WorldWideScience

Sample records for synthetase-catalyzed nitrogen metabolism

  1. Nitrogen metabolism meets phytopathology.

    Science.gov (United States)

    Fagard, Mathilde; Launay, Alban; Clément, Gilles; Courtial, Julia; Dellagi, Alia; Farjad, Mahsa; Krapp, Anne; Soulié, Marie-Christine; Masclaux-Daubresse, Céline

    2014-10-01

    Nitrogen (N) is essential for life and is a major limiting factor of plant growth. Because soils frequently lack sufficient N, large quantities of inorganic N fertilizers are added to soils for crop production. However, nitrate, urea, and ammonium are a major source of global pollution, because much of the N that is not taken up by plants enters streams, groundwater, and lakes, where it affects algal production and causes an imbalance in aquatic food webs. Many agronomical data indicate that the higher use of N fertilizers during the green revolution had an impact on the incidence of crop diseases. In contrast, examples in which a decrease in N fertilization increases disease severity are also reported, indicating that there is a complex relationship linking N uptake and metabolism and the disease infection processes. Thus, although it is clear that N availability affects disease, the underlying mechanisms remain unclear. The aim of this review is to describe current knowledge of the mechanisms that link plant N status to the plant's response to pathogen infection and to the virulence and nutritional status of phytopathogens. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Voluntary intake, nitrogen metabolism and rumen fermentation ...

    African Journals Online (AJOL)

    Voluntary intake, nitrogen metabolism and rumen fermentation patterns in sheep given cowpea, silverleaf desmodium and fine-stem stylo legume hays as ... utilisation, the negative nitrogen retentions might indicate the inadequacy of the specific legume hays used as nitrogen supplementary feeds to sheep fed a basal diet

  3. The Nitrogen Excretory Metabolism of Lumbricus Terrestris

    Science.gov (United States)

    Teal, A. R.

    1977-01-01

    The use of the earthworm as a laboratory animal for studying the effect of starvation on nitrogen metabolism is discussed. Simple techniques and methods are presented allowing in vivo physiological responses to be compared with changes in the enzyme potential of gut tissue. (Author/MA)

  4. Interaction between vitamin B6 metabolism, nitrogen metabolism and autoimmunity.

    Science.gov (United States)

    Colinas, Maite; Fitzpatrick, Teresa B

    2016-01-01

    The essential micronutrient vitamin B6 is best known in its enzymatic cofactor form, pyridoxal 5'-phosphate (PLP). However, vitamin B6 comprises the amine pyridoxamine 5'-phosphate (PMP) and the alcohol pyridoxine 5'-phosphate (PNP) in addition to PLP, as well as their corresponding non-phosphorylated forms. The different B6 forms (called vitamers) are enzymatically interconverted in a ubiquitous salvage pathway. Recently, we have shown that balancing the ratio of the different B6 vitamers in particular PMP by the PMP/PNP oxidase PDX3 is essential for growth and development in Arabidopsis thaliana. Intriguingly, nitrate to ammonium conversion is impaired in pdx3 mutants, such that the mutants become ammonium-dependent, suggesting an interaction between vitamin B6 and nitrogen metabolism. In addition, we found a strong up-regulation of genes related to plant defense. Here, we further show that pdx3 mutants display a temperature-sensitive phenotype that is typical of autoimmune mutants and is possibly connected to the impaired nitrogen metabolism.

  5. Nitrogen fixation and carbon metabolism in legume nodules.

    Science.gov (United States)

    Garg, Neera; Singla, Ranju; Geetanjali

    2004-02-01

    A large amount of energy is utilized by legume nodules for the fixation of nitrogen and assimilation of fixed nitrogen (ammonia) into organic compounds. The source of energy is provided in the form of photosynthates by the host plant. Phosphoenol pyruvate carboxylase (PEPC) enzyme, which is responsible for carbon dioxide fixation in C4 and crassulacean acid metabolism plants, has also been found to play an important role in carbon metabolism in legume root nodule. PEPC-mediated CO2 fixation in nodules results in the synthesis of C4 dicarboxylic acids, viz. aspartate, malate, fumarate etc. which can be transported into bacteroids with the intervention of dicarboxylate transporter (DCT) protein. PEPC has been purified from the root nodules of few legume species. Information on the relationship between nitrogen fixation and carbon metabolism through PEPC in leguminous plants is scanty and incoherent. This review summarizes the various aspects of carbon and nitrogen metabolism in legume root nodules.

  6. Exogenous trehalose improves growth under limiting nitrogen through upregulation of nitrogen metabolism.

    Science.gov (United States)

    Lin, Yingchao; Zhang, Jie; Gao, Weichang; Chen, Yi; Li, Hongxun; Lawlor, David W; Paul, Matthew J; Pan, Wenjie

    2017-12-19

    The trehalose (Tre) pathway has strong effects on growth and development in plants through regulation of carbon metabolism. Altering either Tre or trehalose 6-phosphate (T6P) can improve growth and productivity of plants as observed under different water availability. As yet, there are no reports of the effects of modification of Tre orT6P on plant performance under limiting nutrition. Here we report that nitrogen (N) metabolism is positively affected by exogenous application of Tre in nitrogen-deficient growing conditions. Spraying foliage of tobacco (Nicotiana tabacum) with trehalose partially alleviated symptoms of nitrogen deficiency through upregulation of nitrate and ammonia assimilation and increasing activities of nitrate reductase (NR), glycolate oxidase (GO), glutamine synthetase (GS) and glutamine oxoglutarate aminotransferase (GOGAT) with concomitant changes in ammonium (NH 4 + ) and nitrate (NO 3 - ) concentrations, glutamine and amino acids. Chlorophyll and total nitrogen content of leaves and rates of photosynthesis were increased compared to nitrogen-deficient plants without applied Tre. Total plant biomass accumulation was also higher in Tre -fed nitrogen-deficient plants, with a smaller proportion of dry weight partitioned to roots, compared to nitrogen-deficient plants without applied Tre. Consistent with higher nitrogen assimilation and growth, Tre application reduced foliar starch. Minimal effects of Tre feeding were observed on nitrogen-sufficient plants. The data show, for the first time, significant stimulatory effects of exogenous Tre on nitrogen metabolism and growth in plants growing under deficient nitrogen. Under such adverse conditions metabolism is regulated for survival rather than productivity. Application of Tre can alter this regulation towards maintenance of productive functions under low nitrogen. This has implications for considering approaches to modifying the Tre pathway for to improve crop nitrogen-use efficiency and

  7. Deciphering the metabolic response of Mycobacterium tuberculosis to nitrogen stress.

    Science.gov (United States)

    Williams, Kerstin J; Jenkins, Victoria A; Barton, Geraint R; Bryant, William A; Krishnan, Nitya; Robertson, Brian D

    2015-09-01

    A key component to the success of Mycobacterium tuberculosis as a pathogen is the ability to sense and adapt metabolically to the diverse range of conditions encountered in vivo, such as oxygen tension, environmental pH and nutrient availability. Although nitrogen is an essential nutrient for every organism, little is known about the genes and pathways responsible for nitrogen assimilation in M. tuberculosis. In this study we have used transcriptomics and chromatin immunoprecipitation and high-throughput sequencing to address this. In response to nitrogen starvation, a total of 185 genes were significantly differentially expressed (96 up-regulated and 89 down regulated; 5% genome) highlighting several significant areas of metabolic change during nitrogen limitation such as nitrate/nitrite metabolism, aspartate metabolism and changes in cell wall biosynthesis. We identify GlnR as a regulator involved in the nitrogen response, controlling the expression of at least 33 genes in response to nitrogen limitation. We identify a consensus GlnR binding site and relate its location to known transcriptional start sites. We also show that the GlnR response regulator plays a very different role in M. tuberculosis to that in non-pathogenic mycobacteria, controlling genes involved in nitric oxide detoxification and intracellular survival instead of genes involved in nitrogen scavenging. © 2015 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  8. Studies on growth, nitrogen and energy metabolism in rats

    DEFF Research Database (Denmark)

    Thorbek, G; Chwalibog, André; Eggum, B O

    1982-01-01

    Feed intake, growth, nitrogen retention and energy metabolism were measured in 12 male Wistar rats fed ad lib. for 14 weeks with non-purified diets. The feed intake increased rapidly in 4 weeks time from 16 g/d to 25 g/d, and then it was constant in the following 10 weeks. In relation to metabolic...

  9. Understanding Plant Nitrogen Metabolism through Metabolomics and Computational Approaches

    Directory of Open Access Journals (Sweden)

    Perrin H. Beatty

    2016-10-01

    Full Text Available A comprehensive understanding of plant metabolism could provide a direct mechanism for improving nitrogen use efficiency (NUE in crops. One of the major barriers to achieving this outcome is our poor understanding of the complex metabolic networks, physiological factors, and signaling mechanisms that affect NUE in agricultural settings. However, an exciting collection of computational and experimental approaches has begun to elucidate whole-plant nitrogen usage and provides an avenue for connecting nitrogen-related phenotypes to genes. Herein, we describe how metabolomics, computational models of metabolism, and flux balance analysis have been harnessed to advance our understanding of plant nitrogen metabolism. We introduce a model describing the complex flow of nitrogen through crops in a real-world agricultural setting and describe how experimental metabolomics data, such as isotope labeling rates and analyses of nutrient uptake, can be used to refine these models. In summary, the metabolomics/computational approach offers an exciting mechanism for understanding NUE that may ultimately lead to more effective crop management and engineered plants with higher yields.

  10. Nutrient digestibility and nitrogen metabolism in West African dwarf ...

    African Journals Online (AJOL)

    An experiment was conducted to determine nutrient digestibility and nitrogen metabolism in sheep fed differently processed breadfruit meal. Twenty West African dwarf sheep with mean weight body of 6.00 ± 0.55kg were randomly allotted to four dietary treatments with five sheep per treatment in a completely randomised ...

  11. Characterisation of a major enzyme of bovine nitrogen metabolism

    CSIR Research Space (South Africa)

    Mathomu, LM

    2010-09-01

    Full Text Available of cellular protein metabolism (Curthoys & Watford, 1995; Meister, 1974). Glutamine functions as a major inter-organ transport form of nitrogen, carbon and serves as a source of energy between tissues such as brain, liver, kidney and even muscles...

  12. Functions of autophagy in plant carbon and nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    Chenxia eRen

    2014-06-01

    Full Text Available Carbon and nitrogen are essential components for plant growth. Although models of plant carbon and nitrogen metabolisms have long been established, certain gaps remain unfilled, such as how plants are able to maintain a flexible nocturnal starch turnover capacity over various light cycles, or how nitrogen remobilization is achieved during the reproductive growth stage. Recent advances in plant autophagy have shed light on such questions. Not only does autophagy contribute to starch degradation at night, but it participates in the degradation of chloroplast proteins and even chloroplasts after prolonged carbon starvation, thus help maintain the free amino acid pool and provide substrate for respiration. The induction of autophagy under these conditions may involve transcriptional regulation. Large-scale transcriptome analyses revealed that ATG8e belongs to a core carbon signaling response shared by Arabidopsis accessions, and the transcription of Arabidopsis ATG7 is tightly co-regulated with genes functioning in chlorophyll degradation and leaf senescence. In the reproductive phase, autophagy is essential for bulk degradation of leaf proteins, thus contributes to Nitrogen Use Efficiency (NUE both under normal and low-nitrogen conditions.

  13. Nitrogen metabolism in Lignifying Pinus taeda cell cultures

    Science.gov (United States)

    van Heerden, P. S.; Towers, G. H.; Lewis, N. G.

    1996-01-01

    The primary metabolic fate of phyenylalanine, following its deamination in plants, is conscription of its carbon skeleton for lignin, suberin, flavonoid, and related metabolite formation. Since this accounts for approximately 30-40% of all organic carbon, an effective means of recycling the liberated ammonium ion must be operative. In order to establish how this occurs, the uptake and metabolism of various 15N-labeled precursors (15N-Phe, 15NH4Cl, 15N-Gln, and 15N-Glu) in lignifying Pinus taeda cell cultures was investigated, using a combination of high performance liquid chromatography, 15N NMR, and gas chromatograph-mass spectrometry analyses. It was found that the ammonium ion released during active phenylpropanoid metabolism was not made available for general amino acid/protein synthesis. Rather it was rapidly recycled back to regenerate phenylalanine, thereby providing an effective means of maintaining active phenylpropanoid metabolism with no additional nitrogen requirement. These results strongly suggest that, in lignifying cells, ammonium ion reassimilation is tightly compartmentalized.

  14. Nitrogen Metabolism During Hepatectomy and Hyperbaric Oxygenation: Experimental Study

    Directory of Open Access Journals (Sweden)

    P. N. Savilov

    2007-01-01

    Full Text Available Objective: to examine nitrogen metabolism in the organs of the portal system during liver resection (LR and hyperbaric oxygenation (HBO.Material and methods: Experiments were conducted on 65 female albino rats. LR was made under ether anesthesia, by removing a portion of the left hepatic lobe with an electric knife, which amounted to 15—20% of the organ’s mass. HBO was performed using medical oxygen at 3 ata for 50 min once daily within the first three days after LR. Lung tissue, gastrointestinal tract (GIT, spleen, and choledochal bile were the subject of the study. The tissue and blood levels of ammonia, glutamine, and urea were measured.Results: LR leads to pathological ammonia accumulation and decreases arterial glutamine consumption in GIT organs. Concurrently, the urea contained in the organs begins to come into portal blood flow, splenic glutamine deficiency develops, and hepatic ammonia-absorptive, glutamine- and urea-excretory functions diminish. Post-LR HBO prevents the accumulation of ammonia in the liver and GIT, restores the ammonia-absorptive, glutamine- and urea-excretory functions of the liver, and stimulates its glutamine and urea accumulation. Concomitantly, under HBO, there is an increase in glutamine entrance from the GIT into blood flow, but there is a decrease in GIT urea excretion and portal venous blood ammonia levels. HBO eliminates arterial hyperammonemia after LR and splenic glutamine deficiency.Conclusion: Hyperbaric oxygen eliminates nitrogen metabolic disturbances in the portal system, regulates compensatory-adaptive ammonia metabolic reactions triggered in the GIT and spleen during LR. 

  15. Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency.

    Science.gov (United States)

    Foyer, Christine H; Noctor, Graham; Hodges, Michael

    2011-02-01

    Considerable advances in our understanding of the control of mitochondrial metabolism and its interactions with nitrogen metabolism and associated carbon/nitrogen interactions have occurred in recent years, particularly highlighting important roles in cellular redox homeostasis. The tricarboxylic acid (TCA) cycle is a central metabolic hub for the interacting pathways of respiration, nitrogen assimilation, and photorespiration, with components that show considerable flexibility in relation to adaptations to the different functions of mitochondria in photosynthetic and non-photosynthetic cells. By comparison, the operation of the oxidative pentose phosphate pathway appears to represent a significant limitation to nitrogen assimilation in non-photosynthetic tissues. Valuable new insights have been gained concerning the roles of the different enzymes involved in the production of 2-oxoglutarate (2-OG) for ammonia assimilation, yielding an improved understanding of the crucial role of cellular energy balance as a broker of co-ordinate regulation. Taken together with new information on the mechanisms that co-ordinate the expression of genes involved in organellar functions, including energy metabolism, and the potential for exploiting the existing flexibility for NAD(P)H utilization in the respiratory electron transport chain to drive nitrogen assimilation, the evidence that mitochondrial metabolism and machinery are potential novel targets for the enhancement of nitrogen use efficiency (NUE) is explored.

  16. Influence of nitrogen deficiency on the metabolism of photoassimilated 14C in sunflower

    International Nuclear Information System (INIS)

    Stanev, V.; Angelov, M.; Popov, G.

    1981-01-01

    In experiments carried out on sunflower the specific changes in the metabolism of photoassimilated 14 C caused by nitrogen deficiency are investigated. The data presented show that nitrogen deficiency in sunflower inhibits the metabolism of photoassimilated 14 C through phosphoglyceric acid and phosphoenolpyruvate and directs it to a great extent through hexo-monophosphates towards the hydrocarbons-sucrose and starch. (authors)

  17. Microbiological Diversity Demonstrates the Potential which Collaboratively Metabolize Nitrogen Oxides ( NOx) under Smog Environmental Stress

    Science.gov (United States)

    Chen, X. Z.; Zhao, X. H.; Chen, X. P.

    2018-03-01

    Recently, smoggy weather has become a daily in large part of China because of rapidly economic growth and accelerative urbanization. Stressed on the smoggy situation and economic growth, the green and environment-friendly technology is necessary to reduce or eliminate the smog and promote the sustainable development of economy. Previous studies had confirmed that nitrogen oxides ( NOx ) is one of crucial factors which forms smog. Microorganisms have the advantages of quickly growth and reproduction and metabolic diversity which can collaboratively Metabolize various NOx. This study will design a kind of bacteria & algae cultivation system which can metabolize collaboratively nitrogen oxides in air and intervene in the local nitrogen cycle. Furthermore, the nitrogen oxides can be transformed into nitrogen gas or assembled in protein in microorganism cell by regulating the microorganism types and quantities and metabolic pathways in the system. Finally, the smog will be alleviated or eliminated because of reduction of nitrogen oxides emission. This study will produce the green developmental methodology.

  18. Nitrogen recycling during phenylpropanoid metabolism in sweet potato tubers

    Science.gov (United States)

    Singh, S.; Lewis, N. G.; Towers, G. H.

    1998-01-01

    In the first step of the phenylpropanoid metabolic pathway, L-phenylalanine (L-Phe) is deaminated to form E-cinnamate, in a conversion catalyzed by phenylalanine ammonia-lyase (PAL; EC 4.3.1.5). The metabolic fate of the ammonium ion (NH4+) produced in this reaction was investigated in sweet potato (Ipomoea batatas) tuber discs. [15N]-Labeled substrates including L-Phe, in the presence or absence of specific enzyme inhibitors, were administered to sweet potato discs in light under aseptic conditions. 15N-Nuclear magnetic resonance spectroscopic analyses revealed that the 15NH4+ liberated during the PAL reaction is first incorporated into the amide nitrogen of L-glutamine (L-Gln) and then into L-glutamate (L-Glu). These results extend our previous observations in pine and potato that PAL-generated NH4+ is assimilated by the glutamine synthetase (GS; EC 6.3.1.2)/glutamate synthase (GOGAT; EC 1.4.1.13) pathway, with the NH4+ so formed ultimately being recycled back to L-Phe via L-Glu as aminoreceptor and donor.

  19. Urea and Ammonia Metabolism and the Control of Renal Nitrogen Excretion

    Science.gov (United States)

    Mitch, William E.; Sands, Jeff M.

    2015-01-01

    Renal nitrogen metabolism primarily involves urea and ammonia metabolism, and is essential to normal health. Urea is the largest circulating pool of nitrogen, excluding nitrogen in circulating proteins, and its production changes in parallel to the degradation of dietary and endogenous proteins. In addition to serving as a way to excrete nitrogen, urea transport, mediated through specific urea transport proteins, mediates a central role in the urine concentrating mechanism. Renal ammonia excretion, although often considered only in the context of acid-base homeostasis, accounts for approximately 10% of total renal nitrogen excretion under basal conditions, but can increase substantially in a variety of clinical conditions. Because renal ammonia metabolism requires intrarenal ammoniagenesis from glutamine, changes in factors regulating renal ammonia metabolism can have important effects on glutamine in addition to nitrogen balance. This review covers aspects of protein metabolism and the control of the two major molecules involved in renal nitrogen excretion: urea and ammonia. Both urea and ammonia transport can be altered by glucocorticoids and hypokalemia, two conditions that also affect protein metabolism. Clinical conditions associated with altered urine concentrating ability or water homeostasis can result in changes in urea excretion and urea transporters. Clinical conditions associated with altered ammonia excretion can have important effects on nitrogen balance. PMID:25078422

  20. Nitrogen Metabolism in Adaptation of Photosynthesis to Water Stress in Rice Grown under Different Nitrogen Levels

    Directory of Open Access Journals (Sweden)

    Chu Zhong

    2017-06-01

    Full Text Available To investigate the role of nitrogen (N metabolism in the adaptation of photosynthesis to water stress in rice, a hydroponic experiment supplying with low N (0.72 mM, moderate N (2.86 mM, and high N (7.15 mM followed by 150 g⋅L-1 PEG-6000 induced water stress was conducted in a rainout shelter. Water stress induced stomatal limitation to photosynthesis at low N, but no significant effect was observed at moderate and high N. Non-photochemical quenching was higher at moderate and high N. In contrast, relative excessive energy at PSII level (EXC was declined with increasing N level. Malondialdehyde and hydrogen peroxide (H2O2 contents were in parallel with EXC. Water stress decreased catalase and ascorbate peroxidase activities at low N, resulting in increased H2O2 content and severer membrane lipid peroxidation; whereas the activities of antioxidative enzymes were increased at high N. In accordance with photosynthetic rate and antioxidative enzymes, water stress decreased the activities of key enzymes involving in N metabolism such as glutamate synthase and glutamate dehydrogenase, and photorespiratory key enzyme glycolate oxidase at low N. Concurrently, water stress increased nitrate content significantly at low N, but decreased nitrate content at moderate and high N. Contrary to nitrate, water stress increased proline content at moderate and high N. Our results suggest that N metabolism appears to be associated with the tolerance of photosynthesis to water stress in rice via affecting CO2 diffusion, antioxidant capacity, and osmotic adjustment.

  1. Studies on nitrogen metabolism of soybean plants, (4)

    International Nuclear Information System (INIS)

    Kato, Yasumasa; Kitada, Subaru

    1979-01-01

    Nitrogen that came from cotyledons and nitrogen ( 15 N) pulse-fed at 5 different times during the growth of young soybean plants were studied for 33-days after germination. Cotyledons furnished nitrogen to primary leaves, stems, and roots for the first 8 days, but thereafter principally to 1 st and 2 nd trifoliate leaves. Redistribution of the cotyledon-derived nitrogen from primary leaves commenced from the 14 th day after germination when their total nitrogen was still increasing. At the end of the experiment, the cotyledon-derived nitrogen was distributed approximately uniformly among 6 expanded leaves, and very small amount was found in 3 immature leaves. It was shown that soybean leaves took up 15 N (via roots) throughout the entire period of their life, and from their near-mature stage onwards, uptake and redistribution of nitrogen were observed simultaneously. Thus, the nitrogen in mature leaves was partially being renewed constantly. Considering this fact, the nitrogen supplying capacity of soybean leaves was estimated to be about two times as large as that estimated conventionally from the net loss of nitrogen during their senescence. The turnover of leaf nitrogen was closely related to the turnover of leaf protein. Influx of nitrogen was invariably accompanied by the simultaneous synthesis of leaf protein, and conversely, efflux by the simultaneous breakdown of leaf protein. Sink removal (topping treatment) prevented the breakdown of leaf protein (as measured from the rate of release of label after the pulse feeding) as well as the export of nitrogen from the leaves. The nitrogen supplying function of soybean leaves was discussed in relation to the nitrogen and protein turnover of leaves. (Kaihara, S.)

  2. Microbial nitrogen metabolism: response to warming and resource supply

    Science.gov (United States)

    Buckeridge, K. M.; Min, K.; Lehmeier, C.; Ballantyne, F.; Billings, S. A.

    2013-12-01

    Ecosystem nitrogen (N) dynamics are dependent on microbial metabolic responses to a changing climate. Most studies that investigate soil microbial N dynamics in response to temperature employ measurements reflective of many interacting and confounding phenomena, as altering soil temperature can simultaneously alter moisture regime, substrate availability, and competitive dynamics between microbial populations. As a result, it is difficult to discern how temperature alone can alter patterns of microbial N metabolism using whole soils. Without that knowledge, it is impossible to parse temperature effects on soil N fluxes from other drivers. We address this issue by exploring the sensitivity of microbial partitioning of N between assimilation (growing biomass) and dissimilation (releasing N to the environment) in response to changes in temperature and quality (C:N ratio) of substrate, using a chemostat approach in which a microbial population is maintained at steady state. We perform our experiments using a Gram-negative bacterium (Pseudomonas fluorescens), ubiquitous in soils and dependent on organic compounds to satisfy its resource demand. Individual chemostat runs, all conducted at similar microbial growth rates, generate data describing microbial biomass N, solution N pools and microbial biomass and solution d15N. With these data we can calculate d15N enrichment (d15N microbial biomass - d15N nutrient solution) a proxy for microbial N partitioning. From a recently published model of microbial biomass d15N drivers, fractionation of N occurs with both uptake and excretion of NH3+ so that microbes with a net dissimilation become 15N enriched relative to their source. Because a related study has demonstrated increased microbial C demand with temperature, we predict that in a warming environment microorganisms will become relatively C limited. Accordingly, we hypothesize that warming will enhance microbial dissimilation, and that this N release will be exacerbated as

  3. Nitrogen and energy metabolism of sows during several reproductive cycles in relation to nitrogen intake

    NARCIS (Netherlands)

    Everts, H.

    1994-01-01

    By feeding the same diet during pregnancy and lactation sows are fed above the nitrogen requirement during pregnancy due to the relatively high nitrogen requirement during lactation. For feeding closer to the requirements at least two diets are needed: one diet with a low nitrogen content

  4. [Research advance in nitrogen metabolism of plant and its environmental regulation].

    Science.gov (United States)

    Xu, Zhenzhu; Zhou, Guangsheng

    2004-03-01

    Nitrogen metabolism is not only one of the basic processes of plant physiology, but also one of the important parts of global chemical cycle. Plant nitrogen assimilation directly takes part in the synthesis and conversion of amino acid through the reduction of nitrate. During this stage, some key enzymes, e.g., nitrate reductase (NR), glutamine synthetase (GS), glutamate dehydrogenase (GDH), glutamine synthase (GOGAT), aspargine synthetase (AS), and asparate aminotransferase (AspAT) participate these processes. The protein is assimilated in plant cell through amino acid, and becomes a part of plant organism through modifying, classifying, transporting and storing processes, etc. The nitrogen metabolism is associated with carbonic metabolism through key enzyme regulations and the conversion of products, which consists of basic life process. Among these amino acids in plant cell, glutamic acid (Glu), glutamine (Gln), aspartic acid (Asp) and asparagines (Asn), etc., play a key role, which regulates their conversion each other and their contents in the plant cell through regulating formation and activity of those key enzymes. Environmental factors also affect the conversion and recycle of the key amino acids through regulating gene expression of the key enzymes and their activities. Nitrate and light intensity positively regulate the gene transcription of NR, but ammonium ions and Glu, Gln do the negative way. Water deficit is a very serious constraint on N2 fixation rate and soybean (Glycine max Merr.) grain yield, in which, ureide accumulation and degradation under water deficit appear to be the key issues of feedback mechanism on nitrogen fixation. Water stress decreases NR activity, but increases proteinase activity, and thus, they regulate plant nitrogen metabolism, although there are some different effects among species and cultivars. Water stress also decreases plant tissue protein content, ratio of protein and amino acid, and reduces the absorption of amino

  5. Computational modeling to predict nitrogen balance during acute metabolic decompensation in patients with urea cycle disorders.

