WorldWideScience

Sample records for synthetic acid-tolerance mechanism

  1. Aciduricity and acid tolerance mechanisms of Streptococcus anginosus.

    Science.gov (United States)

    Sasaki, Minoru; Kodama, Yoshitoyo; Shimoyama, Yu; Ishikawa, Taichi; Kimura, Shigenobu

    2018-04-17

    Although Streptococcus anginosus constitutes a proportion of the normal flora of the gastrointestinal and genital tracts, and the oral cavity, it has been reported that S. anginosus infection could be closely associated with abscesses at various body sites, infective endocarditis, and upper gastrointestinal cancers. The colonization in an acidic environment due to the aciduricity of S. anginosus could be the etiology of the systemic infection of the bacteria. To elucidate the aciduricity and acid tolerance mechanisms of the microbe, we examined the viability and growth of S. anginosus under acidic conditions. The viabilities of S. anginosus NCTC 10713 and Streptococcus mutans ATCC 25175 at pH 4.0 showed as being markedly higher than those of Streptococcus sanguinis ATCC 10556, Streptococcus gordonii ATCC 10558, and Streptococcus mitis ATCC 49456; however, the viability was partially inhibited by dicyclohexylcarbodiimide, an H + -ATPase inhibitor, suggesting that H + -ATPase could play a role in the viability of S. anginosus under acidic conditions. In addition, S. anginosus NCTC 10713 could grow at pH 5.0 and showed a marked arginine deiminase (ADI) activity, unlike its ΔarcA mutant, deficient in the gene encoding ADI, and other streptococcal species, which indicated that ADI could also be associated with aciduricity. These results suggest that S. anginosus has significant aciduric properties, which can be attributed to these enzyme activities.

  2. Is synthetic biology mechanical biology?

    Science.gov (United States)

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  3. Mechanism analysis of acid tolerance response of bifidobacterium longum subsp. longum BBMN 68 by gene expression profile using RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    Junhua Jin

    Full Text Available To analyze the mechanism of the acid tolerance response (ATR in Bifidobacterium longum subsp. longum BBMN68, we optimized the acid-adaptation condition to stimulate ATR effectively and analyzed the change of gene expression profile after acid-adaptation using high-throughput RNA-Seq. After acid-adaptation at pH 4.5 for 2 hours, the survival rate of BBMN68 at lethal pH 3.5 for 120 min was increased by 70 fold and the expression of 293 genes were upregulated by more than 2 fold, and 245 genes were downregulated by more than 2 fold. Gene expression profiling of ATR in BBMN68 suggested that, when the bacteria faced acid stress, the cells strengthened the integrity of cell wall and changed the permeability of membrane to keep the H(+ from entering. Once the H(+ entered the cytoplasm, the cells showed four main responses: First, the F(0F(1-ATPase system was initiated to discharge H(+. Second, the ability to produce NH(3 by cysteine-cystathionine-cycle was strengthened to neutralize excess H(+. Third, the cells started NER-UVR and NER-VSR systems to minimize the damage to DNA and upregulated HtpX, IbpA, and γ-glutamylcysteine production to protect proteins against damage. Fourth, the cells initiated global response signals ((pppGpp, polyP, and Sec-SRP to bring the whole cell into a state of response to the stress. The cells also secreted the quorum sensing signal (AI-2 to communicate between intraspecies cells by the cellular signal system, such as two-component systems, to improve the overall survival rate. Besides, the cells varied the pathways of producing energy by shifting to BCAA metabolism and enhanced the ability to utilize sugar to supply sufficient energy for the operation of the mechanism mentioned above. Based on these reults, it was inferred that, during industrial applications, the acid resistance of bifidobacteria could be improved by adding BCAA, γ-glutamylcysteine, cysteine, and cystathionine into the acid-stress environment.

  4. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae.

    Science.gov (United States)

    Geng, Peng; Zhang, Liang; Shi, Gui Yang

    2017-05-01

    Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.

  5. Acid tolerance response and survival by oral bacteria.

    Science.gov (United States)

    Svensäter, G; Larsson, U B; Greif, E C; Cvitkovitch, D G; Hamilton, I R

    1997-10-01

    Using 21 species of oral bacteria, representing six acidogenic genera, we undertook to determine whether the pH-limiting exponential growth is related to the ability of the organisms to generate an acid-tolerance response that results in enhanced survival at low pH. The lower pH limit of exponential growth varied by more than two units with that of Neisseria A182 at pH 6.34; growth of Lactobacillus casei RB1014 stopped at pH 3.81, with species of Actinomyces, Enterococcus, Prevotella and Streptococcus falling between these limits. The working hypothesis was that the organisms with the higher pH limits for growth are unable to respond to acidic environments in order to survive, whereas the more aciduric organisms would possess or acquire acid tolerance. Adaptation to acid tolerance was tested by determining whether the prior exposure of exponential-phase cells to a low, sub-lethal pH would trigger the induction of a mechanism that would enhance survival at a pH killing pH 7.5 control cells. The killing pH varied from pH 4.5 for Prevotella intermedia ATCC 25611 to pH 2.3 for the three Lactobacillus casei strains in the study, with the three Streptococcus mutans strains killed at pH 3.0 for 3 h. The adaptation experiments revealed three groups of organisms: non-acid-responders, generally representing strains with the highest terminal pH values; weak acid-responders in the middle of the pH list, generating low numbers of survivors at one or two pH values, and the aciduric, strong responders generating a high number of survivors at pH values in the range 6.0 to 3.5, but not at pH 7.5. Predominant among the latter group were the S. mutans and Lactobacilli casei strains, with the most significant adaptive response exhibited by S. mutans LT11 and S. mutans Ingbritt, involving a process that required protein synthesis. Time course experiments with the latter organisms indicated that 90-120 min was required after exposure to the triggering pH before the acid response was

  6. Kinetics and mechanism of synthetic CoS oxidation process

    Directory of Open Access Journals (Sweden)

    Štrbac N.

    2006-01-01

    Full Text Available The results of investigation of kinetics and mechanism for synthetic a-CoS oxidation process are presented in this paper. Based on experimental data obtained using DTA and XRD analysis and constructed PSD diagrams for Co-S-O system, mechanism of synthetic a-CoS oxidation process is suggested. Characteristic kinetic parameters were obtained for experimental isothermal investigations of desulfurization degree using Sharp method.

  7. Usnic acid controls the acidity tolerance of lichens

    International Nuclear Information System (INIS)

    Hauck, Markus; Juergens, Sascha-Rene

    2008-01-01

    The hypotheses were tested that, firstly, lichens producing the dibenzofuran usnic acid colonize substrates characterized by specific pH ranges, secondly, this preferred pH is in a range where soluble usnic acid and its corresponding anion occur in similar concentrations, and thirdly, usnic acid makes lichens vulnerable to acidity. Lichens with usnic acid prefer an ambient pH range between 3.5 and 5.5 with an optimum between 4.0 and 4.5. This optimum is close to the pK a1 value of usnic acid of 4.4. Below this optimum pH, dissolved SO 2 reduces the chlorophyll fluorescence yield more in lichens with than without their natural content of usnic acid. This suggests that usnic acid influences the acidity tolerance of lichens. The putative mechanism of the limited acidity tolerance of usnic acid-containing lichens is the acidification of the cytosol by molecules of protonated usnic acid shuttling protons through the plasma membrane at an apoplastic pH a1 . - Combined field and experimental data suggest that usnic acid makes lichens sensitive to acidity at pH <3.5

  8. Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with ...

    African Journals Online (AJOL)

    Symbiotic effectiveness of acid-tolerant Bradyrhizobium strains with soybean in low pH soil. C Appunu, B Dhar. Abstract. Eight acid tolerant strains of Bradyrhizobium isolated from soybean plants grown on acid soils in Madhya Pradesh, India, were examined for their ability to survive in soil and YEMB at low pH levels. All the ...

  9. Rationally designed synthetic protein hydrogels with predictable mechanical properties.

    Science.gov (United States)

    Wu, Junhua; Li, Pengfei; Dong, Chenling; Jiang, Heting; Bin Xue; Gao, Xiang; Qin, Meng; Wang, Wei; Bin Chen; Cao, Yi

    2018-02-12

    Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.

  10. Synthetic biology: a challenge to mechanical explanations in biology?

    Science.gov (United States)

    Morange, Michel

    2012-01-01

    In their plans to modify organisms, synthetic biologists have contrasted engineering and tinkering. By drawing this contrast between their endeavors and what has happened during the evolution of organisms by natural selection, they underline the novelty of their projects and justify their ambitions. Synthetic biologists are at odds with a long tradition that has considered organisms as "perfect machines." This tradition had already been questioned by Stephen Jay Gould in the 1970s and received a major blow with the comparison made by François Jacob between organisms and the results of "bricolage" (tinkering). These contrasts between engineering and tinkering, synthetic biology and evolution, have no raison d'être. Machines built by humans are increasingly inspired by observations made on organisms. This is not a simple reversal of the previous trend-the mechanical conception of organisms-in which the characteristics of the latter were explained by comparison with human-built machines. Relations between organisms and machines have always been complex and ambiguous.

  11. Synthetic oligorotaxanes exert high forces when folding under mechanical load

    Science.gov (United States)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie

    2018-01-01

    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  12. Identification and characterization of acidity-tolerant and aluminum ...

    African Journals Online (AJOL)

    An acidity-tolerant, aluminum resistant bacterium was isolated from tea soils in Kagoshima Experimental Station (Japan). Based on the morphological, physiological and biochemical characteristics and 16S rDNA nucleotide sequence analysis, the bacterium was identified as Bacillus sp. An 3 (DQ234657) in Bacillus cereus ...

  13. Synthetic cannabinoid: prevalence, mechanisms of addiction development, mental disorders associated with the use of synthetic cannabinoid

    Directory of Open Access Journals (Sweden)

    Antsyborov A.V.

    2017-04-01

    Full Text Available according to the authors among the new psychoactive substances, the number of which is growing every year, despite the measures aimed at the obstacles to their dissemination there discovered the most frequent violations of psychotic conditions associated with use of synthetic cannabinoid in clinical practice. On the black market, they are distributed through online shops, under the guise of herbal mixtures for Smoking. When ingested, this group of drugs at the peak of intoxication raises a number of mental (different according to the depth of impaired consciousness, auditory and visual hallucinations, panic attacks, acute psychotic paranoid disorders, catatonic stupor, polar affective disorders, acute polythematic delusional symptoms and somatic disorders (disorders of heart rhythm and conduction, acute ischemic disorders, hypertension, depression of respiratory activity, violation of thermoregulation, development of acute renal failure, vomiting, expressed cephalgia, clinic of hypokalemia. In the reviewed literature and authors own observations there have been discovered some cases of mental addiction development to synthetic cannabinoids. The analysis of new literature data and own clinical observations helped the authors to compare the psychotropic effects caused by this group of drugs, relative to other known surfactants. The toxic effects of CSC on the body greatly exceeds the use of plant cannabinoids, and it has almost the same effects as the synthetic cathinone’s. The speed of formation of psychological dependence is lower compared to synthetic cathinone. Developing current strategies for diagnosis, treatment, and rehabilitation of patients who use synthetic cannabinoids remains an important task for practical healthcare.

  14. Understanding the 3-hydroxypropionic acid tolerance mechanism in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Kildegaard, Kanchana Rueksomtawin; Juncker, Agnieszka; Hallstrom, Bjorn

    2013-01-01

    3-Hydroxypropionic acid (3HP) is an important platform chemical that can be converted into other valuable chemicals such as acrylic acid and its derivatives that are used in baby diap ers, various plastics, and paints. With the oil and gas resources becoming limiting, biotechnolo gy offers...

  15. Synthetic

    Directory of Open Access Journals (Sweden)

    Anna Maria Manferdini

    2010-06-01

    Full Text Available Traditionally materials have been associated with a series of physical properties that can be used as inputs to production and manufacturing. Recently we witnessed an interest in materials considered not only as ‘true matter’, but also as new breeds where geometry, texture, tooling and finish are able to provoke new sensations when they are applied to a substance. These artificial materials can be described as synthetic because they are the outcome of various qualities that are not necessarily true to the original matter, but they are the combination of two or more parts, whether by design or by natural processes. The aim of this paper is to investigate the potential of architectural surfaces to produce effects through the invention of new breeds of artificial matter, using micro-scale details derived from Nature as an inspiration.

  16. Elucidating the molecular mechanisms underlying cellular response to biophysical cues using synthetic biology approaches

    NARCIS (Netherlands)

    Denning, Denise; Roos, Wouter H

    2016-01-01

    The use of synthetic surfaces and materials to influence and study cell behavior has vastly progressed our understanding of the underlying molecular mechanisms involved in cellular response to physicochemical and biophysical cues. Reconstituting cytoskeletal proteins and interfacing them with a

  17. The novel sRNA s015 improves nisin yield by increasing acid tolerance of Lactococcus lactis F44.

    Science.gov (United States)

    Qi, Jiakun; Caiyin, Qinggele; Wu, Hao; Tian, Kairen; Wang, Binbin; Li, Yanni; Qiao, Jianjun

    2017-08-01

    Nisin, a polycyclic antibacterial peptide produced by Lactococcus lactis, is stable at low pH. Improving the acid tolerance of L. lactis could thus enhance nisin yield. Small non-coding RNAs (sRNAs) play essential roles in acid tolerance by regulating their target mRNAs at the post-transcriptional level. In this study, a novel sRNA, s015, was identified in L. lactis F44 via the use of RNA sequencing, qRT-PCR analysis, and Northern blotting. s015 improved the acid tolerance of L. lactis and boosted nisin yield at low pH. In silico predictions enabled us to construct a library of possible s015 target mRNAs. Statistical analysis and validation suggested that s015 contains a highly conserved region (5'-GAAAAAAAC-3') that likely encompasses the regulatory core of the sRNA. atpG, busAB, cysD, ilvB, tcsR, ung, yudD, and ywdA were verified as direct targets of s015, and the interactions between s015 and its target genes were elucidated. This work provided new insight into the adaptation mechanism of L. lactis under acid stress.

  18. Synthetic cathinone “bath salts”: the mechanism of action, toxicological aspects, clinic, dependence development

    Directory of Open Access Journals (Sweden)

    Antsyborov A.V.

    2017-05-01

    Full Text Available according to the authors synthetic cathinone is a new class of designer drugs with psychoactive effect at the peak of intoxication which can cause hallucinatory disorders, acute paranoid disorders of psychotic level, the development of delirious disorders, affective disorders comparable to cocaine, methylenedioxymethamphetamine (MDMA and other drugs with amphetamine-like effect. The first reports of synthetic cathinone appeared in early 2009. On the black market, these substances were marketed as «bath salts». The legislation of the European countries have been carrying these substances to the drug since 2010, in the United States synthetic cathinone has been included in the list of narcotic substances since 2011, in the Russian Federation, these substances can be attributed to narcotic according to the Decree of the RF Government dated 31 December 2009 №1186 «About modification of some resolutions of the Government of the Russian Federation on issues related to trafficking in narcotic drugs». Recent clinical studies indicate dysregulation effect of synthetic cathinone’s on central monoamine system, which is one of the main mechanisms of synthetic cathinone’s action, and is the basis of behavioral disorders due to use. The review provides data about the chemical structure of synthetic cathinone’s, mechanisms of addiction, toxicology, clinical aspects of use.

  19. Buffer capacity of food components influences the acid tolerance response in Salmonella Typhimurium during simulated gastric passage

    DEFF Research Database (Denmark)

    Aabo, Søren; Buschhardt, Tasja; Hansen, Tina Beck

    2014-01-01

    Food composition, buffer capacity, and fat and protein content have been shown to effect the gastric acid survival of pathogens (Waterman & Small 1998). In this study, simple food-model substances with different buffer capacities were investigated for their ability to support survival of stationary...... Heart Infusion Broth having a higher buffer capacity. We suggest this to be associated with a varying ability of Salmonella Typhimurium to mount a stationary phase acid tolerance response (ATR) depending on the buffer capacity of the food vehicle....... phase Salmonella Typhimurium during simulated gastric acid passage. We used a computer-controlled fermentor to employ pH changes in synthetic gastric fluid, mimicking the dynamic pH during gastric passage. In order to minimise variation, Salmonella enterica serovar Typhimurium was contained in dialysis...

  20. A bio-synthetic interface for discovery of viral entry mechanisms.

    Energy Technology Data Exchange (ETDEWEB)

    Gutzler, Mike; Maar, Dianna; Negrete, Oscar; Hayden, Carl C.; Sasaki, Darryl Yoshio; Stachowiak, Jeanne C.; Wang, Julia

    2010-09-01

    Understanding and defending against pathogenic viruses is an important public health and biodefense challenge. The focus of our LDRD project has been to uncover the mechanisms enveloped viruses use to identify and invade host cells. We have constructed interfaces between viral particles and synthetic lipid bilayers. This approach provides a minimal setting for investigating the initial events of host-virus interaction - (i) recognition of, and (ii) entry into the host via membrane fusion. This understanding could enable rational design of therapeutics that block viral entry as well as future construction of synthetic, non-proliferating sensors that detect live virus in the environment. We have observed fusion between synthetic lipid vesicles and Vesicular Stomatitis virus particles, and we have observed interactions between Nipah virus-like particles and supported lipid bilayers and giant unilamellar vesicles.

  1. DENTINE CARIES: ACID-TOLERANT MICROORGANISMS AND ASPECTS ON COLLAGEN DEGRADATION.

    Science.gov (United States)

    Lager, Anders Hedenbjörk

    2014-01-01

    . Key findings: Each investigated lesion harbored a unique microbiota in terms of both species composition and numbers of microorganisms. This indicates that various combinations of aciduric microorganisms can colonize, survive in and probably also propagate dentine carious lesions. We also found that solid pH-selective agars can be used successfully to select acid-tolerant microorganisms in caries lesions. This would preserve their phenotypic traits for further study. In Paper III, the relation between salivary levels of matrix metalloproteinase-8 (MMP-8), salivary levels of tissue inhibitor of MMP (TIMP-1), and the presence of manifest caries lesions in a large number of subjects was investigated. Saliva samples were collected and analyzed for concentrations of MMP-8, TIMP-1 and total protein using immunofluorometric assays, enzyme linked immunosorbent assays and Bradford assays, respectively. Key findings: Subjects with manifest caries lesions had significantly elevated levels of salivary MMP-8 compared to subjects without caries lesions. TIMP-1 was not significant in any case. In Paper IV, a new method for generating bioactive demineralized dentine matrix substrate (DDM) was developed using a dialysis system and two different demineralization approaches (acetic acid or EDTA). The generated DDM was subsequently analyzed for the presence of type 1 collagen, active MMP-8 and hydroxyproline (HYP) levels using SDS-PAGE, ELISA or immunofluorescence assay. Key findings: Both demineralization methods produced a substrate rich in collagen and with preserved MMP-8 activity. This report presents new knowledge on the composition of the acid tolerant dentine caries microbiota from three levels in dentine carious lesions and on the efficacy of operative caries removal on the numbers of viable microorganisms in the caries free cavity using two operative methods. Moreover, the basic mechanisms behind collagen degradation in the dentine caries process are studied from both a

  2. Synthetic Isoliquiritigenin Inhibits Human Tongue Squamous Carcinoma Cells through Its Antioxidant Mechanism

    OpenAIRE

    Hou, Cuilan; Li, Wenguang; Li, Zengyou; Gao, Jing; Chen, Zhenjie; Zhao, Xiqiong; Yang, Yaya; Zhang, Xiaoyu; Song, Yong

    2017-01-01

    Isoliquiritigenin (ISL), a natural antioxidant, has antitumor activity in different types of cancer cells. However the antitumor effect of ISL on human tongue squamous carcinoma cells (TSCC) is not clear. Here we aimed to investigate the effects of synthetic isoliquiritigenin (S-ISL) on TSCC and elucidate the underlying mechanisms. S-ISL was synthesized and elucidated from its nuclear magnetic resonance spectrum and examined using high performance liquid chromatography. The effects of S-ISL o...

  3. Sequential bottom-up assembly of mechanically stabilized synthetic cells by microfluidics

    Science.gov (United States)

    Weiss, Marian; Frohnmayer, Johannes Patrick; Benk, Lucia Theresa; Haller, Barbara; Janiesch, Jan-Willi; Heitkamp, Thomas; Börsch, Michael; Lira, Rafael B.; Dimova, Rumiana; Lipowsky, Reinhard; Bodenschatz, Eberhard; Baret, Jean-Christophe; Vidakovic-Koch, Tanja; Sundmacher, Kai; Platzman, Ilia; Spatz, Joachim P.

    2018-01-01

    Compartments for the spatially and temporally controlled assembly of biological processes are essential towards cellular life. Synthetic mimics of cellular compartments based on lipid-based protocells lack the mechanical and chemical stability to allow their manipulation into a complex and fully functional synthetic cell. Here, we present a high-throughput microfluidic method to generate stable, defined sized liposomes termed `droplet-stabilized giant unilamellar vesicles (dsGUVs)’. The enhanced stability of dsGUVs enables the sequential loading of these compartments with biomolecules, namely purified transmembrane and cytoskeleton proteins by microfluidic pico-injection technology. This constitutes an experimental demonstration of a successful bottom-up assembly of a compartment with contents that would not self-assemble to full functionality when simply mixed together. Following assembly, the stabilizing oil phase and droplet shells are removed to release functional self-supporting protocells to an aqueous phase, enabling them to interact with physiologically relevant matrices.

  4. Study of mechanical properties and fracture mechanisms of synthetic fibers nylon-and-polyester type, used in engineering products

    International Nuclear Information System (INIS)

    Cardoso, Sergio Gomes

    2009-01-01

    Fibers are groups formed by molecular-chain-oriented filaments. Fibers play a fundamental role in human being's daily life and they can be found in several forms and geometries, such as filaments, yarns, beams, rope, fabric, composite, coatings, others. They are used in various segments such as civil, mechanical, electrical, electronics, military, naval, nautical, aviation, health, medicine, environment, communications, safety, space, others. Fibers are divided into two distinct classes: natural and chemical ones, which cover synthetic and man-made sub-classes. They can be produced from several materials, such as wool, cotton, rayon, flax, silk, rock, nylon, polyester, polyethylene, poly-propylene, aramid, glass, carbon, steel, ceramic, others. Globally, the participation of chemical fibers corresponds to approximately 59,9%, and the synthetic fiber polyester, the most used one, represents approximately 63% of the world market. Vital needs have led to the development of multi-function fibers and the focus has changed in the last 10 years with the use of nano technology for environmental responsibility and smart fibers. The study of mechanical properties and fracture mechanisms of fibers is of great relevance for characterization and understanding of causes as consequence of failures. For such reason, it was selected technical fabrics made of high performance synthetic fiber nylon-and-polyester type, used in engineered products such as tires, belts, hoses and pneumatic springs, which have been analyzed in each processing phase. Fiber samples were extracted after each processing phase to be analyzed, by traction destructive tests and scanning electron microscopy. The results of analysis of mechanical properties showed loss of resistance to temperature and multi axial stress during fiber processing phase. Through microscopy tests, it was possible to find contamination, surface stains, plastic deformations, scaling, variations in the fracture faces of the filaments and

  5. Dynamic mechanical properties and anisotropy of synthetic shales with different clay minerals under confining pressure

    Science.gov (United States)

    Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da

    2018-03-01

    The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.

  6. Synthetic jets based on micro magneto mechanical systems for aerodynamic flow control

    International Nuclear Information System (INIS)

    Gimeno, L; Merlen, A; Talbi, A; Viard, R; Pernod, P; Preobrazhensky, V

    2010-01-01

    A magneto-mechanical micro-actuator providing an axisymmetric synthetic microjet for active flow control was designed, fabricated and characterized. The micro-actuator consists of an enclosed cavity with a small orifice in one face and a high flexible elastomeric (PDMS) membrane in the opposite one. The membrane vibration is achieved using a magnetic actuation chosen for its capacity for providing large out of plane displacements and forces necessary for the performances aimed for. The paper presents first numerical simulations of the flow performed during the design process in order to identify a general jet formation criterion and optimize the device's performances. The fabrication process of this micro-magneto-mechanical system (MMMS) is then briefly described. The full size of the device, including packaging and actuation, does not exceed 1 cm 3 . The evaluation of the performances of the synthetic jet with 600 µm orifice was performed. The results show that the optimum working point is in the frequency range 400–700 Hz which is in accordance with the frequency response of the magnet-membrane mechanical resonator. In this frequency range, the microjet reaches maximum speeds ranging from 25 m s −1 to 55 m s −1 for an electromagnetic power consumption of 500 mW. Finally the axial velocity transient and stream-wise behaviours in the near and far fields are reported and discussed.

  7. Removal of arsenite from water by synthetic siderite: Behaviors and mechanisms

    International Nuclear Information System (INIS)

    Guo Huaming; Li Yuan; Zhao Kai; Ren Yan; Wei Chao

    2011-01-01

    Synthetic siderite has been used as adsorbent for As(III) removal in this study. Effects of contact time, temperature, pH, co-existing anions on As(III) adsorption were intensively investigated. Adsorption mechanisms were also studied using the X-ray absorption technique. Results show that the maximum adsorption capacity is up to 9.98 mg g -1 at 25 deg, C at a siderite dosage of 2 g L -1 . Adsorption kinetics agrees with the Lagergren pseudo-second order model. Arsenic(III) adsorption can be better described by Langmuir isotherm model for As(III) adsorption at 55 deg. C, indicating that the coverage of the adsorption sites is in the form of monolayer, although Freundlich isotherm yields a better fit to the experimental data at 25, 35 and 45 deg. C. Thermodynamic study indicates that As(III) adsorption on the synthetic siderite is spontaneous and endothermic in nature. The adsorption capacity is enhanced with the increase in reaction temperature. The adsorption is independent on solution pH between 3.0 and 9.6. The presence of NO 3 - , SO 4 2- , PO 4 3- or SiO 3 2- with element concentrations less than 20 mg L -1 does not have adverse effect on As(III) adsorption. XANES spectra indicate that As mainly occurs as As(V) in the As adsorbed-materials, and the fraction of oxidized As(III) increases with the decrease in As(III) concentration. The formation of Fe hydroxide minerals (such as lepidocrocite and goethite) followed by As(III) oxidiation and adsorption is shown to be the main mechanism of As(III) removal by the synthetic siderite.

  8. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    International Nuclear Information System (INIS)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-01-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20–80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5–25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties. - Highlights: ► Chitosan and starch-based biodegradable films were prepared by casting. ► With the increase of chitosan in starch, the strength of the films improved significantly. ► Monomer, 2-Butane diol-diacrylate was grafted with the films by gamma radiation. ► Mechanical properties of synthetic polymeric films improved by gamma radiation. ► The irradiated polymer films showed better water vapor barrier properties.

  9. Colloidal Magnetic Heterostructured Nanocrystals with Asymmetric Topologies: Seeded-Growth Synthetic Routes and Formation Mechanisms

    Science.gov (United States)

    Scarfiello, Riccardo; Nobile, Concetta; Cozzoli, P. Davide

    2016-12-01

    Colloidal inorganic nanocrystals, free-standing crystalline nanostructures generated and processed in solution phase, represent an important class of advanced nanoscale materials owing to the flexibility with which their physical-chemical properties can be controlled through synthetic tailoring of their compositional, structural and geometric features and the versatility with which they can be integrated in technological fields as diverse as optoelectronics, energy storage/ conversion/production, catalysis and biomedicine. In recent years, building upon mechanistic knowledge acquired on the thermodynamic and kinetic processes that underlie nanocrystal evolution in liquid media, synthetic nanochemistry research has made impressive advances, opening new possibilities for the design, creation and mastering of increasingly complex “colloidal molecules”, in which nanocrystal modules of different materials are clustered together via solid-state bonding interfaces into free-standing, easily processable multifunctional nanocomposite systems. This Review will provide a glimpse into this fast-growing research field by illustrating progress achieved in the wet-chemical development of last-generation breeds of all-inorganic heterostructured nanocrystals (HNCs) in asymmetric non-onionlike geometries, inorganic analogues of polyfunctional organic molecules, in which distinct nanoscale crystalline modules are interconnected in hetero-dimer, hetero-oligomer and anisotropic multidomain architectures via epitaxial heterointerfaces of limited extension. The focus will be on modular HNCs entailing at least one magnetic material component combined with semiconductors and/or metals, which hold potential for generating enhanced or unconventional magnetic properties, while offering diversified or even new chemical-physical properties and functional capabilities. The available toolkit of synthetic strategies, all based on the manipulation of seeded-growth techniques, will be described

  10. Colloidal Magnetic Heterostructured Nanocrystals with Asymmetric Topologies: Seeded-Growth Synthetic Routes and Formation Mechanisms

    Directory of Open Access Journals (Sweden)

    Riccardo Scarfiello

    2016-12-01

    Full Text Available Colloidal inorganic nanocrystals, free-standing crystalline nanostructures generated and processed in solution phase, represent an important class of advanced nanoscale materials owing to the flexibility with which their physical–chemical properties can be controlled through synthetic tailoring of their compositional, structural and geometric features and the versatility with which they can be integrated in technological fields as diverse as optoelectronics, energy storage/ conversion/production, catalysis and biomedicine. In recent years, building upon mechanistic knowledge acquired on the thermodynamic and kinetic processes that underlie nanocrystal evolution in liquid media, synthetic nanochemistry research has made impressive advances, opening new possibilities for the design, creation and mastering of increasingly complex colloidal molecules, in which nanocrystal modules of different materials are clustered together via solid-state bonding interfaces into free-standing, easily processable multifunctional nanocomposite systems. This Review will provide a glimpse into this fast-growing research field by illustrating progress achieved in the wet-chemical development of last-generation breeds of all-inorganic heterostructured nanocrystals (HNCs in asymmetric non-onionlike geometries, inorganic analogues of polyfunctional organic molecules, in which distinct nanoscale crystalline modules are interconnected in hetero-dimer, hetero-oligomer and anisotropic multidomain architectures via epitaxial heterointerfaces of limited extension. The focus will be on modular HNCs entailing at least one magnetic material component combined with semiconductors and/or metals, which hold potential for generating enhanced or unconventional magnetic properties, while offering diversified or even new chemical-physical properties and functional capabilities. The available toolkit of synthetic strategies, all based on the manipulation of seeded-growth techniques

  11. Using synthetic bacterial enhancers to reveal a looping-based mechanism for quenching-like repression

    Science.gov (United States)

    Brunwasser-Meirom, Michal; Pollak, Yaroslav; Goldberg, Sarah; Levy, Lior; Atar, Orna; Amit, Roee

    2016-01-01

    We explore a model for ‘quenching-like' repression by studying synthetic bacterial enhancers, each characterized by a different binding site architecture. To do so, we take a three-pronged approach: first, we compute the probability that a protein-bound dsDNA molecule will loop. Second, we use hundreds of synthetic enhancers to test the model's predictions in bacteria. Finally, we verify the mechanism bioinformatically in native genomes. Here we show that excluded volume effects generated by DNA-bound proteins can generate substantial quenching. Moreover, the type and extent of the regulatory effect depend strongly on the relative arrangement of the binding sites. The implications of these results are that enhancers should be insensitive to 10–11 bp insertions or deletions (INDELs) and sensitive to 5–6 bp INDELs. We test this prediction on 61 σ54-regulated qrr genes from the Vibrio genus and confirm the tolerance of these enhancers' sequences to the DNA's helical repeat. PMID:26832446

  12. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    Science.gov (United States)

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-11-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks.

  13. Thiamine plays a critical role in the acid tolerance of Listeria monocytogenes.

    Science.gov (United States)

    Madeo, Moira; O'Riordan, Niamh; Fuchs, Thilo M; Utratna, Marta; Karatzas, Kimon Andreas G; O'Byrne, Conor P

    2012-01-01

    Understanding the molecular basis of acid tolerance in the food-borne pathogen Listeria monocytogenes is important as this property contributes to survival in the food-chain and enhances survival within infected hosts. The aim of this study was to identify genes contributing to acid tolerance in L. monocytogenes using transposon mutagenesis and subsequently to elucidate the physiological role of these genes in acid tolerance. One mutant harboring a Tn917 insertion in the thiT gene (formerly lmo1429), which encodes a thiamine (vitamin B1) uptake system, was found to be highly sensitive to acid. The acid-sensitive phenotype associated with loss of this gene was confirmed with an independently isolated mutant, from which the thiT gene was deleted (∆thiT). Cells of both wild-type and ∆thiT mutant that were thiamine depleted were found to be significantly more acid sensitive than control cultures. Thiamine-depleted cultures failed to produce significant concentrations of acetoin, consistent with the known thiamine dependence of acetolactate synthase, an enzyme required for acetoin synthesis from pyruvate. As acetoin synthesis is a proton-consuming process, we suggest that the acid sensitivity observed in thiamine-depleted cultures may be owing to an inability to produce acetoin. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. Mechanics and energetics in tool manufacture and use: a synthetic approach

    Science.gov (United States)

    Wang, Liyu; Brodbeck, Luzius; Iida, Fumiya

    2014-01-01

    Tool manufacture and use are observed not only in humans but also in other animals such as mammals, birds and insects. Manufactured tools are used for biomechanical functions such as effective control of fluids and small solid objects and extension of reaching. These tools are passive and used with gravity and the animal users' own energy. From the perspective of evolutionary biology, manufactured tools are extended phenotypes of the genes of the animal and exhibit phenotypic plasticity. This incurs energetic cost of manufacture as compared to the case with a fixed tool. This paper studies mechanics and energetics aspects of tool manufacture and use in non-human beings. Firstly, it investigates possible mechanical mechanisms of the use of passive manufactured tools. Secondly, it formulates the energetic cost of manufacture and analyses when phenotypic plasticity benefits an animal tool maker and user. We take a synthetic approach and use a controlled physical model, i.e. a robot arm. The robot is capable of additively manufacturing scoop and gripper structures from thermoplastic adhesives to pick and place fluid and solid objects, mimicking primates and birds manufacturing tools for a similar function. We evaluate the effectiveness of tool use in pick-and-place and explain the mechanism for gripper tools picking up solid objects with a solid-mechanics model. We propose a way to formulate the energetic cost of tool manufacture that includes modes of addition and reshaping, and use it to analyse the case of scoop tools. Experiment results show that with a single motor trajectory, the robot was able to effectively pick and place water, rice grains, a pebble and a plastic box with a scoop tool or gripper tools that were manufactured by itself. They also show that by changing the dimension of scoop tools, the energetic cost of tool manufacture and use could be reduced. The work should also be interesting for engineers to design adaptive machines. PMID:25209405

  15. Plasticity of the Pyruvate Node Modulates Hydrogen Peroxide Production and Acid Tolerance in Multiple Oral Streptococci.

    Science.gov (United States)

    Cheng, Xingqun; Redanz, Sylvio; Cullin, Nyssa; Zhou, Xuedong; Xu, Xin; Joshi, Vrushali; Koley, Dipankar; Merritt, Justin; Kreth, Jens

    2018-01-15

    Commensal Streptococcus sanguinis and Streptococcus gordonii are pioneer oral biofilm colonizers. Characteristic for both is the SpxB-dependent production of H 2 O 2 , which is crucial for inhibiting competing biofilm members, especially the cariogenic species Streptococcus mutans H 2 O 2 production is strongly affected by environmental conditions, but few mechanisms are known. Dental plaque pH is one of the key parameters dictating dental plaque ecology and ultimately oral health status. Therefore, the objective of the current study was to characterize the effects of environmental pH on H 2 O 2 production by S. sanguinis and S. gordonii S. sanguinis H 2 O 2 production was not found to be affected by moderate changes in environmental pH, whereas S. gordonii H 2 O 2 production declined markedly in response to lower pH. Further investigation into the pyruvate node, the central metabolic switch modulating H 2 O 2 or lactic acid production, revealed increased lactic acid levels for S. gordonii at pH 6. The bias for lactic acid production at pH 6 resulted in concomitant improvement in the survival of S. gordonii at low pH and seems to constitute part of the acid tolerance response of S. gordonii Differential responses to pH similarly affect other oral streptococcal species, suggesting that the observed results are part of a larger phenomenon linking environmental pH, central metabolism, and the capacity to produce antagonistic amounts of H 2 O 2 IMPORTANCE Oral biofilms are subject to frequent and dramatic changes in pH. S. sanguinis and S. gordonii can compete with caries- and periodontitis-associated pathogens by generating H 2 O 2 Therefore, it is crucial to understand how S. sanguinis and S. gordonii adapt to low pH and maintain their competitiveness under acid stress. The present study provides evidence that certain oral bacteria respond to environmental pH changes by tuning their metabolic output in favor of lactic acid production, to increase their acid survival

  16. Pulmonary antifibrotic mechanisms aspirin-triggered lipoxin A(4) synthetic analog.

    Science.gov (United States)

    Guilherme, Rafael F; Xisto, Debora G; Kunkel, Steven L; Freire-de-Lima, Célio G; Rocco, Patricia R M; Neves, Josiane S; Fierro, Iolanda M; Canetti, Claudio; Benjamim, Claudia F

    2013-12-01

    No successful therapies are available for pulmonary fibrosis, indicating the need for new treatments. Lipoxins and their 15-epimers, aspirin-triggered lipoxins (ATL), present potent antiinflammatory and proresolution effects (Martins et al., J Immunol 2009;182:5374-5381). We show that ATLa, an ATL synthetic analog, therapeutically reversed a well-established pulmonary fibrotic process induced by bleomycin (BLM) in mice. We investigated the mechanisms involved in its effect and found that systemic treatment with ATLa 1 week after BLM instillation considerably reversed the inflammatory response, total collagen and collagen type 1 deposition, vascular endothelial growth factor, and transforming growth factor (TGF)-β expression in the lung and restored surfactant protein C expression levels. ATLa also inhibited BLM-induced apoptosis and cellular accumulation in bronchoalveolar lavage fluid and in the lung parenchyma as evaluated by light microscopy and flow cytometry (Ly6G(+), F4/80(+), CD11c(+), CD4(+), and B220(+) cells) assays. Moreover, ATLa inhibited the lung production of IL-1β, IL-17, TNF-α, and TGF-β induced by BLM-challenged mice. ATLa restored the balance of inducible nitric oxide synthase-positive and arginase-positive cells in the lungs, suggesting a prevalence of M2 versus M1 macrophages. Together, these effects improved pulmonary mechanics because ATLa treatment brought to normal levels lung resistance and elastance, which were clearly altered at 7 days after BLM challenge. Our findings support ATLa as a promising therapeutic agent to treat lung fibrosis.

  17. Mechanism and kinetics of the oxidation of synthetic alpha-NiS

    Directory of Open Access Journals (Sweden)

    BOYAN BOYANOV

    2008-02-01

    Full Text Available The results of an investigation of the mechanism and kinetics of the oxidation process of synthetic a-NiS are presented in this paper. The mechanism of a-NiS oxidation was investigated based on the comparative analysis of DTA–TG–DTG and XRD results, as well as the constructed phase stability diagrams (PSD for the Ni–S–O system. The kinetic investigations of the oxidation process were performed under isothermal conditions (temperature range 823–1073 K. The obtained degrees of desulfurization were used in the calculation process according to the Sharp model and the kinetic parameters, including the activation energies and the rate constants of the characteristic reactions, for the oxidation of a-NiS were determined. These results enabled the formulation of a kinetic equation for the desulfurization process: ‑ln(1−a = k1t = 27.89 exp(–9860/Tt, with an activation energy of 82±4 kJ mol-1, for the first stage of the process and –ln (1 − a = k2t = 1.177 exp(–4810/Tt, with an activation energy of 40±2 kJ mol-1, for the second stage.

  18. Mechanics and energetics in tool manufacture and use: a synthetic approach.

    Science.gov (United States)

    Wang, Liyu; Brodbeck, Luzius; Iida, Fumiya

    2014-11-06

    Tool manufacture and use are observed not only in humans but also in other animals such as mammals, birds and insects. Manufactured tools are used for biomechanical functions such as effective control of fluids and small solid objects and extension of reaching. These tools are passive and used with gravity and the animal users' own energy. From the perspective of evolutionary biology, manufactured tools are extended phenotypes of the genes of the animal and exhibit phenotypic plasticity. This incurs energetic cost of manufacture as compared to the case with a fixed tool. This paper studies mechanics and energetics aspects of tool manufacture and use in non-human beings. Firstly, it investigates possible mechanical mechanisms of the use of passive manufactured tools. Secondly, it formulates the energetic cost of manufacture and analyses when phenotypic plasticity benefits an animal tool maker and user. We take a synthetic approach and use a controlled physical model, i.e. a robot arm. The robot is capable of additively manufacturing scoop and gripper structures from thermoplastic adhesives to pick and place fluid and solid objects, mimicking primates and birds manufacturing tools for a similar function. We evaluate the effectiveness of tool use in pick-and-place and explain the mechanism for gripper tools picking up solid objects with a solid-mechanics model. We propose a way to formulate the energetic cost of tool manufacture that includes modes of addition and reshaping, and use it to analyse the case of scoop tools. Experiment results show that with a single motor trajectory, the robot was able to effectively pick and place water, rice grains, a pebble and a plastic box with a scoop tool or gripper tools that were manufactured by itself. They also show that by changing the dimension of scoop tools, the energetic cost of tool manufacture and use could be reduced. The work should also be interesting for engineers to design adaptive machines. © 2014 The Author

  19. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    Science.gov (United States)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-08-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20-80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5-25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties.

  20. Comparative antimicrobial activity and mechanism of action of bovine lactoferricin-derived synthetic peptides.

    Science.gov (United States)

    Liu, Yifan; Han, Feifei; Xie, Yonggang; Wang, Yizhen

    2011-12-01

    Lactoferricin B (LfcinB), a 25 residue peptide derived from the N-terminal of bovine lactoferrin (bLF), causes depolarization of the cytoplasmic membrane in susceptible bacteria. Its mechanism of action, however, still needs to be elucidated. In the present study, synthetic LfcinB (without a disulfide bridge) and LfcinB (C-C; with a disulfide bridge) as well as three derivatives with 15-, 11- and 9-residue peptides were prepared to investigate their antimicrobial nature and mechanisms. The antimicrobial properties were measured via minimum inhibitory concentration (MIC) determinations, killing kinetics assays and synergy testing, and hemolytic activities were assessed by hemoglobin release. Finally, the morphology of peptide-treated bacteria was determined by atomic force microscopy (AFM). We found that there was no difference in MICs between LfcinB and LfcinB (C-C). Among the derivatives, only LfcinB15 maintained nearly the same level as LfcinB, in the MIC range of 16-128 μg/ml, and the MICs of LfcinB11 (64-256 μg/ml) were 4 times more than LfcinB, while LfcinB9 exhibited the lowest antimicrobial activity. When treated at MIC for 1 h, many blebs were formed and holes of various sizes appeared on the cell surface, but the cell still maintained its integrity. This suggested that LfcinB had a major permeability effect on the cytoplasmic membrane of both Gram-positive and Gram-negative bacteria, which also indicated it may be a possible intracellular target. Among the tested antibiotics, aureomycin increased the bactericidal activity of LfcinB against E. coli, S. aureus and P. aeruginosa, but neomycin did not have such an effect. We also found that the combination of cecropin A and LfcinB had synergistic effects against E. coli.

  1. Pulmonary Antifibrotic Mechanisms Aspirin-Triggered Lipoxin A4 Synthetic Analog

    Science.gov (United States)

    Guilherme, Rafael F.; Xisto, Debora G.; Kunkel, Steven L.; Freire-de-Lima, Célio G.; Rocco, Patricia R.M.; Neves, Josiane S.; Fierro, Iolanda M.; Canetti, Claudio

    2013-01-01

    No successful therapies are available for pulmonary fibrosis, indicating the need for new treatments. Lipoxins and their 15-epimers, aspirin-triggered lipoxins (ATL), present potent antiinflammatory and proresolution effects (Martins et al., J Immunol 2009;182:5374–5381). We show that ATLa, an ATL synthetic analog, therapeutically reversed a well-established pulmonary fibrotic process induced by bleomycin (BLM) in mice. We investigated the mechanisms involved in its effect and found that systemic treatment with ATLa 1 week after BLM instillation considerably reversed the inflammatory response, total collagen and collagen type 1 deposition, vascular endothelial growth factor, and transforming growth factor (TGF)-β expression in the lung and restored surfactant protein C expression levels. ATLa also inhibited BLM-induced apoptosis and cellular accumulation in bronchoalveolar lavage fluid and in the lung parenchyma as evaluated by light microscopy and flow cytometry (Ly6G+, F4/80+, CD11c+, CD4+, and B220+ cells) assays. Moreover, ATLa inhibited the lung production of IL-1β, IL-17, TNF-α, and TGF-β induced by BLM-challenged mice. ATLa restored the balance of inducible nitric oxide synthase–positive and arginase-positive cells in the lungs, suggesting a prevalence of M2 versus M1 macrophages. Together, these effects improved pulmonary mechanics because ATLa treatment brought to normal levels lung resistance and elastance, which were clearly altered at 7 days after BLM challenge. Our findings support ATLa as a promising therapeutic agent to treat lung fibrosis. PMID:23848293

  2. Improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification.

    Science.gov (United States)

    Ye, Lidan; Zhao, Hua; Li, Zhi; Wu, Jin Chuan

    2013-05-01

    Acid tolerance of Lactobacillus pentosus ATCC 8041 was improved by error-prone amplification of its genomic DNA using random primers and Taq DNA polymerase. The resulting amplification products were transferred into wild-type L. pentosus by electroporation and the transformants were screened for growth on low-pH agar plates. After only one round of mutation, one mutant (MT3) was identified that was able to completely consume 20 g/L of glucose to produce lactic acid at a yield of 95% in 1L MRS medium at pH 3.8 within 36 h, whereas no growth or lactic acid production was observed for the wild-type strain under the same conditions. The acid tolerance of mutant MT3 remained genetically stable for at least 25 subcultures. Therefore, the error-prone whole genome amplification technique is a very powerful tool for improving phenotypes of this lactic acid bacterium and may also be applicable for other microorganisms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Chitosan nanoparticles affect acid tolerance response in adhered cells of strpetococcus mutans

    DEFF Research Database (Denmark)

    Neilands, Julia; Sutherland, Duncan S; Resin, Anton

    2011-01-01

    In this study we evaluated the effect of chitosan nanoparticles on the acid tolerance response (ATR) of adhered Streptococcus mutans. An ATR was induced by exposing S. mutans to pH 5.5 for 2 h and confirmed by exposing the acid-adapted cells to pH 3.5 for 30 min, with the majority of cells...... appearing viable according to the LIVE/DEAD (R) technique. However, when chitosan nanoparticles were present during the exposure to pH 5.5, no ATR occurred as most cells appeared dead after the pH 3.5 shock. We conclude that the chitosan nanoparticles tested had the ability to hinder ATR induction...

  4. Amino acid tolerance test using L-β-phenylalanine-125I

    International Nuclear Information System (INIS)

    Hafiez, A.A.; Megahed, Y.M.; Ismail, A.A.; Abdel-Wahab, M.F.; Khater, R.A.

    1978-01-01

    An amino acid tolerance test is described. L-β-phenylalanine- 125 I was used as representative of L-amino acids. The change in radioactivity of the blood after giving a test dose of tagged L-β-phenylalanine was also investigated. L-β-phenylalanine- 125 I tolerance curves were found to be irreproducible when the test dose was given without a carrier. The addition of 2.5 g untagged phenylalanine as a carrier to the test dose allowed a reproducible and precise type of tolerance curves. Metformin in a dose of 0.5 g t.d.s. for three days induced an inhibitory effect on amino acid absorption in normal persons. (author)

  5. Synthetic Biodegradable Hydrogels with Excellent Mechanical Properties and Good Cell Adhesion Characteristics Obtained by the Combinatorial Synthesis of Photo-Cross-Linked Networks

    NARCIS (Netherlands)

    Zant, Erwin; Grijpma, Dirk W.

    Major drawbacks of synthetic hydrogels are their poor mechanical properties and their limited ability to allow cell attachment and proliferation. By photo-cross-linking mixtures of dimethacrylate-functionalized oligomers (macromers) in a combinatorial manner in solution, synthetic hydrogels with

  6. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Science.gov (United States)

    2013-04-03

    ..., Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of castor oil, polymer with adipic acid, linoleic acid... pesticide formulation. Advance Polymer Technology submitted a petition to EPA under the Federal Food, Drug...

  7. Fumarate Production by Torulopsis glabrata: Engineering Heterologous Fumarase Expression and Improving Acid Tolerance.

    Directory of Open Access Journals (Sweden)

    Xiulai Chen

    Full Text Available Fumarate is a well-known biomass building block compound. However, the poor catalytic efficiency of fumarase is one of the major factors preventing its widespread production. To address this issue, we selected residues 159HPND162 of fumarase from Rhizopus oryzae as targets for site-directed mutagenesis based on molecular docking analysis. Twelve mutants were generated and characterized in detail. Kinetic studies showed that the Km values of the P160A, P160T, P160H, N161E, and D162W mutants were decreased, whereas Km values of H159Y, H159V, H159S, N161R, N161F, D162K, and D162M mutants were increased. In addition, all mutants displayed decreased catalytic efficiency except for the P160A mutant, whose kcat/Km was increased by 33.2%. Moreover, by overexpressing the P160A mutant, the engineered strain T.G-PMS-P160A was able to produce 5.2 g/L fumarate. To further enhance fumarate production, the acid tolerance of T.G-PMS-P160A was improved by deleting ade12, a component of the purine nucleotide cycle, and the resulting strain T.G(△ade12-PMS-P160A produced 9.2 g/L fumarate. The strategy generated in this study opens up new avenues for pathway optimization and efficient production of natural products.

  8. Diversity and functional properties of acid-tolerant bacteria isolated from tea plantation soil of Assam.

    Science.gov (United States)

    Goswami, Gunajit; Deka, Priyadarshini; Das, Pompi; Bora, Sudipta Sankar; Samanta, Ramkrishna; Boro, Robin Chandra; Barooah, Madhumita

    2017-07-01

    In this study, we report on the bacterial diversity and their functional properties prevalent in tea garden soils of Assam that have low pH (3.8-5.5). Culture-dependent studies and phospholipid fatty acid analysis revealed a high abundance of Gram-positive bacteria. Further, 70 acid-tolerant bacterial isolates characterized using a polyphasic taxonomy approach could be grouped to the genus Bacillus, Lysinibacillus, Staphylococcus, Brevundimonas, Alcaligenes, Enterobacter, Klebsiella, Escherichia, and Aeromonas. Among the 70 isolates, 47 most promising isolates were tested for their plant growth promoting activity based on the production of Indole Acetic Acid (IAA), siderophore, and HCN as well as solubilization of phosphate, zinc, and potassium. Out of the 47 isolates, 10 isolates tested positive for the entire aforesaid plant growth promoting tests and further tested for quantitative analyses for production of IAA, siderophore, and phosphate solubilization at the acidic and neutral condition. Results indicated that IAA and siderophore production, as well as phosphate solubilization efficiency of the isolates decreased significantly (P ≤ 0.05) in the acidic environment. This study revealed that low soil pH influences bacterial community structure and their functional properties.

  9. Removal of phenol from synthetic wastewater using carbon-mineral composite: Batch mechanisms and composition study

    Science.gov (United States)

    Kamaruddin, Mohamad Anuar; Alrozi, Rasyidah; Aziz, Hamidi Abdul; Han, Tan Yong; Yusoff, Mohd Suffian

    2017-09-01

    This study investigates the treatability of composite adsorbent made from waste materials and minerals which is widely available in Malaysia. The composite adsorbent was prepared based on wet attrition method which focuses on the determination of optimum dosage of each of raw materials amount by conventional design of experiment work. Zeolite, activated carbon, rice husk and limestone were ground to obtained particle size of 150 µm. 45.94% zeolite, 15.31% limestone, 4.38% activated carbon, 4.38% rice husk carbon and 30% of ordinary Portland cement (OPC). The mixture was mixed together under pre-determined mixing time. About 60% (by weight) of water was added and the mixture paste was allowed to harden for 24 hours and then submersed in water for three days for curing. Batch experimental study was performed on synthetic dissolving a known amount of solid crystal phenol with distilled water into the volumetric flasks. From the batch experimental study, it was revealed that the optimum shaking speed for removal of phenol was 200 rpm. The removal efficiency was 65%. The optimum shaking time for removing phenol was 60 minutes; the percentage achieved was 55%. The removal efficiency increased with the increased of the amount of composite adsorbent. The removal efficiency for optimum adsorbent dosage achieved 86%. Furthermore, the influence of pH solution was studied. The optimum pH for removing phenol was pH 6, with the removal percentage of 95%. The results implies that carbon-mineral based composite adsorbent is promising replacement for commercial adsorbent that provides alternative source for industrial adsorption application in various types of effluent treatment system.

  10. Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall.

    Science.gov (United States)

    Hernández-Gascón, B; Peña, E; Melero, H; Pascual, G; Doblaré, M; Ginebra, M P; Bellón, J M; Calvo, B

    2011-11-01

    The material properties of meshes used in hernia surgery contribute to the overall mechanical behaviour of the repaired abdominal wall. The mechanical response of a surgical mesh has to be defined since the haphazard orientation of an anisotropic mesh can lead to inconsistent surgical outcomes. This study was designed to characterize the mechanical behaviour of three surgical meshes (Surgipro®, Optilene® and Infinit®) and to describe a mechanical constitutive law that accurately reproduces the experimental results. Finally, through finite element simulation, the behaviour of the abdominal wall was modelled before and after surgical mesh implant. Uniaxial loading of mesh samples in two perpendicular directions revealed the isotropic response of Surgipro® and the anisotropic behaviour of Optilene® and Infinit®. A phenomenological constitutive law was used to reproduce the measured experimental curves. To analyze the mechanical effect of the meshes once implanted in the abdomen, finite element simulation of the healthy and partially herniated repaired rabbit abdominal wall served to reproduce wall behaviour before and after mesh implant. In all cases, maximal displacements were lower and maximal principal stresses higher in the implanted abdomen than the intact wall model. Despite the fact that no mesh showed a behaviour that perfectly matched that of abdominal muscle, the Infinit® mesh was able to best comply with the biomechanics of the abdominal wall. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. EXPERIMENTAL VERIFICATION OF THE MECHANICAL RESISTANCE OF FORENSIC MARKING BY MEANS SYNTHETIC DNA

    Directory of Open Access Journals (Sweden)

    Marek HÜTTER

    2017-06-01

    Full Text Available This article deals with experimental verification of resistance of forensic identification marks (microdots in combination with artificial DNA to property. It is considered mechanical abrasion from potential offender to remove or damage readability of marking and following identification. The aim of this work is to test the hypothesis that forensic marking can be completely removed by the process of mechanical abrasion without causing damages to a protected object. To fulfill this purpose it was designed and built a test equipment, where experiments were carried out to confirm or refute the above mentioned hypothesis.

