICs for all the tested dermatophyte strains between 43.75 and 83.33 μg/mL. Gallic acid was also active against three Candida strains, with MICs between 12.5 and 100.0 μg/mL. The most sensitive Candida species was Candida albicans (MIC = 12.5 μg/mL), and the most sensitive filamentous species was Trichophyton rubrum (MIC = 43.75 μg/mL), which was comparable in potency to the control, fluconazole. The mechanism of action was investigated for inhibition of ergosterol biosynthesis using an HPLC-based assay and an enzyme linked immunosorbent assay. Gallic acid reduced the activity of sterol 14α-demethylase P450 (CYP51) and squalene epoxidase in the T. rubrum membrane, respectively. In vivo model demonstrated that intraperitoneal injection administration of GA (80 mg/kg d) significantly enhanced the cure rate in a mice infection model of systemic fungal infection. Overall, our results confirm the antifungal effects of GA and suggest a mechanism of action, suggesting that GA has the potential to be developed further as a natural antifungal agent for clinical use. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Prospects of application of vegetable oils as antifungal agents (Literature review

    Directory of Open Access Journals (Sweden)

    A. A. Mikheev

    2017-04-01

    Full Text Available Purpose of work – to summarize and present modern scientific literature reviews of alternative antifungal agents usage, among which herbal medicines, and in particular herbal oils, may play significant role. Fungal infections (mycoses are one of the leading infectious diseases in the world. Besides the medical importance, pathogenic fungi play a significant role in the food industry as potential pollutants. In order to treat fungal infections and to prevent food spoilage various medications that are products of chemical synthesis are widely used and the need for them increases significantly. However, among large number of medications and herbal drugs only a small part is used to treat fungal infections and to prevent food decay, though plants contain a lot of bioactive compounds with potential antifungal properties. Therefore, question of application of vegetable oils as antifungal agents is relevant. Various plants contain oils that have the potential antifungal properties, but are often used only in gastronomic purpose. The same time those oils can be successfully used for the treatment of candidiasis and infections caused by fungi of genera Aspergillus, Trichoderma, Penicillium, Fusarium, Metrhizium, Ophiostoma, Scopulariopsis and others. Their effects are manifested like using a single vegetable oil and mixtures of oils. Conclusions. Vegetable oils usage has big perspectives due to the lack of «addictive» effect and the development of resistance in fungi of different taxa. Vegetable oils do not require considerable investments for their reception, and thanks to traditions of aromo- and herbal medicine, their usage can be more effective in contrast to traditional chemotherapeutic agents. The search and study of new medicines based on vegetable oils may be a perspective direction of modern microbiological sciences and requires further deep studies of their biological properties and mechanisms of action.

  18. Antifungal Activity of Culture Filtrates and Organic Extracts of Aspergillus spp. against Pythium ultimum

    OpenAIRE

    Rania Aydi-Ben Abdallah; Marwa Hassine; Hayfa Jabnoun-Khiareddine; Rabiaa Haouala; Mejda Daami-Remadi

    2014-01-01

    Culture filtrates, chloroform and ethyl acetate extracts of nine isolates of Aspergillus spp. (A. niger, A. terreus, A. flavus and Aspergillus sp.), isolated from soil and compost, were tested for antifungal activity against Pythium ultimum the causal agent of the potato Pythium leak. Culture filtrates showed a significant antifungal activity at the different tested concentrations. Total inhibition of the pathogen was induced by the filtrate of CH8 of Aspergillus sp., used at 10% ...

  19. Radiation-induced enhancement of antifungal activity of chitosan on fruit-spoiling fungi during postharvest storage

    Energy Technology Data Exchange (ETDEWEB)

    Diep, Tran Bang; Lam, Nguyen Duy; Quynh, Tran Minh [Institute for Nuclear Science and Technique-VAEC, Hanoi (Viet Nam); Kume, Tamikazu [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    Experiment conducted four fruit-spoiling fungal strains that were isolated from spoilt fruits (mango and dragon fruit) and were identified as follows: Fusarium dimerum Penzig, Aspergillus nidulans Wint, Aspergillus fumigatus Fresenius and Aspergillus japonicus Saito. Chitosan samples with various deacetylation degree (70-99%) were irradiated at doses ranging from 20 to 200kGy, then were supplemented to liquid medium for growth of fungi. We have found that chitosan possesses not only well known antibacterial activity but also the antifungal one on fruit-spoiling fungi. Method of fungal cultivation using liquid medium showed that it has higher sensitivity compared with the cultivation on agar plate, so we recommend this method should be used for evaluation of antimicrobial activity of chitosan. Our study also indicated that deacetylation degree of chitosan clearly affects its antifungal activity, the higher the deacetylation of chitosan, stronger antifungal activity can be observed. This finding recommends the use of chitosan with higher deacetylation for fruit coating and other pharmacology utilization. Results from the minimal inhibitory concentrations (MIC) on fungal growth showed that radiation treatment increased antifungal activity of chitosan and dose of 60kGy gave highest activity. (author)

  20. Radiation-induced enhancement of antifungal activity of chitosan on fruit-spoiling fungi during postharvest storage

    International Nuclear Information System (INIS)

    Diep, Tran Bang; Lam, Nguyen Duy; Quynh, Tran Minh; Kume, Tamikazu

    2001-01-01

    Experiment conducted four fruit-spoiling fungal strains that were isolated from spoilt fruits (mango and dragon fruit) and were identified as follows: Fusarium dimerum Penzig, Aspergillus nidulans Wint, Aspergillus fumigatus Fresenius and Aspergillus japonicus Saito. Chitosan samples with various deacetylation degree (70-99%) were irradiated at doses ranging from 20 to 200kGy, then were supplemented to liquid medium for growth of fungi. We have found that chitosan possesses not only well known antibacterial activity but also the antifungal one on fruit-spoiling fungi. Method of fungal cultivation using liquid medium showed that it has higher sensitivity compared with the cultivation on agar plate, so we recommend this method should be used for evaluation of antimicrobial activity of chitosan. Our study also indicated that deacetylation degree of chitosan clearly affects its antifungal activity, the higher the deacetylation of chitosan, stronger antifungal activity can be observed. This finding recommends the use of chitosan with higher deacetylation for fruit coating and other pharmacology utilization. Results from the minimal inhibitory concentrations (MIC) on fungal growth showed that radiation treatment increased antifungal activity of chitosan and dose of 60kGy gave highest activity. (author)

  1. Antifungal activities of selected Venda medicinal plants against ...

    African Journals Online (AJOL)

    USER

    2010-05-17

    May 17, 2010 ... extracts from 30 plants used by Venda traditional healers for the ... cost of antifungal agents (Debruyne, 1997; Traeder et al., ... the use of medicinal plants is very common based on ... used to determine the activity of the plant extracts against the .... diffusion method: Table 3) as well as the two Candida.

  2. Chemical Constituents and Antifungal Activity of Ficus hirta Vahl. Fruits

    Directory of Open Access Journals (Sweden)

    Chunpeng Wan

    2017-09-01

    Full Text Available Phytochemical investigation of Ficus hirta Vahl. (Moraceae fruits led to isolate two carboline alkaloids (1 and 2, five sesquiterpenoids/norsesquiterpenoids (3–7, three flavonoids (8–10, and one phenylpropane-1,2-diol (11. Their structures were elucidated by the analysis of their 1D and 2D NMR, and HR-ESI-MS data. All of the isolates were isolated from this species for the first time, while compounds 2, 4–6, and 8–11 were firstly reported from the genus Ficus. Antifungal assay revealed that compound 8 (namely pinocembrin-7-O-β-d-glucoside, a major flavonoid compound present in the ethanol extract of F. hirta fruits, showed good antifungal activity against Penicillium italicum, the phytopathogen of citrus blue mold caused the majority rotten of citrus fruits.

  3. Cotrimoxazole enhances the in vitro susceptibility of Coccidioides posadasii to antifungals

    Directory of Open Access Journals (Sweden)

    Rossana de Aguiar Cordeiro

    2011-12-01

    Full Text Available The aim of the present study was to evaluate the effect of cotrimoxazole on the in vitro susceptibility of Coccidioides posadasii strains to antifungals. A total of 18 strains of C. posadasii isolated in Brazil were evaluated in this study. The assays were performed in accordance with the Clinical and Laboratory Standards Institute guidelines and the combinations were tested using the checkerboard method. The minimum inhibitory concentrations were reduced by 11, 2.4, 4.3 and 3.5 times for amphotericin B, itraconazole, fluconazole and voriconazole, respectively. Moreover, it was seen that cotrimoxazole itself inhibited C. posadasii strains in vitro. The impairment of folic acid synthesis may be a potential antifungal target for C. posadasii.

  4. Cotrimoxazole enhances the in vitro susceptibility of Coccidioides posadasii to antifungals.

    Science.gov (United States)

    Cordeiro, Rossana de Aguiar; Astete-Medrano, Delia Jessica; Marques, Francisca Jakelyne de Farias; Andrade, Heuziwanne Tavares Leite; Perdigão Neto, Lauro Vieira; Tavares, Juliane Lira; de Lima, Rita Amanda Chaves; Patoilo, Kharla Kharolyni Nobre Rabelo; Monteiro, Andre Jalles; Brilhante, Raimunda Sâmia Nogueira; Rocha, Marcos Fábio Gadelha; de Camargo, Zoilo Pires; Sidrim, José Júlio Costa

    2011-12-01

    The aim of the present study was to evaluate the effect of cotrimoxazole on the in vitro susceptibility of Coccidioides posadasii strains to antifungals. A total of 18 strains of C. posadasii isolated in Brazil were evaluated in this study. The assays were performed in accordance with the Clinical and Laboratory Standards Institute guidelines and the combinations were tested using the checkerboard method. The minimum inhibitory concentrations were reduced by 11, 2.4, 4.3 and 3.5 times for amphotericin B, itraconazole, fluconazole and voriconazole, respectively. Moreover, it was seen that cotrimoxazole itself inhibited C. posadasii strains in vitro. The impairment of folic acid synthesis may be a potential antifungal target for C. posadasii.

  5. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Antifungal and antibacterial activities of an alcoholic extract of ...

    African Journals Online (AJOL)

    Methanolic, ethanolic and petroleum ether extracts of Senna alata leaves were screened for phytochemicals, antibacterial and antifungal activities. Out of the three crude extracts, the methanolic extract showed the highest activity than the ethanolic and petroleum ether extracts. The unidentified active components purified ...

  7. Evaluation of antifungal activity of standardized extract of Salvia rhytidea Benth. (Lamiaceae) against various Candida isolates.

    Science.gov (United States)

    Salari, S; Bakhshi, T; Sharififar, F; Naseri, A; Ghasemi Nejad Almani, P

    2016-12-01

    Salvia species have long been described in traditional medicine for various indications. Owing to the widespread use of this genus by ethnic populations, especially for various infections ranging from skin disease to gastrointestinal disorders, we were encouraged to determine whether Salvia rhytidea could be effective against fungal infections. Given the increased incidence of candidiasis in the past decade, limits on the use of antifungal drugs, emergence of azole-resistant Candida species and increased incidence of treatment failures, it is necessary to identify a novel agent with antifungal properties. Aim of the study was to evaluate the antifungal properties of S. rhytidea against various Candida isolates. In this study, at first rosmarinic acid content of plant extract was determined. A total of 96 Candida isolates were tested, including the following species: Candida albicans (n=42), Candida glabrata (n=16), Candida tropicalis (n=11), Candida krusei (n=9), Candida parapsilosis (n=9), Candida lusitaniae (n=7) and Candida guilliermondii (n=2). The in vitro antifungal activity of methanolic extracts of S. rhytidea Benth. was evaluated against Candida isolates and compared with that of the standard antifungal drug nystatin by using a broth microdilution method, according to CLSI. Phytochemical screening results showed that the methanolic extract of S. rhytidea Benth. was rich in flavonoids and tannins. The minimal inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of S. rhytidea Benth. ranged from 3.125 to>100μg/ml and 6.25 to>100μg/ml respectively. The growth inhibition value displayed that C. tropicalis, C. krusei and C. albicans isolates were most susceptible to S. rhytidea. Findings show that S. rhytidea possesses an antifungal effect against Candida isolates. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Identification of antifungal compounds active against Candida albicans using an improved high-throughput Caenorhabditis elegans assay.

    Directory of Open Access Journals (Sweden)

    Ikechukwu Okoli

    2009-09-01

    Full Text Available Candida albicans, the most common human pathogenic fungus, can establish a persistent lethal infection in the intestine of the microscopic nematode Caenorhabditis elegans. The C. elegans-C. albicans infection model was previously adapted to screen for antifungal compounds. Modifications to this screen have been made to facilitate a high-throughput assay including co-inoculation of nematodes with C. albicans and instrumentation allowing precise dispensing of worms into assay wells, eliminating two labor-intensive steps. This high-throughput method was utilized to screen a library of 3,228 compounds represented by 1,948 bioactive compounds and 1,280 small molecules derived via diversity-oriented synthesis. Nineteen compounds were identified that conferred an increase in C. elegans survival, including most known antifungal compounds within the chemical library. In addition to seven clinically used antifungal compounds, twelve compounds were identified which are not primarily used as antifungal agents, including three immunosuppressive drugs. This assay also allowed the assessment of the relative minimal inhibitory concentration, the effective concentration in vivo, and the toxicity of the compound in a single assay.

  9. Antifungal Activity of Oleuropein against Candida albicans—The In Vitro Study

    Directory of Open Access Journals (Sweden)

    Nataša Zorić

    2016-11-01

    Full Text Available In the present study we investigated activity of oleuropein, a complex phenol present in large quantities in olive tree products, against opportunistic fungal pathogen Candida albicans. Oleuropein was found to have in vitro antifungal activity with a minimal inhibitory concentration (MIC value of 12.5 mg·mL−1. Morphological changes in the nuclei after staining with fluorescent DNA-binding dyes revealed that apoptosis was a primary mode of cell death in the analyzed samples treated with subinhibitory concentrations of oleuropein. Our results suggest that this antifungal agent targets virulence factors essential for establishment of the fungal infection. We noticed that oleuropein modulates morphogenetic conversion and inhibits filamentation of C. albicans. The hydrophobicity assay showed that oleuropein in sub-MIC values has significantly decreased, in both aerobic and anaerobic conditions, the cellular surface hydrophobicity (CSH of C. albicans, a factor associated with adhesion to epithelial cells. It was also demonstrated that the tested compound inhibits the activity of SAPs, cellular enzymes secreted by C. albicans, which are reported to be related to the pathogenicity of the fungi. Additionally, we detected that oleuropein causes a reduction in total sterol content in the membrane of C. albicans cells, which might be involved in the mechanism of its antifungal activity.

  10. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine.

    Directory of Open Access Journals (Sweden)

    Rodrigo Almeida-Paes

    Full Text Available Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC and minimal fungicidal concentrations (MFC of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies.

  11. Melanins Protect Sporothrix brasiliensis and Sporothrix schenckii from the Antifungal Effects of Terbinafine

    Science.gov (United States)

    Almeida-Paes, Rodrigo; Figueiredo-Carvalho, Maria Helena Galdino; Brito-Santos, Fábio; Almeida-Silva, Fernando; Oliveira, Manoel Marques Evangelista; Zancopé-Oliveira, Rosely Maria

    2016-01-01

    Terbinafine is a recommended therapeutic alternative for patients with sporotrichosis who cannot use itraconazole due to drug interactions or side effects. Melanins are involved in resistance to antifungal drugs and Sporothrix species produce three different types of melanin. Therefore, in this study we evaluated whether Sporothrix melanins impact the efficacy of antifungal drugs. Minimal inhibitory concentrations (MIC) and minimal fungicidal concentrations (MFC) of two Sporothrix brasiliensis and four Sporothrix schenckii strains grown in the presence of the melanin precursors L-DOPA and L-tyrosine were similar to the MIC determined by the CLSI standard protocol for S. schenckii susceptibility to amphotericin B, ketoconazole, itraconazole or terbinafine. When MICs were determined in the presence of inhibitors to three pathways of melanin synthesis, we observed, in four strains, an increase in terbinafine susceptibility in the presence of tricyclazole, a DHN-melanin inhibitor. In addition, one S. schenckii strain grown in the presence of L-DOPA had a higher MFC value when compared to the control. Growth curves in presence of 2×MIC concentrations of terbinafine showed that pyomelanin and, to a lesser extent, eumelanin were able to protect the fungi against the fungicidal effect of this antifungal drug. Our results suggest that melanin protects the major pathogenic species of the Sporothrix complex from the effects of terbinafine and that the development of new antifungal drugs targeting melanin synthesis may improve sporotrichosis therapies. PMID:27031728

  12. Potential Applications and Antifungal Activities of Engineered Nanomaterials against Gray Mold Disease Agent Botrytis cinerea on Rose Petals

    Directory of Open Access Journals (Sweden)

    Yi Hao

    2017-08-01

    Full Text Available Nanoparticles (NPs have great potential for use in the fields of biomedicine, building materials, and environmental protection because of their antibacterial properties. However, there are few reports regarding the antifungal activities of NPs on plants. In this study, we evaluated the antifungal roles of NPs against Botrytis cinerea, which is a notorious worldwide fungal pathogen. Three common carbon nanomaterials, multi-walled carbon nanotubes, fullerene, and reduced graphene oxide, and three commercial metal oxidant NPs, copper oxide (CuO NPs, ferric oxide (Fe2O3 NPs, and titanium oxides (TiO2 NPs, were independently added to water-agar plates at 50 and 200-mg/L concentrations. Detached rose petals were inoculated with spores of B. cinerea and co-cultured with each of the six nanomaterials. The sizes of the lesions on infected rose petals were measured at 72 h after inoculation, and the growth of fungi on the rose petals was observed by scanning electron microscopy. The six NPs inhibited the growth of B. cinerea, but different concentrations had different effects: 50 mg/L of fullerene and CuO NPs showed the strongest antifungal properties among the treatments, while 200 mg/L of CuO and Fe2O3 showed no significant antifungal activities. Thus, NPs may have antifungal activities that prevent B. cinerea infections in plants, and they could be used as antifungal agents during the growth and post-harvesting of roses and other flowers.

  13. Interaction of gelatin with polyenes modulates antifungal activity and biocompatibility of electrospun fiber mats

    Directory of Open Access Journals (Sweden)

    Lakshminarayanan R

    2014-05-01

    Full Text Available Rajamani Lakshminarayanan,1,2 Radhakrishnan Sridhar,3,4 Xian Jun Loh,5 Muruganantham Nandhakumar,1 Veluchamy Amutha Barathi,1,6 Madhaiyan Kalaipriya,3,4 Jia Lin Kwan,1 Shou Ping Liu,1,2 Roger Wilmer Beuerman,1,2 Seeram Ramakrishna3,4,7 1Singapore Eye Research Institute, 2Signature Research Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, 3Department of Mechanical Engineering, National University of Singapore, 4Center for Nanofibers and Nanotechnology, National University of Singapore, 5Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research, 3 Research Link, Singapore, 6Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, 7NUS Nanoscience and Nanotechnology Initiative, Singapore Abstract: Topical application of antifungals does not have predictable or well-controlled release characteristics and requires reapplication to achieve therapeutic local concentration in a reasonable time period. In this article, the efficacy of five different US Food and Drug Administration-approved antifungal-loaded (amphotericin B, natamycin, terbinafine, fluconazole, and itraconazole electrospun gelatin fiber mats were compared. Morphological studies show that incorporation of polyenes resulted in a two-fold increase in fiber diameter and the mats inhibit the growth of yeasts and filamentous fungal pathogens. Terbinafine-loaded mats were effective against three filamentous fungal species. Among the two azole antifungals compared, the itraconazole-loaded mat was potent against Aspergillus strains. However, activity loss was observed for fluconazole-loaded mats against all of the test organisms. The polyene-loaded mats displayed rapid candidacidal activities as well. Biophysical and rheological measurements indicate strong interactions between polyene antifungals and gelatin matrix. As a result, the polyenes stabilized the triple helical

  14. Bio-prospecting of soil Streptomyces and its bioassay-guided isolation of microbial derived auxin with antifungal properties.

    Science.gov (United States)

    Saravana Kumar, P; Yuvaraj, P; Gabrial Paulraj, M; Ignacimuthu, S; Abdullah Al-Dhabi, N

    2018-06-05

    The present study was aimed to isolate bioactive actinomycetes with antifungal properties. Twenty-seven distinct soil derived actinomycetes were investigated for their antifungal activities. Among these, one isolate exhibited significant antifungal activity. Phenotypic and 16s rRNA gene sequence analysis strongly suggested that the active isolate BG4 belonged to the genus Streptomyces. Further, the chemical investigation of the active extract resulted in the isolation of a major compound and it was structurally elucidated as phenyl acetic acid (PAA). PAA exhibited promising antifungal activity with 100% inhibition, ranging from 31.25 to 25μg/mL. It is to be noted that PAA is naturally occurring and biologically active auxin. In addition, it has also been hypothesized that phytohormone endorsing the source of soil-symbionts has similar pathways for synthesizing compounds and its congeners of host due to horizontal gene transfer. These findings demonstrate that microbially derived phytohormone can be used to treat fungal infections. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. In vitro antifungal and demelanizing activity of Nepeta rtanjensis essential oil against the human pathogen Bipolaris spicifera

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2011-01-01

    Full Text Available The antifungal activity of Nepeta rtanjensis Diklić & Milojević essential oil was tested against the human pathogenic fungus Bipolaris spicifera (Bainier Subramanian via mycelial growth assay and conidia germination assay. The minimally inhibitory concentration (MIC of the oil was determined at 1.0 μg ml-1, while the MIC for the antifungal drug Bifonazole in a positive control was determined at 10.0 μg ml-1. The maximum of conidia germination inhibition was accomplished at 0.6 μg ml-1. In addition, at 0.6 μg ml-1 and 0.8 μg ml-1 the oil was able to cause morphophysiological changes in B. spicifera. The most significant result is the bleaching effect of the melanized conidial apparatus of the test fungi, since the melanin is the virulence factor in human pathogenic fungi. These results showed the strong antifungal properties of N. rtanjensis essential oil, supporting its possible rational use as an alternative source of new antifungal compounds.

  16. Effect of temperature, pH and detergents on the antifungal activity of bacterial culture filtrates against Mycosphaerella fijiensis

    Directory of Open Access Journals (Sweden)

    Eilyn Mena

    2014-01-01

    Full Text Available The bacteria associated to crops have been studied as potential biocontrol agents. However, few investigations on the interaction Musa spp. - Mycosphaerella fijiensis-Musa associated bacteria have been developed. Consequently, bacterial metabolites involved and the effect on them of physical and chemical factors remain unknown. Therefore, this study aimed to determine the effect of temperature, pH and detergents on bacterial culture filtrates with antifungal activity in vitro against Mycosphaerella fijiensis. The pathogen growth inhibition was assessed by absorbance reading at OD 565nm. It was found that the antifungal activity of the bacterial culture filtrates against M. fijiensis, varied in the presence of different values of temperature, pH, and types of detergents and this was related to the bacterial strain. The results suggested the possible protein nature of the metabolites with antifungal activity. Keywords: bacteria, biological control, antifungal metabolites

  17. Synthesis and Antifungal Activity of Musa Phytoalexins and Structural Analogs

    Directory of Open Access Journals (Sweden)

    Adriana Gallego

    2000-07-01

    Full Text Available Several perinaphthenone/phenylphenalenone compounds were synthesized to establish a relationship between structure and antifungal activity against Mycosphaerella fijiensis. Substitutions on the unsaturated carbonyl system or addition of a phenyl group reduced antibiotic activity.

  18. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing; Honoré, Anders Hans; Marcussen, J.

    2015-01-01

    produced by L. paracasei DGCC 2132 in CDIM. When the strain was added to a yogurt medium diacetyl as well as other volatiles also increased but the metabolome was more complex. Removal of L. paracasei DGCC 2132 cells from CDIM fermentate resulted in loss of both volatiles, including diacetyl......Lactic acid bacteria with antifungal properties can be used to control spoilage of food and feed. Previously, most of the identified metabolites have been isolated from cell-free fermentate of lactic acid bacteria with methods suboptimal for detecting possible contribution from volatiles...... to the antifungal activity. The role of volatile compounds in the antifungal activity of Lactobacillus paracasei DGCC 2132 in a chemically defined interaction medium (CDIM) and yogurt was therefore investigated with a sampling technique minimizing volatile loss. Diacetyl was identified as the major volatile...

  19. Investigation of the effect of base strength on the antifungal activity and chemical composition of the fish scales hydrolyzates

    International Nuclear Information System (INIS)

    Niaz, S.; Dil, S.