    Science.gov (United States)

    MacLeod, Erin L; Hall, Kevin D; McGuire, Peter J

    2016-01-01

    Nutritional management of acute metabolic decompensation in amino acid inborn errors of metabolism (AA IEM) aims to restore nitrogen balance. While nutritional recommendations have been published, they have never been rigorously evaluated. Furthermore, despite these recommendations, there is a wide variation in the nutritional strategies employed amongst providers, particularly regarding the inclusion of parenteral lipids for protein-free caloric support. Since randomized clinical trials during acute metabolic decompensation are difficult and potentially dangerous, mathematical modeling of metabolism can serve as a surrogate for the preclinical evaluation of nutritional interventions aimed at restoring nitrogen balance during acute decompensation in AA IEM. A validated computational model of human macronutrient metabolism was adapted to predict nitrogen balance in response to various nutritional interventions in a simulated patient with a urea cycle disorder (UCD) during acute metabolic decompensation due to dietary non-adherence or infection. The nutritional interventions were constructed from published recommendations as well as clinical anecdotes. Overall, dextrose alone (DEX) was predicted to be better at restoring nitrogen balance and limiting nitrogen excretion during dietary non-adherence and infection scenarios, suggesting that the published recommended nutritional strategy involving dextrose and parenteral lipids (ISO) may be suboptimal. The implications for patients with AA IEM are that the medical course during acute metabolic decompensation may be influenced by the choice of protein-free caloric support. These results are also applicable to intensive care patients undergoing catabolism (postoperative phase or sepsis), where parenteral nutritional support aimed at restoring nitrogen balance may be more tailored regarding metabolic fuel selection.

  6. Enhanced photosynthetic capacity increases nitrogen metabolism through the coordinated regulation of carbon and nitrogen assimilation in Arabidopsis thaliana.

    Science.gov (United States)

    Otori, Kumi; Tanabe, Noriaki; Maruyama, Toshiki; Sato, Shigeru; Yanagisawa, Shuichi; Tamoi, Masahiro; Shigeoka, Shigeru

    2017-09-01

    Plant growth and productivity depend on interactions between the metabolism of carbon and nitrogen. The sensing ability of internal carbon and nitrogen metabolites (the C/N balance) enables plants to regulate metabolism and development. In order to investigate the effects of an enhanced photosynthetic capacity on the metabolism of carbon and nitrogen in photosynthetically active tissus (source leaves), we herein generated transgenic Arabidopsis thaliana plants (ApFS) that expressed cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in their chloroplasts. The phenotype of ApFS plants was indistinguishable from that of wild-type plants at the immature stage. However, as plants matured, the growth of ApFS plants was superior to that of wild-type plants. Starch levels were higher in ApFS plants than in wild-type plants at 2 and 5 weeks. Sucrose levels were also higher in ApFS plants than in wild-type plants, but only at 5 weeks. On the other hand, the contents of various free amino acids were lower in ApFS plants than in wild-type plants at 2 weeks, but were similar at 5 weeks. The total C/N ratio was the same in ApFS plants and wild-type plants, whereas nitrite levels increased in parallel with elevations in nitrate reductase activity at 5 weeks in ApFS plants. These results suggest that increases in the contents of photosynthetic intermediates at the early growth stage caused a temporary imbalance in the free-C/free-N ratio and, thus, the feedback inhibition of the expression of genes involved in the Calvin cycle and induction of the expression of those involved in nitrogen metabolism due to supply deficient free amino acids for maintenance of the C/N balance in source leaves of ApFS plants.

  7. Nitrogen metabolism of the eutrophic Delaware River ecosystem

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    A comprehensive investigation of the nitrogen cycle in the Delaware River was carried out using 13 N tracers to measure rates for important transformations of nitrogen. Daily, depth-averaged 15 N rates for the principal inorganic nitrogen species were consistent with rates derived from longitudinal profiles of concentration in the river. The data indicated that nitrification was a rapid, irreversible sink for NH 4 + , with export of the product NO 3 - from the study area. Utilization of NO 3 - by primary producers was negligible, owing to low irradiance levels and to high NH 4 + concentrations. The oxygen sag near Philadelphia was found to result from oxygen demand in the water column, with only minor benthic influence. Reaeration provided the major oxygen input. Nitrification accounted for about 1% of the net oxygen demand near Philadelphia but as much as 25% farther downstream

  8. Differences in nitrogen and urea metabolism between goats bred for ...

    African Journals Online (AJOL)

    This experiment was conducted to determine whether selection for fleece weight is accompanied by changes in the efficiency of nitrogen utilization, using Angora and Boer goats as models of animals bred for fleece or meat production respectively. A diet, containing a protein: energy ratio of 12 g CP/ MJ ME, was fed at ...

  9. Comparative studies of the nitrogen metabolism of phytoplankton and periphyton in oligotrophic lakes

    International Nuclear Information System (INIS)

    Axler, R.P.; Goldman, C.R.; Reuter, J.E.; Loeb, S.L.; Priscu, J.C.; Carlton, R.G.

    1983-01-01

    This report presents the preliminary data of limnological research at the meso-oligotrophic Castle Lake, CA and at the ultratrophic Lake Tahoe, CA-NEV, USA, during 1980 to 1981. The areas of study were effects of nutrients enrichment and deficiency on primary producers; nitrogen cycling and nitrogen metabolism of benthic and planktonic algae and whole-epilimnion enrichment with ammonium nitrate. Tracer techniques using 14 C- and 15 N-labelled compounds were employed in the study

  10. [Influence of different NH4+/NO3- ratios on nitrogen metabolism of cotton].

    Science.gov (United States)

    Dong, Hairong; Li, Jincai; Li, Cundong

    2004-04-01

    The influence of different NH4+/NO3- ratios on nitrogen metabolism of cotton was studied under controlled hydroponics. The results showed that compared with single nitrate nutrition, solutions with 25/75, 50/50, 75/25 and 100/0 of NH4+/NO3- significantly increased the soluble protein accumulation in leaves and roots of cotton, and the maximum content of soluble protein in leaves and roots appeared respectively in the solution with 50/50 and 75/25 of NH4+/NO3-. The soluble protein content in roots was increased with the increase of NH4+ percentage, but was slightly less in the solution of 100/0 than 75/25, which was probably related to the excess NH4+ limiting boot metabolism. With the increase of NH4+ percentage, the nitrate content in petiole and the nitrate reductase activity in functional blade declined, but ammoniac nitrogen content increased in every organ of cotton. These results showed that foreign nitrogen affected the nitrogen metabolism of cotton in a different way, and the nitrogen absorption by cotton was probably related to different forms of foreign nitrogen.

  11. Global changes in transcription orchestrate metabolic differentiation during symbiotic nitrogen fixation in Lotus japonicus

    DEFF Research Database (Denmark)

    Colebatch, Gillian; Desbrosses, Guilhem; Ott, Thomas

    2004-01-01

    from specific sets of induced genes. In addition to the expected signs of hypoxia, numerous indications were obtained that nodule cells also experience P-limitation and osmotic stress. Several potential regulators of these stress responses were identified. Metabolite profiling by gas chromatography......Research on legume nodule metabolism has contributed greatly to our knowledge of primary carbon and nitrogen metabolism in plants in general, and in symbiotic nitrogen fixation in particular. However, most previous studies focused on one or a few genes/enzymes involved in selected metabolic...... pathways in many different legume species. We utilized the tools of transcriptomics and metabolomics to obtain an unprecedented overview of the metabolic differentiation that results from nodule development in the model legume, Lotus japonicus. Using an array of more than 5000 nodule cDNA clones...

  12. Effects of melatonin on seedling growth, mineral nutrition, and nitrogen metabolism in cucumber under nitrate stress.

    Science.gov (United States)

    Zhang, Ruimin; Sun, Yunkuo; Liu, Zeyu; Jin, Wen; Sun, Yan

    2017-05-01

    In China, excessive use of nitrogen fertilizers in glasshouses leads to nitrate accumulations in soil and plants, which then limits productivity. Melatonin, an evolutionarily highly conserved molecule, has a wide range of functions in plants. We analyzed the effects of melatonin pretreatment on the growth, mineral nutrition, and nitrogen metabolism in cucumber (Cucumis sativus L. "Jin You No. 1") when seedlings were exposed to nitrate stress. An application of 0.1 mmol/L melatonin significantly improved the growth of plants and reduced their susceptibility to damage due to high nitrate levels (0.6 mol/L) during the ensuing period of stress treatment. Although excess nitrate led to an increase in the concentrations of nitrogen, potassium, and calcium, as well as a decrease in levels of phosphorus and magnesium, exogenous melatonin generally had the opposite effect except for a further rise in calcium concentrations. Pretreatment also significantly reduced the accumulations of nitrate nitrogen and ammonium nitrogen and enhanced the activities of enzymes involved in nitrogen metabolism. Expression of Cs-NR and Cs-GOGAT, two genes that function in that metabolism, was greatly down-regulated when plants were exposed to 0.6 mol/L nitrate, but was up-regulated in plants that had received the 0.1 mmol/L melatonin pretreatment. Our results are the first evidence that melatonin has an important role in modulating the composition of mineral elements and nitrogen metabolism, thereby alleviating the inhibitory effect on growth normally associated with nitrate stress. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Influence of Vitamin B Auxotrophy on Nitrogen Metabolism in Eukaryotic Phytoplankton

    Directory of Open Access Journals (Sweden)

    Erin M Bertrand

    2012-10-01

    Full Text Available While nitrogen availability is known to limit primary production in large parts of the ocean, vitamin starvation amongst eukaryotic phytoplankton is becoming increasingly recognized as an oceanographically relevant phenomenon. Cobalamin (B12 and thiamine (B1 auxotrophy are widespread throughout eukaryotic phytoplankton, with over 50% of cultured isolates requiring B12 and 20% requiring B1. The frequency of vitamin auxotrophy in harmful algal bloom species is even higher. Instances of colimitation between nitrogen and B vitamins have been observed in marine environments, and interactions between these nutrients have been shown to impact phytoplankton species composition. This review evaluates the potential for interactive effects of nitrogen and vitamin B12 and B1 starvation in eukaryotic phytoplankton. B12 plays essential roles in amino acid and one-carbon metabolism, while B1 is important for primary carbohydrate and amino acid metabolism and likely useful as an anti-oxidant. Here we will focus on three potential metabolic interconnections between vitamin, nitrogen and sulfur metabolism that may have ramifications for the role of vitamin and nitrogen scarcities in driving ocean productivity and species composition. These include: (1 B12, B1, and N starvation impacts on osmolyte and antioxidant production, (2 B12 and B1 starvation impacts on polyamine biosynthesis, and (3 influence of B12 and B1 starvation on the diatom urea cycle and amino acid recycling through impacts on the citric acid cycle. We evaluate evidence for these interconnections and identify oceanographic contexts in which each may impact rates of primary production and phytoplankton community composition. Major implications include that B12 and B1 deprivation may impair the ability of phytoplankton to recover from nitrogen starvation and that changes in vitamin and nitrogen availability may synergistically impact harmful algal bloom formation.

  14. Patterns of nutrient utilization. Implications for nitrogen metabolism

    International Nuclear Information System (INIS)

    Oldham, J.D.

    1983-01-01

    Nutrients react within both the rumen and the ruminant body, and the patterns of availability of different nutrients greatly influence their net utilization. In the rumen, microbial capture of N substrates, especially ammonia, depends on the degree of synchronization between rates of production of N substrates and of ATP to drive microbial protein synthesis. The form of dietary carbohydrate and of dietary N and the frequency of feeding can all affect the efficiency of microbial growth and digestion. The pattern of supply of nutrients to the body will also influence nutrient utilization. Disparities between diurnal patterns of supply of volatile fatty acids from the rumen and amino acids from the intestines will result in changes in balance of metabolic pathways. The balance between supply of glucogenic and lipogenic nutrients will influence efficiency of fattening. A major factor determining the pattern of utilization/metabolism of amino acids is the metabolic demand for protein synthesis, which varies with physiological state. (author)

  15. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots.

    Science.gov (United States)

    Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2016-01-01

    Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and

  16. Emiliania Huxleyi (Prymnesiophyceae): Nitrogen-metabolism genes and their expression in response to external nitrogen souces

    DEFF Research Database (Denmark)

    Bruhn, Annette; LaRoche, Julie; Richardson, Katherine

    2010-01-01

    The availability and composition of dissolved nitrogen in ocean waters are factors that influence species composition in natural phytoplankton communities. The same factors affect the ratio of organic to inorganic carbon incorporation in calcifying species, such as the coccolithophore Emiliania h...

  17. Growth and nitrogen metabolism changes in NaCl-stressed tobacco ...

    African Journals Online (AJOL)

    Growth and nitrogen metabolism changes in NaCl-stressed tobacco (Nicotiana rustica L. var. Souffi) seedlings. Chokri Zaghdoud, Houda Maâroufi-Dguimi, Youssef Ouni, Mokhtar Guerfel, Houda Gouia, Kamel-Eddine Negaz, Ali Ferchichi, Mohamed Debouba ...

  18. The impact of atmospheric ammonia and temperature on growth and nitrogen metabolism of winter wheat

    NARCIS (Netherlands)

    Clement, J.M A M; Loorbach, J; Meijer, J; van Hasselt, P.R; Stulen, G

    The effect of atmospheric ammonia in combination with low and moderate growth temperature on growth and nitrogen metabolism of winter wheat plants (Triticum aestivum L. cv. Urban) was investigated. Plants were exposed to 0, 1000 and 2000 nl l(-1) NH3 for 1 week at moderate day/night temperatures

  19. Nitrogen metabolism in actinorhizal nodules of Alnus glutinosa: expression of glutamine synthetase and acetylornithine transaminase.

    NARCIS (Netherlands)

    Guan, C.; Ribeiro, A.; Akkermans, A.D.L.; Jing, Y.; Kammen, van A.; Bisseling, T.; Pawlowski, K.

    1996-01-01

    Two nodule cDNA clones representing genes involved in Alnus glutinosa nitrogen metabolism were analysed. ag11 encoded glutamine synthetase (GS), the enzyme responsible for ammonium assimilation, while ag118 encoded acetylornithine transaminase (AOTA), an enzyme involved in the biosynthesis of

  20. Arginine supplementation does not alter nitrogen metabolism of beef steers during a lipopolysaccharide challenge

    Science.gov (United States)

    Demand for arginine (Arg) is reported to increase during immune challenges. This study evaluated effects of lipopolysaccharide (LPS) and abomasal Arg infusion on nitrogen (N) metabolism and immune response of 20 ruminally cannulated steers (369 ± 46 kg BW) in a randomized block design. Each block co...

  1. Total mixed ration in exercising horse: digestibility and nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    L. Magni

    2010-04-01

    Full Text Available The aim of this study was to evaluate the apparent digestibility of a total mixed ration (TMR versus a traditional mixed hay/cereals diet. Four adult trained Standardbred geldings – BW = 478±37 kg - were used. The two diets consisted of 20 kg of a commercial TMR - corn silage, alfalfa hay, wet brewers’ grain, oat, apple pomace, molasses cane, soybean oil and mineral/vitamin supplement - (Diet 1 or 7 kg of meadow hay and 4.5 kg of cereal-mix - corn, oat, barley and protein/mineral/vitamin supplement - (Diet 2. The trial was conducted according to a Latin Square design (2x2. After an adaptation period of four weeks, total faeces and urine were collected for 6 days. Both feed and faeces samples were analysed for DM, OM, CP, EE, CF, NDF, ADF, cellulose, hemicellulose, ADL and GE. Data were analysed by ANOVA. The apparent digestibility and nitrogen balance of the two diets were compared. DM, OM, CP and GE apparent digestibility were significantly different between the diets, with higher values for unifeed diet than traditional diet. Energy requirement was satisfied by both diets (96.54 vs 95.55 MJ. Nitrogen balance showed negative values in both diets (- 61.67 vs - 9.05, but the hay/cereals supplemented diet showed the best protein utilisation.

  2. Prochlorococcus Genetic Transformation and the Genomics of Nitrogen Metabolism

    Science.gov (United States)

    2005-09-01

    vestal scientist and ideological purist. Megan Higginsbotham: Southern Belle, lover of small dogs and big men. Anu Seshan: giggling Brahmin. Melissa...Prochlorococcus Zea mays HLIPs cooccur in four different clusters suggests that it is likely Spinacie oferacoa that hli genes have been transferred between hosts...to be viable but sterile the conserved longevity and metabolism in both sexes. Sterility is due to failure of both male and female germ cells to

  3. Deletion of Type I glutamine synthetase deregulates nitrogen metabolism and increases ethanol production in Clostridium thermocellum

    Energy Technology Data Exchange (ETDEWEB)

    Rydzak, Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Garcia, David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Stevenson, David M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Bacteriology; Sladek, Margaret [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Klingeman, Dawn M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Holwerda, Evert K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division; Dartmouth College, Hanover, NH (United States). Thayer School of Engineering; Amador-Noguez, Daniel [Univ. of Wisconsin, Madison, WI (United States). Dept. of Bacteriology; Brown, Steven D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center; Guss, Adam M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Biosciences Division, BioEnergy Science Center

    2017-05-01

    Clostridium thermocellum rapidly deconstructs cellulose and ferments resulting hydrolysis products into ethanol and other products, and is thus a promising platform organism for the development of cellulosic biofuel production via consolidated bioprocessing. And while recent metabolic engineering strategies have targeted eliminating canonical fermentation products (acetate, lactate, formate, and H2), C. thermocellum also secretes amino acids, which has limited ethanol yields in engineered strains to approximately 70% of the theoretical maximum. To decrease amino acid secretion, we attempted to reduce ammonium assimilation by deleting the Type I glutamine synthetase (glnA) in C. thermocellum. Deletion of glnA reduced levels of secreted valine and total amino acids by 53% and 44% respectively, and increased ethanol yields by 53%. RNA-seq analysis revealed that genes encoding the RNF-complex were more highly expressed in ΔglnA and may have a role in improving NADH-availability for ethanol production. While a significant up-regulation of genes involved in nitrogen assimilation and urea uptake suggested that deletion of glnA induces a nitrogen starvation response, metabolomic analysis showed an increase in intracellular glutamine and α-ketoglutarate levels indicative of nitrogen-rich conditions. Here, we propose that deletion of glnA causes deregulation of nitrogen metabolism, leading to overexpression of nitrogen metabolism genes and, in turn, elevated glutamine/α-ketoglutarate levels. Here we demonstrate that perturbation of nitrogen assimilation is a promising strategy to redirect flux from the production of nitrogenous compounds toward biofuels in C. thermocellum.

  4. Implications of nitrogen phloem loading for carbon metabolism and transport during Arabidopsis development.

    Science.gov (United States)

    Santiago, James P; Tegeder, Mechthild

    2017-06-01

    Metabolite transport processes and primary metabolism are highly interconnected. This study examined the importance of source-to-sink nitrogen partitioning, and associated nitrogen metabolism for carbon capture, transport and usage. Specifically, Arabidopsis aap8 (AMINO ACID PERMEASE 8) mutant lines were analyzed to resolve the consequences of reduced amino acid phloem loading for source leaf carbon metabolism, sucrose phloem transport and sink development during vegetative and reproductive growth phase. Results showed that decreased amino acid transport had a negative effect on sink development of aap8 lines throughout the life cycle, leading to an overall decrease in plant biomass. During vegetative stage, photosynthesis and carbohydrate levels were decreased in aap8 leaves, while expression of carbon metabolism and transport genes, as well as sucrose phloem transport were not affected despite reduced sink strength. However, when aap8 plants transitioned to reproductive phase, carbon fixation and assimilation as well as sucrose partitioning to siliques were strongly decreased. Overall, this work demonstrates that phloem loading of nitrogen has varying implications for carbon fixation, assimilation and source-to-sink allocation depending on plant growth stage. It further suggests alterations in source-sink relationships, and regulation of carbon metabolism and transport by sink strength in a development-dependent manner. © 2017 Institute of Botany, Chinese Academy of Sciences.

  5. Studies on nitrogen metabolism in crop plants, 20

    International Nuclear Information System (INIS)

    Oritani, Takashi

    1984-01-01

    Experiment was conducted to examine the translocation rate of three sources of nitrogen supplied as basal-dressing, topdressing 1 (at the spikelet initiation stage) and 2 (at the flowering stage). Most of the 15 N from topdressing 1 was distributed in the upper leaf blades and ears as sink, whereas the distribution of 15 N from basal-dressing was found in the lower leaf blades and leaf sheath + culms. 15 N topdressed at the flowering stage was continuously translocated into sink during the ripening period. The transport into sink of 15 N-labelled ammonium top-dressed at the flowering stage was more rapid than basal-dressed 15 N. Most of the 15 N derived from topdressing at the flowering stage was directly translocated into sink via culms from the roots. (Mori, K.)

  6. Cypermethrin induced alterations in nitrogen metabolism in freshwater fishes.

    Science.gov (United States)

    Kumar, Amit; Sharma, Bechan; Pandey, Ravi S

    2011-04-01

    In the present study, two fresh water fishes namely, Channa punctatus and Clarias batrachus, were exposed to three sub-acute concentrations of synthetic pyrethroid, cypermethrin, for 96 h to evaluate the role of amino acids in fulfilling the immediate energy needs of fishes under pyrethroid induced stress as well as to find out the mechanism of ammonia detoxification. The experiments were designed to estimate the levels of free amino acid, urea, ammonia and the activities of aspartate aminotransferase (AAT), alanine aminotransferase (AlAT), glutamate dehydrogenase (GDH), glutamine synthetase (GS) and arginase in some of the vital organs like brain, gills, liver, kidney and muscle of both fish species. The significant decrease in the levels of amino acids concomitant with remarkable increase in the activities of AAT, AlAT and GDH in these vital tissues of fish species elucidated the amino acid catabolism as one of the main mechanism of meeting out the immediate energy demand of the fishes in condition of cypermethrin exposure. The levels of ammonia were significantly increased at 10% of 96 h LC(50) of cypermethrin in the different organs such as brain, gills, liver, kidney and muscle of both fish species while 15% and 20% concentrations of 96 h LC(50) of cypermehrin registered remarkable decline in both fish species. The differential increment in the activities of GDH, GS and arginase and in the level of urea established three different alternative mechanisms of ammonia detoxification. The results indicated that in C. punctatus, the prevalent mode of nitrogen excretion is in the form of conversion of ammonia into glutamine and glutamate while in C. batrachus, the excessive nitrogen is excreted in the form of urea synthesized from ammonia. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Some aspects of nitrogen metabolism in the bovine rumen

    International Nuclear Information System (INIS)

    Nikolic, J.A.

    1976-01-01

    Studies on the use of urea as a source of nitrogen for microbial protein synthesis showed that utilization was more efficient when the protein-N content of the diet was low. However, when the total nitrogen of the dietary dry matter was reduced below 1.9%, there was a drop in the protein-N content of rumen dry matter and a reduction in the daily flow of protein through the duodenum. The mean post-prandial rumen ammonia concentrations were below 5mg NH 3 -N/100ml. In vitro work with 15 N-labelled urea and ammonia salts showed that the overall utilization rate of ammonia was not significantly affected by mean concentrations between 1.6 and 16.7mg/ml, but that net utilization was lower below 5.8mg/100ml. It is suggested that increased lysis of susceptible micro-organisms or increased proteolysis of feed proteins may account for these findings. The concentrations of ammonia-N, protein-N and volatile fatty acids in the rumen were not affected by increases in the amount of calcium, phosphorus, potassium or sulphur in the diet, although the concentrations of these elements were significantly increased in the rumen. A wide dietary Ca/P ratio (3.26) tended to reduce the stability of rumen contents leading to a low pH and foaming. Increases in mean sulphide concentration from 3.6 to 8.0mg/l had no effect on overall protein synthesis rate as indicated by the 35 S incorporation rate. (author)

  8. Interaction between carbon and nitrogen metabolism during akinete development in the cyanobacterium Anabaena torulosa.

    Science.gov (United States)

    Ahuja, Gurpreet; Khattar, Jasvirinder Singh; Sarma, Tangirala Anjaneya

    2008-04-01

    Nutrient enrichment with a nitrogen (as nitrate) or carbon (as fructose) source to unaerated diazo and photoautorophic cultures of the cyanobacterium Anabaena torulosa induced early development of akinetes with high frequency. When cultures under any mode of nutrition were aerated, akinetes were not differentiated. Unaerated cultures with nitrate nitrogen or fructose exhibited higher respiratory rates and nitrogen assimilation compared to aerated cultures. This was evidenced by increased respiratory O2 uptake and high activities of pyruvate kinase, malate dehydrogenase (NAD+), nitrogenase and nitrate reductase signifying that akinete forming unaerated cultures exhibited high carbon dissimilation and nitrogen assimilation resulting in high nitrogenous build up in the cells. Aerated, non-akinete cultures, on the other hand, were associated with low respiratory O2 uptake, low pyruvate kinase and malate dehydrogenase (NAD+) activities, suggesting that carbon dissimilation was not favoured either in presence of nitrate or fructose. Moreover, higher activity of NADP+ linked malate dehydrogenase and lower nitrate reductase activity in aerated cultures led to a high carbon and low nitrogen content of the cells resulting in high cellular C:N ratio. The results suggest that interaction between carbon and nitrogen metabolism regulates akinete development in A. torulosa.