  12. Engineering strategies to recapitulate epithelial morphogenesis within synthetic three-dimensional extracellular matrix with tunable mechanical properties

    International Nuclear Information System (INIS)

    Miroshnikova, Y A; Sarang-Sieminski, A L; Jorgens, D M; Auer, M; Spirio, L; Weaver, V M

    2011-01-01

    The mechanical properties (e.g. stiffness) of the extracellular matrix (ECM) influence cell fate and tissue morphogenesis and contribute to disease progression. Nevertheless, our understanding of the mechanisms by which ECM rigidity modulates cell behavior and fate remains rudimentary. To address this issue, a number of two and three-dimensional (3D) hydrogel systems have been used to explore the effects of the mechanical properties of the ECM on cell behavior. Unfortunately, many of these systems have limited application because fiber architecture, adhesiveness and/or pore size often change in parallel when gel elasticity is varied. Here we describe the use of ECM-adsorbed, synthetic, self-assembling peptide (SAP) gels that are able to recapitulate normal epithelial acini morphogenesis and gene expression in a 3D context. By exploiting the range of viscoelasticity attainable with these SAP gels, and their ability to recreate native-like ECM fibril topology with minimal variability in ligand density and pore size, we were able to reconstitute normal and tumor-like phenotypes and gene expression patterns in nonmalignant mammary epithelial cells. Accordingly, this SAP hydrogel system presents the first tunable system capable of independently assessing the interplay between ECM stiffness and multi-cellular epithelial phenotype in a 3D context

  13. Elucidation of the Synthetic Mechanism of Acylceramide, an Essential Lipid for Skin Barrier Function.

    Science.gov (United States)

    Ohno, Yusuke

    2017-01-01

    The primary function of the skin is to act as a permeability barrier that prevents water loss from inside the body and external invasion such as by pathogens, harmful substances, and allergens. Lipids play a critical role in skin barrier formation by forming multi-lamellar structures in the stratum corneum, the outermost cell layer of the epidermis. Ceramide, the backbone of sphingolipids, accounts for more than 50% of the stratum corneum lipids. Acylceramides are epidermis-specific ceramide species essential for skin barrier formation. Decreases in acylceramide levels and changes in ceramide composition and chain-length are associated with such cutaneous disorders as ichthyosis, atopic dermatitis, and psoriasis. Acylceramide consists of a long-chain base and an amide-linked ultra-long-chain fatty acid (ULCFA, 28-36 carbon chain), which is ω-hydroxylated and esterified with linoleic acid. Although the molecular mechanism by which acylceramide is generated has not been fully understood for decades, we recently identified two genes, CYP4F22 and PNPLA1, involved in acylceramide synthesis and elucidated the entire biosynthetic pathway of acylceramide: the synthesis of ULCFA by ELOVL1 and ELOVL4, ω-hydroxylation of the ULCFA by CYP4F22, amide-bond formation with a long-chain base by CERS3, and transacylation of linoleic acid from triacylglycerol to ω-hydroxyceramide by PNPLA1 to generate acylceramide. CYP4F22 and PNPLA1 are the causative genes of ichthyosis. We demonstrated that mutations of CYP4F22 or PNPLA1 markedly reduced acylceramide production. Our recent findings provide important insights into the molecular mechanisms of skin barrier formation and of ichthyosis pathogenesis.

  14. Mechanism of reduction in hydrogen atmosphere and thermal transformation of synthetic ferrihydrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Masina, C.J., E-mail: colani.masina@nmmu.ac.za [Centre for HRTEM, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth (South Africa); Neethling, J.H.; Olivier, E.J. [Centre for HRTEM, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth (South Africa); Ferg, E. [Department of Chemistry, Nelson Mandela Metropolitan University, Port Elizabeth (South Africa); Manzini, S.; Lodya, L.; Mohlala, P.; Ngobeni, M.W. [Sasol Technology R and D, 1 Klasie Havenga Road, Sasolburg (South Africa)

    2015-01-10

    Highlights: • Magnetic measurements used to study thermal transformation of ferrihydrite. • Reduction mechanisms of ferrihydrite were monitored by TPR, MS, and in-situ XRD. • Nanocrystalline Fe was produced by the reducing ferrihydrite in H{sub 2}. • The presence of SiO{sub 2} in ferrihydrite alters the reduction pathway of ferrihydrite. - Abstract: The thermal transformation under vacuum and the reduction behavior in hydrogen atmosphere of 2- and 6-line ferrihydrite (FeOOH·nH{sub 2}O) as well as 2-line FeOOH·nH{sub 2}O deposited onto silica are reported. The investigation methods include magnetization measurements, temperature programmed reduction, in-situ X-ray diffraction and Mössbauer spectroscopy. The thermal transformation of FeOOH·nH{sub 2}O to hematite (α-Fe{sub 2}O{sub 3}) was monitored through changes in the magnetization as a function of temperature; it appears to proceed through the loss of the lattice water and sintering accompanied by improved crystallinity and structural changes. Such a transformation is initiated at T ∼ 580 K for 2-line and 6-line FeOOH·nH{sub 2}O and at T ∼ 660 K for 2-line FeOOH·nH{sub 2}O/SiO{sub 2}, i.e., the presence of SiO{sub 2} appears to inhibit the transformation. SiO{sub 2} also tends to prevent the increase of the crystallite size above a certain threshold value. Reduction reactions are initiated at relatively lower temperatures (∼480 K) implying that a gaseous environment facilitates the thermal dehydration/dehydroxylation process. Three different reduction mechanisms of FeOOH·nH{sub 2}O to metallic iron (α-Fe) are observed: a two-stage process via magnetite (Fe{sub 3}O{sub 4}) as an intermediate phase for 2-line FeOOH·nH{sub 2}O, a three-step reduction involving Fe{sub 3}O{sub 4} and wüstite (FeO) as intermediate phases for 2-line FeOOH·nH{sub 2}O/SiO{sub 2} and a thermal transformation to α-Fe{sub 2}O{sub 3} followed by a two-step reduction via Fe{sub 3}O{sub 4} intermediate for 6-line Fe

  15. Mechanism of reduction in hydrogen atmosphere and thermal transformation of synthetic ferrihydrite nanoparticles

    International Nuclear Information System (INIS)

    Masina, C.J.; Neethling, J.H.; Olivier, E.J.; Ferg, E.; Manzini, S.; Lodya, L.; Mohlala, P.; Ngobeni, M.W.

    2015-01-01

    Highlights: • Magnetic measurements used to study thermal transformation of ferrihydrite. • Reduction mechanisms of ferrihydrite were monitored by TPR, MS, and in-situ XRD. • Nanocrystalline Fe was produced by the reducing ferrihydrite in H 2 . • The presence of SiO 2 in ferrihydrite alters the reduction pathway of ferrihydrite. - Abstract: The thermal transformation under vacuum and the reduction behavior in hydrogen atmosphere of 2- and 6-line ferrihydrite (FeOOH·nH 2 O) as well as 2-line FeOOH·nH 2 O deposited onto silica are reported. The investigation methods include magnetization measurements, temperature programmed reduction, in-situ X-ray diffraction and Mössbauer spectroscopy. The thermal transformation of FeOOH·nH 2 O to hematite (α-Fe 2 O 3 ) was monitored through changes in the magnetization as a function of temperature; it appears to proceed through the loss of the lattice water and sintering accompanied by improved crystallinity and structural changes. Such a transformation is initiated at T ∼ 580 K for 2-line and 6-line FeOOH·nH 2 O and at T ∼ 660 K for 2-line FeOOH·nH 2 O/SiO 2 , i.e., the presence of SiO 2 appears to inhibit the transformation. SiO 2 also tends to prevent the increase of the crystallite size above a certain threshold value. Reduction reactions are initiated at relatively lower temperatures (∼480 K) implying that a gaseous environment facilitates the thermal dehydration/dehydroxylation process. Three different reduction mechanisms of FeOOH·nH 2 O to metallic iron (α-Fe) are observed: a two-stage process via magnetite (Fe 3 O 4 ) as an intermediate phase for 2-line FeOOH·nH 2 O, a three-step reduction involving Fe 3 O 4 and wüstite (FeO) as intermediate phases for 2-line FeOOH·nH 2 O/SiO 2 and a thermal transformation to α-Fe 2 O 3 followed by a two-step reduction via Fe 3 O 4 intermediate for 6-line FeOOH·nH 2 O. It is inferred that SiO 2 interacts with Fe species to form Fe–O–Fe structures which tend

  16. Buffer capacity of food components influences the acid tolerance response in Salmonella Typhimurium during simulated gastric passage

    DEFF Research Database (Denmark)

    Henriksen, Sidsel; Buschhardt, Tasja; Hansen, Tina Beck

    2014-01-01

    tubes, enabling simultaneous testing of biological triplicates under varying conditions. Surprisingly, we found that less buffered media provided higher protection of Salmonella, compared to media with high buffer capacity. By investigating the relative gene expression of rpoS and ompR encoding for two...... Heart Infusion Broth having a higher buffer capacity. We suggest this to be associated with a varying ability of Salmonella Typhimurium to mount a stationary phase acid tolerance response (ATR) depending on the buffer capacity of the food vehicle....

  17. Methodology adjustments for organic acid tolerance studies in oat under hydroponic systems

    Directory of Open Access Journals (Sweden)

    Mauricio Marini Kopp

    2009-06-01

    Full Text Available The occurrence of anaerobic conditions in hydromorphic soils favors the development of anaerobic microorganisms that produce phytotoxic substances representing primarily by organic acids. The selection of promising oat (Avena sativa L. genotypes for use in those situations requires field evaluations that can be cumbersome, making hydroponics a viable alternative. The objective of this work was to adjust a methodology to use in studies of tolerance to organic acids in oat under hydroponic systems. For such goal, the best germination system was determined in order to reduce the seedling initial establishment effects under hydroponics, the ideal concentration for screening genotypes and the best variable for stress evaluation. It was found that the most efficient germination system was "pleated germination paper" with small and husked seeds. The best concentration for studying organic acid tolerance ranged from 2.3 to 6.2 mM and the most suitable variable for the evaluation was root length.A ocorrência de condições anaeróbias nos solos hidromórficos favorece o desenvolvimento de microrganismos anaeróbios que produzem substâncias fitotóxicas representadas principalmente pelos ácidos orgânicos. A seleção de constituições genéticas de aveia (Avena sativa L. promissoras para utilização nestas situações requer avaliações de difícil execução no campo, tornando a utilização de sistemas hidropônicos mais vantajosa. O objetivo deste trabalho foi ajustar uma metodologia para ser utilizada em estudos de tolerância a ácidos orgânicos em aveia através de sistemas hidropônicos. Para tal fim foi determinada uma forma adequada de promover a germinação das sementes de maneira a reduzir os efeitos do estabelecimento inicial das plântulas na hidroponia, uma faixa de concentração ideal para discriminação dos genótipos e as variáveis de maior interesse para avaliação. O sistema de germinação mais eficiente é através de

  18. Deficiency of PdxR in Streptococcus mutans affects vitamin B6 metabolism, acid tolerance response and biofilm formation.

    Science.gov (United States)

    Liao, S; Bitoun, J P; Nguyen, A H; Bozner, D; Yao, X; Wen, Z T

    2015-08-01

    Streptococcus mutans, a key etiological agent of the human dental caries, lives primarily on the tooth surface in tenacious biofilms. The SMU864 locus, designated pdxR, is predicted to encode a member of the novel MocR/GabR family proteins, which are featured with a winged helix DNA-binding N-terminal domain and a C-terminal domain highly homologous to the pyridoxal phosphate-dependent aspartate aminotransferases. A pdxR-deficient mutant, TW296, was constructed using allelic exchange. PdxR deficiency in S. mutans had little effect on cell morphology and growth when grown in brain heart infusion. However, when compared with its parent strain, UA159, the PdxR-deficient mutant displayed major defects in acid tolerance response and formed significantly fewer biofilms (P mutans is known to require vitamin B6 to grow in defined medium, B6 vitamers, especially pyridoxal, were strongly inhibitory at millimolar concentrations, against S. mutans growth and biofilm formation. Our results suggest that PdxR in S. mutans plays an important role in regulation of vitamin B6 metabolism, acid tolerance response and biofilm formation. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Withania somnifera attenuates acid production, acid tolerance and extra-cellular polysaccharide formation of Streptococcus mutans biofilms.

    Science.gov (United States)

    Pandit, Santosh; Song, Kwang-Yeob; Jeon, Jae-Gyu

    2014-01-01

    Withania somnifera (Ashwagandha) is a plant of the Solanaceae family. It has been widely used as a remedy for a variety of ailments in India and Nepal. The plant has also been used as a controlling agent for dental diseases. The aim of the present study was to evaluate the activity of the methanol extract of W. somnifera against the physiological ability of cariogenic biofilms and to identify the components of the extract. To determine the activity of the extract, assays for sucrose-dependent bacterial adherence, glycolytic acid production, acid tolerance, and extracellular polysaccharide formation were performed using Streptococcus mutans biofilms. The viability change of S. mutans biofilms cells was also determined. A phytochemical analysis of the extract was performed using TLC and LC/MS/MS. The extract showed inhibitory effects on sucrose-dependent bacterial adherence (≥ 100 μg/ml), glycolytic acid production (≥ 300 μg/ml), acid tolerance (≥ 300 μg/ml), and extracellular polysaccharide formation (≥ 300 μg/ml) of S. mutans biofilms. However, the extract did not alter the viability of S. mutans biofilms cells in all concentrations tested. Based on the phytochemical analysis, the activity of the extract may be related to the presence of alkaloids, anthrones, coumarines, anthraquinones, terpenoids, flavonoids, and steroid lactones (withanolide A, withaferin A, withanolide B, withanoside IV, and 12-deoxy withastramonolide). These data indicate that W. somnifera may be a potential agent for restraining the physiological ability of cariogenic biofilms.

  20. Genome sequence of the acid-tolerant Desulfovibrio sp. DV isolated from the sediments of a Pb-Zn mine tailings dam in the Chita region, Russia

    Directory of Open Access Journals (Sweden)

    Anastasiia Kovaliova

    2017-03-01

    Full Text Available Here we report the draft genome sequence of the acid-tolerant Desulfovibrio sp. DV isolated from the sediments of a Pb-Zn mine tailings dam in the Chita region, Russia. The draft genome has a size of 4.9 Mb and encodes multiple K+-transporters and proton-consuming decarboxylases. The phylogenetic analysis based on concatenated ribosomal proteins revealed that strain DV clusters together with the acid-tolerant Desulfovibrio sp. TomC and Desulfovibrio magneticus. The draft genome sequence and annotation have been deposited at GenBank under the accession number MLBG00000000.

  1. Production of itaconic acid from acetate by engineering acid-tolerant Escherichia coli W.

    Science.gov (United States)

    Noh, Myung Hyun; Lim, Hyun Gyu; Woo, Sung Hwa; Song, Jinyi; Jung, Gyoo Yeol

    2018-03-01

    Utilization of abundant and cheap carbon sources can effectively reduce the production cost and enhance the economic feasibility. Acetate is a promising carbon source to achieve cost-effective microbial processes. In this study, we engineered an Escherichia coli strain to produce itaconic acid from acetate. As acetate is known to inhibit cell growth, we initially screened for a strain with a high tolerance to 10 g/L of acetate in the medium, and the W strain was selected as the host. Subsequently, the WC strain was obtained by overexpression of cad (encoding cis-aconitate decarboxylase) using a synthetic promoter and 5' UTR. However, the WC strain produced only 0.13 g/L itaconic acid because of low acetate uptake. To improve the production, the acetate assimilating pathway and glyoxylate shunt pathway were amplified by overexpression of pathway genes as well as its deregulation. The resulting strain, WCIAG4 produced 3.57 g/L itaconic acid (16.1% of theoretical maximum yield) after 88 hr of fermentation with rapid acetate assimilation. These efforts support that acetate can be a potential feedstock for biochemical production with engineered E. coli. © 2017 Wiley Periodicals, Inc.

  2. Elucidation of the mechanism of conversion of methanol and ethanol to hydrocarbons on a new type of synthetic zeolite

    NARCIS (Netherlands)

    Derouane, E.G.; Nagy, J.B.; Dejaifve, P.; Hooff, van J.H.C.; Spekman, B.P.A.; Védrine, J.C.; Naccache, C.

    1978-01-01

    13C nuclear magnetic resonance and vapor-phase chromatography have been used to investigate the conversions of methanol and ethanol to hydrocarbons on a synthetic zeolite of the type H-ZSM-5 as described by Mobil. Methanol is first dehydrated to dimethyl ether and ethylene. Then the reaction

  3. A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance.

    Science.gov (United States)

    Wu, Chongde; Zhang, Juan; Chen, Wei; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-01-01

    Lactobacillus casei has traditionally been recognized as a probiotic and frequently used as an adjunct culture in fermented dairy products, where acid stress is an environmental condition commonly encountered. In the present study, we carried out a comparative physiological and proteomic study to investigate lactic-acid-induced alterations in Lactobacillus casei Zhang (WT) and its acid-resistant mutant. Analysis of the physiological data showed that the mutant exhibited 33.8% higher glucose phosphoenolpyruvate:sugar phosphotransferase system activity and lower glycolytic pH compared with the WT under acidic conditions. In addition, significant differences were detected in both cells during acid stress between intracellular physiological state, including intracellular pH, H(+)-ATPase activity, and intracellular ATP pool. Comparison of the proteomic data based on 2D-DIGE and i-TRAQ indicated that acid stress invoked a global change in both strains. The mutant protected the cells against acid damage by regulating the expression of key proteins involved in cellular metabolism, DNA replication, RNA synthesis, translation, and some chaperones. Proteome results were validated by Lactobacillus casei displaying higher intracellular aspartate and arginine levels, and the survival at pH 3.3 was improved 1.36- and 2.10-fold by the addition of 50-mM aspartate and arginine, respectively. To our knowledge, this is the first demonstration that aspartate may be involved in acid tolerance in Lactobacillus casei. Results presented here may help us understand acid resistance mechanisms and help formulate new strategies to enhance the industrial applications of this species.

  4. Synthetic Cannabinoids

    Directory of Open Access Journals (Sweden)

    Aslihan Okan Ibiloglu

    2017-09-01

    Full Text Available Synthetic cannabinoids which is a subgroup of cannabinoids are commonly used for recreational drug use throughout the whole world. Although both marijuana and synthetic cannabinoids stimulate the same receptors, cannabinoid receptor 1 (CB1 and cannabinoid receptor 2 (CB2, studies have shown that synthetic cannabinoids are much more potent than marijuana. The longer use of synthetic cannabinoids can cause severe physical and psychological symptoms that might even result in death, similar to many known illicit drugs. Main treatment options mostly involve symptom management and supportive care. The aim of this article is to discuss clinical and pharmacological properties of the increasingly used synthetic cannabinoids. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2017; 9(3.000: 317-328

  5. Adaptation mechanisms of bacteria during the degradation of polychlorinated biphenyls in the presence of natural and synthetic terpenes as potential degradation inducers

    Energy Technology Data Exchange (ETDEWEB)

    Zoradova-Murinova, Slavomira; Dudasova, Hana; Lukacova, Lucia; Certik, Milan; Dercova, Katarina [Slovak Univ. of Technology, Bratislava (Slovakia). Inst. of Biotechnology and Food Science; Silharova, Katarina; Vrana, Branislav [Water Research Institute, Bratislava (Slovakia)

    2012-06-15

    In this study, we examined the effect of polychlorinated biphenyls (PCBs) in the presence of natural and synthetic terpenes and biphenyl on biomass production, lipid accumulation, and membrane adaptation mechanisms of two PCB-degrading bacterial strains Pseudomonas stutzeri and Burkholderia xenovorans LB400. According to the results obtained, it could be concluded that natural terpenes, mainly those contained in ivy leaves and pine needles, decreased adaptation responses induced by PCBs in these strains. The adaptation processes under investigation included growth inhibition, lipid accumulation, composition of fatty acids, cis/trans isomerization, and membrane saturation. Growth inhibition effect decreased upon addition of these natural compounds to the medium. The amount of unsaturated fatty acids that can lead to elevated membrane fluidity increased in both strains after the addition of the two natural terpene sources. The cells adaptation changes were more prominent in the presence of carvone, limonene, and biphenyl than in the presence of natural terpenes, as indicated by growth inhibition, lipid accumulation, and cis/trans isomerization. Addition of biphenyl and carvone simultaneously with PCBs increased the trans/cis ratio of fatty acids in membrane fractions probably as a result of fluidizing effects of PCBs. This stimulation is more pronounced in the presence of PCBs as a sole carbon source. This suggests that PCBs alone have a stronger effect on bacterial membrane adaptation mechanisms than when added together with biphenyl or natural or synthetic terpenes. (orig.)

  6. TaALMT1 promoter sequence compositions, acid tolerance, and Al tolerance in wheat cultivars and landraces from Sichuan in China.

    Science.gov (United States)

    Han, C; Dai, S F; Liu, D C; Pu, Z J; Wei, Y M; Zheng, Y L; Wen, D J; Zhao, L; Yan, Z H

    2013-11-18

    Previous genetic studies on wheat from various sources have indicated that aluminum (Al) tolerance may have originated independently in USA, Brazil, and China. Here, TaALMT1 promoter sequences of 92 landraces and cultivars from Sichuan, China, were sequenced. Five promoter types (I', II, III, IV, and V) were observed in 39 cultivars, and only three promoter types (I, II, and III) were observed in 53 landraces. Among the wheat collections worldwide, only the Chinese Spring (CS) landrace native to Sichuan, China, carried the TaALMT1 promoter type III. Besides CS, two other Sichuan-bred landraces and six cultivars with TaALMT1 promoter type III were identified in this study. In the phylogenetic tree constructed based on the TaALMT1 promoter sequences, type III formed a separate branch, which was supported by a high bootstrap value. It is likely that TaALMT1 promoter type III originated from Sichuan-bred wheat landraces of China. In addition, the landraces with promoter type I showed the lowest Al tolerance among all landraces and cultivars. Furthermore, the cultivars with promoter type IV showed better Al tolerance than landraces with promoter type II. A comparison of acid tolerance and Al tolerance between cultivars and landraces showed that the landraces had better acid tolerance than the cultivars, whereas the cultivars showed better Al tolerance than the landraces. Moreover, significant difference in Al tolerance was also observed between the cultivars raised by the National Ministry of Agriculture and by Sichuan Province. Among the landraces from different regions, those from the East showed better acid tolerance and Al tolerance than those from the South and West of Sichuan. Additional Al-tolerant and acid-tolerant wheat lines were also identified.

  7. A mild pulsed electric field condition that improves acid tolerance, growth, and protease activity of Lactobacillus acidophilus LA-K and Lactobacillus delbrueckii subspecies bulgaricus LB-12.

    Science.gov (United States)

    Najim, N; Aryana, Kayanush J

    2013-06-01

    Pulsed electric field (PEF) processing involves the application of pulses of voltage for less than 1 s to fluid products placed between 2 electrodes. The effect of mild PEF on beneficial characteristics of probiotic bacteria Lactobacillus acidophilus and Lactobacillus delbrueckii ssp. bulgaricus is not clearly understood. The objective of this study was to determine the influence of mild PEF conditions on acid tolerance, growth, and protease activity of Lb. acidophilus LA-K and Lactobacillus delbrueckii ssp. bulgaricus LB-12. A pilot plant PEF system (OSU-4M; The Ohio State University, Columbus) was used. The PEF treatments were positive square unipolar pulse width of 3 µs, pulse period of 0.5s, electric field strength of 1 kV/cm, delay time of 20 µs, flow rate of 60 mL/min, and 40.5°C PEF treatment temperature. Both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 subjected to mild PEF conditions were acid tolerant until the end of the 120 min of incubation, unlike the Lb. bulgaricus control, which was not acid tolerant after 30 min. The mild PEF-treated Lb. acidophilus LA-K and Lb. bulgaricus LB-12 reached the logarithmic phase of growth an hour earlier than the control. Mild PEF conditions studied significantly improved acid tolerance, exponential growth, and protease activity of both Lb. acidophilus LA-K and Lb. bulgaricus LB-12 compared with the control. The mild PEF conditions studied can be recommended for pretreating cultures to enhance these desirable attributes. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Multiple-unit tablet of probiotic bacteria for improved storage stability, acid tolerability, and in vivo intestinal protective effect

    Directory of Open Access Journals (Sweden)

    Park HJ

    2016-04-01

    Full Text Available Hee Jun Park,1 Ga Hyeon Lee,1 Joonho Jun,1 Miwon Son,1 Myung Joo Kang2 1Dong-A Pharmaceutical Co. Ltd., Yongin, Gyeonggi, 2College of Pharmacy, Dankook University, Cheonan, Chungnam, Korea Abstract: The aim of this study was to formulate probiotics-loaded pellets in a tablet form to improve storage stability, acid tolerability, and in vivo intestinal protective effect. Bacteria-loaded pellets primarily prepared with hydroxypropyl methylcellulose acetate succinate were compressed into tablets with highly compressible excipients and optimized for flow properties, hardness, and disintegration time. The optimized probiotic tablet consisted of enteric-coated pellets (335 mg, microcrystalline cellulose (Avicel PH102, 37.5 mg, and porous calcium silicate (25 mg and allowed whole survival of living bacteria during the compaction process with sufficient tablet hardness (13 kp and disintegration time (14 minutes. The multiple-unit tablet showed remarkably higher storage stability under ambient conditions (25°C/60% relative humidity over 6 months and resistance to acidic medium compared to uncoated strains or pellets. Repeated intake of this multiple-unit tablet significantly lowered plasma level of endotoxin, a pathogenic material, compared to repeated intake of bare probiotics or marketed products in rats. These results, therefore, suggest that the multiple-unit tablet is advantageous to better bacterial viability and gain the beneficial effects on the gut flora, including the improvement of intestinal barrier function. Keywords: probiotics, multiple-unit tablet, bacterial viability, acid resistance, intestinal barrier function

  9. The acid tolerance response and pH adaptation of Enterococcus faecalis in extract of lime Citrus aurantiifolia from Aceh Indonesia.

    Science.gov (United States)

    Mubarak, Zaki; Soraya, Cut

    2018-01-01

    Background:  The objective of the present study was to evaluate the acid tolerance response and pH adaptation when Enterococcus faecalis interacted with extract of lime ( Citrus aurant iifolia ). Methods : We used E. faecalis ATCC 29212 and lime extract from Aceh, Indonesia. The microbe was analyzed for its pH adaptation, acid tolerance response, and adhesion assay using a light microscope with a magnification of x1000. Further, statistical tests were performed to analyze both correlation and significance of the acid tolerance and pH adaptation as well as the interaction activity. Results : E. faecalis was able to adapt to a very acidic environment (pH 2.9), which was characterized by an increase in its pH (reaching 4.2) at all concentrations of the lime extract (p lime extract based on spectrophotometric data (595 nm) (p lime extract was relatively stable within 6 up to 12 hours (p 0.05) based on the mass profiles of its interaction activity. Conclusions : E. faecalis can adapt to acidic environments (pH 2.9-4.2); it is also able to tolerate acid generated by Citrus auranti ifolia extract, revealing a stable interaction in the first 6-12 hours.

  10. Effects of changing environmental conditions on synthetic aperture radar backscattering coefficient, scattering mechanisms, and class separability in a forest area

    Science.gov (United States)

    Mahdavi, Sahel; Maghsoudi, Yasser; Amani, Meisam

    2017-07-01

    Environmental conditions have considerable effects on synthetic aperture radar (SAR) imagery. Therefore, assessing these effects is important for obtaining accurate and reliable results. In this study, three series of RADARSAT-2 SAR images were evaluated. In each of these series, the sensor configuration was fixed, but the environmental conditions differed. The effects of variable environmental conditions were also investigated on co- and cross-polarized backscattering coefficients, Freeman-Durden scattering contributions, and the pedestal height in different classes of a forest area in Ottawa, Ontario. It was observed that the backscattering coefficient of wet snow was up to 2 dB more than that of dry snow. The absence of snow also caused a decrease of up to 3 dB in the surface scattering of ground and up to 5 dB in that of trees. In addition, the backscatter coefficients of ground vegetation, hardwood species, and softwood species were more similar at temperatures below 0°C than those at temperatures above 0°C. Moreover, the pedestal height was generally greater at temperatures above 0°C than at temperatures below 0°C. Finally, the highest class separability was observed when the temperature was at or above 0°C and there was no snow on the ground or trees.

  11. Synthetic environments

    Science.gov (United States)

    Lukes, George E.; Cain, Joel M.

    1996-02-01

    The Advanced Distributed Simulation (ADS) Synthetic Environments Program seeks to create robust virtual worlds from operational terrain and environmental data sources of sufficient fidelity and currency to interact with the real world. While some applications can be met by direct exploitation of standard digital terrain data, more demanding applications -- particularly those support operations 'close to the ground' -- are well-served by emerging capabilities for 'value-adding' by the user working with controlled imagery. For users to rigorously refine and exploit controlled imagery within functionally different workstations they must have a shared framework to allow interoperability within and between these environments in terms of passing image and object coordinates and other information using a variety of validated sensor models. The Synthetic Environments Program is now being expanded to address rapid construction of virtual worlds with research initiatives in digital mapping, softcopy workstations, and cartographic image understanding. The Synthetic Environments Program is also participating in a joint initiative for a sensor model applications programer's interface (API) to ensure that a common controlled imagery exploitation framework is available to all researchers, developers and users. This presentation provides an introduction to ADS and the associated requirements for synthetic environments to support synthetic theaters of war. It provides a technical rationale for exploring applications of image understanding technology to automated cartography in support of ADS and related programs benefitting from automated analysis of mapping, earth resources and reconnaissance imagery. And it provides an overview and status of the joint initiative for a sensor model API.

  12. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ9-THC: Mechanism underlying greater toxicity?

    Science.gov (United States)

    Fantegrossi, William E.; Moran, Jeffery H.; Radominska-Pandya, Anna; Prather, Paul L.

    2013-01-01

    K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a “safe” and “legal” alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, Δ9-tetrahydrocannabinol (Δ9-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ9-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ9-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ9-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed “advantages” have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances. PMID:24084047

  13. Distinct pharmacology and metabolism of K2 synthetic cannabinoids compared to Δ(9)-THC: mechanism underlying greater toxicity?

    Science.gov (United States)

    Fantegrossi, William E; Moran, Jeffery H; Radominska-Pandya, Anna; Prather, Paul L

    2014-02-27

    K2 or Spice products are emerging drugs of abuse that contain synthetic cannabinoids (SCBs). Although assumed by many teens and first time drug users to be a "safe" and "legal" alternative to marijuana, many recent reports indicate that SCBs present in K2 produce toxicity not associated with the primary psychoactive component of marijuana, ∆(9)-tetrahydrocannabinol (Δ(9)-THC). This mini-review will summarize recent evidence that use of K2 products poses greater health risks relative to marijuana, and suggest that distinct pharmacological properties and metabolism of SCBs relative to Δ(9)-THC may contribute to the observed toxicity. Studies reviewed will indicate that in contrast to partial agonist properties of Δ(9)-THC typically observed in vitro, SCBs in K2 products act as full cannabinoid receptor type 1 (CB1R) and type 2 (CB2R) agonists in both cellular assays and animal studies. Furthermore, unlike Δ(9)-THC metabolism, several SCB metabolites retain high affinity for, and exhibit a range of intrinsic activities at, CB1 and CB2Rs. Finally, several reports indicate that although quasi-legal SCBs initially evaded detection and legal consequences, these presumed "advantages" have been limited by new legislation and development of product and human testing capabilities. Collectively, evidence reported in this mini-review suggests that K2 products are neither safe nor legal alternatives to marijuana. Instead, enhanced toxicity of K2 products relative to marijuana, perhaps resulting from the combined actions of a complex mixture of different SCBs present and their active metabolites that retain high affinity for CB1 and CB2Rs, highlights the inherent danger that may accompany use of these substances. © 2013.

  14. A new loss mechanism in graphene nanoresonators due to the synthetic electric fields caused by inherent out-of-plane membrane corrugations

    International Nuclear Information System (INIS)

    Firsova, N E; Firsov, Yu A

    2012-01-01

    For the first time the influence of out-of-plane deformations, which always exist in graphene, on the non-stationary processes is considered for the case of a monolayer graphene nanoresonator. A new loss mechanism for this device caused by dissipative intra-valley currents stipulated by synthetic electric fields is studied. These fields are generated by time-dependent gauge fields arising in a graphene membrane due to its intrinsic out-of-plane distortions and the influence of the external periodic electromotive force. The corresponding formula for the quality factor has a quantum mechanical origin and includes quantum mechanical parameters. This loss mechanism accounts for an essential part (about 40%) of losses in a graphene nanoresonator and it is specific just for graphene. The ways of minimization of this kind of dissipation (an increase in the quality factor of the electromechanical system) are discussed. It is explained why one can enhance the quality factor by correctly choosing a combination of strains (by strain engineering). In addition, it is shown that the quality factor can be increased by switching on a magnetic field perpendicular to the graphene membrane.

  15. Cell Penetrating Capacity and Internalization Mechanisms Used by the Synthetic Peptide CIGB-552 and Its Relationship with Tumor Cell Line Sensitivity.

    Science.gov (United States)

    Astrada, Soledad; Fernández Massó, Julio Raúl; Vallespí, Maribel G; Bollati-Fogolín, Mariela

    2018-03-30

    CIGB-552 is a twenty-amino-acid novel synthetic peptide that has proven to be effective in reducing tumor size and increasing lifespan in tumor-bearing mice. Such capability is conferred by its cell-penetrating peptide character, which allows it to enter cells and elicit a pro-apoptotic effect through its major mediator, COMMD1 protein. Cell-penetrating peptides are able to use different internalization mechanisms, such as endocytosis or direct transduction through the plasma membrane. Although CIGB-552 cytotoxicity has been evaluated in several non-tumor- and tumor-derived cell lines, no data regarding the relationship between cell line sensitivity, cell penetrating capacity, the internalization mechanisms involved, COMMD1 expression levels, or its subcellular localization has yet been produced. Here, we present the results obtained from a comparative analysis of CIGB-552 sensitivity, internalization capacity and the mechanisms involved in three human tumor-derived cell lines from different origins: mammary gland, colon and lung (MCF-7, HT-29 and H460, respectively). Furthermore, cell surface markers relevant for internalization processes such as phosphatidylserine, as well as CIGB-552 target COMMD1 expression/localization, were also evaluated. We found that both endocytosis and transduction are involved in CIGB-552 internalization in the three cell lines evaluated. However, CIGB-552 incorporation efficiency and contribution of each mechanism is cell-line dependent. Finally, sensitivity was directly correlated with high internalization capacity in those cell lines where endocytosis had a major contribution on CIGB-552 internalization.

  16. Synthetic Rutile

    International Nuclear Information System (INIS)

    Burastero, J.

    1975-01-01

    This work is about the laboratory scale investigation of the conditions in the rutile synthetic production from one me nita in Aguas Dulces reservoir. The iron mineral is chlorinated and volatilized selectively leaving a residue enriched in titanium dioxide which can be used as a substitute of rutile mineral

  17. Biaxial analysis of synthetic scaffolds for hernia repair demonstrates variability in mechanical anisotropy, non-linearity and hysteresis.

    Science.gov (United States)

    Deeken, Corey R; Thompson, Dominic M; Castile, Ryan M; Lake, Spencer P

    2014-10-01

    Over the past 60 years, the soft tissue repair market has grown to include over 50 types of hernia repair materials. Surgeons typically implant these materials in the orientation that provides maximum overlap of the mesh over the defect, with little regard for mechanical properties of the mesh material. If the characteristics of the meshes were better understood, an appropriate material could be identified for each patient, and meshes could be placed to optimize integration with neighboring tissue and avoid the mechanical mis-match that can lead to impaired graft fixation. The purpose of this study was to fully characterize and compare the mechanical properties of thirteen types of hernia repair materials via planar biaxial tensile testing. Equibiaxial (i.e., equal simultaneous loading in both directions) and strip biaxial (i.e., loading in one direction with the other direction held fixed) tests were utilized as physiologically relevant loading regimes. After applying a 0.1N pre-load on each arm, samples were subjected to equibiaxial cyclic loading using a triangular waveform to 2.5mm displacement on each arm at 0.1Hz for 10 cycles. Samples were then subjected to two strip biaxial tests (using the same cyclic loading protocol), where extension was applied along a single axis with the other axis held fixed. The thirteen evaluated mesh types exhibited a wide range of mechanical properties. Some were nearly isotropic (C-QUR™, DUALMESH(®), PHYSIOMESH™, and PROCEED(®)), while others were highly anisotropic (Ventralight™ ST, Bard™ Mesh, and Bard™ Soft Mesh). Some displayed nearly linear behavior (Bard™ Mesh), while others were non-linear with a long toe region followed by a sharp rise in tension (INFINIT(®)). These materials are currently utilized in clinical settings as if they are uniform and interchangeable, and clearly this is not the case. The mechanical properties most advantageous for successful hernia repairs are currently only vaguely described

  18. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures.

    Science.gov (United States)

    Alvarez-Ordóñez, Avelino; Fernández, Ana; Bernardo, Ana; López, Mercedes

    2010-02-01

    The influence of growth temperature and acidification of the culture medium up to pH 4.25 with acetic, citric, lactic and hydrochloric acids on the growth and subsequent acid resistance at pH 3.0 of Salmonella typhimurium CECT 443 was studied. The minimum pH value which allowed for S. typhimurium growth within the temperature range of 25-37 degrees C was 4.5 when the pH was reduced using citric and hydrochloric acids, and 5.4 and 6.4 when lactic acid and acetic acid were used, respectively. At high (45 degrees C) or low (10 degrees C) temperatures, the growth pH boundary was increased about 1 pH unit. The growth temperature markedly modified the acid resistance of the resulting cells. In all cases, D-values were lower for cells grown at 10 degrees C and significantly increased with increasing growth temperature up to 37 degrees C, at which D-values obtained were up to 10 times higher. Cells grown at 45 degrees C showed D-values similar to those found for cells grown at 25 degrees C. The growth of cells in acidified media, regardless of the pH value, caused an increase in their acid resistance at the four incubation temperatures, although the magnitude of the Acid Tolerance Response (ATR) observed depended on the growth temperature. Acid adapted cultures at 10 degrees C showed D-values ranging from 5.75 to 6.91 min, which turned out to be about 2 times higher than those corresponding to non-acid adapted cultures, while higher temperatures induced an increase in D-values of at least 3.5 times. Another finding was that, while at 10 and 45 degrees C no significant differences among the effect of the different acids tested in inducing an ATR were observed, when cells were grown at 25 and 37 degrees C citric acid generally turned out to be the acid which induced the strongest ATR. Results obtained in this study show that growth temperature is an important factor affecting S. typhimurium acid resistance and could contribute to find new strategies based on intelligent

  19. STUDY OF THE INFLUENCE OF SYNTHETIC COMPONENT IN MIXTURES WITH WOOL ON THE PHYSICAL-MECHANICAL PROPRIETIES

    Directory of Open Access Journals (Sweden)

    OANA Dorina

    2016-05-01

    Full Text Available The main physical-mechanical properties of the yarns are: linear density (Tex, tensile strength, tenacity, elongation at break, twisting and mechanical work of fracture, there is a strong correlation between them. The tensile properties are the basic characteristics of yarns, influencing how they behave in the technological processes of mechanical processing (preparation for weaving or knitting, proper weaving or knitting determining the technological parameters of equipment adjusting during the technological processes and also their productivity. The tensile properties of yarns constitute qualitative characteristics, because their value depends on the quality of the yarn and also on the finite product obtained from processing yarns. In this paper was done a comparative study of the tensile properties of two batches of mixed woolen yarns (wool with polyester and wool with polyamide, the mixture being in the same proportions, but the yarns have different fineness and have very close twist values, both batches of yarns were designed for knitted products. Batch I consists of 70% wool yarns and 30% polyester, linear density Ttex = 55.56 tex and twist of 350 twists/meter. Batch II consists of 70% wool yarns and 30% polyamide, a linear density of Ttex = 71.34 tex and twist of 330 twists/meter (so a thicker yarn than the one from batch I. Following the analysis between the two batches is clear that the woolen yarns in batch II have much higher tensile properties.

  20. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels.

    Science.gov (United States)

    Garnica-Palafox, I M; Sánchez-Arévalo, F M

    2016-10-20

    The objective of this work was to correlate the physical and chemical properties of chitosan/poly(vinyl alcohol)/genipin (CS/PVA/GEN) and chitosan/poly(vinyl alcohol)/glutaraldehyde (CS/PVA/GA) hydrogels with their structural and mechanical responses. In addition, their molecular structures were determined and confirmed using FTIR spectroscopy. The results indicated that the hybrid hydrogels crosslinked with genipin showed similar crystallinity, thermal properties, elongation ratio and structural parameters as those crosslinked with glutaraldehyde. However, it was found that the elastic moduli of the two hybrid hydrogels were slightly different: 2.82±0.33MPa and 2.08±0.11MPa for GA and GEN, respectively. Although the hybrid hydrogels crosslinked with GEN presented a lower elastic modulus, the main advantage is that GEN is five to ten thousand times less cytotoxic than GA. This means that the structural and mechanical properties of hybrid hydrogels crosslinked with GEN can easily be tuned and could have potential applications in the tissue engineering, regenerative medicine, food, agriculture and environmental industries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Biaxial Mechanical Evaluation of Absorbable and Nonabsorbable Synthetic Surgical Meshes Used for Hernia Repair: Physiological Loads Modify Anisotropy Response.

    Science.gov (United States)

    Cordero, A; Hernández-Gascón, B; Pascual, G; Bellón, J M; Calvo, B; Peña, E

    2016-07-01

    The aim of this study was to obtain information about the mechanical properties of six meshes commonly used for hernia repair (Surgipro(®), Optilene(®), Infinit(®), DynaMesh(®), Ultrapro™ and TIGR(®)) by planar biaxial tests. Stress-stretch behavior and equibiaxial stiffness were evaluated, and the anisotropy was determined by testing. In particular, equibiaxial test (equal simultaneous loading in both directions) and biaxial test (half of the load in one direction following the Laplace law) were selected as a representation of physiologically relevant loads. The majority of the meshes displayed values in the range of 8 and 18 (N/mm) in each direction for equibiaxial stiffness (tangent modulus under equibiaxial load state in both directions), while a few achieved 28 and 50 (N/mm) (Infinit (®) and TIGR (®)). Only the Surgipro (®) mesh exhibited planar isotropy, with similar mechanical properties regardless of the direction of loading, and an anisotropy ratio of 1.18. Optilene (®), DynaMesh (®), Ultrapro (®) and TIGR (®) exhibited moderate anisotropy with ratios of 1.82, 1.84, 2.17 and 1.47, respectively. The Infinit (®) scaffold exhibited very high anisotropy with a ratio of 3.37. These trends in material anisotropic response changed during the physiological state in the human abdominal wall, i.e. T:0.5T test, which the meshes were loaded in one direction with half the load used in the other direction. The Surgipro (®) mesh increased its anisotropic response (Anis[Formula: see text] = 0.478) and the materials that demonstrated moderate and high anisotropic responses during multiaxial testing presented a quasi-isotropic response, especially the Infinit(®) mesh that decreased its anisotropic response from 3.369 to 1.292.

  2. A Synthetic Oligo Library and Sequencing Approach Reveals an Insulation Mechanism Encoded within Bacterial σ54 Promoters

    Directory of Open Access Journals (Sweden)

    Lior Levy

    2017-10-01

    Full Text Available We use an oligonucleotide library of >10,000 variants to identify an insulation mechanism encoded within a subset of σ54 promoters. Insulation manifests itself as reduced protein expression for a downstream gene that is expressed by transcriptional readthrough. It is strongly associated with the presence of short CT-rich motifs (3–5 bp, positioned within 25 bp upstream of the Shine-Dalgarno (SD motif of the silenced gene. We provide evidence that insulation is triggered by binding of the ribosome binding site (RBS to the upstream CT-rich motif. We also show that, in E. coli, insulator sequences are preferentially encoded within σ54 promoters, suggesting an important regulatory role for these sequences in natural contexts. Our findings imply that sequence-specific regulatory effects that are sparsely encoded by short motifs may not be easily detected by lower throughput studies. Such sequence-specific phenomena can be uncovered with a focused oligo library (OL design that mitigates sequence-related variance, as exemplified herein.

  3. Modelling of the UO2 dissolution mechanisms in synthetic groundwater. Experiments carried out under anaerobic and reducing conditions

    International Nuclear Information System (INIS)

    Cera, E.; Grive, M.; Bruno, J.; Ollila, K.

    2000-07-01

    The experimental data generated under anaerobic and reducing conditions within the EU R and D programme 1996-1998 entitled 'Source term for performance assessment of spent fuel as a waste form' and published as a POSIVA report (Ollila, 1999) have been modelled in the present work. The dissolution data available, mainly U in the aqueous phase as a function of time and redox potentials have been used to elucidate the redox pairs controlling the redox potential of the systems studied. Dissolution experiments carried out under anaerobic conditions have shown the important role of the uranium system on buffering the redox capacity of these systems. In the presence of carbonates in the system, the redox control has been given by the UO 2 (c)/U(VI) aqueous redox couple while in absence of carbonates in the system, the redox control has been governed by the UO 2 (c)/UO 2+x transition. In addition dissolution rates have been satisfactorily modelled by assuming an oxidative dissolution mechanism consisting in an initial oxidation of the surface of the uranium dioxide, binding of the HCO 3 or H+ at the U(VI) sites of the oxidised surface layer and detachment of these surface complexes. The redox controls in the experiments carried out under reducing conditions have been exerted by the different reducing agents added in the systems. Therefore, the addition of Fe 2+ lead to a redox control exerted by the Fe 2+ /Fe(OH) 3 (s) redox pair, while the addition of sulphide lead to a different redox control governed by the HS/SO 3 2- redox pair. (orig.)

  4. Crystallisation of hydroxyapatite in phosphorylated poly(vinyl alcohol) as a synthetic route to tough mechanical hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Kusakabe, Akane; Hirota, Ken; Mizutani, Tadashi, E-mail: tmizutan@mail.doshisha.ac.jp

    2017-01-01

    Partially phosphorylated poly(vinyl alcohol) was prepared by treating poly(vinyl alcohol) with 100% phosphoric acid, and 5, 10 and 20% of the hydroxyl groups were converted to phosphoric acid ester. Addition of Ca{sup 2+} to an aqueous solution of phosphorylated poly(vinyl alcohol) gave a transparent gel. Five cycles of alternate soaking of the gel in aqueous CaCl{sub 2} and aqueous (NH{sub 4}){sub 2}HPO{sub 4} were carried out to crystallise hydroxyapatite (HAP) in the phosphorylated poly(vinyl alcohol) matrix. The X-ray diffraction peaks of HAP formed in 5% phosphorylated PVA were sharp, while those of HAP formed in 20% phosphorylated PVA were broad. The contents of inorganic phase in the hybrid powder were increased from 58 to 76 wt% as the fraction of phosphate groups in the gel was decreased from 20% to 5%. The hybrid powder was first subjected to uniaxial pressing, followed by cold isostatic pressing (CIP) and warm isostatic pressing (WIP) at 120 °C at pressures of 300–980 MPa, to obtain the specimens for three-point bending test. These hybrid specimens showed bending strengths of 15–53 MPa. The hybrid compacts prepared from 10% phosphorylated poly(vinyl alcohol) showed the smallest Young's modulus, the largest displacement at break, and the largest fracture energy, showing that it has the highest toughness among the hybrid materials prepared from poly(vinyl alcohol) with varying degrees of phosphorylation. - Graphical abstract: Densification of hydroxyapatite crystallised in 10% phosphorylated poly(vinyl alcohol) gave the toughest compact. - Highlights: • Hydroxyapatite was crystallised in phosphorylated poly(vinyl alcohol) gels. • Crystallite size of hydroxyapatite decreased as phosphate density was increased. • The hybrid specimens prepared in 10% phosphorylated gel was the toughest. • Phosphate density in organic matrix regulated the mechanical properties of the hybrid.

  5. Crystallisation of hydroxyapatite in phosphorylated poly(vinyl alcohol) as a synthetic route to tough mechanical hybrid materials

    International Nuclear Information System (INIS)

    Kusakabe, Akane; Hirota, Ken; Mizutani, Tadashi

    2017-01-01

    Partially phosphorylated poly(vinyl alcohol) was prepared by treating poly(vinyl alcohol) with 100% phosphoric acid, and 5, 10 and 20% of the hydroxyl groups were converted to phosphoric acid ester. Addition of Ca 2+ to an aqueous solution of phosphorylated poly(vinyl alcohol) gave a transparent gel. Five cycles of alternate soaking of the gel in aqueous CaCl 2 and aqueous (NH 4 ) 2 HPO 4 were carried out to crystallise hydroxyapatite (HAP) in the phosphorylated poly(vinyl alcohol) matrix. The X-ray diffraction peaks of HAP formed in 5% phosphorylated PVA were sharp, while those of HAP formed in 20% phosphorylated PVA were broad. The contents of inorganic phase in the hybrid powder were increased from 58 to 76 wt% as the fraction of phosphate groups in the gel was decreased from 20% to 5%. The hybrid powder was first subjected to uniaxial pressing, followed by cold isostatic pressing (CIP) and warm isostatic pressing (WIP) at 120 °C at pressures of 300–980 MPa, to obtain the specimens for three-point bending test. These hybrid specimens showed bending strengths of 15–53 MPa. The hybrid compacts prepared from 10% phosphorylated poly(vinyl alcohol) showed the smallest Young's modulus, the largest displacement at break, and the largest fracture energy, showing that it has the highest toughness among the hybrid materials prepared from poly(vinyl alcohol) with varying degrees of phosphorylation. - Graphical abstract: Densification of hydroxyapatite crystallised in 10% phosphorylated poly(vinyl alcohol) gave the toughest compact. - Highlights: • Hydroxyapatite was crystallised in phosphorylated poly(vinyl alcohol) gels. • Crystallite size of hydroxyapatite decreased as phosphate density was increased. • The hybrid specimens prepared in 10% phosphorylated gel was the toughest. • Phosphate density in organic matrix regulated the mechanical properties of the hybrid.

  6. Modelling of the UO{sub 2} dissolution mechanisms in synthetic groundwater. Experiments carried out under anaerobic and reducing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cera, E.; Grive, M.; Bruno, J. [EnvirosQuantiSci (Spain); Ollila, K. [VTT Chemical Technology, Espoo (Finland)

    2000-07-01

    The experimental data generated under anaerobic and reducing conditions within the EU R and D programme 1996-1998 entitled 'Source term for performance assessment of spent fuel as a waste form' and published as a POSIVA report (Ollila, 1999) have been modelled in the present work. The dissolution data available, mainly U in the aqueous phase as a function of time and redox potentials have been used to elucidate the redox pairs controlling the redox potential of the systems studied. Dissolution experiments carried out under anaerobic conditions have shown the important role of the uranium system on buffering the redox capacity of these systems. In the presence of carbonates in the system, the redox control has been given by the UO{sub 2}(c)/U(VI) aqueous redox couple while in absence of carbonates in the system, the redox control has been governed by the UO{sub 2}(c)/UO{sub 2+x} transition. In addition dissolution rates have been satisfactorily modelled by assuming an oxidative dissolution mechanism consisting in an initial oxidation of the surface of the uranium dioxide, binding of the HCO{sub 3} or H+ at the U(VI) sites of the oxidised surface layer and detachment of these surface complexes. The redox controls in the experiments carried out under reducing conditions have been exerted by the different reducing agents added in the systems. Therefore, the addition of Fe{sup 2+} lead to a redox control exerted by the Fe{sup 2+}/Fe(OH){sub 3}(s) redox pair, while the addition of sulphide lead to a different redox control governed by the HS/SO{sub 3}{sup 2-} redox pair. (orig.)

  7. Natural - synthetic - artificial!

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life.......The terms "natural," "synthetic" and "artificial" are discussed in relation to synthetic and artificial chromosomes and genomes, synthetic and artificial cells and artificial life....

  8. Synthetic Cannabinoids.

    Science.gov (United States)

    Mills, Brooke; Yepes, Andres; Nugent, Kenneth

    2015-07-01

    Synthetic cannabinoids (SCBs), also known under the brand names of "Spice," "K2," "herbal incense," "Cloud 9," "Mojo" and many others, are becoming a large public health concern due not only to their increasing use but also to their unpredictable toxicity and abuse potential. There are many types of SCBs, each having a unique binding affinity for cannabinoid receptors. Although both Δ-tetrahydrocannabinol (THC) and SCBs stimulate the same receptors, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), studies have shown that SCBs are associated with higher rates of toxicity and hospital admissions than is natural cannabis. This is likely due to SCBs being direct agonists of the cannabinoid receptors, whereas THC is a partial agonist. Furthermore, the different chemical structures of SCBs found in Spice or K2 may interact in unpredictable ways to elicit previously unknown, and the commercial products may have unknown contaminants. The largest group of users is men in their 20s who participate in polydrug use. The most common reported toxicities with SCB use based on studies using Texas Poison Control records are tachycardia, agitation and irritability, drowsiness, hallucinations, delusions, hypertension, nausea, confusion, dizziness, vertigo and chest pain. Acute kidney injury has also been strongly associated with SCB use. Treatment mostly involves symptom management and supportive care. More research is needed to identify which contaminants are typically found in synthetic marijuana and to understand the interactions between different SBCs to better predict adverse health outcomes.

  9. The studies on the toxicity mechanism of environmentally hazardous natural (IAA) and synthetic (NAA) auxin--The experiments on model Arabidopsis thaliana and rat liver plasma membranes.

    Science.gov (United States)

    Hąc-Wydro, Katarzyna; Flasiński, Michał

    2015-06-01

    This paper concerns the studies towards membrane-damage effect of two auxins: indole-3-acetic acid - IAA and 1-naphthaleneacetic acid - NAA on plant (Arabidopsis thaliana) and animal (rat liver) model membranes. The foregoing auxins are plant growth regulators widely used in agriculture to control the quality of the crop. However, their accumulation in the environment makes them hazardous for the living organisms. The aim of our investigations was to compare the effect of natural (IAA) vs. synthetic (NAA) auxin on the organization of plant and animal model membranes and find a possible correlation between membrane-disturbing effect of these compounds and their toxicity. The collected data evidenced that auxins cause destabilization of membranes, decrease their condensation and weakens interactions of molecules. The alterations in the morphology of model systems were also noticed. The foregoing effects of auxins are concentration-dependent and additionally NAA was found to act on animal vs. plant membranes more selectively than IAA. Interestingly, both IAA and NAA induce the strongest disordering in model lipid system at the concentration, which is frequently reported as toxic to animal and plants. Based on the above findings it was proposed that membrane-damage effect induced by IAA and NAA may be important from the point of view of the mechanism of toxicity of these compounds and cannot be ignored in further investigations in this area. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effects of synthetic and naturally occurring flavonoids on Na+, K+-ATPase: Aspects of the structure-activity relationship and action mechanism

    International Nuclear Information System (INIS)

    Hirano, T.; Oka, K.; Akiba, M.

    1989-01-01

    A comparative study was made of the effects of 15 synthetic and naturally occurring flavonoids on the hydrolytic activity of Na + , K + -adenosine triphosphatase (ATPase). Twelve of the flavonoids examined were mono-hydroxy or mono-methoxy derivatives. All inhibited Na + , K + -ATPase from dog kidney cortex when present at concentrations from 40-1000 μM. Flavones possessing cyclohexyl instead of the phenyl group were the most potent with IC 50 at 257-320 μM. Structure-activity relationships were observed among the following mono-substituted flavones as: (i) 2-cyclohexyl-benzopyran-4-one much-gt 2-phenyl-benzopyran-4-one; (ii) 2-cyclohexyl-7-hydroxybenzopyran-4-one > 2-cyclohexyl-6-hydroxy-benzopyran-4-one > 2-cyclohexyl-5-hydroxybenzopyran-4-one. Some flavonoids showing potent inhibitory activity were also examined for ouabain-displacement activity on human erythrocytes. Hardly and of the flavonoids were able to block [ 3 H] ouabain binding to erythrocytes. These results suggest that the mechanism by which flavonoid block Na + , K + -ATPase is not related to the cardiac glycoside-specific binding site(s) of this enzyme

  11. Effects of synthetic and naturally occurring flavonoids on Na sup + , K sup + -ATPase: Aspects of the structure-activity relationship and action mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, T.; Oka, K.; Akiba, M. (Tokyo College of Pharmacy (Japan))

    1989-01-01

    A comparative study was made of the effects of 15 synthetic and naturally occurring flavonoids on the hydrolytic activity of Na{sup +}, K{sup +} -adenosine triphosphatase (ATPase). Twelve of the flavonoids examined were mono-hydroxy or mono-methoxy derivatives. All inhibited Na{sup +}, K{sup +} -ATPase from dog kidney cortex when present at concentrations from 40-1000 {mu}M. Flavones possessing cyclohexyl instead of the phenyl group were the most potent with IC{sub 50} at 257-320 {mu}M. Structure-activity relationships were observed among the following mono-substituted flavones as: (i) 2-cyclohexyl-benzopyran-4-one {much gt} 2-phenyl-benzopyran-4-one; (ii) 2-cyclohexyl-7-hydroxybenzopyran-4-one {gt} 2-cyclohexyl-6-hydroxy-benzopyran-4-one {gt} 2-cyclohexyl-5-hydroxybenzopyran-4-one. Some flavonoids showing potent inhibitory activity were also examined for ouabain-displacement activity on human erythrocytes. Hardly and of the flavonoids were able to block ({sup 3}H) ouabain binding to erythrocytes. These results suggest that the mechanism by which flavonoid block Na{sup +}, K{sup +} -ATPase is not related to the cardiac glycoside-specific binding site(s) of this enzyme.