    2016-01-01

    The effect of base strength on the antifungal activity of the fish scale hydrolyzate was investigated for six types of samples prepared from the scales of Cyprinus carpio using sodium hydroxide in the range of 1-11 percent strength in the aqueous solution. Each of the sample was analyzed for its acid-base content using titration against HCl in addition to the spot test analysis for phenolic compounds. Each of these samples was analyzed using FTIR spectroscopy. Variation in chemical composition and functional group were observed with variation in the base strength. The in vitro antifungal activity of the fish scale hydrolyzates was tested against four pathogenic fungi including Acremonium, Pythium, Verticillium, and Alternaria. The antifungal assay was carried out using agar well diffusion methods. The sterilization was carried out using streptomycin while ketoconazole was used as the standard antifungal agent. Minimum inhibitory concentration was determined for the most active hydrolyzate which was obtained by 9 percent base solution. The cause of this antifungal activity was also discussed in this communication. (author)

  20. Complete Genome Sequence of Bacillus velezensis GQJK49, a Plant Growth-Promoting Rhizobacterium with Antifungal Activity.

    Science.gov (United States)

    Ma, Jinjin; Liu, Hu; Liu, Kai; Wang, Chengqiang; Li, Yuhuan; Hou, Qihui; Yao, Liangtong; Cui, Yanru; Zhang, Tongrui; Wang, Haide; Wang, Beibei; Wang, Yun; Ge, Ruofei; Xu, Baochao; Yao, Gan; Xu, Wenfeng; Fan, Lingchao; Ding, Yanqin; Du, Binghai

    2017-08-31

    Bacillus velezensis GQJK49 is a plant growth-promoting rhizobacterium with antifungal activity, which was isolated from Lycium barbarum L. rhizosphere. Here, we report the complete genome sequence of B. velezensis GQJK49. Twelve gene clusters related to its biosynthesis of secondary metabolites, including antifungal and antibacterial antibiotics, were predicted. Copyright © 2017 Ma et al.

  1. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF)

    Energy Technology Data Exchange (ETDEWEB)

    Palicz, Zoltán; Jenes, Ágnes; Gáll, Tamás [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Miszti-Blasius, Kornél [Department of Clinical Biochemistry and Molecular Pathology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Kollár, Sándor; Kovács, Ilona [Department of Pathology, Kenézy Hospital LTD, Debrecen (Hungary); Emri, Miklós; Márián, Teréz [Department of Nuclear Medicine, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Leiter, Éva; Pócsi, István [Department of Microbial Biotechnology and Cell Biology, Faculty of Science and Technology, Centre of Arts, Humanities and Sciences, University of Debrecen, Debrecen (Hungary); Csősz, Éva; Kalló, Gergő [Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Hegedűs, Csaba; Virág, László [Department of Medical Chemistry, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Csernoch, László [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary); Szentesi, Péter, E-mail: szentesi.peter@med.unideb.hu [Department of Physiology, Medical and Health Science Center, University of Debrecen, Debrecen (Hungary)

    2013-05-15

    The antifungal protein of Penicillium chrysogenum (PAF) inhibits the growth of important pathogenic filamentous fungi, including members of the Aspergillus family and some dermatophytes. Furthermore, PAF was proven to have no toxic effects on mammalian cells in vitro. To prove that PAF could be safely used in therapy, experiments were carried out to investigate its in vivo effects. Adult mice were inoculated with PAF intranasally in different concentrations, up to 2700 μg·kg{sup −1} daily, for 2 weeks. Even at the highest concentration – a concentration highly toxic in vitro for all affected molds – used, animals neither died due to the treatment nor were any side effects observed. Histological examinations did not find pathological reactions in the liver, in the kidney, and in the lungs. Mass spectrometry confirmed that a measurable amount of PAF was accumulated in the lungs after the treatment. Lung tissue extracts from PAF treated mice exerted significant antifungal activity. Small-animal positron emission tomography revealed that neither the application of physiological saline nor that of PAF induced any inflammation while the positive control lipopolysaccharide did. The effect of the drug on the skin was examined in an irritative dermatitis model where the change in the thickness of the ears following PAF application was found to be the same as in control and significantly less than when treated with phorbol-12-myristate-13-acetate used as positive control. Since no toxic effects of PAF were found in intranasal application, our result is the first step for introducing PAF as potential antifungal drug in therapy. - Highlights: • PAF, the antifungal protein of Penicillium chrysogenum, was not toxic in mice. • Its intranasal application didn't induce pathological reactions in the lung. • PAF retained its antifungal activity in lung extracts. • Its application on the skin did not cause inflammation.

  2. In vivo application of a small molecular weight antifungal protein of Penicillium chrysogenum (PAF)

    International Nuclear Information System (INIS)

    Palicz, Zoltán; Jenes, Ágnes; Gáll, Tamás; Miszti-Blasius, Kornél; Kollár, Sándor; Kovács, Ilona; Emri, Miklós; Márián, Teréz; Leiter, Éva; Pócsi, István; Csősz, Éva; Kalló, Gergő; Hegedűs, Csaba; Virág, László; Csernoch, László; Szentesi, Péter

    2013-01-01

    The antifungal protein of Penicillium chrysogenum (PAF) inhibits the growth of important pathogenic filamentous fungi, including members of the Aspergillus family and some dermatophytes. Furthermore, PAF was proven to have no toxic effects on mammalian cells in vitro. To prove that PAF could be safely used in therapy, experiments were carried out to investigate its in vivo effects. Adult mice were inoculated with PAF intranasally in different concentrations, up to 2700 μg·kg −1 daily, for 2 weeks. Even at the highest concentration – a concentration highly toxic in vitro for all affected molds – used, animals neither died due to the treatment nor were any side effects observed. Histological examinations did not find pathological reactions in the liver, in the kidney, and in the lungs. Mass spectrometry confirmed that a measurable amount of PAF was accumulated in the lungs after the treatment. Lung tissue extracts from PAF treated mice exerted significant antifungal activity. Small-animal positron emission tomography revealed that neither the application of physiological saline nor that of PAF induced any inflammation while the positive control lipopolysaccharide did. The effect of the drug on the skin was examined in an irritative dermatitis model where the change in the thickness of the ears following PAF application was found to be the same as in control and significantly less than when treated with phorbol-12-myristate-13-acetate used as positive control. Since no toxic effects of PAF were found in intranasal application, our result is the first step for introducing PAF as potential antifungal drug in therapy. - Highlights: • PAF, the antifungal protein of Penicillium chrysogenum, was not toxic in mice. • Its intranasal application didn't induce pathological reactions in the lung. • PAF retained its antifungal activity in lung extracts. • Its application on the skin did not cause inflammation

  3. Antifungal activity of epithelial secretions from selected frog species ...

    African Journals Online (AJOL)

    This study aimed to investigate the antifungal activity of skin secretions from selected frogs (Amietia fuscigula, Strongylopus grayi and Xenopus laevis) and one toad (Amietophrynus pantherinus) of the south Western Cape Province of South Africa. Initially, different extraction techniques for the collection of skin secretions ...

  4. Chemical composition and antifungal activity of essential oils of ...

    African Journals Online (AJOL)

    The aim of this study was to determine the chemical composition of the essential oils of Algerian citrus. They were extracted by hydrodistillation from the leaves of citrus species (orange, Bigaradier, mandarin and lemon), using gas chromatography/mass spectrometry (GC/MS). Their chemical composition and antifungal ...

  5. Antifungal and Antihepatotoxic Effects of Sepia Ink Extract against ...

    African Journals Online (AJOL)

    Background: There is a great need for novel strategies to overcome the high mortality associated with invasive pulmonary aspergillosis (IPA) in immunocompromised patients. To evaluate the antifungal and antihepatotoxic potentials of Sepia ink extract, its effect on liver oxidative stress levels was analyzed against IPA in ...

  6. Antifungal susceptibility testing of Candida species isolated from the immunocompromised patients admitted to ten university hospitals in Iran

    NARCIS (Netherlands)

    Badiee, P.; Badali, H.; Boekhout, T.; Diba, K.; Moghadam, A.G.; Hossaini Nasab, A.; Jafarian, H.; Mohammadi, R.; Mirhendi, H.; Najafzadeh, M.J.; Shamsizadeh, A.; Soltani, J.

    2017-01-01

    Background Antifungal susceptibility testing is a subject of interest in the field of medical mycology. The aim of the present study were the distributions and antifungal susceptibility patterns of various Candida species isolated from colonized and infected immunocompromised patients admitted to

  7. Antifungal activity of different extracts of Ageratum conyzoides for the ...

    African Journals Online (AJOL)

    Muhammad Arif Javed

    2012-06-19

    Jun 19, 2012 ... In case of aqueous extracts, the maximum reduction was observed in leaf extract (72%) ... antifungal and insecticidal agents (Hajlaoui et al., 2009). Extracts of many ..... growth reduction of mycelia of phytophthora on neem leaf.

  8. New aminoporphyrins bearing urea derivative substituents: synthesis, characterization, antibacterial and antifungal activity

    Directory of Open Access Journals (Sweden)

    Gholamreza Karimipour

    2015-06-01

    Full Text Available This work studied the synthesis of 5,10,15-tris(4-aminophenyl-20-(N,N-dialkyl/diaryl-N-phenylurea porphyrins (P1-P4 with alkyl or aryl groups of Ph, iPr, Et and Me, respectively and also the preparation of their manganese (III and cobalt (II complexes (MnP and CoP. The P1-P4 ligands were characterized by different spectroscopic techniques (1H NMR, FTIR, UV-Vis and elemental analysis, and metalated with Mn and Co acetate salts. The antibacterial and antifungal activities of these compounds in vitro were investigated by agar-disc diffusion method against Escherichia coli (-, Pseudomonas aeruginosa (-, Staphylococcus aureus(+, Bacillus subtilis (+ and Aspergillus oryzae and Candida albicans. Results showed that antibacterial and antifungal activity of the test samples increased with increase of their concentrations and the highest activity was obtained when the concentration of porphyrin compounds was 100 µg/mL. The activity for the porphyrin ligands depended on the nature of the urea derivative substituents and increased in the order P1 > P2 > P3 >P4, which was consistent with the order of their liposolubility. MnP and CoP complexes exhibited much higher antibacterial and antifungal activity than P1-P4ligands. Further, the growth inhibitory effects of these compounds was generally in the order CoP complexes > MnP complexes > P1-P4 ligands. Among these porphyrin compounds, CoP1displayed the highest antibacterial and antifungal activity, especially with a concentration of 100 µg/mL, against all the four tested bacteria and two fungi, and therefore it could be potential to be used as drug.

  9. In-vitro Activity of 10 Antifungal Agents against 320 Dermatophyte Strains Using Microdilution Method in Tehran

    Science.gov (United States)

    Adimi, Parvaneh; Hashemi, Seyed Jamal; Mahmoudi, Mahmood; Mirhendi, Hossein; Shidfar, Mohammad Reza; Emmami, Masood; Rezaei-Matehkolaei, Ali; Gramishoar, Mohsen; Kordbacheh, Parivash

    2013-01-01

    Dermatophyte fungi are the etiologic agents of skin infections commonly referred to as ringworm. These infections are not dangerous but as a chronic cutaneous infections they may be difficult to treat and can also cause physical discomfort for patients. They are considered important as a public health problem as well. No information is available regarding the efficacy of antifungal agents against dermatophytes in Tehran. Therefore, in this study we evaluated the efficacy of 10 systemic and topical antifungal medications using CLSI broth microdilution method (M38-A). The antifungal agents used included griseofulvin, terbinafine, itraconazole, ketoconazole, fluconazole, voriconazole, clotrimazole, ciclopirox olamine, amorolfine and naftifine.Fifteen different species of dermatophytes which were mostly clinical isolates were used as follows; T. mentagrophytes, T. rubrum, E. floccosum, M. canis, T. verrucosum, T. tonsurans, M. gypseum, T. violaceum, M. ferruginum, M. fulvum, T. schoenleinii, M. racemosum, T. erinacei, T. eriotrephon and Arthroderma benhamiae. The mean number of fungi particles (conidia) inoculated was 1.25 ×10⁴ CFU/mL. Results were read after 7 days of incubation at 28 °C. According to the obtained results,itraconazole and terbinafine showed the lowest and fluconazole had the greatest MIC values for the most fungi tested. Based on the results, it is necessary to do more research and design a reliable standard method for determination of antifungal susceptibility to choose proper antibiotics with fewer side effects and decrease antifungal resistance and risk of treatment failure. PMID:24250660

  10. Antifungal Activity of Lavandula Angustifolia and Quergues Infectoria Extracts in Comparison with Nystatin on Candida Albicans

    Directory of Open Access Journals (Sweden)

    F. Nouri

    2016-07-01

    Full Text Available Introduction & Objective: Nowadays,herbal extracts are used to treat diseases, especially infec-tious ones. Candida albicans is the most common causes of oral opportunistic infections.In this study, antifungal effects of two herbal extracts were evaluated on an oral pathogen i.e. Candida albicans. Materials & Methods: In this descriptive- analytic study, the Department of Prosthodontics, ,Tehran University of Medical Sciences, school of Dentistry the oral samples of 25 patients with denture stomatitis were collected using sterile swabs. Then the isolated candida albicans and standard candida albicans PTCC 5027 were cultured. The antifungal effect was evaluated with disk plate method. Nystatin and methanol were used as positive and negative control groups, respectively. The power of antifungal activity was evaluated with the inhibition zone diameter of each of the extracts. At the end, the data were analyzed by ANOVA and Fried-man statistical tests. Results: Results showed that extracts of Querques infectoria had great antifungal effects. There was not statistically significant difference between nystatine and Querques infectoria extract (P>0.05 however , Querques infectoria was statistically more effective than lavender extract and nystatin showed the highest antifungal activity (P <0.001. Conclusion: This study showed that plant extracts had positive effects on Candida albicans as compared to nystatin. Thus, we hope to find new herbal medicines and compounds to treat candidiasis in the future. (Sci J Hamadan Univ Med Sci 2016; 23 (2:172-178

  11. Purification, characterization, and antifungal activity of chitinases from pineapple (Ananas comosus) leaf.

    Science.gov (United States)

    Taira, Toki; Toma, Noriko; Ishihara, Masanobu

    2005-01-01

    Three chitinases, designated pineapple leaf chitinase (PL Chi)-A, -B, and -C were purified from the leaves of pineapple (Ananas comosus) using chitin affinity column chromatography followed by several column chromatographies. PL Chi-A is a class III chitinase having a molecular mass of 25 kDa and an isoelectric point of 4.4. PL Chi-B and -C are class I chitinases having molecular masses of 33 kDa and 39 kDa and isoelectric points of 7.9 and 4.6 respectively. PL Chi-C is a glycoprotein and the others are simple proteins. The optimum pHs of PL Chi-A, -B, and -C toward glycolchitin are pH 3, 4, and 9 respectively. The chitin-binding ability of PL Chi-C is higher than that of PL Chi-B, and PL Chi-A has lower chitin-binding ability than the others. At low ionic strength, PL Chi-B exhibits strong antifungal activity toward Trichoderma viride but the others do not. At high ionic strength, PL Chi-B and -C exhibit strong and weak antifungal activity respectively. PL Chi-A does not have antifungal activity.

  12. Antifungal activity and mechanism of action of monoterpenes against dermatophytes and yeasts

    Directory of Open Access Journals (Sweden)

    Diogo Miron

    Full Text Available Dermatomycosis causes highly frequent dermal lesions, and volatile oils have been proven to be promising as antifungal agents. The antifungal activity of geraniol, nerol, citral, neral and geranial (monoterpenes, and terbinafine and anidulafungin (control drugs against seven opportunistic pathogenic yeasts and four dermatophyte species was evaluated by the Clinical and Laboratory Standards Institute microdilution tests. Monoterpenes were more active against dermatophytes than yeasts (geometric mean of minimal inhibitory concentration (GMIC of 34.5 and 100.4 µg.ml-1, respectively. Trichophyton rubrum was the fungal species most sensitive to monoterpenes (GMIC of 22.9 µg.ml-1. The trans isomers showed higher antifungal activity than the cis. The mechanism of action was investigated evaluating damage in the fungal cell wall (Sorbitol Protection Assay and in the cell membrane (Ergosterol Affinity Assay. No changes were observed in the MIC of monoterpenes in the sorbitol protection assay.The MIC of citral and geraniol was increased from 32 to 160 µg.ml-1 when the exogenous ergosterol concentrations was zero and 250 µg.ml-1, respectively. The monoterpenes showed an affinity for ergosterol relating their mechanism of action to cell membrane destabilization.

  13. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana

    Directory of Open Access Journals (Sweden)

    Walaa Kamel Mousa

    2016-09-01

    Full Text Available Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone, and harpagoside (an iridoide glycoside. Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.

  14. Lactobacillus plantarum with broad antifungal activity: A promising approach to increase safety and shelf-life of cereal-based products.

    Science.gov (United States)

    Russo, Pasquale; Arena, Mattia Pia; Fiocco, Daniela; Capozzi, Vittorio; Drider, Djamel; Spano, Giuseppe

    2017-04-17

    Cereal-based fermented products are worldwide diffused staple food resources and cereal-based beverages represent a promising innovative field in the food market. Contamination and development of spoilage filamentous fungi can result in loss of cereal-based food products and it is a critical safety concern due to their potential ability to produce mycotoxins. Lactic Acid Bacteria (LAB) have been proposed as green strategy for the control of the moulds in the food industry due to their ability to produce antifungal metabolites. In this work, eighty-eight Lactobacillus plantarum strains were screened for their antifungal activity against Aspergillus niger, Aspergillus flavus, Fusarium culmorum, Penicillium roqueforti, Penicillium expansum, Penicillium chrysogenum, and Cladosporium spp. The overlayed method was used for a preliminary discrimination of the strains as no, mild and strong inhibitors. L. plantarum isolates that displayed broad antifungal spectrum activity were further screened based on the antifungal properties of their cell-free supernatant (CFS). CFSs from L. plantarum UFG 108 and L. plantarum UFG 121, in reason of their antifungal potential, were characterized and analyzed by HPLC. Results indicated that lactic acid was produced at high concentration during the growth phase, suggesting that this metabolic aptitude, associated with the low pH, contributed to explain the highlighted antifungal phenotype. Production of phenyllactic acid was also observed. Finally, a new oat-based beverage was obtained by fermentation with the strongest antifungal strain L. plantarum UFG 121. This product was submitted or not to a thermal stabilization and artificially contaminated with F. culmorum. Samples containing L. plantarum UFG 121 showed the best biopreservative effects, since that no differences were observed in terms of some qualitative features between not or contaminated samples with F. culmorum. Here we demonstrate, for the first time, the suitability of LAB

  15. Genetic diversity and antifungal susceptibility of Fusarium isolates in onychomycosis.

    Science.gov (United States)

    Rosa, Priscila D; Heidrich, Daiane; Corrêa, Carolina; Scroferneker, Maria Lúcia; Vettorato, Gerson; Fuentefria, Alexandre M; Goldani, Luciano Z

    2017-09-01

    Fusarium species have emerged as an important human pathogen in skin disease, onychomycosis, keratitis and invasive disease. Onychomycosis caused by Fusarium spp. The infection has been increasingly described in the immunocompetent and immunosuppressed hosts. Considering onychomycosis is a difficult to treat infection, and little is known about the genetic variability and susceptibility pattern of Fusarium spp., further studies are necessary to understand the pathogenesis and better to define the appropriate antifungal treatment for this infection. Accordingly, the objective of this study was to describe the in vitro susceptibility to different antifungal agents and the genetic diversity of 35 Fusarium isolated from patients with onychomycosis. Fusarium spp. were isolated predominantly from female Caucasians, and the most frequent anatomical location was the nail of the hallux. Results revealed that 25 (71.4%) of isolates belonged to the Fusarium solani species complex, followed by 10 (28.5%) isolates from the Fusarium oxysporum species complex. Noteworthy, the authors report the first case of Neocosmospora rubicola isolated from a patient with onychomycosis. Amphotericin B was the most effective antifungal agent against the majority of isolates (60%, MIC ≤4 μg/mL), followed by voriconazole (34.2%, MIC ≤4 μg/mL). In general, Fusarium species presented MIC values >64 μg/mL for fluconazole, itraconazole and terbinafine. Accurate pathogen identification, characterisation and susceptibility testing provide a better understanding of pathogenesis of Fusarium in onychomycosis. © 2017 Blackwell Verlag GmbH.

  16. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  17. Evaluation of Antioxidant and Antifungal Activities of Polyphenol-rich ...

    African Journals Online (AJOL)

    Purpose: To evaluate the antioxidant and antifungal activities of polyphenol-rich extracts of the dried fruit pulp of Garcinia pedunculata (GP) and Garcinia morella (GM) to determine their traditional claims of therapeutic activity against certain diseases. Methods: Analysis of total phenolic (TP) and flavonoid (TF) contents of the ...

  18. Antifungal evaluation of shell pyrolysates of oil palm ( Elaeis ...

    African Journals Online (AJOL)

    The medicinal values of oil palm and coconut shells are not much known in herbal medicine and the two mostly constitute waste products. The antifungal effects of steam-distilled pyrolysates obtained from the two shells and the respective organic solvent fractions were evaluated against human pathogenic fungi ...

  19. Antifungal activity of bacterial strains from the rhizosphere of ...

    African Journals Online (AJOL)

    This study evaluated the antifungal action of biomolecules produced from the secondary metabolism of bacterial strains found in the rhizosphere of semi arid plants against human pathogenic Candida albicans. Crude extracts were obtained using ethyl acetate as an organic solvent and the bioactivity was assessed with a ...

  20. Diminished Antimicrobial Peptide and Antifungal Antibiotic Activities against Candida albicans in Denture Adhesive

    Directory of Open Access Journals (Sweden)

    Amber M. Bates

    2017-02-01

    Full Text Available The underlying causes of denture stomatitis may be related to the long-term use of adhesives, which may predispose individuals to oral candidiasis. In this study, we hypothesize that antimicrobial peptides and antifungal antibiotics have diminished anti-Candida activities in denture adhesive. To show this, nine antimicrobial peptides and five antifungal antibiotics with and without 1.0% denture adhesive were incubated with Candida albicans strains ATCC 64124 and HMV4C in radial diffusion assays. In gels with 1.0% adhesive, HNP-1, HBD2, HBD3, IP-10, LL37 (only one strain, histatin 5 (only one strain, lactoferricin B, and SMAP28 showed diminished activity against C. albicans. In gels with 1.0% adhesive, amphotericin B and chlorhexidine dihydrochloride were active against both strains of C. albicans. These results suggest that denture adhesive may inactivate innate immune mediators in the oral cavity increasing the risk of C. albicans infections, but inclusion of antifungal antibiotics to denture adhesive may aid in prevention or treatment of Candida infections and denture stomatitis.

  1. Antifungal activity of acetone extracts from Punica granatum L., Quercus suber L. and Vicia faba L.

    Science.gov (United States)

    Akroum, S

    2017-03-01

    Human and animal mycoses become more frequent and more resistant to traditional treatments. In this work, we tested the in vitro antifungal activity of acetonic extracts of Punica granatum L., Quercus suber L. and Vicia faba L. against seven pathogen fungi and the in vivo antifungal activity against Candida albicans and Trichophyton mentagrophytes. The phytochemical screening was also carried out and showed that the extracts contained mainly proanthocyanidins. Other polyphenols were also present but in low quantity. The acetone extract of V. faba L. gave a good in vitro inhibition of yeasts and was the most active for treating candidiasis in mice. It decreased the percentage of mortality with only 20μg. But the in vivo antifungal activity of this extract on T. mentagrophytes was low. It only showed a small diminution of crusting and erythema after the administration of 100μg. On the contrary, the acetone extracts of P. granatum L. had a poor activity against yeasts and a better one against moulds. It gave the best in vivo antifungal activity against T. mentagrophytes by healing animals with 40μg. The extract of P. granatum L. gave also an interesting in vivo antifungal activity against T. mentagrophytes with an active dose of 80μg. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Antifungal activity of gold nanoparticles prepared by solvothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Manzoor, Nikhat; Ahmad, Aijaz [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmed, Jahangeer [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia)

    2013-01-15

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

  3. Antifungal activity of gold nanoparticles prepared by solvothermal method

    International Nuclear Information System (INIS)

    Ahmad, Tokeer; Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna; Manzoor, Nikhat; Ahmad, Aijaz; Ahmed, Jahangeer; Al-Shihri, Ayed S.

    2013-01-01

    Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m 2 /g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m 2/ g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl 2 and NaBH 4 as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl 2 , however, NaBH 4 produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m 2 /g for 7 nm and 269 m 2 /g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H + efflux of the Candida species than 15 nm sized gold nanoparticles.

  4. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

    DEFF Research Database (Denmark)

    Aunsbjerg, Stina Dissing

    Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... defined interaction medium (CDIM) was developed allowing growth of protective Lb. paracasei and P. freudenreichii subsp. shermaniii as well as the spoilage fungi, Penicillium spp., Rhodotorula mucilaginosa and Debaryomyces hansenii isolated from fermented dairy products. Lb. paracasei and P....... freudenreichii subsp. shermanii grew in CDIM and showed antifungal properties similar to those observed in milk-based systems. Most of the antifungal effect of the protective bacterial ferment was lost after removal of cells. This was explained by a marked decrease in diacetyl concentration, which...