  9. Nitrogen metabolism and kinetics of ammonia-oxidizing archaea.

    Science.gov (United States)

    Martens-Habbena, Willm; Stahl, David A

    2011-01-01

    The discovery of ammonia-oxidizing mesophilic and thermophilic Group I archaea changed the century-old paradigm that aerobic ammonia oxidation is solely mediated by two small clades of Beta- and Gammaproteobacteria. Group I archaea are extremely diverse and ubiquitous in marine and terrestrial environments, accounting for 20-30% of the microbial plankton in the global oceans. Recent studies indicated that many of these organisms carry putative ammonia monooxygenase genes and are more abundant than ammonia-oxidizing bacteria in most natural environments suggesting a potentially significant role in the nitrogen cycle. The isolation of Nitrosopumilus maritimus strain SCM1 provided the first direct evidence that Group I archaea indeed gain energy from ammonia oxidation. To characterize the physiology of this archaeal nitrifier, we developed a respirometry setup particularly suited for activity measurements in dilute microbial cultures with extremely low oxygen uptake rates. Here, we describe the setup and review the kinetic experiments conducted with N. maritimus and other nitrifying microorganisms. These experiments demonstrated that N. maritimus is adapted to grow on ammonia concentrations found in oligotrophic open ocean environments, far below the survival threshold of ammonia-oxidizing bacteria. The described setup and experimental procedures should facilitate physiological studies on other nitrifying archaea and oligotrophic microorganisms in general. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. Synthetic control of a fitness tradeoff in yeast nitrogen metabolism

    Directory of Open Access Journals (Sweden)

    Lee Jack J

    2009-01-01

    Full Text Available Abstract Background Microbial communities are involved in many processes relevant to industrial and medical biotechnology, such as the formation of biofilms, lignocellulosic degradation, and hydrogen production. The manipulation of synthetic and natural microbial communities and their underlying ecological parameters, such as fitness, evolvability, and variation, is an increasingly important area of research for synthetic biology. Results Here, we explored how synthetic control of an endogenous circuit can be used to regulate a tradeoff between fitness in resource abundant and resource limited environments in a population of Saccharomyces cerevisiae. We found that noise in the expression of a key enzyme in ammonia assimilation, Gdh1p, mediated a tradeoff between growth in low nitrogen environments and stress resistance in high ammonia environments. We implemented synthetic control of an endogenous Gdh1p regulatory network to construct an engineered strain in which the fitness of the population was tunable in response to an exogenously-added small molecule across a range of ammonia environments. Conclusion The ability to tune fitness and biological tradeoffs will be important components of future efforts to engineer microbial communities.

  11. Neurochemistry of Pressure-Induced Nitrogen and Metabolically Inert Gas Narcosis in the Central Nervous System.

    Science.gov (United States)

    Rostain, Jean-Claude; Lavoute, Cécile

    2016-06-13

    Gases that are not metabolized by the organism are thus chemically inactive under normal conditions. Such gases include the "noble gases" of the Periodic Table as well as hydrogen and nitrogen. At increasing pressure, nitrogen induces narcosis at 4 absolute atmospheres (ATAs) and more in humans and at 11 ATA and more in rats. Electrophysiological and neuropharmacological studies suggest that the striatum is a target of nitrogen narcosis. Glutamate and dopamine release from the striatum in rats are decreased by exposure to nitrogen at a pressure of 31 ATA (75% of the anesthetic threshold). Striatal dopamine levels decrease during exposure to compressed argon, an inert gas more narcotic than nitrogen, or to nitrous oxide, an anesthetic gas. Inversely, striatal dopamine levels increase during exposure to compressed helium, an inert gas with a very low narcotic potency. Exposure to nitrogen at high pressure does not change N-methyl-d-aspartate (NMDA) glutamate receptor activities in Substantia Nigra compacta and striatum but enhances gama amino butyric acidA (GABAA) receptor activities in Substantia Nigra compacta. The decrease in striatal dopamine levels in response to hyperbaric nitrogen exposure is suppressed by recurrent exposure to nitrogen narcosis, and dopamine levels increase after four or five exposures. This change, the lack of improvement of motor disturbances, the desensitization of GABAA receptors on dopamine cells during recurrent exposures and the long-lasting decrease of glutamate coupled with the higher sensitivity of NMDA receptors, suggest a nitrogen toxicity induced by repetitive exposures to narcosis. These differential changes in different neurotransmitter receptors would support the binding protein theory. © 2016 American Physiological Society. Compr Physiol 6:1579-1590, 2016. Copyright © 2016 John Wiley & Sons, Inc.

  12. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain Bge, primary endosymbiont of the cockroach Blattella germanica.

    Directory of Open Access Journals (Sweden)

    Maria J López-Sánchez

    2009-11-01

    Full Text Available Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state.

  13. Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge, Primary Endosymbiont of the Cockroach Blattella germanica

    Science.gov (United States)

    López-Sánchez, Maria J.; Neef, Alexander; Peretó, Juli; Patiño-Navarrete, Rafael; Pignatelli, Miguel; Latorre, Amparo; Moya, Andrés

    2009-01-01

    Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state. PMID:19911043

  14. In silico insights into the symbiotic nitrogen fixation in Sinorhizobium meliloti via metabolic reconstruction.

    Science.gov (United States)

    Zhao, Hansheng; Li, Mao; Fang, Kechi; Chen, Wenfeng; Wang, Jing

    2012-01-01

    Sinorhizobium meliloti is a soil bacterium, known for its capability to establish symbiotic nitrogen fixation (SNF) with leguminous plants such as alfalfa. S. meliloti 1021 is the most extensively studied strain to understand the mechanism of SNF and further to study the legume-microbe interaction. In order to provide insight into the metabolic characteristics underlying the SNF mechanism of S. meliloti 1021, there is an increasing demand to reconstruct a metabolic network for the stage of SNF in S. meliloti 1021. Through an iterative reconstruction process, a metabolic network during the stage of SNF in S. meliloti 1021 was presented, named as iHZ565, which accounts for 565 genes, 503 internal reactions, and 522 metabolites. Subjected to a novelly defined objective function, the in silico predicted flux distribution was highly consistent with the in vivo evidences reported previously, which proves the robustness of the model. Based on the model, refinement of genome annotation of S. meliloti 1021 was performed and 15 genes were re-annotated properly. There were 19.8% (112) of the 565 metabolic genes included in iHZ565 predicted to be essential for efficient SNF in bacteroids under the in silico microaerobic and nutrient sharing condition. As the first metabolic network during the stage of SNF in S. meliloti 1021, the manually curated model iHZ565 provides an overview of the major metabolic properties of the SNF bioprocess in S. meliloti 1021. The predicted SNF-required essential genes will facilitate understanding of the key functions in SNF and help identify key genes and design experiments for further validation. The model iHZ565 can be used as a knowledge-based framework for better understanding the symbiotic relationship between rhizobia and legumes, ultimately, uncovering the mechanism of nitrogen fixation in bacteroids and providing new strategies to efficiently improve biological nitrogen fixation.

  15. Nitrogen Metabolite Repression of Metabolism and Virulence in the Human Fungal Pathogen Cryptococcus neoformans

    Science.gov (United States)

    Lee, I. Russel; Chow, Eve W. L.; Morrow, Carl A.; Djordjevic, Julianne T.; Fraser, James A.

    2011-01-01

    Proper regulation of metabolism is essential to maximizing fitness of organisms in their chosen environmental niche. Nitrogen metabolite repression is an example of a regulatory mechanism in fungi that enables preferential utilization of easily assimilated nitrogen sources, such as ammonium, to conserve resources. Here we provide genetic, transcriptional, and phenotypic evidence of nitrogen metabolite repression in the human pathogen Cryptococcus neoformans. In addition to loss of transcriptional activation of catabolic enzyme-encoding genes of the uric acid and proline assimilation pathways in the presence of ammonium, nitrogen metabolite repression also regulates the production of the virulence determinants capsule and melanin. Since GATA transcription factors are known to play a key role in nitrogen metabolite repression, bioinformatic analyses of the C. neoformans genome were undertaken and seven predicted GATA-type genes were identified. A screen of these deletion mutants revealed GAT1, encoding the only global transcription factor essential for utilization of a wide range of nitrogen sources, including uric acid, urea, and creatinine—three predominant nitrogen constituents found in the C. neoformans ecological niche. In addition to its evolutionarily conserved role in mediating nitrogen metabolite repression and controlling the expression of catabolic enzyme and permease-encoding genes, Gat1 also negatively regulates virulence traits, including infectious basidiospore production, melanin formation, and growth at high body temperature (39°–40°). Conversely, Gat1 positively regulates capsule production. A murine inhalation model of cryptococcosis revealed that the gat1Δ mutant is slightly more virulent than wild type, indicating that Gat1 plays a complex regulatory role during infection. PMID:21441208

  16. Coupled effects of light and nitrogen source on the urea cycle and nitrogen metabolism over a diel cycle in the marine diatom Thalassiosira pseudonana.

    Science.gov (United States)

    Bender, Sara J; Parker, Micaela S; Armbrust, E Virginia

    2012-03-01

    Diatoms are photoautotrophic organisms capable of growing on a variety of inorganic and organic nitrogen sources. Discovery of a complete urea cycle in diatoms was surprising, as this pathway commonly functions in heterotrophic organisms to rid cells of waste nitrogen. To determine how the urea cycle is integrated into cellular nitrogen metabolism and energy management, the centric diatom Thalassiosira pseudonana was maintained in semi-continuous batch cultures on nitrate, ammonium, or urea as the sole nitrogen source, under a 16: 8 light: dark cycle and at light intensities that were low, saturating, or high for growth. Steady-state transcript levels were determined for genes encoding enzymes linked to the urea cycle, urea hydrolysis, glutamine synthesis, pyrimidine synthesis, photorespiration, and energy storage. Transcript abundances were significantly affected by nitrogen source, light intensity and a diel cycle. The impact of N source on differential transcript accumulation was most apparent under the highest light intensity. Models of cellular metabolism under high light were developed based on changes in transcript abundance and predicted enzyme localizations. We hypothesize that the urea cycle is integrated into nitrogen metabolism through its connection to glutamine and in the eventual production of urea. These findings have important implications for nitrogen flow in the cell over diel cycles at surface ocean irradiances. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra.

    Science.gov (United States)

    Kim, Jang K; Kraemer, George P; Yarish, Charles

    2013-01-01

    We investigated emersion-induced nitrogen (N) release from Porphyra umbilicalis Kütz. Thallus N concentration decreased during 4 h of emersion. Tissue N and soluble protein contents of P. umbilicalis were positively correlated and decreased during emersion. Growth of P. umbilicalis did not simply dilute the pre-emersion tissue N concentration. Rather, N was lost from tissues during emersion. We hypothesize that emersion-induced N release occurs when proteins are catabolized. While the δ(15)N value of tissues exposed to emersion was higher than that of continuously submerged tissues, further discrimination of stable N isotopes did not occur during the 4 h emersion. We conclude that N release from Porphyra during emersion did not result from bacterial denitrification, but possibly as a consequence of photorespiration. The release of N by P. umbilicalis into the environment during emersion suggests a novel role of intertidal seaweeds in the global N cycle. Emersion also altered the physiological function (nitrate uptake, nitrate reductase and glutamine synthetase activity, growth rate) of P. umbilicalis and the co-occurring upper intertidal species P. linearis Grev., though in a seasonally influenced manner. Individuals of the year round perennial species P. umbilicalis were more tolerant of emersion than ephemeral, cold temperate P. linearis in early winter. However, the mid-winter populations of both P. linearis and P. umbilicalis, had similar temporal physiological patterns during emersion.

  18. Emersion induces nitrogen release and alteration of nitrogen metabolism in the intertidal genus Porphyra.

    Directory of Open Access Journals (Sweden)

    Jang K Kim

    Full Text Available We investigated emersion-induced nitrogen (N release from Porphyra umbilicalis Kütz. Thallus N concentration decreased during 4 h of emersion. Tissue N and soluble protein contents of P. umbilicalis were positively correlated and decreased during emersion. Growth of P. umbilicalis did not simply dilute the pre-emersion tissue N concentration. Rather, N was lost from tissues during emersion. We hypothesize that emersion-induced N release occurs when proteins are catabolized. While the δ(15N value of tissues exposed to emersion was higher than that of continuously submerged tissues, further discrimination of stable N isotopes did not occur during the 4 h emersion. We conclude that N release from Porphyra during emersion did not result from bacterial denitrification, but possibly as a consequence of photorespiration. The release of N by P. umbilicalis into the environment during emersion suggests a novel role of intertidal seaweeds in the global N cycle. Emersion also altered the physiological function (nitrate uptake, nitrate reductase and glutamine synthetase activity, growth rate of P. umbilicalis and the co-occurring upper intertidal species P. linearis Grev., though in a seasonally influenced manner. Individuals of the year round perennial species P. umbilicalis were more tolerant of emersion than ephemeral, cold temperate P. linearis in early winter. However, the mid-winter populations of both P. linearis and P. umbilicalis, had similar temporal physiological patterns during emersion.

  19. Specific effects of certain salts on nitrogen metabolism of young corn seedlings

    Directory of Open Access Journals (Sweden)

    Mohammad Hatata

    2014-01-01

    Full Text Available The effect of sodium and magnesium chlorides and sulphates on nitrogen metabolism of corn seedlings and their constituent parts have been studied. Treatment with all salts led to a decrease in the nitrogen content of the seedling as a whole, and the decrease became more pronounced with the increase of salt concentration, though these concentrations were too low to induce any osmotic action. The same trend of changes was noticed as regards nonprotein-N, whereas the opposite was recorded in reference to the changes; of protein-N. Higher concentrations of the salt solutions led to leaching out of more nonprotein-N than did lower concentrations. The study of the distribution of nitrogenous constituents among the different organs of the seedling showed that while the total-N content of the whole seedling decreased with the increase of salt concentration, the total-N content of the roots decreased markedly, and the total-N content of the tops decreased also but less whereas, the total-N content of the grains increased with the increase of salt concentration as compared with that in the control. As a result of disturbances of nitrogen metabolism under salinization, more ammonia and amides were accumulated in all seedling organs.

  20. Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories.

    Science.gov (United States)

    Ortiz-Marquez, Juan Cesar Federico; Do Nascimento, Mauro; Curatti, Leonardo

    2014-05-01

    The biological nitrogen fixation carried out by some Bacteria and Archaea is one of the most attractive alternatives to synthetic nitrogen fertilizers. In this study we compared the effect of controlling the maximum activation state of the Azotobacter vinelandii glutamine synthase by a point mutation at the active site (D49S mutation) and impairing the ammonium-dependent homeostatic control of nitrogen-fixation genes expression by the ΔnifL mutation on ammonium release by the cells. Strains bearing the single D49S mutation were more efficient ammonium producers under carbon/energy limiting conditions and sustained microalgae growth at the expense of atmospheric N2 in synthetic microalgae-bacteria consortia. Ammonium delivery by the different strains had implications for the microalga׳s cell-size distribution. It was uncovered an extensive cross regulation between nitrogen fixation and assimilation that extends current knowledge on this key metabolic pathway and might represent valuable hints for further improvements of versatile N2-fixing microbial-cell factories. Copyright © 2014 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  1. Metatranscriptomic and metagenomic description of the bacterial nitrogen metabolism in waste water wet oxidation effluents

    Directory of Open Access Journals (Sweden)

    Julien Crovadore

    2017-10-01

    Full Text Available Anaerobic digestion is a common method for reducing the amount of sludge solids in used waters and enabling biogas production. The wet oxidation process (WOX improves anaerobic digestion by converting carbon into methane through oxidation of organic compounds. WOX produces effluents rich in ammonia, which must be removed to maintain the activity of methanogens. Ammonia removal from WOX could be biologically operated by aerobic granules. To this end, granulation experiments were conducted in 2 bioreactors containing an activated sludge (AS. For the first time, the dynamics of the microbial community structure and the expression levels of 7 enzymes of the nitrogen metabolism in such active microbial communities were followed in regard to time by metagenomics and metatranscriptomics. It was shown that bacterial communities adapt to the wet oxidation effluent by increasing the expression level of the nitrogen metabolism, suggesting that these biological activities could be a less costly alternative for the elimination of ammonia, resulting in a reduction of the use of chemicals and energy consumption in sewage plants. This study reached a strong sequencing depth (from 4.4 to 7.6 Gb and enlightened a yet unknown diversity of the microorganisms involved in the nitrogen pathway. Moreover, this approach revealed the abundance and expression levels of specialised enzymes involved in nitrification, denitrification, ammonification, dissimilatory nitrate reduction to ammonium (DNRA and nitrogen fixation processes in AS. Keywords: Applied sciences, Biological sciences, Environmental science, Genetics, Microbiology

  2. Nitrogen metabolism of sheep and goats consuming Acacia brevispica and Sesbania sesban

    Science.gov (United States)

    Woodward, A.; Reed, J.D.

    1997-01-01

    We described the effects of two East African browses, Acacia brevispica and Sesbania sesban, on nitrogen metabolism of sheep and goats. The A. brevispica had a substantial amount of proanthocyanidins (condensed tannins); S. sesban did not. The browses were fed at three levels in combination with vetch (Vicia dasycarpa) and teff straw (Eragrostis abyssinica). Fecal N, N balance, and plasma urea N (PUN) were estimated with intact animals. Ruminal ammonia (RuA) and VFA concentrations were estimated with ruminally fistulated animals. Urinary N loss, PUN, RuA, and VFA concentrations were higher for S. sesban diets than for A. brevispica diets. Fecal N was highest with diets including A. brevispica due to high levels of fecal neutral-detergent insoluble N. Nitrogen retention was highest for diets including S. sesban. Nitrogen retention was adequate for A. brevispica diets because low urinary N compensated for high fecal N. Four hypotheses describe possible effects of tannins on N metabolism: 1) escape of protein from the rumen to the lower tract; 2) increased microbial yield; 3) increase in N-containing endogenous products; and 4) protein made indigestible in tannin-protein complexes. The effect of tannins in A. brevispica on N metabolism can best be described by the formation of indigestible tannin-protein complexes, although increased production of endogenous products is also possible.

  3. Nitrogen

    Science.gov (United States)

    Apodaca, Lori E.

    2013-01-01

    The article presents an overview of the nitrogen chemical market as of July 2013, including the production of ammonia compounds. Industrial uses for ammonia include fertilizers, explosives, and plastics. Other topics include industrial capacity of U.S. ammonia producers CF Industries Holdings Inc., Koch Nitrogen Co., PCS Nitrogen, Inc., and Agrium Inc., the impact of natural gas prices on the nitrogen industry, and demand for corn crops for ethanol production.

  4. Integration of Carbon, Nitrogen, and Oxygen Metabolism in Escherichia coli--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitz, Joshua D; Wingreen, Ned s; Rabitz, Herschel A; Xu, Yifan

    2012-10-22

    A key challenge for living systems is balancing utilization of multiple elemental nutrients, such as carbon, nitrogen, and oxygen, whose availability is subject to environmental fluctuations. As growth can be limited by the scarcity of any one nutrient, the rate at which each nutrient is assimilated must be sensitive not only to its own availability, but also to that of other nutrients. Remarkably, across diverse nutrient conditions, E. coli grows nearly optimally, balancing effectively the conversion of carbon into energy versus biomass. To investigate the link between the metabolism of different nutrients, we quantified metabolic responses to nutrient perturbations using LC-MS based metabolomics and built differential equation models that bridge multiple nutrient systems. We discovered that the carbonaceous substrate of nitrogen assimilation, -ketoglutarate, directly inhibits glucose uptake and that the upstream glycolytic metabolite, fructose-1,6-bisphosphate, ultrasensitively regulates anaplerosis to allow rapid adaptation to changing carbon availability. We also showed that NADH controls the metabolic response to changing oxygen levels. Our findings support a general mechanism for nutrient integration: limitation for a nutrient other than carbon leads to build-up of the most closely related product of carbon metabolism, which in turn feedback inhibits further carbon uptake.

  5. Effects of nitrogen underfeeding and energy source on nitrogen ruminal metabolism, digestion, and nitrogen partitioning in dairy cows.

    Science.gov (United States)

    Fanchone, A; Nozière, P; Portelli, J; Duriot, B; Largeau, V; Doreau, M

    2013-02-01

    This work aimed to investigate the effects of 2 levels of N (low or high) and 2 energy sources (starch or fiber) on N partitioning, N ruminal metabolism, and digestion in dairy cows. Four Holstein cows were used in a 4 × 4 Latin square design. The 4 cows (on average, 662 ± 62 kg and at 71 ± 10 d in milk at the beginning of the experiment) were fitted with rumen, proximal duodenum, and terminal ileum cannula. The cows received 4 diets having the same forage proportion on a DM basis. The high level of N supply met 110% of the protein requirements of cows with an adequate supply in rumen-degradable N. The low level covered 80% of these requirements with a shortage in rumen-degradable N. Energy sources differed by their nature (i.e., starch from barley, corn, and wheat or fiber from soybean hulls and dehydrated beet pulp). Duodenal digesta flow was determined using YbCl3 as a marker. Microbial duodenal N flow was determined using purine and pyrimidine bases as markers from liquid-associated bacteria and mixed bacteria samples. Microbial N flow and efficiency of microbial protein synthesis, calculated using mixed bacteria as a reference microbial sample, were not significantly modified by the N level (P = 0.19 and 0.29, respectively) and the energy source of the diet (P = 0.11 and 0.08, respectively). Total tract apparent digestibility of OM and total tact digestibility of NDF were lower at the low N level (P = 0.006 and 0.007, respectively). Total tract apparent digestibility of OM tended to be greater (P = 0.08) with high-starch diets than with high-fiber diets. Total tact digestibility of NDF was greater (P excretion in urine and decreased milk production but did not affect N excretion in feces or microbial protein synthesis.

  6. A natural light/dark cycle regulation of carbon-nitrogen metabolism and gene expression in rice shoots

    Directory of Open Access Journals (Sweden)

    Haixing Li

    2016-08-01

    Full Text Available Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00 and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799 were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant

  7. Nitrogen Addition Exacerbates the Negative Effects of Low Temperature Stress on Carbon and Nitrogen Metabolism in Moss

    Directory of Open Access Journals (Sweden)

    Bin-Yang Liu

    2017-08-01

    Full Text Available Global environmental changes are leading to an increase in localized abnormally low temperatures and increasing nitrogen (N deposition is a phenomenon recognized worldwide. Both low temperature stress (LTS and excess N induce oxidative stress in plants, and excess N also reduces their resistance to LTS. Mosses are primitive plants that are generally more sensitive to alterations in environmental factors than vascular species. To study the combined effects of N deposition and LTS on carbon (C and N metabolism in moss, two moss species, Pogonatum cirratum subsp. fuscatum, and Hypnum plumaeforme, exposed to various concentrations of nitrate (KNO3 or ammonium (NH4Cl, were treated with or without LTS. C/N metabolism indices were then monitored, both immediately after the stress and after a short recovery period (10 days. LTS decreased the photosystem II (PSII performance index and inhibited non-cyclic photophosphorylation, ribulose-1,5-bisphosphate carboxylase, and glutamine synthetase activities, indicating damage to PSII and reductions in C/N assimilation in these mosses. LTS did not affect cyclic photophosphorylation, sucrose synthase, sucrose-phosphate synthase, and NADP-isocitrate dehydrogenase activities, suggesting a certain level of energy and C skeleton generation were maintained in the mosses to combat LTS; however, LTS inhibited the activity of glycolate oxidase. As predicted, N supply increased the sensitivity of the mosses to LTS, resulting in greater damage to PSII and a sharper decrease in C/N assimilation. After the recovery period, the performance of PSII and C/N metabolism, which were inhibited by LTS increased significantly, and were generally higher than those of control samples not exposed to LTS, suggesting overcompensation effects; however, N application reduced the extent of compensation effects. Both C and N metabolism exhibited stronger compensation effects in H. plumaeforme than in P. cirratum subsp. fuscatum. The

  8. Characterizing bacterial gene expression in nitrogen cycle metabolism with RT-qPCR.

    Science.gov (United States)

    Graham, James E; Wantland, Nicholas B; Campbell, Mark; Klotz, Martin G

    2011-01-01

    Recent advances in DNA sequencing have greatly accelerated our ability to obtain the raw information needed to recognize both known and potential novel modular microbial genomic capacity for nitrogen metabolism. With PCR-based approaches to quantifying microbial mRNA expression now mainstream in most laboratories, researchers can now more efficiently propose and test hypotheses on the contributions of individual microbes to the biological accessibility of nitrogen upon which all other life depends. We review known microbial roles in these key nitrogen transformations, and describe the necessary steps in carrying out relevant gene expression studies. An example experimental design is then provided characterizing Nitrosococcus oceani mRNA expression in cultures responding to ammonia. The approach described, that of assessing microbial genome inventory and testing putative modular gene expression by mRNA quantification, is likely to remain an important tool in understanding individual microbial contributions within microbial community activities that maintain the Earth's nitrogen balance. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica

    Energy Technology Data Exchange (ETDEWEB)

    Pomraning, Kyle R.; Bredeweg, Erin L.; Baker, Scott E.

    2017-02-15

    ABSTRACT

    Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeastYarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism inY. lipolytica. Deletion of the GATA transcription factor genesgzf3andgzf2resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion ofgzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion ofgzf3results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, whilegzf2is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressormig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism.

    IMPORTANCENitrogen source is

  10. Metabolism of nitrogen-13 labelled ammonia in different conditions in dogs, human volunteers and transplant patients

    International Nuclear Information System (INIS)

    Bormans, G.; Maes, A.; Langendries, W.; Nuyts, J.; Vrolix, M.; Vanhaecke, J.; Schiepers, C.; Roo, M. de; Mortelmans, L.; Verbruggen, A.

    1995-01-01

    To investigate the rate of metabolism of nitrogen-13 labelled ammonia ( 13 NH 3 ) in different conditions, we have determined the relative amount of unchanged 13 NH 3 in the blood of dogs, volunteers and transplant patients at different times following injection. In dogs, the determinations were made under basal conditions, during adenosine administration and after coronary occlusion. The results show that adenosine administration increases the metabolic rate whereas coronary occlusion does not affect 13 NH 3 metabolism. For both human volunteers and transplant patients the metabolic rate of 13 NH 3 was assessed under basal conditions and during adenosine administration. 13 NH 3 metabolism proceeds faster in transplant patients than in volunteers under both conditions. Adenosine administration causes a faster 13 NH 3 turnover in volunteers but not in transplant patients. Application of individual metabolite correction resulted in a 16% decrease in the calculated blood flow compared to uncorrected values. A smaller difference (5%) was observed between correction with mean metabolite values and individually acquired metabolite values. (orig.)