  12. Synthetic Brainbows

    KAUST Repository

    Wan, Y.

    2013-06-01

    Brainbow is a genetic engineering technique that randomly colorizes cells. Biological samples processed with this technique and imaged with confocal microscopy have distinctive colors for individual cells. Complex cellular structures can then be easily visualized. However, the complexity of the Brainbow technique limits its applications. In practice, most confocal microscopy scans use different florescence staining with typically at most three distinct cellular structures. These structures are often packed and obscure each other in rendered images making analysis difficult. In this paper, we leverage a process known as GPU framebuffer feedback loops to synthesize Brainbow-like images. In addition, we incorporate ID shuffing and Monte-Carlo sampling into our technique, so that it can be applied to single-channel confocal microscopy data. The synthesized Brainbow images are presented to domain experts with positive feedback. A user survey demonstrates that our synthetic Brainbow technique improves visualizations of volume data with complex structures for biologists.

  13. Synthetic Botany.

    Science.gov (United States)

    Boehm, Christian R; Pollak, Bernardo; Purswani, Nuri; Patron, Nicola; Haseloff, Jim

    2017-07-05

    Plants are attractive platforms for synthetic biology and metabolic engineering. Plants' modular and plastic body plans, capacity for photosynthesis, extensive secondary metabolism, and agronomic systems for large-scale production make them ideal targets for genetic reprogramming. However, efforts in this area have been constrained by slow growth, long life cycles, the requirement for specialized facilities, a paucity of efficient tools for genetic manipulation, and the complexity of multicellularity. There is a need for better experimental and theoretical frameworks to understand the way genetic networks, cellular populations, and tissue-wide physical processes interact at different scales. We highlight new approaches to the DNA-based manipulation of plants and the use of advanced quantitative imaging techniques in simple plant models such as Marchantia polymorpha. These offer the prospects of improved understanding of plant dynamics and new approaches to rational engineering of plant traits. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  14. Mechanical properties of the compass depressors of the sea-urchin Paracentrotus lividus (Echinodermata, Echinoidea and the effects of enzymes, neurotransmitters and synthetic tensilin-like protein.

    Directory of Open Access Journals (Sweden)

    Iain C Wilkie

    Full Text Available The compass depressors (CDs of the sea-urchin lantern are ligaments consisting mainly of discontinuous collagen fibrils associated with a small population of myocytes. They are mutable collagenous structures, which can change their mechanical properties rapidly and reversibly under nervous control. The aims of this investigation were to characterise the baseline (i.e. unmanipulated static mechanical properties of the CDs of Paracentrotus lividus by means of creep tests and incremental force-extension tests, and to determine the effects on their mechanical behaviour of a range of agents. Under constant load the CDs exhibited a three-phase creep curve, the mean coefficient of viscosity being 561±365 MPa.s. The stress-strain curve showed toe, linear and yield regions; the mean strain at the toe-linear inflection was 0.86±0.61; the mean Young's modulus was 18.62±10.30 MPa; and the mean tensile strength was 8.14±5.73 MPa. Hyaluronidase from Streptomyces hyalurolyticus had no effect on creep behaviour, whilst chondroitinase ABC prolonged primary creep but had no effect on secondary creep or on any force-extension parameters; it thus appears that neither hyaluronic acid nor sulphated glycosaminoglycans have an interfibrillar load transfer function in the CD. Acetylcholine, the muscarinic agonists arecoline and methacholine, and the nicotinic agonists nicotine and 1-[1-(3,4-dimethyl-phenyl-ethyl]-piperazine produced an abrupt increase in CD viscosity; the CDs were not differentially sensitive to muscarinic or nicotinic agonists. CDs showed either no, or no consistent, response to adrenaline, L-glutamic acid, 5-hydroxytryptamine and γ-aminobutyric acid. Synthetic echinoid tensilin-like protein had a weak and inconsistent stiffening effect, indicating that, in contrast to holothurian tensilins, the echinoid molecule may not be involved in the regulation of collagenous tissue tensility. We compare in detail the mechanical behaviour of the CD with that

  15. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis ( Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein-Insect Receptor Binding Mechanism.

    Science.gov (United States)

    Liu, Mingming; Huang, Rong; Weisman, Adam; Yu, Xiaoyang; Lee, Shih-Hui; Chen, Yalu; Huang, Chao; Hu, Senhua; Chen, Xiuhua; Tan, Wenfeng; Liu, Fan; Chen, Hao; Shea, Kenneth J

    2018-05-24

    We report a novel strategy for creating abiotic Bacillus thuringiensis ( Bt) protein affinity ligands by biomimicry of the recognition process that takes place between Bt Cry1Ab/Ac proteins and insect receptor cadherin-like Bt-R 1 proteins. Guided by this strategy, a library of synthetic polymer nanoparticles (NPs) was prepared and screened for binding to three epitopes 280 FRGSAQGIEGS 290 , 368 RRPFNIGINNQQ 379 and 436 FRSGFSNSSVSIIR 449 located in loop α8, loop 2 and loop 3 of domain II of Bt Cry1Ab/Ac proteins. A negatively charged and hydrophilic nanoparticle (NP12) was found to have high affinity to one of the epitopes, 368 RRPFNIGINNQQ 379 . This same NP also had specific binding ability to both Bt Cry1Ab and Bt Cry1Ac, proteins that share the same epitope, but very low affinity to Bt Cry2A, Bt Cry1C and Bt Cry1F closely related proteins that lack epitope homology. To locate possible NP- Bt Cry1Ab/Ac interaction sites, NP12 was used as a competitive inhibitor to block the binding of 865 NITIHITDTNNK 876 , a specific recognition site in insect receptor Bt-R 1 , to 368 RRPFNIGINNQQ 379 . The inhibition by NP12 reached as high as 84%, indicating that NP12 binds to Bt Cry1Ab/Ac proteins mainly via 368 RRPFNIGINNQQ 379 . This epitope region was then utilized as a "target" or "bait" for the separation and concentration of Bt Cry1Ac protein from the extract of transgenic Bt cotton leaves by NP12. This strategy, based on the antigen-receptor recognition mechanism, can be extended to other biotoxins and pathogen proteins when designing biomimic alternatives to natural protein affinity ligands.

  16. Synthetic Astrobiology

    Science.gov (United States)

    Rothschild, Lynn J.

    2017-01-01

    "Are we alone?" is one of the primary questions of astrobiology, and whose answer defines our significance in the universe. Unfortunately, this quest is hindered by the fact that we have only one confirmed example of life, that of earth. While this is enormously helpful in helping to define the minimum envelope for life, it strains credulity to imagine that life, if it arose multiple times, has not taken other routes. To help fill this gap, our lab has begun using synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - as an enabling technology. One theme, the "Hell Cell" project, focuses on creating artificial extremophiles in order to push the limits for Earth life, and to understand how difficult it is for life to evolve into extreme niches. In another project, we are re-evolving biotic functions using only the most thermodynamically stable amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids.

  17. 3D surface flow kinematics derived from airborne UAVSAR interferometric synthetic aperture radar to constrain the physical mechanisms controlling landslide motion

    Science.gov (United States)

    Delbridge, B. G.; Burgmann, R.; Fielding, E. J.; Hensley, S.; Schulz, W. H.

    2013-12-01

    This project focuses on improving our understanding of the physical mechanisms controlling landslide motion by studying the landslide-wide kinematics of the Slumgullion landslide in southwestern Colorado using interferometric synthetic aperture radar (InSAR) and GPS. The NASA/JPL UAVSAR airborne repeat-pass SAR interferometry system imaged the Slumgullion landslide from 4 look directions on eight flights in 2011 and 2012. Combining the four look directions allows us to extract the full 3-D velocity field of the surface. Observing the full 3-dimensional flow field allows us to extract the full strain tensor (assuming free surface boundary conditions and incompressible flow) since we have both the spatial resolution to take spatial derivates and full deformation information. COSMO-SkyMed(CSK) high-resolution Spotlight data was also acquired during time intervals overlapping with the UAVSAR one-week pairs, with intervals as short as one day. These observations allow for the quantitative testing of the deformation magnitude and estimated formal errors in the UAVSAR derived deformation field. We also test the agreement of the deformation at 20 GPS monitoring sites concurrently acquired by the USGS. We also utilize the temporal resolution of real-time GPS acquired by the UC Berkeley Active Tectonics Group during a temporary deployment from July 22nd - August 2nd. By combining this data with the kinematic data we hope to elucidate the response of the landslide to environmental changes such as rainfall, snowmelt, and atmospheric pressure, and consequently the mechanisms controlling the dynamics of the landslide system. To constrain the longer temporal dynamics, interferograms made from pairs of CSK images acquired in 2010, 2011, 2012 and 2013 reveal the slide deformation on a longer timescale by allowing us to measure meters of motion and see the average rates over year long intervals using pixel offset tracking of the high-resolution SAR amplitude images. The results of

  18. Synthetic Biology and Personalized Medicine

    Science.gov (United States)

    Jain, K.K.

    2013-01-01

    Synthetic biology, application of synthetic chemistry to biology, is a broad term that covers the engineering of biological systems with structures and functions not found in nature to process information, manipulate chemicals, produce energy, maintain cell environment and enhance human health. Synthetic biology devices contribute not only to improve our understanding of disease mechanisms, but also provide novel diagnostic tools. Methods based on synthetic biology enable the design of novel strategies for the treatment of cancer, immune diseases metabolic disorders and infectious diseases as well as the production of cheap drugs. The potential of synthetic genome, using an expanded genetic code that is designed for specific drug synthesis as well as delivery and activation of the drug in vivo by a pathological signal, was already pointed out during a lecture delivered at Kuwait University in 2005. Of two approaches to synthetic biology, top-down and bottom-up, the latter is more relevant to the development of personalized medicines as it provides more flexibility in constructing a partially synthetic cell from basic building blocks for a desired task. PMID:22907209

  19. Benfotiamine, a synthetic S-acyl thiamine derivative, has different mechanisms of action and a different pharmacological profile than lipid-soluble thiamine disulfide derivatives.

    Science.gov (United States)

    Volvert, Marie-Laure; Seyen, Sandrine; Piette, Marie; Evrard, Brigitte; Gangolf, Marjorie; Plumier, Jean-Christophe; Bettendorff, Lucien

    2008-06-12

    after dephosphorylation by intestinal alkaline phosphatases. It then enters the bloodstream as S-benzoylthiamine that is converted to thiamine in erythrocytes and in the liver. Benfotiamine, an S-acyl derivative practically insoluble in organic solvents, should therefore be differentiated from truly lipid-soluble thiamine disulfide derivatives (allithiamine and the synthetic sulbutiamine and fursultiamine) with a different mechanism of absorption and different pharmacological properties.

  20. Synthetic staggered architecture composites

    International Nuclear Information System (INIS)

    Dutta, Abhishek; Tekalur, Srinivasan Arjun

    2013-01-01

    Highlights: ► Composite design inspired by nature. ► Tuning microstructure via changing ceramic content and aspect ratio. ► Experimental display of structure–property correlationship in synthetic composites. - Abstract: Structural biocomposites (for example, nacre in seashells, bone, etc.) are designed according to the functional role they are delegated for. For instance, bone is primarily designed for withstanding time-dependent loading (for example, withstanding stresses while running, jumping, accidental fall) and hence the microstructure is designed primarily from enhanced toughness and moderate stiffness point of view. On the contrary, seashells (which lie in the abyss of oceans) apart from providing defense to the organism (it is hosting) against predatory attacks, are subjected to static loading (for example, enormous hydrostatic pressure). Hence, emphasis on the shell structure evolution is directed primarily towards providing enhanced stiffness. In order to conform between stiffness and toughness, nature precisely employs a staggered arrangement of inorganic bricks in a biopolymer matrix (at its most elementary level of architecture). Aspect ratio and content of ceramic bricks are meticulously used by nature to synthesize composites having varying degrees of stiffness, strength and toughness. Such an amazing capability of structure–property correlationship has rarely been demonstrated in synthetic composites. Therefore, in order to better understand the mechanical behavior of synthetic staggered composites, the problem becomes two-pronged: (a) synthesize composites with varying brick size and contents and (b) experimental investigation of the material response. In this article, an attempt has been made to synthesize and characterize staggered ceramic–polymer composites having varying aspect ratio and ceramic content using freeze-casting technique. This will in-turn help us in custom-design manufacture of hybrid bio-inspired composite materials

  1. Synthetic biology, inspired by synthetic chemistry.

    Science.gov (United States)

    Malinova, V; Nallani, M; Meier, W P; Sinner, E K

    2012-07-16

    The topic synthetic biology appears still as an 'empty basket to be filled'. However, there is already plenty of claims and visions, as well as convincing research strategies about the theme of synthetic biology. First of all, synthetic biology seems to be about the engineering of biology - about bottom-up and top-down approaches, compromising complexity versus stability of artificial architectures, relevant in biology. Synthetic biology accounts for heterogeneous approaches towards minimal and even artificial life, the engineering of biochemical pathways on the organismic level, the modelling of molecular processes and finally, the combination of synthetic with nature-derived materials and architectural concepts, such as a cellular membrane. Still, synthetic biology is a discipline, which embraces interdisciplinary attempts in order to have a profound, scientific base to enable the re-design of nature and to compose architectures and processes with man-made matter. We like to give an overview about the developments in the field of synthetic biology, regarding polymer-based analogs of cellular membranes and what questions can be answered by applying synthetic polymer science towards the smallest unit in life, namely a cell. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Geo synthetic-reinforced Pavement systems

    International Nuclear Information System (INIS)

    Zornberg, J. G.

    2014-01-01

    Geo synthetics have been used as reinforcement inclusions to improve pavement performance. while there are clear field evidence of the benefit of using geo synthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geo synthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geo synthetics. (Author)

  3. Functional role of pyruvate kinase from Lactobacillus bulgaricus in acid tolerance and identification of its transcription factor by bacterial one-hybrid.

    Science.gov (United States)

    Zhai, Zhengyuan; An, Haoran; Wang, Guohong; Luo, Yunbo; Hao, Yanling

    2015-11-19

    Lactobacillus delbrueckii subsp. bulgaricus develops acid tolerance response when subjected to acid stress conditions, such as the induction of enzymes associated with carbohydrate metabolism. In this study, pyk gene encoding pyruvate kinase was over-expressed in heterologous host Lactococcus lactis NZ9000, and SDS-PAGE analysis revealed the successful expression of this gene in NZ9000. The survival rate of Pyk-overproducing strain was 45-fold higher than the control under acid stress condition (pH 4.0). In order to determine the transcription factor (TF) which regulates the expression of pyk by bacterial one-hybrid, we constructed a TF library including 65 TFs of L. bulgaricus. Western blotting indicated that TFs in this library could be successfully expressed in host strains. Subsequently, the promoter of pfk-pyk operon in L. bulgaricus was identified by 5'-RACE PCR. The bait plasmid pH3U3-p01 carrying the deletion fragment of pfk-pyk promoter captured catabolite control protein A (CcpA) which could regulate the expression of pyk by binding to a putative catabolite-responsive element (5'-TGTAAGCCCTAACA-3') upstream the -35 region. Real-time qPCR analysis revealed the transcription of pyk was positively regulated by CcpA. This is the first report about identifying the TF of pyk in L. bulgaricus, which will provide new insight into the regulatory network.

  4. High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pKa1 values of these lichen substances

    International Nuclear Information System (INIS)

    Hauck, Markus; Juergens, Sascha-Rene; Huneck, Siegfried; Leuschner, Christoph

    2009-01-01

    The depsidone fumarprotocetraric acid as well as the depsides perlatolic and thamnolic acids are lichen secondary metabolites. Their first dissociation constants (pK a1 ) in methanol were determined to be 2.7 for perlatolic acid and 2.8 for fumarprotocetraric and thamnolic acids by UV spectroscopy. Lower pK a1 values are, so far, not known from lichen substances. Several lichens producing at least one of these compounds are known for their outstanding tolerance to acidic air pollution. This is demonstrated by evaluating published pH preferences for central European lichens. The low pK a1 values suggest that strong dissociation of the studied lichen substances is a prerequisite for the occurrence of lichens with these compounds on very acidic substrata, as protonated lichen substances of different chemical groups, but not their conjugated bases, are known to shuttle protons into the cytoplasm and thereby apparently damage lichens. - Depsides and depsidones with low pK a1 values occur in highly acidity-tolerant lichens.

  5. High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pK{sub a1} values of these lichen substances

    Energy Technology Data Exchange (ETDEWEB)

    Hauck, Markus, E-mail: mhauck@gwdg.d [Albrecht von Haller Institute of Plant Sciences, Dept. Plant Ecology, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen (Germany); Juergens, Sascha-Rene [Albrecht von Haller Institute of Plant Sciences, Dept. Plant Ecology, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen (Germany); Huneck, Siegfried [Fliederweg 34a, D-06179 Langenbogen, Saalkreis (Germany); Leuschner, Christoph [Albrecht von Haller Institute of Plant Sciences, Dept. Plant Ecology, University of Goettingen, Untere Karspuele 2, D-37073 Goettingen (Germany)

    2009-10-15

    The depsidone fumarprotocetraric acid as well as the depsides perlatolic and thamnolic acids are lichen secondary metabolites. Their first dissociation constants (pK{sub a1}) in methanol were determined to be 2.7 for perlatolic acid and 2.8 for fumarprotocetraric and thamnolic acids by UV spectroscopy. Lower pK{sub a1} values are, so far, not known from lichen substances. Several lichens producing at least one of these compounds are known for their outstanding tolerance to acidic air pollution. This is demonstrated by evaluating published pH preferences for central European lichens. The low pK{sub a1} values suggest that strong dissociation of the studied lichen substances is a prerequisite for the occurrence of lichens with these compounds on very acidic substrata, as protonated lichen substances of different chemical groups, but not their conjugated bases, are known to shuttle protons into the cytoplasm and thereby apparently damage lichens. - Depsides and depsidones with low pK{sub a1} values occur in highly acidity-tolerant lichens.

  6. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Synthetic Cathinones ("Bath Salts")

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  8. Differences in acid tolerance between Bifidobacterium breve BB8 and its acid-resistant derivative B. breve BB8dpH, revealed by RNA-sequencing and physiological analysis.

    Science.gov (United States)

    Yang, Xu; Hang, Xiaomin; Tan, Jing; Yang, Hong

    2015-06-01

    Bifidobacteria are common inhabitants of the human gastrointestinal tract, and their application has increased dramatically in recent years due to their health-promoting effects. The ability of bifidobacteria to tolerate acidic environments is particularly important for their function as probiotics because they encounter such environments in food products and during passage through the gastrointestinal tract. In this study, we generated a derivative, Bifidobacterium breve BB8dpH, which displayed a stable, acid-resistant phenotype. To investigate the possible reasons for the higher acid tolerance of B. breve BB8dpH, as compared with its parental strain B. breve BB8, a combined transcriptome and physiological approach was used to characterize differences between the two strains. An analysis of the transcriptome by RNA-sequencing indicated that the expression of 121 genes was increased by more than 2-fold, while the expression of 146 genes was reduced more than 2-fold, in B. breve BB8dpH. Validation of the RNA-sequencing data using real-time quantitative PCR analysis demonstrated that the RNA-sequencing results were highly reliable. The comparison analysis, based on differentially expressed genes, suggested that the acid tolerance of B. breve BB8dpH was enhanced by regulating the expression of genes involved in carbohydrate transport and metabolism, energy production, synthesis of cell envelope components (peptidoglycan and exopolysaccharide), synthesis and transport of glutamate and glutamine, and histidine synthesis. Furthermore, an analysis of physiological data showed that B. breve BB8dpH displayed higher production of exopolysaccharide and lower H(+)-ATPase activity than B. breve BB8. The results presented here will improve our understanding of acid tolerance in bifidobacteria, and they will lead to the development of new strategies to enhance the acid tolerance of bifidobacterial strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Effect of the Biofilm Age and Starvation on Acid Tolerance of Biofilm Formed by Streptococcus mutans Isolated from Caries-Active and Caries-Free Adults.

    Science.gov (United States)

    Jiang, Shan; Chen, Shuai; Zhang, Chengfei; Zhao, Xingfu; Huang, Xiaojing; Cai, Zhiyu

    2017-03-30

    Streptococcus mutans ( S. mutans ) is considered a leading cause of dental caries. The capability of S. mutans to tolerate low pH is essential for its cariogenicity. Aciduricity of S. mutans is linked to its adaptation to environmental stress in oral cavity. This study aimed to investigate the effect of biofilm age and starvation condition on acid tolerance of biofilm formed by S. mutans clinical isolates. S. mutans clinical strains isolated from caries-active (SM593) and caries-free (SM18) adults and a reference strain (ATCC25175) were used for biofilm formation. (1) Both young and mature biofilms were formed and then exposed to pH 3.0 for 30 min with (acid-adapted group) or without (non-adapted group) pre-exposure to pH 5.5 for three hours. (2) The mature biofilms were cultured with phosphate-buffered saline (PBS) (starved group) or TPY (polypeptone-yeast extract) medium (non-starved group) at pH 7.0 for 24 h and then immersed in medium of pH 3.0 for 30 min. Biofilms were analyzed through viability staining and confocal laser scanning microscopy. In all three strains, mature, acid-adapted and starved biofilms showed significantly less destructive structure and more viable bacteria after acid shock than young, non-adapted and non-starved biofilms, respectively (all p mutans strains against acid shock. Additionally, SM593 exhibited greater aciduricity compared to SM18 and ATCC25175, which indicated that the colonization of high cariogenicity of clinical strains may lead to high caries risk in individuals.

  10. Metabolic pathway engineering based on metabolomics confers acetic and formic acid tolerance to a recombinant xylose-fermenting strain of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Ishii Jun

    2011-01-01

    Full Text Available Abstract Background The development of novel yeast strains with increased tolerance toward inhibitors in lignocellulosic hydrolysates is highly desirable for the production of bio-ethanol. Weak organic acids such as acetic and formic acids are necessarily released during the pretreatment (i.e. solubilization and hydrolysis of lignocelluloses, which negatively affect microbial growth and ethanol production. However, since the mode of toxicity is complicated, genetic engineering strategies addressing yeast tolerance to weak organic acids have been rare. Thus, enhanced basic research is expected to identify target genes for improved weak acid tolerance. Results In this study, the effect of acetic acid on xylose fermentation was analyzed by examining metabolite profiles in a recombinant xylose-fermenting strain of Saccharomyces cerevisiae. Metabolome analysis revealed that metabolites involved in the non-oxidative pentose phosphate pathway (PPP [e.g. sedoheptulose-7-phosphate, ribulose-5-phosphate, ribose-5-phosphate and erythrose-4-phosphate] were significantly accumulated by the addition of acetate, indicating the possibility that acetic acid slows down the flux of the pathway. Accordingly, a gene encoding a PPP-related enzyme, transaldolase or transketolase, was overexpressed in the xylose-fermenting yeast, which successfully conferred increased ethanol productivity in the presence of acetic and formic acid. Conclusions Our metabolomic approach revealed one of the molecular events underlying the response to acetic acid and focuses attention on the non-oxidative PPP as a target for metabolic engineering. An important challenge for metabolic engineering is identification of gene targets that have material importance. This study has demonstrated that metabolomics is a powerful tool to develop rational strategies to confer tolerance to stress through genetic engineering.

  11. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  12. [From synthetic biology to synthetic humankind].

    Science.gov (United States)

    Nouvel, Pascal

    2015-01-01

    In this paper, we propose an historical survey of the expression "synthetic biology" in order to identify its main philosophical components. The result of the analysis is then used to investigate the meaning of the notion of "synthetic man". It is shown that both notions share a common philosophical background that can be summed up by the short but meaningful assertion: "biology is technology". The analysis allows us to distinguish two notions that are often confused in transhumanist literature: the notion of synthetic man and the notion of renewed man. The consequences of this crucial distinction are discussed. Copyright © 2015 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  13. Contribution of a submerged membrane bioreactor in the treatment of synthetic effluent contaminated by Bisphenol-A: Mechanism of BPA removal and membrane fouling

    International Nuclear Information System (INIS)

    Seyhi, Brahima; Drogui, Patrick; Buelna, Gerardo; Azaïs, Antonin; Heran, Marc

    2013-01-01

    A submerged membrane bioreactor has been operated at the laboratory scale for the treatment of a synthetic effluent containing Bisphenol-A (BPA). COD, NH 4 –N, PO 4 –P and BPA were eliminated respectively, at 99%, 99%, 61% and 99%. The increase of volumetric loading rate from 0 to 21.6 g/m 3 /d did not affect the performance of the MBR system. However, the removal rate decreased rapidly when the BPA loading rate increased above 21.6 g/m 3 /d. The adsorption process of BPA on the biomass was very well described by Freundlich and Langmuir isotherms. Subsequently, biodegradation of BPA occurred and followed the first order kinetic reaction, with a constant rate of 1.13 ± 0.22 h −1 . During treatment, membrane fouling was reversible in the first 84 h of filtration, and then became irreversible. The membrane fouling was mainly due to the accumulation of suspended solid and development of biofilm on the membrane surface. -- Highlights: •High BPA removal rates (up to 99%) were obtained in the MBR. •A limit of the toxicity of 21.6 g/m 3 /d of BPA was recorded for the MBR. •The first order kinetic model described very well the biodegradation process for BPA. •The kinetic rates (0.61–1.13 h −1 ) depend on BPA loading (0.10–0.50 mg/g TSS). •The initial organic loading (0.04 and 0.20 g COD g −1 TSS) did not affect the kinetic. -- High BPA removal rates (up to 99%) were obtained in the MBR, with a limit of the toxicity closed to 21.6 g/m 3 /d of BPA

  14. [Smart therapeutics based on synthetic gene circuits].

    Science.gov (United States)

    Peng, Shuguang; Xie, Zhen

    2017-03-25

    Synthetic biology has an important impact on biology research since its birth. Applying the thought and methods that reference from electrical engineering, synthetic biology uncovers many regulatory mechanisms of life systems, transforms and expands a series of biological components. Therefore, it brings a wide range of biomedical applications, including providing new ideas for disease diagnosis and treatment. This review describes the latest advances in the field of disease diagnosis and therapy based on mammalian cell or bacterial synthetic gene circuits, and provides new ideas for future smart therapy design.

  15. Designing synthetic biology.

    Science.gov (United States)

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  16. Synthetic Defects for Vibrothermography

    Science.gov (United States)

    Renshaw, Jeremy; Holland, Stephen D.; Thompson, R. Bruce; Eisenmann, David J.

    2010-02-01

    Synthetic defects are an important tool used for characterizing the performance of nondestructive evaluation techniques. Viscous material-filled synthetic defects were developed for use in vibrothermography (also known as sonic IR) as a tool to improve inspection accuracy and reliability. This paper describes how the heat-generation response of these VMF synthetic defects is similar to the response of real defects. It also shows how VMF defects can be applied to improve inspection accuracy for complex industrial parts and presents a study of their application in an aircraft engine stator vane.

  17. Synthetic biological networks

    International Nuclear Information System (INIS)

    Archer, Eric; Süel, Gürol M

    2013-01-01

    Despite their obvious relationship and overlap, the field of physics is blessed with many insightful laws, while such laws are sadly absent in biology. Here we aim to discuss how the rise of a more recent field known as synthetic biology may allow us to more directly test hypotheses regarding the possible design principles of natural biological networks and systems. In particular, this review focuses on synthetic gene regulatory networks engineered to perform specific functions or exhibit particular dynamic behaviors. Advances in synthetic biology may set the stage to uncover the relationship of potential biological principles to those developed in physics. (review article)

  18. Experimental therapy of ovarian cancer with synthetic makaluvamine analog: in vitro and in vivo anticancer activity and molecular mechanisms of action.

    Directory of Open Access Journals (Sweden)

    Tao Chen

    Full Text Available The present study was designed to determine the biological effects of novel marine alkaloid analog 7-(4-fluorobenzylamino-1,3,4,8-tetrahydropyrrolo[4,3,2-de]quinolin-8(1H-one (FBA-TPQ on human ovarian cancer cells for its anti-tumor potential and the underlying mechanisms as a novel chemotherapeutic agent. Human ovarian cancer cells (A2780 and OVCAR-3, and Immortalized non-tumorigenic human Ovarian Surface Epithelial cells (IOSE-144, were exposed to FBA-TPQ for initial cytotoxicity evaluation (via MTS assay kit, Promega. The detailed in-vitro (cell level and in-vivo (animal model studies on the antitumor effects and possible underlying mechanisms of action of the compounds were then performed. FBA-TPQ exerted potent cytotoxicity against human ovarian cancer A2780 and OVCAR-3 cells as an effective inhibitor of cell growth and proliferation, while exerting lesser effects on non-tumorigenic IOSE-144 cells. Further study in the more sensitive OVCAR-3 cell line showed that it could potently induce cell apoptosis (Annexin V-FITC assay, G2/M cell cycle arrest (PI staining analysis and also dose-dependently inhibit OVCAR-3 xenograft tumors' growth on female athymic nude mice (BALB/c, nu/nu. Mechanistic studies (both in vitro and in vivo revealed that FBA-TPQ might exert its activity through Reactive Oxygen Species (ROS-associated activation of the death receptor, p53-MDM2, and PI3K-Akt pathways in OVCAR-3 cells, which is in accordance with in vitro microarray (Human genome microarrays, Agilent data analysis (GEO accession number: GSE25317. In conclusion, FBA-TPQ exhibits significant anticancer activity against ovarian cancer cells, with minimal toxicity to non-tumorigenic human IOSE-144 cells, indicating that it may be a potential therapeutic agent for ovarian cancer.

  19. Models for synthetic biology.

    Science.gov (United States)

    Kaznessis, Yiannis N

    2007-11-06

    Synthetic biological engineering is emerging from biology as a distinct discipline based on quantification. The technologies propelling synthetic biology are not new, nor is the concept of designing novel biological molecules. What is new is the emphasis on system behavior. The objective is the design and construction of new biological devices and systems to deliver useful applications. Numerous synthetic gene circuits have been created in the past decade, including bistable switches, oscillators, and logic gates, and possible applications abound, including biofuels, detectors for biochemical and chemical weapons, disease diagnosis, and gene therapies. More than fifty years after the discovery of the molecular structure of DNA, molecular biology is mature enough for real quantification that is useful for biological engineering applications, similar to the revolution in modeling in chemistry in the 1950s. With the excitement that synthetic biology is generating, the engineering and biological science communities appear remarkably willing to cross disciplinary boundaries toward a common goal.

  20. Technical Assessment: Synthetic Biology

    Science.gov (United States)

    2015-01-01

    Pfizer, Bausch & Lomb, Coca - Cola , and other Fortune 500 companies 8 Data estimated by the... financial prize for ideas to drive forward the production of a sensor relying on synthetic organisms that can detect exposure to 500 specific chemicals

  1. Textural and mechanical characterization of C-S-H gels from hydration of synthetic T1-C3S, β-C2S and their blends

    International Nuclear Information System (INIS)

    Goni, S.; Guerrero, A.; Puertas, F.; Hernandez, M. S.; Palacios, M.; Dolado, J. S.; Zhu, W.; Howind, T.

    2011-01-01

    The textural and mechanical characterization of C-S-H gels formed from the hydration of pure T1-C 3 S, β-C 2 S and their blends are studied by Nitrogen sorption and nano indentation experiments. The surface area and nano porosity of C-S-H gels formed from the hydration of β-C 2 S and the 30-70 (T1-C 3 S and β-C 2 S mixture) are higher than those from hydration of T1-C 3 S, and 70-30, with the difference decreasing with hydration age. Such changes are well supported by findings of nano indentation study, which shows the greater relative volume of C-S-H phases with lower densities in the β-C 2 S and the 30-70 pastes. With the increase in hydration age, the relative volume of C-S-H phases with higher densities increased at the expenses of those with lower density. Important quantitative correlations were found among these textural characteristics and the mean chain length, determined from 2 9Si magic-angle-spinning (MAS) NMR, of the C-S-H gels. (Author) 36 refs.

  2. Textural and mechanical characterization of C-S-H gels from hydration of synthetic T1-C3S, β-C2S and their blends

    Directory of Open Access Journals (Sweden)

    Dolado, J. S.

    2011-06-01

    Full Text Available The textural and mechanical characterization of C-S-H gels formed from the hydration of pure T1-C3S, β-C2S and their blends are studied by Nitrogen sorption and nanoindentation experiments. The surface area and nanoporosity of C-S-H gels formed from the hydration of β-C2S and the 30-70 (T1-C3S and β-C2S mixture are higher than those from hydration of T1-C3S, and 70-30, with the difference decreasing with hydration age. Such changes are well supported by findings of nanoindentation study, which shows the greater relative volume of C-S-H phases with lower densities in the β-C2S and the 30-70 pastes. With the increase in hydration age, the relative volume of C-S-H phases with higher densities increased at the expenses of those with lower density. Important quantitative correlations were found among these textural characteristics and the mean chain length, determined from 29Si magic-angle-spinning (MAS NMR, of the C-S-H gels.La caracterización textural y mecánica de geles C-S-H formados a partir de la hidratación de muestras puras de T1-C3S, ß-C2S y sus mezclas ha sido estudiada por medio de adsorción de nitrógeno y nanoindentación. El área superficial y la nano-porosidad de los geles formados durante la hidratación del ß-C2S y la mezcla 30-70 (T1-C3S- ß-C2S son mayores que los correspondientes a los geles del T1-C3S, y la mezcla 70-30; esta diferencia disminuye con el tiempo de hidratación. Estos cambios coinciden con los resultados de nanoindentación que indican un aumento de volumen relativo de las fases C-S-H con una densidad menor en el caso del ß-C2S y la mezcla 30-70. Al aumentar el tiempo de hidratación, el volumen relativo de fases C-S-H de mayor densidad aumenta a expensas de aquellas de menor densidad. Importantes correlaciones cuantitativas se establecen entre las características texturales y la longitud de cadena media del gel C-S-H, determinada mediante RMN-MAS de 29Si.

  3. Mammalian synthetic biology for studying the cell.

    Science.gov (United States)

    Mathur, Melina; Xiang, Joy S; Smolke, Christina D

    2017-01-02

    Synthetic biology is advancing the design of genetic devices that enable the study of cellular and molecular biology in mammalian cells. These genetic devices use diverse regulatory mechanisms to both examine cellular processes and achieve precise and dynamic control of cellular phenotype. Synthetic biology tools provide novel functionality to complement the examination of natural cell systems, including engineered molecules with specific activities and model systems that mimic complex regulatory processes. Continued development of quantitative standards and computational tools will expand capacities to probe cellular mechanisms with genetic devices to achieve a more comprehensive understanding of the cell. In this study, we review synthetic biology tools that are being applied to effectively investigate diverse cellular processes, regulatory networks, and multicellular interactions. We also discuss current challenges and future developments in the field that may transform the types of investigation possible in cell biology. © 2017 Mathur et al.

  4. Synthetic biology: engineering molecular computers

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Complicated systems cannot survive the rigors of a chaotic environment, without balancing mechanisms that sense, decide upon and counteract the exerted disturbances. Especially so with living organisms, forced by competition to incredible complexities, escalating also their self-controlling plight. Therefore, they compute. Can we harness biological mechanisms to create artificial computing systems? Biology offers several levels of design abstraction: molecular machines, cells, organisms... ranging from the more easily-defined to the more inherently complex. At the bottom of this stack we find the nucleic acids, RNA and DNA, with their digital structure and relatively precise interactions. They are central enablers of designing artificial biological systems, in the confluence of engineering and biology, that we call Synthetic biology. In the first part, let us follow their trail towards an overview of building computing machines with molecules -- and in the second part, take the case study of iGEM Greece 201...

  5. CO2 Capture with Enzyme Synthetic Analogue

    Energy Technology Data Exchange (ETDEWEB)

    Cordatos, Harry

    2010-11-08

    Overview of an ongoing, 2 year research project partially funded by APRA-E to create a novel, synthetic analogue of carbonic anhydrase and incorporate it into a membrane for removal of CO2 from flue gas in coal power plants. Mechanism background, preliminary feasibility study results, molecular modeling of analogue-CO2 interaction, and program timeline are provided.

  6. Effects of an iron-silicon material, a synthetic zeolite and an alkaline clay on vegetable uptake of As and Cd from a polluted agricultural soil and proposed remediation mechanisms.

    Science.gov (United States)

    Yao, Aijun; Wang, Yani; Ling, Xiaodan; Chen, Zhe; Tang, Yetao; Qiu, Hao; Ying, Rongrong; Qiu, Rongliang

    2017-04-01

    Economic and highly effective methods of in situ remediation of Cd and As polluted farmland in mining areas are urgently needed. Pot experiments with Brassica chinensis L. were carried out to determine the effects of three soil amendments [a novel iron-silicon material (ISM), a synthetic zeolite (SZ) and an alkaline clay (AC)] on vegetable uptake of As and Cd. SEM-EDS and XRD analyses were used to investigate the remediation mechanisms involved. Amendment with ISM significantly reduced the concentrations of As and Cd in edible parts of B. chinensis (by 84-94 % and 38-87 %, respectively), to levels that met food safety regulations and was much lower than those achieved by SZ and AC. ISM also significantly increased fresh biomass by 169-1412 % and 436-731 % in two consecutive growing seasons, while SZ and AC did not significantly affect vegetable growth. Correlation analysis suggested that it was the mitigating effects of ISM on soil acidity and on As and Cd toxicity, rather than nutrient amelioration, that contributed to the improvement in plant growth. SEM-EDS analysis showed that ISM contained far more Ca, Fe and Mn than did SZ or AC, and XRD analysis showed that in the ISM these elements were primarily in the form of silicates, oxides and phosphates that had high capacities for chemisorption of metal(loid)s. After incubation with solutions containing 800 mg L -1 AsO 4 2- or Cd 2+ , ISM bound distinctly higher levels of As (6.18 % in relative mass percent by EDS analysis) and Cd (7.21 % in relative mass percent by EDS analysis) compared to SZ and AC. XRD analysis also showed that ISM facilitated the precipitation of Cd 2+ as silicates, phosphates and hydroxides, and that arsenate combined with Fe, Al, Ca and Mg to form insoluble arsenate compounds. These precipitation mechanisms were much more active in ISM than in SZ or AC. Due to the greater pH elevation caused by the abundant calcium silicate, chemisorption and precipitation mechanisms in ISM treatments

  7. What Are Synthetic Cannabinoids?

    Science.gov (United States)

    ... years, synthetic cannabinoid mixtures have been easy to buy in drug paraphernalia shops, novelty stores, gas stations, and over ... abuse, authorities have made it illegal to sell, buy, or possess some of ... use is that standard drug tests cannot easily detect many of the chemicals ...

  8. Synthetic Aperture Sequential Beamforming

    DEFF Research Database (Denmark)

    Kortbek, Jacob; Jensen, Jørgen Arendt; Gammelmark, Kim Løkke

    2008-01-01

    A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective is to im......A synthetic aperture focusing (SAF) technique denoted Synthetic Aperture Sequential Beamforming (SASB) suitable for 2D and 3D imaging is presented. The technique differ from prior art of SAF in the sense that SAF is performed on pre-beamformed data contrary to channel data. The objective...... is to improve and obtain a more range independent lateral resolution compared to conventional dynamic receive focusing (DRF) without compromising frame rate. SASB is a two-stage procedure using two separate beamformers. First a set of Bmode image lines using a single focal point in both transmit and receive...... is stored. The second stage applies the focused image lines from the first stage as input data. The SASB method has been investigated using simulations in Field II and by off-line processing of data acquired with a commercial scanner. The performance of SASB with a static image object is compared with DRF...

  9. Building synthetic cellular organization

    OpenAIRE

    Polka, Jessica K.; Silver, Pamela A.

    2013-01-01

    The elaborate spatial organization of cells enhances, restricts, and regulates protein–protein interactions. However, the biological significance of this organization has been difficult to study without ways of directly perturbing it. We highlight synthetic biology tools for engineering novel cellular organization, describing how they have been, and can be, used to advance cell biology.

  10. Towards a synthetic chloroplast.

    Directory of Open Access Journals (Sweden)

    Christina M Agapakis

    2011-04-01

    Full Text Available The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts, respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic partner.We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide inside macrophages.Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or immunogenic photosynthetic bacteria have great potential as synthetic biological devices.

  11. Synthetic Metabolic Pathways

    DEFF Research Database (Denmark)

    topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Synthetic Metabolic Pathways: Methods and Protocols aims to ensure successful results in the further study...

  12. Vectoring of parallel synthetic jets

    Science.gov (United States)

    Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume

    2015-11-01

    A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).

  13. Synthetic Electric Microbial Biosensors

    Science.gov (United States)

    2017-06-10

    domains and DNA-binding domains into a single protein for deregulation of down stream genes of have been favored [10]. Initially experiments with... Germany DISTRIBUTION A. Approved for public release: distribution unlimited.   Talk title: “Synthetic biology based microbial biosensors for the...toolbox” in Heidelberg, Germany Poster title: “Anaerobic whole cell microbial biosensors” Link: http://phdsymposium.embl.org/#home   September, 2014

  14. Preparation of synthetic standard minerals

    International Nuclear Information System (INIS)

    Herrick, C.C.; Bustamante, S.J.; Charls, R.W.; Cowan, R.E.; Hakkila, E.A.; Hull, D.E.; Olinger, B.W.; Roof, R.B.; Sheinberg, H.; Herrick, G.C.

    1978-01-01

    A number of techniques for synthetic mineral preparations have been examined. These techniques include hot-pressing in graphite dies at moderate pressures, high-pressure, high-temperature synthesis in a piston and cylinder apparatus, isostatic pressing under helium gas pressures, hydrous mineral preparations using water as the pressure medium, explosion-generated shock waves, and radiofrequency heating. Minerals suitable for equation-of-state studies (three-inch, high-density discs), for thermodynamic property determinations (low-density powders) and for microprobe standards (fusion-cast microbeads) have been prepared. Mechanical stress-strain calculations in the piston-cylinder apparatus have been initiated and their integration with thermal stress calculations is currently under investigation

  15. Mechanics

    CERN Document Server

    Hartog, J P Den

    1961-01-01

    First published over 40 years ago, this work has achieved the status of a classic among introductory texts on mechanics. Den Hartog is known for his lively, discursive and often witty presentations of all the fundamental material of both statics and dynamics (and considerable more advanced material) in new, original ways that provide students with insights into mechanical relationships that other books do not always succeed in conveying. On the other hand, the work is so replete with engineering applications and actual design problems that it is as valuable as a reference to the practicing e

  16. Opportunities in plant synthetic biology.

    Science.gov (United States)

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  17. Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Nikolov, Svetoslav; Gammelmark, Kim Løkke

    2006-01-01

    The paper describes the use of synthetic aperture (SA) imaging in medical ultrasound. SA imaging is a radical break with today's commercial systems, where the image is acquired sequentially one image line at a time. This puts a strict limit on the frame rate and the possibility of acquiring...... a sufficient amount of data for high precision flow estimation. These constrictions can be lifted by employing SA imaging. Here data is acquired simultaneously from all directions over a number of emissions, and the full image can be reconstructed from this data. The talk will demonstrate the many benefits...

  18. Transition in synthetic jets

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Kordík, Jozef

    2012-01-01

    Roč. 187, NOV 2012 (2012), s. 105-117 ISSN 0924-4247 R&D Projects: GA TA ČR(CZ) TA02020795; GA ČR(CZ) GPP101/12/P556; GA ČR(CZ) GCP101/11/J019 Institutional research plan: CEZ:AV0Z20760514 Keywords : turbulence * synthetic jet * transition * velocity spectra Subject RIV: BK - Fluid Dynamics Impact factor: 1.841, year: 2012 http://www. science direct.com/ science /article/pii/S0924424712005031

  19. Anisotropic evaluation of synthetic surgical meshes.

    Science.gov (United States)

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  20. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project

    OpenAIRE

    Sliva, Anna; Yang, Huanming; Boeke, Jef D.; Mathews, Debra J. H.

    2015-01-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) Project is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with...

  1. Analog synthetic biology.

    Science.gov (United States)

    Sarpeshkar, R

    2014-03-28

    We analyse the pros and cons of analog versus digital computation in living cells. Our analysis is based on fundamental laws of noise in gene and protein expression, which set limits on the energy, time, space, molecular count and part-count resources needed to compute at a given level of precision. We conclude that analog computation is significantly more efficient in its use of resources than deterministic digital computation even at relatively high levels of precision in the cell. Based on this analysis, we conclude that synthetic biology must use analog, collective analog, probabilistic and hybrid analog-digital computational approaches; otherwise, even relatively simple synthetic computations in cells such as addition will exceed energy and molecular-count budgets. We present schematics for efficiently representing analog DNA-protein computation in cells. Analog electronic flow in subthreshold transistors and analog molecular flux in chemical reactions obey Boltzmann exponential laws of thermodynamics and are described by astoundingly similar logarithmic electrochemical potentials. Therefore, cytomorphic circuits can help to map circuit designs between electronic and biochemical domains. We review recent work that uses positive-feedback linearization circuits to architect wide-dynamic-range logarithmic analog computation in Escherichia coli using three transcription factors, nearly two orders of magnitude more efficient in parts than prior digital implementations.

  2. Synthetic lubricating oils

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Jurado, J

    1953-01-01

    A yellow solid petroleum paraffin d/sup 60/ 0.808, I number 3.5, average molecular weight 350, chlorinated and condensed with benzene, xylene, or naphthalene by the Friedel and Crafts reaction, in the presence of anhydrous AlCl/sub 3/ or activated Al, gave synthetic lubricating oils. Xylene was the preferred aromatic compound, naphthalene required the use of less completely chlorinated paraffin, benzene produced resins difficult to remove and gave darker oils with excessive green fluorescence. Activated Al rather than anhydrous AlCl/sub 3/ gave darker oils with higher viscosity and Conradson C values. Tar from the low-temperature distillation of lignite, used as a source of a paraffin fraction melting 40/sup 0/ to 48/sup 0/ (chlorinated to 26.5 percent Cl) and an aromatic fraction, 45 percent aromatic compounds by volume (mainly polysubstituted benzenes), I number 10, was converted to a similar synthetic lubricant with the following properties: Kinematic viscosity at 210/sup 0/ F., 50.4 centistokes; viscosity index, 92; Conradson C, 1.5 percent; solidification point, 9/sup 0/; S, 0.41 percent.

  3. Coloring of synthetic fluorite

    International Nuclear Information System (INIS)

    Birsoy, R.

    1980-01-01

    A synthetic fluorite of the Harshaw Chemical Company is analyzed for rare earth elements, yttrium, and sodium. Samples of this fluorite are irradiated with X-rays, γ-rays, neutrons, electrons, protons, and α-particles at different energies, and their absorption spectra are analyzed. Analyzing the thermal bleaching of these radiation-coloured fluorites shows that both, impurities and radiation play a part in the coloration of synthetic fluorite. However, the main contribution comes from the radiation induced lattice defects. In the visible region spectra, the colour centre of the 5800 to 5900 A absorption band is probably mainly related with large aggregates of F-centres. The 5450 and the 5300 A absorption bands are mainly related to monovalent and divalent ion impurities and their association with lattice defects. The 3800 A absorption band seems to be related with F-centre aggregates. However, the contribution from the rare earth elements related complex color centres also plays some part for the production of this absorption band. These results indicate that the color centres of different origin can absorb light at the same wavelength. (author)

  4. Experience with synthetic fluorinated fluid lubricants

    Science.gov (United States)

    Conley, Peter L.; Bohner, John J.

    1990-01-01

    Since the late 1970's, the wet lubricant of choice for space mechanisms has been one of the family of synthetic perfluoro polyalkylether (PFPE) compounds, namely Fomblin Z-25 (Bray-815Z) or DuPont's Krytox 143xx series. While offering the advantages of extremely low vapor pressures and wide temperature ranges, these oils and derived greases have a complex chemistry compared to the more familiar natural and synthetic hydrocarbons. Many aerospace companies have conducted test programs to characterize the behavior of these compounds in a space environment, resulting in a large body of hard knowledge as well as considerable space lore concerning the suitability of the lubricants for particular applications and techniques for successful application. The facts are summarized and a few myths about the compounds are dispelled, and some performance guidelines for the mechanism design engineer are provided.

  5. Prospects for applying synthetic biology to toxicology

    DEFF Research Database (Denmark)

    Behrendorff, James Bruce Yarnton H; Gillam, Elizabeth M.J.

    2017-01-01

    The 30 years since the inception of Chemical Research in Toxicology, game-changing advances in chemical and molecular biology, the fundamental disciplines underpinning molecular toxicology, have been made. While these have led to important advances in the study of mechanisms by which chemicals...... damage cells and systems, there has been less focus on applying these advances to prediction, detection, and mitigation of toxicity. Over the last ∼15 years, synthetic biology, the repurposing of biological "parts" in systems engineered for useful ends, has been explored in other areas of the biomedical...... and life sciences, for such applications as detecting metabolites, drug discovery and delivery, investigating disease mechanisms, improving medical treatment, and producing useful chemicals. These examples provide models for the application of synthetic biology to toxicology, which, for the most part, has...

  6. Synthetic biology for pharmaceutical drug discovery

    Directory of Open Access Journals (Sweden)

    Trosset JY

    2015-12-01

    Full Text Available Jean-Yves Trosset,1 Pablo Carbonell2,3 1Bioinformation Research Laboratory, Sup’Biotech, Villejuif, France; 2Faculty of Life Sciences, SYNBIOCHEM Centre, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK; 3Department of Experimental and Health Sciences (DCEXS, Research Programme on Biomedical Informatics (GRIB, Hospital del Mar Medical Research Institute (IMIM, Universitat Pompeu Fabra (UPF, Barcelona, Spain Abstract: Synthetic biology (SB is an emerging discipline, which is slowly reorienting the field of drug discovery. For thousands of years, living organisms such as plants were the major source of human medicines. The difficulty in resynthesizing natural products, however, often turned pharmaceutical industries away from this rich source for human medicine. More recently, progress on transformation through genetic manipulation of biosynthetic units in microorganisms has opened the possibility of in-depth exploration of the large chemical space of natural products derivatives. Success of SB in drug synthesis culminated with the bioproduction of artemisinin by microorganisms, a tour de force in protein and metabolic engineering. Today, synthetic cells are not only used as biofactories but also used as cell-based screening platforms for both target-based and phenotypic-based approaches. Engineered genetic circuits in synthetic cells are also used to decipher disease mechanisms or drug mechanism of actions and to study cell–cell communication within bacteria consortia. This review presents latest developments of SB in the field of drug discovery, including some challenging issues such as drug resistance and drug toxicity. Keywords: metabolic engineering, plant synthetic biology, natural products, synthetic quorum sensing, drug resistance

  7. Synthetic Biology: Engineering Living Systems from Biophysical Principles.

    Science.gov (United States)

    Bartley, Bryan A; Kim, Kyung; Medley, J Kyle; Sauro, Herbert M

    2017-03-28

    Synthetic biology was founded as a biophysical discipline that sought explanations for the origins of life from chemical and physical first principles. Modern synthetic biology has been reinvented as an engineering discipline to design new organisms as well as to better understand fundamental biological mechanisms. However, success is still largely limited to the laboratory and transformative applications of synthetic biology are still in their infancy. Here, we review six principles of living systems and how they compare and contrast with engineered systems. We cite specific examples from the synthetic biology literature that illustrate these principles and speculate on their implications for further study. To fully realize the promise of synthetic biology, we must be aware of life's unique properties. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Space Synthetic Biology Project

    Science.gov (United States)

    Howard, David; Roman, Monsi; Mansell, James (Matt)

    2015-01-01

    Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the

  9. Design and construction of "synthetic species".

    Directory of Open Access Journals (Sweden)

    Eduardo Moreno

    Full Text Available Synthetic biology is an area of biological research that combines science and engineering. Here, I merge the principles of synthetic biology and regulatory evolution to create a new species with a minimal set of known elements. Using preexisting transgenes and recessive mutations of Drosophila melanogaster, a transgenic population arises with small eyes and a different venation pattern that fulfils the criteria of a new species according to Mayr's Biological Species Concept. The population described here is the first transgenic organism that cannot hybridize with the original wild type population but remains fertile when crossed with other identical transgenic animals. I therefore propose the term "synthetic species" to distinguish it from "natural species", not only because it has been created by genetic manipulation, but also because it may never be able to survive outside the laboratory environment. The use of genetic engineering to design artificial species barriers could help us understand natural speciation and may have practical applications. For instance, the transition from transgenic organisms towards synthetic species could constitute a safety mechanism to avoid the hybridization of genetically modified animals with wild type populations, preserving biodiversity.

  10. Current status of synthetic epikeratoplasty.

    Science.gov (United States)

    Thompson, K P; Hanna, K; Waring, G O; Gipson, I; Liu, Y; Gailitis, R P; Johnson-Wint, B; Green, K

    1991-01-01

    Many of the deficiencies with human tissue epikeratoplasty might be improved by the use of a suitable synthetic lenticule. Potential biomaterials for epikeratoplasty include collagen (types I, III, or IV), collagen-hydrogel copolymers, bioactive synthetics, and coated hydrogels. The biomaterial must be engineered to achieve strict specifications of optical clarity, support of epithelial migration and adhesion, permeability to solutes, and stability to corneal proteases. Attaching synthetic lenticules to the cornea without cutting Bowman's layer by adhesives, laser welding, or direct adhesion may also improve the efficacy of synthetic epikeratoplasty.

  11. Synthetic biology and occupational risk.

    Science.gov (United States)

    Howard, John; Murashov, Vladimir; Schulte, Paul

    2017-03-01

    Synthetic biology is an emerging interdisciplinary field of biotechnology that involves applying the principles of engineering and chemical design to biological systems. Biosafety professionals have done an excellent job in addressing research laboratory safety as synthetic biology and gene editing have emerged from the larger field of biotechnology. Despite these efforts, risks posed by synthetic biology are of increasing concern as research procedures scale up to industrial processes in the larger bioeconomy. A greater number and variety of workers will be exposed to commercial synthetic biology risks in the future, including risks to a variety of workers from the use of lentiviral vectors as gene transfer devices. There is a need to review and enhance current protection measures in the field of synthetic biology, whether in experimental laboratories where new advances are being researched, in health care settings where treatments using viral vectors as gene delivery systems are increasingly being used, or in the industrial bioeconomy. Enhanced worker protection measures should include increased injury and illness surveillance of the synthetic biology workforce; proactive risk assessment and management of synthetic biology products; research on the relative effectiveness of extrinsic and intrinsic biocontainment methods; specific safety guidance for synthetic biology industrial processes; determination of appropriate medical mitigation measures for lentiviral vector exposure incidents; and greater awareness and involvement in synthetic biology safety by the general occupational safety and health community as well as by government occupational safety and health research and regulatory agencies.

  12. Finding Hope in Synthetic Biology.

    Science.gov (United States)

    Takala, Tuija

    2017-04-01

    For some, synthetic biology represents great hope in offering possible solutions to many of the world's biggest problems, from hunger to sustainable development. Others remain fearful of the harmful uses, such as bioweapons, that synthetic biology can lend itself to, and most hold that issues of biosafety are of utmost importance. In this article, I will evaluate these points of view and conclude that although the biggest promises of synthetic biology are unlikely to become reality, and the probability of accidents is fairly substantial, synthetic biology could still be seen to benefit humanity by enhancing our ethical understanding and by offering a boost to world economy.

  13. Tissue Harmonic Synthetic Aperture Imaging

    DEFF Research Database (Denmark)

    Rasmussen, Joachim

    The main purpose of this PhD project is to develop an ultrasonic method for tissue harmonic synthetic aperture imaging. The motivation is to advance the field of synthetic aperture imaging in ultrasound, which has shown great potentials in the clinic. Suggestions for synthetic aperture tissue...... system complexity compared to conventional synthetic aperture techniques. In this project, SASB is sought combined with a pulse inversion technique for 2nd harmonic tissue harmonic imaging. The advantages in tissue harmonic imaging (THI) are expected to further improve the image quality of SASB...

  14. Life after the synthetic cell

    DEFF Research Database (Denmark)

    Rasmussen, Steen

    2010-01-01

    Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self-replicating ......Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self...