  5. Anti-inflammatory activity of Vismia guianensis (Aubl.) Pers. extracts and antifungal activity against Sporothrix schenckii.

    Science.gov (United States)

    Oliveira, A H; de Oliveira, G G; Carnevale Neto, F; Portuondo, D F; Batista-Duharte, A; Carlos, I Z

    2017-01-04

    Vismia guianensis (Aubl.) Pers. is traditionally used in North and Northeast of Brazil for the treatment of dermatomycoses. Since the strategy associating immunomodulators with antifungal drugs seems to be promissory to improve the treatment efficacy in fungal infections, we aimed to investigate the antifungal activity of V. guianensis ethanolic extract of leaves (VGL) and bark (VGB) against Sporothrix schenckii ATCC 16345 and their antinflammatory activities. The extracts were analyzed by HPLC-DAD-IT MS/MS for in situ identification of major compounds. Antifungal activity was evaluated in vitro (microdilution test) and in vivo using a murine model of S. schenckii infection. The production of TNF-α, IFN-γ, IL-4, IL-10 and IL-12 by measured by ELISA, as well as measured the production and inhibition of the NO after treatment with the plant extracts or itraconazole (ITR). Two O-glucosyl-flavonoids and 16 prenylated benzophenone derivatives already described for Vismia were detected. Both VGL and VGB showed significant antifungal activity either in in vitro assay of microdilution (MIC=3.9µg/mL) and in vivo model of infection with reduction of S. schenckii load in spleen. It was also observed a predominance of reduction in the production of NO and the proinflammatory cytokines evaluated except TNFα, but with stimulation of IL-10, as evidence of a potential anti-inflammatory effect associated. The results showed that both VGL and VGB have a significant antifungal against S. schenckii and an anti-inflammatory activity. These results can support the use of these extracts for alternative treatment of sporotrichosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Biomarker-based strategy for early discontinuation of empirical antifungal treatment in critically ill patients: a randomized controlled trial.

    Science.gov (United States)

    Rouzé, Anahita; Loridant, Séverine; Poissy, Julien; Dervaux, Benoit; Sendid, Boualem; Cornu, Marjorie; Nseir, Saad

    2017-11-01

    The aim of this study was to determine the impact of a biomarker-based strategy on early discontinuation of empirical antifungal treatment. Prospective randomized controlled single-center unblinded study, performed in a mixed ICU. A total of 110 patients were randomly assigned to a strategy in which empirical antifungal treatment duration was determined by (1,3)-β-D-glucan, mannan, and anti-mannan serum assays, performed on day 0 and day 4; or to a routine care strategy, based on international guidelines, which recommend 14 days of treatment. In the biomarker group, early stop recommendation was determined using an algorithm based on the results of biomarkers. The primary outcome was the percentage of survivors discontinuing empirical antifungal treatment early, defined as a discontinuation strictly before day 7. A total of 109 patients were analyzed (one patient withdraw consent). Empirical antifungal treatment was discontinued early in 29 out of 54 patients in the biomarker strategy group, compared with one patient out of 55 in the routine strategy group [54% vs 2%, p strategy compared with routine strategy [median (IQR) 6 (4-13) vs 13 (12-14) days, p strategy increased the percentage of early discontinuation of empirical antifungal treatment among critically ill patients with suspected invasive Candida infection. These results confirm previous findings suggesting that early discontinuation of empirical antifungal treatment had no negative impact on outcome. However, further studies are needed to confirm the safety of this strategy. This trial was registered at ClinicalTrials.gov, NCT02154178.

  7. Essential Oils and Antifungal Activity

    Science.gov (United States)

    Coppola, Raffaele; De Feo, Vincenzo

    2017-01-01

    Since ancient times, folk medicine and agro-food science have benefitted from the use of plant derivatives, such as essential oils, to combat different diseases, as well as to preserve food. In Nature, essential oils play a fundamental role in protecting the plant from biotic and abiotic attacks to which it may be subjected. Many researchers have analyzed in detail the modes of action of essential oils and most of their components. The purpose of this brief review is to describe the properties of essential oils, principally as antifungal agents, and their role in blocking cell communication mechanisms, fungal biofilm formation, and mycotoxin production. PMID:29099084

  8. Antifungal isopimaranes from Hypoestes serpens.

    Science.gov (United States)

    Rasoamiaranjanahary, L; Guilet, D; Marston, A; Randimbivololona, F; Hostettmann, K

    2003-09-01

    Five isopimarane diterpenes (7beta-hydroxyisopimara-8,15-dien-14-one, 14alpha-hydroxyisopimara-7,15-dien-1-one, 1beta,14alpha-dihydroxyisopimara-7,15-diene, 7beta-hydroxyisopimara-8(14),15-dien-1-one and 7beta-acetoxyisopimara-8(14),15-dien-1-one) have been isolated from the leaves of Hypoestes serpens (Acanthaceae). All compounds exhibited antifungal activity against both the plant pathogenic fungus Cladosporium cucumerinum and the yeast Candida albicans; two of them also displayed an acetylcholinesterase inhibition. The structures of the compounds were determined by means of spectrometric methods, including 1D and 2D NMR experiments and MS analysis.

  9. Antifungal Activity of the Volatiles of High Potency Cannabis sativa L. Against Cryptococcus neoformans

    Directory of Open Access Journals (Sweden)

    Amira S. Wanas

    2016-03-01

    Full Text Available The n-hexane extracted volatile fraction of high potency Cannabis sativa L (Cannabaceae . was assessed in vitro for antifungal, antibacterial and antileishmanial activities. The oil exhibited selective albeit modest, antifungal activity against Cryptococcus neoformans with an IC 50 value of 33.1 µg/mL. Biologically-guided fractionation of the volatile fraction resulted in the isolation of three major compounds (1-3 using various chromatographic techniques. The chemical structures of the isolated compounds were identified as α-humulene (1, b -caryophyllene (2 and caryophyllene oxide (3 using GC/FID, GC/MS, 1D- and 2D-NMR analyses, respectively. Compound 1 showed potent and selective antifungal activity against Cryptococcus neoformans with IC 50 and MIC values of 1.18 m g/mL and 5.0 m g/mL respectively. Whereas compound 2 showed weak activity (IC 50 19.4 µg/mL, while compound 3 was inactive against C. neoformans.

  10. Improved antifungal activity and stability of chitosan nanofibers using cellulose nanocrystal on banknote papers.

    Science.gov (United States)

    Mohammadi Amirabad, Leila; Jonoobi, Mehdi; Mousavi, Narges Sharif; Oksman, Kristiina; Kaboorani, Alireza; Yousefi, Hossein

    2018-06-01

    Microorganisms can spread on the surface of banknotes and cause many infectious diseases. Chitosan nanofibers (CNFs) and cellulose nanocrystals (CNCs) are nanomaterials, which can affect the antimicrobial properties. In this study, the fungal species that grew on the surfaces of collected banknotes from different places were identified. To examine the antifungal effect of the both nanomaterials on the banknotes, the stable coatings using CNFs and CNCs emulsions were prepared by roller coating. The results revealed that the most colonies in the banknotes obtained from the bakeries and butcheries were Aspergillus sp., whereas the colonies in bus terminals and the hospitals were Aspergillus niger and Penicillium, respectively. The results showed that the CNCs had no antifungal effect alone on the aforementioned species, but it could improve the antifungal effect, adhesion, and stability of CNFs on the banknote surfaces. This study suggested a new approach to decrease the infection spreads through banknotes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. In vitro Antifungal Activity of Baccharis trimera Less (DC) Essential ...

    African Journals Online (AJOL)

    investigate their in vitro antifungal activity against seven fungal strains that cause onychomycosis. Methods: The ... 220 °C and detector at 220 °C. The carrier gas used was ... wavelength of 530 nm [31]. ..... (HTSS) followed by 3D graphs.

  12. Identification and Characterization of an Antifungal Protein, AfAFPR9, Produced by Marine-Derived Aspergillus fumigatus R9.

    Science.gov (United States)

    Rao, Qi; Guo, Wenbin; Chen, Xinhua

    2015-05-01

    A fungal strain, R9, was isolated from the South Atlantic sediment sample and identified as Aspergillus fumigatus. An antifungal protein, AfAFPR9, was purified from the culture supernatant of Aspergillus fumigatus R9. AfAFPR9 was identified to be restrictocin, which is a member of the ribosome-inactivating proteins (RIPs), by MALDI-TOF-TOF-MS. AfAFPR9 displayed antifungal activity against plant pathogenic Fusarium oxysporum, Alternaria longipes, Colletotrichum gloeosporioides, Paecilomyces variotii, and Trichoderma viride at minimum inhibitory concentrations of 0.6, 0.6, 1.2, 1.2, and 2.4 μg/disc, respectively. Moreover, AfAFPR9 exhibited a certain extent of thermostability, and metal ion and denaturant tolerance. The iodoacetamide assay showed that the disulfide bridge in AfAFPR9 was indispensable for its antifungal action. The cDNA encoding for AfAFPR9 was cloned from A. fumigatus R9 by RTPCR and heterologously expressed in E. coli. The recombinant AfAFPR9 protein exhibited obvious antifungal activity against C. gloeosporioides, T. viride, and A. longipes. These results reveal the antifungal properties of a RIP member (AfAFPR9) from marine-derived Aspergillus fumigatus and indicated its potential application in controlling plant pathogenic fungi.

  13. Antifungal activity of secondary plant metabolites from potatoes (Solanum tuberosum L.): Glycoalkaloids and phenolic acids show synergistic effects.

    Science.gov (United States)

    Sánchez-Maldonado, A F; Schieber, A; Gänzle, M G

    2016-04-01

    To study the antifungal effects of the potato secondary metabolites α-solanine, α-chaconine, solanidine and caffeic acid, alone or combined. Resistance to glycoalkaloids varied among the fungal species tested, as derived from minimum inhibitory concentrations assays. Synergistic antifungal activity between glycoalkaloids and phenolic compounds was found. Changes in the fluidity of fungal membranes caused by potato secondary plant metabolites were determined by calculation of the generalized polarization values. The results partially explained the synergistic effect between caffeic acid and α-chaconine and supported findings on membrane disruption mechanisms from previous studies on artificial membranes. LC/MS analysis was used to determine variability and relative amounts of sterols in the different fungal species. Results suggested that the sterol pattern of fungi is related to their resistance to potato glycoalkaloids and to their taxonomy. Fungal resistance to α-chaconine and possibly other glycoalkaloids is species dependent. α-Chaconine and caffeic acid show synergistic antifungal activity. The taxonomic classification and the sterol pattern play a role in fungal resistance to glycoalkaloids. Results improve the understanding of the antifungal mode of action of potato secondary metabolites, which is essential for their potential utilization as antifungal agents in nonfood systems. © 2016 The Society for Applied Microbiology.

  14. Spectrum and the In Vitro Antifungal Susceptibility Pattern of Yeast Isolates in Ethiopian HIV Patients with Oropharyngeal Candidiasis.

    Science.gov (United States)

    Moges, Birhan; Bitew, Adane; Shewaamare, Aster

    2016-01-01

    Background. In Ethiopia, little is known regarding the distribution and the in vitro antifungal susceptibility profile of yeasts. Objective. This study was undertaken to determine the spectrum and the in vitro antifungal susceptibility pattern of yeasts isolated from HIV infected patients with OPC. Method. Oral pharyngeal swabs taken from oral lesions of study subjects were inoculated onto Sabouraud Dextrose Agar. Yeasts were identified by employing conventional test procedures and the susceptibility of yeasts to antifungal agents was evaluated by disk diffusion assay method. Result. One hundred and fifty-five yeast isolates were recovered of which 91 isolates were from patients that were not under HAART and 64 were from patients that were under HAART. C. albicans was the most frequently isolated species followed by C. glabrata, C. tropicalis, C. krusei, C. kefyr, Cryptococcus laurentii, and Rhodotorula species. Irrespective of yeasts isolated and identified, 5.8%, 5.8%, 12.3%, 8.4%, 0.6%, and 1.3% of the isolates were resistant to amphotericin B, clotrimazole, fluconazole, ketoconazole, miconazole, and nystatin, respectively. Conclusion. Yeast colonization rate of 69.2% and 31% resistance to six antifungal agents was documented. These highlight the need for nationwide study on the epidemiology of OPC and resistance to antifungal drugs.

  15. Spectrum and the In Vitro Antifungal Susceptibility Pattern of Yeast Isolates in Ethiopian HIV Patients with Oropharyngeal Candidiasis

    Directory of Open Access Journals (Sweden)

    Birhan Moges

    2016-01-01

    Full Text Available Background. In Ethiopia, little is known regarding the distribution and the in vitro antifungal susceptibility profile of yeasts. Objective. This study was undertaken to determine the spectrum and the in vitro antifungal susceptibility pattern of yeasts isolated from HIV infected patients with OPC. Method. Oral pharyngeal swabs taken from oral lesions of study subjects were inoculated onto Sabouraud Dextrose Agar. Yeasts were identified by employing conventional test procedures and the susceptibility of yeasts to antifungal agents was evaluated by disk diffusion assay method. Result. One hundred and fifty-five yeast isolates were recovered of which 91 isolates were from patients that were not under HAART and 64 were from patients that were under HAART. C. albicans was the most frequently isolated species followed by C. glabrata, C. tropicalis, C. krusei, C. kefyr, Cryptococcus laurentii, and Rhodotorula species. Irrespective of yeasts isolated and identified, 5.8%, 5.8%, 12.3%, 8.4%, 0.6%, and 1.3% of the isolates were resistant to amphotericin B, clotrimazole, fluconazole, ketoconazole, miconazole, and nystatin, respectively. Conclusion. Yeast colonization rate of 69.2% and 31% resistance to six antifungal agents was documented. These highlight the need for nationwide study on the epidemiology of OPC and resistance to antifungal drugs.

  16. Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots.

    Science.gov (United States)

    Nally, M C; Pesce, V M; Maturano, Y P; Rodriguez Assaf, L A; Toro, M E; Castellanos de Figueroa, L I; Vazquez, F

    2015-07-02

    The aim of this study was to determine the putative modes of action of 59 viticultural yeasts (31 Saccharomyces and 28 non-Saccharomyces) that inhibited fungi isolated from sour and grey rot in grapes. Inhibition of fungal mycelial growth by metabolites, enzyme activities (laminarinases, chitinases), antifungal volatiles, competition for nutrients (siderophores, Niche Overlap Index (NOI)), inhibition of fungal spore germination and decreased germinal tube length and induction of resistance were assayed. Biofungicide yeasts were classified into "antifungal patterns", according to their mechanisms of action. Thirty isolates presented at least two of the mechanisms assayed. We propose that inhibition of fungal mycelial growth by metabolites, laminarinases, competition for nutrients, inhibition of fungal spore germination and decreased germinal tube length, and antifungal volatiles by Saccharomyces and non-Saccharomyces viticultural yeasts is used as putative biocontrol mechanisms against phytopathogenic fungi. Twenty-four different antifungal patterns were identified. Siderophore production (N)and a combination of siderophore production and NOI>0.92 (M)were the most frequent antifungal patterns observed in the biofungicide yeasts assayed. Elucidation of these mechanisms could be useful for optimization of an inoculum formulation, resulting in a more consistent control of grey and sour rot with Saccharomyces and non-Saccharomyces biocontrol yeasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. [From synthetic biology to synthetic humankind].

    Science.gov (United States)

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  18. Antifungal potential of leaf extracts of leguminous trees against ...

    African Journals Online (AJOL)

    Brenan, Prosopis juliflora (Sw.) DC. and Albizia lebbeck (L.) Benth. were evaluated for their antifungal activity against S. rolfsii and A. nilotica subsp. indica exhibited the maximum fungicidal potential. Materials and Methods: Two hundred grams dried leaf material of each of the three test plant species were extracted with ...

  19. In Vitro Antifungal Susceptibility of Oral Candida Isolates from Patients Suffering from Caries and Chronic Periodontitis.

    Science.gov (United States)

    De-la-Torre, Janire; Ortiz-Samperio, María Esther; Marcos-Arias, Cristina; Marichalar-Mendia, Xabier; Eraso, Elena; Echebarria-Goicouria, María Ángeles; Aguirre-Urizar, José Manuel; Quindós, Guillermo

    2017-06-01

    Caries and chronic periodontitis are common oral diseases where a higher Candida colonization is reported. Antifungal agents could be adjuvant drugs for the therapy of both clinical conditions. The aim of the current study has been to evaluate the in vitro activities of conventional and new antifungal drugs against oral Candida isolates from patients suffering from caries and/or chronic periodontitis. In vitro activities of amphotericin B, fluconazole, itraconazole, miconazole, nystatin, posaconazole and voriconazole against 126 oral Candida isolates (75 Candida albicans, 18 Candida parapsilosis, 11 Candida dubliniensis, six Candida guilliermondii, five Candida lipolytica, five Candida glabrata, four Candida tropicalis and two Candida krusei) from 61 patients were tested by the CLSI M27-A3 method. Most antifungal drugs were highly active, and resistance was observed in less than 5% of tested isolates. Miconazole was the most active antifungal drug, being more than 98% of isolates susceptible. Fluconazole, itraconazole, and the new triazoles, posaconazole and voriconazole, were also very active. Miconazole, fluconazole and voriconazole have excellent in vitro activities against all Candida isolates and could represent suitable treatment for a hypothetically adjunctive therapy of caries and chronic periodontitis.

  20. ArtinM offers new perspectives in the development of antifungal therapy

    Science.gov (United States)

    Ruas, Luciana P.; Carvalho, Fernanda C.; Roque-Barreira, Maria-Cristina

    2012-01-01

    The thermally dimorphic fungus Paracoccidioides brasiliensis is the causative agent of paracoccidioidomycosis (PCM), the most frequent systemic mycosis that affects the rural populations in Latin America. Despite significant developments in antifungal chemotherapy, its efficacy remains limited since drug therapy is prolonged and associated with toxic side effects and relapses. In response to these challenges, it is now recognized that several aspects of antifungal immunity can be modulated to better deal with fungal infections. A common idea for halting fungal infections has been the need to activate a cell-based, pro-inflammatory Th1 immune response to improve the fungal elimination. ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has the property of modulating immunity against several intracellular pathogens. Here, we review the immunomodulatory activity of ArtinM during experimental PCM in mice. Both prophylactic and therapeutic protocols of ArtinM administration promotes a Th1 immune response balanced by IL-10, which outstandingly reduces the fungal load in organs of the treated mice while maintaining a controlled inflammation at the site of infection. A carbohydrate recognition-based interaction of ArtinM with Toll-like receptor 2 (TLR2) accounts for initiating the immunomodulatory effect of the lectin. The precise identification of the TLR2 N-glycan(s) targeted by ArtinM may support novel basis for the development of antifungal therapy. PMID:22715337

  1. Acylated Flavone Glycosides from the Roots of Saussurea lappa and Their Antifungal Activity

    Directory of Open Access Journals (Sweden)

    Yemireddy Venkata Ramnareddy

    2007-03-01

    Full Text Available The isolation of four novel acylated flavonoid glycosides from the roots of Saussurea lappa and their identification using a combination of 1D and 2D NMR and mass spectrometry is described. The in vitro antifungal and antibacterial activities of the isolated compounds and their mixture were tested on nine fungal and four bacterial strains, using the microdilution method. The compounds and mixture showed moderate to high antifungal activity against most of the fungi tested, compared to a miconazole standard, while only one compound and the mixture showed antibacterial activity against all strains tested.

  2. Antibacterial, antifungal, and antiviral activities of some flavonoids.

    Science.gov (United States)

    Orhan, Didem Deliorman; Ozçelik, Berrin; Ozgen, Selda; Ergun, Fatma

    2010-08-20

    Antibacterial and antifungal activities of six plant-derived flavonoids representing two different structural groups were evaluated against standard strains of Escherichia coli, Pseudomonas aeruginosa, Proteus mirabilis, Klebsiella pneumoniae, Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis and their drug-resistant isolates, as well as fungi (Candida albicans, C. krusei) using the microdilution broth method. Herpes simplex virus Type-1 and Parainfluenza-3 virus were employed for antiviral assessment of the flavonoids using Madin-Darby bovine kidney and Vero cell lines. Ampicillin, gentamycin, ofloxacin, levofloxacin, fluconazole, ketoconazole, acyclovir, and oseltamivir were used as the control agents. All tested compounds (32-128 microg/ml) showed strong antimicrobial and antifungal activities against isolated strains of P. aeruginosa, A. baumanni, S. aureus, and C. krusei. Rutin, 5,7-dimethoxyflavanone-4'-O-beta-D-glucopyranoside and 5,7,3'-trihydroxy-flavanone-4'-O-beta-D-glucopyranoside (0.2-0.05 microg/ml) were active against PI-3, while 5,7-dimethoxyflavanone-4'-O-[2''-O-(5'''-O-trans-cinnamoyl)-beta-D-apiofuranosyl]-beta-D-glucopyranoside (0.16-0.2 microg/ml) inhibited potently HSV-1. Copyright 2009 Elsevier GmbH. All rights reserved.

  3. In vitro assay of potential antifungal and antibacterial activities of ...

    African Journals Online (AJOL)

    ... the dermatophytes strains Trichophyton rubrum, Trichophyton interdigitale, Trichophyton soudanense, Microsporum langeronii, and Epidermophyton floccosum were used. The E2F2 extract showed strong inhibitory activity on four of the five fungal species used against ketoconazole, a standard antifungal drug. However ...

  4. Antifungal activity of Parmotrema tinctorum (Delise ex Nyl.) hale and ...

    African Journals Online (AJOL)

    Lichens are composite organisms comprising of a photobiont and a mycobiont. Studies have shown that extracts and secondary metabolites from lichens exhibit various bioactivities. The present study evaluates antifungal potential of crude methanolic extract of two corticolous Parmotrema species viz. Parmotrema tinctorum ...

  5. Evaluation of 8-Hydroxyquinoline Derivatives as Hits for Antifungal Drug Design.

    Science.gov (United States)

    Pippi, Bruna; Reginatto, Paula; Machado, Gabriella da Rosa Monte; Bergamo, Vanessa Zafaneli; Lana, Daiane Flores Dalla; Teixeira, Mario Lettieri; Franco, Lucas Lopardi; Alves, Ricardo José; Andrade, Saulo Fernandes; Fuentefria, Alexandre Meneghello

    2017-10-01

    Clioquinol is an 8-hydroxyquinoline derivative that was widely used from the 1950s to 1970s as an oral antiparasitic agent. In 1970, the oral forms were withdrawn from the market due to reports of toxicity, but topical formulations for antifungal treatment remained available. Thus, the purpose of this study was to evaluate the toxicity, anti-Candida and antidermatophyte activity and to determine pharmacodynamic characteristics of clioquinol and other 8-hydroxyquinoline derivatives (8-hydroxy-5-quinolinesulfonic acid and 8-hydroxy-7-iodo-5-quinolinesulfonic acid). Antifungal activity was tested by broth microdilution and the fungicidal or fungistatic effect was checked by a time-kill assay. Permeation and histopathological evaluation were performed in Franz diffusion cells with ear skin of pigs and examined under light microscopy. An HET-CAM test was used to determine the potential irritancy. The three compounds were active against all isolates showing anti-Candida and antidermatophyte activity, with MIC ranges of 0.031-2 μg/ml, 1-512 μg/ml, and 2-1024 μg/ml for clioquinol, 8-hydroxy-5-quinolinesulfonic acid, and 8-hydroxy-7-iodo-5-quinolinesulfonic acid, respectively. All compounds showed fungistatic effect for Candida, 8-hydroxy-5-quinolinesulfonic acid, and 8-hydroxy-7-iodo-5-quinolinesulfonic acid showed a fungicidal effect for M. canis and T. mentagrophytes, and clioquinol showed a fungicidal effect only for T. mentagrophytes. Furthermore, they presented a fungicidal effect depending on the time and concentration. The absence of lesions was observed in histopathological evaluation and no compound was irritating. Moreover, clioquinol and 8-hydroxy-5-quinolinesulfonic acid accumulated in the epithelial tissue, and 8-hydroxy-7-iodo-5-quinolinesulfonic acid had a high degree of permeation. In conclusion, 8-hydroxyquinoline derivatives showed antifungal activity and 8-hydroxy-5-quinolinesulfonic acid demonstrated the potential for antifungal drug design.

  6. Antifungal activity of methanolic extracts of four Algerian marine ...

    African Journals Online (AJOL)

    cmi

    2012-05-15

    May 15, 2012 ... and antifungal activities of the extracts of marine algae from southern coast of India. Botanica marina. 40: 507-515. Patra JK, Patra AP, Mahapatra NK, Thatoi HN, Das S, Sahu, RK, Swain. GC (2009). Antimicrobial activity of organic solvent extracts of three marine macroalgae from Chilika Lake, Orissa, India.