  11. Metabolic Remodeling of Membrane Glycerolipids in the Microalga Nannochloropsis oceanica under Nitrogen Deprivation

    Directory of Open Access Journals (Sweden)

    Danxiang Han

    2017-08-01

    Full Text Available HIGHLIGHTSAn electrospray ionization mass spectrometry-based lipidomics method was developed and integrated with transcriptomics to elucidate metabolic remodeling and turnover of microalgal membrane lipids by using Nannochloropsis oceanica as a model.The lack of lipidome analytical tools has limited our ability to gain new knowledge about lipid metabolism in microalgae, especially for membrane glycerolipids. An electrospray ionization mass spectrometry-based lipidomics method was developed for Nannochloropsis oceanica IMET1, which resolved 41 membrane glycerolipids molecular species belonging to eight classes. Changes in membrane glycerolipids under nitrogen deprivation and high-light (HL conditions were uncovered. The results showed that the amount of plastidial membrane lipids including monogalactosyldiacylglycerol, phosphatidylglycerol, and the extraplastidic lipids diacylglyceryl-O-4′-(N, N, N,-trimethyl homoserine and phosphatidylcholine decreased drastically under HL and nitrogen deprivation stresses. Algal cells accumulated considerably more digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerols under stresses. The genes encoding enzymes responsible for biosynthesis, modification and degradation of glycerolipids were identified by mining a time-course global RNA-seq data set. It suggested that reduction in lipid contents under nitrogen deprivation is not attributable to the retarded biosynthesis processes, at least at the gene expression level, as most genes involved in their biosynthesis were unaffected by nitrogen supply, yet several genes were significantly up-regulated. Additionally, a conceptual eicosapentaenoic acid (EPA biosynthesis network is proposed based on the lipidomic and transcriptomic data, which underlined import of EPA from cytosolic glycerolipids to the plastid for synthesizing EPA-containing chloroplast membrane lipids.

  12. Iron deficiency affects nitrogen metabolism in cucumber (Cucumis sativus L. plants

    Directory of Open Access Journals (Sweden)

    Borlotti Andrea

    2012-10-01

    Full Text Available Abstract Background Nitrogen is a principal limiting nutrient in plant growth and development. Among factors that may limit NO3- assimilation, Fe potentially plays a crucial role being a metal cofactor of enzymes of the reductive assimilatory pathway. Very few information is available about the changes of nitrogen metabolism occurring under Fe deficiency in Strategy I plants. The aim of this work was to study how cucumber (Cucumis sativus L. plants modify their nitrogen metabolism when grown under iron deficiency. Results The activity of enzymes involved in the reductive assimilation of nitrate and the reactions that produce the substrates for the ammonium assimilation both at root and at leaf levels in Fe-deficient cucumber plants were investigated. Under Fe deficiency, only nitrate reductase (EC 1.7.1.1 activity decreased both at the root and leaf level, whilst for glutamine synthetase (EC 6.3.1.2 and glutamate synthase (EC 1.4.1.14 an increase was found. Accordingly, the transcript analysis for these enzymes showed the same behaviour except for root nitrate reductase which increased. Furthermore, it was found that amino acid concentration greatly decreased in Fe-deficient roots, whilst it increased in the corresponding leaves. Moreover, amino acids increased in the xylem sap of Fe-deficient plants. Conclusions The data obtained in this work provided new insights on the responses of plants to Fe deficiency, suggesting that this nutritional disorder differentially affected N metabolism in root and in leaf. Indeed under Fe deficiency, roots respond more efficiently, sustaining the whole plant by furnishing metabolites (i.e. aa, organic acids to the leaves.

  13. Long-term trends of changes in pine and oak foliar nitrogen metabolism in response to chronic nitrogen amendments at Harvard Forest, MA

    Science.gov (United States)

    Rakesh Minocha; Swathi A. Turlapati; Stephanie Long; William H. McDowell; Subhash C. Minocha

    2015-01-01

    We evaluated the long-term (1995-2008) trends in foliar and sapwood metabolism, soil solution chemistry and tree mortality rates in response to chronic nitrogen (N) additions to pine and hardwood stands at the Harvard Forest Long Term Ecological Research (LTER) site. Common stress-related metabolites like polyamines (PAs), free amino acids (AAs) and inorganic elements...

  14. Carbon and nitrogen metabolism in arbuscular mycorrhizal maize plants under low-temperature stress

    DEFF Research Database (Denmark)

    Zhu, Xian-Can; Song, Feng-Bin; Liu, Fulai

    2015-01-01

    Effects of the arbuscular mycorrhizal (AM) fungus Glomus tortuosum on carbon (C) and nitrogen (N) metabolism of Zea mays L. grown under low-temperature stress was investigated. Maize plants inoculated or not inoculated with AM fungus were grown in a growth chamber at 258C for 4 weeks...... plants were higher than those of non-AM plants. AM plants had a higher net photosynthetic rate (Pn) than non-AM plants, although low temperature inhibited the Pn. Compared with non-AM plants, AM plants exhibited higher leaf soluble sugars, reducing sugars, root sucrose and fructose contents, and sucrose...... phosphate synthase and amylase activities at low temperature. Moreover, low-temperature stress increased theC :Nratio in the leaves of maize plants, and AM colonisation decreased the root C :N ratio. These results suggested a difference in the C and N metabolism of maize plants at ambient and low...

  15. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2004-10-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the

  16. Metabolite Profiling of Wheat Seedlings Induced by Chitosan: Revelation of the Enhanced Carbon and Nitrogen Metabolism

    Directory of Open Access Journals (Sweden)

    Xiaoqian Zhang

    2017-11-01

    Full Text Available Chitosan plays an important role in regulating growth and eliciting defense in many plant species. However, the exact metabolic response of plants to chitosan is still not clear. The present study performed an integrative analysis of metabolite profiles in chitosan-treated wheat seedlings and further investigated the response of enzyme activities and transcript expression related to the primary carbon (C and nitrogen (N metabolism. Metabolite profiling revealed that chitosan could induce significant difference of organic acids, sugars and amino acids in leaves of wheat seedlings. A higher accumulation of sucrose content was observed after chitosan treatment, accompanied by an increase in sucrose phosphate synthase (SPS and fructose 1, 6-2 phosphatase (FBPase activities as well as an up-regulation of relative expression level. Several metabolites associated with tricarboxylic acid (TCA cycle, including oxaloacetate and malate, were also improved along with an elevation of phosphoenolpyruvate carboxylase (PEPC and pyruvate dehydrogenase (PDH activities. On the other hand, chitosan could also enhance the N reduction and N assimilation. Glutamate, aspartate and some other amino acids were higher in chitosan-treated plants, accompanied by the activation of key enzymes of N reduction and glutamine synthetase/glutamate synthase (GS/GOGAT cycle. Together, these results suggested a pleiotropic modulation of carbon and nitrogen metabolism in wheat seedlings induced by chitosan and provided a significant insight into the metabolic mechanism of plants in response to chitosan for the first time, and it would give a basic guidance for the future application of chitosan in agriculture.

  17. Metabolic Changes in Synechocystis PCC6803 upon Nitrogen-Starvation: Excess NADPH Sustains Polyhydroxybutyrate Accumulation

    Science.gov (United States)

    Hauf, Waldemar; Schlebusch, Maximilian; Hüge, Jan; Kopka, Joachim; Hagemann, Martin; Forchhammer, Karl

    2013-01-01

    Polyhydroxybutyrate (PHB) is a common carbon storage polymer among heterotrophic bacteria. It is also accumulated in some photoautotrophic cyanobacteria; however, the knowledge of how PHB accumulation is regulated in this group is limited. PHB synthesis in Synechocystis sp. PCC 6803 is initiated once macronutrients like phosphorus or nitrogen are limiting. We have previously reported a mutation in the gene sll0783 that impairs PHB accumulation in this cyanobacterium upon nitrogen starvation. In this study we present data which explain the observed phenotype. We investigated differences in intracellular localization of PHB synthase, metabolism, and the NADPH pool between wild type and mutant. Localization of PHB synthase was not impaired in the sll0783 mutant; however, metabolome analysis revealed a difference in sorbitol levels, indicating a more oxidizing intracellular environment than in the wild type. We confirmed this by directly measuring the NADPH/NADP ratio and by altering the intracellular redox state of wild type and sll0783 mutant. We were able to physiologically complement the mutant phenotype of diminished PHB synthase activity by making the intracellular environment more reducing. Our data illustrate that the NADPH pool is an important factor for regulation of PHB biosynthesis and metabolism, which is also of interest for potential biotechnological applications. PMID:24957892

  18. Metabolic Changes in Synechocystis PCC6803 upon Nitrogen-Starvation: Excess NADPH Sustains Polyhydroxybutyrate Accumulation

    Directory of Open Access Journals (Sweden)

    Waldemar Hauf

    2013-02-01

    Full Text Available Polyhydroxybutyrate (PHB is a common carbon storage polymer among heterotrophic bacteria. It is also accumulated in some photoautotrophic cyanobacteria; however, the knowledge of how PHB accumulation is regulated in this group is limited. PHB synthesis in Synechocystis sp. PCC 6803 is initiated once macronutrients like phosphorus or nitrogen are limiting. We have previously reported a mutation in the gene sll0783 that impairs PHB accumulation in this cyanobacterium upon nitrogen starvation. In this study we present data which explain the observed phenotype. We investigated differences in intracellular localization of PHB synthase, metabolism, and the NADPH pool between wild type and mutant. Localization of PHB synthase was not impaired in the sll0783 mutant; however, metabolome analysis revealed a difference in sorbitol levels, indicating a more oxidizing intracellular environment than in the wild type. We confirmed this by directly measuring the NADPH/NADP ratio and by altering the intracellular redox state of wild type and sll0783 mutant. We were able to physiologically complement the mutant phenotype of diminished PHB synthase activity by making the intracellular environment more reducing. Our data illustrate that the NADPH pool is an important factor for regulation of PHB biosynthesis and metabolism, which is also of interest for potential biotechnological applications.

  19. Expressed sequence tags related to nitrogen metabolism in maize inoculated with Azospirillum brasilense.

    Science.gov (United States)

    Pereira-Defilippi, L; Pereira, E M; Silva, F M; Moro, G V

    2017-05-31

    The relative quantitative real-time expression of two expressed sequence tags (ESTs) codifying for key enzymes in nitrogen metabolism in maize, nitrate reductase (ZmNR), and glutamine synthetase (ZmGln1-3) was performed for genotypes inoculated with Azospirillum brasilense. Two commercial single-cross hybrids (AG7098 and 2B707) and two experimental synthetic varieties (V2 and V4) were raised under controlled greenhouse conditions, in six treatment groups corresponding to different forms of inoculation and different levels of nitrogen application by top-dressing. The genotypes presented distinct responses to inoculation with A. brasilense. Increases in the expression of ZmNR were observed for the hybrids, while V4 only displayed a greater level of expression when the plants received nitrogenous fertilization by top-dressing and there was no inoculation. The expression of the ZmGln1-3EST was induced by A. brasilense in the hybrids and the variety V4. In contrast, the variety V2 did not respond to inoculation.

  20. Growth versus metabolic tissue replacement in mouse tissues determined by stable carbon and nitrogen isotope analysis

    Science.gov (United States)

    Macavoy, S. E.; Jamil, T.; Macko, S. A.; Arneson, L. S.

    2003-12-01

    Stable isotope analysis is becoming an extensively used tool in animal ecology. The isotopes most commonly used for analysis in terrestrial systems are those of carbon and nitrogen, due to differential carbon fractionation in C3 and C4 plants, and the approximately 3‰ enrichment in 15N per trophic level. Although isotope signatures in animal tissues presumably reflect the local food web, analysis is often complicated by differential nutrient routing and fractionation by tissues, and by the possibility that large organisms are not in isotopic equilibrium with the foods available in their immediate environment. Additionally, the rate at which organisms incorporate the isotope signature of a food through both growth and metabolic tissue replacement is largely unknown. In this study we have assessed the rate of carbon and nitrogen isotopic turnover in liver, muscle and blood in mice following a diet change. By determining growth rates, we were able to determine the proportion of tissue turnover caused by growth versus that caused by metabolic tissue replacement. Growth was found to account for approximately 10% of observed tissue turnover in sexually mature mice (Mus musculus). Blood carbon was found to have the shortest half-life (16.9 days), followed by muscle (24.7 days). Liver carbon turnover was not as well described by the exponential decay equations as other tissues. However, substantial liver carbon turnover was observed by the 28th day after diet switch. Surprisingly, these tissues primarily reflect the carbon signature of the protein, rather than carbohydrate, source in their diet. The nitrogen signature in all tissues was enriched by 3 - 5‰ over their dietary protein source, depending on tissue type, and the isotopic turnover rates were comparable to those observed in carbon.

  1. Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria.

    Science.gov (United States)

    Kozlowski, Jessica A; Kits, K Dimitri; Stein, Lisa Y

    2016-01-01

    Ammonia-oxidizing bacteria (AOB) have well characterized genes that encode and express nitrite reductases (NIR) and nitric oxide reductases (NOR). However, the connection between presence or absence of these and other genes for nitrogen transformations with the physiological production of nitric oxide (NO) and nitrous oxide (N2O) has not been tested across AOB isolated from various trophic states, with diverse phylogeny, and with closed genomes. It is therefore unclear if genomic content for nitrogen oxide metabolism is predictive of net N2O production. Instantaneous microrespirometry experiments were utilized to measure NO and N2O emitted by AOB during active oxidation of ammonia (NH3) or hydroxylamine (NH2OH) and through a period of anoxia. This data was used in concert with genomic content and phylogeny to assess whether taxonomic factors were predictive of nitrogen oxide metabolism. Results showed that two oligotrophic AOB strains lacking annotated NOR-encoding genes released large quantities of NO and produced N2O abiologically at the onset of anoxia following NH3-oxidation. Furthermore, high concentrations of N2O were measured during active O2-dependent NH2OH oxidation by the two oligotrophic AOB in contrast to non-oligotrophic strains that only produced N2O at the onset of anoxia. Therefore, complete nitrifier denitrification did not occur in the two oligotrophic strains, but did occur in meso- and eutrophic strains, even in Nitrosomonas communis Nm2 that lacks an annotated NIR-encoding gene. Regardless of mechanism, all AOB strains produced measureable N2O under tested conditions. This work further confirms that AOB require NOR activity to enzymatically reduce NO to N2O in the nitrifier denitrification pathway, and also that abiotic reactions play an important role in N2O formation, in oligotrophic AOB lacking NOR activity.

  2. Protein-based biorefining: metabolic engineering for production of chemicals and fuel with regeneration of nitrogen fertilizers.

    Science.gov (United States)

    Wernick, David G; Liao, James C

    2013-02-01

    Threats to stable oil supplies and concerns over environmental emissions have pushed for renewable biofuel developments to minimize dependence on fossil resources. Recent biofuel progress has moved towards fossil resource-independent carbon cycles, but environmental issues regarding use of nitrogen fertilizers have not been addressed on a global scale. The recently demonstrated conversion of waste protein biomass into advanced biofuels and renewable chemicals, while recycling nitrogen fertilizers, offers a glimpse of the efforts needed to balance the nitrogen cycle at scale. In general, the catabolism of protein into biofuels is challenging because of physiological regulation and thermodynamic limitations. This conversion became possible with metabolic engineering around ammonia assimilation, intracellular nitrogen flux, and quorum sensing. This review highlights the metabolic engineering solutions in transforming those cellular processes into driving forces for the high yield of chemical products from protein.

  3. Environmental impact analysis of nitrogen cross-media metabolism: A case study of municipal solid waste treatment system in China.

    Science.gov (United States)

    Wen, Zongguo; Bai, Weinan; Zhang, Wenting; Chen, Chen; Fei, Fan; Chen, Bin; Huang, Yi

    2018-03-15

    Municipal Solid Waste Treatment System (MSWTS) contributes a lot to urban metabolism optimization and pollution control of nitrogen. An analysis framework for cross-media metabolism of nitrogen was developed for MSWTS to study the systematic effects of nitrogen metabolism in MSWTS on ecosystem quality. Then cross-media distribution of pollutants was calculated in landfill, composting, incineration and anaerobic digestion, respectively. Sixty three percent to 82% of the original inputs ended up in the natural environment using the former three technologies (landfill, composting and incineration), which was attributed to cross-media migration. Anaerobic digestion should be highlighted due to its overall desirable removal efficiency. Critical processes related to nitrogen cross-media migration were identified to analyze the overall environmental impacts sensitivities. Positive effects emerged in liquid-solid interface migration of nitrogen through sewage collection and treatment technology processes, while the incineration flue gas treatment witnessed negative effects in gas-liquid interface migration. Overall, the environmental impact sensitivity levels of nitrogen cross-media migration under critical processes were as follows: incineration>landfill>composting>anaerobic digestion. Therefore, the environment is most sensitively affected by incineration and its processes. The present study is of great significance to optimize environmental management by shifting the management mode from single environmental medium quality control to systematic ecosystem quality improvement. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Metabolism of microbial nitrogen in ruminants with special reference to nucleic acids.

    Science.gov (United States)

    Fujihara, Tsutomu; Shem, Martin N

    2011-04-01

    Characteristically the metabolism of microbial nitrogen (N) compounds in ruminants involves the degradation of dietary N and synthesis of microbial protein (MP), compounds including a small amount of peptides and free amino acids, which may account for 75-85% of total N and the remainder are nucleic acids (NA: DNA and RNA). Generally rumen microbes contain 10-25% NA-N of the total N while 70-80% is in the form of RNA. This paper describes the degradation and synthesis of NA in the rumen and their fate in the lower digestive tracts. Their physiological and nutritional significance in different types of ruminant animals is also discussed. The research works on NA metabolism in ruminants has been mainly on metabolism of purines after rumen microbial digestion and absorption in the lower gut. Subsequently, the fate of absorbed purines has been intensively investigated to assess the extent of MP synthesis in the rumen. The method for predicting ruminal synthesized MP and subsequently digested MP has been proposed using urinary purine derivative (PD) excretion in sheep and cattle fed on ordinary feed. The latter approach has now been adopted for calculation of protein supply in some feeding standards, although there are still difficulties in predicting representative samples of rumen microbes, and also uncertainties in variations of non-renal and endogenous purine losses. © 2011 The Authors. Journal compilation © 2011 Japanese Society of Animal Science.

  5. Metatranscriptomics reveal differences in in situ energy and nitrogen metabolism among hydrothermal vent snail symbionts.

    Science.gov (United States)

    Sanders, J G; Beinart, R A; Stewart, F J; Delong, E F; Girguis, P R

    2013-08-01

    Despite the ubiquity of chemoautotrophic symbioses at hydrothermal vents, our understanding of the influence of environmental chemistry on symbiont metabolism is limited. Transcriptomic analyses are useful for linking physiological poise to environmental conditions, but recovering samples from the deep sea is challenging, as the long recovery times can change expression profiles before preservation. Here, we present a novel, in situ RNA sampling and preservation device, which we used to compare the symbiont metatranscriptomes associated with Alviniconcha, a genus of vent snail, in which specific host-symbiont combinations are predictably distributed across a regional geochemical gradient. Metatranscriptomes of these symbionts reveal key differences in energy and nitrogen metabolism relating to both environmental chemistry (that is, the relative expression of genes) and symbiont phylogeny (that is, the specific pathways employed). Unexpectedly, dramatic differences in expression of transposases and flagellar genes suggest that different symbiont types may also have distinct life histories. These data further our understanding of these symbionts' metabolic capabilities and their expression in situ, and suggest an important role for symbionts in mediating their hosts' interaction with regional-scale differences in geochemistry.

  6. Metabolomics Reveals Cryptic Interactive Effects of Species Interactions and Environmental Stress on Nitrogen and Sulfur Metabolism in Seagrass

    DEFF Research Database (Denmark)

    Hasler-Sheetal, Harald; Castorani, Max; Glud, Ronnie N.

    2016-01-01

    among foundational species and eventually affect ecosystem health. Here, we used metabolomics to assess the impact of light reductions on interactions between the seagrass Zostera marina, an important habitat-forming marine plant, and the abundant and commercially important blue mussel Mytilus edulis....... Plant performance varied with light availability but was unaffected by the presence of mussels. Metabolomic analysis, on the other hand, revealed an interaction between light availability and presence of M. edulis on seagrass metabolism. Under high light, mussels stimulated seagrass nitrogen and energy...... metabolism. Conversely, in low light mussels impeded nitrogen and energy metabolism, and enhanced responses against sulfide toxicity, causing inhibited oxidative energy metabolism and tissue degradation. Metabolomic analysis thereby revealed cryptic changes to seagrass condition that could not be detected...

  7. Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation.

    Science.gov (United States)

    Singh, Madhulika; Singh, Vijay Pratap; Prasad, Sheo Mohan

    2016-12-01

    -pyrroline-5-carboxylate synthetase (P5CS), while activity of proline dehydrogenase (ProDH) decreased. The results indicate that different levels of N significantly modulated NaCl-induced damaging effects in tomato seedlings. Furthermore, the results suggest that after N addition Na + , nitrite, nitrate, ammonium contents, nitrogen metabolic enzymes, proline content, and activity of P5CS are favourably regulated, which might be associated with mitigation of NaCl stress and effect was more pronounced with supra-optimum level of N (N 150 ). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Improvement of nitrogen accumulation and metabolism in rice (Oryza sativa L.) by the endophyte Phomopsis liquidambari.

    Science.gov (United States)

    Yang, Bo; Ma, Hai-Yan; Wang, Xiao-Mi; Jia, Yong; Hu, Jing; Li, Xia; Dai, Chuan-Chao

    2014-09-01

    The fungal endophyte Phomopsis liquidambari can enhance nitrogen (N) uptake and metabolism of rice plants under hydroponic conditions. To investigate the effects of P. liquidambari on N accumulation and metabolism in rice (Oryza sativa L.) under field conditions during the entire growing season (S1, the seedling stage; S2, the tillering stage; S3, the heading stage; S4, the ripening stage), we utilized pot experiments to examine metabolic and physiological levels in both shoot and root tissues of rice, with endophyte (E+) and without endophyte (E-), in response to three different N levels. We found that under low-N treatment, P. liquidambari symbiosis increased the rice yield and N use efficiency by 12% and by 11.59%, respectively; that the total N contents in E+ rice plants at the four growth stages were separately increased by 29.05%, 14.65%, 21.06% and 18.38%, respectively; and that the activities of nitrate reductase and glutamine synthetase in E+ rice roots and shoots were significantly increased by fungal infection during the S1 to S3 stages. Moreover, P. liquidambari significantly increased the free NH4(+), NO3(-), amino acid and soluble protein contents in infected rice tissues under low-N treatment during the S1 to S3 stages. The obtained results offer novel data concerning the systemic changes induced by P. liquidambari in rice during the entire growth period and confirm the hypothesis that the rice-P. liquidambari interaction improved the N accumulation and metabolism of rice plants, consequently increasing rice N utilization in nutrient-limited soil. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  9. Modeling the role of covalent enzyme modification in Escherichia coli nitrogen metabolism

    International Nuclear Information System (INIS)

    Kidd, Philip B; Wingreen, Ned S

    2010-01-01

    In the bacterium Escherichia coli, the enzyme glutamine synthetase (GS) converts ammonium into the amino acid glutamine. GS is principally active when the cell is experiencing nitrogen limitation, and its activity is regulated by a bicyclic covalent modification cascade. The advantages of this bicyclic-cascade architecture are poorly understood. We analyze a simple model of the GS cascade in comparison to other regulatory schemes and conclude that the bicyclic cascade is suboptimal for maintaining metabolic homeostasis of the free glutamine pool. Instead, we argue that the lag inherent in the covalent modification of GS slows the response to an ammonium shock and thereby allows GS to transiently detoxify the cell, while maintaining homeostasis over longer times

  10. Metabolic Flux Analysis of the Synechocystis sp. PCC 6803 ΔnrtABCD Mutant Reveals a Mechanism for Metabolic Adaptation to Nitrogen-Limited Conditions.

    Science.gov (United States)

    Nakajima, Tsubasa; Yoshikawa, Katsunori; Toya, Yoshihiro; Matsuda, Fumio; Shimizu, Hiroshi

    2017-03-01

    Metabolic flux redirection during nitrogen-limited growth was investigated in the Synechocystis sp. PCC 6803 glucose-tolerant (GT) strain under photoautotrophic conditions by isotopically non-stationary metabolic flux analysis (INST-MFA). A ΔnrtABCD mutant of Synechocystis sp. PCC 6803 was constructed to reproduce phenotypes arising during nitrogen starvation. The ΔnrtABCD mutant and the wild-type GT strain were cultured under photoautotrophic conditions by a photobioreactor. Intracellular metabolites were labeled over a time course using NaH13CO3 as a carbon source. Based on these data, the metabolic flux distributions in the wild-type and ΔnrtABCD cells were estimated by INST-MFA. The wild-type GT and ΔnrtABCD strains displayed similar distribution patterns, although the absolute levels of metabolic flux were lower in ΔnrtABCD. Furthermore, the relative flux levels for glycogen metabolism, anaplerotic reactions and the oxidative pentose phosphate pathway were increased in ΔnrtABCD. This was probably due to the increased expression of enzyme genes that respond to nitrogen depletion. Additionally, we found that the ratio of ATP/NADPH demand increased slightly in the ΔnrtABCD mutant. These results indicated that futile ATP consumption increases under nitrogen-limited conditions because the Calvin-Benson cycle and the oxidative pentose phosphate pathway form a metabolic futile cycle that consumes ATP without CO2 fixation and NADPH regeneration. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Nitrogen

    Science.gov (United States)

    Apodaca, L.E.

    2010-01-01

    Ammonia was produced by 13 companies at 23 plants in 16 states during 2009. Sixty percent of all U.S. ammonia production capacity was centered in Louisiana. Oklahoma and Texas because of those states' large reserves of natural gas, the dominant domestic feedstock. In 2009, U.S. producers operated at about 83 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies — Koch Nitrogen Co.; Terra Industries Inc.; CF Industries Inc.; PCS Nitrogen Inc. and Agrium Inc., in descending order — accounted for 80 percent of the total U.S. ammonia production capacity. U.S. production was estimated to be 7.7 Mt (8.5 million st) of nitrogen (N) content in 2009 compared with 7.85 Mt (8.65 million st) of N content in 2008. Apparent consumption was estimated to have decreased to 12.1 Mt (13.3 million st) of N, a 10-percent decrease from 2008. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  12. Effect of water stress and foliar boron application on seed protein oil fatty acids and nitrogen metabolism in soybean

    Science.gov (United States)

    Effects of water stress and foliar boron (FB) application on soybean (Glycine max (L) Merr.) seed composition and nitrogen metabolism have not been well investigated. Therefore, the objective of this study was to investigate the effects of water stress and FB on seed protein, oil, fatty acids, nitra...

  13. Effects of urban stream burial on nitrogen uptake and ecosystem metabolism: implications for watershed nitrogen and carbon fluxes

    Science.gov (United States)

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3...