  15. Mechanics

    CERN Document Server

    Chester, W

    1979-01-01

    When I began to write this book, I originally had in mind the needs of university students in their first year. May aim was to keep the mathematics simple. No advanced techniques are used and there are no complicated applications. The emphasis is on an understanding of the basic ideas and problems which require expertise but do not contribute to this understanding are not discussed. How­ ever, the presentation is more sophisticated than might be considered appropri­ ate for someone with no previous knowledge of the subject so that, although it is developed from the beginning, some previous acquaintance with the elements of the subject would be an advantage. In addition, some familiarity with element­ ary calculus is assumed but not with the elementary theory of differential equations, although knowledge of the latter would again be an advantage. It is my opinion that mechanics is best introduced through the motion of a particle, with rigid body problems left until the subject is more fully developed. Howev...

  16. Computational synthetic geometry

    CERN Document Server

    Bokowski, Jürgen

    1989-01-01

    Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to stud...

  17. Synthetic Aperture Compound Imaging

    DEFF Research Database (Denmark)

    Hansen, Jens Munk

    and the limiting factor is the amount of memory IO resources available. An equally high demand for memory throughput is found in the computer gaming industry, where a large part of the processing takes place on the graphics processing unit (GPU). Using the GPU, a framework for synthetic aperture imaging......Medical ultrasound imaging is used for many purposes, e.g. for localizing and classifying cysts, lesions, and other processes. Almost any mass is first observed using B-mode imaging and later classified using e.g. color flow, strain, or attenuation imaging. It is therefore important that the B......-mode images have high contrast. Like all imaging modalities, ultrasound is subject to a number of inherent artifacts that compromise image quality. The most prominent artifact is the degradation by coherent wave interference, known as “speckle”, which gives a granular appearance to an otherwise homogeneous...

  18. Transionospheric synthetic aperture imaging

    CERN Document Server

    Gilman, Mikhail; Tsynkov, Semyon

    2017-01-01

    This landmark monograph presents the most recent mathematical developments in the analysis of ionospheric distortions of SAR images and offers innovative new strategies for their mitigation. As a prerequisite to addressing these topics, the book also discusses the radar ambiguity theory as it applies to synthetic aperture imaging and the propagation of radio waves through the ionospheric plasma, including the anisotropic and turbulent cases. In addition, it covers a host of related subjects, such as the mathematical modeling of extended radar targets (as opposed to point-wise targets) and the scattering of radio waves off those targets, as well as the theoretical analysis of the start-stop approximation, which is used routinely in SAR signal processing but often without proper justification. The mathematics in this volume is clean and rigorous – no assumptions are hidden or ambiguously stated. The resulting work is truly interdisciplinary, providing both a comprehensive and thorough exposition of the field,...

  19. Radioimmunoassay of synthetic steroids

    Energy Technology Data Exchange (ETDEWEB)

    Raynaud, J -P; Bucourt, R; Salmon, J

    1975-12-01

    The sensitivity of a radioimmunoassay depends on the intrinsic association constant of the interaction between ligand and antibody. Its specificity depends on the position of the chain which forms the link with the antigen. Thus, an antibody specific of estradiol has been obtained by coupling estradiol to albumin via a chain at position 7. For synthetic steroids the structure of which is sufficiency different from that of natural hormones, the requirements for a sensitive assay method not involving chromatography are simply maximum affinity and positioning of the couple at a site which does not undergo metabolic attack. These criteria were used to develop assays for R 2858 and R 2453 which obviate the need to administer radioactive product in clinical pharmacology. Cross-reaction with structural analogs may be used to assay competitors. Thus, R 2323 antibody, highly specific for endogenous steroids, may be used to assay other trienes such as R 1697 (trenbolone) and R 2010 (norgestrienone).

  20. Synthetic fuels and fusion

    Energy Technology Data Exchange (ETDEWEB)

    Fillo, J A; Powell, J; Steinberg, M [Brookhaven National Lab., Upton, NY (USA)

    1981-03-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. equal to 40-60% and hydrogen production efficiencies by high temperature electrolysis of approx. equal to 50-70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long-term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  1. Rewiring protein synthesis: From natural to synthetic amino acids.

    Science.gov (United States)

    Fan, Yongqiang; Evans, Christopher R; Ling, Jiqiang

    2017-11-01

    The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Imaging with Synthetic Aperture Radar

    CERN Document Server

    Massonnet, Didier

    2008-01-01

    Describing a field that has been transformed by the recent availability of data from a new generation of space and airborne systems, the authors offer a synthetic geometrical approach to the description of synthetic aperture radar, one that addresses physicists, radar specialists, as well as experts in image processing.  

  3. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    Zegers, N.D.

    1995-01-01

    Synthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps that lead to the

  4. Synthetic peptides for antibody production

    NARCIS (Netherlands)

    N.D. Zegers (Netty)

    1995-01-01

    textabstractSynthetic peptides are useful tools for the generation of antibodies. The use of antibodies as specific reagents in inununochemical assays is widely applied. In this chapter, the application of synthetic peptides for the generation of antibodies is described. The different steps

  5. Synthetic biology and metabolic engineering.

    Science.gov (United States)

    Stephanopoulos, Gregory

    2012-11-16

    Metabolic engineering emerged 20 years ago as the discipline occupied with the directed modification of metabolic pathways for the microbial synthesis of various products. As such, it deals with the engineering (design, construction, and optimization) of native as well as non-natural routes of product synthesis, aided in this task by the availability of synthetic DNA, the core enabling technology of synthetic biology. The two fields, however, only partially overlap in their interest in pathway engineering. While fabrication of biobricks, synthetic cells, genetic circuits, and nonlinear cell dynamics, along with pathway engineering, have occupied researchers in the field of synthetic biology, the sum total of these areas does not constitute a coherent definition of synthetic biology with a distinct intellectual foundation and well-defined areas of application. This paper reviews the origins of the two fields and advances two distinct paradigms for each of them: that of unit operations for metabolic engineering and electronic circuits for synthetic biology. In this context, metabolic engineering is about engineering cell factories for the biological manufacturing of chemical and pharmaceutical products, whereas the main focus of synthetic biology is fundamental biological research facilitated by the use of synthetic DNA and genetic circuits.

  6. The Ethics of Synthetic Biology

    DEFF Research Database (Denmark)

    Christiansen, Andreas

    The dissertation analyses and discusses a number of ethical issues that have been raised in connection with the development of synthetic biology. Synthetic biology is a set of new techniques for DNA-level design and construction of living beings with useful properties. The dissertation especially...

  7. Synthetic biology of polyketide synthases

    DEFF Research Database (Denmark)

    Yuzawa, Satoshi; Backman, Tyler W.H.; Keasling, Jay D.

    2018-01-01

    ). The modules are composed of enzymatic domains that share sequence and functional similarity across all known PKSs. We have used the nomenclature of synthetic biology to classify the enzymatic domains and modules as parts and devices, respectively, and have generated detailed lists of both. In addition, we...... realize the potential that synthetic biology approaches bring to this class of molecules....

  8. Reaction mechanism of coal liquefaction: hydrogenolysis of model compound using synthetic pyrite as catalysts. 7. Property change of synthetic pyrite catalyst with the time after production; Sekitan ekika hanno kiko (model kagobutsu no hanno). 7. Gosei ryukatetsu shokubai no keiji henka ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Ito, H.; Meno, H.; Uemaki, O.; Shibata, T.; Tsuji, T. [Hokkaido University, Sapporo (Japan)

    1996-10-28

    Reactions of various model compounds were investigated using synthetic pyrites for coal liquefaction. In this study, successive changes of the catalysts were investigated from the reactions of model compounds by using three different synthetic pyrites with the lapse of time after production. Benzyl phenyl ether, dibenzyl, and n-octylbenzene were used as model compounds. Reactions were conducted in an autoclave, into which sample, catalyst, decalin as solvent, and initial hydrogen pressure 10 MPa were charged. The autoclave was held at 450 or 475{degree}C of reaction temperature for 1 hour. The catalyst with a shorter lapse of time after production acted to hydrogen transfer, and inhibited the formation of condensation products due to the stabilization of decomposed fragment. It also acted to isomerization of materials by cutting alkyl side chains. When adding sulfur to the catalyst with longer lapse of time after production under these reaction conditions, it inhibited the formation of condensation products for the reaction of benzyl phenyl ether. However, it did not provide the effect for the reaction of n-octylbenzene. 5 refs., 3 figs.

  9. Synthetic sustained gene delivery systems.

    Science.gov (United States)

    Agarwal, Ankit; Mallapragada, Surya K

    2008-01-01

    Gene therapy today is hampered by the need of a safe and efficient gene delivery system that can provide a sustained therapeutic effect without cytotoxicity or unwanted immune responses. Bolus gene delivery in solution results in the loss of delivered factors via lymphatic system and may cause undesired effects by the escape of bioactive molecules to distant sites. Controlled gene delivery systems, acting as localized depot of genes, provide an extended sustained release of genes, giving prolonged maintenance of the therapeutic level of encoded proteins. They also limit the DNA degradation in the nuclease rich extra-cellular environment. While attempts have been made to adapt existing controlled drug delivery technologies, more novel approaches are being investigated for controlled gene delivery. DNA encapsulated in nano/micro spheres of polymers have been administered systemically/orally to be taken up by the targeted tissues and provide sustained release once internalized. Alternatively, DNA entrapped in hydrogels or scaffolds have been injected/implanted in tissues/cavities as platforms for gene delivery. The present review examines these different modalities for sustained delivery of viral and non-viral gene-delivery vectors. Design parameters and release mechanisms of different systems made with synthetic or natural polymers are presented along with their prospective applications and opportunities for continuous development.

  10. The Prion Concept and Synthetic Prions.

    Science.gov (United States)

    Legname, Giuseppe; Moda, Fabio

    2017-01-01

    Transmissible spongiform encephalopathies or prion diseases are a group of fatal neurodegenerative diseases caused by unconventional infectious agents, known as prions (PrP Sc ). Prions derive from a conformational conversion of the normally folded prion protein (PrP C ), which acquires pathological and infectious features. Moreover, PrP Sc is able to transmit the pathological conformation to PrP C through a mechanism that is still not well understood. The generation of synthetic prions, which behave like natural prions, is of fundamental importance to study the process of PrP C conversion and to assess the efficacy of therapeutic strategies to interfere with this process. Moreover, the ability of synthetic prions to induce pathology in animals confirms that the pathological properties of the prion strains are all enciphered in abnormal conformations, characterizing these infectious agents. © 2017 Elsevier Inc. All rights reserved.

  11. Computing with synthetic protocells.

    Science.gov (United States)

    Courbet, Alexis; Molina, Franck; Amar, Patrick

    2015-09-01

    In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane electron transfer. In the paradigm of computation we propose, protoputing, a machine can solve only one problem and therefore has to be built specifically. Thus, the programming phase in the standard computing paradigm is represented in our approach by the set of assembly instructions (specific attachments) that directs the wiring of the protocells that constitute the machine itself. To demonstrate the computing power of protocellular machines, we apply it to solve a NP-complete problem, known to be very demanding in computing power, the 3-SAT problem. We show how to program the assembly of a machine that can verify the satisfiability of a given boolean formula. Then we show how to use the massive parallelism of these machines to verify in less than 20 min all the valuations of the input variables and output a fluorescent signal when the formula is satisfiable or no signal at all otherwise.

  12. Synthetic prions and other human neurodegenerative proteinopathies.

    Science.gov (United States)

    Le, Nhat Tran Thanh; Narkiewicz, Joanna; Aulić, Suzana; Salzano, Giulia; Tran, Hoa Thanh; Scaini, Denis; Moda, Fabio; Giachin, Gabriele; Legname, Giuseppe

    2015-09-02

    Transmissible spongiform encephalopathies (TSE) are a heterogeneous group of neurodegenerative disorders. The common feature of these diseases is the pathological conversion of the normal cellular prion protein (PrP(C)) into a β-structure-rich conformer-termed PrP(Sc). The latter can induce a self-perpetuating process leading to amplification and spreading of pathological protein assemblies. Much evidence suggests that PrP(Sc) itself is able to recruit and misfold PrP(C) into the pathological conformation. Recent data have shown that recombinant PrP(C) can be misfolded in vitro and the resulting synthetic conformers are able to induce the conversion of PrP(C) into PrP(Sc)in vivo. In this review we describe the state-of-the-art of the body of literature in this field. In addition, we describe a cell-based assay to test synthetic prions in cells, providing further evidence that synthetic amyloids are able to template conversion of PrP into prion inclusions. Studying prions might help to understand the pathological mechanisms governing other neurodegenerative diseases. Aggregation and deposition of misfolded proteins is a common feature of several neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and other disorders. Although the proteins implicated in each of these diseases differ, they share a common prion mechanism. Recombinant proteins are able to aggregate in vitro into β-rich amyloid fibrils, sharing some features of the aggregates found in the brain. Several studies have reported that intracerebral inoculation of synthetic aggregates lead to unique pathology, which spread progressively to distal brain regions and reduced survival time in animals. Here, we review the prion-like features of different proteins involved in neurodegenerative disorders, such as α-synuclein, superoxide dismutase-1, amyloid-β and tau. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Synthetic Biology: Advancing Biological Frontiers by Building Synthetic Systems

    OpenAIRE

    Chen, Yvonne Yu-Hsuan; Galloway, Kate E; Smolke, Christina D

    2012-01-01

    Advances in synthetic biology are contributing to diverse research areas, from basic biology to biomanufacturing and disease therapy. We discuss the theoretical foundation, applications, and potential of this emerging field.

  14. Approaches to chemical synthetic biology.

    Science.gov (United States)

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. Synthetic Biology for Specialty Chemicals.

    Science.gov (United States)

    Markham, Kelly A; Alper, Hal S

    2015-01-01

    In this review, we address recent advances in the field of synthetic biology and describe how those tools have been applied to produce a wide variety of chemicals in microorganisms. Here we classify the expansion of the synthetic biology toolbox into three different categories based on their primary function in strain engineering-for design, for construction, and for optimization. Next, focusing on recent years, we look at how chemicals have been produced using these new synthetic biology tools. Advances in producing fuels are briefly described, followed by a more thorough treatment of commodity chemicals, specialty chemicals, pharmaceuticals, and nutraceuticals. Throughout this review, an emphasis is placed on how synthetic biology tools are applied to strain engineering. Finally, we discuss organism and host strain diversity and provide a future outlook in the field.

  16. Adaptive Synthetic Forces: Situation Awareness

    National Research Council Canada - National Science Library

    Hill, Randall

    2001-01-01

    ...: perception, comprehension, and prediction. Building on these ideas, we developed techniques for improving the situation awareness in synthetic helicopter pilots for the ModSAF military simulation by giving them more human-like perception...

  17. Programming languages for synthetic biology.

    Science.gov (United States)

    Umesh, P; Naveen, F; Rao, Chanchala Uma Maheswara; Nair, Achuthsankar S

    2010-12-01

    In the backdrop of accelerated efforts for creating synthetic organisms, the nature and scope of an ideal programming language for scripting synthetic organism in-silico has been receiving increasing attention. A few programming languages for synthetic biology capable of defining, constructing, networking, editing and delivering genome scale models of cellular processes have been recently attempted. All these represent important points in a spectrum of possibilities. This paper introduces Kera, a state of the art programming language for synthetic biology which is arguably ahead of similar languages or tools such as GEC, Antimony and GenoCAD. Kera is a full-fledged object oriented programming language which is tempered by biopart rule library named Samhita which captures the knowledge regarding the interaction of genome components and catalytic molecules. Prominent feature of the language are demonstrated through a toy example and the road map for the future development of Kera is also presented.

  18. Carbon Nanotube-Based Synthetic Gecko Tapes

    Science.gov (United States)

    Dhinojwala, Ali

    2008-03-01

    Wall-climbing geckos have unique ability to attach to different surfaces without the use of any viscoelastic glues. On coming in contact with any surface, the micron-size gecko foot-hairs deform, enabling molecular contact over large areas, thus translating weak van der Waals (vdW) interactions into enormous shear forces. We will present our recent results on the development of synthetic gecko tape using aligned carbon nanotubes to mimic the keratin hairs found on gecko feet. The patterned carbon nanotube-based gecko tape can support a shear stress (36 N/cm^2) nearly four times higher than the gecko foot and sticks to a variety of surfaces, including Teflon. Both the micron-size setae (replicated by nanotube bundles) and nanometer-size spatulas (individual nanotubes) are necessary to achieve macroscopic shear adhesion and to translate the weak vdW interactions into high shear forces. The carbon nanotube based tape offers an excellent synthetic option as a dry conductive reversible adhesive in microelectronics, robotics and space applications. The mechanism behind these large shear forces and self-cleaning properties of these carbon nanotube based synthetic gecko tapes will be discussed. This work was performed in collaboration with graduate students Liehui Ge, and Sunny Sethi, and collaborators from RPI; Lijie Ci and Professor Pulickel Ajayan.

  19. Early effects of synthetic bovine parathyroid hormone and synthetic salmon calcitonin on urinary excretion of cyclic AMP, phosphate and calcium in man.

    Science.gov (United States)

    Caniggia, A; Gennari, C; Vattimo, A; Nardi, P; Nuti, R; Galli, M

    1976-04-20

    Bovine synthetic parathyroid hormone infused intravenously in man increased both the urinary excretion of cyclic AMP and the urinary excretion of phosphate whereas a Salmon synthetic calcitonin infusion increased the urinary excretion of phosphate without change in urinary excretion of cyclic AMP. These data are consistent with the hypothesis that different renal mechanisms are involved in the response to each hormone.

  20. Freedom and Responsibility in Synthetic Genomics: The Synthetic Yeast Project.

    Science.gov (United States)

    Sliva, Anna; Yang, Huanming; Boeke, Jef D; Mathews, Debra J H

    2015-08-01

    First introduced in 2011, the Synthetic Yeast Genome (Sc2.0) PROJECT is a large international synthetic genomics project that will culminate in the first eukaryotic cell (Saccharomyces cerevisiae) with a fully synthetic genome. With collaborators from across the globe and from a range of institutions spanning from do-it-yourself biology (DIYbio) to commercial enterprises, it is important that all scientists working on this project are cognizant of the ethical and policy issues associated with this field of research and operate under a common set of principles. In this commentary, we survey the current ethics and regulatory landscape of synthetic biology and present the Sc2.0 Statement of Ethics and Governance to which all members of the project adhere. This statement focuses on four aspects of the Sc2.0 PROJECT: societal benefit, intellectual property, safety, and self-governance. We propose that such project-level agreements are an important, valuable, and flexible model of self-regulation for similar global, large-scale synthetic biology projects in order to maximize the benefits and minimize potential harms. Copyright © 2015 by the Genetics Society of America.

  1. Meeting Report: Synthetic Biology Jamboree for Undergraduates

    Science.gov (United States)

    Campbell, A. Malcolm

    2005-01-01

    The field of synthetic biology (the name is derived from an analogy to synthetic chemistry) has recognized itself as a "field" only since about 2002. Synthetic biology has gotten some high-profile attention recently, but most people are not aware the field even exists. Synthetic biologists apply engineering principles to genomic circuits to…

  2. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    Science.gov (United States)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  3. Synthetic biology, metaphors and responsibility.

    Science.gov (United States)

    McLeod, Carmen; Nerlich, Brigitte

    2017-08-29

    Metaphors are not just decorative rhetorical devices that make speech pretty. They are fundamental tools for thinking about the world and acting on the world. The language we use to make a better world matters; words matter; metaphors matter. Words have consequences - ethical, social and legal ones, as well as political and economic ones. They need to be used 'responsibly'. They also need to be studied carefully - this is what we want to do through this editorial and the related thematic collection. In the context of synthetic biology, natural and social scientists have become increasingly interested in metaphors, a wave of interest that we want to exploit and amplify. We want to build on emerging articles and books on synthetic biology, metaphors of life and the ethical and moral implications of such metaphors. This editorial provides a brief introduction to synthetic biology and responsible innovation, as well as a comprehensive review of literature on the social, cultural and ethical impacts of metaphor use in genomics and synthetic biology. Our aim is to stimulate an interdisciplinary and international discussion on the impact that metaphors can have on science, policy and publics in the context of synthetic biology.

  4. Content metamorphosis in synthetic holography

    International Nuclear Information System (INIS)

    Desbiens, Jacques

    2013-01-01

    A synthetic hologram is an optical system made of hundreds of images amalgamated in a structure of holographic cells. Each of these images represents a point of view on a three-dimensional space which makes us consider synthetic holography as a multiple points of view perspective system. In the composition of a computer graphics scene for a synthetic hologram, the field of view of the holographic image can be divided into several viewing zones. We can attribute these divisions to any object or image feature independently and operate different transformations on image content. In computer generated holography, we tend to consider content variations as a continuous animation much like a short movie. However, by composing sequential variations of image features in relation with spatial divisions, we can build new narrative forms distinct from linear cinematographic narration. When observers move freely and change their viewing positions, they travel from one field of view division to another. In synthetic holography, metamorphoses of image content are within the observer's path. In all imaging Medias, the transformation of image features in synchronisation with the observer's position is a rare occurrence. However, this is a predominant characteristic of synthetic holography. This paper describes some of my experimental works in the development of metamorphic holographic images.

  5. Control theory meets synthetic biology.

    Science.gov (United States)

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. © 2016 The Author(s).

  6. The relevance of polymeric synthetic membranes in topical formulation assessment and drug diffusion study.

    Science.gov (United States)

    Ng, Shiow-Fern; Rouse, Jennifer J; Sanderson, Francis D; Eccleston, Gillian M

    2012-03-01

    Synthetic membranes are composed of thin sheets of polymeric macromolecules that can control the passage of components through them. Generally, synthetic membranes used in drug diffusion studies have one of two functions: skin simulation or quality control. Synthetic membranes for skin simulation, such as the silicone-based membranes polydimethylsiloxane and Carbosil, are generally hydrophobic and rate limiting, imitating the stratum corneum. In contrast, synthetic membranes for quality control, such as cellulose esters and polysulfone, are required to act as a support rather than a barrier. These synthetic membranes also often contain pores; hence, they are called porous membranes. The significance of Franz diffusion studies and synthetic membranes in quality control studies involves an understanding of the fundamentals of synthetic membranes. This article provides a general overview of synthetic membranes, including a brief background of the history and the common applications of synthetic membranes. This review then explores the types of synthetic membranes, the transport mechanisms across them, and their relevance in choosing a synthetic membrane in Franz diffusion cell studies for formulation assessment purposes.

  7. Mammalian Synthetic Biology: Engineering Biological Systems.

    Science.gov (United States)

    Black, Joshua B; Perez-Pinera, Pablo; Gersbach, Charles A

    2017-06-21

    The programming of new functions into mammalian cells has tremendous application in research and medicine. Continued improvements in the capacity to sequence and synthesize DNA have rapidly increased our understanding of mechanisms of gene function and regulation on a genome-wide scale and have expanded the set of genetic components available for programming cell biology. The invention of new research tools, including targetable DNA-binding systems such as CRISPR/Cas9 and sensor-actuator devices that can recognize and respond to diverse chemical, mechanical, and optical inputs, has enabled precise control of complex cellular behaviors at unprecedented spatial and temporal resolution. These tools have been critical for the expansion of synthetic biology techniques from prokaryotic and lower eukaryotic hosts to mammalian systems. Recent progress in the development of genome and epigenome editing tools and in the engineering of designer cells with programmable genetic circuits is expanding approaches to prevent, diagnose, and treat disease and to establish personalized theranostic strategies for next-generation medicines. This review summarizes the development of these enabling technologies and their application to transforming mammalian synthetic biology into a distinct field in research and medicine.

  8. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  9. Synthetic neurosteroids on brain protection

    Directory of Open Access Journals (Sweden)

    Mariana Rey

    2015-01-01

    Full Text Available Neurosteroids, like allopregnanolone and pregnanolone, are endogenous regulators of neuronal excitability. Inside the brain, they are highly selective and potent modulators of GABA A receptor activity. Their anticonvulsant, anesthetics and anxiolytic properties are useful for the treatments of several neurological and psychiatric disorders via reducing the risks of side effects obtained with the commercial drugs. The principal disadvantages of endogenous neurosteroids administration are their rapid metabolism and their low oral bioavailability. Synthetic steroids analogues with major stability or endogenous neurosteroids stimulation synthesis might constitute promising novel strategies for the treatment of several disorders. Numerous studies indicate that the 3α-hydroxyl configuration is the key for binding and activity, but modifications in the steroid nucleus may emphasize different pharmacophores. So far, several synthetic steroids have been developed with successful neurosteroid-like effects. In this work, we summarize the properties of various synthetic steroids probed in trials throughout the analysis of several neurosteroids-like actions.

  10. Insights on the mechanism of thioredoxin reductase inhibition by gold N-heterocyclic carbene compounds using the synthetic linear selenocysteine containing C-terminal peptide hTrxR(488-499): an ESI-MS investigation.

    Science.gov (United States)

    Pratesi, Alessandro; Gabbiani, Chiara; Michelucci, Elena; Ginanneschi, Mauro; Papini, Anna Maria; Rubbiani, Riccardo; Ott, Ingo; Messori, Luigi

    2014-07-01

    Gold-based drugs typically behave as strong inhibitors of the enzyme thioredoxin reductase (hTrxR), possibly as the consequence of direct Gold(I) coordination to its active site selenocysteine. To gain a deeper insight into the molecular basis of enzyme inhibition and prove gold-selenocysteine coordination, the reactions of three parent Gold(I) NHC compounds with the synthetic C-terminal dodecapeptide of hTrxR containing Selenocysteine at position 498, were investigated by electrospray ionization mass spectrometry (ESI-MS). Formation of 1:1 Gold-peptide adducts, though in highly different amounts, was demonstrated in all cases. In these adducts the same [Au-NHC](+) moiety is always associated to the intact peptide. Afterward, tandem MS experiments, conducted on a specific Gold-peptide complex, pointed out that Gold is coordinated to the selenolate group. The relatively large strength of the Gold-selenolate coordinative bond well accounts for potent enzyme inhibition typically afforded by these Gold(I) compounds. In a selected case, the time course of enzyme inhibition was explored. Interestingly, enzyme inhibition turned out to show up very quickly and reached its maximum just few minutes after mixing. Overall, the present results offer some clear insight into the process of thioredoxin reductase inhibition by Gold-based compounds. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Synthetic biology as red herring.

    Science.gov (United States)

    Preston, Beth

    2013-12-01

    It has become commonplace to say that with the advent of technologies like synthetic biology the line between artifacts and living organisms, policed by metaphysicians since antiquity, is beginning to blur. But that line began to blur 10,000 years ago when plants and animals were first domesticated; and has been thoroughly blurred at least since agriculture became the dominant human subsistence pattern many millennia ago. Synthetic biology is ultimately only a late and unexceptional offshoot of this prehistoric development. From this perspective, then, synthetic biology is a red herring, distracting us from more thorough philosophical consideration of the most truly revolutionary human practice-agriculture. In the first section of this paper I will make this case with regard to ontology, arguing that synthetic biology crosses no ontological lines that were not crossed already in the Neolithic. In the second section I will construct a parallel case with regard to cognition, arguing that synthetic biology as biological engineering represents no cognitive advance over what was required for domestication and the new agricultural subsistence pattern it grounds. In the final section I will make the case with regard to human existence, arguing that synthetic biology, even if wildly successful, is not in a position to cause significant existential change in what it is to be human over and above the massive existential change caused by the transition to agriculture. I conclude that a longer historical perspective casts new light on some important issues in philosophy of technology and environmental philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. US Competitiveness in Synthetic Biology.

    Science.gov (United States)

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized.

  13. Synthetic Phage for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2014-01-01

    Full Text Available Controlling structural organization and signaling motif display is of great importance to design the functional tissue regenerating materials. Synthetic phage, genetically engineered M13 bacteriophage has been recently introduced as novel tissue regeneration materials to display a high density of cell-signaling peptides on their major coat proteins for tissue regeneration purposes. Structural advantages of their long-rod shape and monodispersity can be taken together to construct nanofibrous scaffolds which support cell proliferation and differentiation as well as direct orientation of their growth in two or three dimensions. This review demonstrated how functional synthetic phage is designed and subsequently utilized for tissue regeneration that offers potential cell therapy.

  14. Synthetic biology and its promises

    Directory of Open Access Journals (Sweden)

    José Manuel De Cózar Escalante

    2016-12-01

    Full Text Available Synthetic biology is a new science and emerging technology, or rather a technoscience, which converges with others such as nanotechnology, information technology, robotics, artificial intelligence and neuroscience. All have common features that could have highly concerning social and environmental impacts. With its ambitious goals of controlling complexity, redesigning and creating new living entities, synthetic biology perfectly exemplifies the new bioeconomic reality. This requires expanding the focus of the discussion beyond the limited comparative analysis of risks and benefits, to address uncertainties, reassign responsibilities and initiate a thorough social assessment of what is at stake.

  15. Role of catalysis in sustainable production of synthetic elastomers

    Indian Academy of Sciences (India)

    productions, the impact of synthetic elastomer business cannot be overlooked. The need of ... Keywords. Elastomers; catalysis; tyres and automobiles; mechanism; manufacturing process. 1. ..... level fractional factorial design model was also developed to ..... Polybutadiene can be manufactured by a number of pro- cesses ...

  16. Energy and charge control in mass spectrometry of synthetic polymers

    NARCIS (Netherlands)

    Nasioudis, A.

    2011-01-01

    Synthetic polymers are the products of humans’ attempts to imitate nature’s gigantic molecular chain architectures. The extended variety of building blocks and reaction mechanisms resulted in a plethora of different polymeric architectures. The biggest challenge for polymer chemists is to develop an

  17. Where Synthetic Biology Meets ET

    Science.gov (United States)

    Rothschild, Lynn J.

    2016-01-01

    Synthetic biology - the design and construction of new biological parts and systems and the redesign of existing ones for useful purposes - has the potential to transform fields from pharmaceuticals to fuels. Our lab has focused on the potential of synthetic biology to revolutionize all three major parts of astrobiology: Where do we come from? Where are we going? and Are we alone? For the first and third, synthetic biology is allowing us to answer whether the evolutionary narrative that has played out on planet earth is likely to have been unique or universal. For example, in our lab we are re-evolving the biosynthetic pathways of amino acids in order to understand potential capabilities of an early organism with a limited repertoire of amino acids and developing techniques for the recovery of metals from spent electronics on other planetary bodies. And what about the limits for life? Can we create organisms that expand the envelope for life? In the future synthetic biology will play an increasing role in human activities both on earth, in fields as diverse as human health and the industrial production of novel bio-composites. Beyond earth, we will rely increasingly on biologically-provided life support, as we have throughout our evolutionary history. In order to do this, the field will build on two of the great contributions of astrobiology: studies of the origin of life and life in extreme environments.

  18. Stereoscopy in cinematographic synthetic imagery

    Science.gov (United States)

    Eisenmann, Jonathan; Parent, Rick

    2009-02-01

    In this paper we present experiments and results pertaining to the perception of depth in stereoscopic viewing of synthetic imagery. In computer animation, typical synthetic imagery is highly textured and uses stylized illumination of abstracted material models by abstracted light source models. While there have been numerous studies concerning stereoscopic capabilities, conventions for staging and cinematography in stereoscopic movies have not yet been well-established. Our long-term goal is to measure the effectiveness of various cinematography techniques on the human visual system in a theatrical viewing environment. We would like to identify the elements of stereoscopic cinema that are important in terms of enhancing the viewer's understanding of a scene as well as providing guidelines for the cinematographer relating to storytelling. In these experiments we isolated stereoscopic effects by eliminating as many other visual cues as is reasonable. In particular, we aim to empirically determine what types of movement in synthetic imagery affect the perceptual depth sensing capabilities of our viewers. Using synthetic imagery, we created several viewing scenarios in which the viewer is asked to locate a target object's depth in a simple environment. The scenarios were specifically designed to compare the effectiveness of stereo viewing, camera movement, and object motion in aiding depth perception. Data were collected showing the error between the choice of the user and the actual depth value, and patterns were identified that relate the test variables to the viewer's perceptual depth accuracy in our theatrical viewing environment.

  19. Synthetic biology meets tissue engineering.

    Science.gov (United States)

    Davies, Jamie A; Cachat, Elise

    2016-06-15

    Classical tissue engineering is aimed mainly at producing anatomically and physiologically realistic replacements for normal human tissues. It is done either by encouraging cellular colonization of manufactured matrices or cellular recolonization of decellularized natural extracellular matrices from donor organs, or by allowing cells to self-organize into organs as they do during fetal life. For repair of normal bodies, this will be adequate but there are reasons for making unusual, non-evolved tissues (repair of unusual bodies, interface to electromechanical prostheses, incorporating living cells into life-support machines). Synthetic biology is aimed mainly at engineering cells so that they can perform custom functions: applying synthetic biological approaches to tissue engineering may be one way of engineering custom structures. In this article, we outline the 'embryological cycle' of patterning, differentiation and morphogenesis and review progress that has been made in constructing synthetic biological systems to reproduce these processes in new ways. The state-of-the-art remains a long way from making truly synthetic tissues, but there are now at least foundations for future work. © 2016 Authors; published by Portland Press Limited.

  20. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  1. Assessment of synthetic image fidelity

    Science.gov (United States)

    Mitchell, Kevin D.; Moorhead, Ian R.; Gilmore, Marilyn A.; Watson, Graham H.; Thomson, Mitch; Yates, T.; Troscianko, Tomasz; Tolhurst, David J.

    2000-07-01

    Computer generated imagery is increasingly used for a wide variety of purposes ranging from computer games to flight simulators to camouflage and sensor assessment. The fidelity required for this imagery is dependent on the anticipated use - for example when used for camouflage design it must be physically correct spectrally and spatially. The rendering techniques used will also depend upon the waveband being simulated, spatial resolution of the sensor and the required frame rate. Rendering of natural outdoor scenes is particularly demanding, because of the statistical variation in materials and illumination, atmospheric effects and the complex geometric structures of objects such as trees. The accuracy of the simulated imagery has tended to be assessed subjectively in the past. First and second order statistics do not capture many of the essential characteristics of natural scenes. Direct pixel comparison would impose an unachievable demand on the synthetic imagery. For many applications, such as camouflage design, it is important that nay metrics used will work in both visible and infrared wavebands. We are investigating a variety of different methods of comparing real and synthetic imagery and comparing synthetic imagery rendered to different levels of fidelity. These techniques will include neural networks (ICA), higher order statistics and models of human contrast perception. This paper will present an overview of the analyses we have carried out and some initial results along with some preliminary conclusions regarding the fidelity of synthetic imagery.

  2. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  3. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  4. Methods for preparing synthetic freshwaters.

    Science.gov (United States)

    Smith, E J; Davison, W; Hamilton-Taylor, J

    2002-03-01

    Synthetic solutions that emulate the major ion compositions of natural waters are useful in experiments aimed at understanding biogeochemical processes. Standard recipes exist for preparing synthetic analogues of seawater, with its relatively constant composition, but, due to the diversity of freshwaters, a range of compositions and recipes is required. Generic protocols are developed for preparing synthetic freshwaters of any desired composition. The major problems encountered in preparing hard and soft waters include dissolving sparingly soluble calcium carbonate, ensuring that the ionic components of each concentrated stock solution cannot form an insoluble salt and dealing with the supersaturation of calcium carbonate in many hard waters. For acidic waters the poor solubility of aluminium salts requires attention. These problems are overcome by preparing concentrated stock solutions according to carefully designed reaction paths that were tested using a combination of experiment and equilibrium modeling. These stock solutions must then be added in a prescribed order to prepare a final solution that is brought into equilibrium with the atmosphere. The example calculations for preparing hard, soft and acidic freshwater surrogates with major ion compositions the same as published analyses, are presented in a generalized fashion that should allow preparation of any synthetic freshwater according to its known analysis.

  5. Maximization of integral outlet quantities of an axisymmetric synthetic jet actuator based on a loudspeaker

    Czech Academy of Sciences Publication Activity Database

    Kordík, Jozef; Trávníček, Zdeněk

    2016-01-01

    Roč. 114, March (2016), č. článku 02152. ISSN 2101-6275. [International Conference on Experimental Fluid Mechanics /10./. Praha, 17.11.2015-20.11.2015] R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : synthetic jet * synthetic jet actuator * resonance Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts

  6. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  7. Geo synthetic-reinforced Pavement systems; Sistemas de pavimentos reforzados con geosinteticos

    Energy Technology Data Exchange (ETDEWEB)

    Zornberg, J. G.

    2014-02-01

    Geo synthetics have been used as reinforcement inclusions to improve pavement performance. while there are clear field evidence of the benefit of using geo synthetic reinforcements, the specific conditions or mechanisms that govern the reinforcement of pavements are, at best, unclear and have remained largely unmeasured. Significant research has been recently conducted with the objectives of: (i) determining the relevant properties of geo synthetics that contribute to the enhanced performance of pavement systems, (ii) developing appropriate analytical, laboratory and field methods capable of quantifying the pavement performance, and (iii) enabling the prediction of pavement performance as a function of the properties of the various types of geo synthetics. (Author)

  8. Synthetic musk fragrances in Lake Michigan.

    Science.gov (United States)

    Peck, Aaron M; Hornbuckle, Keri C

    2004-01-15

    Synthetic musk fragrances are added to a wide variety of personal care and household products and are present in treated wastewater effluent. Here we report for the first time ambient air and water measurements of six polycyclic musks (AHTN, HHCB, ATII, ADBI, AHMI, and DPMI) and two nitro musks (musk xylene and musk ketone) in North America. The compounds were measured in the air and water of Lake Michigan and in the air of urban Milwaukee, WI. All of the compounds except DPMI were detected. HHCB and AHTN were found in the highest concentrations in all samples. Airborne concentrations of HHCB and AHTN average 4.6 and 2.9 ng/m3, respectively, in Milwaukee and 1.1 and 0.49 ng/m3 over the lake. The average water concentration of HHCB and AHTN in Lake Michigan was 4.7 and 1.0 ng/L, respectively. A lake-wide annual mass budget shows that wastewater treatment plant discharge is the major source (3470 kg/yr) of the synthetic musks while atmospheric deposition contributes less than 1%. Volatilization and outflow through the Straits of Mackinac are major loss mechanisms (2085 and 516 kg/yr for volatilization and outflow, respectively). Concentrations of HHCB are about one-half the predicted steady-state water concentrations in Lake Michigan.

  9. Catalysts for synthetic liquid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, L.A.; Turney, T.W.

    1987-12-01

    Fischer-Tropsch catalysts have been designed, characterized and tested for the selective production of hydrocarbons suitable as synthetic liquid transport fuels from synthesis gas (i.e., by the reduction of carbon monoxide with hydrogen). It was found that hydrocarbons in the middle distillate range, or suitable for conversion to that range, could be produced over several of the new catalyst systems. The various catalysts examined included: (1) synthetic cobalt clays, mainly cobalt chlorites; (2) cobalt hydrotalcites; (3) ruthenium metal supported on rare earth oxides of high surface area; and (4) a novel promoted cobalt catalyst. Active and selective catalysts have been obtained, in each category. With the exception of the clays, reproducibility of catalyst performance has been good. Catalysts in groups 2 and 4 have exhibited very high activity, with long lifetimes and easy regeneration.

  10. Design Automation in Synthetic Biology.

    Science.gov (United States)

    Appleton, Evan; Madsen, Curtis; Roehner, Nicholas; Densmore, Douglas

    2017-04-03

    Design automation refers to a category of software tools for designing systems that work together in a workflow for designing, building, testing, and analyzing systems with a target behavior. In synthetic biology, these tools are called bio-design automation (BDA) tools. In this review, we discuss the BDA tools areas-specify, design, build, test, and learn-and introduce the existing software tools designed to solve problems in these areas. We then detail the functionality of some of these tools and show how they can be used together to create the desired behavior of two types of modern synthetic genetic regulatory networks. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.

  11. Synthetic biology character and impact

    CERN Document Server

    Pade, Christian; Wigger, Henning; Gleich, Arnim

    2015-01-01

    Synthetic Biology is already an object of intensive debate. However, to a great extent the discussion to date has been concerned with fundamental ethical, religious and philosophical questions. By contrast, based on an investigation of the field’s scientific and technological character, this book focuses on new functionalities provided by synthetic biology and explores the associated opportunities and risks. Following an introduction to the subject and a discussion of the most central paradigms and methodologies, the book provides an overview of the structure of this field of science and technology. It informs the reader about the current stage of development, as well as topical problems and potential opportunities in important fields of application. But not only the science itself is in focus. In order to investigate its broader impact, ecological as well as ethical implications will be considered, paving the way for a discussion of responsibilities in the context of a field at a transitional crossroads be...

  12. Synthetic greenhouse gases under control

    International Nuclear Information System (INIS)

    Horisberger, B.; Karlaganis, G.

    2003-01-01

    This article discusses new Swiss regulations on the use of synthetic materials that posses a considerable greenhouse-warming potential. Synthetic materials such as hydro-chlorofluorocarbons HCFCs, perfluoride-hydrocarbons and sulphur hexafluoride have, in recent years, replaced chlorofluorocarbons CFCs, which were banned on account of their ozone depletion characteristics. The use of these persistent substances is now being limited to applications where more environment-friendly alternatives are not available. The measures decreed in the legislation, which include a general ban on HCFCs as of 2004 and a ban on the export of installations and equipment that use ozone-depleting refrigerants are described. Details on the legislation's effects on the Swiss refrigeration industry are listed and discussed

  13. Synthetic LDL as targeted drug delivery vehicle

    Science.gov (United States)

    Forte, Trudy M [Berkeley, CA; Nikanjam, Mina [Richmond, CA

    2012-08-28

    The present invention provides a synthetic LDL nanoparticle comprising a lipid moiety and a synthetic chimeric peptide so as to be capable of binding the LDL receptor. The synthetic LDL nanoparticle of the present invention is capable of incorporating and targeting therapeutics to cells expressing the LDL receptor for diseases associated with the expression of the LDL receptor such as central nervous system diseases. The invention further provides methods of using such synthetic LDL nanoparticles.

  14. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite.

    Science.gov (United States)

    Sofronia, Ancuta M; Baies, Radu; Anghel, Elena M; Marinescu, Cornelia A; Tanasescu, Speranta

    2014-10-01

    The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400°C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis-TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800°C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Vibrational spectrum of synthetic carnotite

    Energy Technology Data Exchange (ETDEWEB)

    Baran, E J; Botto, I L [La Plata Univ. Nacional (Argentina). Facultad de Ciencias Exactas

    1976-05-01

    The infrared and laser-Raman spectra of synthetic carnotite, K/sub 2/((UO/sub 2/)/sub 2/V/sub 2/O/sub 8/), are reported and discussed. Force constants for the terminal V-O bonds as well as for the UO/sub 2//sup 2 +/ ions are evaluated. From the spectroscopic data, a U-O bond length of 1.81 A is estimated for the uranyl ion in this compound.

  16. Designer Drugs: A Synthetic Catastrophe

    OpenAIRE

    Fratantonio, James; Andrade, Lawrence; Febo, Marcelo

    2015-01-01

    Synthetic stimulants can cause hallucinations, aggressive behaviors, death and are sometimes legal. These substances are sold as plant food and bath salts that are "Not for Human Consumption", therefore skirting the 1986 Federal Analogue Act and giving a false pretense of safety. Studies have proved that these substances are toxic, have a high abuse potential, and are becoming extremely prevalent in the United States. This creates a dilemma for law enforcement agents, hospitals, and substance...

  17. Hydrogen speciation in synthetic quartz

    Science.gov (United States)

    Aines, R.D.; Kirby, S.H.; Rossman, G.R.

    1984-01-01

    The dominant hydrogen impurity in synthetic quartz is molecular H2O. H-OH groups also occur, but there is no direct evidence for the hydrolysis of Si-O-Si bonds to yield Si-OH HO-Si groups. Molecular H2O concentrations in the synthetic quartz crystals studied range from less than 10 to 3,300 ppm (H/Si), and decrease smoothly by up to an order of magnitude with distance away from the seed. OH- concentrations range from 96 to 715 ppm, and rise smoothly with distance away from the seed by up to a factor of three. The observed OH- is probably all associated with cationic impurities, as in natural quartz. Molecular H2O is the dominant initial hydrogen impurity in weak quartz. The hydrolytic weakening of quartz may be caused by the transformation H2O + Si-O-Si ??? 2SiOH, but this may be a transitory change with the SiOH groups recombining to form H2O, and the average SiOH concentration remaining very low. Synthetic quartz is strengthened when the H2O is accumulated into fluid inclusions and cannot react with the quartz framework. ?? 1984 Springer-Verlag.

  18. Characterization of synthetic peptides by mass spectrometry

    DEFF Research Database (Denmark)

    Prabhala, Bala Krishna; Mirza, Osman Asghar; Højrup, Peter

    2015-01-01

    Mass spectrometry (MS) is well suited for analysis of the identity and purity of synthetic peptides. The sequence of a synthetic peptide is most often known, so the analysis is mainly used to confirm the identity and purity of the peptide. Here, simple procedures are described for MALDI......-TOF-MS and LC-MS of synthetic peptides....

  19. Biodeterioration of synthetic materials - A brief review

    Energy Technology Data Exchange (ETDEWEB)

    Flemming, H.C. [Biofilm Centre, University of Duisburg-Essen, Geibelstr. 41, 47057 Duisburg (Germany)

    2010-12-15

    Although synthetic polymers are part of our global waste problem because they are not sufficiently biologically degraded, microorganisms can severely impair the properties and functions of these materials. It seems as if consumers do not really acknowledge this cause of problems and there is only sparse systematic research about. Damaging mechanisms include (i) covering of surfaces (biofouling) which may be enhanced by leaching of biodegradable additives, (ii) depletion of such additives which can lead to loss of material properties, (iii) intrusion into materials by fungal hyphae, (iv) water uptake, and (v) discoloration. The common countermeasure is the addition of biocides or simply to tolerate the effects of biodeterioration and live on with them. It is suggested to encourage further systematic research, and to develop integrated strategies in order to avoid problems, e.g., based on nutrient and water limitation whenever possible. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Synthetic Pot: Not Your Grandfather's Marijuana.

    Science.gov (United States)

    Ford, Benjamin M; Tai, Sherrica; Fantegrossi, William E; Prather, Paul L

    2017-03-01

    In the early 2000s in Europe and shortly thereafter in the USA, it was reported that 'legal' forms of marijuana were being sold under the name K2 and/or Spice. Active ingredients in K2/Spice products were determined to be synthetic cannabinoids (SCBs), producing psychotropic actions via CB 1 cannabinoid receptors, similar to those of Δ 9 -tetrahydrocannabinol (Δ 9 -THC), the primary active constituent in marijuana. Often abused by adolescents and military personnel to elude detection in drug tests due to their lack of structural similarity to Δ 9 -THC, SCBs are falsely marketed as safe marijuana substitutes. Instead, SCBs are a highly structural diverse group of compounds, easily synthesized, which produce very dangerous adverse effects occurring by, as of yet, unknown mechanisms. Therefore, available evidence indicates that K2/Spice products are clearly not safe marijuana alternatives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Synthetic strategies for plant signalling studies: molecular toolbox and orthogonal platforms

    KAUST Repository

    Braguy, Justine; Zurbriggen, Matias D.

    2016-01-01

    of involved functional and regulatory mechanisms. The implementation of synthetic biology approaches is revolutionizing experimental biology in prokaryotes, yeasts and animal systems and can likewise contribute to a new era in plant biology. This review gives

  2. A Canadian refiner's perspective of synthetic crudes

    International Nuclear Information System (INIS)

    Halford, T.L.; McIntosh, A.P.; Rasmussen

    1997-01-01

    Some of the factors affecting a refiner's choice of crude oil include refinery hardware, particularly gas oil crackers, products slate and product specifications, crude availability, relative crude price and crude quality. An overview of synthetic crude, the use of synthetic crude combined with other crudes and a comparison of synthetic crude with conventional crude oil was given. The two main users of synthetic crude are basically two groups of refiners, those large groups who use synthetic crude combined with other crudes, and a smaller group who run synthetic crude on specially designed units as a sole feed. The effects of changes in fuel legislation were reviewed. It was predicted that the changes will have a mixed impact on the value of synthetic crude, but low sulphur diesel regulations and gasoline sulphur regulations will make current synthetic crudes attractive. The big future change with a negative impact will be diesel cetane increases to reduce engine emissions. This will reduce synthetic crude attractiveness due to distillate yields and quality and high gas oil yields. Similarly, any legislation limiting aromatics in diesel fuel will also make synthetic crudes less attractive. Problems experienced by refiners with hardware dedicated to synthetic crude (salt, naphthenic acid, fouling, quality variations) were also reviewed. 3 tabs

  3. Synthetic biology: Emerging bioengineering in Indonesia

    Science.gov (United States)

    Suhandono, Sony

    2017-05-01

    The development of synthetic biology will shape the new era of science and technology. It is an emerging bioengineering technique involving genetic engineering which can alter the phenotype and behavior of the cell or the new product. Synthetic biology may produce biomaterials, drugs, vaccines, biosensors, and even a recombinant secondary metabolite used in herbal and complementary medicine, such as artemisinin, a malaria drug which is usually extracted from the plant Artemisia annua. The power of synthetic biology has encouraged scientists in Indonesia, and is still in early development. This paper also covers some research from an Indonesian research institute in synthetic biology such as observing the production of bio surfactants and the enhanced production of artemisinin using a transient expression system. Synthetic biology development in Indonesia may also be related to the iGEM competition, a large synthetic biology research competition which was attended by several universities in Indonesia. The application of synthetic biology for drug discovery will be discussed.

  4. Printability of Synthetic Papers by Electrophotography

    Directory of Open Access Journals (Sweden)

    Rozália Szentgyörgyvölgyi

    2010-04-01

    Full Text Available This paper deals with the printability of synthetic papers by the electrophotography technique. Prints of cmyk colour fields from 20% to 100% raster tone values were printed on three types of synthetic papers (one film synthetic paper and two fiber synthetic papers. The investigation of the appearance included densitometric measurement of the cmyk prints. The results have shown differences in the optical density and optical tone value between cmyk prints made on various synthetic papers. The highest optical density and the increase of the optical tone value were observed on the film synthetic paper, where cmyk prints were more saturated. The highest abrasion resistance of cmyk prints was obtained from the fibre synthetic paper.

  5. Synthetic Aperture Vector Flow Imaging

    DEFF Research Database (Denmark)

    Villagómez Hoyos, Carlos Armando

    The main objective of this project was to continue the development of a synthetic aperture vector flow estimator. This type of estimator is capable of overcoming two of the major limitations in conventional ultrasound systems: 1) the inability to scan large region of interest with high temporal......, this thesis showed that novel information can be obtained with vector velocity methods providing quantitative estimates of blood flow and insight into the complexity of the hemodynamics dynamics. This could give the clinician a new tool in assessment and treatment of a broad range of diseases....

  6. Synthetic Biology Guides Biofuel Production

    Directory of Open Access Journals (Sweden)

    Michael R. Connor

    2010-01-01

    Full Text Available The advancement of microbial processes for the production of renewable liquid fuels has increased with concerns about the current fuel economy. The development of advanced biofuels in particular has risen to address some of the shortcomings of ethanol. These advanced fuels have chemical properties similar to petroleum-based liquid fuels, thus removing the need for engine modification or infrastructure redesign. While the productivity and titers of each of these processes remains to be improved, progress in synthetic biology has provided tools to guide the engineering of these processes through present and future challenges.

  7. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite

    International Nuclear Information System (INIS)

    Sofronia, Ancuta M.; Baies, Radu; Anghel, Elena M.; Marinescu, Cornelia A.; Tanasescu, Speranta

    2014-01-01

    The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400 °C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis—TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800 °C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. - Highlights: • Specific surface area of HA powder was reduced from 19.2 to 9.5 m 2 /g by calcination. • Raman spectra indicate the presence of B-type CO 3 group in HA synthetic samples. • The onset temperature of HA densification and dehydroxylation processes correspond. • Calcination of HA influences reactions kinetics with consequences on densification. • Shrinkage of calcined HA sample increases by 10% with respect to uncalcined sample

  8. Thermal and structural characterization of synthetic and natural nanocrystalline hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Sofronia, Ancuta M. [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania); Baies, Radu [National Research Institute for Electrochemistry and Condensed Matter, 300224 Timisoara (Romania); Anghel, Elena M. [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania); Marinescu, Cornelia A., E-mail: alcorina@chimfiz.icf.ro [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania); Tanasescu, Speranta [Ilie Murgulescu Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest (Romania)

    2014-10-01

    The aim of this work was to study the thermal stability on heating and to obtain the processing parameters of synthetic and bone-derived hydroxyapatite over temperatures between room temperature and 1400 °C by thermal analysis (thermogravimetry (TG)/differential scanning calorimetry (DSC) and thermo-mechanical analysis—TMA). Structural and surface modifications related to samples origin and calcination temperature were investigated by Fourier transformed infrared (FTIR) and Raman spectroscopy, X-ray diffraction (XRD) and BET method. FTIR spectra indicated that the organic constituents and carbonate are no longer present in the natural sample calcined at 800 °C. Raman spectra highlighted the decomposition products of the hydroxyapatite. The calcination treatment modifies the processes kinetics of the synthetic samples, being able to isolate lattice water desorption processes of decarbonization and the dehydroxylation processes. Shrinkage of calcined synthetic sample increases by 10% compared to uncalcined synthetic powder. From the TMA correlated with TG analysis and heat capacity data it can be concluded that sintering temperature of the synthetic samples should be chosen in the temperature range of the onset of dehydroxylation and the temperature at which oxyapatite decomposition begins. - Highlights: • Specific surface area of HA powder was reduced from 19.2 to 9.5 m{sup 2}/g by calcination. • Raman spectra indicate the presence of B-type CO{sub 3} group in HA synthetic samples. • The onset temperature of HA densification and dehydroxylation processes correspond. • Calcination of HA influences reactions kinetics with consequences on densification. • Shrinkage of calcined HA sample increases by 10% with respect to uncalcined sample.

  9. Tracking the emergence of synthetic biology.

    Science.gov (United States)

    Shapira, Philip; Kwon, Seokbeom; Youtie, Jan

    2017-01-01

    Synthetic biology is an emerging domain that combines biological and engineering concepts and which has seen rapid growth in research, innovation, and policy interest in recent years. This paper contributes to efforts to delineate this emerging domain by presenting a newly constructed bibliometric definition of synthetic biology. Our approach is dimensioned from a core set of papers in synthetic biology, using procedures to obtain benchmark synthetic biology publication records, extract keywords from these benchmark records, and refine the keywords, supplemented with articles published in dedicated synthetic biology journals. We compare our search strategy with other recent bibliometric approaches to define synthetic biology, using a common source of publication data for the period from 2000 to 2015. The paper details the rapid growth and international spread of research in synthetic biology in recent years, demonstrates that diverse research disciplines are contributing to the multidisciplinary development of synthetic biology research, and visualizes this by profiling synthetic biology research on the map of science. We further show the roles of a relatively concentrated set of research sponsors in funding the growth and trajectories of synthetic biology. In addition to discussing these analyses, the paper notes limitations and suggests lines for further work.

  10. DNA recognition by synthetic constructs.

    Science.gov (United States)

    Pazos, Elena; Mosquera, Jesús; Vázquez, M Eugenio; Mascareñas, José L

    2011-09-05

    The interaction of transcription factors with specific DNA sites is key for the regulation of gene expression. Despite the availability of a large body of structural data on protein-DNA complexes, we are still far from fully understanding the molecular and biophysical bases underlying such interactions. Therefore, the development of non-natural agents that can reproduce the DNA-recognition properties of natural transcription factors remains a major and challenging goal in chemical biology. In this review we summarize the basics of double-stranded DNA recognition by transcription factors, and describe recent developments in the design and preparation of synthetic DNA binders. We mainly focus on synthetic peptides that have been designed by following the DNA interaction of natural proteins, and we discuss how the tools of organic synthesis can be used to make artificial constructs equipped with functionalities that introduce additional properties to the recognition process, such as sensing and controllability. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthetic Biology of Polyhydroxyalkanoates (PHA).