  7. Some southern African plant species used to treat helminth infections in ethnoveterinary medicine have excellent antifungal activities

    Directory of Open Access Journals (Sweden)

    Adamu Mathew

    2012-11-01

    Full Text Available Abstract Background Diseases caused by microorganisms and parasites remain a major challenge globally and particularly in sub-Saharan Africa to man and livestock. Resistance to available antimicrobials and the high cost or unavailability of antimicrobials complicates matters. Many rural people use plants to treat these infections. Because some anthelmintics e.g. benzimidazoles also have good antifungal activity we examined the antifungal activity of extracts of 13 plant species used in southern Africa to treat gastrointestinal helminth infections in livestock and in man. Methods Antifungal activity of acetone leaf extracts was determined by serial microdilution with tetrazolium violet as growth indicator against Aspergillus fumigatus, Cryptococcus neoformans and Candida albicans. These pathogens play an important role in opportunistic infections of immune compromised patients. Cytotoxicity was determined by MTT cellular assay. Therapeutic indices were calculated and selectivity for different pathogens determined. We proposed a method to calculate the relation between microbicidal and microbistatic activities. Total activities for different plant species were calculated. Results On the whole, all 13 extracts had good antifungal activities with MIC values as low as 0.02 mg/mL for extracts of Clausena anisata against Aspergillus fumigatus and 0.04 mg/mL for extracts of Zanthoxylum capense, Clerodendrum glabrum, and Milletia grandis, against A. fumigatus. Clausena anisata extracts had the lowest cytotoxicity (LC50 of 0.17 mg/mL, a reasonable therapeutic index (2.65 against A. fumigatus. It also had selective activity against A. fumigatus, an overall fungicidal activity of 98% and a total activity of 3395 mL/g against A. fumigatus. This means that 1 g of acetone leaf extract can be diluted to 3.4 litres and it would still inhibit the growth. Clerodendrum glabrum, Zanthoxylum capense and Milletia grandis extracts also yielded promising results

  8. The Effectiveness of Antifungal Controlling Aspergillus Niger Growth on Plasterboard

    Directory of Open Access Journals (Sweden)

    Parjo Umi Kalthsom

    2017-01-01

    Full Text Available Good indoor environmental quality is desired for a healthy indoor environment. The microbial growth under indoor environments contribute to the poor indoor environmental quality that can cause various of health problems. In this study, the applications of three types of antifungals to prevent microbial migration, subsequent growth and bio-deterioration of the substrates. The aim of this research was to evaluate the coating-bio resistance in remediation of indoor fungal using three types of antifungals with different types of wall finishing materials. The treatment was exposed to optimum temperature and relative humidity at 30°C and 90% respectively. The potassium sorbate, zinc salicylate and calcium benzoate are tested against Aspergillus niger which is collected from indoor rooms. This study has revealed the growth of A. niger are more affected by the potassium sorbate on thick wallpaper, which is the percentage growth are 47%.

  9. Drug-drug interactions of antifungal agents and implications for patient care.

    Science.gov (United States)

    Gubbins, Paul O; Amsden, Jarrett R

    2005-10-01

    Drug interactions in the gastrointestinal tract, liver and kidneys result from alterations in pH, ionic complexation, and interference with membrane transport proteins and enzymatic processes involved in intestinal absorption, enteric and hepatic metabolism, renal filtration and excretion. Azole antifungals can be involved in drug interactions at all the sites, by one or more of the above mechanisms. Consequently, azoles interact with a vast array of compounds. Drug-drug interactions associated with amphotericin B formulations are predictable and result from the renal toxicity and electrolyte disturbances associated with these compounds. The echinocandins are unknown cytochrome P450 substrates and to date are relatively devoid of significant drug-drug interactions. This article reviews drug interactions involving antifungal agents that affect other agents and implications for patient care are highlighted.

  10. A new method to predict the epidemiology of fungal keratitis by monitoring the sales distribution of antifungal eye drops in Brazil.

    Science.gov (United States)

    Ibrahim, Marlon Moraes; de Angelis, Rafael; Lima, Acacio Souza; Viana de Carvalho, Glauco Dreyer; Ibrahim, Fuad Moraes; Malki, Leonardo Tannus; de Paula Bichuete, Marina; de Paula Martins, Wellington; Rocha, Eduardo Melani

    2012-01-01

    Fungi are a major cause of keratitis, although few medications are licensed for their treatment. The aim of this study is to observe the variation in commercialisation of antifungal eye drops, and to predict the seasonal distribution of fungal keratitis in Brazil. Data from a retrospective study of antifungal eye drops sales from the only pharmaceutical ophthalmologic laboratory, authorized to dispense them in Brazil (Opthalmos) were gathered. These data were correlated with geographic and seasonal distribution of fungal keratitis in Brazil between July 2002 and June 2008. A total of 26,087 antifungal eye drop units were sold, with a mean of 2.3 per patient. There was significant variation in antifungal sales during the year (phumidity and antifungal drug sales (R2 = 0.17,p<0.01). Antifungal eye drops sales suggest that there is a seasonal distribution of fungal keratitis. A possible interpretation is that the third quarter of the year (a period when the climate is drier), when agricultural activity is more intense in Brazil, suggests a correlation with a higher incidence of fungal keratitis. A similar model could be applied to other diseases, that are managed with unique, or few, and monitorable medications to predict epidemiological aspects.

  11. In vitro antifungal sensitivity of fluconazole, clotrimazole and nystatin against vaginal candidiasis in females of childbearing age.

    Science.gov (United States)

    Khan, Fouzia; Baqai, Rakhshanda

    2010-01-01

    Vaginal candidiasis is the most common infection of females. A large variety of antifungal drugs are used for treatment. The objective of this study was isolation and identification of Candida from high vaginal swabs and in vitro antifungal activity of Clotrimazole, Fluconazole and Nystatin against Candida. Two hundred and fifty high vaginal swabs were collected from females reporting at different hospitals of Karachi. Wet mount was performed to observe the budding cells of Candida. Vaginal swabs were cultured on Sabouraud's dextrose agar with added antibiotics. Plates were incubated at room temperature for seven days. Chlamydospores of Candida albicans were identified on corn meal agar. Species of Candida were identified on Biggy agar. In vitro antifungal activity of Clotrimazole, Fluconazole and Nystatin was performed by MIC (Minimum inhibitory concentration), well diffusion method and disc diffusion method. Out of 250 high vaginal swabs, Candida species were isolated in 100 (40%) of cases. Out of 100, C. albican 30 (30%), C. tropicalis 21 (21%), C. parapsillosis 10 (10%), C. parakrusi 8 (8%), C. glabrata 8 (8%), C. krusei 3 (3%) were isolated. In vitro antifungal activity indicated Clotrimazole (MIC 16 and 8 microg/ml) effective against 68 (70%) of Candida SPP, Fluconazole (MIC 64 and 32 microg/ml) effective against 29 (36.2%) and Nystatin disc (100 units) was 51 (63.5%) effective. C. albicans was mainly isolated. Clotrimazole was more effective as compared to Fluconazole and Nystatin. Antifungal susceptibility testing should be determined before therapy to avoid treatment failures.

  12. Characterization of linoleate 10-hydratase of Lactobacillus plantarum and novel antifungal metabolites

    Directory of Open Access Journals (Sweden)

    Yuan Yao Chen

    2016-10-01

    Full Text Available Lactobacilli convert linoleic acid to the antifungal compound 10-hydroxy-12-octadecenoic acid (10-HOE by linoleate 10-hydratase (10-LAH. However, the effect of this conversion on cellularmembrane physiology and properties of the cell surface have not been demonstrated. Moreover, L. plantarum produces 13-hydroxy-9-octadecenoic acid (13-HOE in addition to 10-HOE, but the antifungal activity of 13-HOE was unknown. Phylogenetic analyses conducted in this study did not differentiate between 10-LAH and linoleate 13-hydratase (13-LAH. Thus, linoleate hydratases (LAHs must be characterized through their differences in their activities of linoleate conversion. Four genes encoding putative LAHs from lactobacilli were cloned, heterologous expressed, purified and identified as FAD-dependent 10-LAH. The unsaturated fatty acid substrates stimulated the growth of lactobacilli. We also investigated the role of 10-LAH in ethanol tolerance, membrane fluidity and hydrophobicity of cell surfaces in lactobacilli by disruption of 10-lah. Compared with the L. plantarum 10-lah deficient strain, 10-LAH in wild-type strain did not exert effect on cell survival and membrane fluidity under ethanol stress, but influenced the cell surface hydrophobicity. Moreover, deletion of 10-LAH in L. plantarum facilitated purification of 13-HOE and demonstration of its antifungal activity against Penicillium roquefortii and Aspergillus niger.

  13. Phytochemical Composition, Antifungal and Antioxidant Activity of Duguetia furfuracea A. St.-Hill

    Science.gov (United States)

    Pinho, Francisca Valéria Soares de Araújo; da Cruz, Litiele Cezar; Rodrigues, Nathane Rosa; Waczuk, Emily Pansera; Souza, Celestina Elba Sobral; da Costa, José Galberto Martins; Athayde, Margareth Linde; de Menezes, Irwin Rose Alencar

    2016-01-01

    Background. Duguetia furfuracea is popular plant used in popular medicine. Hypothesis/Purpose. This claim evaluated the phytochemical composition of the hydroethanolic extract (HEDF), fractions of Duguetia furfuracea, and antioxidant and antifungal activity. Methods. The chemical profile was carried out by HPLC-DAD. The total phenolic contents and flavonoid components were determined by Folin-Ciocalteu and aluminium chloride reaction. The antioxidant activity was measured by scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and ferric reducing ability of plasma (FRAP) methods. The antifungal activity was determined by microdilution assay. Results. HPLC analysis revealed caffeic acid and rutin as major compounds (HEDF), caffeic acid and quercitrin (Mt-OH fraction), and quercitrin and isoquercitrin (Ac-OEt fraction). The highest levels of phenols and total flavonoids were found for Ac-OEt fraction, and the crude extract showed higher in vitro antioxidant potential. The antifungal activity showed synergic effect with fluconazole and EHDF against C. krusei, fluconazole and Mt-OH against C. krusei and C. tropicalis, and Ac-OE and fluconazole against C. albicans. Conclusion. The highest levels of phenols and total flavonoids were marked with antioxidant effect. This is the first report of bioactivity of the synergic effect of HEDF and fractions. More studies would be required to better clarify its mechanism of synergic action. PMID:27127550

  14. Antifungal and antioxidant activities of mature leaves of Myrcia splendens (Sw. DC.

    Directory of Open Access Journals (Sweden)

    F. C. Pontes

    2018-05-01

    Full Text Available Abstract In recent years, natural products with antifungal and antioxidant activities are being increasingly researched for a more sustainable alternative to the chemicals currently used for the same purpose. The plant pathogenic fungus Alternaria alternata is a causative agent of diseases in citrus, leading to huge economic losses. Antioxidants are important for the production of medicines for various diseases that may be related to the presence of free radicals, such as cancer, and in the cosmetic industry as an anti-aging agent and the food industry as preservatives. This study evaluated the antifungal and antioxidant potential of extracts of mature leaves of Myrcia splendens, a tree species that occurs in the Brazilian Cerrado. The antioxidant potential was analyzed by an assay of 1,1-diphenyl-2-picrylhydrazyl radical-scavenging method, and the antifungal activity was assessed through the evaluation of mycelial growth. Majority of the extracts exhibited a strong antioxidant activity, especially the acetonic extract (4A. The antioxidant activity may be related to the presence of phenolic compounds. However, the extracts showed no inhibitory activity of mycelial growth of the fungus tested, with the exception of dichloromethanic extract (2B, which had an inhibitory effect (10.2% at the end of testing.

  15. Antibacterial and antifungal effect of high pH and paraffin wax ...

    African Journals Online (AJOL)

    GREGO

    2007-03-19

    Mar 19, 2007 ... Determination of antibacterial and antifungal activity of the combined treatments was achieved by ... or control the growth and activities of spoilage microor- .... Kawo AH, Bassey SE, Aliyu YU (2005): Bacteriological Quality of.

  16. A preliminary study on radiation treatment of chitosan for enhancement of antifungal activity tested on fruit - spoiling strains

    International Nuclear Information System (INIS)

    Nguyen Duy Lam; Tran Bang Diep

    2003-01-01

    Chitosan samples were irradiated at doses ranging from 20 to 200 kGy, and then were supplemented to liquid medium for growth of fungi. Method of fungal cultivation using liquid medium showed that it has higher sensitivity compared with the cultivation on agar plate. Our study indicated that degree of deacetylation of chitosan clearly affects its antifungal activity, the higher the deacetylation of chitosan, stronger antifungal activity can be observed. Radiation treatment at doses higher than 20 kGy increased clearly the antifungal activity of chitosan. In addition, dose of 60-75 kGy where the viscosity-average molecular weight reduced to 110,000, expressed the highest activity. (author)

  17. Bioactivity-Guided Metabolite Profiling of Feijoa ( Acca sellowiana) Cultivars Identifies 4-Cyclopentene-1,3-dione as a Potent Antifungal Inhibitor of Chitin Synthesis.

    Science.gov (United States)

    Mokhtari, Mona; Jackson, Michael D; Brown, Alistair S; Ackerley, David F; Ritson, Nigel J; Keyzers, Robert A; Munkacsi, Andrew B

    2018-06-06

    Pathogenic fungi continue to develop resistance against current antifungal drugs. To explore the potential of agricultural waste products as a source of novel antifungal compounds, we obtained an unbiased GC-MS profile of 151 compounds from 16 commercial and experimental cultivars of feijoa peels. Multivariate analysis correlated 93% of the compound profiles with antifungal bioactivities. Of the 18 compounds that significantly correlated with antifungal activity, 5 had not previously been described from feijoa. Two novel cultivars were the most bioactive, and the compound 4-cyclopentene-1,3-dione, detected in these cultivars, was potently antifungal (IC 50 = 1-2 μM) against human-pathogenic Candida species. Haploinsufficiency and fluorescence microscopy analyses determined that the synthesis of chitin, a fungal-cell-wall polysaccharide, was the target of 4-cyclopentene-1,3-dione. This fungal-specific mechanism was consistent with a 22-70-fold reduction in antibacterial activity. Overall, we identified the agricultural waste product of specific cultivars of feijoa peels as a source of potential high-value antifungal compounds.

  18. Antifungal Capacity of Lactic Acid Bacteria Isolated From Salad ...

    African Journals Online (AJOL)

    This study explores the use of lactic acid bacteria from fresh salad vegetables to inhibit fungal growth. The antifungal assay was done using the agar well diffusion method as reported by Schillinger and Lucke (1989). The largest zone of inhibition (25mm) was recorded by the antagonistic activity of the isolate identified to ...

  19. Antifungal and antibacterial activities of the ethanolic and aqueous ...

    African Journals Online (AJOL)

    SERVER

    2007-07-18

    Jul 18, 2007 ... psoriasis and eczema, through to the more serious disease like leprosy, syphilis and skin cancer (Burkill,. 1985). Previous studies of the fruits of K. africana showed some antibacterial activity (Grace et al., 2002). However there is no report on the antibacterial and antifungal properties of the stem bark of this ...

  20. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales.

    NARCIS (Netherlands)

    Vitale, R.G.; Hoog, G.S. de; Schwarz, P.; Dannaoui, E.; Deng, S.; Machouart, M.; Voigt, K.; Sande, W.W. van de; Dolatabadi, S.; Meis, J.F.G.M.; Walther, G.

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear

  1. Antifungal susceptibility and phylogeny of opportunistic members of the order Mucorales

    NARCIS (Netherlands)

    R.G. Vitale (Roxana); G.S. de Hoog; P. Schwarz (Peter); E. Dannaoui (Eric); S. Deng (Shuwen); M. Machouart (Marie); K. Voigt (Kerstin); W.W.J. van de Sande (Wendy); S. Dolatabadi (Somayeh); J.F. Meis; G. Walther

    2012-01-01

    textabstractThe in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the

  2. Antifungal Susceptibility and Phylogeny of Opportunistic Members of the Order Mucorales

    NARCIS (Netherlands)

    Vitale, R.G.; de Hoog, G.S.; Schwarz, P.; Dannaoui, E.; Deng, S.; Machouart, M.; Voigt, K.; de Sande, W.W.J.v.; Dolatabadi, S.; Meis, J.F.; Walther, G.

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear

  3. Effects of sugar and amino acid supplementation on Aureobasidium pullulans NRRL 58536 antifungal activity against four Aspergillus species.

    Science.gov (United States)

    Prasongsuk, Sehanat; Ployngam, Saowaluck; Wacharasindhu, Sumrit; Lotrakul, Pongtharin; Punnapayak, Hunsa

    2013-09-01

    Cultured cell extracts from ten tropical strains of Aureobasidium pullulans were screened for antifungal activity against four pathogenic Aspergillus species (Aspergillus flavus, Aspergillus niger, Aspergillus fumigatus, and Aspergillus terreus) using the well diffusion and conidial germination inhibition assays. The crude cell extract from A. pullulans NRRL 58536 resulted in the greatest fungicidal activity against all four Aspergillus species and so was selected for further investigation into enhancing the production of antifungal activity through optimization of the culture medium, carbon source (sucrose and glucose) and amino acid (phenylalanine, proline, and leucine) supplementation. Sucrose did not support the production of any detectable antifungal activity, while glucose did with the greatest antifungal activity against all four Aspergillus species being produced in cells grown in medium containing 2.5 % (w/v) glucose. With respect to the amino acid supplements, variable trends between the different Aspergillus species and amino acid combinations were observed, with the greatest antifungal activities being obtained when grown with phenylalanine plus leucine supplementation for activity against A. flavus, proline plus leucine for A. terreus, and phenylalanine plus proline and leucine for A. niger and A. fumigatus. Thin layer chromatography, spectrophotometry, high-performance liquid chromatography, (1)H-nuclear magnetic resonance, and MALDI-TOF mass spectrometry analyses were all consistent with the main component of the A. pullulans NRRL 58536 extracts being aureobasidins.

  4. Antifungal activity of aqueous and methanolic extracts of some seaweeds against common soil-borne plant pathogenic fungi

    International Nuclear Information System (INIS)

    Khan, S.A.; Abid, M.; Hussain, F.

    2017-01-01

    Total 32 species of different seaweeds belonging to Chlorophyta, Phaeophyta and Rhodophyta were collected from the coast of Karachi, Pakistan to investigate their antifungal activity. Most of the seaweeds inhibited growth of Fusarium oxypsorum, Macrophomina phaseolina and Rhizoctonia solani. The highest antifungal activities were observed in Sargasssum tenerrimum in both aqueous and methanolic extracts as compared to other seaweeds. (author)

  5. Composition and antifungal activity of essential oils from Piper aduncum, Piper arboreum and Piper tuberculatum

    OpenAIRE

    Navickiene, HMD; Morandim, ADA; Alecio, A. C.; Regasini, L. O.; Bergamo, DCB; Telascrea, M.; Cavalheiro, Alberto José [UNESP; Lopes, Márcia Nasser [UNESP; Bolzani, Vanderlan da Silva [UNESP; Furlan, Maysa [UNESP; Marques, MOM; Young, MCM; Kato, M. J.

    2006-01-01

    The composition of essential oils from leaves, stems and fruits of Piper aduncum, P. arboreum and P. tuberculatum was examined by means of GC-MS and antifungal assay. There was a predominance of monoterpenes in P. aduncum and P. tuberculatum and of sesquiterpenes in P. arboreum. P. aduncum showed the richest essential oil composition, including linalool. The essential oils from fruits of P. aduncum and P. tuberculatum showed the highest antifungal activity with the MIC of 10 µg as determined ...

  6. Chemical modification of antifungal polyene macrolide antibiotics

    International Nuclear Information System (INIS)

    Solovieva, S E; Olsufyeva, E N; Preobrazhenskaya, M N

    2011-01-01

    The review summarizes advances in the methods for the synthesis of polyene antibiotics (amphotericin B, partricin A, etc.) and investigations of the structure-activity relationship made in the last 15 years. State-of-the-art approaches based on the combination of the chemical synthesis and genetic engineering are considered. Emphasis is given to the design of semisynthetic antifungal agents against chemotherapy-resistant pathogens having the highest therapeutic indices. Recent results of research on the mechanisms of action of polyenes are outlined.

  7. In vitro antifungal activity of methanol extracts of some Indian ...

    African Journals Online (AJOL)

    The methanol extract of 9 Indian medicinal plants belonging to 9 different families were evaluated for in vitro antifungal activity against some yeasts including Candida albicans (1) ATCC2091, C. albicans (2) ATCC18804, Candida glabrata NCIM3448, Candida tropicalis ATCC4563, Cryptococcus luteolus ATCC32044, ...

  8. Antifungal activity of methanolic root extract of Withania somnifera

    African Journals Online (AJOL)

    Proff.Adewunmi

    remedy for many diseases in various regions of the world, especially in ... For control, 2 mL of DMSO was added to 16 mL of water, and 4 mL of this .... 3E). Since the four organic solvents used for fractionation of methanolic root .... Purification of a Lectin-Like Antifungal Protein from the Medicinal Herb, Withania Somnifera.

  9. A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles

    Science.gov (United States)

    Xue, Jingzhe; Luo, Zhihui; Li, Ping; Ding, Yaping; Cui, Yi; Wu, Qingsheng

    2014-07-01

    Here we reported a residue-free green nanotechnology which synergistically enhance the pesticides efficiency and successively eliminate its residue. We built up a composite antifungal system by a simple pre-treating and assembling procedure for investigating synergy. Investigations showed 0.25 g/L ZnO nanoparticles (NPs) with 0.01 g/L thiram could inhibit the fungal growth in a synergistic mode. More importantly, the 0.25 g/L ZnO NPs completely degraded 0.01 g/L thiram under simulated sunlight irradiation within 6 hours. It was demonstrated that the formation of ZnO-thiram antifungal system, electrostatic adsorption of ZnO NPs to fungi cells and the cellular internalization of ZnO-thiram composites played important roles in synergy. Oxidative stress test indicated ZnO-induced oxidative damage was enhanced by thiram that finally result in synergistic antifungal effect. By reducing the pesticides usage, this nanotechnology could control the plant disease economically, more significantly, the following photocatalytic degradation of pesticide greatly benefit the human social by avoiding negative influence of pesticide residue on public health and environment.

  10. Extracellular DNA Release Acts as an Antifungal Resistance Mechanism in Mature Aspergillus fumigatus Biofilms

    Science.gov (United States)

    Rajendran, Ranjith; Williams, Craig; Lappin, David F.; Millington, Owain; Martins, Margarida

    2013-01-01

    Aspergillus fumigatus has been shown to form biofilms that are associated with adaptive antifungal resistance mechanisms. These include multidrug efflux pumps, heat shock proteins, and extracellular matrix (ECM). ECM is a key structural and protective component of microbial biofilms and in bacteria has been shown to contain extracellular DNA (eDNA). We therefore hypothesized that A. fumigatus biofilms also possess eDNA as part of the ECM, conferring a functional role. Fluorescence microscopy and quantitative PCR analyses demonstrated the presence of eDNA, which was released phase dependently (8 autolysis, were significantly upregulated as the biofilm matured and that inhibition of chitinases affected biofilm growth and stability, indicating mechanistically that autolysis was possibly involved. Finally, using checkerboard assays, it was shown that combinational treatment of biofilms with DNase plus amphotericin B and caspofungin significantly improved antifungal susceptibility. Collectively, these data show that eDNA is an important structural component of A. fumigatus ECM that is released through autolysis, which is important for protection from environmental stresses, including antifungal therapy. PMID:23314962

  11. Synthesis and in vitro antifungal efficacy of oleoyl-chitosan nanoparticles against plant pathogenic fungi.

    Science.gov (United States)

    Xing, Ke; Shen, Xiaoqiang; Zhu, Xiao; Ju, Xiuyun; Miao, Xiangmin; Tian, Jun; Feng, Zhaozhong; Peng, Xue; Jiang, Jihong; Qin, Sheng

    2016-01-01

    An antifungal dispersion system was prepared by oleoyl-chitosan (O-chitosan) nanoparticles, and the antifungal activity against several plant pathogenic fungi was investigated. Under scanning electron microscopy, the nanoparticles formulation appeared to be uniform with almost spherical shape. The particle size of nanoparticles was around 296.962 nm. Transmission electron microscopy observation showed that nanoparticles could be well distributed in potato dextrose agar medium. Mycelium growth experiment demonstrated that Nigrospora sphaerica, Botryosphaeria dothidea, Nigrospora oryzae and Alternaria tenuissima were chitosan-sensitive, while Gibberella zeae and Fusarium culmorum were chitosan-resistant. The antifungal index was increased as the concentration of nanoparticles increased for chitosan-sensitive fungi. Fatty acid analyses revealed that plasma membranes of chitosan-sensitive fungi were shown to have lower levels of unsaturated fatty acid than chitosan-resistant fungi. Phylogenetic analysis based on ITS gene sequences indicated that two chitosan-resistant fungi had a near phylogenetic relationship. Results showed that O-chitosan nanoparticles could be a useful alternative for controlling pathogenic fungi in agriculture. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Antifungal prescribing pattern and attitude towards the treatment of oral candidiasis among dentists in Jordan.