  14. Mechanism of nitrogen metabolism-related parameters and enzyme activities in the pathophysiology of autism

    Directory of Open Access Journals (Sweden)

    Abu Shmais Ghada A

    2012-02-01

    Full Text Available Abstract Background There is evidence that impaired metabolism play an important role in the etiology of many neuropsychiatric disorders. Although this has not been investigated to date, several recent studies proposed that nitrogen metabolism-related parameters may have a pathophysiological role in autism. Methods The study enrolled 20 Saudi boys with autism aged 4 to 12 years and 20 healthy controls matched for age and gender. Levels of creatine, urea, ammonia, gamma-aminobutyric acid (GABA, glutamate:glutamine (Glu:Gln ratio, and enzymatic activities of glutamate dehydrogenase, 5'-nucleotidase, and adenosine deaminase (ADA were determined in plasma samples from both groups. Results We found a significant elevation of creatine, 5'-nucleotidase, GABA, and glutamic acid and a significant decrease in the enzymatic activity of ADA and glutamine level in patients with autism compared with healthy controls. The most significant variation between the two groups was found in the Glu:Gln ratio. Conclusion A raised Glu:Gln ratio together with positive correlations in creatine, GABA, and 5'-nucleotidase levels could contribute to the pathophysiology of autism, and might be useful diagnostic markers. The mechanism through which these parameters might be related to autism is discussed in detail.

  15. Elevated nitrogen metabolism and nitric oxide production are involved in Arabidopsis resistance to acid rain.

    Science.gov (United States)

    Qiao, Fang; Zhang, Xi-Min; Liu, Xiang; Chen, Juan; Hu, Wen-Jun; Liu, Ting-Wu; Liu, Ji-Yun; Zhu, Chun-Quan; Ghoto, Kabir; Zhu, Xue-Yi; Zheng, Hai-Lei

    2018-03-26

    Acid rain (AR) can induce great damages to plants and could be classified into different types according to the different SO 4 2- /NO 3 - ratio. However, the mechanism of plants' responding to different types of AR has not been elucidated clearly. Here, we found that nitric-rich simulated AR (N-SiAR) induced less leaves injury as lower necrosis percentage, better physiological parameters and reduced oxidative damage in the leaves of N-SiAR treated Arabidopsis thaliana compared with sulfate and nitrate mixed (SN-SiAR) or sulfuric-rich (S-SiAR) simulated AR treated ones. Of these three types of SiAR, N-SiAR treated Arabidopsis maintained the highest of nitrogen (N) content, nitrate reductase (NR) and nitrite reductase (NiR) activity as well as N metabolism related genes expression level. Nitric oxide (NO) content showed that N-SiAR treated seedlings had a higher NO level compared to SN-SiAR or S-SiAR treated ones. A series of NO production and elimination related reagents and three NO production-related mutants were used to further confirm the role of NO in regulating acid rain resistance in N-SiAR treated Arabidopsis seedlings. Taken together, we concluded that an elevated N metabolism and enhanced NO production are involved in the tolerance to different types of AR in Arabidopsis. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  16. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane III

    2003-12-01

    pathway. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the poisoning, by nitrogen, of catalysts used in the hydrotreating and catalytic cracking of petroleum.

  17. Metabolism of a nitrogen-enriched coastal marine lagoon during the summertime

    Science.gov (United States)

    Howarth, Robert W.; Hayn, Melanie; Marino, Roxanne M.; Ganju, Neil; Foreman, Kenneth H.; McGlathery, Karen; Giblin, Anne E.; Berg, Peter; Walker, Jeffrey D.

    2014-01-01

    We measured metabolism rates in a shallow, nitrogen-enriched coastal marine ecosystem on Cape Cod (MA, USA) during seven summers using an open-water diel oxygen method. We compared two basins, one directly receiving most of the nitrogen (N) load (“Snug Harbor”) and another further removed from the N load and better flushed (“Outer Harbor”). Both dissolved oxygen and pH varied greatly over the day, increasing in daylight and decreasing at night. The more N-enriched basin frequently went hypoxic during the night, and the pH in both basins was low (compared to standard seawater) when the oxygen levels were low, due to elevated carbon dioxide. Day-to-day variation in gross primary production (GPP) was high and linked in part to variation in light. Whole-ecosystem respiration tended to track this short-term variation in GPP, suggesting that respiration by the primary producers often dominated whole-system respiration. GPP was higher in the more N-loaded Snug Harbor. Seagrasses covered over 60 % of the area of the better-flushed, Outer Harbor throughout our study and were the major contributors to GPP there. Seagrasses covered 20 % of the area in Snug Harbor for the first 5 years of our study, and their contribution to GPP was relatively small. The seagrasses in Snug Harbor died off completely in the 6th year, but GPP remained high then and in the subsequent year. Overall, rates of phytoplankton GPP were relatively low, suggesting that benthic micro- and macro-algae may be the dominant primary producers in Snug Harbor in most years. Net ecosystem production in both Snug Harbor and the Outer Harbor was variable from year to year, showing net heterotrophy in some years and net autotrophy in others, with a trend towards increasing autotrophy over the 7 years reported here.

  18. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress.

    Science.gov (United States)

    Zahoor, Rizwan; Zhao, Wenqing; Abid, Muhammad; Dong, Haoran; Zhou, Zhiguo

    2017-08-01

    To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK 2 Oha -1 , respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions. Copyright © 2017

  19. Dissimilatory Metabolism of Nitrogen Oxides in Bacteria:Comparative Reconstruction of Transcriptional Networks

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Dmitry A.; Dubchak, Inna L.; Arkin, Adam P.; Alm, EricJ.; Gelfand, Mikhail S.

    2005-09-01

    Bacterial response to nitric oxide (NO) is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR and NnrR, two-component systems NarXL and NarQP, NO-responsive activator NorR, and nitrite sensitive repressor NsrR. Using comparative genomics approaches we predict DNA-binding signals for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA signal. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria including Clostridia, Thermotogales and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides metabolism not only in most gamma- and beta-proteobacteria (including well-studied species like Escherichia coli), but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding signal. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon includes also two nitrite-responsive loci, nipAB (hcp-hcr) and nipC(dnrN), thus confirming the identity of the effector, i.e., nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include denitrification genes. As the

  20. Dissimilatory metabolism of nitrogen oxides in bacteria: comparative reconstruction of transcriptional networks.

    Directory of Open Access Journals (Sweden)

    2005-10-01

    Full Text Available Bacterial response to nitric oxide (NO is of major importance since NO is an obligatory intermediate of the nitrogen cycle. Transcriptional regulation of the dissimilatory nitric oxides metabolism in bacteria is diverse and involves FNR-like transcription factors HcpR, DNR, and NnrR; two-component systems NarXL and NarQP; NO-responsive activator NorR; and nitrite-sensitive repressor NsrR. Using comparative genomics approaches, we predict DNA-binding motifs for these transcriptional factors and describe corresponding regulons in available bacterial genomes. Within the FNR family of regulators, we observed a correlation of two specificity-determining amino acids and contacting bases in corresponding DNA recognition motif. Highly conserved regulon HcpR for the hybrid cluster protein and some other redox enzymes is present in diverse anaerobic bacteria, including Clostridia, Thermotogales, and delta-proteobacteria. NnrR and DNR control denitrification in alpha- and beta-proteobacteria, respectively. Sigma-54-dependent NorR regulon found in some gamma- and beta-proteobacteria contains various enzymes involved in the NO detoxification. Repressor NsrR, which was previously known to control only nitrite reductase operon in Nitrosomonas spp., appears to be the master regulator of the nitric oxides' metabolism, not only in most gamma- and beta-proteobacteria (including well-studied species such as Escherichia coli, but also in Gram-positive Bacillus and Streptomyces species. Positional analysis and comparison of regulatory regions of NO detoxification genes allows us to propose the candidate NsrR-binding motif. The most conserved member of the predicted NsrR regulon is the NO-detoxifying flavohemoglobin Hmp. In enterobacteria, the regulon also includes two nitrite-responsive loci, nipAB (hcp-hcr and nipC (dnrN, thus confirming the identity of the effector, i.e. nitrite. The proposed NsrR regulons in Neisseria and some other species are extended to include

  1. Simulating antler growth and energy, nitrogen, calcium and phosphorus metabolism in caribou

    Directory of Open Access Journals (Sweden)

    Ron Moen

    1998-03-01

    Full Text Available We added antler growth and mineral metabolism modules to a previously developed energetics model for ruminants to simulate energy and mineral balance of male and female caribou throughout an annual cycle. Body watet, fat, protein, and ash are monitored on a daily time step, and energy costs associated with reproduction and body mass changes are simulated. In order to simulate antler growth, we had to predict calcium and phosphorus metabolism as it is affected by antler growth, gestation, and lactation. We used data on dietary digestibility, protein, calcium and phosphorus content, and seasonal patterns in body mass to predict the energy, nitrogen, calcium, and phosphorus balances of a "generic" male and female caribou. Antler growth in males increased energy requirements during antler growth by 8 to 16%, depending on the efficiency with which energy was used for antler growth. Female energy requirements for antler growth were proportionately much smaller because of the smaller size of female antlers. Protein requirements for antler growth in both males and females were met by forage intake. Calcium and phosphorus must be resorbed from bone during peak antler growth in males, when > 25 g/day of calcium and > 12 g/day of phosphorus are being deposited in antlers. Females are capable of meeting calcium needs during antler growth without bone resorption, but phosphorus was resorbed from bone during the final stages of antler mineralization. After energy, phosphorus was most likely to limit growth of antlers for both males and females in our simulations. Input parameters can be easily changed to represent caribou from specific geographic regions in which dietary nutrient content or body mass patterns differ from those in our "generic" caribou. The model can be used to quantitatively analyze the evolutionary basis for development of antlers in female caribou, and the relationship between body mass and antler size in the Cervidae.

  2. Nitrogen metabolism and protozoa production rate in cattle fed on diet containing protected protein

    International Nuclear Information System (INIS)

    Singh, G.P.; Gupta, B.N.

    1992-01-01

    Nitrogen metabolism and protozoa production rate using 14 C-choline as marker were studied on 9 adult male crossbred (Tharparker x Brown Swiss) rumen fistulated animals divided into 3 groups (A, B and C). All the animals were fed concentrate mixture and wheatstraw. However, groundnut cake (GNC) in concentrate mixture was untreated in group A, 50 per cent formaldehyde treated in group B and 100 per cent formaldehyde treated in group C. Although, DM intake was similar in these groups but water intake was significantly (P<0.05) higher in control group. Total-N, ammonia-N and blood urea were significantly lower in group B and C as compared to group A. Apparent CP digestibility was not affected by addition of formaldehyde treated GNC at 50 and 100 per cent levels. However, N balances increased significantly (P<0.05) due to addition of protected protein in diet. Protozoal pool as well as production rate were significantly (P<0.01) decreased due to formaldehyde treatment of GNC protein. Thus addition of formaldehyde treated GNC in diets decreased ammonia and protozoa production but increased N retention in groups B and C. (author). 27 refs., 3 tabs., 2 figs

  3. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  4. Overexpressing of OsAMT1-3, a High Affinity Ammonium Transporter Gene, Modifies Rice Growth and Carbon-Nitrogen Metabolic Status

    Science.gov (United States)

    Bao, Aili; Liang, Zhijun; Zhao, Zhuqing; Cai, Hongmei

    2015-01-01

    AMT1-3 encodes the high affinity NH4+ transporter in rice roots and is predominantly expressed under nitrogen starvation. In order to evaluate the effect of AMT1-3 gene on rice growth, nitrogen absorption and metabolism, we generated AMT1-3-overexpressing plants and analyzed the growth phenotype, yield, carbon and nitrogen metabolic status, and gene expression profiles. Although AMT1-3 mRNA accumulated in transgenic plants, these plants displayed significant decreases in growth when compared to the wild-type plants. The nitrogen uptake assay using a 15N tracer revealed poor nitrogen uptake ability in AMT1-3-overexpressing plants. We found significant decreases in AMT1-3-overexpressing plant leaf carbon and nitrogen content accompanied with a higher leaf C/N ratio. Significant changes in soluble proteins and carbohydrates were also observed in AMT1-3-overexpressing plants. In addition, metabolite profile analysis demonstrated significant changes in individual sugars, organic acids and free amino acids. Gene expression analysis revealed distinct expression patterns of genes that participate in carbon and nitrogen metabolism. Additionally, the correlation between the metabolites and gene expression patterns was consistent in AMT1-3-overexpressing plants under both low and high nitrogen growth conditions. Therefore, we hypothesized that the carbon and nitrogen metabolic imbalance caused by AMT1-3 overexpressing attributed to the poor growth and yield of transgenic plants. PMID:25915023

  5. Overexpressing of OsAMT1-3, a High Affinity Ammonium Transporter Gene, Modifies Rice Growth and Carbon-Nitrogen Metabolic Status

    Directory of Open Access Journals (Sweden)

    Aili Bao

    2015-04-01

    Full Text Available AMT1-3 encodes the high affinity NH4+ transporter in rice roots and is predominantly expressed under nitrogen starvation. In order to evaluate the effect of AMT1-3 gene on rice growth, nitrogen absorption and metabolism, we generated AMT1-3-overexpressing plants and analyzed the growth phenotype, yield, carbon and nitrogen metabolic status, and gene expression profiles. Although AMT1-3 mRNA accumulated in transgenic plants, these plants displayed significant decreases in growth when compared to the wild-type plants. The nitrogen uptake assay using a 15N tracer revealed poor nitrogen uptake ability in AMT1-3-overexpressing plants. We found significant decreases in AMT1-3-overexpressing plant leaf carbon and nitrogen content accompanied with a higher leaf C/N ratio. Significant changes in soluble proteins and carbohydrates were also observed in AMT1-3-overexpressing plants. In addition, metabolite profile analysis demonstrated significant changes in individual sugars, organic acids and free amino acids. Gene expression analysis revealed distinct expression patterns of genes that participate in carbon and nitrogen metabolism. Additionally, the correlation between the metabolites and gene expression patterns was consistent in AMT1-3-overexpressing plants under both low and high nitrogen growth conditions. Therefore, we hypothesized that the carbon and nitrogen metabolic imbalance caused by AMT1-3 overexpressing attributed to the poor growth and yield of transgenic plants.

  6. The Assimilation of Diazotroph-Derived Nitrogen by Scleractinian Corals Depends on Their Metabolic Status

    Directory of Open Access Journals (Sweden)

    Vanessa N. Bednarz

    2017-01-01

    Full Text Available Tropical corals are associated with a diverse community of dinitrogen (N2-fixing prokaryotes (diazotrophs providing the coral an additional source of bioavailable nitrogen (N in oligotrophic waters. The overall activity of these diazotrophs changes depending on the current environmental conditions, but to what extent it affects the assimilation of diazotroph-derived N (DDN by corals is still unknown. Here, in a series of 15N2 tracer experiments, we directly quantified DDN assimilation by scleractinian corals from the Red Sea exposed to different environmental conditions. We show that DDN assimilation strongly varied with the corals’ metabolic status or with phosphate availability in the water. The very autotrophic shallow-water (~5 m corals showed low or no DDN assimilation, which significantly increased under elevated phosphate availability (3 µM. Corals that depended more on heterotrophy (i.e., bleached and deep-water [~45 m] corals assimilated significantly more DDN, which contributed up to 15% of the corals’ N demand (compared to 1% in shallow corals. Furthermore, we demonstrate that a substantial part of the DDN assimilated by deep corals was likely obtained from heterotrophic feeding on fixed N compounds and/or diazotrophic cells in the mucus. Conversely, in shallow corals, the net release of mucus, rich in organic carbon compounds, likely enhanced diazotroph abundance and activity and thereby the release of fixed N to the pelagic and benthic reef community. Overall, our results suggest that DDN assimilation by corals varies according to the environmental conditions and is likely linked to the capacity of the coral to acquire nutrients from seawater.

  7. Fasting or fear: disentangling the roles of predation risk and food deprivation in the nitrogen metabolism of consumers.

    Science.gov (United States)

    Dalton, Christopher M; Tracy, Karen E; Hairston, Nelson G; Flecker, Alexander S

    2018-03-01

    Predators can alter nutrient cycles simply by inducing stress in prey. This stress accelerates prey's protein catabolism, nitrogen waste production, and nitrogen cycling. Yet predators also reduce the feeding rates of their prey, inducing food deprivation that is expected to slow protein catabolism and nitrogen cycling. The physiology of prey under predation risk thus balances the influences of predation risk and food deprivation, and this balance is central to understanding the role of predators in nutrient cycles. We explored the separate and combined effects of predation risk and food deprivation on prey physiology and nutrient cycling by exposing guppies (Poecilia reticulata) to predation risk and food deprivation in a 2 × 2 design. We simulated predation risk using chemical cues from a natural predator of guppies, and we created food deprivation by rationing food availability. We measured guppy response as food consumption, growth, tissue energy density, tissue carbon:nitrogen, and nitrogen (N) excretion and assimilation. We found that N-linked physiological processes (N consumption, assimilation, excretion) were strongly affected by predation risk, independent of food consumption. Guppies excreted substantially less under predation risk than they did under food deprivation or control conditions. These results suggest that predation risk, per se, triggers physiological changes in guppies that increase N retention and decrease N excretion. We suggest that slower N metabolism under predation risk is an adaptive response that minimizes protein loss in the face of predictable, predator-induced food restriction. Notably, N metabolism shares common hormonal control with food seeking behavior, and we speculate that increased N retention is a direct and immediate result of reduced food seeking under predation risk. Contrary to predation-stress-based hypotheses for how predators affect nutrient cycling by prey, our result indicates that even short-term exposure to

  8. Metabolic features involved in drought stress tolerance mechanisms in peanut nodules and their contribution to biological nitrogen fixation.

    Science.gov (United States)

    Furlan, Ana Laura; Bianucci, Eliana; Castro, Stella; Dietz, Karl-Josef

    2017-10-01

    Legumes belong to the most important crops worldwide. They increase soil fertility due their ability to establish symbiotic associations with soil microorganisms, known as rhizobia, capable of fixing nitrogen from the atmosphere. However, they are frequently exposed to abiotic stress conditions in particular drought. Such adverse conditions impair the biological nitrogen fixation (BNF) and depend largely on the legume. Therefore, two peanut cultivars with contrasting tolerance to drought, namely the more tolerant EC-98 and the sensitive Granoleico, were investigated to elucidate the relative contribution of BNF to the tolerance to drought. The tolerant cultivar EC-98 sustained growth and BNF similar to the control condition despite the reduced water potential and photosynthesis, suggesting the functioning of distinct metabolic pathways that contributed to enhance the tolerance. The biochemical and metabolomics approaches revealed that nodules from the tolerant cultivar accumulated trehalose, proline and gamma-aminobutyric acid (GABA), metabolites with known function in protecting against drought stress. The amide metabolism was severely affected in nodules from the sensitive cultivar Granoleico as revealed by the low content of asparagine and glutamine in the drought stressed plants. The sensitive cultivar upon rehydration was unable to re-establish a metabolism similar to well-watered plants. This was evidenced by the low level of metabolites and, transcripts and specific activities of enzymes from the carbon (sucrose synthase) and nitrogen (glutamine synthetase) metabolism which decreased below the values of control plants. Therefore, the increased content of metabolites with protective functions under drought stress likely is crucial for the full restoration upon rehydration. Smaller changes of drought stress-related metabolites in nodule are another trait that contributes to the effective control of BNF in the tolerant peanut cultivar (EC-98). Copyright © 2017

  9. Nitrogen Fertilizer Dependency and Its Contradictions: A Theoretical Exploration of Social-Ecological Metabolism

    Science.gov (United States)

    Mancus, Philip

    2007-01-01

    The global agro-food system relies heavily on inorganic nitrogenous fertilizers. In addition to consuming enormous amounts of energy, this manufactured input contributes to the accumulation of reactive nitrogen in the biosphere and undermines the biological basis of agricultural production itself. While technological inefficiency and population…

  10. Calcium involved in the poly(γ-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism.

    Science.gov (United States)

    Xu, Zongqi; Lei, Peng; Feng, Xiaohai; Xu, Xianju; Liang, Jinfeng; Chi, Bo; Xu, Hong

    2014-07-01

    Plant growth can reportedly be promoted by poly(γ-glutamic acid) (γ-PGA). However, the underlying mechanism is unknown. To reveal the mechanism of γ-PGA, we designed an experiment that investigated the effect of γ-PGA on the nitrogen metabolism of Chinese cabbage hydroponic cultured at different calcium (Ca) levels and varied exogenous Ca(2+) inhibitors. The results showed that nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase, and glutamate dehydrogenase activities in leaves and roots were obviously enhanced by γ-PGA at the normal Ca(2+) level (4.0 mM). Meanwhile, γ-PGA increased the content of total nitrogen, soluble protein, and soluble amino acids in leaves. However, the promotional effect of γ-PGA on fresh weight weakened when Ca(2+) was inadequate. Moreover, γ-PGA not only induced the influx of extracellular Ca(2+) and Ca(2+) in organelles into cytoplasm, but also increased the Ca(2+)-ATPase level to modify Ca(2+) homeostasis in plant cells. In addition, exogenous Ca(2+) inhibitors significantly suppressed the γ-PGA-mediated promotion of cytoplasmic free Ca(2+) level, calmodulin (CaM) content, GS and glutamate dehydrogenase activities. In summary, γ-PGA accelerated the nitrogen metabolism of plants through the Ca(2+)/CaM signaling pathway, thereby improving the growth of the plant. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Nitrogen and carbon source balance determines longevity, independently of fermentative or respiratory metabolism in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Santos, Júlia; Leitão-Correia, Fernanda; Sousa, Maria João; Leão, Cecília

    2016-04-26

    Dietary regimens have proven to delay aging and age-associated diseases in several eukaryotic model organisms but the input of nutritional balance to longevity regulation is still poorly understood. Here, we present data on the role of single carbon and nitrogen sources and their interplay in yeast longevity. Data demonstrate that ammonium, a rich nitrogen source, decreases chronological life span (CLS) of the prototrophic Saccharomyces cerevisiae strain PYCC 4072 in a concentration-dependent manner and, accordingly, that CLS can be extended through ammonium restriction, even in conditions of initial glucose abundance. We further show that CLS extension depends on initial ammonium and glucose concentrations in the growth medium, as long as other nutrients are not limiting. Glutamine, another rich nitrogen source, induced CLS shortening similarly to ammonium, but this effect was not observed with the poor nitrogen source urea. Ammonium decreased yeast CLS independently of the metabolic process activated during aging, either respiration or fermentation, and induced replication stress inhibiting a proper cell cycle arrest in G0/G1 phase. The present results shade new light on the nutritional equilibrium as a key factor on cell longevity and may contribute for the definition of interventions to promote life span and healthy aging.

  12. The Nitrogen Moieties of Dietary Nonessential Amino Acids Are Distinctively Metabolized in the Gut and Distributed to the Circulation in Rats.

    Science.gov (United States)

    Nakamura, Hidehiro; Kawamata, Yasuko; Kuwahara, Tomomi; Sakai, Ryosei

    2017-08-01

    Background: Although previous growth studies in rodents have indicated the importance of dietary nonessential amino acids (NEAAs) as nitrogen sources, individual NEAAs have different growth-promoting activities. This phenomenon might be attributable to differences in the nitrogen metabolism of individual NEAAs. Objective: The aim of this study was to compare nitrogen metabolism across dietary NEAAs with the use of their 15 N isotopologues. Methods: Male Fischer rats (8 wk old) were given 1.0 g amino acid-defined diets containing either 15 N-labeled glutamate, glutamine (amino or amide), aspartate, alanine, proline, glycine, or serine hourly for 5-6 h. Then, steady-state amino acid concentrations and their 15 N enrichments in the gut and in portal and arterial plasma were measured by an amino acid analyzer and LC tandem mass spectrometry, respectively. Results: The intestinal 15 N distribution and portal-arterial balance of 15 N metabolites indicated that most dietary glutamate nitrogen (>90% of dietary input) was incorporated into various amino acids, including alanine, proline, and citrulline, in the gut. Dietary aspartate nitrogen, alanine nitrogen, and amino nitrogen of glutamine were distributed similarly to other amino acids both in the gut and in the circulation. In contrast, incorporation of the nitrogen moieties of dietary proline, serine, and glycine into other amino acids was less than that of other NEAAs, although interconversion between serine and glycine was very active. Cluster analysis of 15 N enrichment data also indicated that dietary glutamate nitrogen, aspartate nitrogen, alanine nitrogen, and the amino nitrogen of glutamine were distributed similarly to intestinal and circulating amino acids. Further, the analysis revealed close relations between intestinal and arterial 15 N enrichment for each amino acid. The steady-state 15 N enrichment of arterial amino acids indicated that substantial amounts of circulating amino acid nitrogen are derived

  13. A continuous-flow system for measuring in vitro oxygen and nitrogen metabolism in separated stream communities

    DEFF Research Database (Denmark)

    Prahl, C.; Jeppesen, E.; Sand-Jensen, Kaj

    1991-01-01

    on the stream bank, consists of several macrophyte and sediment chambers equipped with a double-flow system that ensures an internal water velocity close to that in the stream and which, by continuously renewing the water, mimics diel fluctuation in stream temperature and water chemistry. Water temperature...... production and dark respiration occurred at similar rates (6-7g O2 m-2 day-1), net balance being about zero. Inorganic nitrogen was consumed both by the sediment and to a greater extent by the macrophytes, the diel average consumption being 1g N m-2 day-1. 3. The sum of the activity in the macrophyte...... and sediment chambers corresponded to the overall activity of the stream section as determined by upstream/downstream mass balance. This indicates that the results obtained with the continuous-flow chambers realistically describe the oxygen and the nitrogen metabolism of the stream....