    Science.gov (United States)

    Meng, De-Chuan; Chen, Guo-Qiang

    Microbial polyhydroxyalkanoates (PHA) are a family of biodegradable and biocompatible polyesters which have been extensively studied using synthetic biology and metabolic engineering methods for improving production and for widening its diversity. Synthetic biology has allowed PHA to become composition controllable random copolymers, homopolymers, and block copolymers. Recent developments showed that it is possible to establish a microbial platform for producing not only random copolymers with controllable monomers and their ratios but also structurally defined homopolymers and block copolymers. This was achieved by engineering the genome of Pseudomonas putida or Pseudomonas entomophiles to weaken the β-oxidation and in situ fatty acid synthesis pathways, so that a fatty acid fed to the bacteria maintains its original chain length and structures when incorporated into the PHA chains. The engineered bacterium allows functional groups in a fatty acid to be introduced into PHA, forming functional PHA, which, upon grafting, generates endless PHA variety. Recombinant Escherichia coli also succeeded in producing efficiently poly(3-hydroxypropionate) or P3HP, the strongest member of PHA. Synthesis pathways of P3HP and its copolymer P3HB3HP of 3-hydroxybutyrate and 3-hydroxypropionate were assembled respectively to allow their synthesis from glucose. CRISPRi was also successfully used to manipulate simultaneously multiple genes and control metabolic flux in E. coli to obtain a series of copolymer P3HB4HB of 3-hydroxybutyrate (3HB) and 4-hydroxybutyrate (4HB). The bacterial shapes were successfully engineered for enhanced PHA accumulation.

  12. Synthetic membrane-targeted antibiotics.

    Science.gov (United States)

    Vooturi, S K; Firestine, S M

    2010-01-01

    Antimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.

  13. Synthetic vision display evaluation studies

    Science.gov (United States)

    Regal, David M.; Whittington, David H.

    1994-01-01

    The goal of this research was to help us understand the display requirements for a synthetic vision system for the High Speed Civil Transport (HSCT). Four experiments were conducted to examine the effects of different levels of perceptual cue complexity in displays used by pilots in a flare and landing task. Increased levels of texture mapping of terrain and runway produced mixed results, including harder but shorter landings and a lower flare initiation altitude. Under higher workload conditions, increased texture resulted in an improvement in performance. An increase in familiar size cues did not result in improved performance. Only a small difference was found between displays using two patterns of high resolution texture mapping. The effects of increased perceptual cue complexity on performance was not as strong as would be predicted from the pilot's subjective reports or from related literature. A description of the role of a synthetic vision system in the High Speed Civil Transport is provide along with a literature review covering applied research related to perceptual cue usage in aircraft displays.

  14. Evaluation of synthetic linear motor-molecule actuation energetics

    OpenAIRE

    Brough, Branden; Northrop, Brian H.; Schmidt, Jacob J.; Tseng, Hsian-Rong; Houk, Kendall N.; Stoddart, J. Fraser; Ho, Chih-Ming

    2006-01-01

    By applying atomic force microscope (AFM)-based force spectroscopy together with computational modeling in the form of molecular force-field simulations, we have determined quantitatively the actuation energetics of a synthetic motor-molecule. This multidisciplinary approach was performed on specifically designed, bistable, redox-controllable [2]rotaxanes to probe the steric and electrostatic interactions that dictate their mechanical switching at the single-molecule level. The fusion of expe...

  15. Word selection affects perceptions of synthetic biology

    Directory of Open Access Journals (Sweden)

    Tonidandel Scott

    2011-07-01

    Full Text Available Abstract Members of the synthetic biology community have discussed the significance of word selection when describing synthetic biology to the general public. In particular, many leaders proposed the word "create" was laden with negative connotations. We found that word choice and framing does affect public perception of synthetic biology. In a controlled experiment, participants perceived synthetic biology more negatively when "create" was used to describe the field compared to "construct" (p = 0.008. Contrary to popular opinion among synthetic biologists, however, low religiosity individuals were more influenced negatively by the framing manipulation than high religiosity people. Our results suggest that synthetic biologists directly influence public perception of their field through avoidance of the word "create".

  16. Creating biological nanomaterials using synthetic biology

    International Nuclear Information System (INIS)

    Rice, MaryJoe K; Ruder, Warren C

    2014-01-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems. (review)

  17. Creating biological nanomaterials using synthetic biology.

    Science.gov (United States)

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  18. Synthetic approaches to uniform polymers.

    Science.gov (United States)

    Ali, Monzur; Brocchini, Steve

    2006-12-30

    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  19. Synthetic Lipoproteins as Carriers for Drug Delivery.

    Science.gov (United States)

    Huang, Gangliang; Liu, Yang; Huang, Hualiang

    2016-01-01

    Synthetic lipoprotein is an effective carrier of targeted delivery for drugs. It has the very small size, good biocompatibility, suitable half-life, and specific lipoprotein receptorbinding capacity. Compared with the traditional natural lipoprotein, synthetic lipoprotein not only retains the original biological characteristics and functions, but also exhibits the excellent characteristics in drug delivery. Herein, the advantages, development, applications, and prospect of synthetic lipoproteins as drug carriers were summarized.

  20. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research. PMID:20150964

  1. Synthetic Biology: Tools to Design, Build, and Optimize Cellular Processes

    Directory of Open Access Journals (Sweden)

    Eric Young

    2010-01-01

    Full Text Available The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1 the process units and associated streams of the central dogma, (2 the intrinsic regulatory mechanisms, and (3 the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  2. Synthetic biology: tools to design, build, and optimize cellular processes.

    Science.gov (United States)

    Young, Eric; Alper, Hal

    2010-01-01

    The general central dogma frames the emergent properties of life, which make biology both necessary and difficult to engineer. In a process engineering paradigm, each biological process stream and process unit is heavily influenced by regulatory interactions and interactions with the surrounding environment. Synthetic biology is developing the tools and methods that will increase control over these interactions, eventually resulting in an integrative synthetic biology that will allow ground-up cellular optimization. In this review, we attempt to contextualize the areas of synthetic biology into three tiers: (1) the process units and associated streams of the central dogma, (2) the intrinsic regulatory mechanisms, and (3) the extrinsic physical and chemical environment. Efforts at each of these three tiers attempt to control cellular systems and take advantage of emerging tools and approaches. Ultimately, it will be possible to integrate these approaches and realize the vision of integrative synthetic biology when cells are completely rewired for biotechnological goals. This review will highlight progress towards this goal as well as areas requiring further research.

  3. Policy on synthetic biology: deliberation, probability, and the precautionary paradox.

    Science.gov (United States)

    Wareham, Christopher; Nardini, Cecilia

    2015-02-01

    Synthetic biology is a cutting-edge area of research that holds the promise of unprecedented health benefits. However, in tandem with these large prospective benefits, synthetic biology projects entail a risk of catastrophic consequences whose severity may exceed that of most ordinary human undertakings. This is due to the peculiar nature of synthetic biology as a 'threshold technology' which opens doors to opportunities and applications that are essentially unpredictable. Fears about these potentially unstoppable consequences have led to declarations from civil society groups calling for the use of a precautionary principle to regulate the field. Moreover, the principle is prevalent in law and international agreements. Despite widespread political recognition of a need for caution, the precautionary principle has been extensively criticized as a guide for regulatory policy. We examine a central objection to the principle: that its application entails crippling inaction and incoherence, since whatever action one takes there is always a chance that some highly improbable cataclysm will occur. In response to this difficulty, which we call the 'precautionary paradox,' we outline a deliberative means for arriving at threshold of probability below which potential dangers can be disregarded. In addition, we describe a Bayesian mechanism with which to assign probabilities to harmful outcomes. We argue that these steps resolve the paradox. The rehabilitated PP can thus provide a viable policy option to confront the uncharted waters of synthetic biology research. © 2013 John Wiley & Sons Ltd.

  4. Veterans Affairs Suicide Prevention Synthetic Dataset

    Data.gov (United States)

    Department of Veterans Affairs — The VA's Veteran Health Administration, in support of the Open Data Initiative, is providing the Veterans Affairs Suicide Prevention Synthetic Dataset (VASPSD). The...

  5. Synthetic biology assemblies for sustainable space exploration

    Data.gov (United States)

    National Aeronautics and Space Administration — The work utilized synthetic biology to create sustainable food production processes by developing technology to efficiently convert inedible crop waste to...

  6. Synthetic biology of antimicrobial discovery

    Science.gov (United States)

    Zakeri, Bijan; Lu, Timothy K.

    2012-01-01

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore, used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery. PMID:23654251

  7. Synthetic biology of antimicrobial discovery.

    Science.gov (United States)

    Zakeri, Bijan; Lu, Timothy K

    2013-07-19

    Antibiotic discovery has a storied history. From the discovery of penicillin by Sir Alexander Fleming to the relentless quest for antibiotics by Selman Waksman, the stories have become like folklore used to inspire future generations of scientists. However, recent discovery pipelines have run dry at a time when multidrug-resistant pathogens are on the rise. Nature has proven to be a valuable reservoir of antimicrobial agents, which are primarily produced by modularized biochemical pathways. Such modularization is well suited to remodeling by an interdisciplinary approach that spans science and engineering. Herein, we discuss the biological engineering of small molecules, peptides, and non-traditional antimicrobials and provide an overview of the growing applicability of synthetic biology to antimicrobials discovery.

  8. Synthetic biology: a utilitarian perspective.

    Science.gov (United States)

    Smith, Kevin

    2013-10-01

    I examine the positive and negative features of synthetic biology ('SynBio') from a utilitarian ethical perspective. The potential beneficial outcomes from SynBio in the context of medicine are substantial; however it is not presently possible to predict precise outcomes due to the nascent state of the field. Potential negative outcomes from SynBio also exist, including iatrogenesis and bioterrorism; however it is not yet possible to quantify these risks. I argue that the application of a 'precautionary' approach to SynBio is ethically fraught, as is the notion that SynBio-associated knowledge ought to be restricted. I conclude that utilitarians ought to support a broadly laissez-faire stance in respect of SynBio. © 2013 John Wiley & Sons Ltd.

  9. Microorganism Utilization for Synthetic Milk

    Science.gov (United States)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  10. Synthetic securitization in the accounting: the peculiarities and the national experienc

    Directory of Open Access Journals (Sweden)

    O.P. Driga

    2015-03-01

    Full Text Available In the dynamic development of the financial market and the economy as a whole is one of the Securitisation innovative tools to attract additional funding, increased liquidity, diversification of assets and minimize risks in financial markets. The article outlines the nature, types and predictors of securitization as a whole and are implementing national experience of the financial mechanism. On the basis of the comparative analysis of the main types of securitization outlines the benefits of a synthetic securitization, including the Ukrainian financial market, and especially its implementation. Also describes the various mechanisms and synthetic securitization. The general steps for its implementation using credit derivatives. In addition, selected the most common types of credit derivatives that are used during the implementation of a synthetic securitization. On the basis of theoretical research facilities identified accounting arising during synthetic securitization.

  11. Synergistic Synthetic Biology: Units in Concert

    International Nuclear Information System (INIS)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications.

  12. Study of seed for synthetical quartz

    International Nuclear Information System (INIS)

    Suzuki, C.K.; Torikai, D.

    1988-01-01

    Natural quartz blocks for seed (synthetic quartz technology) were studied by using various characterization techniques, such as X-ray topography, optical micrography, inspectoscopy, polariscopy and conoscopy, and etching. One of the most commonly found defect is the electrical or Dauphine twin. In The present research, we have developed a methodology to obtain a highly perfect seed for the synthetic quartz industries. (author) [pt

  13. Synthetic biology: programming cells for biomedical applications.

    Science.gov (United States)

    Hörner, Maximilian; Reischmann, Nadine; Weber, Wilfried

    2012-01-01

    The emerging field of synthetic biology is a novel biological discipline at the interface between traditional biology, chemistry, and engineering sciences. Synthetic biology aims at the rational design of complex synthetic biological devices and systems with desired properties by combining compatible, modular biological parts in a systematic manner. While the first engineered systems were mainly proof-of-principle studies to demonstrate the power of the modular engineering approach of synthetic biology, subsequent systems focus on applications in the health, environmental, and energy sectors. This review describes recent approaches for biomedical applications that were developed along the synthetic biology design hierarchy, at the level of individual parts, of devices, and of complex multicellular systems. It describes how synthetic biological parts can be used for the synthesis of drug-delivery tools, how synthetic biological devices can facilitate the discovery of novel drugs, and how multicellular synthetic ecosystems can give insight into population dynamics of parasites and hosts. These examples demonstrate how this new discipline could contribute to novel solutions in the biopharmaceutical industry.

  14. Synergistic Synthetic Biology: Units in Concert

    Science.gov (United States)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications. PMID:25022769

  15. Metal immobilization in soils using synthetic zeolites

    NARCIS (Netherlands)

    Osté, L.A.; Lexmond, T.M.; Riemsdijk, van W.H.

    2002-01-01

    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type,

  16. Synthetic and Empirical Capsicum Annuum Image Dataset

    NARCIS (Netherlands)

    Barth, R.

    2016-01-01

    This dataset consists of per-pixel annotated synthetic (10500) and empirical images (50) of Capsicum annuum, also known as sweet or bell pepper, situated in a commercial greenhouse. Furthermore, the source models to generate the synthetic images are included. The aim of the datasets are to

  17. Synthetic aperture radar: principles and applications

    International Nuclear Information System (INIS)

    Khan, N.A.; Yahya, K.M.

    2003-01-01

    In this paper an introduction to synthetic aperture radar is presented. Synthetic aperture radar is a relatively new remote sensing platform and the technology has matured a lot in the last two decades. This paper introduces the concepts behind SAR principles as well as the major areas where this new technology has shown additional information. (author)

  18. Opportunities for microfluidic technologies in synthetic biology

    OpenAIRE

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed.

  19. Steel desulphurization with synthetic slag

    Directory of Open Access Journals (Sweden)

    Heput, T.

    2007-02-01

    Full Text Available Generally speaking, sulphur is considered a harmful element for steel quality, reason why all the technological steps are being taken in order to eliminate it from the metal bath. This paper deals with the influence of the chemical composition, on the slag quantity and of the bath stirring condition upon the desulphurization process in the casting ladle by treatment with synthetic slag. The experiments were made at an open-hearth plant with the steel tapping in two ladles (the desulphurization was made with synthetic slag at one ladle while the other one was considered standard and at the electric steel plant and for the synthetic slag formation a mix was used, made, according to several receipts, of: lime (50-75%, fluorine (0-17%, bauxite (0-32% and aluminous slag (8-22%. The data were processed in the calculation programs EXCEL and MATLAB, which resulted in a series of correlations between the desulphurization degree and the chemical composition of the slag, respectively the slag quantity both for the charges bubbled with Argon and the unbubbled ones.

    En general, el azufre es considerado un elemento nocivo para la calidad del acero y, por eso, en la práctica, se toman todas las medidas de orden tecnológico para su eliminación del baño metálico. En este trabajo se analiza la influencia de la composición química, de la cantidad de escoria y del estado de agitación del baño sobre el proceso de desulfuración en la cuchara para fundir por tratamiento con escoria sintética. Los experimentos se han realizado en una acería evacuando el acero en dos ollas (en una cuchara se efectuó la desulfuración con escoria sintética y a la otra se consideró como patrón y en un acería eléctrica y para la formación de la escoria sintética se utilizó una mezcla producida según muchas recetas, formada por: cal (50-75%, fluorina (0-17%, bauxita (0-32% y escoria aluminosa (8-22%. Los datos han sido procesados en los programas de c

  20. Nitric oxide reduction over a synthetic coal char

    Energy Technology Data Exchange (ETDEWEB)

    C. Pevida; A. Arenillas; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon, CSIC, Oviedo (Spain)

    2003-07-01

    In the present work, the mechanisms involved in the NO heterogeneous reduction have been investigated. A synthetic coal char was used as the carbon source. This synthetic coal was made from a mixture of model compounds and provides well-known functionalities, including nitrogenated ones, similar to those found in a high volatile bituminous coal. The char was obtained by pyrolysis of the synthetic coal, up to 1123 K, under helium atmosphere in a fixed bed reactor. Char texture and structure were characterised by N{sub 2} and CO{sub 2} adsorption isotherms at 77 and 273 K, respectively, X-ray diffraction, immersion calorimetry in C{sub 6}H{sub 6} and scanning electron microscopy (SEM). Temperature programmed reactions (TPR) were carried out in a thermogravimetric analyser using 400 ppm NO diluted in Ar as the reactant gas. The char was heated at 15 K min{sup -1} from room temperature to 1273 K. Gaseous products were simultaneously analysed by mass spectrometry (MS) and Fourier transform infrared spectroscopy (FTIR). The influence of nitrogen in the solid phase on the reduction mechanism was evaluated by comparing the results for chars with and without nitrogen in their composition. The results of this preliminary study showed that the presence of nitrogen in the chars composition did not favour the heterogeneous NO reduction. In addition, low temperature NO chemisorption on the carbon surface creates complexes that take an active part in the subsequent reactions with NO. 5 refs., 4 figs., 3 tabs.

  1. Synthetic biology: an emerging engineering discipline.

    Science.gov (United States)

    Cheng, Allen A; Lu, Timothy K

    2012-01-01

    Over the past decade, synthetic biology has emerged as an engineering discipline for biological systems. Compared with other substrates, biology poses a unique set of engineering challenges resulting from an incomplete understanding of natural biological systems and tools for manipulating them. To address these challenges, synthetic biology is advancing from developing proof-of-concept designs to focusing on core platforms for rational and high-throughput biological engineering. These platforms span the entire biological design cycle, including DNA construction, parts libraries, computational design tools, and interfaces for manipulating and probing synthetic circuits. The development of these enabling technologies requires an engineering mindset to be applied to biology, with an emphasis on generalizable techniques in addition to application-specific designs. This review aims to discuss the progress and challenges in synthetic biology and to illustrate areas where synthetic biology may impact biomedical engineering and human health.

  2. Mammalian synthetic biology: emerging medical applications.

    Science.gov (United States)

    Kis, Zoltán; Pereira, Hugo Sant'Ana; Homma, Takayuki; Pedrigi, Ryan M; Krams, Rob

    2015-05-06

    In this review, we discuss new emerging medical applications of the rapidly evolving field of mammalian synthetic biology. We start with simple mammalian synthetic biological components and move towards more complex and therapy-oriented gene circuits. A comprehensive list of ON-OFF switches, categorized into transcriptional, post-transcriptional, translational and post-translational, is presented in the first sections. Subsequently, Boolean logic gates, synthetic mammalian oscillators and toggle switches will be described. Several synthetic gene networks are further reviewed in the medical applications section, including cancer therapy gene circuits, immuno-regulatory networks, among others. The final sections focus on the applicability of synthetic gene networks to drug discovery, drug delivery, receptor-activating gene circuits and mammalian biomanufacturing processes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  3. Mass Spectrometric Analysis of Synthetic Organic Pigments.

    Science.gov (United States)

    Sugaya, Naeko; Takahashi, Mitsuko; Sakurai, Katsumi; Tanaka, Nobuko; Okubo, Ichiro; Kawakami, Tsuyoshi

    2018-04-18

    Though synthetic organic colorants are used in various applications nowadays, there is the concern that impurities by-produced during the manufacturing and degradation products in some of these colorants are persistent organic pollutants and carcinogens. Thus, it is important to identify the synthetic organic colorants in various products, such as commercial paints, ink, cosmetics, food, textile, and plastics. Dyes, which are soluble in water and other solvents, could be analyzed by chromatographic methods. In contrast, it is difficult to analyze synthetic organic pigments by these methods because of their insolubility. This review is an overview of mass spectrometric analysis of synthetic organic pigments by various ionization methods. We highlight a recent study of textile samples by atmospheric pressure solid analysis probe MS. Furthermore, the mass spectral features of synthetic organic pigments and their separation from other components such as paint media and plasticizers are discussed.

  4. Electrolytic conductivity of synthetic organomineral complexes

    Directory of Open Access Journals (Sweden)

    Ksiezopolska Alicja

    2005-01-01

    Full Text Available The mechanism of the formation of organomineral complexes in soils is very complex and still little known. Examination of the complexes in unaltered form, as isolated from the soil, is very difficult due to the dispersing effect of all extraction agents which break the complexes up, destroying their natural properties. It is much easier to perform most of the tests on preparations of organomineral complexes obtained under laboratory conditions. This paper is concerned with model research on the formation of synthetic complexes of humic acids with minerals: Na-montmorillonite, mica, kaolinite at various pH values (3-7 and in the presence of aluminum ions. The aim of the research was to develop an optimum reaction of suspension for the synthesis of organomineral complexes, to study the role of aluminum ions, and to attempt to determine the degree of their complexity on the basis of the electrolytic conductivity (EC. An important influence of the suspension pH value on the value of EC was observed. The greatest correlation was found in the organomineral preparations with kaolinite and with aluminum (r = 0.93***. Generally, it can be stated that the degree of reaction of humic acids with minerals depended most of all on the type of mineral, on the pH value, and on the presence of aluminum.

  5. Development of advanced, non-toxic, synthetic radiation shielding aggregate

    Energy Technology Data Exchange (ETDEWEB)

    Mudgal, Manish; Chouhan, Ramesh Kumar; Verma, Sarika; Amritphale, Sudhir Sitaram; Das, Satyabrata [CSIR-Advanced Materials and Processes Research Institute, Bhopal (India); Shrivastva, Arvind [Nuclear Power Corporation of India Ltd. (NPCIL), Mumbai (India)

    2018-04-01

    For the first time in the world, the capability of red mud waste has been explored for the development of advanced synthetic radiation shielding aggregate. Red mud, an aluminium industry waste consists of multi component, multi elemental characteristics. In this study, red mud from two different sources have been utilized. Chemical formulation and mineralogical designing of the red mud has been done by ceramic processing using appropriate reducing agent and additives. The chemical analysis, SEM microphotographs and XRD analysis confirms the presence of multi-component, multi shielding and multi-layered phases in both the different developed advance synthetic radiation shielding aggregate. The mechanical properties, namely aggregate impact value, aggregate crushing value and aggregate abrasion value have also been evaluated and was compared with hematite ore aggregate and found to be an excellent material useful for making advanced radiation shielding concrete for the construction of nuclear power plants and other radiation installations.

  6. Tunable signal processing in synthetic MAP kinase cascades.

    Science.gov (United States)

    O'Shaughnessy, Ellen C; Palani, Santhosh; Collins, James J; Sarkar, Casim A

    2011-01-07

    The flexibility of MAPK cascade responses enables regulation of a vast array of cell fate decisions, but elucidating the mechanisms underlying this plasticity is difficult in endogenous signaling networks. We constructed insulated mammalian MAPK cascades in yeast to explore how intrinsic and extrinsic perturbations affect the flexibility of these synthetic signaling modules. Contrary to biphasic dependence on scaffold concentration, we observe monotonic decreases in signal strength as scaffold concentration increases. We find that augmenting the concentration of sequential kinases can enhance ultrasensitivity and lower the activation threshold. Further, integrating negative regulation and concentration variation can decouple ultrasensitivity and threshold from the strength of the response. Computational analyses show that cascading can generate ultrasensitivity and that natural cascades with different kinase concentrations are innately biased toward their distinct activation profiles. This work demonstrates that tunable signal processing is inherent to minimal MAPK modules and elucidates principles for rational design of synthetic signaling systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Crust growth and gas retention in synthetic Hanford waste

    International Nuclear Information System (INIS)

    Bryan, S.A.; Pederson, L.R.; Scheele, R.D.

    1992-03-01

    The focus of the work described here is to examine the principal contributing factors leading to slurry growth and gas retention within waste from a particular high-level waste tanks on the Hanford Site. Laboratory studies of aged synthetic waste have shown that the waste retains gases in the form of bubble attachment to solid particles. This attachment phenomenon is related to the presence of organic constituents (HEDTA, EDTA, and citrate) added to the waste matrix. The mechanism for bubble attachment is related to the hydrophobic surface produced by the organic complexant. The formation of a stable gas bubble/solid interaction is believed to be responsible for crust flotation and gas retention in the synthetic waste used here

  8. Natural and synthetic biomaterials for controlled drug delivery.

    Science.gov (United States)

    Kim, Jang Kyoung; Kim, Hyung Jin; Chung, Jee-Young; Lee, Jong-Hwan; Young, Seok-Beom; Kim, Yong-Hee

    2014-01-01

    A wide variety of delivery systems have been developed and many products based on the drug delivery technology are commercially available. The development of controlled-release technologies accelerated new dosage form design by altering pharmacokinetic and pharmacodynamics profiles of given drugs, resulting in improved efficacy and safety. Various natural or synthetic polymers have been applied to make matrix, reservoir or implant forms due to the characteristics of polymers, especially ease of control for modifications of biocompatibility, biodegradation, porosity, charge, mechanical strength and hydrophobicity/hydrophilicity. Hydrogel is a hydrophilic, polymeric network capable of imbibing large amount of water and biological fluids. This review article introduces various applications of natural and synthetic polymer-based hydrogels from pharmaceutical, biomedical and bioengineering points of view.

  9. Synthetic Strategies and Applications of GaN Nanowires

    Directory of Open Access Journals (Sweden)

    Guoquan Suo

    2014-01-01

    Full Text Available GaN is an important III-V semiconductor material with a direct band gap of 3.4 eV at 300 K. The wide direct band gap makes GaN an attractive material for various applications. GaN nanowires have demonstrated significant potential as fundamental building blocks for nanoelectronic and nanophotonic devices and also offer substantial promise for integrated nanosystems. In this paper, we provide a comprehensive review on the general synthetic strategies, characterizations, and applications of GaN nanowires. We first summarize several growth techniques of GaN nanowires. Subsequently, we discuss mechanisms involved to generate GaN nanowires from different synthetic schemes and conditions. Then we review some characterization methods of GaN nanowires. Finally, several kinds of main applications of GaN nanowires are discussed.

  10. Artificial intelligence: Collective behaviors of synthetic micromachines

    Science.gov (United States)

    Duan, Wentao

    Synthetic nano- and micromotors function through the conversion of chemical free energy or forms of energy into mechanical motion. Ever since the first reports, such motors have been the subject of growing interest. In addition to motility in response to gradients, these motors interact with each other, resulting in emergent collective behavior like schooling, exclusion, and predator-prey. However, most of these systems only exhibit a single type of collective behavior in response to a certain stimuli. The research projects in the disseratation aim at designing synthetic micromotors that can exhibit transition between various collective behaviors in response to different stimuli, as well as quantitative understanding on the pairwise interaction and propulsion mechanism of such motors. Chapter 1 offers an overview on development of synthetic micromachines. Interactions and collective behaviors of micromotors are also summarized and included. Chapter 2 presents a silver orthophosphate microparticle system that exhibits collective behaviors. Transition between two collective patterns, clustering and dispersion, can be triggered by shift in chemical equilibrium upon the addition or removal of ammonia, in response to UV light, or under two orthogonal stimuli (UV and acoustic field) and powering mechanisms. The transitions can be explained by the self-diffusiophoresis mechanism resulting from either ionic or neutral solute gradients. Potential applications of the reported system in logic gates, microscale pumping, and hierarchical assembly have been demonstrated. Chapter 3 introduces a self-powered oscillatory micromotor system in which active colloids form clusters whose size changes periodically. The system consists of an aqueous suspension of silver orthophosphate particles under UV radiation, in the presence of a mixture of glucose and hydrogen peroxide. The colloid particles first attract with each other to form clusters. After a lag time of around 5min, chemical

  11. Science with Synthetic Stellar Surveys

    Science.gov (United States)

    Sanderson, Robyn Ellyn

    2018-04-01

    A new generation of observational projects is poised to revolutionize our understanding of the resolved stellar populations of Milky-Way-like galaxies at an unprecedented level of detail, ushering in an era of precision studies of galaxy formation. In the Milky Way itself, astrometric, spectroscopic and photometric surveys will measure three-dimensional positions and velocities and numerous chemical abundances for stars from the disk to the halo, as well as for many satellite dwarf galaxies. In the Local Group and beyond, HST, JWST and eventually WFIRST will deliver pristine views of resolved stars. The groundbreaking scale and dimensionality of this new view of resolved stellar populations in galaxies challenge us to develop new theoretical tools to robustly compare these surveys to simulated galaxies, in order to take full advantage of our new ability to make detailed predictions for stellar populations within a cosmological context. I will describe a framework for generating realistic synthetic star catalogs and mock surveys from state-of-the-art cosmological-hydrodynamical simulations, and present several early scientific results from, and predictions for, resolved stellar surveys of our Galaxy and its neighbors.

  12. Synthetic mimics of antimicrobial peptides.

    Science.gov (United States)

    Som, Abhigyan; Vemparala, Satyavani; Ivanov, Ivaylo; Tew, Gregory N

    2008-01-01

    Infectious diseases and antibiotic resistance are now considered the most imperative global healthcare problem. In the search for new treatments, host defense, or antimicrobial, peptides have attracted considerable attention due to their various unique properties; however, attempts to develop in vivo therapies have been severely limited. Efforts to develop synthetic mimics of antimicrobial peptides (SMAMPs) have increased significantly in the last decade, and this review will focus primarily on the structural evolution of SMAMPs and their membrane activity. This review will attempt to make a bridge between the design of SMAMPs and the fundamentals of SMAMP-membrane interactions. In discussions regarding the membrane interaction of SMAMPs, close attention will be paid to the lipid composition of the bilayer. Despite many years of study, the exact conformational aspects responsible for the high selectivity of these AMPs and SMAMPs toward bacterial cells over mammalian cells are still not fully understood. The ability to design SMAMPs that are potently antimicrobial, yet nontoxic to mammalian cells has been demonstrated with a variety of molecular scaffolds. Initial animal studies show very good tissue distribution along with more than a 4-log reduction in bacterial counts. The results on SMAMPs are not only extremely promising for novel antibiotics, but also provide an optimistic picture for the greater challenge of general proteomimetics.

  13. Online professionalism: A synthetic review.

    Science.gov (United States)

    Chretien, Katherine C; Tuck, Matthew G

    2015-04-01

    The rise of social media has increased connectivity and blurred personal and professional boundaries, bringing new challenges for medical professionalism. Whether traditional professionalism principles apply to the online social media space remains unknown. The purpose of this synthetic literature review was to characterize the original peer-reviewed research studies published between 1 January 2000-1 November 2014 on online professionalism, to assess methodologies and approaches used, and to provide insights to guide future studies in this area. The investigators searched three databases and performed manual searches of bibliographies to identify the 32 studies included. Most studies originated in the USA. Cross-sectional surveys and analyses of publicly available online content were the most common methodologies employed. Studies covered the general areas of use and privacy, assessment of unprofessional online behaviours, consensus-gathering of what constitutes unprofessional or inappropriate online behaviours, and education and policies. Studies were of variable quality; only around half of survey studies had response rates of 50% or greater. Medical trainees were the most common population studied. Future directions for research include public perspectives of online professionalism, impact on patient trust, and how to use social media productively as medical professionals.

  14. Survival of Escherichia coli O157:H7 in synthetic gastric fluid after cold and acid habituation in apple juice or trypticase soy broth acidified with hydrochloric acid or organic acids.

    Science.gov (United States)

    Uljas, H E; Ingham, S C

    1998-08-01

    Extreme acid tolerance of Escherichia coli O157:H7 has raised doubts about the safety of acidic foods. This study examined whether prior storage in acidic and/or cold conditions enhanced survival of E. coli O157:H7 in synthetic gastric fluid (SGF). Three E. coli O157:H7 strains were stored in trypticase soy broth (TSB; acidified with HCl, malic acid, citric acid, or lactic acid) or pH 3.5 and 6.5 (nonacidic control) apple juice at 4 and 21 degrees C for acids, suggesting that juice constituents other than organic acids protect E. coli O157:H7. Refrigeration combined with low pH best protected cells in apple juice and acidified TSB, but, compared to the nonacidic control, only acidified TSB enhanced subsequent survival in pH 2.5 SGF. Equal survival in SGF occurred after storage in pH 3.5 or 6.5 apple juice at 4 degrees C, suggesting that low temperature alone in apple juice enhanced acid tolerance. Two strains stored at 4 degrees C in TSB containing malic or citric acid subsequently survived better in SGF than cells stored in nonacidified TSB but poorer than cells stored in the presence of HCl. These differences reflect the higher pKa of these organic acids. However, subsequent survival of these strains in SGF was poorer after refrigerated storage in apple juice than in TSB containing citric or malic acids. Cells stored in lactic acid were most likely to be completely eliminated upon transfer to SGF. Differences in survival in storage media or SGF related to strain, storage conditions, or acidifier were consistent and often statistically significant (P acidic beverages may not be affected by the type of acidifier used, the subsequent survival in SGF of this pathogen may be critically dependent on this factor.

  15. Suspected synthetic cannabinoid toxicosis in a dog.

    Science.gov (United States)

    Williams, Keysa; Wells, Raegan J; McLean, Mary Kay

    2015-01-01

    To describe the effects of suspected synthetic cannabinoid (SC) toxicosis and the response to intravenous lipid emulsion (ILE) therapy in a dog. A 2-year-8-month-old male Boxer dog was evaluated at an emergency hospital for progressive ataxia and inappropriate mentation. The initial physical examination identified marked hypothermia (32.7°C [90.9°F]), intermittent sinus bradycardia (60/min), stuporous mentation with intermittent aggression, and severe ataxia. Neurologic status deteriorated to comatose mentation within 2 hours of presentation. The initial diagnostic evaluation (eg, CBC, serum biochemistry profile, venous blood gas, and electrolyte determination) revealed a respiratory acidosis and thrombocytopenia. The owner reported that the dog was exposed to an SC containing Damiana leaf, Marshmallow leaf, and Athaea leaves. Initial treatment included IV fluids and supplemental oxygen. Mechanical ventilation was provided due to hypoventilation and periods of apnea. Intravenous lipid emulsion therapy was administered as a bolus (1.5 mL/kg) and continued as a continuous rate infusion (0.5 mL/kg/h) for a total of 6 hours. The dog became rousable and was weaned from mechanical ventilation approximately 15 hours following presentation. The dog was eating and walking with no ataxia, had a normal mentation at approximately 33 hours following presentation, and was discharged home at that time. Communication with the owners 5 days following discharge revealed that the dog was apparently normal. Based on this case and other reports in the literature regarding human exposures, SC ingestion may result in more severe clinical signs than marijuana ingestion in dogs. Significant clinical intervention may be necessary. Intravenous lipid emulsion treatment may be beneficial due to the lipophilicity of SC. © Veterinary Emergency and Critical Care Society 2015.

  16. Synthetic Biology: Mapping the Scientific Landscape

    Science.gov (United States)

    Oldham, Paul; Hall, Stephen; Burton, Geoff

    2012-01-01

    This article uses data from Thomson Reuters Web of Science to map and analyse the scientific landscape for synthetic biology. The article draws on recent advances in data visualisation and analytics with the aim of informing upcoming international policy debates on the governance of synthetic biology by the Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) of the United Nations Convention on Biological Diversity. We use mapping techniques to identify how synthetic biology can best be understood and the range of institutions, researchers and funding agencies involved. Debates under the Convention are likely to focus on a possible moratorium on the field release of synthetic organisms, cells or genomes. Based on the empirical evidence we propose that guidance could be provided to funding agencies to respect the letter and spirit of the Convention on Biological Diversity in making research investments. Building on the recommendations of the United States Presidential Commission for the Study of Bioethical Issues we demonstrate that it is possible to promote independent and transparent monitoring of developments in synthetic biology using modern information tools. In particular, public and policy understanding and engagement with synthetic biology can be enhanced through the use of online interactive tools. As a step forward in this process we make existing data on the scientific literature on synthetic biology available in an online interactive workbook so that researchers, policy makers and civil society can explore the data and draw conclusions for themselves. PMID:22539946

  17. Synthetic Biology: game changer in intelectual property

    Directory of Open Access Journals (Sweden)

    Laurens Landeweerd

    2016-12-01

    Full Text Available Synthetic biology can be considered a game changer that plays an important role in the current NBIC, or BINC convergence of nano-, bio-, info and cognitive sciences. Although most synthetic biology experts are unaware of it, the field appeals to the imagination in its adherence to targets that were usually associated with premodern alchemist science. This paper elaborates several aspects of synthetic biology as well as its consequences for long held notions of intellectual property and the ontological categories of scientific discovery on the one hand and engineering on the other, the distinction between natural and artificial, the grown and the made.

  18. Defining the Synthetic Biology Supply Chain

    Energy Technology Data Exchange (ETDEWEB)

    Frazar, Sarah L.; Hund, Gretchen E.; Bonheyo, George T.; Diggans, James; Bartholomew, Rachel A.; Gehrig, Lindsey; Greaves, Mark

    2017-08-01

    In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology. The team analyzes selected interactions within that network to better understand the risks raised by synthetic biology and identifies opportunities for risk mitigation. To introduce the concept, the article will briefly describe how an understanding of supply chains has been important in promoting nuclear nonproliferation objectives. The article concludes by assessing the structure and networks identified in the supply chains to reveal potential opportunities for future biodefense research and development; options for additional information exchange; and means to interdict, detect, or deter suspicious activity.

  19. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials

    Directory of Open Access Journals (Sweden)

    Rosalind A. Le Feuvre

    2018-06-01

    Full Text Available Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials, where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal. Keywords: Synthetic biology, Materials, Biological materials, Biomaterials, Advanced materials

  20. [Progress in synthetic biology of "973 Funding Program" in China].

    Science.gov (United States)

    Chen, Guoqiang; Wang, Ying

    2015-06-01

    This paper reviews progresses made in China from 2011 in areas of "Synthetic Biology" supported by State Basic Research 973 Program. Till the end of 2014, 9 "synthetic biology" projects have been initiated with emphasis on "microbial manufactures" with the 973 Funding Program. Combined with the very recent launch of one project on "mammalian cell synthetic biology" and another on "plant synthetic biology", Chinese "synthetic biology" research reflects its focus on "manufactures" while not giving up efforts on "synthetic biology" of complex systems.

  1. CRISPR and the Rebirth of Synthetic Biology

    NARCIS (Netherlands)

    Heidari, Raheleh; Shaw, David Martin; Elger, Bernice Simone

    Emergence of novel genome engineering technologies such as clustered regularly interspaced short palindromic repeat (CRISPR) has refocused attention on unresolved ethical complications of synthetic biology. Biosecurity concerns, deontological issues and human right aspects of genome editing have

  2. Thermodynamic Analysis of Ionic Compounds: Synthetic Applications.

    Science.gov (United States)

    Yoder, Claude H.

    1986-01-01

    Shows how thermodynamic cycles can be used to understand trends in heats of formation and aqueous solubilities and, most importantly, how they may be used to choose synthetic routes to new ionic compounds. (JN)

  3. Synthetic biology platform technologies for antimicrobial applications.

    Science.gov (United States)

    Braff, Dana; Shis, David; Collins, James J

    2016-10-01

    The growing prevalence of antibiotic resistance calls for new approaches in the development of antimicrobial therapeutics. Likewise, improved diagnostic measures are essential in guiding the application of targeted therapies and preventing the evolution of therapeutic resistance. Discovery platforms are also needed to form new treatment strategies and identify novel antimicrobial agents. By applying engineering principles to molecular biology, synthetic biologists have developed platforms that improve upon, supplement, and will perhaps supplant traditional broad-spectrum antibiotics. Efforts in engineering bacteriophages and synthetic probiotics demonstrate targeted antimicrobial approaches that can be fine-tuned using synthetic biology-derived principles. Further, the development of paper-based, cell-free expression systems holds promise in promoting the clinical translation of molecular biology tools for diagnostic purposes. In this review, we highlight emerging synthetic biology platform technologies that are geared toward the generation of new antimicrobial therapies, diagnostics, and discovery channels. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Synthetic Sediments and Stochastic Groundwater Hydrology

    Science.gov (United States)

    Wilson, J. L.

    2002-12-01

    For over twenty years the groundwater community has pursued the somewhat elusive goal of describing the effects of aquifer heterogeneity on subsurface flow and chemical transport. While small perturbation stochastic moment methods have significantly advanced theoretical understanding, why is it that stochastic applications use instead simulations of flow and transport through multiple realizations of synthetic geology? Allan Gutjahr was a principle proponent of the Fast Fourier Transform method for the synthetic generation of aquifer properties and recently explored new, more geologically sound, synthetic methods based on multi-scale Markov random fields. Focusing on sedimentary aquifers, how has the state-of-the-art of synthetic generation changed and what new developments can be expected, for example, to deal with issues like conceptual model uncertainty, the differences between measurement and modeling scales, and subgrid scale variability? What will it take to get stochastic methods, whether based on moments, multiple realizations, or some other approach, into widespread application?

  5. Philosophy of Systems and Synthetic Biology

    DEFF Research Database (Denmark)

    Green, Sara

    2017-01-01

    This entry aims to clarify how systems and synthetic biology contribute to and extend discussions within philosophy of science. Unlike fields such as developmental biology or molecular biology, systems and synthetic biology are not easily demarcated by a focus on a specific subject area or level...... of organization. Rather, they are characterized by the development and application of mathematical, computational, and synthetic modeling strategies in response to complex problems and challenges within the life sciences. Proponents of systems and synthetic biology often stress the necessity of a perspective...... that goes beyond the scope of molecular biology and genetic engineering, respectively. With the emphasis on systems and interaction networks, the approaches explicitly engage in one of the oldest philosophical discussions on the relationship between parts and wholes, or between reductionism and holism...

  6. Defining the Synthetic Biology Supply Chain.

    Science.gov (United States)

    Frazar, Sarah L; Hund, Gretchen E; Bonheyo, George T; Diggans, James; Bartholomew, Rachel A; Gehrig, Lindsey; Greaves, Mark

    Several recent articles have described risks posed by synthetic biology and spurred vigorous discussion in the scientific, commercial, and government communities about how to best detect, prevent, regulate, and respond to these risks. The Pacific Northwest National Laboratory's (PNNL) deep experience working with dual-use technologies for the nuclear industry has shown that analysis of supply chains can reveal security vulnerabilities and ways to mitigate security risk without hindering beneficial research and commerce. In this article, a team of experts in synthetic biology, data analytics, and national security describe the overall supply chain surrounding synthetic biology to illustrate new insights about the effectiveness of current regulations, the possible need for different screening approaches, and new technical solutions that could help identify or mitigate risks in the synthetic biology supply chain.

  7. Trigeminal Trophic Syndrome Associated With the Use of Synthetic Marijuana.

    Science.gov (United States)

    Khan, Fawad A; Manacheril, Rinu; Ulep, Robin; Martin, Julie E; Chimakurthy, Anil

    2017-01-01

    Trigeminal trophic syndrome (TTS) is an uncommon disorder of the trigeminal nerve tract and trigeminal brainstem nucleus. The syndrome is characterized by a triad of unilateral crescentic ulcers with anesthesia and paresthesias of the involved trigeminal dermatomes. A 24-year-old right-handed black female presented to our emergency department with a 4-week history of rapidly progressive painless desquamation/denudation of skin over her right face and scalp. Four weeks prior, she had been admitted to another institution for seizures and was diagnosed with seizures provoked by synthetic marijuana use. She was afebrile during her initial presentation at our institution. Dermatologic examination revealed denudation of the epidermis and partial dermis over the right frontal, parietal, and temporal scalp with associated alopecia. To our knowledge, the association of disorders of the trigeminal nerve pathway, including TTS, with the use of synthetic marijuana has not been previously reported. The long-term neurologic effects of synthetic marijuana are difficult to predict, and the pathologic underpinnings of TTS are largely unknown. Further studies dedicated to exploring the underlying molecular and cellular mechanisms may translate into effective therapies and approaches to halt and reverse the process and prevent tissue destruction and cosmetic disfigurement.

  8. Degradation of Synthetic Dyes by Laccases – A Mini-Review

    Directory of Open Access Journals (Sweden)

    Legerská Barbora

    2016-06-01

    Full Text Available Laccases provide a promising future as a tool to be used in the field of biodegradation of synthetic dyes with different chemical structures. These enzymes are able to oxidize a wide range of phenolic substrates without the presence of additional co-factors. Laccases have been confirmed for their potential of synthetic dye degradation from wastewater and degradation products of these enzymatic reactions become less toxic than selected dyes. This study discusses the potential of laccase enzymes as agents for laccase-catalyzed degradation in terms of biodegradation efficiency of synthetic dyes, specifically: azo dyes, triphenylmethane, indigo and anthraquinone dyes. Review also summarizes the laccase-catalyzed degradation mechanisms of the selected synthetic dyes, as well as the degradation products and the toxicity of the dyes and their degradation products.

  9. Synthetic Sling Failure - Evaluations and Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Henderson, C. S. [Washington River Protection Solutions, Richland, WA (United States); Mackey, Thomas C. [Washington River Protection Solutions, Richland, WA (United States)

    2009-10-26

    The information and evaluations provided in this report were compiled to address the recurring problem of synthetic sling failure. As safety is the number one priority in all work aspects, a solution must be devised to prevent accidents from occurring. A total of thirteen cases regarding synthetic sling failure were evaluated in order to determine their causes, effects, and preventative measures. From the collected data, it was found that all cases in which the synthetic sling contacted the edge of its load resulted in sling failure. It is required that adequate synthetic sling protection devices be used to protect slings in any lift where the sling comes in direct contact with the edge or corner of its load. However, there are no consensus codes or standards stating the type, material, or purpose of the type of protective device used to protect the sling from being cut. Numerous industry standards and codes provide vague descriptions on how to protect synthetic slings. Without a clear, concise statement of how to protect synthetic slings, it is common for inadequate materials and sling protection devices to be used in an attempt to meet the intent of these requirements. The use of an inadequate sling protection device is the main cause of synthetic sling failure in all researched cases. Commercial sling protection devices come in many shapes and sizes, and have a variety of names, as well as advertised uses. 'Abrasion pads' and 'wear protectors' are two different names for products with the same intended purpose. There is no distinguishable way to determine the extent of sling protection which these devices will provide, or what specific scenarios they are made for. This creates room for error in a field where error is unacceptable. This report provides a recommended action for hoisting and rigging activities which require synthetic slings to contact a load, as well as recommended changes to industry standards which will benefit overall

  10. The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology.

    Science.gov (United States)

    Galdzicki, Michal; Clancy, Kevin P; Oberortner, Ernst; Pocock, Matthew; Quinn, Jacqueline Y; Rodriguez, Cesar A; Roehner, Nicholas; Wilson, Mandy L; Adam, Laura; Anderson, J Christopher; Bartley, Bryan A; Beal, Jacob; Chandran, Deepak; Chen, Joanna; Densmore, Douglas; Endy, Drew; Grünberg, Raik; Hallinan, Jennifer; Hillson, Nathan J; Johnson, Jeffrey D; Kuchinsky, Allan; Lux, Matthew; Misirli, Goksel; Peccoud, Jean; Plahar, Hector A; Sirin, Evren; Stan, Guy-Bart; Villalobos, Alan; Wipat, Anil; Gennari, John H; Myers, Chris J; Sauro, Herbert M

    2014-06-01

    The re-use of previously validated designs is critical to the evolution of synthetic biology from a research discipline to an engineering practice. Here we describe the Synthetic Biology Open Language (SBOL), a proposed data standard for exchanging designs within the synthetic biology community. SBOL represents synthetic biology designs in a community-driven, formalized format for exchange between software tools, research groups and commercial service providers. The SBOL Developers Group has implemented SBOL as an XML/RDF serialization and provides software libraries and specification documentation to help developers implement SBOL in their own software. We describe early successes, including a demonstration of the utility of SBOL for information exchange between several different software tools and repositories from both academic and industrial partners. As a community-driven standard, SBOL will be updated as synthetic biology evolves to provide specific capabilities for different aspects of the synthetic biology workflow.

  11. Synthetic Biology and the Translational Imperative.

    Science.gov (United States)

    Heidari Feidt, Raheleh; Ienca, Marcello; Elger, Bernice Simone; Folcher, Marc

    2017-12-18

    Advances at the interface between the biological sciences and engineering are giving rise to emerging research fields such as synthetic biology. Harnessing the potential of synthetic biology requires timely and adequate translation into clinical practice. However, the translational research enterprise is currently facing fundamental obstacles that slow down the transition of scientific discoveries from the laboratory to the patient bedside. These obstacles including scarce financial resources and deficiency of organizational and logistic settings are widely discussed as primary impediments to translational research. In addition, a number of socio-ethical considerations inherent in translational research need to be addressed. As the translational capacity of synthetic biology is tightly linked to its social acceptance and ethical approval, ethical limitations may-together with financial and organizational problems-be co-determinants of suboptimal translation. Therefore, an early assessment of such limitations will contribute to proactively favor successful translation and prevent the promising potential of synthetic biology from remaining under-expressed. Through the discussion of two case-specific inventions in synthetic biology and their associated ethical implications, we illustrate the socio-ethical challenges ahead in the process of implementing synthetic biology into clinical practice. Since reducing the translational lag is essential for delivering the benefits of basic biomedical research to society at large and promoting global health, we advocate a moral obligation to accelerating translational research: the "translational imperative."

  12. Synthetic biology era: Improving antibiotic's world.

    Science.gov (United States)

    Guzmán-Trampe, Silvia; Ceapa, Corina D; Manzo-Ruiz, Monserrat; Sánchez, Sergio

    2017-06-15

    The emergence of antibiotic-resistant pathogen microorganisms is problematic in the context of the current spectrum of available medication. The poor specificity and the high toxicity of some available molecules have made imperative the search for new strategies to improve the specificity and to pursue the discovery of novel compounds with increased bioactivity. Using living cells as platforms, synthetic biology has counteracted this problem by offering novel pathways to create synthetic systems with improved and desired functions. Among many other biotechnological approaches, the advances in synthetic biology have made it possible to design and construct novel biological systems in order to look for new drugs with increased bioactivity. Advancements have also been made in the redesigning of RNA and DNA molecules in order to engineer antibiotic clusters for antibiotic overexpression. As for the production of these antibacterial compounds, yeasts and filamentous fungi as well as gene therapy are utilized to enhance protein solubility. Specific delivery is achieved by creating chimeras using plant genes into bacterial hosts. Some of these synthetic systems are currently in clinical trials, proving the proficiency of synthetic biology in terms of both pharmacological activities as well as an increase in the biosafety of treatments. It is possible that we may just be seeing the tip of the iceberg, and synthetic biology applications will overpass expectations beyond our present knowledge. Copyright © 2017. Published by Elsevier Inc.

  13. Synthetic cannabis and acute ischemic stroke.

    Science.gov (United States)

    Bernson-Leung, Miya E; Leung, Lester Y; Kumar, Sandeep

    2014-01-01

    An association between marijuana use and stroke has been previously reported. However, the health risks of newer synthetic cannabinoid compounds are less well known. We describe 2 cases that introduce a previously unreported association between synthetic cannabis use and ischemic stroke in young adults. A 22-year-old woman presented with dysarthria, left hemiplegia, and left hemianesthesia within hours of first use of synthetic cannabis. She was healthy and without identified stroke risk factors other than oral contraceptive use and a patent foramen ovale without venous thromboses. A 26-year-old woman presented with nonfluent aphasia, left facial droop, and left hemianesthesia approximately 12 hours after first use of synthetic cannabis. Her other stroke risk factors included migraine with aura, oral contraceptive use, smoking, and a family history of superficial thrombophlebitis. Both women were found to have acute, large-territory infarctions of the right middle cerebral artery. Our 2 cases had risk factors for ischemic stroke but were otherwise young and healthy and the onset of their deficits occurred within hours after first-time exposure to synthetic cannabis. Synthetic cannabis use is an important consideration in the investigation of stroke in young adults. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  14. Computational approaches in the design of synthetic receptors - A review.

    Science.gov (United States)

    Cowen, Todd; Karim, Kal; Piletsky, Sergey

    2016-09-14

    The rational design of molecularly imprinted polymers (MIPs) has been a major contributor to their reputation as "plastic antibodies" - high affinity robust synthetic receptors which can be optimally designed, and produced for a much reduced cost than their biological equivalents. Computational design has become a routine procedure in the production of MIPs, and has led to major advances in functional monomer screening, selection of cross-linker and solvent, optimisation of monomer(s)-template ratio and selectivity analysis. In this review the various computational methods will be discussed with reference to all the published relevant literature since the end of 2013, with each article described by the target molecule, the computational approach applied (whether molecular mechanics/molecular dynamics, semi-empirical quantum mechanics, ab initio quantum mechanics (Hartree-Fock, Møller-Plesset, etc.) or DFT) and the purpose for which they were used. Detailed analysis is given to novel techniques including analysis of polymer binding sites, the use of novel screening programs and simulations of MIP polymerisation reaction. The further advances in molecular modelling and computational design of synthetic receptors in particular will have serious impact on the future of nanotechnology and biotechnology, permitting the further translation of MIPs into the realms of analytics and medical technology. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Synthetic Aperture Imaging Polarimeter: Postprint

    Science.gov (United States)

    2010-02-01

    mechanical design of the SAlP prototype revol .... es around the concept of a modular array. The modular aspect allows for the array to be built in...imagery of source . The top row images are of the actual fringe pattern incident on the SAlP prototype array. These pictures were taken through the...processed images associated with each of the inputs. The results demonstrated that the SAlP prototype array works in conjunction with the algorithm

  16. A living foundry for Synthetic Biological Materials: A synthetic biology roadmap to new advanced materials.

    Science.gov (United States)

    Le Feuvre, Rosalind A; Scrutton, Nigel S

    2018-06-01

    Society is on the cusp of harnessing recent advances in synthetic biology to discover new bio-based products and routes to their affordable and sustainable manufacture. This is no more evident than in the discovery and manufacture of Synthetic Biological Materials , where synthetic biology has the capacity to usher in a new Materials from Biology era that will revolutionise the discovery and manufacture of innovative synthetic biological materials. These will encompass novel, smart, functionalised and hybrid materials for diverse applications whose discovery and routes to bio-production will be stimulated by the fusion of new technologies positioned across physical, digital and biological spheres. This article, which developed from an international workshop held in Manchester, United Kingdom, in 2017 [1], sets out to identify opportunities in the new materials from biology era. It considers requirements, early understanding and foresight of the challenges faced in delivering a Discovery to Manufacturing Pipeline for synthetic biological materials using synthetic biology approaches. This challenge spans the complete production cycle from intelligent and predictive design, fabrication, evaluation and production of synthetic biological materials to new ways of bringing these products to market. Pathway opportunities are identified that will help foster expertise sharing and infrastructure development to accelerate the delivery of a new generation of synthetic biological materials and the leveraging of existing investments in synthetic biology and advanced materials research to achieve this goal.

  17. Micropipette Technique Study of Natural and Synthetic Lung Surfactants at the Air–Water Interface

    DEFF Research Database (Denmark)

    Ortiz, Elisa Parra; Kinoshita, K.; Needham, D.

    2016-01-01

    at microscopic air-water interfaces in real time and upon compression. Here, we characterized a series of animal-derived and synthetic lung surfactant formulations, including native surfactant obtained from porcine lungs (NS); the commercial Curosurf, Infasurf, and Survanta; and a synthetic Super Mini-B (SMB...... of myelin figures, proposing a combined mechanism between dehydration-rehydration of the lipid bilayers and induction of mechanical defects by SMB that would act as nucleation sites for the tubes. The formation of tubes was also observed in Infasurf, and in NS only after subsequent expansion and compression...

  18. Synthetic bedding and wheeze in childhood.

    Science.gov (United States)

    Ponsonby, Anne-Louise; Dwyer, Terence; Kemp, Andrew; Cochrane, Jennifer; Couper, David; Carmichael, Allan

    2003-01-01

    The reasons for the increase in childhood asthma over time are unclear. The indoor environment is of particular concern. An adverse role for synthetic bedding on asthma development in childhood has been suggested by cross-sectional studies that have found an association between synthetic pillow use and childhood wheeze. Prospective data on infant bedding have not been available. Bedding data at 1 month of age were available from an infant survey for children who were participating in a 1995 follow-up study (N = 863; 78% traced). The 1995 follow-up was embedded in a larger cross-sectional survey involving 6,378 seven year olds in Tasmania (N = 92% of eligible). Outcome measures included respiratory symptoms as defined in the International Study of Asthma and Allergies in Childhood protocol. Frequent wheeze was defined as more than 12 wheeze episodes over the past year compared with no wheeze. Synthetic pillow use at 1 month of age was associated with frequent wheeze at age 7 (adjusted relative risk [aRR] = 2.5; 95% confidence interval [CI] = 1.2-5.5) independent of childhood exposure. Current synthetic pillow and quilt use was strongly associated with frequent wheeze (aRR = 5.2; CI = 1.3-20.6). Substantial trends were evident for an association of increasing number of synthetic bedding items with frequent wheeze and with increasing wheeze frequency. Among children with asthma, the age of onset of asthma occurred earlier if synthetic bedding was used in infancy. In this cohort, synthetic bedding was strongly and consistently associated with frequent childhood wheeze. The association did not appear to be attributable to bedding choice as part of an asthma management strategy.