    Science.gov (United States)

    Al-Shayyab, Mohammad H; Abu-Hammad, Osama A; Al-Omiri, Mahmoud K; Dar-Odeh, Najla S

    2015-08-01

    The aim of this study was to evaluate the attitude of Jordanian dentists towards the treatment of oral candidiasis and their current antifungal prescribing habits, shedding more light on the possible influence of their socio-professional factors on the pattern of prescribing and practice. A structured validated questionnaire was developed and tested; it was then emailed to a random sample of 600 Jordanian dental practitioners during the period of this cross-sectional survey. The questionnaire recorded practitioners' personal details and their attitude and prescribing of antifungal therapy for oral candidiasis. Statistical significance was based on probability values of oral candidiasis. Of the 423 questionnaires returned, only 330 were included. The attitude of respondents was significantly influenced by their experience [odds ratio (OR) = 0.14; P oral candidiasis is much better among the least-experienced dentists working in private practice. Nystatin and miconazole are the most popular choices of antifungal agents among Jordanian dentists. © 2015 FDI World Dental Federation.

  13. Purification and characterization of pathogenesis-related antifungal beta 1,3 glucanase from basrai banana fruit

    International Nuclear Information System (INIS)

    Yasmin, N.; Saleem, M.; Chaudhry, Z.I.

    2012-01-01

    Pathogenesis-related proteins have been described as proteins that are encoded by the plant genome and that are induced specifically in response to infections by pathogens. These represent a collection of unrelated protein families which function as part of the plant defense system. Pathogenesis-related antifungal protein has been isolated from the pulp of ripe Basrai bananas and purified through ammonium sulphate precipitation, Sephadex G- 75 gel filtration chromatography and electro-elution. The purified protein with acidic character (pI 6.81). has molecular weight of 34.5kDa, as determined by MALOI- TOF mass spectrometry. Mascot score obtained was 473 greater than 82, indicate extensive homology at a significant level (p.0.05) and the protein was identified as beta 1,3-glucanase with antifungal activity. It inhibited the growth of Fusarium oxysporum demonstrating the potential role of Basrai banana antifungal protein to control fungal diseases in plants, animals and human. (author)

  14. Design, synthesis and antifungal activities of novel strobilurin derivatives containing pyrimidine moieties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiang; Geo, Yongxin; Liu, Huijun; Guo, Baoyuan; Wang, Huili [Research Center for Eco-Environmental Sciences/Chinese Academy of Sciences, Beijing (China)

    2012-04-15

    Strobilurins are one of the most important classes of agricultural fungicides. To discover new strobilurin derivatives with high activity against resistant pathogens, a series of novel β-methoxy acrylate analogues were designed and synthesized by integrating substituted pyrimidine with a strobilurin pharmacophore. The compounds were confirmed and characterized by infrared, {sup 1}H nuclear magnetic resonance, elemental analysis and mass spectroscopy. The bioassays indicated that most of the compounds (1a-1h) exhibited potent antifungal activities against Colletotrichum orbicular, Botrytis cinerea Pers and Protoporphyria caps ici Leon ian at the concentration of 50 μg/mL. Exhilaratingly, compound 1d (R=3-trifluoromethylphenyl) showed better antifungal activity against all the tested fungi than the commercial stilbenetriol fungicide azoxystrobin.

  15. Study of the Cytotoxic and Antifungal Activities of Neolignans 8.O.4´ and Structurally Related Compounds

    Directory of Open Access Journals (Sweden)

    P. Matyus

    2000-03-01

    Full Text Available In the present work we report the antifungal and cytotoxic activities of a neolignan 8.O.4´series. The most active antifungal compounds show a significant cytotoxic effect which might be related.

  16. An Antifungal Combination Matrix Identifies a Rich Pool of Adjuvant Molecules that Enhance Drug Activity against Diverse Fungal Pathogens

    Directory of Open Access Journals (Sweden)

    Nicole Robbins

    2015-11-01

    Full Text Available There is an urgent need to identify new treatments for fungal infections. By combining sub-lethal concentrations of the known antifungals fluconazole, caspofungin, amphotericin B, terbinafine, benomyl, and cyprodinil with ∼3,600 compounds in diverse fungal species, we generated a deep reservoir of chemical-chemical interactions termed the Antifungal Combinations Matrix (ACM. Follow-up susceptibility testing against a fluconazole-resistant isolate of C. albicans unveiled ACM combinations capable of potentiating fluconazole in this clinical strain. We used chemical genetics to elucidate the mode of action of the antimycobacterial drug clofazimine, a compound with unreported antifungal activity that synergized with several antifungals. Clofazimine induces a cell membrane stress for which the Pkc1 signaling pathway is required for tolerance. Additional tests against additional fungal pathogens, including Aspergillus fumigatus, highlighted that clofazimine exhibits efficacy as a combination agent against multiple fungi. Thus, the ACM is a rich reservoir of chemical combinations with therapeutic potential against diverse fungal pathogens.

  17. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus.

    Science.gov (United States)

    Hu, Yichen; Zhang, Jinming; Kong, Weijun; Zhao, Gang; Yang, Meihua

    2017-04-01

    The antifungal activity and potential mechanisms in vitro as well as anti-aflatoxigenic efficiency in vivo of natural essential oil (EO) derived from turmeric (Curcuma longa L.) against Aspergillus flavus was intensively investigated. Based on the previous chemical characterization of turmeric EO by gas chromatography-mass spectrometry, the substantially antifungal activities of turmeric EO on the mycelial growth, spore germination and aflatoxin production were observed in a dose-dependent manner. Furthermore, these antifungal effects were related to the disruption of fungal cell endomembrane system including the plasma membrane and mitochondria, specifically i.e. the inhibition of ergosterol synthesis, mitochondrial ATPase, malate dehydrogenase, and succinate dehydrogenase activities. Moreover, the down-regulation profiles of turmeric EO on the relative expression of mycotoxin genes in aflatoxin biosynthetic pathway revealed its anti-aflatoxigenic mechanism. Finally, the suppression effect of fungal contamination in maize indicated that turmeric EO has potential as an eco-friendly antifungal agent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. [Does the sampling locality influence on the antifungal activity of the flavonoids of Marrubium vulgare against Aspergillus niger and Candida albicans?].

    Science.gov (United States)

    Bouterfas, K; Mehdadi, Z; Aouad, L; Elaoufi, M M; Khaled, M B; Latreche, A; Benchiha, W

    2016-09-01

    The study was undertaken to determine the effect of the sampling locality on the antifungal activity of the flavonoids extracted from the leaves of Marrubium vulgare L. against two fungal strains; Aspergillus niger ATCC 16404 and Candida albicans ATCC 10231. The leaves were collected from three different sampling localities belonging northwest Algeria: Tessala mount, M'sila forest and Ain Skhouna. The flavonoid extraction was carried out by using organic solvents with increasing polarity. A phytochemical screening was performed by staining test tubes. The inhibition diameters were measured by solid medium diffusion method. The minimum inhibitory concentrations were determined by dilution method on solid medium. The antifungal activity varied significantly (Pflavonoid extract and its concentration, and the strain fungal type. The inhibition diameters varied between 8.16 and recorded 37.5mm even recording a total inhibition of fungal growth and often exceed those induced marketed antifungals (Amphotericin, Fluconazole, Terbinafine and econazole nitrate). The minimum inhibitory concentrations (MICs) obtained range between 6.25 and 100μg/mL; experiencing strong antifungal inhibition. The phytochemical screening revealed the existence of certain flavonoids classes such as flavans and flavanols which may be responsible of this remarkable antifungal power. The sampling locality of Marrubium vulgare leaves influenced on the antifungal activity of flavonoids. These have proven very good fungistatic and worth valuing in pharmacology. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. A new method to predict the epidemiology of fungal keratitis by monitoring the sales distribution of antifungal eye drops in Brazil.

    Directory of Open Access Journals (Sweden)

    Marlon Moraes Ibrahim

    Full Text Available PURPOSE: Fungi are a major cause of keratitis, although few medications are licensed for their treatment. The aim of this study is to observe the variation in commercialisation of antifungal eye drops, and to predict the seasonal distribution of fungal keratitis in Brazil. METHODS: Data from a retrospective study of antifungal eye drops sales from the only pharmaceutical ophthalmologic laboratory, authorized to dispense them in Brazil (Opthalmos were gathered. These data were correlated with geographic and seasonal distribution of fungal keratitis in Brazil between July 2002 and June 2008. RESULTS: A total of 26,087 antifungal eye drop units were sold, with a mean of 2.3 per patient. There was significant variation in antifungal sales during the year (p<0.01. A linear regression model displayed a significant association between reduced relative humidity and antifungal drug sales (R2 = 0.17,p<0.01. CONCLUSIONS: Antifungal eye drops sales suggest that there is a seasonal distribution of fungal keratitis. A possible interpretation is that the third quarter of the year (a period when the climate is drier, when agricultural activity is more intense in Brazil, suggests a correlation with a higher incidence of fungal keratitis. A similar model could be applied to other diseases, that are managed with unique, or few, and monitorable medications to predict epidemiological aspects.

  20. A New Method to Predict the Epidemiology of Fungal Keratitis by Monitoring the Sales Distribution of Antifungal Eye Drops in Brazil

    Science.gov (United States)

    Ibrahim, Marlon Moraes; de Angelis, Rafael; Lima, Acacio Souza; Viana de Carvalho, Glauco Dreyer; Ibrahim, Fuad Moraes; Malki, Leonardo Tannus; de Paula Bichuete, Marina; de Paula Martins, Wellington; Rocha, Eduardo Melani

    2012-01-01

    Purpose Fungi are a major cause of keratitis, although few medications are licensed for their treatment. The aim of this study is to observe the variation in commercialisation of antifungal eye drops, and to predict the seasonal distribution of fungal keratitis in Brazil. Methods Data from a retrospective study of antifungal eye drops sales from the only pharmaceutical ophthalmologic laboratory, authorized to dispense them in Brazil (Opthalmos) were gathered. These data were correlated with geographic and seasonal distribution of fungal keratitis in Brazil between July 2002 and June 2008. Results A total of 26,087 antifungal eye drop units were sold, with a mean of 2.3 per patient. There was significant variation in antifungal sales during the year (p<0.01). A linear regression model displayed a significant association between reduced relative humidity and antifungal drug sales (R2 = 0.17,p<0.01). Conclusions Antifungal eye drops sales suggest that there is a seasonal distribution of fungal keratitis. A possible interpretation is that the third quarter of the year (a period when the climate is drier), when agricultural activity is more intense in Brazil, suggests a correlation with a higher incidence of fungal keratitis. A similar model could be applied to other diseases, that are managed with unique, or few, and monitorable medications to predict epidemiological aspects. PMID:22457787

  1. Antifungal Activity of the Crude Extracts and Extracted Phenols from Gametophytes and Sporophytes of Two Species of Adiantum

    Directory of Open Access Journals (Sweden)

    Piyali Guha (Ghosh

    2005-12-01

    Full Text Available The water extracts and extracted phenols from gametophytes and different parts of sporophytes of the two ferns, Adiantum capillus-veneris L. and Adiantum lunulatum Burm. f., used as folkloric medicines in India, China, Tibet, America, Philippines and Italy, were investigated for their antifungal activity against Aspergillus niger and Rhizopus stolonifer. Both crude extracts and extracted phenols of gametophytes and different parts of sporophytes of both fern species were found to be bioactive against the fungal strains. Antifungal activity was found to be higher in gametophytes than different parts of sporophytes. Among the different parts of sporophyte, immature pinnule possesses highest fungistatic property. Adiantum capillus-veneris was found a better antifungal agent than Adiantum lunulatum.

  2. Fungal peritonitis in continuous ambulatory peritoneal dialysis: The impact of antifungal prophylaxis on patient and technique outcomes

    Directory of Open Access Journals (Sweden)

    K V Kumar

    2014-01-01

    Full Text Available Fungal peritonitis (FP is a rare, but serious complication of peritoneal dialysis. We analyzed the incidence of FP, associated risk factors and outcome of patients with FP and evaluated the role of prophylactic antifungal agent in reducing its incidence. We studied all patients with FP from January 2005 to January 2012. Study period was divided into two parts, period I (January 2005 to January 2010, when prophylactic antifungal was not used and period II (January 2010 to January 2012, when prophylactic antifungal (fluconazole was used. A total of 142 episodes of peritonitis were documented during this period of which 20 (14% were FP. During the study period I, 18 of 102 episodes of peritonitis (17.6% and in the study period II (with antifungal prophylaxis, only 2 of 40 episodes of peritonitis (5% were due to fungal infection (P = 0.04. Nine out of 20 patients (45% had prior exposure to antibiotics. Fungal isolates were Candida albicans in 65%, non-albicans Candida in 25%, Rhizopus species in 5% and Alternaria in 5% of the patients. While 12 out of 20 patients (60% recovered completely and were re-initiated on continuous ambulatory peritoneal dialysis (CAPD, 4 of them expired (20% and 4 others (20% were shifted to hemodialysis. Use of prophylactic antifungal agent significantly reduced the incidence of FP (P = 0.04. We conclude that - fluconazole when used as a prophylactic agent in the setting of bacterial peritonitis significantly reduces the incidence of subsequent FP in CAPD patients.

  3. 8-Amido-Bearing pseudomycin B (PSB) analogue: novel antifungal agents.

    Science.gov (United States)

    Zhang, Y Z; Sun, X; Zeckner, D J; Sachs, R K; Current, W L; Chen, S H

    2001-01-22

    During the course of a structure-activity relationship (SAR) study on novel depsinonapeptide pseudomycin B, we synthesized a total of 12 8-amidopseudomycin analogues via standard two-step sequence from either ZPSB 2 or AllocPSB 3. A number of these amides exhibited good in vitro antifungal activities.

  4. Comparative study of the antifungal activity of some essential oils ...

    African Journals Online (AJOL)

    This study aimed to evaluate the antimould activity of oregano, thyme, rosemary and clove essential oils and some of their main constituents: eugenol, carvacrol and thymol against Aspergillus niger. This antifungal activity was assessed using broth dilution, disc diffusion and micro atmosphere methods. In both agar diffusion ...

  5. Multilocus phylogeny and antifungal susceptibility of Aspergillus section Circumdati from clinical samples and description of A. pseudosclerotiorum sp. nov.

    Science.gov (United States)

    A multilocus phylogenetic study was carried out to assess the species distribution in a set of 34 clinical isolates of Aspergillus section Circumdati from the USA and their in vitro antifungal susceptibility were determined against eight antifungal drugs. The genetic markers used were ITS, BenA, CaM...

  6. Simple Method of Preparation and Characterization of New Antifungal Active Biginelli Type Heterocyclic Compounds

    Science.gov (United States)

    Velan, A. Senthilkumara; Joseph, J.; Raman, N.

    2008-01-01

    A simple, efficient and cost effective method is described for the synthesis of Biginelli type heterocyclic compounds of dihydropyrimidinones analogous. They were prepared from a reaction mixture consisting of substituted benzaldehydes, thiourea and ethylacetoacetate using ammonium dihydrogenphosphate as catalyst. The procedure for the preparation of the compounds is environmentally benign and safe which is advantageous in terms of experimentation, catalyst reusability, yields of the products, shorter reaction times and preclusion of toxic solvents. The four new synthesised compounds were tested for their antifungal activity. They have good antifungal activity comparing to the standard (Fluconazole). PMID:23997611

  7. Growth and investigation of antifungal properties of ZnO nanorod arrays on the glass

    International Nuclear Information System (INIS)

    Eskandari, M.; Haghighi, N.; Ahmadi, V.; Haghighi, F.; Mohammadi, SH.R.

    2011-01-01

    In this study, we have investigated the antifungal activity of ZnO nanorods prepared by the chemical solution method against Candida albicans. In the study, Zinc oxide nanorods have been deposited on glass substrates using the chemical solution method. The as-grown samples are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). X-ray diffraction (XRD) showed zinc oxide nanorods grown in (0 0 2) orientation. The antifungal results indicated that ZnO nanorod arrays exhibit stable properties after two months and play an important role in the growth inhibitory of Candida albicans.

  8. Studies on antifungal activity and elemental composition of the medicinal plant trianthema pentendra linn

    International Nuclear Information System (INIS)

    Pirzada, A.J.; Shaikh, W.; Ghaffar, S.A.

    2010-01-01

    Antifungal activity of crude solvent and aqueous extracts of the medicinal plant, Trianthema pentendra Linn., against the dermatophytic fungi, Aspergillus niger, Aspergillus flavus, Paecilomyces varioti, Microsporum gypseum and Trichophyton rubrum revealed that ethanol and aqueous extracts were the most effective antifungal agents as compared to methanol, chloroform and ethyl acetate extracts. Some basic elements, Al, Ca, Cu, Fe, Mg, Mn, P, S and Zn were also determined in the medicinal plant, T. pentendra, using atomic absorption spectrophotometry and U.V spectrophotometry. T. pentendra contained considerable amount of elements which have therapeutic effects in skin diseases. (author)

  9. Antibacterial and antifungal activity of endodontic intracanal medications

    Science.gov (United States)

    TONEA, ANDRADA; BADEA, MANDRA; OANA, LIVIU; SAVA, SORINA; VODNAR, DAN

    2017-01-01

    Background and aims The sterilization of the entire root canal system represents the main goal of every endodontist, given the fact that the control of the microbial flora is the key point of every root canal treatment. The diversity of microorganisms found inside the root canal and also the resistance of some bacterial species to intracanal medications led to a continuous development of new endodontic products. The present study focuses on the comparison of the antibacterial and antifungal properties of different endodontic products, two commercially available, one experimental plant based extract, and two control substances. Methods The disc diffusion assay was used to determine the antibacterial and antifungal properties of chlorhexidine, calcium hydroxide, a mix extract between Arctium lappa root powder and Aloe barbadensis Miller gel, Amoxicillin with clavulanic acid and Fluconazole (as control substances). Two of the most common microorganisms found in endodontic infections were chosen: Enterococcus faecalis (ATCC 29212) and Candida albicans ATCC(10231). Results All tested substances showed inhibition zones around the discs, for Enterococcus faecalis and Candida albicans, including the experimental mix extract of Arctium lappa root powder with Aloe vera gel. Conclusion The experimental mix extract of Arctium lappa root powder and Aloe vera gel is able to inhibit very resistant microorganisms, like Enterococcus faecalis and Candida albicans. PMID:28781531

  10. The Aspergillus niger growth on the treated concrete substrate using variable antifungals

    Science.gov (United States)

    Parjo, U. K.; Sunar, N. M.; Leman, A. M.; Gani, P.; Embong, Z.; Tajudin, S. A. A.

    2016-11-01

    The aim of this study was to evaluate the Aspergillus niger (A. niger) growth on substrates after incorporates with different compounds of antifungals which is normally used in food industry. The antifungals named as potassium sorbate (PS), calcium benzoate (CB) and zinc salicylate (ZS) were applied on concrete substrate covered with different wall finishing such as acrylic paint (AP), glycerol based paint (GBP), thin wallpaper (THIN) and thick wallpaper (THICK). The concrete substrate were inoculated with spore suspension, incubated at selected temperature (30oC) and relative humidity (90%)in plant growth chamber. The observations were done from the Day 3 until Day 27. The results showed that the growth of the A. niger for concrete treated by PS for AP, GBP, THIN, and THICK were 64%, 32%, 11% and 100%, respectively. Meanwhile for CB, the growth of A. niger on AP, GBP, THIN, and THICK were 100%, 12%, 41%, and 13%, respectively. Similarly, treated concrete by ZS revealed that the growth of A. niger on the same substrate cover were 33%, 47%, 40%, and 39%, respectively. The results obtained in this study provide a valuable knowledge on the abilities of antifungals to remediate A. niger that inoculated on the concrete substrate. Consequently, this study proved that the PS covering with THIN more efficiency compares CB and ZS to prevent A. niger growth.

  11. Synthesis, Antifungal Evaluation and In Silico Study of N-(4-Halobenzyl)amides.

    Science.gov (United States)

    Montes, Ricardo Carneiro; Perez, Ana Luiza A L; Medeiros, Cássio Ilan S; Araújo, Marianna Oliveira de; Lima, Edeltrudes de Oliveira; Scotti, Marcus Tullius; Sousa, Damião Pergentino de

    2016-12-13

    A collection of 32 structurally related N -(4-halobenzyl)amides were synthesized from cinnamic and benzoic acids through coupling reactions with 4-halobenzylamines, using (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) as a coupling agent. The compounds were identified by spectroscopic methods such as infrared, ¹H- and 13 C- Nuclear Magnetic Resonance (NMR) and high-resolution mass spectrometry. The compounds were then submitted to antimicrobial tests by the minimum inhibitory concentration method (MIC) and nystatin was used as a control in the antifungal assays. The purpose of the tests was to evaluate the influence of structural changes in the cinnamic and benzoic acid substructures on the inhibitory activity against strains of Candida albicans , Candida tropicalis , and Candida krusei . A quantitative structure-activity relationship (QSAR) study with KNIME v. 3.1.0 and Volsurf v. 1.0.7 softwares were realized, showing that descriptors DRDRDR, DRDRAC, L4LgS, IW4 and DD2 influence the antifungal activity of the haloamides. In general, 10 benzamides revealed fungal sensitivity, especially a vanillic amide which enjoyed the lowest MIC. The results demonstrate that a hydroxyl group in the para position, and a methoxyl at the meta position enhance antifungal activity for the amide skeletal structure. In addition, the double bond as a spacer group appears to be important for the activity of amide structures.

  12. Antifungal Activity of Coumarin from Ageratum conyzoides L. Leaves on Candida albicans cells

    Directory of Open Access Journals (Sweden)

    Gunawan Pamudji Widodo

    2012-07-01

    Full Text Available The aim of this study was to identify the antifungal activity of coumarin isolated from Ageratum conyzoides L. leaves and to observe its influence on Candida albicans cells by scanning electron microscope (SEM and transmission electron microscope (TEM. Antifungal activity testing by disk diffusion method showed coumarin was active toward pathogenic fungus, Candida albicans with the MIC value of coumarin of 125 g mL-1. The influence of this substance on C. albicans cells was observed by scanning and transmission electron microscopies. The result showed that this compound damaged the cell by pores formation on the cell wall. The death of cells occurred due to leakage and necrotic of cytoplasmic content.

  13. ANTIOXIDANT AND ANTIFUNGAL ACTIVITY OF SELECTED MEDICINAL PLANT EXTRACTS AGAINST PHYTOPATHOGENIC FUNGI.

    Science.gov (United States)

    Mahlo, Salome Mamokone; Chauke, Hasani Richard; McGaw, Lyndy; Eloff, Jacobus

    2016-01-01

    Medicinal plants are used by many ethnic groups as a source of medicine for the treatment of various ailments in both humans and domestic animals. These plants produce secondary metabolites that have antimicrobial properties, thus screening of medicinal plants provide another alternative for producing chemical fungicides that are relatively non-toxic and cost-effective. Leaf extracts of selected South African plant species ( Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana ) were investigated for activity against selected phytopathogenic fungi ( Aspergillus niger, Aspergillus parasiticus, Colletotricum gloeosporioides, Penicillium janthinellum, P. expansum, Trichoderma harzianum and Fusarium oxysporum ). These plant fungal pathogens causes major economic losses in fruit industry such as blue rot on nectaries and postharvest disease in citrus. Plant species were selected from 600 evaluated inter alia, against two animal fungal pathogens ( Candida albicans and Cryptococcus neoformans ). Antioxidant activity of the selected plant extracts were investigated using a qualitative assay (2, 2-diphenyl-1-picrylhydrazyl (DPPH)). Bioautography assay was used to determine the number of antifungal compounds in plant extracts. All plant extracts were active against the selected plant phytopathogenic fungi. Moreover, Bucida buceras had the best antifungal activity against four of the fungi, with minimum inhibitory concentration (MIC) values as low as 0.02 mg/ml and 0.08 mg/ml against P. expansum, P. janthinellum, T. harzianum and F. oxysporum . The plant extracts of five plant species did not possess strong antioxidant activity. However, methanol extract of X. kraussiana was the most active radical scavenger in the DPPH assay amongst the six medicinal plants screened. No antifungal compounds were observed in some of the plant extracts with good antifungal activity as shown in the microdilution assay, indicating

  14. Essential oil composition and antifungal activity of Foeniculum vulgare Mill obtained by different distillation conditions.

    Science.gov (United States)

    Mimica-Dukić, N; Kujundzić, S; Soković, M; Couladis, M

    2003-04-01

    The influence of different hydrodistillation conditions was evaluated from the standpoint of essential oil yield, chemical composition and antifungal activity from seeds of Foeniculum vulgare Mill. Three hydrodistillation conditions were considered. The main constituents of the oils were: (E)-anethole (72.27%-74.18%), fenchone (11.32%-16.35%) and methyl chavicol (3.78%-5.29%). The method of distillation significantly effected the essential oil yield and quantitative composition, although the antifungal activity of the oils against some fungi was only slightly altered. Copyright 2003 John Wiley & Sons, Ltd.