  14. Nitrification-driven forms of nitrogen metabolism in microbial mat communities thriving along an ammonium-enriched subsurface geothermal stream

    Science.gov (United States)

    Nishizawa, Manabu; Koba, Keisuke; Makabe, Akiko; Yoshida, Naohiro; Kaneko, Masanori; Hirao, Shingo; Ishibashi, Jun-ichiro; Yamanaka, Toshiro; Shibuya, Takazo; Kikuchi, Tohru; Hirai, Miho; Miyazaki, Junichi; Nunoura, Takuro; Takai, Ken

    2013-07-01

    We report here the concurrence and interaction among forms of nitrogen metabolism in thermophilic microbial mat communities that developed in an ammonium-abundant subsurface geothermal stream. First, the physical and chemical conditions of the stream water at several representative microbial mat habitats (including upper, middle and downstream sites) were characterized. A thermodynamic calculation using these physical and chemical conditions predicted that nitrification consisting of ammonia and nitrite oxidations would provide one of the largest energy yields of chemolithotrophic metabolisms. Second, near-complete prokaryotic 16S rRNA gene clone analysis was conducted for representative microbial mat communities at the upper, middle and downstream sites. The results indicated a dynamic shift in the 16S rRNA gene phylotype composition through physical and chemical variations of the stream water. The predominant prokaryotic components varied from phylotypes related to hydrogeno (H2)- and thio (S)-trophic Aquificales, thermophilic methanotrophs and putative ammonia-oxidizing Archaea (AOA) located upstream (72 °C) to the phylotypes affiliated with putative AOA and nitrite-oxidizing bacteria (NOB) located at the middle and downstream sites (65 and 57 °C, respectively). In addition, the potential in situ metabolic activities of different forms of nitrogen metabolism were estimated through laboratory experiments using bulk microbial mat communities. Finally, the compositional and isotopic variation in nitrogen compounds was investigated in the stream water flowing over the microbial mats and in the interstitial water inside the mats. Although the stream water was characterized by a gradual decrease in the total ammonia concentration (ΣNH3: the sum of ammonia and ammonium concentrations) and a gradual increase in the total concentration of nitrite and nitrate (NO2- + NO3-), the total inorganic nitrogen concentration (TIN: the sum of ΣNH3, NO2- and NO3- concentrations

  15. Luxurious Nitrogen Fertilization of Two Sugar Cane Genotypes Contrasting for Lignin Composition Causes Changes in the Stem Proteome Related to Carbon, Nitrogen, and Oxidant Metabolism but Does Not Alter Lignin Content.

    Science.gov (United States)

    Salvato, Fernanda; Wilson, Rashaun; Portilla Llerena, Juan Pablo; Kiyota, Eduardo; Lima Reis, Karina; Boaretto, Luis Felipe; Balbuena, Tiago S; Azevedo, Ricardo A; Thelen, Jay J; Mazzafera, Paulo

    2017-10-06

    Sugar cane is an important crop for sugar and biofuel production. Its lignocellulosic biomass represents a promising option as feedstock for second-generation ethanol production. Nitrogen fertilization can affect differently tissues and its biopolymers, including the cell-wall polysaccharides and lignin. Lignin content and composition are the most important factors associated with biomass recalcitrance to convert cell-wall polysaccharides into fermentable sugars. Thus it is important to understand the metabolic relationship between nitrogen fertilization and lignin in this feedstock. In this study, a large-scale proteomics approach based on GeLC-MS/MS was employed to identify and relatively quantify proteins differently accumulated in two contrasting genotypes for lignin composition after excessive nitrogen fertilization. From the ∼1000 nonredundant proteins identified, 28 and 177 were differentially accumulated in response to nitrogen from IACSP04-065 and IACSP04-627 lines, respectively. These proteins were associated with several functional categories, including carbon metabolism, amino acid metabolism, protein turnover, and oxidative stress. Although nitrogen fertilization has not changed lignin content, phenolic acids and lignin composition were changed in both species but not in the same way. Sucrose and reducing sugars increased in plants of the genotype IACSP04-065 receiving nitrogen.

  16. Nitrogen Metabolism in Lactating Goats Fed with Diets Containing Different Protein Sources

    Science.gov (United States)

    Santos, A. B.; Pereira, M. L. A.; Silva, H. G. O.; Pedreira, M. S.; Carvalho, G. G. P.; Ribeiro, L. S. O.; Almeida, P. J. P.; Pereira, T. C. J.; Moreira, J. V.

    2014-01-01

    This study aimed to evaluate urea excretion, nitrogen balance and microbial protein synthesis in lactating goats fed with diets containing different protein sources in the concentrate (soybean meal, cottonseed meal, aerial part of cassava hay and leucaena hay). Four Alpine goats whose mean body weight was 42.6±6.1 kg at the beginning of the experiment, a mean lactation period of 94.0±9.0 days and a production of 1.7±0.4 kg of milk were distributed in a 4×4 Latin square with four periods of 15 days. Diets were formulated to be isonitrogenous, containing 103.0 g/kg of CP, 400 g/kg of Tifton 85 hay and 600 g/kg of concentrate. Diet containing cottonseed meal provided (pexcretion of urea and urea nitrogen in the urine (g/d and mg/kg of BW) when compared with leucaena hay. The diets affected the concentrations of urea nitrogen in plasma (pexcretion of urea nitrogen in milk, being that soybean meal and cottonseed meal showed (pnitrogen excretion in urine and negative nitrogen balance, while the concentrate with leucaena hay as a source of protein, provides greater ruminal microbial protein synthesis. PMID:25050000

  17. Photoperiod length paces the temporal orchestration of cell cycle and carbon-nitrogen metabolism in Crocosphaera watsonii.

    Science.gov (United States)

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Talec, Amélie; Raimbault, Virginie; Sciandra, Antoine

    2013-12-01

    We analysed the effect of photoperiod length (PPL) (16:8 and 8:16 h of light-dark regime, named long and short PPL, respectively) on the temporal orchestration of the two antagonistic, carbon and nitrogen acquisitions in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii strain WH8501 growing diazotrophically. Carbon and nitrogen metabolism were monitored at high frequency, and their patterns were compared with the cell cycle progression. The oxygen-sensitive N2 fixation process occurred mainly during the dark period, where photosynthesis cannot take place, inducing a light-dark cycle of cellular C : N ratio. Examination of circadian patterns in the cell cycle revealed that cell division occurred during the midlight period, (8 h and 4 h into the light in the long and short PPL conditions, respectively), thus timely separated from the energy-intensive diazotrophic process. Results consistently show a nearly 5 h time lag between the end of cell division and the onset of N2 fixation. Shorter PPLs affected DNA compaction of C. watsonii cells and also led to a decrease in the cell division rate. Therefore, PPL paces the growth of C. watsonii: a long PPL enhances cell division while a short PPL favours somatic growth (biomass production) with higher carbon and nitrogen cell contents. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. Metabolic analysis of two contrasting wild barley genotypes grown hydroponically reveals adaptive strategies in response to low nitrogen stress.

    Science.gov (United States)

    Quan, Xiaoyan; Qian, Qiufeng; Ye, Zhilan; Zeng, Jianbin; Han, Zhigang; Zhang, Guoping

    2016-11-01

    Nitrogen (N) is an essential macronutrient for plants. The increasingly severe environmental problems caused by N fertilizer application urge alleviation of N fertilizer dependence in crop production. In previous studies, we identified the Tibetan wild barley accessions with high tolerance to low nitrogen (LN). In this study, metabolic analysis was done on two wild genotypes (XZ149, tolerant and XZ56, sensitive) to understand the mechanism of LN tolerance, using a hydroponic experiment. Leaf and root samples were taken at seven time points within 18 d after LN treatment, respectively. XZ149 was much less affected by low N stress than XZ56 in plant biomass. A total of 51 differentially accumulated metabolites were identified between LN and normal N treated plants. LN stress induced tissue-specific changes in carbon and nitrogen partitioning, and XZ149 had a pattern of energy-saving amino acids accumulation and carbon distribution in favor of root growth that contribute to its higher LN tolerance. Moreover, XZ149 is highly capable of producing energy and maintaining the redox homeostasis under LN stress. The current results revealed the mechanisms underlying the wild barley in high LN tolerance and provided the valuable references for developing barley cultivars with LN tolerance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. The influence of potassium and calcium ions on nitrogen metabolism of cucumber seedlings

    Directory of Open Access Journals (Sweden)

    Genowefa Kubik-Dobosz

    2014-01-01

    Full Text Available It was found that K+ or Ca2+ deficiency in a nitrate or ammonium medium increased the amount of accumulated total and non-protein nitrogen in some organs of cucumber seedlings, as also caused changes in accumulated potassium and calcium. Lack of K+ or Ca2+ in a medium which did not contain nitrogen led to an increased level of glutamate dehydrogenase, alanine aminotransferase and aspartate aminotransferase activity in the cotyledons and roots of cucumbers. Similar changes in the activity of these enzymes were noted in certain organs of seedlings growing in nitrate or ammonium medium with decreased K+ or Ca2+ contents, although the magnitude of these changes depended upon the applied dosage of these cations, the form of mineral nitrogen, developmental phase of plants and the plant organ dealt with.

  20. Ammonia stress on nitrogen metabolism in tolerant aquatic plant-Myriophyllum aquaticum.

    Science.gov (United States)

    Zhou, Qingyang; Gao, Jingqing; Zhang, Ruimin; Zhang, Ruiqin

    2017-09-01

    Ammonia has been a major reason of macrophyte decline in the water environment, and ammonium ion toxicity should be seen as universal, even in species frequently labeled as "NH 4 + specialists". To study the effects of high NH 4 + -N stress of ammonium ion nitrogen on tolerant submerged macrophytes and investigate the pathways of nitrogen assimilation in different organisms, Myriophyllum aquaticum was selected and treated with various concentrations of ammonium ions at different times. Increasing of ammonium concentration leads to an overall increase in incipient ammonia content in leaves and stems of plants. In middle and later stages, high concentrations of NH 4 + ion nitrogen taken up by M. aquaticum decreased, whereas the content of NO 3 - ion nitrogen increased. Moreover, in M. aquaticum, the activities of the enzymes nitrate reductase, glutamine synthetase and asparagine synthetase changed remarkably in the process of alleviating NH 4 + toxicity and deficiency. The results of the present study may support the studies on detoxification of high ammonium ion content in NH 4 + -tolerant submerged macrophytes and exploration of tissue-specific expression systems. Copyright © 2017. Published by Elsevier Inc.

  1. Influence of nutrient supply on growth, carbohydrate, and nitrogen metabolic relations in Typha angustifolia

    Czech Academy of Sciences Publication Activity Database

    Steibachová; Vojtíšková, L.; Tylová, E.; Soukup, A.; Novická, H.; Votrubová, O.; Lipavslá, H.; Čížková, Hana

    2006-01-01

    Roč. 57, - (2006), s. 246-257 ISSN 0098-8472 Institutional research plan: CEZ:AV0Z60870520 Keywords : Wetland plant * Nitrogen * Phosphorus * Storage carbohydrates * Starch * C/N balance * Eutrophication Subject RIV: EF - Botanics Impact factor: 1.820, year: 2006

  2. Polyol synthesis in Aspergillus niger : influence of oxygen availability, carbon and nitrogen sources on the metabolism

    DEFF Research Database (Denmark)

    Diano, Audrey; Bekker-Jensen, S; Dynesen, Jens Østergaard

    2006-01-01

    Polyol production has been studied in Aspergillus niger under different conditions. Fermentations have been run using high concentration of glucose or xylose as carbon source and ammonium or nitrate as nitrogen source. The growth of biomass, as freely dispersed hyphae, led to an increase of medium...

  3. Carbon and nitrogen metabolism of free-living Frankia spp. and of Frankia-alnus symbioses

    NARCIS (Netherlands)

    Blom, J.

    1982-01-01

    The research reported in this thesis deals with the symbiosis of Frankia spp. and Alnus glutinosa. Frankia spp. are actinomycetes giving rise to the formation of nitrogen-fixing nodules on the roots of a number of non-leguminous plants. In these nodules

  4. Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants.

    Science.gov (United States)

    Wang, Huan; Wu, Zhihai; Han, Jiayu; Zheng, Wei; Yang, Chunwu

    2012-01-01

    Alkali stress is an important agricultural contaminant and has complex effects on plant metabolism. The aim of this study was to investigate whether the alkali stress has different effects on the growth, ion balance, and nitrogen metabolism in old and young leaves of rice plants, and to compare functions of both organs in alkali tolerance. The results showed that alkali stress only produced a small effect on the growth of young leaves, whereas strongly damaged old leaves. Rice protected young leaves from ion harm via the large accumulation of Na(+) and Cl(-) in old leaves. The up-regulation of OsHKT1;1, OsAKT1, OsHAK1, OsHAK7, OsHAK10 and OsHAK16 may contribute to the larger accumulation of Na(+) in old leaves under alkali stress. Alkali stress mightily reduced the NO(3)(-) contents in both organs. As old leaf cells have larger vacuole, under alkali stress these scarce NO(3)(-) was principally stored in old leaves. Accordingly, the expression of OsNRT1;1 and OsNRT1;2 in old leaves was up-regulated by alkali stress, revealing that the two genes might contribute to the accumulation of NO(3)(-) in old leaves. NO(3)(-) deficiency in young leaves under alkali stress might induce the reduction in OsNR1 expression and the subsequent lacking of NH(4)(+), which might be main reason for the larger down-regulation of OsFd-GOGAT and OsGS2 in young leaves. Our results strongly indicated that, during adaptation of rice to alkali stress, young and old leaves have distinct mechanisms of ion balance and nitrogen metabolism regulation. We propose that the comparative studies of young and old tissues may be important for abiotic stress tolerance research.

  5. Community metabolism of aquatic Closed Ecological Systems: Effects of nitrogen sources

    Science.gov (United States)

    Taub, Frieda B.

    2009-10-01

    To investigate the effect of nitrogen sources on Closed Ecological Systems (CESs), three nitrogen sources (NaNO 3, sodium nitrate; NH 4Cl, ammonium chloride; and NH 4NO 3, ammonium nitrate) were each tested in freshwater CESs consisting of a chemically defined medium, three species of green algae ( Ankistrodesmus, S cenedesmus, and Selenastrum), the grazer Daphnia magna, and associated microbes, under 12 h light/12 h dark cycles. It had been hypothesized that the development of high pH in earlier CESs was the result of nitrate utilization, and that ammonium might result in acid conditions, while ammonium nitrate might result in more moderate pH. The three nitrogen sources supported similar densities of algae (estimated by in vivo fluorescence) and similar Daphnia populations. The experiments showed that pH levels rapidly increased when grazers were absent or at low abundances irrespective of the nitrogen source. Consequently, it is hypothesized that carbon cycles, rather than nitrogen sources, are responsible for the pH dynamics. Oxygen diurnal (light:dark) cycles tended to come into balance more quickly than pH. It may be more feasible to convert O 2 data to energy units (using "oxycalorific" values) than CO 2 data since CO 2 dynamics may include other chemical reactions than just photosynthesis and respiration. The feasibility of sustaining grazer populations for at least several weeks in small, simple CESs was demonstrated, along with the ability to monitor algae-grazer dynamics, and the recording of O 2 and pH measurements.

  6. Metabolic pathways for lipid synthesis under nitrogen stress in Chlamydomonas and Nannochloropsis.

    Science.gov (United States)

    Banerjee, Avik; Maiti, Subodh K; Guria, Chandan; Banerjee, Chiranjib

    2017-01-01

    Microalgae are currently being considered as a clean, sustainable and renewable energy source. Enzymes that catalyse the metabolic pathways for biofuel production are specific and require strict regulation and co-ordination. Thorough knowledge of these key enzymes along with their regulatory molecules is essential to enable rational metabolic engineering, to drive the metabolic flux towards the desired metabolites of importance. This paper reviews two key enzymes that play their role in production of bio-oil: DGAT (acyl-CoA:diacylglycerol acyltransferase) and PDAT (phospholipid:diacylglycerol acyltransferase). It also deals with the transcription factors that control the enzymes while cell undergoes a metabolic shift under stress. The paper also discusses the association of other enzymes and pathways that provide substrates and precursors for oil accumulation. Finally a futuristic solution has been proposed about a synthetic algal cell platform that would be committed towards biofuel synthesis.

  7. The Stable Level of Glutamine synthetase 2 Plays an Important Role in Rice Growth and in Carbon-Nitrogen Metabolic Balance

    Science.gov (United States)

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2015-01-01

    Glutamine synthetase 2 (GS2) is a key enzyme involved in the ammonium metabolism in plant leaves. In our previous study, we obtained GS2-cosuppressed plants, which displayed a normal growth phenotype at the seedling stage, while at the tillering stage they showed a chlorosis phenotype. In this study, to investigate the chlorosis mechanism, we systematically analyzed the plant growth, carbon-nitrogen metabolism and gene expressions between the GS2-cosuppressed rice and wild-type plants. The results revealed that the GS2-cosuppressed plants exhibited a poor plant growth phenotype and a poor nitrogen transport ability, which led to nitrogen accumulation and a decline in the carbon/nitrogen ratio in the stems. Interestingly, there was a higher concentration of soluble proteins and a lower concentration of carbohydrates in the GS2-cosuppressed plants at the seedling stage, while a contrasting result was displayed at the tillering stage. The analysis of the metabolic profile showed a significant increase of sugars and organic acids. Additionally, gene expression patterns were different in root and leaf of GS2-cosuppressed plants between the seedling and tillering stage. These results indicated the important role of a stable level of GS2 transcription during normal rice development and the importance of the carbon-nitrogen metabolic balance in rice growth. PMID:26053400

  8. Effect of nutrient starvation on some aspects of nitrogen metabolism in substrate-grown strawberry plantings cv. Nyoho

    Directory of Open Access Journals (Sweden)

    Petrović Anamarija

    2013-01-01

    Full Text Available Three-week nitrogen (N supply restriction is a way to stimulate early and uniform flower induction in forced June-bearing nursery strawberry production in Japan. In the first weeks after planting into excessively-fertigated substrates, N-starved plantings undergo drastic changes in their N utilization and N metabolism, often facing symptoms of interveinal chlorosis in their young expanding leaves. Interveinal chlorosis is reflected in delayed plant development, and consequently in yield reduction. Characterizing variations in main parameters of N metabolism in plant tissues in N-fed and N-starved strawberry plantings cv. Nyoho, this report portrays the pattern of changes in N metabolism during the nursery period. Results show that foliar NH4-N and petiole NO3-N concentrations and N-assimilating enzymes activities in plant tissue were significantly reduced due to the N-starvation, making young plants unlikely to be adaptive to N rich nutrition after planting, and that subsequent NH4-N accumulation in plant tissues can lead to sever interveinal chlorosis.

  9. Macroalgae δ15N values in well-mixed estuaries: Indicator of anthropogenic nitrogen input or macroalgae metabolism?

    Science.gov (United States)

    Raimonet, Mélanie; Guillou, Gaël; Mornet, Françoise; Richard, Pierre

    2013-03-01

    Although nitrogen stable isotope ratio (δ15N) in macroalgae is widely used as a bioindicator of anthropogenic nitrogen inputs to the coastal zone, recent studies suggest the possible role of macroalgae metabolism in δ15N variability. Simultaneous determinations of δ15N of dissolved inorganic nitrogen (DIN) along the land-sea continuum, inter-species variability of δ15N and its sensitivity to environmental factors are necessary to confirm the efficiency of macroalgae δ15N in monitoring nitrogen origin in mixed-use watersheds. In this study, δ15N of annual and perennial macroalgae (Ulva sp., Enteromorpha sp., Fucus vesiculosus and Fucus serratus) are compared to δ15N-DIN along the Charente Estuary, after characterizing δ15N of the three main DIN sources (i.e. cultivated area, pasture, sewage treatment plant outlet). During late winter and spring, when human activities produce high DIN inputs, DIN sources exhibit distinct δ15N signals in nitrate (NO) and ammonium (NH): cultivated area (+6.5 ± 0.6‰ and +9.0 ± 11.0‰), pasture (+9.2 ± 1.8‰ and +12.4‰) and sewage treatment plant discharge (+16.9 ± 8.7‰ and +25.4 ± 5.9‰). While sources show distinct δN- in this multiple source catchment, the overall mixture of NO sources - generally >95% DIN - leads to low variations of δN-NO at the mouth of the estuary (+7.7 to +8.4‰). Even if estuarine δN-NO values are not significantly different from pristine continental and oceanic site (+7.3‰ and +7.4‰), macroalgae δ15N values are generally higher at the mouth of the estuary. This highlights high anthropogenic DIN inputs in the estuary, and enhanced contribution of 15N-depleted NH in oceanic waters. Although seasonal variations in δN-NO are low, the same temporal trends in macroalgae δ15N values at estuarine and oceanic sites, and inter-species differences in δ15N values, suggest that macroalgae δ15N values might be modified by the metabolic response of macroalgae to environmental parameters (e

  10. Fluoroacetate metabolism in Gleocapsa sp. LB795 and its relationship to acetylene reduction (nitrogen fixation)

    Energy Technology Data Exchange (ETDEWEB)

    Gallon, J.R.; Ul-Haque, M.I.; Chaplin, A.E.

    1978-01-01

    Sodium fluoroacetate (1 mM) caused an accumulation of citrate and altered the lipid composition in cells of Gloeocapsa sp. LB795. Acetylene reduction (nitrogen fixation) was also inhibited by the alga - markedly under aerobic conditions, but much less so in the absence of oxygen. This inhibition is largely the result of the conversion of fluoroacetate to fluorocitrate which, by inhibiting aconitate hydratase (EC 4.2.1.3), interrupts the synthesis of the 2-oxoglutarate required for the assimilation of NH/sub 4//sup +/. The consequent accumulation of NH/sub 4//sup +/ within the cells of Gloeocapsa sp. inhibits nitrogenase synthesis and, since oxygen rapidly inactivates pre-existing nitrogenase, nitrogen fixation by Gloeocapsa sp. decreases under aerobic conditions. 17 references, 6 tables.

  11. Root-to-seed transport and metabolism of fixed nitrogen in soybean

    International Nuclear Information System (INIS)

    McClure, P.R.

    1983-01-01

    The great energetic demand of nitrogen fixation to support growth of the exceptionally high-N seeds is certainly a major yield barrier for soybeans. Transport of carbohydrate energy supplies to the root and of fixed nitrogen (N) from the root appear to contribute to the yield barrier, also. N is loaded into the soybean xylem stream principally as allantoin (ALL), and allantonic acid (ALLA), but xylem carries only dilute N and cannot reach the seeds at sufficient rate to support their N needs. Explants consisting of stem and a few leaves and pods were allowed to take up 14 C- and/or 15 N-ALL/ALLA in synthetic xylem sap. The 14 C label was found to become fairly quantitatively immobilized in leaves. The N (and 15 N label) almost certainly is separated from the C( 14 C label) at this time

  12. Effect of carbon/nitrogen ratio on carbohydrate metabolism and light energy dissipation mechanisms in Arabidopsis thaliana.

    Science.gov (United States)

    Huarancca Reyes, Thais; Scartazza, Andrea; Lu, Yu; Yamaguchi, Junji; Guglielminetti, Lorenzo

    2016-08-01

    Carbon (C) and nitrogen (N) nutrient sources are essential elements for metabolism, and their availability must be tightly coordinated for the optimal growth and development in plants. Plants are able to sense and respond to different C/N conditions via specific partitioning of C and N sources and the regulation of a complex cellular metabolic activity. We studied how the interaction between C and N signaling could affect carbohydrate metabolism, soluble sugar levels, photochemical efficiency of photosystem II (PSII) and the ability to drive the excess energy in Arabidopsis seedlings under moderated and disrupted C/N-nutrient conditions. Invertase and sucrose synthase activities were markedly affected by C/N-nutrient status depending on the phosphorylation status, suggesting that these enzymes may necessarily be modulated by their direct phosphorylation or phosphorylation of proteins that form complex with them in response to C/N stress. In addition, the enzymatic activity of these enzymes was also correlated with the amount of sugars, which not only act as substrate but also as signaling compounds. Analysis of chlorophyll fluorescence in plants under disrupted C/N condition suggested a reduction of electron transport rate at PSII level associated with a higher capacity for non-radiative energy dissipation in comparison with plants under moderated C/N condition. In conclusion, the tight coordination between C and N not only affects the carbohydrates metabolism and their concentration within plant tissues, but also the partitioning of the excitation energy at PSII level between radiative (electron transport) and non-radiative (heat) dissipation pathways. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Interactive effects of water and controlled release urea on nitrogen metabolism, accumulation, translocation, and yield in summer maize

    Science.gov (United States)

    Li, Guanghao; Zhao, Bin; Dong, Shuting; Zhang, Jiwang; Liu, Peng; Vyn, Tony J.

    2017-10-01

    To investigate the interactive effects of water and N from controlled release urea (CRU) on N metabolism, accumulation, translocation, and yield in Zhengdan958 (a summer maize cultivar planted widely in China), three water levels (adequate water W3, mild water stress W2, severe water stress W1) and four amounts of CRU (N) (N0, N1, N2, and N3 were 0, 105, 210, and 315 kg N ha-1, respectively) were carried out under the waterproof shed and soil column conditions. The results showed that yield, N metabolism, accumulation, and translocation were significantly affected by water, CRU, and their interactions after tasseling. Yields showed an increasing trend in response to N rates from 100.2 to 128.8 g plant-1 under severe water stress (W1), from 124.7 to 174.6 g plant-1 under mild water stress (W2), and from 143.7 to 177.0 g plant-1 under adequate water conditions (W3). There was an associated optimum amount of N for each water level. Under W1 and W2, N3 treatments showed significant advantages in three N metabolism enzymes' activities and the N accumulations, and yield and its components were highest. But the nitrogen harvest index (NHI) of N3 had no significant difference with other nitrogen treatments. Under W3, the N translocation efficiency (NTE) and N translocation conversion rate (NTCR) of N2 in stem and leaf were higher than those of N3, but the N metabolism enzymes' activities and yields of N2 and N3 had no significant difference, which indicated that N2 was superior to N3. The N3 treatment under W2 and N2 under W3 increased the N accumulation capacity in maize grain as well as the N translocation to grain that contributed to the increase of 1000-gain weight and grains per ear after tasseling. Under this experimental condition, a CRU rate of 225 kg ha-1 was the best treatment when the soil moisture content was 75 ± 5% of field capacity, but an N rate of 300 kg ha-1 was superior when soil moisture content was maintained at 55 ± 5% of field capacity during the

  14. Metabolic Impacts of Using Nitrogen and Copper-Regulated Promoters to Regulate Gene Expression in Neurospora crassa.

    Science.gov (United States)

    Ouyang, Shouqiang; Beecher, Consuelo N; Wang, Kang; Larive, Cynthia K; Borkovich, Katherine A

    2015-07-20

    The filamentous fungus Neurospora crassa is a long-studied eukaryotic microbial system amenable to heterologous expression of native and foreign proteins. However, relatively few highly tunable promoters have been developed for this species. In this study, we compare the tcu-1 and nit-6 promoters for controlled expression of a GFP reporter gene in N. crassa. Although the copper-regulated tcu-1 has been previously characterized, this is the first investigation exploring nitrogen-controlled nit-6 for expression of heterologous genes in N. crassa. We determined that fragments corresponding to 1.5-kb fragments upstream of the tcu-1 and nit-6 open reading frames are needed for optimal repression and expression of GFP mRNA and protein. nit-6 was repressed using concentrations of glutamine from 2 to 20 mM and induced in medium containing 0.5-20 mM nitrate as the nitrogen source. Highest levels of expression were achieved within 3 hr of induction for each promoter and GFP mRNA could not be detected within 1 hr after transfer to repressing conditions using the nit-6 promoter. We also performed metabolic profiling experiments using proton NMR to identify changes in metabolite levels under inducing and repressing conditions for each promoter. The results demonstrate that conditions used to regulate tcu-1 do not significantly change the primary metabolome and that the differences between inducing and repressing conditions for nit-6 can be accounted for by growth under nitrate or glutamine as a nitrogen source. Our findings demonstrate that nit-6 is a tunable promoter that joins tcu-1 as a choice for regulation of gene expression in N. crassa. Copyright © 2015 Ouyang et al.