  19. 21 CFR 73.1200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.1200 Section 73.1200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  20. 21 CFR 73.200 - Synthetic iron oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Synthetic iron oxide. 73.200 Section 73.200 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.200 Synthetic iron oxide. (a) Identity. (1) The color additive synthetic iron oxide consists of any one or any combination of synthetically prepared...

  1. 21 CFR 172.888 - Synthetic petroleum wax.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic petroleum wax. 172.888 Section 172.888... CONSUMPTION Multipurpose Additives § 172.888 Synthetic petroleum wax. Synthetic petroleum wax may be safely used in or on foods in accordance with the following conditions: (a) Synthetic petroleum wax is a...

  2. Synthetic flux as a whitening agent for ceramic tiles

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues dos Santos, Geocris, E-mail: geocris.rodrigues@gmail.com [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Salvetti, Alfredo Roque [Departamento De Física, Universidade Federal De Mato Grosso Do Sul (Brazil); Cabrelon, Marcelo Dezena [INNOVARE Inteligência Em Cerâmica, 13566-420 São Carlos, SP (Brazil); Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil); Morelli, Márcio Raymundo [Departamento De Engenharia Dos Materiais, Universidade Federal De São Carlos, 13565-905 São Carlos, SP (Brazil)

    2014-12-05

    Highlights: • The synthetic flux acts as a whitening agent of firing color in raw material ceramics. • The raw material ceramics have high levels of the iron oxides and red color. • The different process obtained red color clays with hematite and illite phases. • The whiteness ceramic obtained herein can be used in a porcelain tile industry. - Abstract: A synthetic flux is proposed as a whitening agent of firing color in tile ceramic paste during the sinterization process, thus turning the red firing color into whiteness. By using this mechanism in the ceramic substrates, the stoneware tiles can be manufactured using low cost clays with high levels of iron oxides. This method proved to be an economical as well as commercial strategy for the ceramic tile industries because, in Brazil, the deposits have iron compounds as mineral component (Fe{sub 2}O{sub 3}) in most of the raw materials. Therefore, several compositions of tile ceramic paste make use of natural raw materials, and a synthetic flux in order to understand how the interaction of the iron element, in the mechanism of firing color ceramic, occurs in this system. The bodies obtained were fired at 1100 °C for 5 min in air atmosphere to promote the color change. After the heating, the samples were submitted to X-ray diffraction (XRD) and Scanning Electron Microscope (SEM) analyses. The results showed that the change of firing color occurs because the iron element, which is initially in the crystal structure of the hematite phase, is transformed into a new crystal (clinopyroxenes phase) formed during the firing, so as to make the final firing color lighter.

  3. Synthetic biology and the technicity of biofuels.

    Science.gov (United States)

    Mackenzie, Adrian

    2013-06-01

    The principal existing real-world application of synthetic biology is biofuels. Several 'next generation biofuel' companies-Synthetic Genomics, Amyris and Joule Unlimited Technologies-claim to be using synthetic biology to make biofuels. The irony of this is that highly advanced science and engineering serves the very mundane and familiar realm of transport. Despite their rather prosaic nature, biofuels could offer an interesting way to highlight the novelty of synthetic biology from several angles at once. Drawing on the French philosopher of technology and biology Gilbert Simondon, we can understand biofuels as technical objects whose genesis involves processes of concretisation that negotiate between heterogeneous geographical, biological, technical, scientific and commercial realities. Simondon's notion of technicity, the degree of concretisation of a technical object, usefully conceptualises this relationality. Viewed in terms of technicity, we might understand better how technical entities, elements, and ensembles are coming into being in the name of synthetic biology. The broader argument here is that when we seek to identify the newness of disciplines, their newness might be less epistemic and more logistic. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  4. WISB: Warwick Integrative Synthetic Biology Centre.

    Science.gov (United States)

    McCarthy, John

    2016-06-15

    Synthetic biology promises to create high-impact solutions to challenges in the areas of biotechnology, human/animal health, the environment, energy, materials and food security. Equally, synthetic biologists create tools and strategies that have the potential to help us answer important fundamental questions in biology. Warwick Integrative Synthetic Biology (WISB) pursues both of these mutually complementary 'build to apply' and 'build to understand' approaches. This is reflected in our research structure, in which a core theme on predictive biosystems engineering develops underpinning understanding as well as next-generation experimental/theoretical tools, and these are then incorporated into three applied themes in which we engineer biosynthetic pathways, microbial communities and microbial effector systems in plants. WISB takes a comprehensive approach to training, education and outreach. For example, WISB is a partner in the EPSRC/BBSRC-funded U.K. Doctoral Training Centre in synthetic biology, we have developed a new undergraduate module in the subject, and we have established five WISB Research Career Development Fellowships to support young group leaders. Research in Ethical, Legal and Societal Aspects (ELSA) of synthetic biology is embedded in our centre activities. WISB has been highly proactive in building an international research and training network that includes partners in Barcelona, Boston, Copenhagen, Madrid, Marburg, São Paulo, Tartu and Valencia. © 2016 The Author(s).

  5. Cfd modeling of a synthetic jet actuator

    International Nuclear Information System (INIS)

    Dghim, Marouane; Ben Chiekh, Maher; Ben Nasrallah, Sassi

    2009-01-01

    Synthetic jet actuators show good promise as an enabling technology for innovative boundary layer flow control applied to external surfaces, like airplane wings, and to internal flows, like those occurring in a curved engine inlet. The appealing characteristics of a synthetic jet are zero-net-mass flux operation and an efficient control effect that takes advantages of unsteady fluid phenomena. The formation of a synthetic jet in a quiescent external air flow is only beginning to be understood and a rational understanding of these devices is necessary before they can be applied to the control of flows outside of the laboratory. The synthetic jet flow generated by a planar orifice is investigated here using computational approach. Computations of the 2D synthetic jet are performed with unsteady RANS modeled with the Realizable κ - ε turbulence model available in FLUENT environment. In this present work, the ability of the first order turbulence model, employed in our computations, to model the formation of the counter-rotating-vortex pair (CVP) that appears in the flow-field was investigated. Computational results were in good agreement with experimental measurements. The effectiveness of such control actuator was tested on separated boundary layer. Preliminary investigation were presented and discussed

  6. Synthetic cathinones: a new public health problem.

    Science.gov (United States)

    Karila, Laurent; Megarbane, Bruno; Cottencin, Olivier; Lejoyeux, Michel

    2015-01-01

    New psychoactive substances (NPS) have completely modified the drug scene and the current landscape of addiction. Synthetic substances, such as substituted or synthetic cathinones, also known as « legal highs », are often produced and used to mimic the effects of controlled drugs such as cocaine, methylenedioxymethamphetamine (MDMA, ecstasy), and methamphetamine. The overwhelming majority of synthetic cathinones are produced in China and South East Asian countries. The Internet has emerged as the new marketplace for NPS, playing a major role in providing information on acquisition, synthesis, extraction, identification, and substance use. All these compounds are intentionally mislabeled and sold on-line under slang terms such as bath salts, plant food, plant feeders and research chemicals. They are sometimes labeled « not for human use » or « not tested for hazards or toxicity ». The rapid spread of NPS forces member countries of the European Union to adapt their response to the potential new dangers that may cause. To date, not only health actors but also the general public need to be clearly informed and aware of dangers resulting from NPS spread and use. Here, we review the major clinical effects of synthetic cathinones to highlight their impact on public health. A literature search was conducted from 2009 to 2014 based on PubMed, Google Scholar, Erowid, and governmental websites, using the following keywords alone or in combination: "new psychoactive substances", "synthetic cathinones", "substituted cathinones", "mephedrone", "methylone", "MDPV", "4-MEC", "addiction", and "substance use disorder".

  7. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  8. [Treatment approaches for synthetic drug addiction].

    Science.gov (United States)

    Kobayashi, Ohji

    2015-09-01

    In Japan, synthetic drugs have emerged since late 2000s, and cases of emergency visits and fatal traffic accidents due to acute intoxication have rapidly increased. The synthetic drugs gained popularity mainly because they were cheap and thought to be "legal". The Japanese government restricted not only production and distribution, but also its possession and use in April 2014. As the synthetic drug dependent patients have better social profiles compared to methamphetamine abusers, this legal sanction may have triggered the decrease in the number of synthetic drug dependent patient visits observed at Kanagawa Psychiatric Center since July 2014. Treatment of the synthetic drug dependent patients should begin with empathic inquiry into the motives and positive psychological effects of the drug use. In the maintenance phase, training patients to trust others and express their hidden negative emotions through verbal communications is essential. The recovery is a process of understanding the relationship between psychological isolation and drug abuse, and gaining trust in others to cope with negative emotions that the patients inevitably would face in their subsequent lives.

  9. Role of Synthetic and Dimensional Synthetic Organic Chemistry in Block Copolymer Micelle Nanosensor Engineering

    DEFF Research Database (Denmark)

    Ek, Pramod Kumar

    This thesis investigated the role of amphiphilic triblock copolymer micelle nanomaterials in nanosensors, with emphasis on the synthesis of micelle particle sensors. The thesis is focused on the role of synthetic and dimensional synthetic organic chemistry in amphiphilic triblock core-shellcorona...

  10. [Applications of synthetic biology in materials science].

    Science.gov (United States)

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  11. Tunable promoters in synthetic and systems biology

    DEFF Research Database (Denmark)

    Dehli, Tore; Solem, Christian; Jensen, Peter Ruhdal

    2012-01-01

    in synthetic biology. A number of tools exist to manipulate the steps in between gene sequence and functional protein in living cells, but out of these the most straight-forward approach is to alter the gene expression level by manipulating the promoter sequence. Some of the promoter tuning tools available......Synthetic and systems biologists need standardized, modular and orthogonal tools yielding predictable functions in vivo. In systems biology such tools are needed to quantitatively analyze the behavior of biological systems while the efficient engineering of artificial gene networks is central...... for accomplishing such altered gene expression levels are discussed here along with examples of their use, and ideas for new tools are described. The road ahead looks very promising for synthetic and systems biologists as tools to achieve just about anything in terms of tuning and timing multiple gene expression...

  12. CSBB: synthetic biology research at Newcastle University.

    Science.gov (United States)

    Goñi-Moreno, Angel; Wipat, Anil; Krasnogor, Natalio

    2017-06-15

    The Centre for Synthetic Biology and the Bioeconomy (CSBB) brings together a far-reaching multidisciplinary community across all Newcastle University's faculties - Medical Sciences, Science, Agriculture and Engineering, and Humanities, Arts and Social Sciences. The CSBB focuses on many different areas of Synthetic Biology, including bioprocessing, computational design and in vivo computation, as well as improving understanding of basic molecular machinery. Such breadth is supported by major national and international research funding, a range of industrial partners in the North East of England and beyond, as well as a large number of doctoral and post-doctoral researchers. The CSBB trains the next generation of scientists through a 1-year MSc in Synthetic Biology. © 2017 The Author(s).

  13. Is It Time for Synthetic Biodiversity Conservation?

    Science.gov (United States)

    Piaggio, Antoinette J; Segelbacher, Gernot; Seddon, Philip J; Alphey, Luke; Bennett, Elizabeth L; Carlson, Robert H; Friedman, Robert M; Kanavy, Dona; Phelan, Ryan; Redford, Kent H; Rosales, Marina; Slobodian, Lydia; Wheeler, Keith

    2017-02-01

    Evidence indicates that, despite some critical successes, current conservation approaches are not slowing the overall rate of biodiversity loss. The field of synthetic biology, which is capable of altering natural genomes with extremely precise editing, might offer the potential to resolve some intractable conservation problems (e.g., invasive species or pathogens). However, it is our opinion that there has been insufficient engagement by the conservation community with practitioners of synthetic biology. We contend that rapid, large-scale engagement of these two communities is urgently needed to avoid unintended and deleterious ecological consequences. To this point we describe case studies where synthetic biology is currently being applied to conservation, and we highlight the benefits to conservation biologists from engaging with this emerging technology. Published by Elsevier Ltd.

  14. Bioinspired Chemical Communication between Synthetic Nanomotors.

    Science.gov (United States)

    Chen, Chuanrui; Chang, Xiaocong; Teymourian, Hazhir; Ramírez-Herrera, Doris E; Esteban-Fernández de Ávila, Berta; Lu, Xiaolong; Li, Jinxing; He, Sha; Fang, Chengcheng; Liang, Yuyan; Mou, Fangzhi; Guan, Jianguo; Wang, Joseph

    2018-01-02

    While chemical communication plays a key role in diverse natural processes, the intelligent chemical communication between synthetic nanomotors remains unexplored. The design and operation of bioinspired synthetic nanomotors is presented. Chemical communication between nanomotors is possible and has an influence on propulsion behavior. A chemical "message" is sent from a moving activator motor to a nearby activated (receiver) motor by release of Ag + ions from a Janus polystyrene/Ni/Au/Ag activator motor to the activated Janus SiO 2 /Pt nanomotor. The transmitted silver signal is translated rapidly into a dramatic speed change associated with the enhanced catalytic activity of activated motors. Selective and successive activation of multiple nanomotors is achieved by sequential localized chemical communications. The concept of establishing chemical communication between different synthetic nanomotors paves the way to intelligent nanoscale robotic systems that are capable of cooperating with each other. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthetic aperture tissue and flow ultrasound imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav

    imaging applied to medical ultrasound. It is divided into two major parts: tissue and blood flow imaging. Tissue imaging using synthetic aperture algorithms has been investigated for about two decades, but has not been implemented in medical scanners yet. Among the other reasons, the conventional scanning...... and beamformation methods are adequate for the imaging modalities in clinical use - the B-mode imaging of tissue structures, and the color mapping of blood flow. The acquisition time, however, is too long, and these methods fail to perform real-time three-dimensional scans. The synthetic transmit aperture......, on the other hand, can create a Bmode image with as little as 2 emissions, thus significantly speeding-up the scan procedure. The first part of the dissertation describes the synthetic aperture tissue imaging. It starts with an overview of the efforts previously made by other research groups. A classification...

  16. Engineering emergent multicellular behavior through synthetic adhesion

    Science.gov (United States)

    Glass, David; Riedel-Kruse, Ingmar

    In over a decade, synthetic biology has developed increasingly robust gene networks within single cells, but constructed very few systems that demonstrate multicellular spatio-temporal dynamics. We are filling this gap in synthetic biology's toolbox by developing an E. coli self-assembly platform based on modular cell-cell adhesion. We developed a system in which adhesive selectivity is provided by a library of outer membrane-displayed peptides with intra-library specificities, while affinity is provided by consistent expression across the entire library. We further provide a biophysical model to help understand the parameter regimes in which this tool can be used to self-assemble into cellular clusters, filaments, or meshes. The combined platform will enable future development of synthetic multicellular systems for use in consortia-based metabolic engineering, in living materials, and in controlled study of minimal multicellular systems. Stanford Bio-X Bowes Fellowship.

  17. Synthetic biology approaches to engineer T cells.

    Science.gov (United States)

    Wu, Chia-Yung; Rupp, Levi J; Roybal, Kole T; Lim, Wendell A

    2015-08-01

    There is rapidly growing interest in learning how to engineer immune cells, such as T lymphocytes, because of the potential of these engineered cells to be used for therapeutic applications such as the recognition and killing of cancer cells. At the same time, our knowhow and capability to logically engineer cellular behavior is growing rapidly with the development of synthetic biology. Here we describe how synthetic biology approaches are being used to rationally alter the behavior of T cells to optimize them for therapeutic functions. We also describe future developments that will be important in order to construct safe and precise T cell therapeutics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Synthetic mullite fabrication from smectite clays

    International Nuclear Information System (INIS)

    Lima, L.N. de; Kiminami, R.H.G.A.

    1988-01-01

    The technological importance of mullite is mostly due to its refractory properties. Mullite in native form is very rare, and therefore it may be necessary to produced it by synthetic means. Brazil has a large reserve of smectite clays. In this work the process to produce synthetic mullite from these clays by treatment with aluminum sulphate was studied. X-ray analyses has shown the presence of mullite crystals in treated smectite clays of several colours, sinterized at 1100 0 C. By sintering at 1300 0 C, pure mullite was obtained in some colours. (author) [pt

  19. Functional mining of transporters using synthetic selections

    DEFF Research Database (Denmark)

    Genee, Hans Jasper; Bali, Anne Pihl; Petersen, Søren Dalsgård

    2016-01-01

    transporters, PnuT, which is widely distributed across multiple bacterial phyla. We demonstrate that with modular replacement of the biosensor, we could expand our method to xanthine and identify xanthine permeases from gut and soil metagenomes. Our results demonstrate how synthetic-biology approaches can......-responsive biosensor systems that enable selective growth of cells only if they encode a ligand-specific importer. We developed such a synthetic selection system for thiamine pyrophosphate and mined soil and gut metagenomes for thiamine-uptake functions. We identified several members of a novel class of thiamine...

  20. New Synthetic Methods for Hypericum Natural Products

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Insik [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Organic chemistry has served as a solid foundation for interdisciplinary research areas, such as molecular biology and medicinal chemistry. An understanding of the biological activities and structural elucidations of natural products can lead to the development of clinically valuable therapeutic options. The advancements of modern synthetic methodologies allow for more elaborate and concise natural product syntheses. The theme of this study centers on the synthesis of natural products with particularly challenging structures and interesting biological activities. The synthetic expertise developed here will be applicable to analog syntheses and to other research problems.

  1. Synthetic aperture radar capabilities in development

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    The Imaging and Detection Program (IDP) within the Laser Program is currently developing an X-band Synthetic Aperture Radar (SAR) to support the Joint US/UK Radar Ocean Imaging Program. The radar system will be mounted in the program`s Airborne Experimental Test-Bed (AETB), where the initial mission is to image ocean surfaces and better understand the physics of low grazing angle backscatter. The Synthetic Aperture Radar presentation will discuss its overall functionality and a brief discussion on the AETB`s capabilities. Vital subsystems including radar, computer, navigation, antenna stabilization, and SAR focusing algorithms will be examined in more detail.

  2. Parity-Time Synthetic Phononic Media

    DEFF Research Database (Denmark)

    Christensen, Johan; Willatzen, Morten; Velasco, V. R.

    2016-01-01

    media, have been devised in many optical systems with the ground breaking potential to create nonreciprocal structures and one-way cloaks of invisibility. Here we demonstrate a feasible approach for the case of sound where the most important ingredients within synthetic materials, loss and gain......, are achieved through electrically biased piezoelectric semiconductors. We study first how wave attenuation and amplification can be tuned, and when combined, can give rise to a phononic PT synthetic media with unidirectional suppressed reflectance, a feature directly applicable to evading sonar detection....

  3. Synthetic biology of microbes synthesizing polyhydroxyalkanoates (PHA

    Directory of Open Access Journals (Sweden)

    Guo-Qiang Chen

    2016-12-01

    Full Text Available Microbial polyhydroxyalkanoates (PHA have been produced as bioplastics for various purposes. Under the support of China National Basic Research 973 Project, we developed synthetic biology methods to diversify the PHA structures into homo-, random, block polymers with improved properties to better meet various application requirements. At the same time, various pathways were assembled to produce various PHA from glucose as a simple carbon source. At the end, Halomonas bacteria were reconstructed to produce PHA in changing morphology for low cost production under unsterile and continuous conditions. The synthetic biology will advance the PHA into a bio- and material industry.

  4. Purifying synthetic or fermentation ethyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-22

    Synthetic or fermentation grade ethanol is treated with an alkaki metal sulfite for about 10 hours then rectified to give a product free of odor and taste defects. For example, ethanol from molasses was treated with 10g Na/sub 2/SO/sub 3/.7H/sub 2/O per liter of alcohol, (70/sup 0/ Gay-Lussac) for 10 hours. Synthetic ethanol was treated with 3g Na/sub 2/SO/sub 3/.7H/sub 2/O for 10 hours.

  5. Purifying synthetic or fermentation ethyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-22

    Synthetic or fermentation grade ethanol is treated with an alkali metal sulfite for about 10 hours then rectified to give a product free of odor and taste defects. For example, ethanol from molasses was treated with 10g, Na/sub 2/SO/sub 3/.7H/sub 2/0 per liter of alcohol, (70/sup 0/ Gay-Lussac) for 10 hours. Synthetic ethanol was treated with 3 g Na/sub 2/SO/sub 3/.7H/sub 2/O for 10 hours.

  6. Multi-antenna synthetic aperture radar

    CERN Document Server

    Wang, Wen-Qin

    2013-01-01

    Synthetic aperture radar (SAR) is a well-known remote sensing technique, but conventional single-antenna SAR is inherently limited by the minimum antenna area constraint. Although there are still technical issues to overcome, multi-antenna SAR offers many benefits, from improved system gain to increased degrees-of-freedom and system flexibility. Multi-Antenna Synthetic Aperture Radar explores the potential and challenges of using multi-antenna SAR in microwave remote sensing applications. These applications include high-resolution imaging, wide-swath remote sensing, ground moving target indica

  7. [Salem witches, flying brooms, and synthetic drugs].

    Science.gov (United States)

    Castellanos Tejero, Manuel; Castellanos Tejero, M de los Angeles

    2002-10-01

    As supplementary material to Health Education programs about synthetic drugs, the authors present a historical summary on LSD, stramonium and khat. "Tripis", Special K and other synthetic pills contain these substances and are being widely used by youths. The history of these main hallucinogenic active ingredients has a strong tie to the mythology of witchcraft and witches: a historically interesting time period bearing a large amount of religious intolerance. The objective of this review is to end the belief today's youth have that they are taking new substances which have no risks.

  8. Synthetic clay excels in 90Sr removal

    International Nuclear Information System (INIS)

    Komarneni, Sridhar; Kodama, Tatsuya; Paulus, William J.; Carlson, C.

    2000-01-01

    Tests with actual ground water from Hanford site, and fundamental studies of 2Na + →Sr 2+ exchange equilibria revealed that a synthetic clay is extremely selective for 90 Sr with a high capacity for uptake. Comparative studies with existing Sr selective ion exchangers clearly revealed that the present synthetic clay exhibited the best performance for 90 Sr removal from actual ground water collected from three different locations at Hanford. This novel Sr ion sieve is expected to be useful for the decontamination of the environment after accidental release and contamination with 90 Sr. (c) 2000 Materials Research Society

  9. Mimicking biological stress-strain behaviour with synthetic elastomers

    Science.gov (United States)

    Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Everhart, Matthew H.; Pandya, Ashish A.; Liang, Heyi; Matyjaszewski, Krzysztof; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2017-09-01

    Despite the versatility of synthetic chemistry, certain combinations of mechanical softness, strength, and toughness can be difficult to achieve in a single material. These combinations are, however, commonplace in biological tissues, and are therefore needed for applications such as medical implants, tissue engineering, soft robotics, and wearable electronics. Present materials synthesis strategies are predominantly Edisonian, involving the empirical mixing of assorted monomers, crosslinking schemes, and occluded swelling agents, but this approach yields limited property control. Here we present a general strategy for mimicking the mechanical behaviour of biological materials by precisely encoding their stress-strain curves in solvent-free brush- and comb-like polymer networks (elastomers). The code consists of three independent architectural parameters—network strand length, side-chain length and grafting density. Using prototypical poly(dimethylsiloxane) elastomers, we illustrate how this parametric triplet enables the replication of the strain-stiffening characteristics of jellyfish, lung, and arterial tissues.

  10. A Synthetic Approach to the Transfer Matrix Method in Classical and Quantum Physics

    Science.gov (United States)

    Pujol, O.; Perez, J. P.

    2007-01-01

    The aim of this paper is to propose a synthetic approach to the transfer matrix method in classical and quantum physics. This method is an efficient tool to deal with complicated physical systems of practical importance in geometrical light or charged particle optics, classical electronics, mechanics, electromagnetics and quantum physics. Teaching…

  11. Investigation of synthetic spider silk crystallinity and alignment via electrothermal, pyroelectric, literature XRD, and tensile techniques

    NARCIS (Netherlands)

    Munro, Troy; Putzeys, Tristan; Copeland, Cameron G.; Xing, Changhu; Lewis, Randolph V.; Ban, Heng; Glorieux, Christ; Wubbenhorst, Michael

    2017-01-01

    The processes used to create synthetic spider silk greatly affect the properties of the produced fibers. This paper investigates the effect of process variations during artificial spinning on the thermal and mechanical properties of the produced silk. Property values are also compared to the ones of

  12. SYNTHETIC JET APPLIED TO DETECT POTENTIAL TERRORISTS

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Peszyński, K.

    2010-01-01

    Roč. 5, č. 3 (2010), s. 229-234 ISSN 1231-3998 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : synthetic jets * annular jets * terrorism Subject RIV: BK - Fluid Dynamics

  13. Synthetic biology advances for pharmaceutical production

    OpenAIRE

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems.

  14. Homogeneous nucleation of water in synthetic air

    NARCIS (Netherlands)

    Fransen, M.A.L.J.; Sachteleben, E.; Hruby, J.; Smeulders, D.M.J.; DeMott, P.J.; O'Dowd, C.D.

    2013-01-01

    Homogeneous nucleation rates for water vapor in synthetic air are measured by means of a Pulse-Expansion Wave Tube (PEWT). A comparison of the experimental nucleation rates with the Classical Nucleation Theory (CNT) shows that a more elaborated model is necessary to describe supercooled water

  15. A combinatorial approach to synthetic receptors

    NARCIS (Netherlands)

    Timmerman, P.; Reinhoudt, David

    1999-01-01

    Antibodies, the workhorses of every living organisms immune system, are characterized by their extraordinarily high binding affinity and selectivity for a particular antigen. Despite numerous efforts to mimic these binding properties in synthetic molecules, chemists have so far not been able to

  16. Raman spectrum of natural and synthetic stishovite

    Science.gov (United States)

    Hemley, R.J.; Mao, Ho-kwang; Chao, E.C.T.

    1986-01-01

    Raman spectra of natural and synthetic samples of stishovite have been measured with a micro-optical spectrometer system. These spectra have a pattern that is characteristic of rutile-structured oxides. The spectrum of synthetic stishovite is characterized by well-resolved bands at 231, 589, 753, and 967 cm-1, which are assigned as the B1g, Eg, A1g, and B2g fundamentals, respectively, of the first-order Raman spectrum of the ideal, ordered structure. Natural stishovite obtained from Meteor Crater, Arizona has a first-order Raman spectrum that is fully consistent with that of the synthetic material. The observed spectrum of the natural sample, however, is weaker and has bands in addition to those identified as fundamentals in the spectrum of the synthetic material. A broad band at ???475 cm-1 may be indicative of glass or contaminants derived from the extraction procedure. Alternatively, this band may arise from multiphonon scattering that is enhanced by poor crystallinity or structural disorder in the natural shocked sample. ?? 1986 Springer-Verlag.

  17. Synthetic tsunamis along the Israeli coast.

    Science.gov (United States)

    Tobias, Joshua; Stiassnie, Michael

    2012-04-13

    The new mathematical model for tsunami evolution by Tobias & Stiassnie (Tobias & Stiassnie 2011 J. Geophys. Res. Oceans 116, C06026) is used to derive a synthetic tsunami database for the southern part of the Eastern Mediterranean coast. Information about coastal tsunami amplitudes, half-periods, currents and inundation levels is presented.

  18. DESCQA: Synthetic Sky Catalog Validation Framework

    Science.gov (United States)

    Mao, Yao-Yuan; Uram, Thomas D.; Zhou, Rongpu; Kovacs, Eve; Ricker, Paul M.; Kalmbach, J. Bryce; Padilla, Nelson; Lanusse, François; Zu, Ying; Tenneti, Ananth; Vikraman, Vinu; DeRose, Joseph

    2018-04-01

    The DESCQA framework provides rigorous validation protocols for assessing the quality of high-quality simulated sky catalogs in a straightforward and comprehensive way. DESCQA enables the inspection, validation, and comparison of an inhomogeneous set of synthetic catalogs via the provision of a common interface within an automated framework. An interactive web interface is also available at portal.nersc.gov/project/lsst/descqa.

  19. Synthetic Biology: Applications in the Food Sector.

    Science.gov (United States)

    Tyagi, Ashish; Kumar, Ashwani; Aparna, S V; Mallappa, Rashmi H; Grover, Sunita; Batish, Virender Kumar

    2016-08-17

    Synthetic biology also termed as "genomic alchemy" represents a powerful area of science that is based on the convergence of biological sciences with systems engineering. It has been fittingly described as "moving from reading the genetic code to writing it" as it focuses on building, modeling, designing and fabricating novel biological systems using customized gene components that result in artificially created genetic circuitry. The scientifically compelling idea of the technological manipulation of life has been advocated since long time. Realization of this idea has gained momentum with development of high speed automation and the falling cost of gene sequencing and synthesis following the completion of the human genome project. Synthetic biology will certainly be instrumental in shaping the development of varying areas ranging from biomedicine, biopharmaceuticals, chemical production, food and dairy quality monitoring, packaging, and storage of food and dairy products, bioremediation and bioenergy production, etc. However, potential dangers of using synthetic life forms have to be acknowledged and adoption of policies by the scientific community to ensure safe practice while making important advancements in the ever expanding field of synthetic biology is to be fully supported and implemented.

  20. Evaluation of synthetic promoters in Physcomitrella patens

    DEFF Research Database (Denmark)

    Peramuna, Anantha; Bae, Hansol; Rasmussen, Erling Koch

    2018-01-01

    Securing a molecular toolbox including diverse promoters is essential for genome engineering. However, native promoters have limitations such as the available number or the length of the promoter. In this work, three short synthetic promoters were characterized by using the yellow fluorescent...

  1. Synthetic biology advances for pharmaceutical production

    Science.gov (United States)

    Breitling, Rainer; Takano, Eriko

    2015-01-01

    Synthetic biology enables a new generation of microbial engineering for the biotechnological production of pharmaceuticals and other high-value chemicals. This review presents an overview of recent advances in the field, describing new computational and experimental tools for the discovery, optimization and production of bioactive molecules, and outlining progress towards the application of these tools to pharmaceutical production systems. PMID:25744872

  2. News: Synthetic biology leading to specialty chemicals

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate productio...

  3. Synthetic biology for microbial heavy metal biosensors.

    Science.gov (United States)

    Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun

    2018-02-01

    Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.

  4. Synthetic analog computation in living cells.

    Science.gov (United States)

    Daniel, Ramiz; Rubens, Jacob R; Sarpeshkar, Rahul; Lu, Timothy K

    2013-05-30

    A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications. Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells. Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems, operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells, this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.

  5. Optimization of Synthetic Aperture Image Quality

    DEFF Research Database (Denmark)

    Moshavegh, Ramin; Jensen, Jonas; Villagómez Hoyos, Carlos Armando

    2016-01-01

    Synthetic Aperture (SA) imaging produces high-quality images and velocity estimates of both slow and fast flow at high frame rates. However, grating lobe artifacts can appear both in transmission and reception. These affect the image quality and the frame rate. Therefore optimization of parameter...

  6. Simultaneous adsorption and biodegradation of synthetic melanoidin

    African Journals Online (AJOL)

    Being an antioxidant, melanoidin removal through purely biodegradation has been inadequate. Consequently, in the current study, simultaneous adsorption and biodegradation (SAB) was employed in a stirred tank system to remove melanoidin from synthetic wastewater. Mixed microbial consortium was immobilized onto ...

  7. Super-Resolution for Synthetic Zooming

    Directory of Open Access Journals (Sweden)

    Li Xin

    2006-01-01

    Full Text Available Optical zooming is an important feature of imaging systems. In this paper, we investigate a low-cost signal processing alternative to optical zooming—synthetic zooming by super-resolution (SR techniques. Synthetic zooming is achieved by registering a sequence of low-resolution (LR images acquired at varying focal lengths and reconstructing the SR image at a larger focal length or increased spatial resolution. Under the assumptions of constant scene depth and zooming speed, we argue that the motion trajectories of all physical points are related to each other by a unique vanishing point and present a robust technique for estimating its D coordinate. Such a line-geometry-based registration is the foundation of SR for synthetic zooming. We address the issue of data inconsistency arising from the varying focal length of optical lens during the zooming process. To overcome the difficulty of data inconsistency, we propose a two-stage Delaunay-triangulation-based interpolation for fusing the LR image data. We also present a PDE-based nonlinear deblurring to accommodate the blindness and variation of sensor point spread functions. Simulation results with real-world images have verified the effectiveness of the proposed SR techniques for synthetic zooming.

  8. Preparation of Natural and Synthetic Porous Biodegradable ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Preparation of Natural and Synthetic Porous Biodegradable Scaffolds for Infected Wounds. Characterised for their physical properties, pore size and release kinetics. Release kinetics of bioactive molecules (antibiotics) in a controlled fashion. Release pattern of the ...

  9. 21 CFR 175.250 - Paraffin (synthetic).

    Science.gov (United States)

    2010-04-01

    ... hydrocarbons. Lower molecular-weight fractions are removed by distillation. The residue is hydrogenated and may... its components by a solvent separation method, using synthetic isoparaffinic petroleum hydrocarbons... method E131-81a, “Standard Definitions of Terms and Symbols Relating to Molecular-Spectroscopy,” which is...

  10. Immobilization of radioiodine in synthetic boracite

    Science.gov (United States)

    Babad, H.; Strachan, D.M.

    1982-09-23

    A nuclear waste storage product is disclosed in which radioiodine is incorporated in a synthetic boracite. The boracite may be prepared by reacting a transition metal iodide with an alkali horate under mild hydrothermal conditions, drying the reaction product, and then hot pressing.

  11. Sonar path correction in synthetic aperture processing

    NARCIS (Netherlands)

    Groen, J.; Hansen, R.E.; Sabel, J.C.

    2003-01-01

    In the next generation of mine hunting sonars, in particular on Autonomous Underwater Vehicles (AUVs), Synthetic Aperture Sonar (SAS) will play an important role. The benefit of SAS is to increase resolution and signal-tonoise ratio by coherent processing of successive pings. A challenge in SAS is

  12. Once more on Analytic vs. Synthetic

    Czech Academy of Sciences Publication Activity Database

    Materna, Pavel

    2007-01-01

    Roč. 16, č. 1 (2007), s. 3-43 ISSN 1425-3305 R&D Projects: GA ČR(CZ) GA401/07/0451 Institutional research plan: CEZ:AV0Z90090514 Keywords : analytic * synthetic * intensions * constructions * concepts * pragmatics Subject RIV: AA - Philosophy ; Religion

  13. SYNTHETIC AGB EVOLUTION .1. A NEW MODEL

    NARCIS (Netherlands)

    GROENEWEGEN, MAT; DEJONG, T

    We have constructed a model to calculate in a synthetic way the evolution of stars on the asymptotic giant branch (AGB). The evolution is started at the first thermal pulse (TP) and is terminated when the envelope mass has been lost due to mass loss or when the core mass reaches the Chandrasekhar

  14. Synthetic Aperture Beamformation using the GPU

    DEFF Research Database (Denmark)

    Hansen, Jens Munk; Schaa, Dana; Jensen, Jørgen Arendt

    2011-01-01

    A synthetic aperture ultrasound beamformer is implemented for a GPU using the OpenCL framework. The implementation supports beamformation of either RF signals or complex baseband signals. Transmit and receive apodization can be either parametric or dynamic using a fixed F-number, a reference...

  15. Wind energy applications of synthetic aperture radar

    DEFF Research Database (Denmark)

    Badger, Merete

    Synthetic aperture radars (SAR), mounted on satellites or aircraft, have proven useful for ocean wind mapping. Wind speeds at the height 10 m may be retrieved from measurements of radar backscatter using empirical model functions. The resulting windfields are valuable in offshore wind energy plan...

  16. Synthetic biology between technoscience and thing knowledge.

    Science.gov (United States)

    Gelfert, Axel

    2013-06-01

    Synthetic biology presents a challenge to traditional accounts of biology: Whereas traditional biology emphasizes the evolvability, variability, and heterogeneity of living organisms, synthetic biology envisions a future of homogeneous, humanly engineered biological systems that may be combined in modular fashion. The present paper approaches this challenge from the perspective of the epistemology of technoscience. In particular, it is argued that synthetic-biological artifacts lend themselves to an analysis in terms of what has been called 'thing knowledge'. As such, they should neither be regarded as the simple outcome of applying theoretical knowledge and engineering principles to specific technological problems, nor should they be treated as mere sources of new evidence in the general pursuit of scientific understanding. Instead, synthetic-biological artifacts should be viewed as partly autonomous research objects which, qua their material-biological constitution, embody knowledge about the natural world-knowledge that, in turn, can be accessed via continuous experimental interrogation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Epistemic uncertainty in California-wide synthetic seismicity simulations

    Science.gov (United States)

    Pollitz, Fred F.

    2011-01-01

    The generation of seismicity catalogs on synthetic fault networks holds the promise of providing key inputs into probabilistic seismic-hazard analysis, for example, the coefficient of variation, mean recurrence time as a function of magnitude, the probability of fault-to-fault ruptures, and conditional probabilities for foreshock–mainshock triggering. I employ a seismicity simulator that includes the following ingredients: static stress transfer, viscoelastic relaxation of the lower crust and mantle, and vertical stratification of elastic and viscoelastic material properties. A cascade mechanism combined with a simple Coulomb failure criterion is used to determine the initiation, propagation, and termination of synthetic ruptures. It is employed on a 3D fault network provided by Steve Ward (unpublished data, 2009) for the Southern California Earthquake Center (SCEC) Earthquake Simulators Group. This all-California fault network, initially consisting of 8000 patches, each of ∼12 square kilometers in size, has been rediscretized into Graphic patches, each of ∼1 square kilometer in size, in order to simulate the evolution of California seismicity and crustal stress at magnitude M∼5–8. Resulting synthetic seismicity catalogs spanning 30,000 yr and about one-half million events are evaluated with magnitude-frequency and magnitude-area statistics. For a priori choices of fault-slip rates and mean stress drops, I explore the sensitivity of various constructs on input parameters, particularly mantle viscosity. Slip maps obtained for the southern San Andreas fault show that the ability of segment boundaries to inhibit slip across the boundaries (e.g., to prevent multisegment ruptures) is systematically affected by mantle viscosity.

  18. Synthetic biology and biosecurity: challenging the "myths".

    Science.gov (United States)

    Jefferson, Catherine; Lentzos, Filippa; Marris, Claire

    2014-01-01

    Synthetic biology, a field that aims to "make biology easier to engineer," is routinely described as leading to an increase in the "dual-use" threat, i.e., the potential for the same scientific research to be "used" for peaceful purposes or "misused" for warfare or terrorism. Fears have been expressed that the "de-skilling" of biology, combined with online access to the genomic DNA sequences of pathogenic organisms and the reduction in price for DNA synthesis, will make biology increasingly accessible to people operating outside well-equipped professional research laboratories, including people with malevolent intentions. The emergence of do-it-yourself (DIY) biology communities and of the student iGEM competition has come to epitomize this supposed trend toward greater ease of access and the associated potential threat from rogue actors. In this article, we identify five "myths" that permeate discussions about synthetic biology and biosecurity, and argue that they embody misleading assumptions about both synthetic biology and bioterrorism. We demonstrate how these myths are challenged by more realistic understandings of the scientific research currently being conducted in both professional and DIY laboratories, and by an analysis of historical cases of bioterrorism. We show that the importance of tacit knowledge is commonly overlooked in the dominant narrative: the focus is on access to biological materials and digital information, rather than on human practices and institutional dimensions. As a result, public discourse on synthetic biology and biosecurity tends to portray speculative scenarios about the future as realities in the present or the near future, when this is not warranted. We suggest that these "myths" play an important role in defining synthetic biology as a "promissory" field of research and as an "emerging technology" in need of governance.

  19. Mechanical and thermal properties optimization of a synthetic agglomerate by using the Taguchi Method Optimización de propiedades mecánicas y térmicas de un aglomerado sintético por el Método de Taguchi

    Directory of Open Access Journals (Sweden)

    C. M. Bedoya–Hincapié

    2009-12-01

    Full Text Available In this work, the experimental design of Taguchi model was applied in order to obtain the most appropriate parameters to elaborate an agglomerate material which presents a good mechanical and thermal behavior. The raw materials used were rice husk, common clay, sand and aloe gel. The importance of the development of the synthetic agglomerates is in the use of agricultural wastes to give them an useful employment when replacing materials of great demand. The experimental combinations were done varying the control factors values: rice husk percentage (R, temperature (T and thermal treatment time(t. Via to the optimization properties according Taguchi’s Methodology, the elasticity modulus, the absorbed energy in the impact, break maximum module and initial decomposition temperature to each experimental combination were selected. The Qualitek-4 software was used below the biggest the better quality characteristic. The optimum parameters obtained to each control level were: R = 15%, T = 120oC and t = 3 h. These results were confirmed with a new experiment, where similar properties to the wood species were obtained. The developing of this will be useful as substitute of the wood and could improve the environment impact due residual materials.En este trabajo se aplicó el modelo de Diseño Experimental de Taguchi para la optimización de las propiedades mecánicas y térmicas de un material compuesto aglomerado y obtener los parámetros más adecuados para su elaboración. La importancia del desarrollo de los aglomerados sintéticos está en el uso de desechos agrícolas para darle un empleo útil al suplir materiales de gran demanda. Se utilizaron la cáscara de arroz, arcilla, arena y gel de aloe como materias primas. Con la variación de los valores de los factores de control: porcentaje de cáscara de arroz (R, temperatura (T y tiempo de tratamiento térmico (t, se realizaron las diferentes combinaciones experimentales. Para la optimización de

  20. Parameters influencing the introduction of plasmid DNA into cells by the use of synthetic amphiphiles as a carrier system

    OpenAIRE

    van der Woude, Irene; Willy Visser, H.; ter Beest, Martin B.A.; Wagenaar, Anno; Ruiters, Marcel H.J.; Engberts, Jan B.F.N.; Hoekstra, Dick

    1995-01-01

    Parameters that affect cellular transfection as accomplished by introducing DNA via carriers composed of cationic synthetic amphiphiles, have been investigated with the aim to obtain insight into the mechanism of DNA translocation. Such insight may be exploited in optimizing carrier properties of synthetic amphiphiles for molecules other than nucleic acids. In the present work, the interaction of vesicles composed of the cationic amphiphile dioleyloxy-propyl-trimethylammonium chloride (DOTMA)...

  1. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects

    Energy Technology Data Exchange (ETDEWEB)

    Szilágyi, Petra Ágota, E-mail: p.a.szilagyi@greenwich.ac.uk [Department of Pharmaceutical, Chemical and Environmental Sciences, University of Greenwich, Chatham (United Kingdom); Serra-Crespo, Pablo [Department of Radiation Science and Technology, Delft University of Technology, Delft (Netherlands); Gascon, Jorge [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands); Geerlings, Hans [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands); Shell Technology Centre, Amsterdam (Netherlands); Dam, Bernard [Department of Chemical Engineering, Delft University of Technology, Delft (Netherlands)

    2016-03-29

    Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. However, its vehicular application will only be widespread if safe and high-capacity methane stores are developed. In this work, we report an over 33% increase in methane uptake on a post-synthetically modified metal–organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  2. The Impact of Post-Synthetic Linker Functionalization of MOFs on Methane Storage: The Role of Defects

    International Nuclear Information System (INIS)

    Szilágyi, Petra Ágota; Serra-Crespo, Pablo; Gascon, Jorge; Geerlings, Hans; Dam, Bernard

    2016-01-01

    Natural gas is increasingly being viewed as one of the most viable alternatives to gasoline. However, its vehicular application will only be widespread if safe and high-capacity methane stores are developed. In this work, we report an over 33% increase in methane uptake on a post-synthetically modified metal–organic framework. The underlying mechanism for this dramatic increase is due to lattice defects formed upon post-synthetic modification. This method may open new approaches to natural gas storage.

  3. Innovative Application of Biopolymer Keratin as a Filler of Synthetic Acrylonitrile-Butadiene Rubber NBR

    OpenAIRE

    Prochoń, Mirosława; Przepiórkowska, Anita

    2013-01-01

    The current investigations show the influence of keratin, recovered from the tanning industry, on the thermal and mechanical properties of vulcanizates with synthetic rubber acrylonitrile-butadiene rubber NBR. The addition of waste protein to NBR vulcanizates influences the improvement of resistance at high temperatures and mechanical properties like tensile strength and hardness. The introduction of keratin to the mixes of rubber previously blended with zinc oxide (ZnO) before vulcanization ...

  4. High-Throughput Synthetic Chemistry Enabled by Organic Solvent Disintegrating Tablet.

    Science.gov (United States)

    Li, Tingting; Xu, Lei; Xing, Yanjun; Xu, Bo

    2017-01-17

    Synthetic chemistry remains a time- and labor-intensive process of inherent hazardous nature. Our organic solvent disintegrating tablet (O-Tab) technology has shown potential to make industrial/synthetic chemistry more efficient. As is the case with pharmaceutical tablets, our reagent-containing O-Tabs are mechanically strong, but disintegrate rapidly when in contact with reaction media (organic solvents). For O-Tabs containing sensitive chemicals, they can be further coated to insulate them from air and moisture. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Kenaf/Synthetic and Kevlar®/Cellulosic Fiber-Reinforced Hybrid Composites: A Review

    Directory of Open Access Journals (Sweden)

    Suhad D. Salman

    2015-08-01

    Full Text Available This paper reviews the published and ongoing research work on kenaf/synthetic and Kevlar®/cellulosic fiber-reinforced composite materials. The combination of natural fibers with synthetic fibers in hybrid composites has become increasingly applied in several different fields of technology and engineering. As a result, a better balance between performance and cost is expected to be achieved by 2015, through appropriate material design. This review is intended to provide an outline of the essential outcomes of those hybrid composite materials currently utilized, focusing on processing and mechanical and structural properties.

  6. From noise to synthetic nucleoli: can synthetic biology achieve new insights?

    Science.gov (United States)

    Ciechonska, Marta; Grob, Alice; Isalan, Mark

    2016-04-18

    Synthetic biology aims to re-organise and control biological components to make functional devices. Along the way, the iterative process of designing and testing gene circuits has the potential to yield many insights into the functioning of the underlying chassis of cells. Thus, synthetic biology is converging with disciplines such as systems biology and even classical cell biology, to give a new level of predictability to gene expression, cell metabolism and cellular signalling networks. This review gives an overview of the contributions that synthetic biology has made in understanding gene expression, in terms of cell heterogeneity (noise), the coupling of growth and energy usage to expression, and spatiotemporal considerations. We mainly compare progress in bacterial and mammalian systems, which have some of the most-developed engineering frameworks. Overall, one view of synthetic biology can be neatly summarised as "creating in order to understand."

  7. A synthetic interpretation: the double-preparation theory

    International Nuclear Information System (INIS)

    Gondran, Michel; Gondran, Alexandre

    2014-01-01

    In the 1927 Solvay conference, three apparently irreconcilable interpretations of the quantum mechanics wave function were presented: the pilot-wave interpretation by de Broglie, the soliton wave interpretation by Schrödinger and the Born statistical rule by Born and Heisenberg. In this paper, we demonstrate the complementarity of these interpretations corresponding to quantum systems that are prepared differently and we deduce a synthetic interpretation: the double-preparation theory. We first introduce in quantum mechanics the concept of semi-classical statistically prepared particles, and we show that in the Schrödinger equation these particles converge, when h→0, to the equations of a statistical set of classical particles. These classical particles are undiscerned, and if we assume continuity between classical mechanics and quantum mechanics, we conclude the necessity of the de Broglie–Bohm interpretation for the semi-classical statistically prepared particles (statistical wave). We then introduce in quantum mechanics the concept of a semi-classical deterministically prepared particle, and we show that in the Schrödinger equation this particle converges, when h→0, to the equations of a single classical particle. This classical particle is discerned and assuming continuity between classical mechanics and quantum mechanics, we conclude the necessity of the Schrödinger interpretation for the semi-classical deterministically prepared particle (the soliton wave). Finally we propose, in the semi-classical approximation, a new interpretation of quantum mechanics, the ‘theory of the double preparation’, which depends on the preparation of the particles. (paper)

  8. Characterization of high speed synthetic jet actuators

    Science.gov (United States)

    Pikcilingis, Lucia

    Over the last 20 years, synthetic jets have been studied as a means for aerodynamic active flow control. Specifically, synthetic jets provide momentum transfer with zero-net mass flux, which has been proven to be effective for controlling flow fields. A synthetic jet is created by the periodic formation of vortex rings at its orifice due to the periodic motion of a piezoelectric disk(s). The present study seeks to optimize the performance of a synthetic jet actuator by utilizing different geometrical parameters such as disk thickness, orifice width and length, cavity height and cavity diameter, and different input parameters such as driving voltage and frequency. Two apparatuses were used with a cavity diameter of either 80 mm or 160 mm. Piezoelectric-based disks were provided by the Mide Corporation. Experiments were conducted using several synthetic jet apparatuses designed for various geometrical parameters utilizing a dual disk configuration. Velocity and temperature measurements were acquired at the center of the synthetic jet orifice using a temperature compensated hotwire and thermocouple probe. The disk(s) displacement was measured at the center of the disk with a laser displacement sensor. It was shown that the synthetic jets, having the 80 mm cavity diameter, are capable of exceeding peak velocities of 200 m/s with a relatively large orifice of dimensions AR = 12, hc* = 3, and hn* = 4. In addition, the conditions at which the disks were manufactured had minimal effect on the performance of the jet, except for the pair with overnight resting time as opposed to less than an hour resting time for the control units. Altering the tab style of the disks, where the tab allows the electrical circuit to be exposed for external power connection, showed that a thin fragile tab versus a tab of the same thickness as the disk has minimal effect on the performance but affects the durability of the disk due to the fragility or robustness of the tab. The synthetic jets

  9. Synthetic and Bio-Artificial Tactile Sensing: A Review

    Directory of Open Access Journals (Sweden)

    Maria Chiara Carrozza

    2013-01-01

    Full Text Available This paper reviews the state of the art of artificial tactile sensing, with a particular focus on bio-hybrid and fully-biological approaches. To this aim, the study of physiology of the human sense of touch and of the coding mechanisms of tactile information is a significant starting point, which is briefly explored in this review. Then, the progress towards the development of an artificial sense of touch are investigated. Artificial tactile sensing is analysed with respect to the possible approaches to fabricate the outer interface layer: synthetic skin versus bio-artificial skin. With particular respect to the synthetic skin approach, a brief overview is provided on various technologies and transduction principles that can be integrated beneath the skin layer. Then, the main focus moves to approaches characterized by the use of bio-artificial skin as an outer layer of the artificial sensory system. Within this design solution for the skin, bio-hybrid and fully-biological tactile sensing systems are thoroughly presented: while significant results have been reported for the development of tissue engineered skins, the development of mechanotransduction units and their integration is a recent trend that is still lagging behind, therefore requiring research efforts and investments. In the last part of the paper, application domains and perspectives of the reviewed tactile sensing technologies are discussed.

  10. Natural and synthetic polymers for wounds and burns dressing.

    Science.gov (United States)

    Mogoşanu, George Dan; Grumezescu, Alexandru Mihai

    2014-03-25

    In the last years, health care professionals faced with an increasing number of patients suffering from wounds and burns difficult to treat and heal. During the wound healing process, the dressing protects the injury and contributes to the recovery of dermal and epidermal tissues. Because their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body, some natural polymers such as polysaccharides (alginates, chitin, chitosan, heparin, chondroitin), proteoglycans and proteins (collagen, gelatin, fibrin, keratin, silk fibroin, eggshell membrane) are extensively used in wounds and burns management. Obtained by electrospinning technique, some synthetic polymers like biomimetic extracellular matrix micro/nanoscale fibers based on polyglycolic acid, polylactic acid, polyacrylic acid, poly-ɛ-caprolactone, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, exhibit in vivo and in vitro wound healing properties and enhance re-epithelialization. They provide an optimal microenvironment for cell proliferation, migration and differentiation, due to their biocompatibility, biodegradability, peculiar structure and good mechanical properties. Thus, synthetic polymers are used also in regenerative medicine for cartilage, bone, vascular, nerve and ligament repair and restoration. Biocompatible with fibroblasts and keratinocytes, tissue engineered skin is indicated for regeneration and remodeling of human epidermis and wound healing improving the treatment of severe skin defects or partial-thickness burn injuries. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Targeted genome regulation via synthetic programmable transcriptional regulators

    KAUST Repository

    Piatek, Agnieszka Anna

    2016-04-19

    Regulation of gene transcription controls cellular functions and coordinates responses to developmental, physiological and environmental cues. Precise and efficient molecular tools are needed to characterize the functions of single and multiple genes in linear and interacting pathways in a native context. Modular DNA-binding domains from zinc fingers (ZFs) and transcriptional activator-like proteins (TALE) are amenable to bioengineering to bind DNA target sequences of interest. As a result, ZF and TALE proteins were used to develop synthetic programmable transcription factors. However, these systems are limited by the requirement to re-engineer proteins for each new target sequence. The clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR associated 9 (Cas9) genome editing tool was recently repurposed for targeted transcriptional regulation by inactivation of the nuclease activity of Cas9. Due to the facile engineering, simplicity, precision and amenability to library construction, the CRISPR/Cas9 system is poised to revolutionize the functional genomics field across diverse eukaryotic species. In this review, we discuss the development of synthetic customizable transcriptional regulators and provide insights into their current and potential applications, with special emphasis on plant systems, in characterization of gene functions, elucidation of molecular mechanisms and their biotechnological applications. © 2016 Informa UK Limited, trading as Taylor & Francis Group

  12. Heterogeneous reduction of nitric oxide on synthetic coal chars

    Energy Technology Data Exchange (ETDEWEB)

    C. Pevida; A. Arenillas; F. Rubiera; J.J. Pis [Instituto Nacional del Carbon (CSIC), Oviedo (Spain)

    2005-12-01

    Model compounds, with a controlled heteroatoms content and well-defined functionalities, were used to study the release of nitrogen compounds from char combustion. In the present work, the mechanisms involved in NO-char heterogeneous reduction were studied with a synthetic coal (SC) char as carbon source. Another synthetic char (SN) without any nitrogen in its composition was also employed in these studies. Temperature programmed reduction (TPR) tests with a gas mixture of 400 ppm NO in argon and with isotopically labelled nitric oxide, {sup 15}NO (500 ppm {sup 15}NO in argon), were carried out. The gases produced were quantitatively determined by means of MS and FTIR analysers. Under the conditions of this work the main products of the NO-C reaction were found to be N{sub 2} and CO{sub 2}. The main path of reaction involves the formation of surface nitrogen compounds that afterwards react with nitrogen from the reactive gas to form N{sub 2}. It was observed that fuel-N also participates in the overall heterogeneous reduction reaction, although to a lesser extent.

  13. Ischemic stroke after use of the synthetic marijuana "spice".

    Science.gov (United States)

    Freeman, Melissa J; Rose, David Z; Myers, Martin A; Gooch, Clifton L; Bozeman, Andrea C; Burgin, W Scott

    2013-12-10

    To report and associate acute cerebral infarctions in 2 young, previously healthy siblings with use of the street drug known as "spice" (a synthetic marijuana product, also known as "K2"), which they independently smoked before experiencing acute embolic-appearing ischemic strokes. We present history, physical examination, laboratory data, cerebrovascular imaging, echocardiogram, ECG, and hospital course of these patients. We found that in both siblings spice was obtained from the same source. The drug was found to contain the schedule I synthetic cannabinoid JWH-018. Full stroke workup was unrevealing of a stroke etiology; urine drug screen was positive for marijuana. We found that our 2 patients who smoked the street drug spice had a temporal association with symptoms of acute cerebral infarction. This association may be confounded by contaminants in the product consumed (i.e., marijuana or an unidentified toxin) or by an unknown genetic mechanism. The imaging of both patients suggests an embolic etiology, which is consistent with reports of serious adverse cardiac events with spice use, including tachyarrhythmias and myocardial infarctions.