  15. Preparation and Characterization of Novel Cationic Chitosan Derivatives Bearing Quaternary Ammonium and Phosphonium Salts and Assessment of Their Antifungal Properties.

    Science.gov (United States)

    Tan, Wenqiang; Li, Qing; Dong, Fang; Chen, Qiuhong; Guo, Zhanyong

    2017-08-31

    Chitosan is an abundant and renewable polysaccharide, its derivatives exhibit attractive bioactivities and the wide applications in various biomedical fields. In this paper, two novel cationic chitosan derivatives modified with quaternary phosphonium salts were successfully synthesized via trimethylation, chloride acetylation, and quaternization with tricyclohexylphosphine and triphenylphosphine. The structures and properties of synthesized products in the reactions were characterized by FTIR spectroscopy, ¹H-NMR, 31 P-NMR, elemental and thermogravimetric analysis. The antifungal activities of chitosan derivatives against four kinds of phytopathogens, including Phomopsis asparagi , Watermelon fusarium , Colletotrichum lagenarium , and Fusarium oxysporum were tested using the radial growth assay in vitro. The results revealed that the synthesized cationic chitosan derivatives showed significantly improved antifungal efficiency compared to chitosan. It was reasonably suggested that quaternary phosphonium groups enabled the obviously stronger antifungal activity of the synthesized chitosans. Especially, the triphenylphosphonium-functionalized chitosan derivative inhibited the growth of Phomopsis asparagi most effectively, with inhibitory indices of about 80% at 0.5 mg/mL. Moreover, the data demonstrated that the substituted groups with stronger electron-withdrawing ability relatively possessed greater antifungal activity. The results suggest the possibility that cationic chitosan derivatives bearing quaternary phosphonium salts could be effectively employed as novel antifungal biomaterials for application in the field of agriculture.

  16. Evaluation of Antifungal Activity and Mechanism of Action of Citral against Candida albicans

    Directory of Open Access Journals (Sweden)

    Maria Clerya Alvino Leite

    2014-01-01

    Full Text Available Candida albicans is a yeast that commensally inhabits the human body and can cause opportunistic or pathogenic infections. Objective. To investigate the antifungal activity of citral against C. albicans. Methodology. The minimum inhibitory concentration (MIC and the minimum fungicidal concentration (MFC were determined by the broth microdilution techniques. We also investigated possible citral action on cell walls (0.8 M sorbitol, cell membranes (citral to ergosterol binding, the time-kill curve, and biological activity on the yeast’s morphology. Results. The MIC and MFC of citral were, respectively, 64 µg/mL and 256 µg/mL. Involvement with the cell wall and ergosterol binding were excluded as possible mechanisms of action. In the morphological interference assay, it was observed that the product inhibited pseudohyphae and chlamydoconidia formation. The MIC and the MFC of citral required only 4 hours of exposure to effectively kill 99.9% of the inoculum. Conclusion. Citral showed in vitro antifungal potential against strains of C. albicans. Citral’s mechanism of action does not involve the cell wall or ergosterol, and further study is needed to completely describe its effects before being used in the future as a component of new antifungals.

  17. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  18. In vitro investigation on antifungal activity of some plant extracts ...

    African Journals Online (AJOL)

    Prof. Ogunji

    In vitro investigation on antifungal activity of some plant extracts against Pyricularia oryzae. Olufolaji, D. B.1, Adeosun, B.O.1 and Onasanya, R. O.2. 1. Department of Crop, Soil and Pest Management, The Federal University of Technology, PMB 704. Akure, Ondo state, Nigeria. 2. Department of Agriculture, Federal College ...

  19. Antifungal activity of rice straw extract on some phytopathogenic fungi

    African Journals Online (AJOL)

    The antifungal activity of allelochemicals extracted from rice straw on the radial growth rate and the activity of some hydrolyzing enzymes of Aspergillus flavus, Alternaria alternata and Botrytis cinerea were studied in vitro. Five different concentrations (2, 4, 6, 8 and 10%, w/v) of water, methanol and acetone extracts of rice ...

  20. Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Kamonkhantikul K

    2017-03-01

    Full Text Available Krid Kamonkhantikul,1 Mansuang Arksornnukit,1 Hidekazu Takahashi2 1Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; 2Oral Biomaterials Engineering, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan Background: Fungal infected denture, which is typically composed of polymethylmethacrylate (PMMA, is a common problem for a denture wearer, especially an elderly patient with limited manual dexterity. Therefore, increasing the antifungal effect of denture by incorporating surface modification nanoparticles into the PMMA, while retaining its mechanical properties, is of interest. Aim of the study: This study aimed to evaluate antifungal, optical, and mechanical properties of heat-cured PMMA incorporated with different amounts of zinc oxide nanoparticles (ZnOnps with or without methacryloxypropyltrimethoxysilane modification. Materials and methods: Specimens made from heat-cured PMMA containing 1.25, 2.5, and 5% (w/w nonsilanized (Nosi or silanized (Si ZnOnps were evaluated. Specimens without filler served as control. The fungal assay was performed placing a Candida albicans suspension on the PMMA surface for 2 h, then Sabouraud Dextrose Broth was added, and growth after 24 h was determined by counting colony forming units on agar plates. A spectrophotometer was used to measure the color in L* (brightness, a* (red-green, b* (yellow-blue and opacity of the experimental groups. Flexural strength and flexural modulus were determined using a three-point bending test on universal testing machine after 37°C water storage for 48 h and 1 month. Results: The antifungal, optical, and mechanical properties of the PMMA incorporated with ZnOnps changed depending on the amount. With the same amount of ZnOnps, the silanized groups demonstrated a greater reduction in C. albicans compared with the Nosi groups. The color difference (ΔE and opacity of the Nosi groups were

  1. Species distribution and in vitro antifungal susceptibility of oral yeast isolates from Tanzanian HIV-infected patients with primary and recurrent oropharyngeal candidiasis

    Directory of Open Access Journals (Sweden)

    Rijs Antonius JMM

    2008-08-01

    Full Text Available Abstract Background In Tanzania, little is known on the species distribution and antifungal susceptibility profiles of yeast isolates from HIV-infected patients with primary and recurrent oropharyngeal candidiasis. Methods A total of 296 clinical oral yeasts were isolated from 292 HIV-infected patients with oropharyngeal candidiasis at the Muhimbili National Hospital, Dar es Salaam, Tanzania. Identification of the yeasts was performed using standard phenotypic methods. Antifungal susceptibility to fluconazole, itraconazole, miconazole, clotrimazole, amphotericin B and nystatin was assessed using a broth microdilution format according to the guidelines of the Clinical and Laboratory Standard Institute (CLSI; M27-A2. Results Candida albicans was the most frequently isolated species from 250 (84.5% patients followed by C. glabrata from 20 (6.8% patients, and C. krusei from 10 (3.4% patients. There was no observed significant difference in species distribution between patients with primary and recurrent oropharyngeal candidiasis, but isolates cultured from patients previously treated were significantly less susceptible to the azole compounds compared to those cultured from antifungal naïve patients. Conclusion C. albicans was the most frequently isolated species from patients with oropharyngeal candidiasis. Oral yeast isolates from Tanzania had high level susceptibility to the antifungal agents tested. Recurrent oropharyngeal candidiasis and previous antifungal therapy significantly correlated with reduced susceptibility to azoles antifungal agents.

  2. Synthesis, antifungal activity, and QSAR studies of 1,6-dihydropyrimidine derivatives

    Directory of Open Access Journals (Sweden)

    Chirag Rami

    2013-01-01

    Full Text Available Introduction: A practical synthesis of pyrimidinone would be very helpful for chemists because pyrimidinone is found in many bioactive natural products and exhibits a wide range of biological properties. The biological significance of pyrimidine derivatives has led us to the synthesis of substituted pyrimidine. Materials and Methods: With the aim of developing potential antimicrobials, new series of 5-cyano-6-oxo-1,6-dihydro-pyrimidine derivatives namely 2-(5-cyano-6-oxo-4-substituted (aryl-1,6-dihydropyrimidin-2-ylthio-N-substituted (phenyl acetamide (C1-C41 were synthesized and characterized by Fourier transform infrared spectroscopy (FTIR, mass analysis, and proton nuclear magnetic resonance ( 1 H NMR. All the compounds were screened for their antifungal activity against Candida albicans (MTCC, 227. Results and Discussion: Quantitative structure activity relationship (QSAR studies of a series of 1,6-dihydro-pyrimidine were carried out to study various structural requirements for fungal inhibition. Various lipophilic, electronic, geometric, and spatial descriptors were correlated with antifungal activity using genetic function approximation. Developed models were found predictive as indicated by their square of predictive regression values (r 2pred and their internal and external cross-validation. Study reveals that CHI_3_C, Molecular_SurfaceArea, and Jurs_DPSA_1 contributed significantly to the activity along with some electronic, geometric, and quantum mechanical descriptors. Conclusion: A careful analysis of the antifungal activity data of synthesized compounds revealed that electron withdrawing substitution on N-phenyl acetamide ring of 1,6-dihydropyrimidine moiety possess good activity.

  3. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales.

    Science.gov (United States)

    Vitale, Roxana G; de Hoog, G Sybren; Schwarz, Patrick; Dannaoui, Eric; Deng, Shuwen; Machouart, Marie; Voigt, Kerstin; van de Sande, Wendy W J; Dolatabadi, Somayeh; Meis, Jacques F; Walther, Grit

    2012-01-01

    The in vitro susceptibilities of 66 molecularly identified strains of the Mucorales to eight antifungals (amphotericin B, terbinafine, itraconazole, posaconazole, voriconazole, caspofungin, micafungin, and 5-fluorocytosine) were tested. Molecular phylogeny was reconstructed based on the nuclear ribosomal large subunit to reveal taxon-specific susceptibility profiles. The impressive phylogenetic diversity of the Mucorales was reflected in susceptibilities differing at family, genus, and species levels. Amphotericin B was the most active drug, though somewhat less against Rhizopus and Cunninghamella species. Posaconazole was the second most effective antifungal agent but showed reduced activity in Mucor and Cunninghamella strains, while voriconazole lacked in vitro activity for most strains. Genera attributed to the Mucoraceae exhibited a wide range of MICs for posaconazole, itraconazole, and terbinafine and included resistant strains. Cunninghamella also comprised strains resistant to all azoles tested but was fully susceptible to terbinafine. In contrast, the Lichtheimiaceae completely lacked strains with reduced susceptibility for these antifungals. Syncephalastrum species exhibited susceptibility profiles similar to those of the Lichtheimiaceae. Mucor species were more resistant to azoles than Rhizopus species. Species-specific responses were obtained for terbinafine where only Rhizopus arrhizus and Mucor circinelloides were resistant. Complete or vast resistance was observed for 5-fluorocytosine, caspofungin, and micafungin. Intraspecific variability of in vitro susceptibility was found in all genera tested but was especially high in Mucor and Rhizopus for azoles and terbinafine. Accurate molecular identification of etiologic agents is compulsory to predict therapy outcome. For species of critical genera such as Mucor and Rhizopus, exhibiting high intraspecific variation, susceptibility testing before the onset of therapy is recommended.

  4. The antibiotic polymyxin B exhibits novel antifungal activity against Fusarium species.

    Science.gov (United States)

    Hsu, Li-Hang; Wang, Hsuan-Fu; Sun, Pei-Lun; Hu, Fung-Rong; Chen, Ying-Lien

    2017-06-01

    The genus Fusarium comprises many species, including Fusarium oxysporum, Fusarium solani, Fusarium graminearum and Fusarium verticillioides, and causes severe infections in plants and humans. In clinical settings, Fusarium is the third most frequent mould to cause invasive fungal infections after Aspergillus and the Mucorales. F. solani and F. oxysporum are the most prevalent Fusarium spp. causing clinical disease. However, few effective antifungal drugs are available to treat human and plant Fusarium infections. The cationic peptide antibiotic polymyxin B (PMB) exhibits antifungal activity against the human fungal pathogens Candida albicans and Cryptococcus neoformans, but its efficacy against Fusarium spp. is unknown. In this study, the antifungal activity of PMB was tested against 12 Fusarium strains that infect humans and plants (banana, tomato, melon, pea, wheat and maize). PMB was fungicidal against all 12 Fusarium strains, with minimum fungicidal concentrations of 32 µg/mL or 64 µg/mL for most strains tested, as evidenced by broth dilution, methylene blue staining and XTT reduction assays. PMB can reduce the germination rates of conidia, but not chlamydospores, and can cause defects in cell membrane integrity in Fusarium strains. PMB exhibits synergistic activity with posaconazole and can potentiate the effect of fluconazole, voriconazole or amphotericin B against Fusarium spp. However, PMB does not show synergistic effects with fluconazole against Fusarium spp. as it does against Candida glabrata and C. neoformans, indicating evolutionary divergence of mechanisms between yeast pathogens and the filamentous fungus Fusarium. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  5. In vitro antifungal susceptibility of clinical species belonging to Aspergillus genus and Rhizopus oryzae.

    Science.gov (United States)

    Kachuei, R; Khodavaisy, S; Rezaie, S; Sharifynia, S

    2016-03-01

    Among filamentous fungal pathogens, Aspergillus spp. and zygomycetes account for highest rates of morbidity and mortality among immunocompromised patients. Recently developed antifungal drugs offer the potential to improve management and therapeutic outcomes of fungal infections. The aim of this study was to analyse the in vitro activities of voriconazole, itraconazole, amphotericin B and caspofungin against clinical isolates of Aspergillus spp. and Rhizopus oryzae. The in vitro antifungal susceptibility of 54 isolates belonging to different clinical isolates of Aspergillus spp. and R. oryzae was tested for four antifungal agents using a microdilution reference method (CLSI, M38-A2). All isolates were identified by typical colony and microscopic characteristics, and also characterized by molecular methods. Caspofungin (MEC range: 0.008-0.25 and MEC50: 0.0023μg/mL) was the most active drug in vitro against Aspergillus spp., followed by voriconazole (MIC range: 0.031-8 and MIC50: 0.5μg/mL), itraconazole (MIC range: 0.031-16 and MIC50: 0.25μg/mL), and amphotericin B (MIC range: 0.125-4 and MIC50: 0.5μg/mL), in order of decreasing activity. The caspofungin, voriconazole, and itraconazole demonstrated poor in vitro activity against R. oryzae isolates evaluated, followed by amphotericin B. This study demonstrates that caspofungin had good antifungal activity and azole agents had better activity than amphotericin B against Aspergillus species. Although, azole drugs are considered ineffective against R. oryzae. This result is just from a small scale in vitro susceptibility study and we did not take other factors into consideration. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav.

    Science.gov (United States)

    Zuzarte, Monica; Gonçalves, Maria J; Cavaleiro, Carlos; Dinis, Augusto M; Canhoto, Jorge M; Salgueiro, Lígia R

    2009-08-01

    The chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav., harvested in North and Central Portugal, were investigated. The essential oils were isolated by hydrodistillation and analyzed by GC and GC/MS. The minimal-inhibitory concentration (MIC) and the minimal-lethal concentration (MLC) of the essential oils and of their major constituents were used to evaluate the antifungal activity against different strains of fungi involved in candidosis, dematophytosis, and aspergillosis. The oils were characterized by a high percentage of oxygenated monoterpenes, the main compounds being 1,8-cineole (2.4-55.5%), fenchone (1.3-59.7%), and camphor (3.6-48.0%). Statistical analysis differentiated the essential oils into two main types, one characterized by the predominance of fenchone and the other one by the predominance of 1,8-cineole. Within the 1,8-cineole chemotype, two subgroups were well-defined taking into account the percentages of camphor. A significant antifungal activity of the oils was found against dermatophyte strains. The essential oil with the highest content of camphor was the most active with MIC and MLC values ranging from 0.32-0.64 microl/ml.

  7. A case of Candida famata sepsis in a very low birth weight infant successfully treated with fluconazole following antifungal susceptibility testing

    Directory of Open Access Journals (Sweden)

    Shilpee Raturi

    2015-01-01

    This case report highlights the growing number of cases arising due to nonalbicans Candida infections in the neonatal intensive care units and the usefulness of antifungal susceptibility testing in deciding optimal antifungal therapy and preventing the emergence of drug resistance.

  8. Isatinones A and B, New Antifungal Oxindole Alkaloids from Isatis costata

    Directory of Open Access Journals (Sweden)

    Nighat Afza

    2007-02-01

    Full Text Available Two new oxindole alkaloids isatinone A (1 and B (2 have been isolated from Isatis costata, along with the known trisindoline. Their structures have been assigned on the basis of spectroscopic techniques and chemical studies. Both new compounds showed significant antifungal activity.

  9. Assessment of antifungal effects of copper nanoparticles on the growth of the fungus Saprolegnia sp. on white fish (Rutilus frisii kutum eggs

    Directory of Open Access Journals (Sweden)

    Pegah Kalatehjari

    2015-12-01

    Full Text Available This study was conducted to evaluate the in-vitro effects of copper nanoparticles on the growth of the fungus Saprolegnia sp. isolated from white fish (Rutilus frisii kutum eggs. The antifungal effects were measured by determining the minimum lethal concentration of copper nanoparticles on Saprolegnia sp. in yeast extract glucose chloramphenicol (YGC agar at 25 °C. Saprolegnia grown in YGC agar without added copper nanoparticles served as negative controls. Our study showed that copper nanoparticles at a minimum concentration of 10 ppm have antifungal effects on Saprolegnia sp. The antifungal effects of copper nanoparticles are positively correlated to both concentration and time of exposure. This study showed that the antifungal properties of copper nanoparticles make it a good alternative to malachite green, which is carcinogenic.

  10. Isolation and characterization of antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties.

    Science.gov (United States)

    Valan Arasu, M; Jung, M-W; Ilavenil, S; Jane, M; Kim, D-H; Lee, K-D; Park, H-S; Hur, T-Y; Choi, G-J; Lim, Y-C; Al-Dhabi, N A; Choi, K-C

    2013-11-01

    The purpose of this study was to isolate, identify and characterize an antifungal compound from Lactobacillus plantarum KCC-10 from forage silage with potential beneficial properties. The 16S rRNA gene-based phylogenetic affiliation was determined using bioinformatic tools and identified as Lactobacillus sp. KCC-10 with 100% sequence similarity to L. plantarum. The antifungal substances were extracted with ethyl acetate from spent medium in which Lactobacillus sp. KCC-10 was cultivated. Antifungal activity was assessed using the broth microdilution technique. The compounds were obtained by eluting the crude extract with various concentrations of solvents followed by chromatographic purification. Based on the infrared, (13) C nuclear magnetic resonance (NMR) and (1) H NMR spectral data, the compound was identified as a phenolic-related antibiotic. The minimum inhibitory concentration of the compound against Aspergillus clavatus, A. oryzae, Botrytis elliptica and Scytalidium vaccinii was 2.5 mg ml(-1) and that against A. fumigatus, A. niger and S. fusca was 5.0 mg ml(-1) , respectively. In addition, Lactobacillus sp. KCC-10 was highly sensitive towards oxgall (0.3%) but grew well in the presence of sodium taurocholate (0.3%). An antimicrobial susceptibility pattern was an intrinsic feature of this strain; thus, consumption does not represent a health risk to humans or animals. Novel L. plantarum KCC-10 with antifungal and potential probiotic properties was characterized for use in animal food. This study revealed that L. plantarum KCC-10 exhibited good antifungal activity similar to that of probiotic Lactobacillus strains. © 2013 The Society for Applied Microbiology.

  11. Antifungal activity of Erigeron floribundus (Asteraceae) from Côte d ...

    African Journals Online (AJOL)

    Purpose: Erigeron floribundus is a reputed medicinal plant used in Côte d'Ivoire, West Africa for the treatment of skin disorders. The aim of this study was to evaluate the antifungal activity of this plant against fungi from human origin. Method: Dichloromethane, methanol 80% and aqueous extracts from the leaves with stem ...

  12. In vitro antifungal activity of Dorstenia mannii leaf extracts (Moraceae)

    African Journals Online (AJOL)

    Owner

    The disc diffusion method (Chattopadhyay et al., 2001) was employed for the determination of antifungal activities of the crude extract and fractions prepared from D. mannii leaves. Briefly, 0.1 ml of suspension of yeast containing 1.5 × 106 spores/ml was spread on Sabouraud dextrose agar medium in 90 mm Petri dishes.

  13. Lavandula luisieri essential oil as a source of antifungal drugs.

    Science.gov (United States)

    Zuzarte, M; Gonçalves, M J; Cruz, M T; Cavaleiro, C; Canhoto, J; Vaz, S; Pinto, E; Salgueiro, L

    2012-12-01

    This work reports the antifungal activity of Lavandula luisieri essential oils against yeast, dermatophyte and Aspergillus strains responsible for human infections and food contamination. The oil's cytotoxicity and its effect on the yeast-mycelium transition in Candida albicans, an important virulence factor, were also evaluated. Analyses by GC and GC/MS showed a peculiar composition of irregular monoterpenes. Significant differences between the samples occurred in the amounts of 1,8-cineole, fenchone and trans-α-necrodyl acetate. The oil with higher amounts of irregular monoterpenes was the most effective. The influence of the oils on the dimorphic transition in C. albicans was also studied through the germ tube inhibition assay. Filamentation was completely inhibited at concentrations sixteen times lower than the minimal inhibitory concentration. The results support the use of L. luiseiri essential oils in the development of new phytopharmaceuticals and food preservatives and emphasise its antifungal properties at concentrations not cytotoxic or with very low detrimental effects on mammalian cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Omics for Investigating Chitosan as an Antifungal and Gene Modulator

    Directory of Open Access Journals (Sweden)

    Federico Lopez-Moya

    2016-03-01

    Full Text Available Chitosan is a biopolymer with a wide range of applications. The use of chitosan in clinical medicine to control infections by fungal pathogens such as Candida spp. is one of its most promising applications in view of the reduced number of antifungals available. Chitosan increases intracellular oxidative stress, then permeabilizes the plasma membrane of sensitive filamentous fungus Neurospora crassa and yeast. Transcriptomics reveals plasma membrane homeostasis and oxidative metabolism genes as key players in the response of fungi to chitosan. A lipase and a monosaccharide transporter, both inner plasma membrane proteins, and a glutathione transferase are main chitosan targets in N. crassa. Biocontrol fungi such as Pochonia chlamydosporia have a low content of polyunsaturated free fatty acids in their plasma membranes and are resistant to chitosan. Genome sequencing of P. chlamydosporia reveals a wide gene machinery to degrade and assimilate chitosan. Chitosan increases P. chlamydosporia sporulation and enhances parasitism of plant parasitic nematodes by the fungus. Omics studies allow understanding the mode of action of chitosan and help its development as an antifungal and gene modulator.

  15. Antifungal activity of lemon, eucalyptus, thyme, oregano, sage and lavender essential oils against Aspergillus niger and Aspergillus tubingensis isolated from grapes

    Directory of Open Access Journals (Sweden)

    Miroslava Císarová

    2016-01-01

    Full Text Available Today, it is very important to find out the protection of products of natural origin as an alternative to synthetic fungicides. The promising alternative is the use of the essential oils (EOs. Essential oils from plants have great potential as a new source of fungicide to control the pathogenic fungi.The main objective of this study was evaluation of the antifungal activity of lemon (Citrus lemon L., eucalyptus (Eucalyptus globulus LABILL., thyme (Thymus vulgaris L., oregano (Origanum vulgare L. sage (Salvia officinalis L. and lavender (Lavandula angustifolia MILLER. EOs against Aspergillus niger and Aspergillus tubingensis isolated from grapes and their ability to affect the growth. It was tested by using the vapor contact with them. At first both tested isolates were identified by using PCR method. Sequence data of 18S rRNA supported the assignment of these isolates to the genus Aspergillus and species A. niger (ITS region: KT824061; RPB2: KT824060 and A. tubingensis (ITS region: KT824062; RPB2: KT824059. Second, EO antifungal activity was evaluated. The effect of the EO volatile phase was confirmed to inhibit growth of A. niger and A tubingensis. EOs were diluted in DMSO (dimethyl sulfoxide final volume of 100 μL. Only 50 μL this solution was distributed on a round sterile filter paper (1 x 1 cm by micropipette, and the paper was placed in the center of the lid of Petri dishes. Dishes were kept in an inverted position. The essential oils with the most significant activity were determined by method of graded concentration of oils - minimum inhibitory doses (MIDs. The most effective tested EOs were oregano and thyme oils, which totally inhibited growth of tested isolates for all days of incubation at 0.625 μL.cm-3 (in air with MFDs 0.125 μL.cm-3 (in air. Lavender EO was less active aginst tested strains (MIDs 0.313 μL.cm-3. The results showed that the tested EOs had antifungal activity, except lemon and eucalyptus. Sage EO was the only

  16. Detection and antifungal susceptibility testing of oral Candida dubliniensis from human immunodeficiency virus-infected patients

    Directory of Open Access Journals (Sweden)

    Chunchanur Sneha

    2009-10-01

    Full Text Available Context: Candida dubliniensis, an opportunistic yeast that has been implicated in oropharyngeal candidiasis (OPC in patients infected with Human Immunodeficiency Virus (HIV may be under-reported due to its similarity with Candida albicans. Resistance to Fluconazole is often seen in C. dubliniensis isolates from clinical specimens. Aims: To know the prevalence of C. dubliniensis in OPC in patients infected with HIV and their antifungal susceptibility pattern. Settings and Design: One hundred and thirty-two HIV seropositive individuals and 50 healthy controls were included in the study. Materials and Methods: Two oral swabs were collected from the site of the lesion from 132 HIV-infected patients. Oral rinse was obtained from 50 healthy controls. Samples were inoculated on Sabouraud′s dextrose agar (SDA medium and on HiCrome Candida Differential Agar (CHROM agar medium. Isolates were speciated by standard tests. Dark green-colored, germ tube positive isolates, which failed to grow at 420C and negative for xylose assimilation were identified as C. dubliniensis. Antifungal susceptibility test was performed by Macro broth dilution technique (National Committee for Clinical Laboratory Standards guidelines. Results and Conclusions: From 132 patients, 22 (16.3% C. dubliniensis were isolated; samples from healthy controls did not reveal their presence. Antifungal susceptibility test showed higher resistance among C. dubliniensis isolates to azoles compared to C. albicans. Five (22.7% isolates of C. dubliniensis were resistant to Fluconazole followed by four (18.2% to Ketoconazole. This study emphasizes the importance of identification and antifungal susceptibility testing of C. dubliniensis in HIV-infected patients.