  15. Responses of nitrogen metabolism and seed nutrition to drought stress in soybean genotypes differing in slow-wilting phenotype

    Directory of Open Access Journals (Sweden)

    Nacer eBellaloui

    2013-12-01

    Full Text Available Recent advances in soybean breeding have resulted in genotypes that express the slow-wilting phenotype (trait under drought stress conditions. The physiological mechanisms of this trait remain unknown due to the complexity of trait × environment interactions. The objective of this research was to investigate nitrogen metabolism and leaf and seed nutrients composition of the slow-wilting soybean genotypes under drought stress conditions. A repeated greenhouse experiment was conducted using check genotypes: NC-Roy (fast wilting, Boggs (intermediate in wilting; and NTCPR94-5157 and N04-9646 (slow-wilting, SLW genotypes. Plants were either well-watered or drought stressed. Results showed that under well-watered conditions, nitrogen fixation (NF, nitrogen assimilation (NA, and leaf and seed composition differed between genotypes. Under drought stress, NF and NA were higher in NTCPR94-5157 and N04-9646 than in NC-Roy and Boggs. Under severe water stress, however, NA was low in all genotypes. Leaf water potential was significantly lower in checks (-2.00 MPa than in the SLW genotypes (-1.68 MPa. Leaf and seed concentrations of K, P, Ca, Cu, Na, B were higher in SLW genotypes than in the checks under drought stress conditions. Seed protein, oleic acid, and sugars were higher in SLW genotypes, and oil, linoleic and linolenic acids were lower in SLW genotypes. This research demonstrated that K, P, Ca, Cu, Na, and B may be involved in SLW trait by maintaining homeostasis and osmotic regulation. Maintaining higher leaf water potential in NTCPR94-5157 and N04-9646 under drought stress could be a possible water conservation mechanism to maintain leaf turgor pressure. The increase in osmoregulators such as minerals, raffinose and stachyose, and oleic acid could be beneficial for soybean breeders in selecting for drought stress tolerance.

  16. Nitrogen acquisition, transport and metabolism in intact ectomycorrhizal associations studied by 15N stable isotope techniques

    International Nuclear Information System (INIS)

    Ek, H.

    1993-05-01

    The focus of this thesis is on the external mycelium and its role in nitrogen uptake, assimilation and translocation. Tree seedlings in association with ectomycorrhizal fungi were grown in observation chambers. The fungal mycelium were fed with 15-N ammonium or 15-N nitrate or a combination of both. The effects of Collembola on the ectomycorrhizal symbiosis were also studied. The results demonstrates an important role of the external mycelium of Paxillus involutus not only in the uptake but also in the assimilation of ammonium into a variety of different amino acids, primarily glutamine but also glutamic acid, aspartic acid, and alanine, immediately after uptake. The results indicate that ammonium is assimilated by GS and GOGAT or GDH in the mycelium at the uptake site. When nitrate was added to the mycelium as the sole nitrogen source nitrate was reduced in the mycelium and the product assimilated into amino acids. When ammonium nitrate was supplied to the fungal mycelium nitrate was taken up the fungus and transferred to the plant, however, apparently no assimilation of nitrate occurred in the external mycelium. Ammonium or an assimilation product, such as glutamine, probably represses nitrate reductase (NR) but not nitrate uptake and transfer in P. involutus. P. involutus nitrogen uptake and transfer to the associated mycorrhizal pine was up to 76% higher when low numbers of the Collembola Onychiurus armatus were present compared to when they were completely absent. This was probably an indirect effect as P. involutus hyphal growth rate and extramatrical biomass increased at a low Collembola density. At high Collembola densities P. involutus hyphal growth rate was retarded. (74 refs.)

  17. Functions of Glutamine Synthetase Isoforms in the Nitrogen Metabolism of Plants

    DEFF Research Database (Denmark)

    Guan, Miao

    Nitrogen is one of the major plant nutrients limiting crop production worldwide. In many parts of the world the availability of N fertilizers is limited, whereas in other parts of the world too much N fertilizer is applied, leading to serious negative environmental consequences. The use of N...... but primary root development during seed germination was reduced in the presence of external N. Gln1;2 promoter-GFP construct showed that Gln1;2 expression was localized to the vascular cells of roots, petals, and stamens. A novel compensatory interaction between Gln1;1 and Gln1;2 was shown since shoot Gln1...

  18. The effect of zilpaterol hydrochloride supplementation on energy metabolism and nitrogen and carbon retention of steers fed at maintenance and fasting intake levels

    Science.gov (United States)

    An indirect calorimetry trial examined energy metabolism, apparent nutrient digestibility (appND), carbon retention (CR) and nitrogen retention (NR) of cattle supplemented with zilpaterol hydrochloride (Z). Beef steers (n=20; 463 ± 14 kg) blocked (n=5) by weight and source were individually fed and ...

  19. Ruminal nitrogen metabolism in steers as affected by feed intake and dietary urea concentration

    International Nuclear Information System (INIS)

    Firkins, J.L.; Berger, L.L.; Merchen, N.R.; Fahey, G.C. Jr.; Mulvaney, R.L.

    1987-01-01

    Four multiple-cannulated steers (340 kg) were used in a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. Steers were fed a diet of 50% ground hay and 50% concentrate at two intakes (1.4 and 2.1% of BW), with urea and 15 N-enriched ammonium sulfate infused continuously into the rumen at .4 or 1.2% of diet DM. Ratios of purines and diaminopimelic acid-N to N in fluid-associated and particulate-associated bacteria and in protozoa were similar among treatments but were lower for protozoa than for bacteria. Diaminopimelic acid-N:N was higher for fluid-associated vs. particulate-associated bacteria. Enrichment of 15 N was similar between bacteria among treatments and was 30% lower for protozoa. Turnover rates of 15 N in bacteria, NH 3 N, and non-HN 3 N pools were faster for steers infused with 1.2 than those infused with .4% urea, indicating less efficient usage of ammonia with higher urea. A method is described to estimate the proportion of duodenal nitrogen comprising bacterial and protozoal nitrogen

  20. Zn-biofortification enhanced nitrogen metabolism and photorespiration process in green leafy vegetable Lactuca sativa L.

    Science.gov (United States)

    Barrameda-Medina, Yurena; Lentini, Marco; Esposito, Sergio; Ruiz, Juan M; Blasco, Begoña

    2017-04-01

    Excessive rates of nitrogen (N) fertilizers may result in elevated concentrations of nitrate (NO 3 - ) in plants. Considering that many programs of biofortification with trace elements are being performed, it has become important to study how the application of these elements affects plant physiology and, particularly, N utilization in leaf crops. The main objective of the present study was to determine whether the NO 3 - accumulation and the nitrogen use efficiency was affected by the application of different doses of Zn in Lactuca sativa plants. Zn doses in the range 80-100 µmol L -1 produced an increase in Zn concentration provoking a decrease of NO 3 - concentration and increase of the nitrate reductase, glutamine synthetase and aspartate aminotransferase activities, as well as the photorespiration processes. As result, we observed an increase in reduced N, total N concentration and N utilization efficiency. Consequently, at a dose of 80 µmol L -1 of Zn, the amino acid concentration increased significantly. Adequate Zn fertilization is an important critical player in lettuce, especially at a dose of 80 µmol L -1 of Zn, because it could result in an increase in the Zn concentration, a reduction of NO 3 - levels and an increase the concentration of essential amino acids, with all of them having beneficial properties for the human diet. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  1. Proteomic analysis revealed nitrogen-mediated metabolic, developmental, and hormonal regulation of maize (Zea mays L.) ear growth.

    Science.gov (United States)

    Liao, Chengsong; Peng, Yunfeng; Ma, Wei; Liu, Renyi; Li, Chunjian; Li, Xuexian

    2012-09-01

    Optimal nitrogen (N) supply is critical for achieving high grain yield of maize. It is well established that N deficiency significantly reduces grain yield and N oversupply reduces N use efficiency without significant yield increase. However, the underlying proteomic mechanism remains poorly understood. The present field study showed that N deficiency significantly reduced ear size and dry matter accumulation in the cob and grain, directly resulting in a significant decrease in grain yield. The N content, biomass accumulation, and proteomic variations were further analysed in young ears at the silking stage under different N regimes. N deficiency significantly reduced N content and biomass accumulation in young ears of maize plants. Proteomic analysis identified 47 proteins with significant differential accumulation in young ears under different N treatments. Eighteen proteins also responded to other abiotic and biotic stresses, suggesting that N nutritional imbalance triggered a general stress response. Importantly, 24 proteins are involved in regulation of hormonal metabolism and functions, ear development, and C/N metabolism in young ears, indicating profound impacts of N nutrition on ear growth and grain yield at the proteomic level.

  2. Growth kinetics, fatty acid composition and metabolic activity changes of Crypthecodinium cohnii under different nitrogen source and concentration.

    Science.gov (United States)

    Safdar, Waseem; Shamoon, Muhammad; Zan, Xinyi; Haider, Junaid; Sharif, Hafiz Rizwan; Shoaib, Muhammad; Song, Yuanda

    2017-12-01

    The effect of varying concentrations of the nitrogen source on the growth kinetics, lipid accumulation, lipid and DHA productivity, and fatty acid composition of C. cohnii was elucidated. Growth of C. cohnii was in three distinct growth stages: cell growth, lipid accumulation and a final lipid turnover stage. Most of lipids were accumulated in lipid accumulation stage (48-120 h) though, slow growth rate was observed during this stage. NaNO 3 supported significantly higher lipid content (26.9% of DCW), DHA content (0.99 g/L) and DHA yield (44.2 mg/g glucose) which were 2.5 to 3.3-folds higher than other N-sources. The maximum level of C16-C18 content (% TFA) was calculated as 43, 54 and 43% in lipid accumulation stage under low nitrogen (LN, 0.2 g/L), medium nitrogen (MN, 0.8 g/L) and high nitrogen (HN, 1.6 g/L) treatments, respectively. Cultures with LN, by down-regulating cell metabolism, trigger onset of lipogenic enzymes. Conversely, NAD + /NADP + -dependent isocitrate dehydrogenase (NAD + /NADP + -ICDH) were less active in LN than HN treatments which resulted in retardation of Kreb's Cycle and thereby divert citrate into cytoplasm as substrate for ATP-citrate lyase (ACL). Thereby, ACL and fatty acid synthase (FAS) were most active in lipid accumulation stage at LN treatments. Glucose-6-phosphate dehydrogenase (G6PDH) was more active than malic enzyme (ME) in lipid accumulation stage and showed higher activities in NaNO 3 than other N-sources. This represents that G6PDH contributes more NADPH than ME in C. cohnii. However, G6PDH and ME together seems to play a dual role in offering NADPH for lipid biosynthesis. This concept of ME together with G6PD in offering NADPH for lipogenesis might be novel in this alga and needed to be explored.

  3. Correlative Studies on Plant Growth and Metabolism II. Effect of Light and of Gibberellic Acid on the Changes in Protein and Soluble Nitrogen in Lettuce Seedlings

    Science.gov (United States)

    Rai, Vinay K.; Laloraya, Manmohan M.

    1967-01-01

    Protein and soluble nitrogen distribution in different parts of lettuce seedling was studied in light and darkness and in presence and absence of gibberellic acid. In dark, applied gibberellic acid failed to show any marked effect on the nitrogen changes in lettuce. Light inhibits translocation of nitrogen reserves from the cotyledons. Gibberellic acid reverses the light inhibition of longitudinal growth but has no effect on the inhibition of translocation from the cotyledons. Light grown, gibberellic acid treated seedlings exhibit a pattern of protein and soluble-N which is characteristic of the dark grown seedlings. Thus gibberellic acid not only causes morphological reversal of light inhibition but also shifts the nitrogen metabolism of light grown plants, close to that of plants grown in darkness. PMID:16656523

  4. Changes in amino acid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill.

    Science.gov (United States)

    Boggio; Palatnik; Heldt; Valle

    2000-10-16

    The free amino acid content of tomato (Lycopersicon esculentum Mill.) fruits from cultivars Platense, Vollendung and Cherry were determined during ripening. It was found that glutamate markedly increased in red fruits of the three cultivars under study. At this stage, the cv Cherry had the highest relative glutamate molar content (52%) of all the analyzed tomato fruit cultivars. Measurements of nitrogen-assimilating enzyme activities of these fruits showed a decrease in glutamine synthetase (GS, EC 6.3.1.2) during fruit ripening and a concomitant increase in NADH-glutamate dehydrogenase (GDH, EC 1.4.1.3) and aspartate aminotransferase (EC 2.6.1.1) activities. Western blot analysis of protein extracts revealed that while GS was principally present in green fruit extracts, GDH was almost exclusively observed in the extracts of red fruits. These results suggest a reciprocal pattern of induction between GS and GDH during tomato fruit ripening.

  5. The role of glutamine oxoglutarate aminotransferase and glutamate dehydrogenase in nitrogen metabolism in Mycobacterium bovis BCG.

    Science.gov (United States)

    Viljoen, Albertus J; Kirsten, Catriona J; Baker, Bienyameen; van Helden, Paul D; Wiid, Ian J F

    2013-01-01

    Recent evidence suggests that the regulation of intracellular glutamate levels could play an important role in the ability of pathogenic slow-growing mycobacteria to grow in vivo. However, little is known about the in vitro requirement for the enzymes which catalyse glutamate production and degradation in the slow-growing mycobacteria, namely; glutamine oxoglutarate aminotransferase (GOGAT) and glutamate dehydrogenase (GDH), respectively. We report that allelic replacement of the Mycobacterium bovis BCG gltBD-operon encoding for the large (gltB) and small (gltD) subunits of GOGAT with a hygromycin resistance cassette resulted in glutamate auxotrophy and that deletion of the GDH encoding-gene (gdh) led to a marked growth deficiency in the presence of L-glutamate as a sole nitrogen source as well as reduction in growth when cultured in an excess of L-asparagine.

  6. Isolation of a symbiotic cyanobacterium, Nostoc cycadae, and its nitrogen metabolism.

    Science.gov (United States)

    Singh, V; Goyle, M R; Srivastava, A K; Talpasayi, E R

    1994-05-01

    Nostoc cycadae isolated from the host Cycas revoluta grew well in medium devoid of combined nitrogen but maximum growth was in medium containing nitrate (4.1 μg chlorophyll a ml(-1)). Aerated coralloid roots in the dark produced more NH3 when treated with L-methionine-DL-sulphoximine (MSO), an inhibitor of glutamine synthetase. With cultured N. cycadae and freshly isolated N. cycadae, NH3 production was enhanced by adding a host-tissue extract in the light or in the dark, whereas it was decreased by adding MSO. Nitrogenase activity was four times higher in coralloid root than in the cultured endophyte N. cycadae. The host-tissue extract may inhibit NH3 assimilatory pathways, thus inducing production of NH3 that can be utilized by the host itself.

  7. Functions of Glutamine Synthetase Isoforms in the Nitrogen Metabolism of Plants

    DEFF Research Database (Denmark)

    Guan, Miao

    fertilizers accordingly needs to be optimized in order to make agriculture more sustainable. One pathway to achieve such optimization is to improve plant N use efficiency (NUE) by developing new crop genotypes with improved yield per unit of N fertilizer applied. For this purpose, more and better knowledge......Nitrogen is one of the major plant nutrients limiting crop production worldwide. In many parts of the world the availability of N fertilizers is limited, whereas in other parts of the world too much N fertilizer is applied, leading to serious negative environmental consequences. The use of N...... about bottlenecks in plant N assimilation is needed. Based on a reverse genetics strategy embracing characterization of knockout mutants in the model plant species Arabidopsis, the results obtained in this PhD study have provided new information about the specific roles of two genes Gln1;1 and Gln1...

  8. Metabolic plasticity of nitrogen assimilation by Porphyra umbilicalis (Linnaeus) Kützing

    Science.gov (United States)

    Kim, Jang K.; Kraemer, George P.; Yarish, Charles

    2012-12-01

    The physical stresses associated with emersion have long been considered major factors determining the vertical zonation of intertidal seaweeds. We examined Porphyra umbilicalis (Linnaeus) Kützing thalli from the vertical extremes in elevation of an intertidal population ( i.e. upper and lower intertidal zones) to determine whether Porphyra thalli acclimate to different vertical elevations on the shore with different patterns of nitrate uptake and nitrate reductase (NR) and glutamine synthetase (GS) activities in response to different degrees of emersion stress. We found that the nitrate uptake and NR recovery in the emersed tissues took longer in lower intertidal sub-population than in upper intertidal sub-population; and GS activity was also significantly affected by emersion and, interestingly, such an activity was enhanced by emersion of thalli from both upper and lower intertidal zones. These results suggested that intra-population variability in post-emersion recovery of physiological functions such as nutrient uptake and NR activity enables local adaptation and contributes to the wide vertical distribution of P. umbilicalis. The high GS activity during periodic emersion stress may be a protective mechanism enabling P. umbilicalis to assimilate nitrogen quickly when it again becomes available, and may also be an evidence of photorespiration during emersion.

  9. Seed and Foliar Application of Amino Acids Improve Variables of Nitrogen Metabolism and Productivity in Soybean Crop.

    Science.gov (United States)

    Teixeira, Walquíria F; Fagan, Evandro B; Soares, Luis H; Soares, Jérssica N; Reichardt, Klaus; Neto, Durval D

    2018-01-01

    The application of amino acids in crops has been a common practice in recent years, although most of the time they are associated with products based on algae extracts or on fermented animal or vegetable wastes. However, little is known about the isolated effect of amino acids on the development of crops. Therefore, the objective of this research was to evaluate the effect of the application of isolated amino acids on the in some steps of the soybean nitrogen metabolism and on productivity. Experiments were carried out in a greenhouse and in the field with the application of the amino acids glutamate (Glu), phenylalanine (Phe), cysteine (Cys) and glycine (Gly) and as a set (Glu+Phe+Cys+Gly), as seed treatment (ST), as foliar application (FA) and both (ST+FA), at the V 4 growth stage. Evaluations consisted of nitrate reductase and urease activities, nitrate, ureide, total amino acids and total nitrogen content in leaves, and productivity. The application of Glu to leaves, Cys as ST and a mixture of Glu+Cys+Phe+Gly as ST+FA in the greenhouse experiment increased the total amino acids content. In the field experiment all treatments increased the amino acid content in leaves. At the V 6 stage in the field experiment, all modes of Gly application, Glu as ST and FA, Cys and Phe as ST+FA and Glu+Cys+Phe+Gly as FA increased the nitrate content in leaves. In the greenhouse, application of Cys and Phe as ST increased the production of soybean plants by at least 21%. The isolated application of Cys, Phe, Gly, Glu and the set of these amino acids as ST increased the productivity of soybean plants in the field experiment by at least 22%.

  10. Alterations in sulfur and nitrogen metabolism in rats with portacaval shunts

    International Nuclear Information System (INIS)

    Benjamin, L.E.

    1985-01-01

    The effect of portacaval shunt (PCS) on methionine and cysteine metabolism was investigated. PCS rats excreted more urinary [ 35 S]sulfate and less [ 35 S]taurine than controls after injection of [ 35 S]methionine of [ 35 S]cysteine. Total urinary taurine excretion was unchanged. Under basal conditions PCS rats excreted more taurine than controls. Relative rates of transsulfuration in PCS and control rats were studied, and no difference in flux of 35 S from methionine to cysteine was found. Total hepatic activities of three transsulfuration pathway enzymes were also unchanged after PCS. In contrast, hepatic activities of three cysteine-oxidizing enzymes were depressed after PCS, suggesting that changes in hepatic metabolism after PCS are selective. PCS rats fed a high (60%) casein diet ate less and took longer to recover their preoperative body weight than controls. All PCS rats had higher plasma ammonia and urinary orotic acid levels than controls. Increasing dietary protein elevated plasma ammonia and urinary orotic acid to a greater extent in PCS rats. After injection of [ 35 S]methionine or [ 35 S]cysteine, urinary 35 S and [ 35 S]sulfate excretion increased and [ 35 S]taurine an total taurine excretion decreased in all rats fed 60% casein, but the effect was greater in PCS rats. Changes in cysteine sulfinate decarboxylase activity in rats fed a high protein diet was examined. Activity decreased 95% in rats fed diets containing between 18 and 75% casein. The effect was observed after feeding a 60% casein diet for 2 days and was reversed when rats were refed an 18% casein diet

  11. Studies on the nitrogen metabolism of the large intestine of ruminants. 2

    International Nuclear Information System (INIS)

    Sommer, A.; Ceresnakova, Z.; Szakacs, J.; Chrastinova, L.; Bergner, H.; Simon, O.

    1986-01-01

    3 bulls with body weights of 201, 168 and 190 kg, were equipped with a ileo-cecal re-entrant cannula and with catheters in the jugular veins on both sides. The pelleted ration was composed of straw 70-72%, cereals 10%, molasses 12-41% ammoniumhydrogencarbonate 3%, urea 2% and mineral mixture 1%. During a preliminary period ileal digesta were collected, deep-freezed and stored. During the main experiment 15 N-urea was infused intravenously for 24 hours. In this period and during the following 6 hours outflowing ileal digesta were collected quantitatively. At the same time precollected, unlabelled digesta together with a supplement of partly hydrolyzed straw meal were reintroduced into the cecal part of the cannula. Plasma urea N, urinary N as well as several N fractions of feces and digesta were analyzed for 15 N abundance. A urea flux rate of 27.9 +- 3.4 μmol per minute per kg/sup 0.75/ was estimated. It was calculated that 52% of this amount of urea was transfered into the digestive tract. In both, digesta and feces NH 3 nitrogen was highest 15 N-labelled indicating a direct urea entry and degradation in both segments of the digestive tract. The amounts of 15 N excess found during the period of digesta replacement were in feces 0.25 and in ileal digesta 4.02% of the infused 15 N. Although the microbial utilization of endogenous urea N was generally low in the large intestine there was a clear stimulation of this process due to the additional supply of the large intestine with a fermentable source. (author)

  12. Effects of Dietary Electrolyte Balance on Growth Performance, Nitrogen Metabolism and Some Blood Biochemical Parameters of Growing Rabbits

    Directory of Open Access Journals (Sweden)

    J. W. Li

    2013-12-01

    Full Text Available The effects of different dietary electrolyte balance (DEB on growth performance, nitrogen (N metabolism and some blood biochemical parameters were investigated in 2 to 3 months old growing rabbits. A total of 150 growing rabbits of 2 months age were randomly divided into five groups according to average body weight, with 30 rabbits in each group. The DEB levels of the five experimental diets were −154, −3.16, +201, +347, and +500 meq/kg of dry matter (DM, respectively. There was a 7-d adaptation period and a 23-d experimental period. The results showed that the DEB levels had a quadratic affect on the average daily feed intake (ADFI (p<0.001. The greatest ADFI was achieved when the DEB level was +201 meq/kg DM. Fecal N (FN content linearly decreased (0.047, while digestible N (DN, retained N (RN, efficiency of intake N converted into digestible N (DN/IN and the efficiency of intake N converted into retained N (RN/IN linearly increased with the DEB increase (0.020, 0.004, 0.021, and 0.049, respectively. Serum phosphorus (P ion content linearly increased with the DEB increase (p = 0.036. The DEB had a quadratic relationship with serum anion gap (AG (p = 0.002 and serum parathyroid hormone (PTH content (p = 0.016. The DEB levels quadratically affected base excess (BE in the plasma (p<0.001. In conclusion, the DEB unaffected growth performance but affected feed intake, N metabolism and some blood biochemical parameters of growing rabbits.

  13. Studies on the nitrogen metabolism of the large intestine of ruminants. 3

    International Nuclear Information System (INIS)

    Kijora, C.; Simon, O.; Bergner, H.; Goersch, R.; Jacobi, U.; Rossow, N.

    1986-01-01

    Two experiments were performed on sheep, receiving on maintenance level a pelleted straw ration high in crude fibre (straw 70.5%; dried sugar beet pulp 12%; cereals 10%; urea 2%; ammonium hydrogen carbonate 3%; minerals 2.5%). The animals were fitted with ileo-cecal re-entrant cannulas. The effects of the introduction of partly hydrolyzed straw meal into the digesta of the large intestine on the digestion processes in that segment were studied. Under these conditions the metabolism of 14 C and 15 N-labelled urea, which was given into the cecum, was estimated. In experiment 1 (E1; 2 animals) unlabelled, precollected digesta were hourly reintroduced together with 14 C and 15 N-labelled urea via the cecal cannula. In experiment 2 (E2; 3 animals) the digesta were supplemented with partly hydrolyzed straw meal (10% of the mean daily dry matter intake with the ration). The supplement of partly hydrolyzed straw meal caused an increase of the 15 N excretion with feces from 13.4% (E1) to 19.8% (E2) of the dose. The 15 N was mainly incorporated in the bacterial fraction (98% E1; 96% E2). As a reason for the increased 15 N incorporation into the bacterial fraction of 106.4 mg 15 N' in E2 vs. 67.3 mg 15 N' in the experiment without straw meal supplement the higher supply of energy as fermentable carbohydrates was assumed. (author)

  14. Intake, digestibility, and rumen and metabolic characteristics of cattle fed low-quality tropical forage and supplemented with nitrogen and different levels of starch

    Directory of Open Access Journals (Sweden)

    Marcia de Oliveira Franco

    2017-06-01

    Full Text Available Objective Effects of nitrogen supplementation associated with different levels of starch on voluntary intake, digestibility, and rumen and metabolic characteristics of cattle fed low-quality tropical forage (Brachiaria decumbens hay, 7.4% crude protein, CP were evaluated using ruminal and abomasal cannulated steers. Methods Five European×Zebu young bulls (186 kg body weight, BW were distributed according to a 5×5 Latin square. The following treatments were evaluated: control, supplementation with 300 g CP/d (0:1, supplementation with 300 g starch/d and 300 g CP/d (1:1, supplementation with 600 g starch/d and 300 g CP/d (2:1, and supplementation with 900 g starch/d and 300 g CP/d (3:1. A mixture of nitrogenous compounds provided 1/3 from true protein (casein and 2/3 from non-protein nitrogen (mixture of urea and ammonium sulphate, 9:1 was used as the nitrogen supplement. In order to supply energy a unique source of corn starch was used. Results Supplements increased (p0.05 forage intake. There was a cubic effect (p0.05 neutral detergent fibre corrected for ash and protein (NDFap digestibility. There was a positive linear effect (p0.05 by the amount of supplemental starch. Ruminal ammonia nitrogen concentrations were higher (p<0.05 in supplemented animals, however, a negative linear effect (p<0.05 of amount of starch was observed. Supplements increased (p<0.05 the nitrogen balance (NB and efficiency of nitrogen utilization. These effects were attributed to increased body anabolism, supported by higher (p<0.05 serum concentration of insulin-like growth factor 1. Increasing the amount of starch tended (p<0.06 to linearly increase the NB. In spite of this, there was a highest NB value for the 2:1 starch:CP ratio amongst the treatments with supplementation. Conclusion Nitrogen supplementation in cattle fed low-quality tropical forage increases nitrogen retention in the animal’s body. An additional supply of starch increases nitrogen retention by

  15. Nitrogen metabolism and gas exchange parameters associated with zinc stress in tobacco expressing an ipt gene for cytokinin synthesis.