  14. Synthetic tracked aperture ultrasound imaging: design, simulation, and experimental evaluation.

    Science.gov (United States)

    Zhang, Haichong K; Cheng, Alexis; Bottenus, Nick; Guo, Xiaoyu; Trahey, Gregg E; Boctor, Emad M

    2016-04-01

    Ultrasonography is a widely used imaging modality to visualize anatomical structures due to its low cost and ease of use; however, it is challenging to acquire acceptable image quality in deep tissue. Synthetic aperture (SA) is a technique used to increase image resolution by synthesizing information from multiple subapertures, but the resolution improvement is limited by the physical size of the array transducer. With a large F-number, it is difficult to achieve high resolution in deep regions without extending the effective aperture size. We propose a method to extend the available aperture size for SA-called synthetic tracked aperture ultrasound (STRATUS) imaging-by sweeping an ultrasound transducer while tracking its orientation and location. Tracking information of the ultrasound probe is used to synthesize the signals received at different positions. Considering the practical implementation, we estimated the effect of tracking and ultrasound calibration error to the quality of the final beamformed image through simulation. In addition, to experimentally validate this approach, a 6 degree-of-freedom robot arm was used as a mechanical tracker to hold an ultrasound transducer and to apply in-plane lateral translational motion. Results indicate that STRATUS imaging with robotic tracking has the potential to improve ultrasound image quality.

  15. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils

    Directory of Open Access Journals (Sweden)

    Anand Kumar Tripathi

    2015-03-01

    Full Text Available Engine oils undergo oxidative degradation and wears out during service. Hence it is important to characterize ageing of engine oils at different simulated conditions to evaluate the performance of existing oils and also design new formulations. This work focuses on characterizing the thermo-oxidative degradation of synthetic and semi-synthetic engine oils aged at 120, 149 and 200 °C. Apparent activation energy of decomposition of aged oils evaluated using the isoconversional Kissinger-Akahira-Sunose technique was used as a thermal stability marker. The temporal variation of stability at different ageing temperatures was corroborated with kinematic viscosity, oxidation, sulfation and nitration indices, total base number, antiwear additive content and molecular structure of the organic species present in the oils. At the lowest temperature employed, synthetic oil underwent higher rate of oxidation, while semi-synthetic oil was stable for longer time periods. At higher temperatures, the initial rate of change of average apparent activation energy of synthetic oil correlated well with a similar variation in oxidation number. A mixture of long chain linear, branched, and cyclic hydrocarbons were observed when semi-synthetic oil was degraded at higher temperatures.

  16. [Lipid synthesis by an acidic acid tolerant Rhodotorula glutinis].

    Science.gov (United States)

    Lin, Zhangnan; Liu, Hongjuan; Zhang, Jian'an; Wang, Gehua

    2016-03-01

    Acetic acid, as a main by-product generated in the pretreatment process of lignocellulose hydrolysis, significantly affects cell growth and lipid synthesis of oleaginous microorganisms. Therefore, we studied the tolerance of Rhodotorula glutinis to acetic acid and its lipid synthesis from substrate containing acetic acid. In the mixed sugar medium containing 6 g/L glucose and 44 g/L xylose, and supplemented with acetic acid, the cell growth was not:inhibited when the acetic acid concentration was below 10 g/L. Compared with the control, the biomass, lipid concentration and lipid content of R. glutinis increased 21.5%, 171% and 122% respectively when acetic acid concentration was 10 g/L. Furthermore, R. glutinis could accumulate lipid with acetate as the sole carbon source. Lipid concentration and lipid yield reached 3.20 g/L and 13% respectively with the initial acetic acid concentration of 25 g/L. The lipid composition was analyzed by gas chromatograph. The main composition of lipid produced with acetic acid was palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid, including 40.9% saturated fatty acids and 59.1% unsaturated fatty acids. The lipid composition was similar to that of plant oil, indicating that lipid from oleaginous yeast R. glutinis had potential as the feedstock of biodiesel production. These results demonstrated that a certain concentration of acetic acid need not to be removed in the detoxification process when using lignocelluloses hydrolysate to produce microbial lipid by R. glutinis.

  17. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Daniel D. [Integrative Genetics and Genomics, University of California Davis, Davis, CA (United States); Department of Biomedical Engineering, University of California Davis, Davis, CA (United States); Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng, E-mail: cmtan@ucdavis.edu [Department of Biomedical Engineering, University of California Davis, Davis, CA (United States)

    2014-12-09

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  18. Synthetic Biology Outside the Cell: Linking Computational Tools to Cell-Free Systems

    International Nuclear Information System (INIS)

    Lewis, Daniel D.; Villarreal, Fernando D.; Wu, Fan; Tan, Cheemeng

    2014-01-01

    As mathematical models become more commonly integrated into the study of biology, a common language for describing biological processes is manifesting. Many tools have emerged for the simulation of in vivo synthetic biological systems, with only a few examples of prominent work done on predicting the dynamics of cell-free synthetic systems. At the same time, experimental biologists have begun to study dynamics of in vitro systems encapsulated by amphiphilic molecules, opening the door for the development of a new generation of biomimetic systems. In this review, we explore both in vivo and in vitro models of biochemical networks with a special focus on tools that could be applied to the construction of cell-free expression systems. We believe that quantitative studies of complex cellular mechanisms and pathways in synthetic systems can yield important insights into what makes cells different from conventional chemical systems.

  19. Investigation of synthetic spider silk crystallinity and alignment via electrothermal, pyroelectric, literature XRD, and tensile techniques.

    Science.gov (United States)

    Munro, Troy; Putzeys, Tristan; Copeland, Cameron G; Xing, Changhu; Lewis, Randolph V; Ban, Heng; Glorieux, Christ; Wubbenhorst, Michael

    2017-04-01

    The processes used to create synthetic spider silk greatly affect the properties of the produced fibers. This paper investigates the effect of process variations during artificial spinning on the thermal and mechanical properties of the produced silk. Property values are also compared to the ones of the natural dragline silk of the N. clavipes spider, and to unprocessed (as-spun) synthetic silk. Structural characterization by scanning pyroelectric microscopy is employed to provide insight into the axial orientation of the crystalline regions of the fiber and is supported by XRD data. The results show that stretching and passage through liquid baths induce crystal formation and axial alignment in synthetic fibers, but with different structural organization than natural silks. Furthermore, an increase in thermal diffusivity and elastic modulus is observed with decreasing fiber diameter, trending towards properties of natural fiber. This effect seems to be related to silk fibers being subjected to a radial gradient during production.

  20. Post-cracking Behaviour and Fracture Energy of Synthetic Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Marta KOSIOR-KAZBERUK

    2016-11-01

    Full Text Available The paper reports the results of experimental programme focused on the effect of various synthetic fibres on fracture properties and ductility of concrete. The fracture energy was assessed on beams with initial notches in three-point bend test. The incorporation of synthetic fibres had a slight effect on mechanical properties of concrete but, at the same time, it had a significant influence on the fracture energy by modification of post-cracking behaviour of concrete. It was found that the modern synthetic fibres might be able to impart significant toughness and ductility to concrete. However, the beneficial effect of fibres depends on their length and flexibility. The analysis of load-deflection curves obtained made it possible to fit the simple function, describing the post-peak behaviour of fibre reinforced concrete, which can be useful for the calculation of GF value.DOI: http://dx.doi.org/10.5755/j01.ms.22.4.13246

  1. Accurate, model-based tuning of synthetic gene expression using introns in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Ido Yofe

    2014-06-01

    Full Text Available Introns are key regulators of eukaryotic gene expression and present a potentially powerful tool for the design of synthetic eukaryotic gene expression systems. However, intronic control over gene expression is governed by a multitude of complex, incompletely understood, regulatory mechanisms. Despite this lack of detailed mechanistic understanding, here we show how a relatively simple model enables accurate and predictable tuning of synthetic gene expression system in yeast using several predictive intron features such as transcript folding and sequence motifs. Using only natural Saccharomyces cerevisiae introns as regulators, we demonstrate fine and accurate control over gene expression spanning a 100 fold expression range. These results broaden the engineering toolbox of synthetic gene expression systems and provide a framework in which precise and robust tuning of gene expression is accomplished.

  2. Fentanyl and Other Synthetic Opioids Drug Overdose Deaths

    Science.gov (United States)

    ... Alcohol Club Drugs Cocaine Fentanyl Hallucinogens Inhalants Heroin Marijuana MDMA (Ecstasy/Molly) Methamphetamine Opioids Over-the-Counter Medicines Prescription Medicines Steroids (Anabolic) Synthetic Cannabinoids (K2/Spice) Synthetic Cathinones (Bath Salts) Tobacco/ ...

  3. GC X GCTOFMS OF SYNTHETIC PYRETHROIDS IN FOODS SAMPLES

    Science.gov (United States)

    Pyrethrins are natural insecticides in the extract of chrysanthemum flowers1. Pyrethroids are synthetic forms of pyrethrins, and many are halogenated (F, Cl, Br). Synthetic pyrethroids have become popular replacements for organophosphorus pesticides, which have become increasin...

  4. Ships as salient objects in synthetic aperture radar imaginary

    CSIR Research Space (South Africa)

    Schwegmann, Colin P

    2016-07-01

    Full Text Available The widespread access to Synthetic Aperture Radar data has created a need for more precise ship extraction, specifically in low-to-medium resolution imagery. While Synthetic Aperture Radar pixel resolution is improving for a large swaths...

  5. Engineering of synthetic, stress-responsive yeast promoters

    DEFF Research Database (Denmark)

    Rajkumar, Arun Stephen; Liu, Guodong; Bergenholm, David

    2016-01-01

    Advances in synthetic biology and our understanding of the rules of promoter architecture have led to the development of diverse synthetic constitutive and inducible promoters in eukaryotes and prokaryotes. However, the design of promoters inducibleby specific endogenous or environmental conditions...

  6. Health safety issues of synthetic food colorants.

    Science.gov (United States)

    Amchova, Petra; Kotolova, Hana; Ruda-Kucerova, Jana

    2015-12-01

    Increasing attention has been recently paid to the toxicity of additives used in food. The European Parliament and the Council published the REGULATION (EC) No. 1333/2008 on food additives establishing that the toxicity of food additives evaluated before 20th January 2009 must be re-evaluated by European Food Safety Authority (EFSA). The aim of this review is to survey current knowledge specifically on the toxicity issues of synthetic food colorants using official reports published by the EFSA and other available studies published since the respective report. Synthetic colorants described are Tartrazine, Quinoline Yellow, Sunset Yellow, Azorubine, Ponceau 4R, Erythrosine, Allura Red, Patent Blue, Indigo Carmine, Brilliant Blue FCF, Green S, Brilliant Black and Brown HT. Moreover, a summary of evidence on possible detrimental effects of colorant mixes on children's behaviour is provided and future research directions are outlined. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. [Progress in synthetic biology of pinocembrin].

    Science.gov (United States)

    Guo, Lei; Kong, Jianqiang

    2015-04-01

    Pinocembrin, belonging to flavanons, was isolated from various plants. Pinocembrin has a variety of pharmacological activities, such as neuroprotective effect, antimicrobial activity, and antioxidant efficacy. Pinocembrin was approved as class I drugs to its phase II clinical trial by CFDA in 2009, mainly used for the treatment of ischemic stroke. As a promising compound, the manufacturing technologies of pinocembrin, including chemical synthesis, extraction from plant and synthetic biology, have attracted many attentions. Compared with the first two technologies, synthetic biology has many advantages, such as environment-friendly and low-cost. Construction of biosynthetic pathway in microorganism offers promising results for large scale pinocembrin production by fermentation after taking lots of effective strategies. This article reviews some of recent strategies in microorganisms to improve the yield, with focus on the selection of appropriate the key enzyme sources, the supply of precursors and cofactors by microorganisms, the choice of substance and the level of the key enzyme expression.

  8. Fusion as a source of synthetic fuels

    International Nuclear Information System (INIS)

    Powell, J.R.; Fillo, J.A.; Steinberg, M.

    1981-01-01

    In the near-term, coal derived synthetic fuels will be used; but in the long-term, resource depletion and environmental effects will mandate synthetic fuels from inexhaustible sources - fission, fusion, and solar. Of the three sources, fusion appears uniquely suited for the efficient production of hydrogen-based fuels, due to its ability to directly generate very high process temperatures (up to approx. 2000 0 C) for water splitting reactions. Fusion-based water splitting reactions include high temperature electrolysis (HTE) of steam, thermochemical cycles, hybrid electrochemical/thermochemical, and direct thermal decomposition. HTE appears to be the simplest and most efficient process with efficiencies of 50 to 70% (fusion to hydrogen chemical energy), depending on process conditions

  9. Synthetic risks, risk potency, and carcinogen regulation.

    Science.gov (United States)

    Viscusi, W K; Hakes, J K

    1998-01-01

    This article analyzes a comprehensive sample of over 350 chemicals tested for carcinogenicity to assess the determinants of the probability of regulation. Controlling for differences in the risk potency and noncancer risks, synthetic chemicals have a significantly higher probability of regulation overall: this is due to the greater likelihood of U.S. Food and Drug Administration (FDA) regulation. Measures of risk potency increase the probability of regulation by the U.S. Environmental Protection Agency (EPA), have a somewhat weaker positive effect on regulation by the U.S. Occupational Safety and Health Administration (OSHA), and decrease the likelihood of regulation by the FDA. The overall regulatory pattern is one in which the FDA targets synthetic chemicals and chemicals that pose relatively minor cancer risk. The EPA particularly performed more sensibly than many critics have suggested.

  10. Consequentialism and the Synthetic Biology Problem.

    Science.gov (United States)

    Heavey, Patrick

    2017-04-01

    This article analyzes the ethics of synthetic biology (synbio) from a consequentialist perspective, examining potential effects on food and agriculture, and on medicine, fuel, and the advancement of science. The issues of biosafety and biosecurity are also examined. A consequentialist analysis offers an essential road map to policymakers and regulators as to how to deal with synbio. Additionally, the article discusses the limitations of consequentialism as a tool for analysing synbioethics. Is it possible to predict, with any degree of plausibility, what the consequences of synthetic biology will be in 50 years, or in 100, or in 500? Synbio may take humanity to a place of radical departure from what is known or knowable.

  11. Designing synthetic RNA for delivery by nanoparticles

    International Nuclear Information System (INIS)

    Jedrzejczyk, Dominika; Pawlowska, Roza; Chworos, Arkadiusz; Gendaszewska-Darmach, Edyta

    2017-01-01

    The rapid development of synthetic biology and nanobiotechnology has led to the construction of various synthetic RNA nanoparticles of different functionalities and potential applications. As they occur naturally, nucleic acids are an attractive construction material for biocompatible nanoscaffold and nanomachine design. In this review, we provide an overview of the types of RNA and nucleic acid’s nanoparticle design, with the focus on relevant nanostructures utilized for gene-expression regulation in cellular models. Structural analysis and modeling is addressed along with the tools available for RNA structural prediction. The functionalization of RNA-based nanoparticles leading to prospective applications of such constructs in potential therapies is shown. The route from the nanoparticle design and modeling through synthesis and functionalization to cellular application is also described. For a better understanding of the fate of targeted RNA after delivery, an overview of RNA processing inside the cell is also provided. (topical review)

  12. High frame rate synthetic aperture duplex imaging

    DEFF Research Database (Denmark)

    Stuart, Matthias Bo; Tomov, Borislav Gueorguiev; Pihl, Michael Johannes

    2013-01-01

    aperture flow imaging as demonstrated in this paper. Synthetic aperture, directional beamforming, and cross-correlation are used to produce B-mode and vector velocity images at high frame rates. The frame rate equals the effective pulse repetition frequency of each imaging mode. Emissions for making the B...... estimation is −1.8% and the relative standard deviation 5.4%. The approach can thus estimate both high and low velocities with equal accuracy and thereby makes it possible to present vector flow images with a high dynamic range. Measurements are made using the SARUS research scanner, a linear array......Conventional color flow images are limited in velocity range and can either show the high velocities in systole or be optimized for the lower diastolic velocities. The full dynamics of the flow is, thus, hard to visualize. The dynamic range can be significantly increased by employing synthetic...

  13. The adjuvant potential of synthetic alkylglycerols.

    Science.gov (United States)

    Acevedo, Reinaldo; Gil, Danay; del Campo, Judith; Bracho, Gustavo; Valdés, Yolanda; Pérez, Oliver

    2006-04-12

    Alkylglycerols (AGs) have shown immune stimulant and adjuvant activity in many studies, but natural sources are not so accessible and their extraction from them is very complicated. Therefore, a group of chemists at IFAL have synthesized AG analogs. The aim of this work was to evaluate the adjuvant potential of different synthetic AGs. A mix of ovoalbumin (Ova) and AGs increase anti-Ova IgG antibodies production in sera of immunized mice. The predominant subclass was IgG1 although higher levels of IgG2a were observed as the carbon chain length of AGs increased. AGs also induced the production of IL-12 and nitric oxide (NO) in the U937 human histiocyte and J774 mouse macrophage cell lines, respectively. These results indicate that synthetic AGs are effective adjuvants for the standardized antigen, Ova.

  14. Carbon monosulfide: a useful synthetic intermediate

    International Nuclear Information System (INIS)

    Kramer, M.P.

    1986-01-01

    The physical properties of carbon monosulfide, CS, are well documented. The molecule has been observed in interstellar space and is found to be a common intermediate in the thermal decomposition of carbon disulfide and other sulfur compounds. Interestingly enough, the chemistry of carbon monosulfide, a molecule that is isovalent with carbon monoxide, has received little attention. The explosive nature of the carbon monosulfide monomer, which hindered previous workers, was overcome by the development of special handling techniques. The ability to produce carbon monosulfide in gram quantities had lead to synthesis of novel compounds and to a more direct synthetic route for certain known compounds. Specifically, the following general reaction demonstrates the capabilities of carbon monosulfide on the synthetic scale. CS + RXY → RXC(S)Y;(X = N,S), (Y = H, Cl). Note: The initial product formed in the reaction can be an unstable intermediate

  15. Preparing Synthetic Biology for the World

    Directory of Open Access Journals (Sweden)

    Gerd H.G. Moe-Behrens

    2013-01-01

    Full Text Available Synthetic Biology promises low-cost, exponentially scalable products and global health solutions in the form of self-replicating organisms, or living devices. As these promises are realized, proof-of-concept systems will gradually migrate from tightly regulated laboratory or industrial environments into private spaces as, for instance, probiotic health products, food, and even do-it-yourself bioengineered systems. What additional steps, if any, should be taken before releasing engineered self-replicating organisms into a broader user space? In this review, we explain how studies of genetically modified organisms lay groundwork for the future landscape of biosafety. Early in the design process, biological engineers are anticipating potential hazards and developing innovative tools to mitigate risk. Here, we survey lessons learned, ongoing efforts to engineer intrinsic biocontainment, and how different stakeholders in synthetic biology can act to accomplish best practices for biosafety.

  16. Synthetic biology expands chemical control of microorganisms.

    Science.gov (United States)

    Ford, Tyler J; Silver, Pamela A

    2015-10-01

    The tools of synthetic biology allow researchers to change the ways engineered organisms respond to chemical stimuli. Decades of basic biology research and new efforts in computational protein and RNA design have led to the development of small molecule sensors that can be used to alter organism function. These new functions leap beyond the natural propensities of the engineered organisms. They can range from simple fluorescence or growth reporting to pathogen killing, and can involve metabolic coordination among multiple cells or organisms. Herein, we discuss how synthetic biology alters microorganisms' responses to chemical stimuli resulting in the development of microbes as toxicity sensors, disease treatments, and chemical factories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Synthetic cannabimimetic agents metabolized by carboxylesterases

    DEFF Research Database (Denmark)

    Thomsen, Ragnar; Nielsen, Line M; Holm, Niels B

    2015-01-01

    Synthetic cannabimimetic agents are a large group of diverse compounds which act as agonists at cannabinoid receptors. Since 2004, synthetic cannabinoids have been used recreationally, although several of the compounds have been shown to cause severe toxicity in humans. In this study......, the metabolism of two indazole carboxamide derivatives, AB-PINACA and AB-FUBINACA, was investigated by using human liver microsomes (HLM). For both compounds, a major metabolic pathway was the enzymatic hydrolysis of the primary amide, resulting in the major metabolites AB-PINACA-COOH and AB-FUBINACA-COOH. Other...... major metabolic pathways were mono-hydroxylation of the N-pentyl chain in AB-PINACA and mono-hydroxylation of the 1-amino-3-methyl-1-oxobutane moiety in AB-FUBINACA. To identify the enzyme(s) responsible for the amide hydrolysis, incubations with recombinant carboxylesterases and human serum, as well...

  18. Precision control of recombinant gene transcription for CHO cell synthetic biology.

    Science.gov (United States)

    Brown, Adam J; James, David C

    2016-01-01

    The next generation of mammalian cell factories for biopharmaceutical production will be genetically engineered to possess both generic and product-specific manufacturing capabilities that may not exist naturally. Introduction of entirely new combinations of synthetic functions (e.g. novel metabolic or stress-response pathways), and retro-engineering of existing functional cell modules will drive disruptive change in cellular manufacturing performance. However, before we can apply the core concepts underpinning synthetic biology (design, build, test) to CHO cell engineering we must first develop practical and robust enabling technologies. Fundamentally, we will require the ability to precisely control the relative stoichiometry of numerous functional components we simultaneously introduce into the host cell factory. In this review we discuss how this can be achieved by design of engineered promoters that enable concerted control of recombinant gene transcription. We describe the specific mechanisms of transcriptional regulation that affect promoter function during bioproduction processes, and detail the highly-specific promoter design criteria that are required in the context of CHO cell engineering. The relative applicability of diverse promoter development strategies are discussed, including re-engineering of natural sequences, design of synthetic transcription factor-based systems, and construction of synthetic promoters. This review highlights the potential of promoter engineering to achieve precision transcriptional control for CHO cell synthetic biology. Copyright © 2015. Published by Elsevier Inc.

  19. Laboratory measurements of P- and S-wave anisotropy in synthetic rocks by 3D printing

    Science.gov (United States)

    Kong, L.; Ostadhassan, M.; Tamimi, N.; Li, C.; Alexeyev, A.

    2017-12-01

    Synthetic rocks have been widely used to realize the models with controlled factors in rock physics and geomechanics experiments. Additive manufacturing technology, known as 3D printing, is becoming a popular method to produce the synthetic rocks as the advantages of timesaving, economics, and control. In terms of mechanical properties, the duplicability of 3D printed rock towards a natural rock has been studied whereas the seismic anisotropy still remains unknown as being the key factor in conducting rock physics experiments. This study utilized a 3D printer with gypsum as the ink to manufacture a series of synthetic rocks that have the shapes of octagonal prisms, with half of them printed from lateral and another half from the bottom. An ultrasonic investigation system was set up to measure the P- and S- wave velocities at different frequencies while samples were under dry conditions. The results show the impact of layered property on the P- and S- wave velocities. The measurement results were compared with the predicted results of Hudson model, demonstrating that the synthetic rock from 3D printing is a transverse isotropic model. The seismic anisotropy indicates that the availability of using 3D printed rocks to duplicate natural rocks for the purpose of recreating the experiments of rock physics. Future experiments will be performed on the dependence of seismic anisotropy on fracture geometry and density in 3D printed synthetic rocks.

  20. Synthetic cannabinoids found in "spice" products alter body temperature and cardiovascular parameters in conscious male rats.

    Science.gov (United States)

    Schindler, Charles W; Gramling, Benjamin R; Justinova, Zuzana; Thorndike, Eric B; Baumann, Michael H

    2017-10-01

    The misuse of synthetic cannabinoids is a persistent public health concern. Because these drugs target the same cannabinoid receptors as the active ingredient of marijuana, Δ 9 -tetrahydrocannabinol (THC), we compared the effects of synthetic cannabinoids and THC on body temperature and cardiovascular parameters. Biotelemetry transmitters for the measurement of body temperature or blood pressure (BP) were surgically implanted into separate groups of male rats. THC and the synthetic cannabinoids CP55,940, JWH-018, AM2201 and XLR-11 were injected s.c., and rats were placed into isolation cubicles for 3h. THC and synthetic cannabinoids produced dose-related decreases in body temperature that were most prominent in the final 2h of the session. The rank order of potency was CP55,940>AM2201=JWH-018>THC=XLR-11. The cannabinoid inverse agonist rimonabant antagonized the hypothermic effect of all compounds. Synthetic cannabinoids elevated BP in comparison to vehicle treatment during the first h of the session, while heart rate was unaffected. The rank order of potency for BP increases was similar to that seen for hypothermia. Hypertensive effects of CP55,940 and JWH-018 were not antagonized by rimonabant or the neutral antagonist AM4113. However, the BP responses to both drugs were antagonized by pretreatment with either the ganglionic blocker hexamethonium or the α 1 adrenergic antagonist prazosin. Our results show that synthetic cannabinoids produce hypothermia in rats by a mechanism involving cannabinoid receptors, while they increase BP by a mechanism independent of these sites. The hypertensive effect appears to involve central sympathetic outflow. Published by Elsevier B.V.

  1. Growth and optical spectroscopy of synthetic diamonds

    International Nuclear Information System (INIS)

    Mudryj, A.V.; Larionova, T.P.; Shakin, I.A.; Gysakov, G.A.; Dubrov, G.A.; Tikhonov, V.V.

    2003-01-01

    It is studied the growth and optical properties of synthetic diamonds, which may be used for detection of ionizing radiation, optical windows, heat removal, ultraviolet and thermo sensors, optoelectronic devices. Optical properties of diamonds (grown in different technological conditions) were studied in temperature range 78 - 300 K by means of measuring transmission in spectral band 0.2 - 25 μm, photoluminescence and registration of luminescence excitation spectra in spectral band 0.2 - 2 μm

  2. Mammalian Synthetic Biology: Time for Big MACs.

    Science.gov (United States)

    Martella, Andrea; Pollard, Steven M; Dai, Junbiao; Cai, Yizhi

    2016-10-21

    The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.

  3. Synthetic Biology to Engineer Bacteriophage Genomes.

    Science.gov (United States)

    Rita Costa, Ana; Milho, Catarina; Azeredo, Joana; Pires, Diana Priscila

    2018-01-01

    Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.

  4. Visualization of synthetic jet formation in air

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Zdeněk; Broučková, Zuzana; Kordík, Jozef; Vít, T.

    2015-01-01

    Roč. 18, č. 4 (2015), s. 595-609 ISSN 1343-8875 R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : synthetic jet * flow visualization * hot-wire anemometry Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 0.720, year: 2015 http://link.springer.com/article/10.1007/s12650-015-0273-2

  5. Visualization study of hybrid synthetic jets

    Czech Academy of Sciences Publication Activity Database

    Broučková, Zuzana; Trávníček, Zdeněk

    2015-01-01

    Roč. 18, č. 4 (2015), s. 581-593 ISSN 1343-8875 R&D Projects: GA ČR GA14-08888S Institutional support: RVO:61388998 Keywords : synthetic jet * efficiency * flow visualization Subject RIV: JU - Aeronautics, Aerodynamics, Aircrafts Impact factor: 0.720, year: 2015 http://link.springer.com/article/10.1007/s12650-014-0256-8

  6. Quasi-Similarity Model of Synthetic Jets

    Czech Academy of Sciences Publication Activity Database

    Tesař, Václav; Kordík, Jozef

    2009-01-01

    Roč. 149, č. 2 (2009), s. 255-265 ISSN 0924-4247 R&D Projects: GA AV ČR IAA200760705; GA ČR GA101/07/1499 Institutional research plan: CEZ:AV0Z20760514 Keywords : jets * synthetic jets * similarity solution Subject RIV: BK - Fluid Dynamics Impact factor: 1.674, year: 2009 http://www.sciencedirect.com

  7. Decolorization of six synthetic dyes by fungi

    OpenAIRE

    Hartikainen, E. Samuel; Miettinen, Otto; Hatakka, Annele; Kähkönen, Mika A.

    2016-01-01

    To find out ability of fourteen basidiomycetes and four ascomycetes strains to grow in the presence of synthetic colour dyes and to degrade them, fungi were cultivated on the malt agar plates containing 0.5 g kg-1 dye, either Remazol Brilliant Blue R, Remazol Brilliant Yellow GL, Remazol Brilliant Orange 3 R, Reactive Blue 4, Remazol Brilliant Red F3B or Reactive Black 5. Fungi representing basidiomycetes were Phlebia radiata (FBCC 43), Tremella encephala (FBCC 1145), Dichomitus squalens (FBC...

  8. Advanced synthetic holograms for security purposes

    Science.gov (United States)

    Kotačka, Libor; Vízdal, Petr; Behounek, Tomás

    2009-05-01

    Our paper deals with the recent advances in synthetically written optical security devices (DOVIDs) and holograms. The synthesized holographic security elements are recorded with a resolution reaching 500.000 dpi and are specially developed for the "layman-level" security of the most important state valuables and documents, like banknotes and identity cards. We especially pay an attention to such holographic features being impossible to originate through conventional optical holography of matrix based devices.

  9. Synthetic tsunami waveform catalogs with kinematic constraints

    Science.gov (United States)

    Baptista, Maria Ana; Miranda, Jorge Miguel; Matias, Luis; Omira, Rachid

    2017-07-01

    In this study we present a comprehensive methodology to produce a synthetic tsunami waveform catalogue in the northeast Atlantic, east of the Azores islands. The method uses a synthetic earthquake catalogue compatible with plate kinematic constraints of the area. We use it to assess the tsunami hazard from the transcurrent boundary located between Iberia and the Azores, whose western part is known as the Gloria Fault. This study focuses only on earthquake-generated tsunamis. Moreover, we assume that the time and space distribution of the seismic events is known. To do this, we compute a synthetic earthquake catalogue including all fault parameters needed to characterize the seafloor deformation covering the time span of 20 000 years, which we consider long enough to ensure the representability of earthquake generation on this segment of the plate boundary. The computed time and space rupture distributions are made compatible with global kinematic plate models. We use the tsunami empirical Green's functions to efficiently compute the synthetic tsunami waveforms for the dataset of coastal locations, thus providing the basis for tsunami impact characterization. We present the results in the form of offshore wave heights for all coastal points in the dataset. Our results focus on the northeast Atlantic basin, showing that earthquake-induced tsunamis in the transcurrent segment of the Azores-Gibraltar plate boundary pose a minor threat to coastal areas north of Portugal and beyond the Strait of Gibraltar. However, in Morocco, the Azores, and the Madeira islands, we can expect wave heights between 0.6 and 0.8 m, leading to precautionary evacuation of coastal areas. The advantages of the method are its easy application to other regions and the low computation effort needed.

  10. Ion exchange of strontium on synthetic hydroxyapatite

    International Nuclear Information System (INIS)

    Lazic, S.; Vukovic, Z.

    1991-01-01

    Adsorption of strontium ions on synthetic hydroxyapatite was examined using both batch and column methods. The apatite was prepared from aqueous solutions and characterized by standard analytical methods. The sample obtained had characteristics of well crystallized stoichiometric hydroxyapatite. The experimental data for sorption of strontium can be very well fitted with Langmuir's adsorption isotherm. It was found that sorption occurs by an ion exchange reaction between strontium ions in solution and calcium ions in apatite. (author) 14 refs.; 5 figs.; 1 tab

  11. Generation of Synthetic Turbulence in Arbitrary Domains

    DEFF Research Database (Denmark)

    Gilling, Lasse; Nielsen, Søren R.K.; Sørensen, Niels

    2009-01-01

    A new method for generating synthetic turbulence is presented. The method is intended for generating a turbulent velocity field with a fine spatial resolution but only covering a small moving part of the rotor area of a wind turbine. For this application the Mann and Sandia methods cannot be used......-spectra a realization of a velocity field is determined by factorization and Fourier transform as in the Sandia method....

  12. Optical studies of high quality synthetic diamond

    International Nuclear Information System (INIS)

    Sharp, S.J.

    1999-01-01

    This thesis is concerned with the study of fundamental and defect induced optical properties of synthetic diamond grown using high pressure, high temperature (HPHT) synthesis or chemical vapour deposition (CVD). The primary technique used for investigation is cathodoluminescence (including imaging and decay-time measurements) in addition to other forms of optical spectroscopy. This thesis is timely in that the crystallinity and purity of synthetic diamond has increased ten fold over the last few years. The diamond exciton emission, which is easily quenched by the presence of defects, is studied in high quality samples in detail. In addition the ability now exists to engineer the isotopic content of synthetic diamond to a high degree of accuracy. The experimental chapters are divided as follows: Chapter 2: High resolution, low temperature spectra reveal a splitting of the free-exciton phonon recombination emission peaks and the bound-exciton zero phonon line. Included are measurements of the variation in intensity and decay-time as a function of temperature. Chapter 3: The shift in energy of the phonon-assisted free-exciton phonon replicas with isotopic content has been measured. The shift is in agreement with the results of interatomic force model for phonon scattering due to isotope disorder. Chapter 4: A study of the shift in energy with isotopic content of the diamond of the GR1 band due to the neutral vacancy has allowed a verification of the theoretical predictions due to the Jahn Teller effect. Chapter 5: The spatial distribution of the free-exciton luminescence is studied in HPHT synthetic and CVD diamond. A variation in intensity with distance from the surface is interpreted as a significant non-radiative loss of excitons to the surface. Chapter 6: The decay-times of all known self-interstitial related centres have been measured in order to calculate the concentration of these centres present in electron irradiated diamond. (author)

  13. A Critical Perspective on Synthetic Biology

    OpenAIRE

    Michel Morange

    2009-01-01

    Synthetic biology emerged around 2000 as a new biological discipline. It shares with systems biology the same modular vision of organisms, but is more concerned with applications than with a better understanding of the functioning of organisms. A herald of this new discipline is Craig Venter who aims to create an artificial microorganism with the minimal genome compatible with life and to implement into it different 'functional modules' to generate new micro-organisms adapted to specific task...

  14. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.

    Science.gov (United States)

    Shi, Weidong; Song, Shuyan; Zhang, Hongjie

    2013-07-07

    Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area.

  15. Agent-based modelling in synthetic biology.

    Science.gov (United States)

    Gorochowski, Thomas E

    2016-11-30

    Biological systems exhibit complex behaviours that emerge at many different levels of organization. These span the regulation of gene expression within single cells to the use of quorum sensing to co-ordinate the action of entire bacterial colonies. Synthetic biology aims to make the engineering of biology easier, offering an opportunity to control natural systems and develop new synthetic systems with useful prescribed behaviours. However, in many cases, it is not understood how individual cells should be programmed to ensure the emergence of a required collective behaviour. Agent-based modelling aims to tackle this problem, offering a framework in which to simulate such systems and explore cellular design rules. In this article, I review the use of agent-based models in synthetic biology, outline the available computational tools, and provide details on recently engineered biological systems that are amenable to this approach. I further highlight the challenges facing this methodology and some of the potential future directions. © 2016 The Author(s).

  16. Synthetic Biology: Putting Synthesis into Biology

    Science.gov (United States)

    Liang, Jing; Luo, Yunzi; Zhao, Huimin

    2010-01-01

    The ability to manipulate living organisms is at the heart of a range of emerging technologies that serve to address important and current problems in environment, energy, and health. However, with all its complexity and interconnectivity, biology has for many years been recalcitrant to engineering manipulations. The recent advances in synthesis, analysis, and modeling methods have finally provided the tools necessary to manipulate living systems in meaningful ways, and have led to the coining of a field named synthetic biology. The scope of synthetic biology is as complicated as life itself – encompassing many branches of science, and across many scales of application. New DNA synthesis and assembly techniques have made routine the customization of very large DNA molecules. This in turn has allowed the incorporation of multiple genes and pathways. By coupling these with techniques that allow for the modeling and design of protein functions, scientists have now gained the tools to create completely novel biological machineries. Even the ultimate biological machinery – a self-replicating organism – is being pursued at this moment. It is the purpose of this review to dissect and organize these various components of synthetic biology into a coherent picture. PMID:21064036

  17. Synthetic biology: Novel approaches for microbiology.

    Science.gov (United States)

    Padilla-Vaca, Felipe; Anaya-Velázquez, Fernando; Franco, Bernardo

    2015-06-01

    In the past twenty years, molecular genetics has created powerful tools for genetic manipulation of living organisms. Whole genome sequencing has provided necessary information to assess knowledge on gene function and protein networks. In addition, new tools permit to modify organisms to perform desired tasks. Gene function analysis is speed up by novel approaches that couple both high throughput data generation and mining. Synthetic biology is an emerging field that uses tools for generating novel gene networks, whole genome synthesis and engineering. New applications in biotechnological, pharmaceutical and biomedical research are envisioned for synthetic biology. In recent years these new strategies have opened up the possibilities to study gene and genome editing, creation of novel tools for functional studies in virus, parasites and pathogenic bacteria. There is also the possibility to re-design organisms to generate vaccine subunits or produce new pharmaceuticals to combat multi-drug resistant pathogens. In this review we provide our opinion on the applicability of synthetic biology strategies for functional studies of pathogenic organisms and some applications such as genome editing and gene network studies to further comprehend virulence factors and determinants in pathogenic organisms. We also discuss what we consider important ethical issues for this field of molecular biology, especially for potential misuse of the new technologies. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  18. Biologic and synthetic skin substitutes: An overview.

    Science.gov (United States)

    Halim, Ahmad Sukari; Khoo, Teng Lye; Mohd Yussof, Shah Jumaat

    2010-09-01

    The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing.

  19. LEVELS OF SYNTHETIC MUSKS COMPOUNDS IN AQUATIC ...

    Science.gov (United States)

    Synthetic musk compounds are consumer chemicals manufactured as fragrance materials Due to their high worldwide usage and release, they frequently occur in the aquatic and marine environments. The U.S. EPA (ORD, Las Vegas) developed surface-water monitoring methodology and conducted a one-year monthly monitoring of synthetic musks in water and biota from Lake Mead (Nevada) as well as from combined sewage effluent streams feeding Lake Mead. Presented are the overview of the chemistry, the monitoring methodology, and the significance of synthetic musk compounds in the aquatic environment. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than p

  20. Biologic and synthetic skin substitutes: An overview

    Directory of Open Access Journals (Sweden)

    Halim Ahmad

    2010-10-01

    Full Text Available The current trend of burn wound care has shifted to more holistic approach of improvement in the long-term form and function of the healed burn wounds and quality of life. This has demanded the emergence of various skin substitutes in the management of acute burn injury as well as post burn reconstructions. Skin substitutes have important roles in the treatment of deep dermal and full thickness wounds of various aetiologies. At present, there is no ideal substitute in the market. Skin substitutes can be divided into two main classes, namely, biological and synthetic substitutes. The biological skin substitutes have a more intact extracellular matrix structure, while the synthetic skin substitutes can be synthesised on demand and can be modulated for specific purposes. Each class has its advantages and disadvantages. The biological skin substitutes may allow the construction of a more natural new dermis and allow excellent re-epithelialisation characteristics due to the presence of a basement membrane. Synthetic skin substitutes demonstrate the advantages of increase control over scaffold composition. The ultimate goal is to achieve an ideal skin substitute that provides an effective and scar-free wound healing.

  1. Paper-based synthetic gene networks.

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A; Ferrante, Tom; Cameron, D Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J

    2014-11-06

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides an alternate, versatile venue for synthetic biologists to operate and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze dried onto paper, enabling the inexpensive, sterile, and abiotic distribution of synthetic-biology-based technologies for the clinic, global health, industry, research, and education. For field use, we create circuits with colorimetric outputs for detection by eye and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small-molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors.

  2. Synthetic biology approaches to fluorinated polyketides.

    Science.gov (United States)

    Thuronyi, Benjamin W; Chang, Michelle C Y

    2015-03-17

    The catalytic diversity of living systems offers a broad range of opportunities for developing new methods to produce small molecule targets such as fuels, materials, and pharmaceuticals. In addition to providing cost-effective and renewable methods for large-scale commercial processes, the exploration of the unusual chemical phenotypes found in living organisms can also enable the expansion of chemical space for discovery of novel function by combining orthogonal attributes from both synthetic and biological chemistry. In this context, we have focused on the development of new fluorine chemistry using synthetic biology approaches. While fluorine has become an important feature in compounds of synthetic origin, the scope of biological fluorine chemistry in living systems is limited, with fewer than 20 organofluorine natural products identified to date. In order to expand the diversity of biosynthetically accessible organofluorines, we have begun to develop methods for the site-selective introduction of fluorine into complex natural products by engineering biosynthetic machinery to incorporate fluorinated building blocks. To gain insight into how both enzyme active sites and metabolic pathways can be evolved to manage and select for fluorinated compounds, we have studied one of the only characterized natural hosts for organofluorine biosynthesis, the soil microbe Streptomyces cattleya. This information provides a template for designing engineered organofluorine enzymes, pathways, and hosts and has allowed us to initiate construction of enzymatic and cellular pathways for the production of fluorinated polyketides.

  3. Paper-based Synthetic Gene Networks

    Science.gov (United States)

    Pardee, Keith; Green, Alexander A.; Ferrante, Tom; Cameron, D. Ewen; DaleyKeyser, Ajay; Yin, Peng; Collins, James J.

    2014-01-01

    Synthetic gene networks have wide-ranging uses in reprogramming and rewiring organisms. To date, there has not been a way to harness the vast potential of these networks beyond the constraints of a laboratory or in vivo environment. Here, we present an in vitro paper-based platform that provides a new venue for synthetic biologists to operate, and a much-needed medium for the safe deployment of engineered gene circuits beyond the lab. Commercially available cell-free systems are freeze-dried onto paper, enabling the inexpensive, sterile and abiotic distribution of synthetic biology-based technologies for the clinic, global health, industry, research and education. For field use, we create circuits with colorimetric outputs for detection by eye, and fabricate a low-cost, electronic optical interface. We demonstrate this technology with small molecule and RNA actuation of genetic switches, rapid prototyping of complex gene circuits, and programmable in vitro diagnostics, including glucose sensors and strain-specific Ebola virus sensors. PMID:25417167

  4. 75 FR 52752 - Request for Comments on Synthetic Biology

    Science.gov (United States)

    2010-08-27

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Request for Comments on Synthetic Biology AGENCY... Bioethical Issues is requesting public comment on the emerging science of synthetic biology, including its... Commission has begun an inquiry into the emerging science of synthetic biology. The President asked the...

  5. Reasons for Synthetic THC Use among College Students

    Science.gov (United States)

    Vidourek, Rebecca A.; King, Keith A.; Burbage, Michelle L.

    2013-01-01

    Synthetic THC, also known as fake marijuana, is used by college students in the United States. The present study examined reasons for recent synthetic THC use among college students (N = 339). Students completed a 3-page survey during regularly scheduled class times. Results indicated students reported using synthetic THC for curiosity, to get…

  6. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction.

    Science.gov (United States)

    Elsheshtawy, Moustafa; Sriganesh, Priatharsini; Virparia, Vasudev; Patel, Falgun; Khanna, Ashok

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  7. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    OpenAIRE

    Moustafa Elsheshtawy; Priatharsini Sriganesh; Vasudev Virparia; Falgun Patel; Ashok Khanna

    2016-01-01

    Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  8. Efficacy of bio and synthetic pesticides against the American ...

    African Journals Online (AJOL)

    Management for the bollworm complex in Uganda is largely synthetic chemical use with little or no biopesticide use which reduces natural enemies population and resistance development to continuous use of a single synthetic pesticide product. Therefore this study aimed at determining the efficacy of bio and synthetic ...

  9. 40 CFR 721.3627 - Branched synthetic fatty acid.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Branched synthetic fatty acid. 721... Substances § 721.3627 Branched synthetic fatty acid. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a branched synthetic fatty acid...

  10. 21 CFR 172.275 - Synthetic paraffin and succinic derivatives.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Synthetic paraffin and succinic derivatives. 172... FOOD FOR HUMAN CONSUMPTION Coatings, Films and Related Substances § 172.275 Synthetic paraffin and succinic derivatives. Synthetic paraffin and succinic derivatives identified in this section may be safely...

  11. The von Auwers reaction - history and synthetic applications.

    Science.gov (United States)

    Dumeunier, Raphaël; Jaeckh, Simon

    2014-01-01

    Dienones obtained from the facile dearomatization of phenols, can be further transformed to semi-benzenes prone to rearomatize in clean, but sometimes unexpected, fashion. Over a hundred years ago, K. von Auwers found that adding Grignards on dienones would lead spontaneously to subsequent dehydration and a novel aromatizing rearrangement. This reaction was ignored for 50 years before Melvin Newman re-investigated these findings, studied the mechanism, and developed variations on the same theme. Since then, despite the tremendous potential of the reactions, those studies were only rarely mentioned, before finally falling into oblivion. This review aims to provide the reader with a detailed history and comprehensive bibliography of the von Auwers rearrangement, some of its synthetic applications, and new unpublished material in the hope to open new perspectives on this forgotten reaction.

  12. Vectoring of parallel synthetic jets: A parametric study

    Science.gov (United States)

    Berk, Tim; Gomit, Guillaume; Ganapathisubramani, Bharathram

    2016-11-01

    The vectoring of a pair of parallel synthetic jets can be described using five dimensionless parameters: the aspect ratio of the slots, the Strouhal number, the Reynolds number, the phase difference between the jets and the spacing between the slots. In the present study, the influence of the latter four on the vectoring behaviour of the jets is examined experimentally using particle image velocimetry. Time-averaged velocity maps are used to study the variations in vectoring behaviour for a parametric sweep of each of the four parameters independently. A topological map is constructed for the full four-dimensional parameter space. The vectoring behaviour is described both qualitatively and quantitatively. A vectoring mechanism is proposed, based on measured vortex positions. We acknowledge the financial support from the European Research Council (ERC Grant Agreement No. 277472).

  13. Rocking convex array used for 3D synthetic aperture focusing

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav; Pedersen, M M

    2008-01-01

    Volumetric imaging can be performed using 1D arrays in combination with mechanical motion. Outside the elevation focus of the array, the resolution and contrast quickly degrade compared to the azimuth plane, because of the fixed transducer focus. The purpose of this paper is to use synthetic...... aperture focusing (SAF) for enhancing the elevation focusing for a convex rocking array, to obtain a more isotropic point spread function. This paper presents further development of the SAF method, which can be used with curved array combined with a rocking motion. The method uses a virtual source (VS...... Kretztechnik, Zipf, Austria). The array has an elevation focus at 60 mm of depth, and the angular rocking velocity is up to 140deg/s. The scan sequence uses an fprf of 4500 - 7000 Hz allowing up to 15 cm of penetration. The full width at half max (FWHM) and main-lobe to side-lobe ratio (MLSL) is used...

  14. Social interaction in synthetic and natural microbial communities.

    Science.gov (United States)

    Xavier, Joao B

    2011-04-12

    Social interaction among cells is essential for multicellular complexity. But how do molecular networks within individual cells confer the ability to interact? And how do those same networks evolve from the evolutionary conflict between individual- and population-level interests? Recent studies have dissected social interaction at the molecular level by analyzing both synthetic and natural microbial populations. These studies shed new light on the role of population structure for the evolution of cooperative interactions and revealed novel molecular mechanisms that stabilize cooperation among cells. New understanding of populations is changing our view of microbial processes, such as pathogenesis and antibiotic resistance, and suggests new ways to fight infection by exploiting social interaction. The study of social interaction is also challenging established paradigms in cancer evolution and immune system dynamics. Finding similar patterns in such diverse systems suggests that the same 'social interaction motifs' may be general to many cell populations.

  15. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Loo, Yihua; Hauser, Charlotte A E

    2016-01-01

    Three-dimensional (3D) bioprinting is a disruptive technology for creating organotypic constructs for high-throughput screening and regenerative medicine. One major challenge is the lack of suitable bioinks. Short synthetic self-assembling peptides are ideal candidates. Several classes of peptides self-assemble into nanofibrous hydrogels resembling the native extracellular matrix. This is a conducive microenvironment for maintaining cell survival and physiological function. Many peptides also demonstrate stimuli-responsive gelation and tuneable mechanical properties, which facilitates extrusion before dispensing and maintains the shape fidelity of the printed construct in aqueous media. The inherent biocompatibility and biodegradability bodes well for in vivo applications as implantable tissues and drug delivery matrices, while their short length and ease of functionalization facilitates synthesis and customization. By applying self-assembling peptide inks to bioprinting, the dynamic complexity of biological tissue can be recreated, thereby advancing current biomedical applications of peptide hydrogel scaffolds. (paper)

  16. Biocontainment of genetically modified organisms by synthetic protein design

    Science.gov (United States)

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.

  17. Plant glyco-biotechnology on the way to synthetic biology

    Directory of Open Access Journals (Sweden)

    Andreas eLoos

    2014-10-01

    Full Text Available Plants are increasingly being used for the production of recombinant proteins. One reason is that plants are highly amenable for glycan engineering processes and allow the production of therapeutic proteins with increased efficacies due to optimized glycosylation profiles. Removal and insertion of glycosylation reactions by knock-out/knock-down approaches and introduction of glycosylation enzymes have paved the way for the humanization of the plant glycosylation pathway. The insertion of heterologous enzymes at exactly the right stage of the existing glycosylation pathway has turned out to be of utmost importance for optimal results. To enable such precise targeting chimeric enzymes have been constructed. In this short review we will exemplify the importance of correct targeting of glycosyltransferases, we will give an overview of the targeting mechanism of glycosyltransferases, describe chimeric enzymes used in plant N-glycosylation engineering and illustrate how plant glycoengineering builds on the tools offered by synthetic biology to construct such chimeric enzymes.

  18. A Method to Design Synthetic Cell-Cycle Networks

    International Nuclear Information System (INIS)

    Ke-Ke, Miao

    2009-01-01

    The interactions among proteins, DNA and RNA in an organism form elaborate cell-cycle networks which govern cell growth and proliferation. Understanding the common structure of cell-cycle networks will be of great benefit to science research. Here, inspired by the importance of the cell-cycle regulatory network of yeast which has been studied intensively, we focus on small networks with 11 nodes, equivalent to that of the cell-cycle regulatory network used by Li et al. [Proc. Natl. Acad. Sci. USA 101(2004)4781] Using a Boolean model, we study the correlation between structure and function, and a possible common structure. It is found that cascade-like networks with a great number of interactions between nodes are stable. Based on these findings, we are able to construct synthetic networks that have the same functions as the cell-cycle regulatory network. (condensed matter: structure, mechanical and thermal properties)

  19. In Vivo Real Time Volumetric Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Bouzari, Hamed; Rasmussen, Morten Fischer; Brandt, Andreas Hjelm

    2015-01-01

    Synthetic aperture (SA) imaging can be used to achieve real-time volumetric ultrasound imaging using 2-D array transducers. The sensitivity of SA imaging is improved by maximizing the acoustic output, but one must consider the limitations of an ultrasound system, both technical and biological....... This paper investigates the in vivo applicability and sensitivity of volumetric SA imaging. Utilizing the transmit events to generate a set of virtual point sources, a frame rate of 25 Hz for a 90° x 90° field-of-view was achieved. Data were obtained using a 3.5 MHz 32 x 32 elements 2-D phased array...... transducer connected to the experimental scanner (SARUS). Proper scaling is applied to the excitation signal such that intensity levels are in compliance with the U.S. Food and Drug Administration regulations for in vivo ultrasound imaging. The measured Mechanical Index and spatial-peak- temporal...

  20. Synthetic Spider Silk Production on a Laboratory Scale

    Science.gov (United States)

    Hsia, Yang; Gnesa, Eric; Pacheco, Ryan; Kohler, Kristin; Jeffery, Felicia; Vierra, Craig

    2012-01-01

    As society progresses and resources become scarcer, it is becoming increasingly important to cultivate new technologies that engineer next generation biomaterials with high performance properties. The development of these new structural materials must be rapid, cost-efficient and involve processing methodologies and products that are environmentally friendly and sustainable. Spiders spin a multitude of different fiber types with diverse mechanical properties, offering a rich source of next generation engineering materials for biomimicry that rival the best manmade and natural materials. Since the collection of large quantities of natural spider silk is impractical, synthetic silk production has the ability to provide scientists with access to an unlimited supply of threads. Therefore, if the spinning process can be streamlined and perfected, artificial spider fibers have the potential use for a broad range of applications ranging from body armor, surgical sutures, ropes and cables, tires, strings for musical instruments, and composites for aviation and aerospace technology. In order to advance the synthetic silk production process and to yield fibers that display low variance in their material properties from spin to spin, we developed a wet-spinning protocol that integrates expression of recombinant spider silk proteins in bacteria, purification and concentration of the proteins, followed by fiber extrusion and a mechanical post-spin treatment. This is the first visual representation that reveals a step-by-step process to spin and analyze artificial silk fibers on a laboratory scale. It also provides details to minimize the introduction of variability among fibers spun from the same spinning dope. Collectively, these methods will propel the process of artificial silk production, leading to higher quality fibers that surpass natural spider silks. PMID:22847722

  1. Natural and Synthetic Barriers to Immobilize Radionuclides

    International Nuclear Information System (INIS)

    Um, W.

    2011-01-01

    The experiments of weathering of glass waste form and the reacted sediments with simulated glass leachates show that radionuclide sequestration can be significantly enhanced by promoting the formation of secondary precipitates. In addition, synthetic phosphate-bearing nanoporous material exhibits high stability at temperature and has a very high K d value for U(VI) removal. Both natural and synthetic barrier materials can be used as additional efficient adsorbents for retarding transport of radionuclides for various contaminated waste streams and waste forms present at U. S. Department of Energy clean-up sites and the proposed geologic radioactive waste disposal facility. In the radioactive waste repository facility, natural or synthetic materials are planned to be used as a barrier material to immobilize and retard radionuclide release. The getter material can be used to selectively scavenge the radionuclide of interest from a liquid waste stream and subsequently incorporate the loaded getters in a cementitious or various monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides from monolithic waste forms. Also, the getter material is to reduce the release of radionuclides form monolithic waste forms by being emplaced as a backfill barrier material around the wastes or waste form to minimize the potential around the wastes or waste form to minimize the potential hazard of leached radioactive wastes. The barrier material should be highly efficient to sequester radionuclides and possess physical and chemical stability for long-term exposure to severe weathering conditions. Because potential leaching of radionuclides depends on various environmental and weathering conditions of the near-field repository, the barrier materials must be durable and not disintegrate under a range of moisture, temperature, pressure, radiation, Eh, ph. and

  2. Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo.

    Science.gov (United States)

    Sharma, Sunil V; Tong, Xiaoxue; Pubill-Ulldemolins, Cristina; Cartmell, Christopher; Bogosyan, Emma J A; Rackham, Emma J; Marelli, Enrico; Hamed, Refaat B; Goss, Rebecca J M

    2017-08-09

    Marrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C-Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures.Coupling synthetic biology and chemical reactions in cells is a challenging task. The authors engineer bacteria capable of generating bromo-metabolites, develop a mild Suzuki-Miyaura cross-coupling reaction compatible with cell growth and carry out the cross-coupling chemistry in live cell cultures.

  3. [Synthetic biology and rearrangements of microbial genetic material].

    Science.gov (United States)

    Liang, Quan-Feng; Wang, Qian; Qi, Qing-Sheng

    2011-10-01

    As an emerging discipline, synthetic biology has shown great scientific values and application prospects. Although there have been many reviews of various aspects on synthetic biology over the last years, this article, for the first time, attempted to discuss the relationship and difference between microbial genetics and synthetic biology. We summarized the recent development of synthetic biology in rearranging microbial genetic materials, including synthesis, design and reduction of genetic materials, standardization of genetic parts and modularization of genetic circuits. The relationship between synthetic biology and microbial genetic engineering was also discussed in the paper.

  4. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  5. Synthetic lethality between gene defects affecting a single non-essential molecular pathway with reversible steps.