  17. The antifungal efficiency of carbide lime slurry compared with the commercial lime efficiency

    Science.gov (United States)

    Strigac, J.; Mikusinec, J.; Strigacova, J.; Stevulova, N.

    2017-10-01

    The article deals with studying the antifungal efficiency of carbide lime slurry compared to industrially manufactured commercial lime. Antifungal efficiency expressed as mould proofness properties was tested on the fungi using the procedure given in standard CSN 72 4310. A mixture of fungi Aspergillus niger, Chaetomium globosum, Penicillium funiculosum, Paecilomyces variotii and Gliocladium virens was utilized for testing. The scale for evaluating mould proofness properties according to CSN 72 4310 is from 0 to 5 in degree of fungi growth, where 0 means that no fungi growth occurs and the building products and materials possess fungistatic properties. The study confirms the fungistatic propeties of carbide lime slurry as well as industrially manufactured commercial lime. However, carbide lime slurry and industrially manufactured commercial lime possess no fungicidal effect.

  18. Antifungal Amide Alkaloids from the Aerial Parts of Piper flaviflorum and Piper sarmentosum.

    Science.gov (United States)

    Shi, Yan-Ni; Liu, Fang-Fang; Jacob, Melissa R; Li, Xing-Cong; Zhu, Hong-Tao; Wang, Dong; Cheng, Rong-Rong; Yang, Chong-Ren; Xu, Min; Zhang, Ying-Jun

    2017-01-01

    Sixty-three amide alkaloids, including three new, piperflaviflorine A ( 1 ), piperflaviflorine B ( 2 ), and sarmentamide D ( 4 ), and two previously synthesized ones, (1 E ,3 S )-1-cinnamoyl-3- hydroxypyrrolidine ( 3 ) and N -[7'-(4'-methoxyphenyl)ethyl]-2-methoxybenzamide ( 5 ), were isolated from the aerial parts of Piper flaviflorum and Piper sarmentosum. Their structures were elucidated by detailed spectroscopic analysis and, in case of 3 , by single-crystal X-ray diffraction. Most of the isolates were tested for their antifungal and antibacterial activities. Ten amides ( 6 - 15 ) showed antifungal activity against Cryptococcus neoformans ATCC 90 113 with IC 50 values in the range between 4.7 and 20.0 µg/mL. Georg Thieme Verlag KG Stuttgart · New York.

  19. Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform

    Directory of Open Access Journals (Sweden)

    George eTegos

    2012-04-01

    Full Text Available Opportunistic fungal pathogens may cause superficial or serious invasive infections, especially in immunocompromised and debilitated patients. Invasive mycoses represent an exponentially growing threat for human health due to a combination of slow diagnosis and the existence of relatively few classes of available and effective antifungal drugs. Therefore systemic fungal infections result in high attributable mortality. There is an urgent need to pursue and deploy novel and effective alternative anti-fungal countermeasures. Photodynamic therapy was established as a successful modality for malignancies and age-related macular degeneration but photodynamic inactivation has only recently been intensively investigated as an alternative antimicrobial discovery and development platform. The concept of photodynamic inactivation requires microbial exposure to either exogenous or endogenous photosensitizer molecules, followed by visible light energy, typically wavelengths in the red/near infrared region that cause the excitation of the photosensitizers resulting in the production of singlet oxygen and other reactive oxygen species that react with intracellular components, and consequently produce cell inactivation and death. Anti-fungal photodynamic therapy is an area of increasing interest, as research is advancing i to identify the photochemical and photophysical mechanisms involved in photoinactivation; ii to develop potent and clinically compatible photosensitizers; iii to understand how photoinactivation is affected by key microbial phenotypic elements multidrug resistance and efflux, virulence and pathogenesis determinants, and formation of biofilms; iv to explore novel photosensitizer delivery platforms and v to identify photoinactivation applications beyond the clinical setting such as environmental disinfectants.

  20. Biodiversity, Phylogeny, and Antifungal Functions of Endophytic Fungi Associated with Zanthoxylum bungeanum

    Directory of Open Access Journals (Sweden)

    Peiqin Li

    2016-09-01

    Full Text Available This study investigated the biodiversity, phylogeny, and antifungal activity of endophytic fungi isolated from Zanthoxylum bungeanum. A total of 940 isolates obtained were grouped into 93 morphotypes, 43 species, and 23 genera, which were authenticated by molecular identification based on rDNA internal transcribed spacer (ITS sequence analysis. A high diversity of endophytic fungi from Z. bungeanum are observed with high species richness S (43, Margalef index D′ (6.1351, Shannon–Wiener index H′ (3.2743, Simpson diversity index Ds (0.9476, PIE index (0.9486, and evenness Pielou index J (0.8705 but a low dominant index λ (0.0524. Significant tissue specificity of the endophytic fungi was observed in Z. bungeanum, and the highest species richness and diversity indexes were obtained in the stem. Phylogenetic analyses of the 93 endophytic isolates were carried out by the neighbor-joining (NJ method to demonstrate their evolutionary processes. Antifungal activities of endophytic fungi were assayed and eight endophytic isolates showed strong and long-lasting inhibition against host pathogenic fungi Fusarium sambucinum and Pseudocercospora zanthoxyli. Here, for the first time, we systematically demonstrate the biodiversity, phylogeny, and antifungal activity of endophytic fungi associated with Z. bungeanum and reveal the value of sampling different tissues of a given plant to obtain the greatest endophyte species diversity, which might offer a framework for further investigation and utilization of endophytic fungi as aunique source of interesting and useful bioactive compounds.

  1. Optimization of Bacillus aerius strain JS-786 cell dry mass and its antifungal activity against Botrytis cinerea using response surface methodology

    Directory of Open Access Journals (Sweden)

    Shafi Jamil

    2017-01-01

    Full Text Available The optimization of fermentation conditions is necessary for field application of biological control agents. The present study was designed to optimize the fermentation conditions for the Bacillus aerius strain, JS-786 in terms of cell dry mass and its antifungal activity against Botrytis cinerea with response surface methodology. A strain of bacteria with strong antifungal activity was isolated from the phyllosphere of tomato plant and identified as B. aerius JS-786 based on the sequence homology of its 16S rRNA gene. After the success of preliminary antifungal activity tests, response surface methodology was used to optimize the fermentation conditions (medium pH, gelatin percentage, incubation period, rotatory speed and incubation temperature to maximize the cell dry mass and antifungal activity against B. cinerea. A 25 factorial central composite design was employed and multiple response optimization was used to determine the desirability of the operation. The results of regression analysis showed that at the individual level, all of the experimental parameters were significant for cell dry mass; significant results were obtained for antifungal activity pH, incubation period, rotatory speed and incubation temperature. The interactive effect of the incubation period, rotatory speed and incubation temperature was significant. Maximum cell dry mass (8.7 g/L and inhibition zone (30.4 mm were obtained at pH 6.4, gelatin 3.2%, incubation period 36.92 h, rotatory speed 163 rpm, and temperature 33.5°C. This study should help to formulate a more rational and cost-effective biological product both in terms of bacterial growth and antifungal activity.

  2. In Silico Approach for Prediction of Antifungal Peptides

    Directory of Open Access Journals (Sweden)

    Piyush Agrawal

    2018-02-01

    Full Text Available This paper describes in silico models developed using a wide range of peptide features for predicting antifungal peptides (AFPs. Our analyses indicate that certain types of residue (e.g., C, G, H, K, R, Y are more abundant in AFPs. The positional residue preference analysis reveals the prominence of the particular type of residues (e.g., R, V, K at N-terminus and a certain type of residues (e.g., C, H at C-terminus. In this study, models have been developed for predicting AFPs using a wide range of peptide features (like residue composition, binary profile, terminal residues. The support vector machine based model developed using compositional features of peptides achieved maximum accuracy of 88.78% on the training dataset and 83.33% on independent or validation dataset. Our model developed using binary patterns of terminal residues of peptides achieved maximum accuracy of 84.88% on training and 84.64% on validation dataset. We benchmark models developed in this study and existing methods on a dataset containing compositionally similar antifungal and non-AFPs. It was observed that binary based model developed in this study preforms better than any model/method. In order to facilitate scientific community, we developed a mobile app, standalone and a user-friendly web server ‘Antifp’ (http://webs.iiitd.edu.in/raghava/antifp.

  3. In vitro interactions of amantadine hydrochloride, R-(-)-deprenyl hydrochloride and valproic acid sodium salt with antifungal agents against filamentous fungal species causing central nervous system infection.

    Science.gov (United States)

    Galgóczy, L; Tóth, Liliána; Virágh, M; Papp, T; Vágvölgyi, C S

    2012-12-01

    The mortality rates of fungal infections that affect the central nervous system are high in consequence of the absence of effective antifungal drugs with good penetration across the blood-brain barrier and the blood-cerebrospinal fluid barrier. In the present work in vitro antifungal activities of three good penetrating non-antifungal drugs (amantadine hydrochloride, R-(-)-deprenyl hydrochloride, valproic acid sodium salt) and their combinations with three antifungal agents (amphotericin B, itraconazole, terbinafine) were tested with broth microdilution method against eight fungal isolates belonging to Zygomycetes (Lichtheimia corymbifera, Rhizomucor miehei, Rhizopus microsporus var. rhizopodiformis, Saksenaeavasiformis) and Aspergillus genus (A. flavus, A. fumigatus, A. nidulans, A. terreus). These are known to be possible agents of central nervous fungal infections (CNFI). When used alone, the investigated nonantifungal drugs exerted slight antifungal effects. In their combinations with antifungal agents they acted antagonistically, additively and synergistically against zygomyceteous isolates. Primarily antagonistic interactions were revealed between the investigated drugs in case of Aspergilli, but additive and synergistic interactions were also observed. The additive and synergistic combinations allowed the usage of reduced concentrations of antifungal agents to inhibit the fungal growth in our study. These combinations would be a basis of an effective, less toxic therapy for treatment of CNFI.

  4. Antileishmanial and antifungal activity of plants used in traditional medicine in Brazil.

    Science.gov (United States)

    Braga, Fernanda G; Bouzada, Maria Lúcia M; Fabri, Rodrigo L; de O Matos, Magnum; Moreira, Francis O; Scio, Elita; Coimbra, Elaine S

    2007-05-04

    The antileishmanial and antifungal activity of 24 methanol extracts from 20 plants, all of them used in the Brazilian traditional medicine for the treatment of several infectious and inflammatory disorders, were evaluated against promastigotes forms of two species of Leishmania (L. amazonensis and L. chagasi) and two yeasts (Candida albicans and Cryptococcus neoformans). Among the 20 tested methanolic extracts, those of Vernonia polyanthes was the most active against L. amazonensis (IC(50) of 4 microg/ml), those of Ocimum gratissimum exhibited the best activity against L. chagasi (IC(50) of 71 microg/ml). Concerning antifungical activity, Schinus terebintifolius, O. gratissimum, Cajanus cajan, and Piper aduncum extracts were the most active against C. albicans (MIC of 1.25 mg/ml) whereas Bixa orellana, O. gratissimum and Syzygium cumini exhibited the best activity against C. neoformans (MIC of 0.078 mg/ml).

  5. Preliminary Studies on Antifungal Properties of Radiation Processed Chitosan from Crab Shells

    International Nuclear Information System (INIS)

    Ocloo, Fidelis C.K.; Adu-Gyamfi, Abraham; Quarcoo, Emmanuel A.; Asare, Daniel; Yaw, Serfor-Armah

    2010-01-01

    Chitosan extracted from sea crab shells was used to determine antifungal properties against Aspergillus niger. Chitosan powder irradiated at 100 kGy and dissolved in 1% acetic acid (v/v) with pH adjusted to approximately 6.0 was used in preparing chitosan concentrations of 2%, 1.5%, 1% and 0.5%. The agar dilution method was used to test the antifungal activity of the various chitosan solutions at concentrations of 0.20%, 0.15%, 0.10% and 0.05%. Both media containing irradiated and unirradiated chitosan inhibited the mycelial growth of Aspergillus niger and the degree of inhibition was dependent on the concentration of the chitosan in the fungal growth medium. Results show that the media containing irradiated chitosan inhibited the mycelia growth of Aspergillus niger to a greater extent than the media containing unirradiated chitosan. (author)

  6. In vitro antifungal activities of extracts of fruits and other morphological parts of xanthium strumarium against the plant pathogen, rhizoctonia solani

    Energy Technology Data Exchange (ETDEWEB)

    Osman, N. U. [University of Tabuk (Saudi Arabia); Alsiddeeg, S. E. [University of Gezira, Wad Medani (Sudan). Dept. of Oilseed Processing Research

    2014-03-15

    In vitro antifungal activity of different plant parts of Xanthium strumarium (Compositae) was investigated against Rhizoctonia solani to seek safe natural alternatives to the harmful synthetic fungicides. The most active plant parts of X. strumarium were seeds, extracted with n-hexane and the leaves, extracted with absolute ethanol. The two treatments resulted in growth inhibition diameters of 45 mm and 47 mm, respectively. The value of MIC lied between 350.0 and 175.0 mg of Xanthium oil/mL. Gas liquid chromatography of the seed oil of X. strumarium revealed the presence of the usual fatty acids, palmitoleic (7.6%), oleic (21.6%) and linoleic (70.4%). The oil was separated into free fatty acids fraction and unsaponifiable matter fraction. The unsaponifiable matter fraction was separated on TLC, out of six separated compounds, two were active against R. solani. The infrared spectra (FTIR) of these two purified compounds pointed to a long chain hydrocarbon back-bone for both, one of them possessing in addition, an alcoholic moiety. (author)

  7. In vitro antifungal activities of extracts of fruits and other morphological parts of xanthium strumarium against the plant pathogen, rhizoctonia solani

    International Nuclear Information System (INIS)

    Osman, N.U.; Alsiddeeg, S.E.

    2014-01-01

    In vitro antifungal activity of different plant parts of Xanthium strumarium (Compositae) was investigated against Rhizoctonia solani to seek safe natural alternatives to the harmful synthetic fungicides. The most active plant parts of X. strumarium were seeds, extracted with n-hexane and the leaves, extracted with absolute ethanol. The two treatments resulted in growth inhibition diameters of 45 mm and 47 mm, respectively. The value of MIC lied between 350.0 and 175.0 mg of Xanthium oil/mL. Gas liquid chromatography of the seed oil of X. strumarium revealed the presence of the usual fatty acids, palmitoleic (7.6%), oleic (21.6%) and linoleic (70.4%). The oil was separated into free fatty acids fraction and unsaponifiable matter fraction. The unsaponifiable matter fraction was separated on TLC, out of six separated compounds, two were active against R. solani. The infrared spectra (FTIR) of these two purified compounds pointed to a long chain hydrocarbon back-bone for both, one of them possessing in addition, an alcoholic moiety. (author)

  8. In vitro synergistic combinations of pentamidine, polymyxin B, tigecycline and tobramycin with antifungal agents against Fusarium spp.

    Science.gov (United States)

    Pozzebon Venturini, Tarcieli; Rossato, Luana; Chassot, Francieli; Tairine Keller, Jéssica; Baldissera Piasentin, Fernanda; Morais Santurio, Janio; Hartz Alves, Sydney

    2016-08-01

    The genus Fusarium is characterized by hyaline filamentous fungi that cause infections predominantly in immunocompromised patients. The remarkable primary resistance to antifungal agents of this genus requires a search for new therapeutic possibilities. This study assessed the in vitro susceptibility of 25 clinical isolates of Fusarium against antifungal agents (amphotericin B, caspofungin, itraconazole and voriconazole) and antimicrobials (pentamidine, polymyxin B, tigecycline and tobramycin) according to the broth microdilution method (M38-A2). The interactions between antifungal and antimicrobial agents were evaluated by the microdilution checkerboard method. Pentamidine and polymyxin B showed MIC values ≥4 µg ml-1 against Fusarium spp. The highest rates of synergism were observed when amphotericin B or voriconazole was combined with tobramycin (80 % and 76 %, respectively), polymyxin B (76 % and 64 %) and pentamidine (72 % and 68 %). The most significant combinations deserve in vivo evaluations in order to verify their potential in the treatment of fusariosis.

  9. In vitro antifungal activity against Candida species of Sri Lankan orthodox black tea (Camellia sinensis L. belonging to different agro-climatic elevations

    Directory of Open Access Journals (Sweden)

    Wanigasekara Daya Ratnasooriya

    2017-02-01

    Full Text Available Objective: To investigate the antifungal potential of different grades of Sri Lankan orthodox black tea [orange pekoe, broken orange pekoe fannings (BOPF and Dust No. 1] belonging to the three agro-climatic elevations (low, mid and high. Methods: Antifungal activity was assessed in vitro using methanolic extracts (300 µg/disc and agar disc diffusion bioassay technique against three Candida species, Candida albicans (C. albicans, Candida glabrata (C. glabrata, and Candida tropicalis. ketoconazole and itraconazole mixture was used as positive control (10 µg/disc and methanol was used as the negative control. The minimum inhibitory concentrations were also determined using standard protocols. Results: None of the extracts were effective against Candida tropicalis. Furthermore, orange pekoe grade tea belonging to all agro-climatic elevations did not induce any antifungal activity against C. albicans and C. glabrata as well. Conversely, Dust No. 1 belonging to all three agro-climatic elevations and low-grown BOPF showed moderate antifungal activity against C. albicans and C. glabrata. Interestingly, the severity of the antifungal effect varied with agroclimatic elevations. The minimum inhibitory concentrations ranged from 64.00–128.00 µg/mL against C. glabrata and 128.00-256.00 µg/mL against C. albicans. Conclusions: Sri Lankan Dust No. 1 and BOPF have marked antifungal activity in vitro and offer promise to be used as a supplementary beverage in prophylaxis and during drug treatment in candidiasis.

  10. Investigating the antifungal activity of TiO{sub 2} nanoparticles deposited on branched carbon nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Darbari, S; Abdi, Y; Haghighi, N [Nano-Physics Research Laboratory, Department of Physics, University of Tehran, Tehran (Iran, Islamic Republic of); Haghighi, F [Department of Medical Mycology, School of Medical Sciences, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mohajerzadeh, S, E-mail: y.abdi@ut.ac.ir [Thin Film Laboratory, ECE Department, University of Tehran, Tehran (Iran, Islamic Republic of)

    2011-06-22

    Branched carbon nanotube (CNT) arrays were synthesized by plasma-enhanced chemical vapour deposition on a silicon substrate. Ni was used as the catalyst and played an important role in the realization of branches in vertically aligned nanotubes. TiO{sub 2} nanoparticles on the branched CNTs were produced by atmospheric pressure chemical vapour deposition followed by a 500 {sup 0}C annealing step. Transmission and scanning electron microscopic techniques were used to study the morphology of the TiO{sub 2}/branched CNT structures while x-ray diffraction and Raman spectroscopy were used to verify the characteristics of the prepared nanostructures. Their antifungal effect on Candida albicans biofilms under visible light was investigated and compared with the activity of TiO{sub 2}/CNT arrays and thin films of TiO{sub 2}. The TiO{sub 2}/branched CNTs showed a highly improved photocatalytic antifungal activity in comparison with the TiO{sub 2}/CNTs and TiO{sub 2} film. The excellent visible light-induced photocatalytic antifungal activity of the TiO{sub 2}/branched CNTs was attributed to the generation of electron-hole pairs by visible light excitation with a low recombination rate, in addition to the high surface area provided for the interaction between the cells and the nanostructures. Scanning electron microscopy was used to observe the resulting morphological changes in the cell body of the biofilms existing on the antifungal samples.

  11. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    OpenAIRE

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with...

  12. Synthesis and Antifungal Activities of 5-(o-Hydroxy phenyl-2-[4'aryl-3'chloro-2'azetidinon-1-yl]-1,3,4-thiadiazole

    Directory of Open Access Journals (Sweden)

    Shiv K. Gupta

    2011-01-01

    Full Text Available New series of 5-(o-hydroxy phenyl-2-[4'aryl-3'chloro-2'azetidinon-1-yl]-1,3,4-thiadiazole have been synthesized and the structures of the new compounds were established on the basis of IR, 1H NMR spectral data. In vitro antifungal activity (MIC activity was evaluated and compared with standard drugs of ketoconazole. Compounds 3c in the series has shown interesting antifungal activity against both C. albicans and A. niger fungus. In the gratifying result, most of the compounds were found to have moderate antifungal activity.

  13. Inactivation of Candida biofilms by non-thermal plasma and its enhancement for fungistatic effect of antifungal drugs.

    Directory of Open Access Journals (Sweden)

    Yi Sun

    Full Text Available We investigated the antifungal effect of non-thermal plasma, as well as its combination with common antifungal drugs, against Candida biofilms. A direct current atmospheric pressure He/O(2 (2% plasma microjet (PMJ was used to treat Candida biofilms in a 96-well plate. Inactivation efficacies of the biofilms were evaluated by XTT assay and counting colony forming units (CFUs. Morphological properties of the biofilms were evaluated by Scanning Electron Microscope (SEM. The sessile minimal inhibitory concentrations (SMICs of fluconazole, amphotericin B, and caspofungin for the biofilms were also tested. Electron Spin Resonance (ESR spectroscopy was used to detect the reactive oxygen species (ROS generated directly and indirectly by PMJ. The Candida biofilms were completely inactivated after 1 min PMJ treatment, where severely deformed fungal elements were observed in SEM images. The SMICs of the tested antifungal drugs for the plasma-treated biofilms were decreased by 2-6 folds of dilution, compared to those of the untreated controls. ROS such as hydroxyl radical ((•OH, superoxide anion radical ((•O(2 (- and singlet molecular oxygen ((1O(2 were detected by ESR. We hence conclude that He/O(2 (2% plasma alone, as well as in combination with common antifungal drugs, is able to inactivate Candida biofilms rapidly. The generation of ROS is believed to be one of the underlying mechanisms for the fungicidal activity of plasma.

  14. Antifungal activity of some marine organisms from India, against food spoilage Aspergillus strains

    Digital Repository Service at National Institute of Oceanography (India)

    Bhosale, S.H.; Jagtap, T.G.; Naik, C.G.

    Crude aqueous methanol extracts obtained from 31 species of various marine organisms (including floral and faunal), were screened for their antifungal activity against food poisoning strains of Aspergillus. Seventeen species exhibited mild (+ = zone...

  15. Natural products as sources of new fungicides (I: synthesis and antifungal activity of Kakuol derivatives against phytopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2014-12-01

    Full Text Available In order to establish an advanced structural-activity relationship (SAR and to explore the feasibility of kakuol analogues with better anti-fungi activity, a series of 2-hydroxy-4,5-methylenedioxyaryl ketones were conveniently synthesized by the Friedel-Crafts acyl reaction, etherification reaction, reduction reaction and oximation reaction. Their structures characterized by 1H and 13C NMR and HRMS methods. Their in vitro antifungal activities were assayed. Most of the derivatives showed a remarkable in vitro activity, and some of them appeared significantly more effective than a commercial fungicide hymexazol as positive control. In particular compounds 2h and 2i, were found active with a IC50 value of 3.1 mg/ml and 2.9 mg/ml against Glomerella cingulate, which suggested that 2-hydroxy-4,5-methylenedioxyaryl ketones might be a promising candidates in the development of new antifungal compounds. Compounds 2e, 5 and 6 also exhibited high antifungal activities on a wide range of organisms, which might be considered as leading compounds in the development of new antifungal compounds.DOI: http://doi.dx.org/10.5564/mjc.v15i0.331 Mongolian Journal of Chemistry 15 (41, 2014, p94-100

  16. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils

    Directory of Open Access Journals (Sweden)

    Anand Kumar Tripathi

    2015-03-01

    Full Text Available Engine oils undergo oxidative degradation and wears out during service. Hence it is important to characterize ageing of engine oils at different simulated conditions to evaluate the performance of existing oils and also design new formulations. This work focuses on characterizing the thermo-oxidative degradation of synthetic and semi-synthetic engine oils aged at 120, 149 and 200 °C. Apparent activation energy of decomposition of aged oils evaluated using the isoconversional Kissinger-Akahira-Sunose technique was used as a thermal stability marker. The temporal variation of stability at different ageing temperatures was corroborated with kinematic viscosity, oxidation, sulfation and nitration indices, total base number, antiwear additive content and molecular structure of the organic species present in the oils. At the lowest temperature employed, synthetic oil underwent higher rate of oxidation, while semi-synthetic oil was stable for longer time periods. At higher temperatures, the initial rate of change of average apparent activation energy of synthetic oil correlated well with a similar variation in oxidation number. A mixture of long chain linear, branched, and cyclic hydrocarbons were observed when semi-synthetic oil was degraded at higher temperatures.

  17. Characterization of volatile constituents from Origanum onites and their antifungal and antibacterial activity.

    Science.gov (United States)

    Altintas, Ayhan; Tabanca, Nurhayat; Tyihák, Erno; Ott, Peter G; Móricz, Agnes M; Mincsovics, Emil; Wedge, David E

    2013-01-01

    Essential oils obtained by hydrodistillation (HD) and microwave-assisted HD (MWHD) of Origanum onites aerial parts were analyzed by GC and GCIMS. Thirty-one constituents representing 98.6% of the water-distilled oil and 52 constituents representing 99.6% of the microwave-distilled oil were identified. Carvacrol (76.8% HD and 79.2% MWHD) and thymol (4.7% HD and 4.4% MWHD) were characterized as major constituents in both essential oils. Separation of carvacrol and thymol was achieved by overpressured layer chromatography. HPTLC and TLC separations were also compared. Essential oils were evaluated for antifungal activity against the strawberry anthracnose-causing fungal plant pathogens Colletotrichum acutatum, C. fragariae, and C. gloeosporioides using a direct overlay bioautography assay. Furthermore, main oil components carvacrol and thymol were then evaluated for antifungal activity; only carvacrol demonstrated nonselective antifungal activity against the three Colletotrichum species. Thymol and carvacrol were subsequently evaluated in a 96-well microdilution broth assay against Phomopsis obscurans, Fusarium oxysporum, three Colletotrichum species, and Botrytis cinerea. No activity was observed against any of the three Colletotrichum species at or below 30 pM. However, thymol demonstrated antifungal activity and produced 31.7% growth inhibition of P. obscurans at 120 h and 0.3 pM, whereas carvacrol appeared inactive. Thymol and carvacrol at 30 pM showed 51.5 and 36.9% growth inhibition of B. cinerea at 72 h. The mechanism of antibacterial activity was studied in a bioautography-based BioArena system. Thymol and carvacrol showed similar inhibition/killing effect against Bacillus subtilis soil bacteria; the action could be enhanced by the formaldehyde generator and transporter copper (II) ions and could be decreased in the presence of L-arginine, a formaldehyde capturer. Results indicated that Origanum essential oils and its major components thymol and carvacrol

  18. Antibacterial and antifungal activities of some Mexican medicinal plants.

    Science.gov (United States)

    Ruiz-Bustos, E; Velazquez, C; Garibay-Escobar, A; García, Z; Plascencia-Jatomea, M; Cortez-Rocha, M O; Hernandez-Martínez, J; Robles-Zepeda, R E

    2009-12-01

    In Mexico about 4,000 plant species have some medicinal use. The aim of this work was to evaluate the antimicrobial activity of six Mexican medicinal plants against fungi and Gram-positive and Gram-negative bacteria. Methanolic extracts were prepared from the Mexican medicinal plants Amphypteringium adstrigens, Castella tortuosa, Coutarea latiflora, Ibervillea sonorae, Jatropha cuneata, and Selaginella lepidophylla. The antibacterial and antifungal activities of the plants were determined by the broth microdilution method and the radial growth inhibition assay, respectively. All Mexican plants tested showed antimicrobial activity. Among the six plant extracts analyzed, J. cuneata showed the highest growth-inhibitory activity against fungi, Gram-positive and Gram-negative bacteria (J. cuneata > A. adstrigens > C. latiflora > C. tortuosa > I. sonorae approximately S. lepidophylla). Shigella flexneri and Staphylococcus aureus were the most susceptible bacteria to plant extracts. Complete inhibition of S. flexneri growth was observed with J. cuneata methanolic extract at 90 microg/mL. This plant extract also showed the strongest antifungal activity against Fusarium verticillioides and Aspergillus niger. Our data suggest that the medicinal plants tested have important antimicrobial properties. This is the first report describing the antimicrobial activities of several of the Mexican medicinal plants used in this study.

  19. Antifungal effect of kefir fermented milk and shelf life improvement of corn arepas.

    Science.gov (United States)

    Gamba, Raúl Ricardo; Caro, Carlos Andrés; Martínez, Olga Lucía; Moretti, Ana Florencia; Giannuzzi, Leda; De Antoni, Graciela Liliana; León Peláez, Angela

    2016-10-17

    Fungal contamination negatively affects the production of cereal foods such as arepa loaf, an ancient corn bread consumed daily in several countries of Latin-America. Chemical preservatives such as potassium sorbate are applied in order to improve the arepa's shelf life and to reduce the health risks. The use of natural preservatives such as natural fermented products in food commodities is a common demand among the consumers. Kefir is a milk fermented beverage obtained by fermentation of kefir grains. Its antibacterial and probiotic activity has been exhaustively demonstrated. Our objectives were to determine the antifungal effect of kefir fermented milk on Aspergillus flavus AFUNL5 in vitro and to study if the addition of kefir fermented milk to arepas could produce shelf life improvement. We determined the antifungal effect on solid medium of kefir cell-free supernatants (CFS) obtained under different fermentation conditions. Additionally, we compared the antifungal effect of kefir CFS with that obtained with unfermented milk artificially acidified with lactic plus acetic acids (lactic and acetic acids at the same concentration determined in kefir CFS) or with hydrochloric acid. Finally, kefir was added to the corn products either in the loaf recipe (kefir-baked arepas) or sprayed onto the baked-loaf surface (kefir-sprayed arepas). The loaves' resistance to natural and artificial fungal contamination and their organoleptic profiles were studied. The highest fungal inhibition on solid medium was achieved with kefir CFS produced by kefir grains CIDCA AGK1 at 100 g/L, incubated at 30 °C and fermented until pH 3.3. Other CFS obtained from different fermentation conditions achieved less antifungal activity than that mentioned above. However, CFS of milk fermented with kefir grains, until pH 4.5 caused an increase of growth rates. Additionally, CFS produced by kefir grains CIDCA AGK1 at 100 g/L, incubated at 30 °C and fermented until pH 3.3 achieved higher

  20. Antifungal activity of four honeys of different types from Algeria against pathogenic yeast: Candida albicans and Rhodotorula sp.

    OpenAIRE

    Ahmed Moussa; Djebli Noureddine; Aissat Saad; Meslem Abdelmelek; Benhalima Abdelkader

    2012-01-01

    Objective: To evaluate the antifungal activity of four honeys of different types from Algeria against pathogenic yeast i.e. Candida albicans (C. albicans) and Rhodotorula sp. Methods: Four Algeria honeys of different botanical origin were analyzed to test antifungal effect against C. albicans, and Rhodotorula sp. Different concentrations (undiluted, 10%, 30%, 50% and 70% w/v) of honey were studied in vitro for their antifugal activity using C. albicans and Rhodotorula sp. as fungal strains...

  1. Prenatal exposure to antifungal medication may change anogenital distance in male offspring

    DEFF Research Database (Denmark)

    Madelung Mogensen, Djamilla; Bergkvist Pihl, Maria; Skakkebæk, Niels E.

    2017-01-01

    BACKGROUND: Vaginal candidiasis is frequent among pregnant women and it is treated with anti-fungal medication (conazoles). Conazoles have anti-androgenic properties and prenatal exposure in rodents is associated with a shorter (less masculine) anogenital distance (AGD) in male offspring. To our...

  2. Antifungal activity of aloe vera gel against plant pathogenic fungi

    International Nuclear Information System (INIS)

    Sitara, U.; Hassan, N.; Naseem, J.

    2011-01-01

    Aloe vera gel extracted from the Aloe vera leaves was evaluated for their antifungal activity at the rate of 0.15%, 0.25% and 0.35% concentration against five plants pathogenic fungi viz., Aspergillus niger, Aspergillus flavus, Alternaria alternata, Drechslera hawaiensis and Penicillum digitatum 0.35% concentration Aloe vera gel completely inhibited the growth of Drechslera hawaiensis and Alternaria alternata. (author)

  3. Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

    Science.gov (United States)

    2013-04-11

    Hedychiums have been reported to possess antibacterial, antifungal, and insecticidal activities [4,5]. Strawberry anthracnose, caused by the plant...pathogens Colletotrichum species is one of the most important diseases affecting strawberries worldwide [6]. Colletotrichum fragariae Brooks is most...often associated with anthracnose crown rot of strawberries grown in hot, humid areas such as the southeastern United States [7]. The azalea lace bug

  4. Effect of cultivation conditions on growth and antifungal activity of ...

    African Journals Online (AJOL)

    Administrator

    Growth and production of antifungal agent by Mycena leptocephala was investigated in different culture media composition at various initial pH and temperatures. Maximum growth and activity was observed at the initial pH of 5.5 and 25oC. No detectable growth and activity was observed at pH of 3.5 and 7.5. Growth of the ...

  5. Production, characterization, and antifungal activity of a biosurfactant produced by Rhodotorula babjevae YS3.

    Science.gov (United States)

    Sen, Suparna; Borah, Siddhartha Narayan; Bora, Arijit; Deka, Suresh

    2017-05-30

    Sophorolipids are one of the most promising glycolipid biosurfactants and have been successfully employed in bioremediation and various other industrial sectors. They have also been described to exhibit antimicrobial activity against different bacterial species. Nevertheless, previous literature pertaining to the antifungal activity of sophorolipids are limited indicating the need for further research to explore novel strains with wide antimicrobial activity. A novel yeast strain, Rhodotorula babjevae YS3, was recently isolated from an agricultural field in Assam, Northeast India. This study was primarily emphasized at the characterization and subsequent evaluation of antifungal activity of the sophorolipid biosurfactant produced by R. babjevae YS3. The growth kinetics and biosurfactant production by R. babjevae YS3 was evaluated by cultivation in Bushnell-Haas medium containing glucose (10% w/v) as the sole carbon source. A reduction in the surface tension of the culture medium from 70 to 32.6 mN/m was observed after 24 h. The yield of crude biosurfactant was recorded to be 19.0 g/l which might further increase after optimization of the growth parameters. The biosurfactant was characterized to be a heterogeneous sophorolipid (SL) with both lactonic and acidic forms after TLC, FTIR and LC-MS analyses. The SL exhibited excellent oil spreading and emulsifying activity against crude oil at 38.46 mm 2 and 100% respectively. The CMC was observed to be 130 mg/l. The stability of the SL was evaluated over a wide range of pH (2-10), salinity (2-10% NaCl) and temperature (at 120 °C for time intervals of 30 up to 120 min). The SL was found to retain surface-active properties under the extreme conditions. Additionally, the SL exhibited promising antifungal activity against a considerably broad group of pathogenic fungi viz. Colletotrichum gloeosporioides, Fusarium verticilliodes, Fusarium oxysporum f. sp. pisi, Corynespora cassiicola, and Trichophyton rubrum. The

  6. Inhibitors of the glyoxylate cycle enzyme ICL1 in Candida albicans for potential use as antifungal agents.

    Directory of Open Access Journals (Sweden)

    Hong-Leong Cheah

    Full Text Available Candida albicans is an opportunistic pathogen that causes candidiasis in humans. In recent years, metabolic pathways in C. albicans have been explored as potential antifungal targets to treat candidiasis. The glyoxylate cycle, which enables C. albicans to survive in nutrient-limited host niches and its. Key enzymes (e.g., isocitrate lyase (ICL1, are particularly attractive antifungal targets for C. albicans. In this study, we used a new screening approach that better reflects the physiological environment that C. albicans cells experience during infection to identify potential inhibitors of ICL. Three compounds (caffeic acid (CAFF, rosmarinic acid (ROS, and apigenin (API were found to have antifungal activity against C. albicans when tested under glucose-depleted conditions. We further confirmed the inhibitory potential of these compounds against ICL using the ICL enzyme assay. Lastly, we assessed the bioavailability and toxicity of these compounds using Lipinski's rule-of-five and ADMET analysis.

  7. Essential oil composition, antioxidant and antifungal activities of Salvia sclarea L. from Munzur Valley in Tunceli, Turkey.

    Science.gov (United States)

    Yuce, E; Yildirim, N; Yildirim, N C; Paksoy, M Y; Bagci, E

    2014-06-15

    The essential oil composition and in vitro antioxidant and antifungal activity of the Salvia sclarea L. from Munzur Valley in Tunceli, Turkey were evaluated in this research. The in vitro antifungal activity of ethanol, hexane and aqueous extracts of S. sclarea against pathogen fungi Epicoccum nigrum and Colletotrichum coccodes were investigated. The essential oil of aerial parts of S. sclarea was obtained by hydrodistillation and was analysed by GC and GC—MS. Total antioxidant status was determined by using Rel assay diagnostics TAS assay kit (Lot.RL024) by Multiscan FC (Thermo). 33 compounds were identified representing the 85.0% of the total oil. The most abundant components (>5%) of the S. sclarea essential oils were caryophyllene oxide (24.1%), sclareol (11.5%), spathulenol (11.4%), 1H-naphtho (2,1,6) pyran (8.6%) and b—caryophyllene (5.1%). The best antifungal and antioxidant effect was seen in ethanolic S. sclarea extract. It can be said that Salvia sclerae could be used as natural antioxidant.

  8. Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity.

    Science.gov (United States)

    Ahluwalia, Vivek; Kumar, Jitendra; Rana, Virendra S; Sati, Om P; Walia, S

    2015-01-01

    This investigation was undertaken to identify the major secondary metabolite, produced by two Trichoderma harzianum strains (T-4 and T-5) with their antifungal activity against phytopathogenic fungi using poison food technique. The ethyl acetate extract was subjected to column chromatography using n-hexane, ethyl acetate and methanol gradually. Chromatographic separation of ethyl acetate extract of T. harzianum (T-4) resulted in the isolation and identification of palmitic acid (1), 1,8-dihydroxy-3-methylanthraquinone (2), 6-pentyl-2H-pyran-2-one (3), 2(5H)-furanone (4), stigmasterol (5) and β-sitosterol (6), while T. harzianum (T-5) gave palmitic acid (1), 1-hydroxy-3-methylanthraquinone (7), δ-decanolactone (8), 6-pentyl-2H-pyran-2-one (3), ergosterol (9), harzianopyridone (10) and 6-methyl-1,3,8-trihydroxyanthraquinone (11) as major metabolites. Among compounds screened for antifungal activity, compound 10 was found to be most active (EC50 35.9-50.2 μg mL(-1)). In conclusion, the present investigation provided significant information about antifungal activity and compounds isolated from two different strains of T. harzianum obtained from two different Himalayan locations.

  9. Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents.

    Science.gov (United States)

    Zhao, Shizhen; Zhang, Xiangqian; Wei, Peng; Su, Xin; Zhao, Liyu; Wu, Mengya; Hao, Chenzhou; Liu, Chunchi; Zhao, Dongmei; Cheng, Maosheng

    2017-09-08

    To further enhance the anti-Aspergillus efficacy of our previously discovered antifungal lead compounds (1), a series of aromatic heterocyclic derivatives were designed, synthesized and evaluated for in vitro antifungal activity. Many of the target compounds showed good inhibitory activity against Candida albicans and Cryptococcus neoformans. In particular, the isoxazole nuclei were more suited for improving the activity against Aspergillus spp. Among these compounds, 2-F substituted analogues 23g and 23h displayed the most remarkable in vitro activity against Candida spp., C. neoformans, A. fumigatus and fluconazole-resistant C.alb. strains, which is superior or comparable to the activity of the reference drugs fluconazole and voriconazole. Notably, the compounds 23g and 23h exhibited low inhibition profiles for various isoforms of human cytochrome P450 and excellent blood plasma stability. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines.

    Directory of Open Access Journals (Sweden)

    Ireos Filipuzzi

    2016-11-01

    Full Text Available Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point.

  11. Composition and antifungal activity of essential oils from Piper aduncum, Piper arboreum and Piper tuberculatum

    Directory of Open Access Journals (Sweden)

    Hosana M. Debonsi Navickiene

    2006-06-01

    Full Text Available The composition of essential oils from leaves, stems and fruits of Piper aduncum, P. arboreum and P. tuberculatum was examined by means of GC-MS and antifungal assay. There was a predominance of monoterpenes in P. aduncum and P. tuberculatum and of sesquiterpenes in P. arboreum. P. aduncum showed the richest essential oil composition, including linalool. The essential oils from fruits of P. aduncum and P. tuberculatum showed the highest antifungal activity with the MIC of 10 µg as determined against Cladosporium cladosporioides and C. sphaerospermum, respectively. This is the first report of the composition of essential oils from P. tuberculatum.

  12. Pathogenesis and host defence against Mucorales: the role of cytokines and interaction with antifungal drugs.

    Science.gov (United States)

    Roilides, Emmanuel; Antachopoulos, Charalampos; Simitsopoulou, Maria

    2014-12-01

    Innate immune response, including macrophages, neutrophils and dendritic cells and their respective receptors, plays an important role in host defences against Mucorales with differential activity against specific fungal species, while adaptive immunity is not the first line of defence. A number of endogenous and exogenous factors, such as cytokines and growth factors as well as certain antifungal agents have been found that they influence innate immune response to these organisms. Used alone or especially in combination have been shown to exert antifungal effects against Mucorales species. These findings suggest novel ways of adjunctive therapy for patients with invasive mucormycosis. © 2014 Blackwell Verlag GmbH.

  13. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    Science.gov (United States)

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  14. New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica

    DEFF Research Database (Denmark)

    Valsaraj, R; Pushpangadan, P; Smitt, U W

    1997-01-01

    A bioactivity-guided fractionation of an extract of Terminalia bellerica fruit rind led to the isolation of two new lignans named termilignan (1) and thannilignan (2), together with 7-hydroxy-3',4'-(methylenedioxy)flavan (3) and anolignan B (4). All four compounds possessed demonstrable anti-HIV-......, antimalarial, and antifungal activity in vitro....

  15. Antifungal activity of root, bark, leaf and soil extracts of Androstachys ...

    African Journals Online (AJOL)

    Extracts of leaf, root, soil and bark of Androstachys johnsonii Prain (commonly called Lembobo ironwood) screened for antifungal activity had a significant inhibitory effect on the most of fungi tested in this investigation. Of the four fungi tested in the present study Fusarium solani was significantly inhibited by all extracts (that ...

  16. Antifungal, phytotoxic and insecticidal properties of essential oil isolated from Turkish Origanum acutidens and its three components, carvacrol, thymol and p-cymene.

    Science.gov (United States)

    Kordali, Saban; Cakir, Ahmet; Ozer, Hakan; Cakmakci, Ramazan; Kesdek, Memis; Mete, Ebru

    2008-12-01

    The chemical composition of essential oil isolated by hydrodistillation from the aerial parts of Origanum acutidens was analyzed by GC-MS. Carvacrol (87.0%), p-cymene (2.0%), linalool acetate (1.7%), borneol (1.6%) and beta-caryophyllene (1.3%) were found to be as main constituents. Antifungal, phytotoxic and insecticidal activities of the oil and its aromatic monoterpene constituents, carvacrol, p-cymene and thymol were also determined. The antifungal assays showed that O. acutidens oil, carvacrol and thymol completely inhibited mycelial growth of 17 phytopathogenic fungi and their antifungal effects were higher than commercial fungicide, benomyl. However, p-cymene possessed lower antifungal activity. The oil, carvacrol and thymol completely inhibited the seed germination and seedling growth of Amaranthus retroflexus, Chenopodium album and Rumex crispus and also showed a potent phytotoxic effect against these plants. However, p-cymene did not show any phytotoxic effect. Furthermore, O. acutidens oil showed 68.3% and 36.7% mortality against Sitophilus granarius and Tribolium confusum adults, respectively. The findings of the present study suggest that antifungal and herbicidal properties of the oil can be attributed to its major component, carvacrol, and these agents have a potential to be used as fungicide, herbicide as well as insecticide.

  17. Oropharyngeal candidiasis and resistance to antifungal drugs in patients receiving radiation for head and neck cancer

    Directory of Open Access Journals (Sweden)

    Maryam Rad DMD, MSc

    2012-04-01

    Full Text Available BACKGROUND: Oropharyngeal candidiasis is a common infection in patient receiving radiotherapy for head and neckcancer. Accurate and rapid identification of candida species is very important in clinical laboratory, because theincidence of candidiasis continues to rise after radiotherapy. The genus Candida has about 154 species that showdifferent level of resistance to antifungal drugs and have high degree of phenotypic similarity. The aim of this study wasto investigate oral yeast colonization and infection and resistance to antifungal drugs in these patients.METHODS: Thirty patients receiving a 6-week course of radiation therapy for treatment of head and neck cancer at theOncology Unit in Shafa Hospital, in 2008, were enrolled in the study. Specimens from patients were cultured weeklyfor Candida. All isolates were plated on CHROM agar and RPMI-based medium. They were subcultured and submittedfor antifungal susceptibility testing (nystatin, fluconazole, clotrimazole and ketoconazole and molecular typing.RESULTS: Infection (clinical and microbiological evidence occurred in 50% of the patients and Candida colonization(only microbiological evidence occurred in 70% of subjects in the first week. Candida albicans alone was isolated in94.9% of patient visits with positive cultures. Candida tropicalis was isolated from 5.1% of patient visits with positivecultures. All isolates were susceptible to nystatin, but did not respond to the other antifungal drugsCONCLUSIONS: The irradiation-induced changes of the intraoral environment such as xerostomia lead to increasedintraoral colonization by Candida species. All yeast isolates were susceptible to nystatin. Thus prophylactic therapywith nystatin should be considered for these patients.

  18. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES.

    Science.gov (United States)

    Biasi-Garbin, Renata Perugini; Demitto, Fernanda de Oliveira; Amaral, Renata Claro Ribeiro do; Ferreira, Magda Rhayanny Assunção; Soares, Luiz Alberto Lira; Svidzinski, Terezinha Inez Estivalet; Baeza, Lilian Cristiane; Yamada-Ogatta, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytes ATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species.

  19. ANTIFUNGAL POTENTIAL OF PLANT SPECIES FROM BRAZILIAN CAATINGA AGAINST DERMATOPHYTES

    Science.gov (United States)

    BIASI-GARBIN, Renata Perugini; DEMITTO, Fernanda de Oliveira; do AMARAL, Renata Claro Ribeiro; FERREIRA, Magda Rhayanny Assunção; SOARES, Luiz Alberto Lira; SVIDZINSKI, Terezinha Inez Estivalet; BAEZA, Lilian Cristiane; YAMADA-OGATTA, Sueli Fumie

    2016-01-01

    Trichophyton rubrum and Trichophyton mentagrophytes complex, or Trichophyton spp. are the main etiologic agents of dermatophytosis, whose treatment is limited by the high cost of antifungal treatments, their various side effects, and the emergence of resistance amongst these species. This study evaluated the in vitro antidermatophytic activity of 23 crude extracts from nine plant species of semiarid vegetation (caatinga) found in Brazil. The extracts were tested at concentrations ranging from 1.95 to 1,000.0 mg/mL by broth microdilution assay against the reference strains T. rubrum ATCC 28189 and T. mentagrophytesATCC 11481, and 33 clinical isolates of dermatophytes. All plants showed a fungicidal effect against both fungal species, with MIC/MFC values of the active extracts ranging from 15.6 to 250.0 µg/mL. Selected extracts of Eugenia uniflora (AcE), Libidibia ferrea (AE), and Persea americana (AcE) also exhibited a fungicidal effect against all clinical isolates of T. rubrum and T. mentagrophytes complex. This is the first report of the antifungal activity of Schinus terebinthifolius, Piptadenia colubrina, Parapiptadenia rigida, Mimosa ophthalmocentra, and Persea americana against both dermatophyte species. PMID:27007561

  20. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

    Energy Technology Data Exchange (ETDEWEB)

    Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won (Toronto); (IBC-Belarus)

    2010-09-22

    The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.