    Directory of Open Access Journals (Sweden)

    Andrei Zinovyev

    2013-04-01

    Full Text Available Systematic analysis of synthetic lethality (SL constitutes a critical tool for systems biology to decipher molecular pathways. The most accepted mechanistic explanation of SL is that the two genes function in parallel, mutually compensatory pathways, known as between-pathway SL. However, recent genome-wide analyses in yeast identified a significant number of within-pathway negative genetic interactions. The molecular mechanisms leading to within-pathway SL are not fully understood. Here, we propose a novel mechanism leading to within-pathway SL involving two genes functioning in a single non-essential pathway. This type of SL termed within-reversible-pathway SL involves reversible pathway steps, catalyzed by different enzymes in the forward and backward directions, and kinetic trapping of a potentially toxic intermediate. Experimental data with recombinational DNA repair genes validate the concept. Mathematical modeling recapitulates the possibility of kinetic trapping and revealed the potential contributions of synthetic, dosage-lethal interactions in such a genetic system as well as the possibility of within-pathway positive masking interactions. Analysis of yeast gene interaction and pathway data suggests broad applicability of this novel concept. These observations extend the canonical interpretation of synthetic-lethal or synthetic-sick interactions with direct implications to reconstruct molecular pathways and improve therapeutic approaches to diseases such as cancer.

  6. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  7. Interaction of Dendritic Polymers with Synthetic Lipid and Cell Membranes

    Science.gov (United States)

    Mecke, Almut; Hong, Seungpyo; Bielinska, Anna U.; Banaszak Holl, Mark M.; Orr, Bradford G.; Baker, James R., Jr.

    2004-03-01

    Polyamidoamine (PAMAM) dendrimers are promising candidates for the development of nanoscale therapeutic transport agents. Here we present studies on dendrimer-membrane interactions leading to a better understanding of possible uptake mechanisms into cells. Using synthetic lipid and natural cell membranes as model systems it is shown that the effect of PAMAM dendrimers on a membrane strongly depends on the dendrimer generation, architecture and chemical properties of the branch end groups. Atomic force microscopy data indicates that generation 7 dendrimers have the ability to form small ( 10-100 nm) holes in a lipid bilayer. When dendrimers with otherwise identical chemical properties are arranged in a covalently linked cluster, no hole formation occurs. Dendrimer-lipid micelle formation is proposed and investigated as a possible mechanism for this behavior. Smaller dendrimers (generation 5) have a greatly reduced ability to remove lipid molecules from a bilayer. In addition to the size of the dendrimer, the charge of the branch end groups plays a significant role for dendrimer-membrane interactions. These results agree well with biological studies using cultured cells and point to a new mechanism of specific targeting and uptake into cells.

  8. Comparison of outcome expectancies for synthetic cannabinoids and botanical marijuana.

    Science.gov (United States)

    Lauritsen, Kirstin J; Rosenberg, Harold

    2016-07-01

    Although initially developed for medical purposes, synthetic cannabinoids have also been consumed for recreational purposes. To evaluate whether agreement with positive and negative outcome expectancies differed for synthetic cannabinoids versus botanical marijuana, and assess reported reasons for using synthetic cannabinoids. Using a web-based recruitment and data collection procedure, 186 adults who had used both synthetic cannabinoids and botanical marijuana and 181 adults who had used botanical marijuana but not synthetic cannabinoids, completed measures of outcome expectancies and other relevant questionnaires. A significant interaction revealed that participants who had used both synthetic cannabinoids and botanical marijuana indicated lower agreement with positive expectancies for synthetic cannabinoids, and higher agreement with positive expectancies for botanical marijuana, than did those participants who used only botanical marijuana. There was no interaction between type of drug and use history on agreement with negative expectancies, and participants agreed more strongly with negative outcome expectancies for synthetic cannabinoids than for botanical marijuana whether they had used one or both types of these drugs. The most frequently provided reasons for using synthetic cannabinoids included availability, perceived legality, cost, curiosity, and social interaction. Given growing public acceptance of recreational and medical marijuana, coupled with negative perceptions and increasing regulation of synthetic cannabinoid compounds, botanical marijuana is likely to remain more available and more popular than synthetic cannabinoids.

  9. Synthetic biology analysed tools for discussion and evaluation

    CERN Document Server

    2016-01-01

    Synthetic biology is a dynamic, young, ambitious, attractive, and heterogeneous scientific discipline. It is constantly developing and changing, which makes societal evaluation of this emerging new science a challenging task, prone to misunderstandings. Synthetic biology is difficult to capture, and confusion arises not only regarding which part of synthetic biology the discussion is about, but also with respect to the underlying concepts in use. This book offers a useful toolbox to approach this complex and fragmented field. It provides a biological access to the discussion using a 'layer' model that describes the connectivity of synthetic or semisynthetic organisms and cells to the realm of natural organisms derived by evolution. Instead of directly reviewing the field as a whole, firstly our book addresses the characteristic features of synthetic biology that are relevant to the societal discussion. Some of these features apply only to parts of synthetic biology, whereas others are relevant to synthetic bi...

  10. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB{sub 1} receptors and apoptotic cell death

    Energy Technology Data Exchange (ETDEWEB)

    Tomiyama, Ken-ichi; Funada, Masahiko, E-mail: mfunada@ncnp.go.jp

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB{sub 1} receptor antagonist AM251, but not with the selective CB{sub 2} receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB{sub 1} receptor, but not by the CB{sub 2} receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB{sub 1} receptors.

  11. Cytotoxicity of synthetic cannabinoids on primary neuronal cells of the forebrain: the involvement of cannabinoid CB1 receptors and apoptotic cell death

    International Nuclear Information System (INIS)

    Tomiyama, Ken-ichi; Funada, Masahiko

    2014-01-01

    The abuse of herbal products containing synthetic cannabinoids has become an issue of public concern. The purpose of this paper was to evaluate the acute cytotoxicity of synthetic cannabinoids on mouse brain neuronal cells. Cytotoxicity induced by synthetic cannabinoid (CP-55,940, CP-47,497, CP-47,497-C8, HU-210, JWH-018, JWH-210, AM-2201, and MAM-2201) was examined using forebrain neuronal cultures. These synthetic cannabinoids induced cytotoxicity in the forebrain cultures in a concentration-dependent manner. The cytotoxicity was suppressed by preincubation with the selective CB 1 receptor antagonist AM251, but not with the selective CB 2 receptor antagonist AM630. Furthermore, annexin-V-positive cells were found among the treated forebrain cells. Synthetic cannabinoid treatment induced the activation of caspase-3, and preincubation with a caspase-3 inhibitor significantly suppressed the cytotoxicity. These synthetic cannabinoids induced apoptosis through a caspase-3-dependent mechanism in the forebrain cultures. Our results indicate that the cytotoxicity of synthetic cannabinoids towards primary neuronal cells is mediated by the CB 1 receptor, but not by the CB 2 receptor, and further suggest that caspase cascades may play an important role in the apoptosis induced by these synthetic cannabinoids. In conclusion, excessive synthetic cannabinoid abuse may present a serious acute health concern due to neuronal damage or deficits in the brain. - Highlights: • Synthetic cannabinoids (classical cannabinoids, non-classical cannabinoids, and aminoalkylindole derivatives) induce cytotoxicity in mouse forebrain cultures. • Synthetic cannabinoid-induced cytotoxicity towards forebrain cultures is mediated by the CB 1 receptor, but not by the CB 2 receptor, and involves caspase-dependent apoptosis. • A high concentration of synthetic cannabinoids may be toxic to neuronal cells that express CB 1 receptors

  12. Synthetic vision systems: operational considerations simulation experiment

    Science.gov (United States)

    Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Glaab, Louis J.

    2007-04-01

    Synthetic vision is a computer-generated image of the external scene topography that is generated from aircraft attitude, high-precision navigation information, and data of the terrain, obstacles, cultural features, and other required flight information. A synthetic vision system (SVS) enhances this basic functionality with real-time integrity to ensure the validity of the databases, perform obstacle detection and independent navigation accuracy verification, and provide traffic surveillance. Over the last five years, NASA and its industry partners have developed and deployed SVS technologies for commercial, business, and general aviation aircraft which have been shown to provide significant improvements in terrain awareness and reductions in the potential for Controlled-Flight-Into-Terrain incidents / accidents compared to current generation cockpit technologies. It has been hypothesized that SVS displays can greatly improve the safety and operational flexibility of flight in Instrument Meteorological Conditions (IMC) to a level comparable to clear-day Visual Meteorological Conditions (VMC), regardless of actual weather conditions or time of day. An experiment was conducted to evaluate SVS and SVS-related technologies as well as the influence of where the information is provided to the pilot (e.g., on a Head-Up or Head-Down Display) for consideration in defining landing minima based upon aircraft and airport equipage. The "operational considerations" evaluated under this effort included reduced visibility, decision altitudes, and airport equipage requirements, such as approach lighting systems, for SVS-equipped aircraft. Subjective results from the present study suggest that synthetic vision imagery on both head-up and head-down displays may offer benefits in situation awareness; workload; and approach and landing performance in the visibility levels, approach lighting systems, and decision altitudes tested.

  13. Synthetic Vision Systems - Operational Considerations Simulation Experiment

    Science.gov (United States)

    Kramer, Lynda J.; Williams, Steven P.; Bailey, Randall E.; Glaab, Louis J.

    2007-01-01

    Synthetic vision is a computer-generated image of the external scene topography that is generated from aircraft attitude, high-precision navigation information, and data of the terrain, obstacles, cultural features, and other required flight information. A synthetic vision system (SVS) enhances this basic functionality with real-time integrity to ensure the validity of the databases, perform obstacle detection and independent navigation accuracy verification, and provide traffic surveillance. Over the last five years, NASA and its industry partners have developed and deployed SVS technologies for commercial, business, and general aviation aircraft which have been shown to provide significant improvements in terrain awareness and reductions in the potential for Controlled-Flight-Into-Terrain incidents/accidents compared to current generation cockpit technologies. It has been hypothesized that SVS displays can greatly improve the safety and operational flexibility of flight in Instrument Meteorological Conditions (IMC) to a level comparable to clear-day Visual Meteorological Conditions (VMC), regardless of actual weather conditions or time of day. An experiment was conducted to evaluate SVS and SVS-related technologies as well as the influence of where the information is provided to the pilot (e.g., on a Head-Up or Head-Down Display) for consideration in defining landing minima based upon aircraft and airport equipage. The "operational considerations" evaluated under this effort included reduced visibility, decision altitudes, and airport equipage requirements, such as approach lighting systems, for SVS-equipped aircraft. Subjective results from the present study suggest that synthetic vision imagery on both head-up and head-down displays may offer benefits in situation awareness; workload; and approach and landing performance in the visibility levels, approach lighting systems, and decision altitudes tested.

  14. Raman spectroscopy of synthetic and natural iowaite.

    Science.gov (United States)

    Frost, Ray L; Adebajo, Moses O; Erickson, Kristy L

    2005-02-01

    The chemistry of a magnesium based hydrotalcite known as iowaite Mg6Fe2Cl2(OH)16.4H2O has been studied using Raman spectroscopy. Iowaite has chloride as the counter anion in the interlayer. The formula of synthetic iowaite was found to be Mg5.78Fe2.09(Cl,(CO3)0.5)(OH)16.4H2O. Oxidation of natural iowaite results in the formation of Mg4FeO(Cl,CO3) (OH)8.4H2O. X-ray diffraction (XRD) shows that the iowaite is a layered structure with a d(001) spacing of 8.0 angtsroms. For synthetic iowaite three Raman bands at 1376, 1194 and 1084 cm(-1) are attributed to CO3 stretching vibrations. These bands are not observed for the natural iowaite but are observed when the natural iowaite is exposed to air. The Raman spectrum of natural iowaite shows three bands at 708, 690 and 620 cm(-1) and upon exposure to air, two broad bands are found at 710 and 648 cm(-1). The Raman spectrum of synthetic iowaite has a very broad band at 712 cm(-1). The Raman spectrum of natural iowaite shows an intense band at 527 cm(-1). The air oxidized iowaite shows two bands at 547 and 484 cm(-1) attributed to the (CO3)(2-)nu2 bending mode. Raman spectroscopy has proven most useful for the study of the chemistry of iowaite and chemical changes induced in natural iowaite upon exposure to air.

  15. The system architecture for renewable synthetic fuels

    DEFF Research Database (Denmark)

    Ridjan, Iva

    To overcome and eventually eliminate the existing heavy fossil fuels in the transport sector, there is a need for new renewable fuels. This transition could lead to large capital costs for implementing the new solutions and a long time frame for establishing the new infrastructure unless a suitable...... and production plants, so it is important to implement it in the best manner possible to ensure an efficient and flexible system. The poster will provide an overview of the steps involved in the production of synthetic fuel and possible solutions for the system architecture based on the current literature...

  16. Stability analysis of artificial synthetic overweight elements

    International Nuclear Information System (INIS)

    Zhou Jian

    1990-01-01

    Stability of artificial synthetic overweight elements has been analysed theoretically using a diagram of nuclear stability. It is indicated that overweight nucleus can be synthesized only when a certain amount of neutrons participate simultaneously in the synthesis. The maximum number of protons in overweight elements is 1002. The proton number of 'extreme overweight' elements of which the neutron star is possibly composed is in the range from 326 to 1002. It is expected that the mass number of the stable overweight elements with proton number 114 is in the range from 299 to 315

  17. Synthetic biology and biosecurity: challenging the "myths".

    OpenAIRE

    Jefferson, C; Lentzos, F; Marris, C

    2014-01-01

    15.10.14 KB. Ok to add published version to spiral, OA paper under cc by Synthetic biology, a field that aims to make biology easier to engineer, is routinely described as leading to an increase in the dual-use threat, i.e., the potential for the same scientific research to be used for peaceful purposes or misused for warfare or terrorism. Fears have been expressed that the de-skilling of biology, combined with online access to the genomic DNA sequences of pathogenic organisms an...

  18. Synthetic properties of models of globular clusters

    Energy Technology Data Exchange (ETDEWEB)

    Angeletti, L; Dolcetta, R; Giannone, P. (Rome Univ. (Italy). Osservatorio Astronomico)

    1980-05-01

    Synthetic and projected properties of models of globular clusters have been computed on the basis of stellar evolution and time changes of the dynamical cluster structure. Clusters with five and eight stellar groups (each group consisting of stars with the same mass) were studied. Mass loss from evolved stars was taken into account. Observational features were obtained at ages of 10-19 x 10/sup 9/ yr. The basic importance of the horizontal- and asymptotic-branch stars was pointed out. A comparison of the results with observed data of M3 is discussed with the purpose of obtaining general indications rather than a specific fit.

  19. Synthetic properties of models of globular clusters

    International Nuclear Information System (INIS)

    Angeletti, L.; Dolcetta, R.; Giannone, P.

    1980-01-01

    Synthetic and projected properties of models of globular clusters have been computed on the basis of stellar evolution and time changes of the dynamical cluster structure. Clusters with five and eight stellar groups (each group consisting of stars with the same mass) were studied. Mass loss from evolved stars was taken into account. Observational features were obtained at ages of 10-19 x 10 9 yr. The basic importance of the horizontal- and asymptotic-branch stars was pointed out. A comparison of the results with observed data of M3 is discussed with the purpose of obtaining general indications rather than a specific fit. (orig.)

  20. Measurements in a synthetic turbulent boundary layer

    Science.gov (United States)

    Arakeri, J. H.; Coles, D. E.

    Some measurements in a synthetic turbulent boundary layer (SBL) are reported. The main diagnostic tool is an X-wire probe. The velocity of the large eddies is determined to be 0.842 times the freestream velocity. The mean properties of the SBL are reasonably close to those of a natural turbulent boundary layer. The large eddy in the SBL appears to be a pair of counterrotating eddies in the stream direction, inclined at a shallow angle and occupying much of the boundary-layer thickness.

  1. Acute Intoxications Involving Synthetic Psychoactive Substances

    Directory of Open Access Journals (Sweden)

    Sergey A. Vasil'ev

    2018-01-01

    Full Text Available The purpose of this study was to evaluate the effectiveness of a succinic acid derivate, a substrate metabolic agent cytoflavin in patients with acute poisoning with synthetic psychoactive drugs.Materials and methods. A retrospective evaluation of effectiveness of a combined intensive care treatment protocol for 622 patients with acute narcotic poisoning (methadone and synthetic cannabinoids was carried out. All patients were divided into two groups. The main group (112 patients, median age 38.2±12.0 years included patients who, in addition to the basic treatment, received cytoflavin by intravenous drop infusion, 20–40 ml diluted in 400–500 ml of 10% glucose, for 5 days. Patients of the reference group (510 subjects, median age 37.6±14.1 years received treatment according to the «classical scheme». In addition to conventional examination, all patients underwent duplex scanning of cerebral vessels, examination of changes in the cerebral blood circulation and electroencephalogram findings. The severity of somatic disorders was assessed using criteria of the Glasgow coma scale. The severity of the asthenic syndrome was assessed according to the MFI-20 scale.Results. Compared to patients who received a standard therapy, patients of the main group had a significantly more rapid recovery from coma (by 1.5-fold: 23.5±3.1 days, versus 15.1±3.0 days, respectively, P0.05; the duration of psychotic disorders was shorter (by 1.8-fold: 15.5±4.2 hours vs 8.3±2.5 hours., respectively, P0.05, and the intensity of asthenic syndrome (by 2.8-fold: 64.1±3.3 rel. units vs 23.0±4,9 rel. units, respectively, P0.05 was also lower.Conclusion. Inclusion of cytoflavin in a protocol of a complex treatment of patients with synthetic drugs poisoning increased the effectiveness of the therapy. Data demonstrate that inclusion of the drug can be recommended for treatment of acute synthetic narcotic poisoning. 

  2. Synthetic focusing in ultrasound modulated tomography

    KAUST Repository

    Kuchment, Peter; Kunyansky, Leonid

    2010-01-01

    Several hybrid tomographic methods utilizing ultrasound modulation have been introduced lately. Success of these methods hinges on the feasibility of focusing ultrasound waves at an arbitrary point of interest. Such focusing, however, is difficult to achieve in practice. We thus propose a way to avoid the use of focused waves through what we call synthetic focusing, i.e. by reconstructing the would-be response to the focused modulation from the measurements corresponding to realistic unfocused waves. Examples of reconstructions from simulated data are provided. This non-technical paper describes only the general concept, while technical details will appear elsewhere. © 2010 American Institute of Mathematical Sciences.

  3. Parametric Beamformer for Synthetic Aperture Ultrasound Imaging

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2006-01-01

    . The beamformer consists of a number of identical beamforming blocks, each processing data from several channels and producing part of the image. A number of these blocks can be accommodated in a modern field-programmable gate array device (FPGA), and a whole synthetic aperture system can be implemented using...... with 255 levels. A beamforming block uses input data from 4 elements and produces a set of 10 lines. Linear interpolation is used to implement sub-sample delays. The VHDL code for the beamformer has been synthesized for a Xilinx V4FX100 speed grade 11 FPGA, where it can operate at a maximum clock frequency...

  4. News: Synthetic biology leading to specialty chemicals ...

    Science.gov (United States)

    Synthetic biology can combine the disciplines of biology, engineering, and chemistry productively to form molecules of great scientific and commercial value. Recent advances in the new field are explored for their connection to new tools that have been used to elucidate production pathways to a wide variety of chemicals generated by microorganisms. The selection and enhancement of microbiological strains through the practice of strain engineering enables targets of design, construction, and optimization. This news column aspires to cover recent literature relating to the development and understanding of clean technology.

  5. Synthetic focusing in ultrasound modulated tomography

    KAUST Repository

    Kuchment, Peter

    2010-09-01

    Several hybrid tomographic methods utilizing ultrasound modulation have been introduced lately. Success of these methods hinges on the feasibility of focusing ultrasound waves at an arbitrary point of interest. Such focusing, however, is difficult to achieve in practice. We thus propose a way to avoid the use of focused waves through what we call synthetic focusing, i.e. by reconstructing the would-be response to the focused modulation from the measurements corresponding to realistic unfocused waves. Examples of reconstructions from simulated data are provided. This non-technical paper describes only the general concept, while technical details will appear elsewhere. © 2010 American Institute of Mathematical Sciences.

  6. Programming Morphogenesis through Systems and Synthetic Biology.

    Science.gov (United States)

    Velazquez, Jeremy J; Su, Emily; Cahan, Patrick; Ebrahimkhani, Mo R

    2018-04-01

    Mammalian tissue development is an intricate, spatiotemporal process of self-organization that emerges from gene regulatory networks of differentiating stem cells. A major goal in stem cell biology is to gain a sufficient understanding of gene regulatory networks and cell-cell interactions to enable the reliable and robust engineering of morphogenesis. Here, we review advances in synthetic biology, single cell genomics, and multiscale modeling, which, when synthesized, provide a framework to achieve the ambitious goal of programming morphogenesis in complex tissues and organoids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. CASH vs. SYNTHETIC ASSET-BACKED SECURITIES

    Directory of Open Access Journals (Sweden)

    SILVIU EDUARD DINCA

    2015-12-01

    Full Text Available During the past few years, in the recent post-crisis aftermath, financial and banking institutions around the world are exploring new alternatives to better secure their financing and refinancing demands altogether with the enhancement of their risk management capabilities. We will exhibit herewith a theoretical and applied comparison between the true-sale and synthetic ABS securitizations as financial markets-based funding and risks mitigation techniques, highlighting certain key structuring and implementation specifics, discovered during the research, on each of them.

  8. Two approaches to forecast Ebola synthetic epidemics.

    Science.gov (United States)

    Champredon, David; Li, Michael; Bolker, Benjamin M; Dushoff, Jonathan

    2018-03-01

    We use two modelling approaches to forecast synthetic Ebola epidemics in the context of the RAPIDD Ebola Forecasting Challenge. The first approach is a standard stochastic compartmental model that aims to forecast incidence, hospitalization and deaths among both the general population and health care workers. The second is a model based on the renewal equation with latent variables that forecasts incidence in the whole population only. We describe fitting and forecasting procedures for each model and discuss their advantages and drawbacks. We did not find that one model was consistently better in forecasting than the other. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. Synthetic quorum sensing in model microcapsule colonies

    Science.gov (United States)

    Shum, Henry; Balazs, Anna C.

    2017-08-01

    Biological quorum sensing refers to the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. Designing synthetic materials systems that exhibit quorum sensing-like behavior could enable the fabrication of devices with both self-recognition and self-regulating functionality. Herein, we develop models for a colony of synthetic microcapsules that communicate by producing and releasing signaling molecules. Production of the chemicals is regulated by a biomimetic negative feedback loop, the “repressilator” network. Through theory and simulation, we show that the chemical behavior of such capsules is sensitive to both the density and number of capsules in the colony. For example, decreasing the spacing between a fixed number of capsules can trigger a transition in chemical activity from the steady, repressed state to large-amplitude oscillations in chemical production. Alternatively, for a fixed density, an increase in the number of capsules in the colony can also promote a transition into the oscillatory state. This configuration-dependent behavior of the capsule colony exemplifies quorum-sensing behavior. Using our theoretical model, we predict the transitions from the steady state to oscillatory behavior as a function of the colony size and capsule density.

  10. Thermoluminescent characteristics of synthetic hydroxyapatite (SHAp)

    International Nuclear Information System (INIS)

    Alvarez, R.; Rivera, T.; Guzman, J.; Piña-Barba, M.C.; Azorin, J.

    2014-01-01

    This paper presents the experimental results of the thermoluminescent (TL) characteristics of synthetic hydroxyapatite (SHAp) obtained by the sol–gel method. For preparation of the SHAp powders, phosphorus pentoxide (P 2 O 5 ) and calcium nitrate tetrahydrated (Ca(NO 3 ) 2 –4H 2 O) were used. The powders obtained were submitted at different temperatures. The structural and morphological characterization were carried out using X-ray diffraction (XRD) and scanning electron microscopy techniques. TL glow curve exhibited two peaks centered at around 200 °C and 300 °C. TL response of SHAp as a function of gamma absorbed dose was linear over a wide dose range. Fading of the storage information in the samples irradiated was also studied. The experimental results show that the synthetic hydroxyapatite obtained by the sol–gel method may have used in gamma radiation dosimetry applications. - highlights: • Dosimetric characteristics of SHAp under gamma irradiation effect were analyzed • SHAp powders were obtained by Sol–Gel method • Fading anomalous of HAp was performed showing 15% during 90 days • SHAp showed good dosimetric characteristics. • Dosimetric characteristics of SHAp have not been reported yet in the literature before this paper

  11. Matte painting in stereoscopic synthetic imagery

    Science.gov (United States)

    Eisenmann, Jonathan; Parent, Rick

    2010-02-01

    While there have been numerous studies concerning human perception in stereoscopic environments, rules of thumb for cinematography in stereoscopy have not yet been well-established. To that aim, we present experiments and results of subject testing in a stereoscopic environment, similar to that of a theater (i.e. large flat screen without head-tracking). In particular we wish to empirically identify thresholds at which different types of backgrounds, referred to in the computer animation industry as matte paintings, can be used while still maintaining the illusion of seamless perspective and depth for a particular scene and camera shot. In monoscopic synthetic imagery, any type of matte painting that maintains proper perspective lines, depth cues, and coherent lighting and textures saves in production costs while still maintaining the illusion of an alternate cinematic reality. However, in stereoscopic synthetic imagery, a 2D matte painting that worked in monoscopy may fail to provide the intended illusion of depth because the viewer has added depth information provided by stereopsis. We intend to observe two stereoscopic perceptual thresholds in this study which will provide practical guidelines indicating when to use each of three types of matte paintings. We ran subject tests in two virtual testing environments, each with varying conditions. Data were collected showing how the choices of the users matched the correct response, and the resulting perceptual threshold patterns are discussed below.

  12. Mapping the Emergence of Synthetic Biology.

    Directory of Open Access Journals (Sweden)

    Benjamin Raimbault

    Full Text Available In this paper, we apply an original scientometric analyses to a corpus comprising synthetic biology (SynBio publications in Thomson Reuters Web of Science to characterize the emergence of this new scientific field. Three results were drawn from this empirical investigation. First, despite the exponential growth of publications, the study of population level statistics (newcomers proportion, collaboration network structure shows that SynBio has entered a stabilization process since 2010. Second, the mapping of textual and citational networks shows that SynBio is characterized by high heterogeneity and four different approaches: the central approach, where biobrick engineering is the most widespread; genome engineering; protocell creation; and metabolic engineering. We suggest that synthetic biology acts as an umbrella term allowing for the mobilization of resources, and also serves to relate scientific content and promises of applications. Third, we observed a strong intertwinement between epistemic and socio-economic dynamics. Measuring scientific production and impact and using structural analysis data, we identified a core set of mostly American scientists. Biographical analysis shows that these central and influential scientists act as "boundary spanners," meaning that their importance to the field lies not only in their academic contributions, but also in their capacity to interact with other social spaces that are outside the academic sphere.

  13. New Frontiers in Synthetic Biology for Spaceflight

    Science.gov (United States)

    Galazka, Jonathan M.

    2017-01-01

    Exploration of the solar system is constrained by the cost of moving mass off Earth. Producing materials in situ will reduce the mass that must be delivered from earth. CO2 is abundant on Mars and manned spacecraft. On the ISS, NASA reacts excess CO2 with H2 to generate CH4 and H2O using the Sabatier System. The resulting water is recovered into the ISS, but the methane is vented to space. Thus, there is a capability need for systems that convert methane into valuable materials. Methanotrophic bacteria consume methane but these are poor synthetic biology platforms. Thus, there is a knowledge gap in utilizing methane in a robust and flexible synthetic biology platform. The yeast Pichia pastoris is a refined microbial factory that is used widely by industry because it efficiently secretes products. Pichia could produce a variety of useful products in space. Pichia does not consume methane but robustly consumes methanol, which is one enzymatic step removed from methane. Our goal is to engineer Pichia to consume methane thereby creating a powerful methane-consuming microbial factory.

  14. Understanding Biological Regulation Through Synthetic Biology.

    Science.gov (United States)

    Bashor, Caleb J; Collins, James J

    2018-03-16

    Engineering synthetic gene regulatory circuits proceeds through iterative cycles of design, building, and testing. Initial circuit designs must rely on often-incomplete models of regulation established by fields of reductive inquiry-biochemistry and molecular and systems biology. As differences in designed and experimentally observed circuit behavior are inevitably encountered, investigated, and resolved, each turn of the engineering cycle can force a resynthesis in understanding of natural network function. Here, we outline research that uses the process of gene circuit engineering to advance biological discovery. Synthetic gene circuit engineering research has not only refined our understanding of cellular regulation but furnished biologists with a toolkit that can be directed at natural systems to exact precision manipulation of network structure. As we discuss, using circuit engineering to predictively reorganize, rewire, and reconstruct cellular regulation serves as the ultimate means of testing and understanding how cellular phenotype emerges from systems-level network function. Expected final online publication date for the Annual Review of Biophysics Volume 47 is May 20, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  15. Enamel surface remineralization: Using synthetic nanohydroxyapatite

    Directory of Open Access Journals (Sweden)

    J Shanti Swarup

    2012-01-01

    Full Text Available Objective: The purpose of this study was to evaluate the effects of synthetically processed hydroxyapatite particles in remineralization of the early enamel lesions in comparison with 2% sodium fluoride. Materials and Methods: Thirty sound human premolars were divided into nanohydroxyapatite group (n0 = 15 and the sodium fluoride group (n = 15. The specimens were subjected to demineralization before being coated with 10% aqueous slurry of 20 nm nanohydroxyapatite or 2% sodium fluoride. The remineralizing efficacy of the materials was evaluated using surface microhardness (SMH measurements, scanning microscopic analysis and analysis of the Ca/P ratio of the surface enamel. Data analysis was carried out using paired t-test and independent t-test. Results: The results showed that the nanohydroxyapatite group produced a surface morphology close to the biologic enamel, the increase in mineral content (Ca/P ratio was more significant in the nanohydroxyapatite group ( P 0.05. Conclusion: The use of biomimetic nanohydroxyapatite as a remineralizing agent holds promise as a new synthetic enamel biocompatible material to repair early carious lesions.

  16. Compartmentalization and Transport in Synthetic Vesicles

    Directory of Open Access Journals (Sweden)

    Christine eSchmitt

    2016-02-01

    Full Text Available Nano-scale vesicles have become a popular tool in life sciences. Besides liposomes that are generated from phospholipids of natural origin, polymersomes fabricated of synthetic block copolymers enjoy increasing popularity, as they represent more versatile membrane building blocks that can be selected based on their specific physicochemical properties, like permeability, stability or chemical reactivity.In this review, we focus on the application of simple and nested artificial vesicles in synthetic biology. First, we provide an introduction into the utilization of multi-compartmented vesosomes as compartmentalized nano-scale bioreactors. In the bottom-up development of protocells from vesicular nano-reactors, the specific exchange of pathway intermediates across compartment boundaries represents a bottleneck for future studies. To date, most compartmented bioreactors rely on unspecific exchange of substrates and products. This is either based on changes in permeability of the coblock polymer shell by physicochemical triggers or by the incorporation of unspecific porin proteins into the vesicle membrane. Since the incorporation of membrane transport proteins into simple and nested artificial vesicles offers the potential for specific exchange of substances between subcompartments, it opens new vistas in the design of protocells. Therefore we devote the main part of the review to summarize the technical advances in the use of phospholipids and block copolymers for the reconstitution of membrane proteins.

  17. Automatic design of digital synthetic gene circuits.

    Directory of Open Access Journals (Sweden)

    Mario A Marchisio

    2011-02-01

    Full Text Available De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing, brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network. However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits, we developed a methodology and a corresponding tool for in silico automatic design. For a given truth table that specifies a circuit's input-output relations, our algorithm generates and ranks several possible circuit schemes without the need for any optimization. Logic behavior is reproduced by the action of regulatory factors and chemicals on the promoters and on the ribosome binding sites of biological Boolean gates. Simulations of circuits with up to four inputs show a faithful and unequivocal truth table representation, even under parametric perturbations and stochastic noise. A comparison with already implemented circuits, in addition, reveals the potential for simpler designs with the same function. Therefore, we expect the method to help both in devising new circuits and in simplifying existing solutions.

  18. Enhancing Water Evaporation with Floating Synthetic Leaves

    Science.gov (United States)

    Boreyko, Jonathan; Vieitez, Joshua; Berrier, Austin; Roseveare, Matthew; Shi, Weiwei

    2017-11-01

    When a wetted nanoporous medium is exposed to a subsaturated ambient environment, the water menisci assume a concave curvature to achieve a negative pressure. This negative water pressure is required to balance the mismatch in water activity across the water-air interface to achieve local equilibrium. Here, we show that the diffusive evaporation rate of water can be greatly modulated by floating a nanoporous synthetic leaf at the water's free interface. For high ambient humidities, adding the leaf serves to enhance the evaporation rate, presumably by virtue of the menisci enhancing the effective liquid-vapor surface area. For low humidities, the menisci cannot achieve a local equilibrium and retreat partway into the leaf, which increases the local humidity directly above the menisci. In light of these two effects, we find the surprising result that leaves exposed to an ambient humidity of 90 percent can evaporate water at the same rate as leaves exposed to only 50 percent humidity. These findings have implications for using synthetic trees to enhance steam generation or water harvesting. This work was supported by the National Science Foundation (CBET-1653631).

  19. Three-dimensional real-time synthetic aperture imaging using a rotating phased array transducer

    DEFF Research Database (Denmark)

    Nikolov, Svetoslav; Dufait, Remi; Schoisswohl, Armin

    2002-01-01

    phased array, which is rotated over the volume of interest. The data is acquired using coded signals and synthetic transmit aperture imaging. Only one group of elements transmits at a time. The delays are set such as to form a cylindrical wave. The back-scattered signal carries information not only from......Current 3D real-time imaging is done either with sparse 2D arrays, or with mechanically moved phased arrays. The former results in a poor resolution and contrast due to a limited amount of elements. The latter has the disadvantage of low frame rates due to the sequential acquisition of the volume...... line-by-line and plane-by-plane. This paper describes an approach which combines mechanically moved phased array with synthetic transmit aperture imaging, resulting in high volume acquisition rates without a trade-off in image quality. The scan method uses a conventional fully populated 64 element...

  20. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    Science.gov (United States)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water

  1. New designer drugs (synthetic cannabinoids and synthetic cathinones): review of literature.

    Science.gov (United States)

    Cottencin, Olivier; Rolland, Benjamin; Karila, Laurent

    2014-01-01

    New designer drugs (synthetic cannabinoids and synthetic cathinones) are new "legal highs" that are sold online for recreational public or private use. Synthetic cannabinoids are psychoactive herbal and chemical products that mimic the effects of cannabis when used. These drugs are available on the Internet or in head shops as incense or air fresheners to circumvent the law. Cathinone is a naturally occurring beta-ketone amphetamine analog found in the leaves of the Catha edulis plant. Synthetic cathinones are phenylalkylamine derivatives that may possess amphetamine-like properties. These drugs are sold online as bath salts. Designer drugs are often labeled as "not for human consumption" to circumvent drug abuse legislation. The absence of legal risks, the ease of obtaining these drugs, the moderate cost, and the availability via the Internet are the main features that attract users, but the number of intoxicated people presenting with emergencies is increasing. There is evidence that negative health and social consequences may affect recreational and chronic users. The addictive potential of designer drugs is not negligible.

  2. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    Science.gov (United States)

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  3. Synthetic Teammates as Team Players: Coordination of Human and Synthetic Teammates

    Science.gov (United States)

    2016-05-31

    teammate interactions with human teammates reveal about human-automation coordination needs? 15. SUBJECT TERMS synthetic teammate, human- autonomy teaming...interacting with autonomy - not autonomous vehicles, but autonomous teammates. These experiments have led to a number of discoveries including: 1...given the preponderance of text-based communications in our society and its adoption in time critical military and civilian contexts, the

  4. [How to be prudent with synthetic biology. Synthetic Biology and the precautionary principle].

    Science.gov (United States)

    Rodríguez López, Blanca

    2014-01-01

    Synthetic biology is a new discipline that is twofold: firstly it offers the promise to pay benefits that can alleviate some of the ills that plague mankind; On the other hand, like all technologies, holds risks. Given these, the most critical and concerned about the risks, invoke the application of the precautionary principle, common in cases where an activity or new technology creates risks to the environment and/or human health, but far from universally accepted happens to be currently one of the most controversial principles. In this paper the question of the risks and benefits of synthetic biology and the relevance of applying the precautionary principle are analyzed. To do this we proceed as follows. The first part focuses on synthetic biology. At first, this discipline is characterized, with special attention to what is novel compared to the known as "genetic engineering". In the second stage both the benefits and the risks associated with it are discussed. The first part concludes with a review of the efforts currently being made to control or minimize the risks. The second part aims to analyze the precautionary principle and its possible relevance to the case of Synthetic Biology. At first, the different versions and interpretations of the principle and the various criticisms of which has been the subject are reviewed. Finally, after discarding the Precautionary Principle as an useful tool, it is seen as more appropriate some recent proposals to treat technologies that take into account not only risks but also their benefits.

  5. Synthetic and natural antioxidants: food quality protectors

    Directory of Open Access Journals (Sweden)

    Valenzuela, A.

    1996-06-01

    Full Text Available Oxidation of food lipid components, known as oxidative rancidity is one of the major deteriorative and quality-affecting reactions. Oxidative rancidity is initiated by oxygen free-radicals or by the reaction of molecular oxygen with pre-formed organic free-radicals from polyunsaturated fatty acids composing fats and oils. Oxidation may be prevented or delayed by antioxidants, these substances being organic molecules of either synthetic or natural origin which can scavenge the oxygen free-radicals involved in fatty acid oxidation. Synthetic antioxidants are the most popular and widely used antioxidants, however concerns about it safe to both human and animal health is encouraging research on substances from natural origin showing antioxidant properties. Few natural antioxidants have been proved to be effective when compared to synthetic products in the same experimental conditions. This work summarizes the main characteristics of the most important synthetic antioxidants, also discuss the principal characteristics of four natural antioxidants, comparing the advantages and disadvantages of using natural products compared to synthetic ones, and sight the future for natural products with antioxidant activity.

    La oxidación de los componentes lípidos de un alimento, conocida como rancidez oxidativa, es una de las reacciones que deteriora y afecta en forma más importante la calidad de un producto. La rancidez oxidativa es iniciada por radicales libres del oxígeno o por el ataque del oxígeno molecular a radicales libres pre-formados en los ácidos grasos poliinsaturados que forman las grasas y aceites. La oxidación puede ser prevenida o retrasada por los antioxidantes, sustancias orgánicas de origen sintético o natural que actúan como atrapadores de los radicales libres del oxígeno involucrados en la oxidación de los ácidos grasos. Los antioxidantes sintéticos son los más populares y ampliamente utilizados, sin embargo existe

  6. Properties of meshes used in hernia repair: a comprehensive review of synthetic and biologic meshes.

    Science.gov (United States)

    Ibrahim, Ahmed M S; Vargas, Christina R; Colakoglu, Salih; Nguyen, John T; Lin, Samuel J; Lee, Bernard T

    2015-02-01

    Data on the mechanical properties of the adult human abdominal wall have been difficult to obtain rendering manufacture of the ideal mesh for ventral hernia repair a challenge. An ideal mesh would need to exhibit greater biomechanical strength and elasticity than that of the abdominal wall. The aim of this study is to quantitatively compare the biomechanical properties of the most commonly used synthetic and biologic meshes in ventral hernia repair and presents a comprehensive literature review. A narrative review of the literature was performed using the PubMed database spanning articles from 1982 to 2012 including a review of company Web sites to identify all available information relating to the biomechanical properties of various synthetic and biologic meshes used in ventral hernia repair. There exist differences in the mechanical properties and the chemical nature of different meshes. In general, most synthetic materials have greater stiffness and elasticity than what is required for abdominal wall reconstruction; however, each exhibits unique properties that may be beneficial for clinical use. On the contrary, biologic meshes are more elastic but less stiff and with a lower tensile strength than their synthetic counterparts. The current standard of practice for the treatment of ventral hernias is the use of permanent synthetic mesh material. Recently, biologic meshes have become more frequently used. Most meshes exhibit biomechanical properties over the known abdominal wall thresholds. Augmenting strength requires increasing amounts of material contributing to more stiffness and foreign body reaction, which is not necessarily an advantage. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Prediction of novel synthetic pathways for the production of desired chemicals

    Directory of Open Access Journals (Sweden)

    Park Jin

    2010-03-01

    Full Text Available Abstract Background There have been several methods developed for the prediction of synthetic metabolic pathways leading to the production of desired chemicals. In these approaches, novel pathways were predicted based on chemical structure changes, enzymatic information, and/or reaction mechanisms, but the approaches generating a huge number of predicted results are difficult to be applied to real experiments. Also, some of these methods focus on specific pathways, and thus are limited to expansion to the whole metabolism. Results In the present study, we propose a system framework employing a retrosynthesis model with a prioritization scoring algorithm. This new strategy allows deducing the novel promising pathways for the synthesis of a desired chemical together with information on enzymes involved based on structural changes and reaction mechanisms present in the system database. The prioritization scoring algorithm employing Tanimoto coefficient and group contribution method allows examination of structurally qualified pathways to recognize which pathway is more appropriate. In addition, new concepts of binding site covalence, estimation of pathway distance and organism specificity were taken into account to identify the best synthetic pathway. Parameters of these factors can be evolutionarily optimized when a newly proven synthetic pathway is registered. As the proofs of concept, the novel synthetic pathways for the production of isobutanol, 3-hydroxypropionate, and butyryl-CoA were predicted. The prediction shows a high reliability, in which experimentally verified synthetic pathways were listed within the top 0.089% of the identified pathway candidates. Conclusions It is expected that the system framework developed in this study would be useful for the in silico design of novel metabolic pathways to be employed for the efficient production of chemicals, fuels and materials.

  8. Parameterization experiments performed via synthetic mass movements prototypes generated by 3D slope stability simulator

    Science.gov (United States)

    Colangelo, Antonio C.

    2010-05-01

    The central purpose of this work is to perform a reverse procedure in the mass movement conventional parameterization approach. The idea is to generate a number of synthetic mass movements by means of the "slope stability simulator" (Colangelo, 2007), and compeer their morphological and physical properties with "real" conditions of effective mass movements. This device is an integrated part of "relief unity emulator" (rue), that permits generate synthetic mass movements in a synthetic slope environment. The "rue" was build upon fundamental geomorphological concepts. These devices operate with an integrated set of mechanical, geomorphic and hydrological models. The "slope stability simulator" device (sss) permits to perform a detailed slope stability analysis in a theoretical three dimensional space, by means of evaluation the spatial behavior of critical depths, gradients and saturation levels in the "potential rupture surfaces" inferred along a set of slope profiles, that compounds a synthetic slope unity. It's a meta-stable 4-dimensional object generated by means of "rue", that represents a sequence evolution of a generator profile applied here, was adapted the infinite slope model for slope. Any slope profiles were sliced by means of finite element solution like in Bishop method. For the synthetic slope systems generated, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. Sixteen variables were included in the "rue-sss" device that operates in an integrated manner. For each cell, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, potential rupture surface gradient, slope surface gradient, top of subsurface flow gradient, apparent soil bulk density and vegetation surcharge. The slope soil was considered as cohesive material. The 16 variables incorporated in the models were analyzed for

  9. Proceedings of Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2015

    Energy Technology Data Exchange (ETDEWEB)

    Silver, Pamela [Harvard Univ., Cambridge, MA (United States); SEED 2015 Conference Chair; Flach, Evan [American Institute of Chemical Engineers; SEED 2015 Conference Organizer

    2016-10-27

    Synthetic Biology is an emerging discipline that seeks to accelerate the process of engineering biology. As such, the tools are broadly applicable to application areas, including chemicals and biofuels, materials, medicine and agriculture. A characteristic of the field is to look holistically at cellular design, from sensing and genetic circuitry to the manipulation of cellular processes and actuators, to controlling metabolism, to programming multicellular behaviors. Further, the types of cells that are manipulated are broad, from in vitro systems to microbes and fungi to mammalian and plant cells and living animals. Many of the projects in synthetic biology seek to move biochemical functions across organisms. The field is highly interdisciplinary with faculty and students spread across departments that focus on engineering (biological, chemical, electrical, mechanical, civil, computer science) and basic science (biology and systems biology, chemistry, physics). While there have been many one-off workshops and meeting on synthetic biology, the 2014 Synthetic Biology: Engineering, Evolution and Design (SEED) was the first of an annual conference series that serves as a reliable place to pull together the involved disciplines in order to organize and exchange advances in the science and technology in the field. Further, the SEED conferences have a strong focus on industry, with many companies represented and actively participating. A number of these companies have started major efforts in synthetic biology including large companies (e.g., Pfizer, Novartis, Dow, Dupont, BP, Total), smaller companies have recently gone public (e.g., Amyris, Gevo, Intrexon), and many start-ups (e.g., Teslagen, Refactored Materials, Pivot, Genomatica). There are a number of loosely affiliated Synthetic Biology Centers, including ones at MIT, Boston University, UCSD, UCSF, UC-Berkeley, Imperial College, Oxford, and ETH. SEED 2015 will serve as the primary meeting at which international

  10. The emerging age of cell-free synthetic biology.

    Science.gov (United States)

    Smith, Mark Thomas; Wilding, Kristen M; Hunt, Jeremy M; Bennett, Anthony M; Bundy, Bradley C

    2014-08-25

    The engineering of and mastery over biological parts has catalyzed the emergence of synthetic biology. This field has grown exponentially in the past decade. As increasingly more applications of synthetic biology are pursued, more challenges are encountered, such as delivering genetic material into cells and optimizing genetic circuits in vivo. An in vitro or cell-free approach to synthetic biology simplifies and avoids many of the pitfalls of in vivo synthetic biology. In this review, we describe some of the innate features that make cell-free systems compelling platforms for synthetic biology and discuss emerging improvements of cell-free technologies. We also select and highlight recent and emerging applications of cell-free synthetic biology. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  11. Misconceptions of Synthetic Biology: Lessons from an Interdisciplinary Summer School

    DEFF Research Database (Denmark)

    Verseux, Cyprien; G Acevedo-Rocha, Carlos; Chizzolini, Fabio

    2016-01-01

    In 2014, an international group of scholars from various fields analysed the "societal dimensions" of synthetic biology in an interdisciplinary summer school. Here, we report and discuss the biologists' observations on the general perception of synthetic biology by non-biologists who took part...... in this event. Most attendees mainly associated synthetic biology with contributions from the best-known public figures of the field, rarely mentioning other scientists. Media extrapolations of those contributions appeared to have created unrealistic expectations and irrelevant fears that were widely...... disconnected from the current research in synthetic biology. Another observation was that when debating developments in synthetic biology, semantics strongly mattered: depending on the terms used to present an application of synthetic biology, attendees reacted in radically different ways. For example, using...

  12. Dose response on the 110 °C thermoluminescence peak of un-heated, synthetic Merck quartz

    Energy Technology Data Exchange (ETDEWEB)

    Kaya Keleş, Şule, E-mail: sule.kaya@ankara.edu.tr; Meriç, Niyazi; Polymeris, George S.

    2016-07-15

    Studies on 110 °C TL peak have been carried out using natural quartz from different origins and synthetic quartz produced by different suppliers. The interest in quartz is due to its usage in dating and retrospective dosimetry as a main material; both synthetic and natural types of quartz yield the 110 °C TL peak in their glow curve. In most studies to understand the physical mechanism behind the TL system, synthetic quartz samples are used and there are many investigations about dose response, in both low and high radiation dose region. In these studies generally synthetic quartz samples produced by Sawyer Research Products are used and the studies showed that both heated and un-heated synthetic quartz samples have intense supra-linear responses. Supra-linearity was enhanced by applying a pre-irradiation while several models have been developed towards an explanation to these supra-linearity effects. In this study commercially available synthetic Merck quartz was used. Different combinations of optical filters were used to obtain dose response curves upto 266 Gy and the effect of pre-dose to these dose response curves was studied. Un-pre-dosed Merck quartz samples dose supra-linearity index is below 1 independently on the optical filters; so Merck quartz showed linear or sub-linear dose response.

  13. Brain imaging with synthetic MR in children: clinical quality assessment

    Energy Technology Data Exchange (ETDEWEB)

    Betts, Aaron M.; Serai, Suraj [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); Leach, James L.; Jones, Blaise V. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States); University of Cincinnati College of Medicine, Cincinnati, OH (United States); Zhang, Bin [Cincinnati Children' s Hospital Medical Center, Biostatistics and Epidemiology, Cincinnati, OH (United States)

    2016-10-15

    Synthetic magnetic resonance imaging is a quantitative imaging technique that measures inherent T1-relaxation, T2-relaxation, and proton density. These inherent tissue properties allow synthesis of various imaging sequences from a single acquisition. Clinical use of synthetic MR imaging has been described in adult populations. However, use of synthetic MR imaging has not been previously reported in children. The purpose of this study is to report our assessment of diagnostic image quality using synthetic MR imaging in children. Synthetic MR acquisition was obtained in a sample of children undergoing brain MR imaging. Image quality assessments were performed on conventional and synthetic T1-weighted, T2-weighted, and FLAIR images. Standardized linear measurements were performed on conventional and synthetic T2 images. Estimates of patient age based upon myelination patterns were also performed. Conventional and synthetic MR images were evaluated on 30 children. Using a 4-point assessment scale, conventional imaging performed better than synthetic imaging for T1-weighted, T2-weighted, and FLAIR images. When the assessment was simplified to a dichotomized scale, the conventional and synthetic T1-weighted and T2-weighted images performed similarly. However, the superiority of conventional FLAIR images persisted in the dichotomized assessment. There were no statistically significant differences between linear measurements made on T2-weighted images. Estimates of patient age based upon pattern of myelination were also similar between conventional and synthetic techniques. Synthetic MR imaging may be acceptable for clinical use in children. However, users should be aware of current limitations that could impact clinical utility in the software version used in this study. (orig.)

  14. Synthetic Marijuana Induced Acute Nonischemic Left Ventricular Dysfunction

    Directory of Open Access Journals (Sweden)

    Moustafa Elsheshtawy

    2016-01-01

    Full Text Available Synthetic marijuana is an uptrending designer drug currently widely spread in the US. We report a case of acute deterioration of nonischemic left ventricular dysfunction after exposure to synthetic marijuana. This case illustrates the importance of history taking in cardiac patients and identifies a negative cardiovascular effect of synthetic marijuana known as K2, not yet well detected by urine toxicology screening tools.

  15. Synthetic RNA Controllers for Programming Mammalian Cell Fate and Function

    Science.gov (United States)

    2015-11-04

    Final report for “Synthetic RNA controllers for programming mammalian cell fate and function” Principal Investigator: Christina D. Smolke...SUBTITLE Synthetic RNA controllers for programming mammalian cell fate and function 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18   2 Synthetic RNA controllers for programming mammalian cell fate and function Task 1

  16. Application of the Organic Synthetic Designs to Astrobiology

    Science.gov (United States)

    Kolb, V. M.

    2009-12-01

    In this paper we propose a synthesis of the heterocyclic compounds and the insoluble materials on the meteorites. Our synthetic scheme involves the reaction of sugars and amino acids, the so-called Maillard reaction. We have developed this scheme based on the combined analysis of the regular and retrosynthetic organic synthetic principles. The merits of these synthetic methods for the prebiotic design are addressed.

  17. Synthetic strategies for plant signalling studies: molecular toolbox and orthogonal platforms

    KAUST Repository

    Braguy, Justine

    2016-05-26

    Plants deploy a wide array of signalling networks integrating environmental cues with growth, defence and developmental responses. The high level of complexity, redundancy and connection between several pathways hampers a comprehensive understanding of involved functional and regulatory mechanisms. The implementation of synthetic biology approaches is revolutionizing experimental biology in prokaryotes, yeasts and animal systems and can likewise contribute to a new era in plant biology. This review gives an overview on synthetic biology approaches for the development and implementation of synthetic molecular tools and techniques to interrogate, understand and control signalling events in plants, ranging from strategies for the targeted manipulation of plant genomes up to the spatiotemporally resolved control of gene expression using optogenetic approaches. We also describe strategies based on the partial reconstruction of signalling pathways in orthogonal platforms, like yeast, animal and in vitro systems. This allows a targeted analysis of individual signalling hubs devoid of inter-connectivity with endogenous interacting components. Implementation of the interdisciplinary synthetic biology tools and strategies is not exempt of challenges and hardships but simultaneously most rewarding in terms of the advances in basic and applied research. As witnessed in other areas, these original theoretical-experimental avenues will lead to a breakthrough in the ability to study and comprehend plant signalling networks. This article is protected by copyright. All rights reserved.

  18. Differential Interaction of Synthetic Glycolipids with Biomimetic Plasma Membrane Lipids Correlates with the Plant Biological Response.

    Science.gov (United States)

    Nasir, Mehmet Nail; Lins, Laurence; Crowet, Jean-Marc; Ongena, Marc; Dorey, Stephan; Dhondt-Cordelier, Sandrine; Clément, Christophe; Bouquillon, Sandrine; Haudrechy, Arnaud; Sarazin, Catherine; Fauconnier, Marie-Laure; Nott, Katherine; Deleu, Magali

    2017-09-26

    Natural and synthetic amphiphilic molecules including lipopeptides, lipopolysaccharides, and glycolipids are able to induce defense mechanisms in plants. In the present work, the perception of two synthetic C14 rhamnolipids, namely, Alk-RL and Ac-RL, differing only at the level of the lipid tail terminal group have been investigated using biological and biophysical approaches. We showed that Alk-RL induces a stronger early signaling response in tobacco cell suspensions than does Ac-RL. The interactions of both synthetic RLs with simplified biomimetic membranes were further analyzed using experimental and in silico approaches. Our results indicate that the interactions of Alk-RL and Ac-RL with lipids were different in terms of insertion and molecular responses and were dependent on the lipid composition of model membranes. A more favorable insertion of Alk-RL than Ac-RL into lipid membranes is observed. Alk-RL forms more stable molecular assemblies than Ac-RL with phospholipids and sterols. At the molecular level, the presence of sterols tends to increase the RLs' interaction with lipid bilayers, with a fluidizing effect on the alkyl chains. Taken together, our findings suggest that the perception of these synthetic RLs at the membrane level could be related to a lipid-driven process depending on the organization of the membrane and the orientation of the RLs within the membrane and is correlated with the induction of early signaling responses in tobacco cells.

  19. Characterization of synthetic foam structures used to manufacture artificial vertebral trabecular bone.

    Science.gov (United States)

    Fürst, David; Senck, Sascha; Hollensteiner, Marianne; Esterer, Benjamin; Augat, Peter; Eckstein, Felix; Schrempf, Andreas

    2017-07-01

    Artificial materials reflecting the mechanical properties of human bone are essential for valid and reliable implant testing and design. They also are of great benefit for realistic simulation of surgical procedures. The objective of this study was therefore to characterize two groups of self-developed synthetic foam structures by static compressive testing and by microcomputed tomography. Two mineral fillers and varying amounts of a blowing agent were used to create different expansion behavior of the synthetic open-cell foams. The resulting compressive and morphometric properties thus differed within and also slightly between both groups. Apart from the structural anisotropy, the compressive and morphometric properties of the synthetic foam materials were shown to mirror the respective characteristics of human vertebral trabecular bone in good approximation. In conclusion, the artificial materials created can be used to manufacture valid synthetic bones for surgical training. Further, they provide novel possibilities for studying the relationship between trabecular bone microstructure and biomechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multiply-Imputed Synthetic Data: Advice to the Imputer

    Directory of Open Access Journals (Sweden)

    Loong Bronwyn

    2017-12-01

    Full Text Available Several statistical agencies have started to use multiply-imputed synthetic microdata to create public-use data in major surveys. The purpose of doing this is to protect the confidentiality of respondents’ identities and sensitive attributes, while allowing standard complete-data analyses of microdata. A key challenge, faced by advocates of synthetic data, is demonstrating that valid statistical inferences can be obtained from such synthetic data for non-confidential questions. Large discrepancies between observed-data and synthetic-data analytic results for such questions may arise because of uncongeniality; that is, differences in the types of inputs available to the imputer, who has access to the actual data, and to the analyst, who has access only to the synthetic data. Here, we discuss a simple, but possibly canonical, example of uncongeniality when using multiple imputation to create synthetic data, which specifically addresses the choices made by the imputer. An initial, unanticipated but not surprising, conclusion is that non-confidential design information used to impute synthetic data should be released with the confidential synthetic data to allow users of synthetic data to avoid possible grossly conservative inferences.