    Science.gov (United States)

    Pavlíková, Daniela; Pavlík, Milan; Procházková, Dagmar; Zemanová, Veronika; Hnilička, František; Wilhelmová, Naďa

    2014-04-15

    Increased endogenous plant cytokinin (CK) content through transformation with an isopentyl transferase (ipt) gene has been associated with improved plant stress tolerance. The impact of zinc (tested levels Zn1=250, Zn2=500, Zn3=750mgkg(-1)soil) on gas exchange parameters (net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration) and nitrogen utilization by plants resulted in changes of free amino acid concentrations (glutamic acid, glutamine, asparagine, aspartate, glycine, serine, cystein) and differed for transformed and non-transformed tobacco plants. For pot experiments, tobacco plants (Nicotiana tabacum L., cv. Wisconsin 38) transformed with a construct consisting of SAG12 promoter fused with the ipt gene for cytokinin synthesis (SAG plants) and its wild type (WT plants as a control) were used. Physiological analyses confirmed that SAG plants had improved zinc tolerance compared with the WT plants. The enhanced Zn tolerance of SAG plants was associated with the maintenance of accumulation of amino acids and with lower declines of photosynthetic and transpiration rates. In comparison to WT plants, SAG plants exposed to the highest Zn concentration accumulated lower concentrations of asparagine, which is a major metabolic product during senescence. Copyright © 2013 Elsevier GmbH. All rights reserved.

  16. Effects of the fungal endophyte Acremonium coenophialum on nitrogen accumulation and metabolism in tall fescue

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, P.C. (Univ. of Georgia, Athens (USA)); Evans, J.J.; Bacon, C.W. (Department of Agriculture, Athens, GA (USA))

    1990-03-01

    Infection by the fungal endophyte Acremonium coenophialum affected the accumulation of inorganic and organic N in leaf blades and leaf sheaths of KY31 tall fescue (Festuca arundinacea Schreb.) grown under greenhouse conditions. Total soluble amino acid concentrations were increased in either the blade or sheath of the leaf from infected plants. A number of amino acids were significantly increased in the sheath, but only asparagine increased in the blade. Infection resulted in higher sheath NH{sub 4}{sup +} concentrations, whereas NO{sub 3}{sup {minus}} concentrations decreased in both leaf parts. The effects on amino acid, NO{sub 3}{sup {minus}}, and NH{sub 4}{sup +} concentrations were dependent upon the level of N fertilization and were usually apparent only at the high rate (10 millimolar) of application. Administration of {sup 14}CO{sub 2} to the leaf blades increased the accumulation of {sup 14}C in their amino acid fraction but not in the sheaths of infected plants. This may indicate that infection increased amino acid synthesis in the blade but that translocation to the sheath, which is the site of fungal colonization, was not affected. Glutamine synthetase activity was greater in leaf blades of infected plants at high and low N rates of fertilization, but nitrate reductase activity was not affected in either part of the leaf. Increased activities of glutamine synthetase together with the other observed changes in N accumulation and metabolism in endophyte-infected tall fescue suggest that NH{sub 4}{sup +} reassimilation could also be affected in the leaf blade.

  17. Effects of phosphorus application on photosynthetic carbon and nitrogen metabolism, water use efficiency and growth of dwarf bamboo (Fargesia rufa) subjected to water deficit.

    Science.gov (United States)

    Liu, Chenggang; Wang, Yanjie; Pan, Kaiwen; Jin, Yanqiang; Li, Wei; Zhang, Lin

    2015-11-01

    Dwarf bamboo (Fargesia rufa Yi), one of the staple foods for the endangered giant pandas, is highly susceptible to water deficit due to its shallow roots. In the face of climate change, maintenance and improvement in its productivity is very necessary for the management of the giant pandas' habitats. However, the regulatory mechanisms underlying plant responses to water deficit are poorly known. To investigate the effects of P application on photosynthetic C and N metabolism, water use efficiency (WUE) and growth of dwarf bamboo under water deficit, a completely randomized design with two factors of two watering (well-watered and water-stressed) and two P regimes (with and without P fertilization) was arranged. P application hardly changed growth, net CO2 assimilation rate (P(n)) and WUE in well-watered plants but significantly increased relative growth rate (RGR) and P(n) in water-stressed plants. The effect of P application on RGR under water stress was mostly associated with physiological adjustments rather than with differences in biomass allocation. P application maintained the balance of C metabolism in well-watered plants, but altered the proportion of nitrogenous compounds in N metabolism. By contrast, P application remarkably increased sucrose-metabolizing enzymes activities with an obvious decrease in sucrose content in water-stressed plants, suggesting an accelerated sucrose metabolism. Activation of nitrogen-metabolizing enzymes in water-stressed plants was attenuated after P application, thus slowing nitrate reduction and ammonium assimilation. P application hardly enlarged the phenotypic plasticity of dwarf bamboo in response to water in the short term. Generally, these examined traits of dwarf bamboo displayed weak or negligible responses to water-P interaction. In conclusion, P application could accelerate P(n) and sucrose metabolism and slow N metabolism in water-stressed dwarf bamboo, and as a result improved RGR and alleviated damage from soil

  18. Quantifying ruminal nitrogen metabolism using the omasal sampling technique in cattle--a meta-analysis.

    Science.gov (United States)

    Broderick, G A; Huhtanen, P; Ahvenjärvi, S; Reynal, S M; Shingfield, K J

    2010-07-01

    Mixed model analysis of data from 32 studies (122 diets) was used to evaluate the precision and accuracy of the omasal sampling technique for quantifying ruminal-N metabolism and to assess the relationships between nonammonia-N flow at the omasal canal and milk protein yield. Data were derived from experiments in cattle fed North American diets (n=36) based on alfalfa silage, corn silage, and corn grain and Northern European diets (n=86) composed of grass silage and barley-based concentrates. In all studies, digesta flow was quantified using a triple-marker approach. Linear regressions were used to predict microbial-N flow to the omasum from intake of dry matter (DM), organic matter (OM), or total digestible nutrients. Efficiency of microbial-N synthesis increased with DM intake and there were trends for increased efficiency with elevated dietary concentrations of crude protein (CP) and rumen-degraded protein (RDP) but these effects were small. Regression of omasal rumen-undegraded protein (RUP) flow on CP intake indicated that an average 32% of dietary CP escaped and 68% was degraded in the rumen. The slope from regression of observed omasal flows of RUP on flows predicted by the National Research Council (2001) model indicated that NRC predicted greater RUP supply. Measured microbial-N flow was, on average, 26% greater than that predicted by the NRC model. Zero ruminal N-balance (omasal CP flow=CP intake) was obtained at dietary CP and RDP concentrations of 147 and 106 g/kg of DM, corresponding to ruminal ammonia-N and milk urea N concentrations of 7.1 and 8.3mg/100mL, respectively. Milk protein yield was positively related to the efficiency of microbial-N synthesis and measured RUP concentration. Improved efficiency of microbial-N synthesis and reduced ruminal CP degradability were positively associated with efficiency of capture of dietary N as milk N. In conclusion, the results of this study indicate that the omasal sampling technique yields valuable estimates

  19. [The differential expression of the genes of the key enzymes involved in phenolic compound metabolism in rice (Oryza sativa L.) under different nitrogen supply].

    Science.gov (United States)

    Xiong, Jun; Wang, Hai-Bin; Fang, Chang-Xun; Qiu, Long; Wu, Wen-Xiang; He, Hai-Bin; Lin, Wen-Xiong

    2007-10-01

    Differential expression of the key genes controlling phenolic metabolism in allelopathic and non-allelopathic rice accessions was investigated under two nitrogen supply levels (lower and normal) using fluorescence quantitative-polymerase chain reaction (FQ-PCR) (Figs.2, 3). The results indicated that 9 key enzyme genes concerned were mediated by lower nitrogen level (Table 2). All of the nine genes (Table 1, Fig.4), were up-regulated by 1.9-5.4 times of the relative gene expression amounts in allelopathic rice accession, 'PI312777' under the lower nitrogen condition compared with their controls, of which PAL gene showed the highest relative gene expression amount with 5.4 times of the relative gene expressions compared with the control, while in non-allelopathic rice Lemont, seven genes were down-regulated by 29%-72% under lower nitrogen supplies compared with their controls and only two genes, i.e., phenylalanine ammonia-lyase and cinnamoyl-CoA genes were up-regulated, which however were a decrease of 22% and 74% over those in allelopathic rice accession (Table 2). These findings strongly suggest that the increase of allelopathic potential induced by 1/4 nutrient stress was responsible for enhanced phenolic compound synthesis metabolism.

  20. Effects of ammonium to nitrate ratio on growth, nitrogen metabolism, photosynthetic efficiency and bioactive phytochemical production of Prunella vulgaris.

    Science.gov (United States)

    Zhu, Zai-Biao; Yu, Man-Man; Chen, Yu-Hang; Guo, Qiao-Sheng; Zhang, Li-Xia; Shi, Hong-Zhuan; Liu, Li

    2014-12-01

    Prunella vulgaris L (Labiatae) is commonly used as a traditional medicinal herb in some Asian and Europe countries. To date, few studies have been conducted to determine the influence of [Formula: see text] - N/[Formula: see text] - N ratio on growth, physiological development, and bioactive phytochemical accumulation in hydroponically grown P. vulgaris. The current study was conducted to evaluate the effect of five [Formula: see text] - N/[Formula: see text] - N ratios on growth, nitrogen metabolism, photosynthetic efficiency, and bioactive phytochemical production in P. vulgaris. Hydroponically cultivated P. vulgaris were fertilized with five [Formula: see text] - N/[Formula: see text] - N ratios in a greenhouse for 85 d. Dried weight of root, stem, leaf and spica, leaf area, photosynthetic efficiency, activities of nitrate reductase (NR), glutamine synthetase (GS), and the concentrations of N, soluble protein, and free amino acids in the leaves, as well as the contents of rosmarinic acid (RA), ursolic acid (UA), and oleanolic acid (OA) in the spicas were measured. Both [Formula: see text] - N and [Formula: see text] - N as the sole source of nitrogen had inhibitory effects on P. vulgaris growth. P. vulgaris fertilized with the 25/75 ([Formula: see text] - N/NO3 - N) ratio had the highest leaf area, photosynthetic rate, and chlorophyll content. The 25/75 ([Formula: see text]/[Formula: see text]) ratio increased the spica biomass by 1828%, nitrate-reductase (NR) activity by 98%, and soluble protein concentration by 29.45% compared with the 100/0 ([Formula: see text]/[Formula: see text]) treatment. Additionally, 25 [Formula: see text] - N/75 NO3 - N resulted in the highest contents of RA and total flavonoids as well as relatively high contents of UA and OA; therefore, this ratio had the highest yield of RA, UA, OA, and total flavonoids in spicas. The use of 25 [Formula: see text] - N/75 [Formula: see text

  1. New Features on the Environmental Regulation of Metabolism Revealed by Modeling the Cellular Proteomic Adaptations Induced by Light, Carbon, and Inorganic Nitrogen in Chlamydomonas reinhardtii.

    Science.gov (United States)

    Gérin, Stéphanie; Leprince, Pierre; Sluse, Francis E; Franck, Fabrice; Mathy, Grégory

    2016-01-01

    Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate), and inorganic nitrogen concentrations (nitrate and ammonium) in the culture medium. Statistical design of experiments (DOE) enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE). Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays) into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle, and protein metabolism). The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon, and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview of the

  2. Light-dark (12:12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle.

    Science.gov (United States)

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Le Roy, Bertrand; Talec, Amélie; Sciandra, Antoine

    2012-04-01

    This study provides with original data sets on the physiology of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501, maintained in continuous culture in conditions of obligate diazotrophy. Cultures were exposed to a 12:12 light-dark regime, representative of what they experience in nature and where growth is expected to be balanced. Nitrogen and carbon metabolism were monitored at high frequency and their dynamics was compared with the cell cycle. Results reveal a daily cycle in the physiological and biochemical parameters, tightly constrained by the timely decoupled processes of N(2) fixation and carbon acquisition. The cell division rate increased concomitantly to carbon accumulation and peaked 6 h into the light. The carbon content reached a maximum at the end of the light phase. N(2) fixation occurred mostly during the dark period and peaked between 9 and 10 h into the night, while DNA synthesis, reflected by DNA fluorescence, increased until the end of the night. Consequently, cells in G1- and S-phases present a marked decrease in their C:N ratio. Nitrogen acquisition through N(2) fixation exceeded 1.3- to 3-fold the nitrogen requirements for growth, suggesting that important amounts of nitrogen are excreted even under conditions supposed to favour balanced, carbon and nitrogen acquisitions. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. Drug-DNA adducts as biomarkers for metabolic activation of the nitro-aromatic nitrogen mustard prodrug PR-104A.

    Science.gov (United States)

    Stornetta, Alessia; Deng, Kai-Cheng Kieren; Danielli, Sara; Liyanage, H D Sarath; Sturla, Shana J; Wilson, William R; Gu, Yongchuan

    2018-04-07

    PR-104A is a clinical-stage nitrogen mustard prodrug that is activated for DNA alkylation by reduction of a nitro group to the corresponding hydroxylamine (PR-104H) or amine (PR-104M). Metabolic reduction is catalysed by flavoreductases such as cytochrome P450 oxidoreductase (POR) under hypoxia, or by aldo-ketoreductase 1C3 (AKR1C3) independently of hypoxia. The unstable reduced metabolites are challenging to measure in biological samples, and biomarkers of the metabolic activation of PR-104A have not been used in the clinical evaluation of PR-104 to date. Here, we employ a selected reaction monitoring mass spectrometry assay for DNA crosslinks to assess the capacity of human cancer cells to bioactivate PR-104A. We also test whether the more abundant DNA monoadducts could be used for the same purpose. DNA monoadducts and crosslinks from PR-104A itself, and from its reduced metabolites, accumulated over 4 h in AKR1C3-expressing TF1 erythroleukaemia cells under hypoxia, whereas intracellular concentrations of unstable PR-104H and PR-104M reached steady state within 1 h. We then varied rates of PR-104A reduction by manipulating hypoxia or reductase expression in a panel of cell lines, in which AKR1C3 and POR were quantified by targeted proteomics. Hypoxia or reductase overexpression induced large increases in PR-104A sensitivity (inhibition of proliferation), DNA damage response (γH2AX formation), steady-state concentrations of PR-104H/M and formation of reduced drug-DNA adducts but not DNA adducts retaining the dinitro groups of PR-104A. The fold-change in the sum of PR-104H and PR-104M correlated with the fold-change in reduced crosslinks or monoadducts (R 2  = 0.87 for both), demonstrating their potential for assessing the capacity of cancer cells to bioactivate PR-104A. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Effects of experimental nitrogen fertilization on planktonic metabolism and CO2 flux in a hypereutrophic hardwater lake.

    Directory of Open Access Journals (Sweden)

    Matthew J Bogard

    Full Text Available Hardwater lakes are common in human-dominated regions of the world and often experience pollution due to agricultural and urban effluent inputs of inorganic and organic nitrogen (N. Although these lakes are landscape hotspots for CO2 exchange and food web carbon (C cycling, the effect of N enrichment on hardwater lake food web functioning and C cycling patterns remains unclear. Specifically, it is unknown if different eutrophication scenarios (e.g., modest non point vs. extreme point sources yield consistent effects on auto- and heterotrophic C cycling, or how biotic responses interact with the inorganic C system to shape responses of air-water CO2 exchange. To address this uncertainty, we induced large metabolic gradients in the plankton community of a hypereutrophic hardwater Canadian prairie lake by adding N as urea (the most widely applied agricultural fertilizer at loading rates of 0, 1, 3, 8 or 18 mg N L-1 week-1 to 3240-L, in-situ mesocosms. Over three separate 21-day experiments, all treatments of N dramatically increased phytoplankton biomass and gross primary production (GPP two- to six-fold, but the effects of N on autotrophs plateaued at ~3 mg N L-1. Conversely, heterotrophic metabolism increased linearly with N fertilization over the full treatment range. In nearly all cases, N enhanced net planktonic uptake of dissolved inorganic carbon (DIC, and increased the rate of CO2 influx, while planktonic heterotrophy and CO2 production only occurred in the highest N treatments late in each experiment, and even in these cases, enclosures continued to in-gas CO2. Chemical effects on CO2 through calcite precipitation were also observed, but similarly did not change the direction of net CO2 flux. Taken together, these results demonstrate that atmospheric exchange of CO2 in eutrophic hardwater lakes remains sensitive to increasing N loading and eutrophication, and that even modest levels of N pollution are capable of enhancing autotrophy and CO

  5. Accumulated Expression Level of Cytosolic Glutamine Synthetase 1 Gene (OsGS1;1 or OsGS1;2) Alter Plant Development and the Carbon-Nitrogen Metabolic Status in Rice

    Science.gov (United States)

    Bao, Aili; Zhao, Zhuqing; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2014-01-01

    Maintaining an appropriate balance of carbon to nitrogen metabolism is essential for rice growth and yield. Glutamine synthetase is a key enzyme for ammonium assimilation. In this study, we systematically analyzed the growth phenotype, carbon-nitrogen metabolic status and gene expression profiles in GS1;1-, GS1;2-overexpressing rice and wildtype plants. Our results revealed that the GS1;1-, GS1;2-overexpressing plants exhibited a poor plant growth phenotype and yield and decreased carbon/nitrogen ratio in the stem caused by the accumulation of nitrogen in the stem. In addition, the leaf SPAD value and photosynthetic parameters, soluble proteins and carbohydrates varied greatly in the GS1;1-, GS1;2-overexpressing plants. Furthermore, metabolite profile and gene expression analysis demonstrated significant changes in individual sugars, organic acids and free amino acids, and gene expression patterns in GS1;1-, GS1;2-overexpressing plants, which also indicated the distinct roles that these two GS1 genes played in rice nitrogen metabolism, particularly when sufficient nitrogen was applied in the environment. Thus, the unbalanced carbon-nitrogen metabolic status and poor ability of nitrogen transportation from stem to leaf in GS1;1-, GS1;2-overexpressing plants may explain the poor growth and yield. PMID:24743556

  6. RELATIONS BETWEEN BACTERIAL NITROGEN METABOLISM AND GROWTH EFFICIENCY IN AN ESTUARINE AND AN OPEN-WATER ECOSYSTEM

    Science.gov (United States)

    Bacterial uptake or release of dissolved nitrogen compounds (amino nitrogen, urea, ammonium and nitrate) were examined in 0.8 |m filtered water from an estuary (Santa Rosa Sound [SRS], northwestern Florida) and an open-water location in the Gulf of Mexico [GM]. The bacterial nutr...

  7. Altered nitrogen metabolism associated with de-differentiated suspension cultures derived from root cultures of Datura stramonium studied by heteronuclear multiple bond coherence (HMBC) NMR spectroscopy.

    Science.gov (United States)

    Fliniaux, Ophélie; Mesnard, François; Raynaud-Le Grandic, Sophie; Baltora-Rosset, Sylvie; Bienaimé, Christophe; Robins, Richard J; Fliniaux, Marc-André

    2004-05-01

    De-differentiation of transformed root cultures of Datura stramonium has previously been shown to cause a loss of tropane alkaloid synthetic capacity. This indicates a marked shift in physiological status, notably in the flux of primary metabolites into tropane alkaloids. Nitrogen metabolism in transformed root cultures of D. stramonium (an alkaloid-producing system) and de-differentiated suspension cultures derived therefrom (a non-producing system) has been compared using Nuclear Magnetic Resonance (NMR) spectroscopy. (15)N-Labelled precursors [((15)NH(4))(2)SO(4) and K(15)NO(3)] were fed and their incorporation into nitrogenous metabolites studied using Heteronuclear Multiple Bond Coherence (HMBC) NMR spectroscopy. In both cultures, the same amino acids were resolved in the HMBC spectra. However, marked differences were found in the intensity of labelling of a range of nitrogenous compounds. In differentiated root cultures, cross-peaks corresponding to secondary metabolites, such as tropine, were observed, whereas these were absent in the de-differentiated cultures. By contrast, N- acetylputrescine and gamma-aminobutyric acid (GABA) accumulated in the de-differentiated cultures to a much larger extent than in the root cultures. It can therefore be suggested that the loss of alkaloid biosynthesis was compensated by the diversion of putrescine metabolism away from the tropane pathway and toward the synthesis of GABA via N-acetylputrescine.

  8. A continuous-flow system for measuring in vitro oxygen and nitrogen metabolism in separated stream communities

    DEFF Research Database (Denmark)

    Prahl, C.; Jeppesen, E.; Sand-Jensen, Kaj

    1991-01-01

    on the stream bank, consists of several macrophyte and sediment chambers equipped with a double-flow system that ensures an internal water velocity close to that in the stream and which, by continuously renewing the water, mimics diel fluctuation in stream temperature and water chemistry. Water temperature...... production and dark respiration occurred at similar rates (6-7g O2 m-2 day-1), net balance being about zero. Inorganic nitrogen was consumed both by the sediment and to a greater extent by the macrophytes, the diel average consumption being 1g N m-2 day-1. 3. The sum of the activity in the macrophyte...... and sediment chambers corresponded to the overall activity of the stream section as determined by upstream/downstream mass balance. This indicates that the results obtained with the continuous-flow chambers realistically describe the oxygen and the nitrogen metabolism of the stream....

  9. Leaves play a central role in the adaptation of nitrogen and sulfur metabolism to ammonium nutrition in oilseed rape (Brassica napus).

    Science.gov (United States)

    Coleto, Inmaculada; de la Peña, Marlon; Rodríguez-Escalante, Jon; Bejarano, Iraide; Glauser, Gaëtan; Aparicio-Tejo, Pedro M; González-Moro, M Begoña; Marino, Daniel

    2017-09-20

    The coordination between nitrogen (N) and sulfur (S) assimilation is required to suitably provide plants with organic compounds essential for their development and growth. The N source induces the adaptation of many metabolic processes in plants; however, there is scarce information about the influence that it may exert on the functioning of S metabolism. The aim of this work was to provide an overview of N and S metabolism in oilseed rape (Brassica napus) when exposed to different N sources. To do so, plants were grown in hydroponic conditions with nitrate or ammonium as N source at two concentrations (0.5 and 1 mM). Metabolic changes mainly occurred in leaves, where ammonium caused the up-regulation of enzymes involved in the primary assimilation of N and a general increase in the concentration of N-compounds (NH 4 + , amino acids and proteins). Similarly, the activity of key enzymes of primary S assimilation and the content of S-compounds (glutathione and glucosinolates) were also higher in leaves of ammonium-fed plants. Interestingly, sulfate level was lower in leaves of ammonium-fed plants, which was accompanied by the down-regulation of SULTR1 transporters gene expression. The results highlight the impact of the N source on different steps of N and S metabolism in oilseed rape, notably inducing N and S assimilation in leaves, and put forward the potential of N source management to modulate the synthesis of compounds with biotechnological interest, such as glucosinolates.

  10. Methods of clinical chemistry and isotopic technique for investigation of the nitrogen metabolism in man using 15N

    International Nuclear Information System (INIS)

    Faust, H.; Bornhak, H.; Hirschberg, K.; Jung, K.; Junghans, P.; Krumbiegel, P.; Reinhardt, R.

    1981-03-01

    The present manual is a catalogue of methods representing theoretical and practical aspects of application of the stable isotope 15 N in medicine as well as a reference book for users of 15 N techniques in life sciences. Special emphasis is given to the planning of 15 N tracer experiments and their interpretation, sources of error and standard values of nitrogen compounds, information on sampling of medical materials, methods of separation and determination of proteins and non-protein nitrogen compounds in serum and urine, and details of the isotopic analysis of nitrogen by emission and mass spectrometry. (author)

  11. Metabolism

    Science.gov (United States)

    ... functions: Anabolism (uh-NAB-uh-liz-um), or constructive metabolism, is all about building and storing. It ... in infants and young children. Hypothyroidism slows body processes and causes fatigue (tiredness), slow heart rate, excessive ...

  12. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  13. Nitrogen metabolism in tambaqui (Colossoma macropomum), a neotropical model teleost: hypoxia, temperature, exercise, feeding, fasting, and high environmental ammonia.

    Science.gov (United States)

    Wood, Chris M; de Souza Netto, José Gadelha; Wilson, Jonathan M; Duarte, Rafael M; Val, Adalberto Luis

    2017-01-01

    The total rate of N-waste excretion (M N ) in juvenile tambaqui living in ion-poor Amazonian water comprised 85 % ammonia-N (M Amm-N ) and 15 % urea-N (M Urea-N ). Both occurred mainly across the gills with only ~5 % of M Amm-N and ~39 % of M Urea-N via the urine. Tambaqui were not especially tolerant to high environmental ammonia (HEA), despite their great resistance to other environmental factors. Nevertheless, they were able to maintain a continued elevation of M Amm-N during and after 48-h exposure to 2.5 mmol L -1 HEA. The normally negative transepithelial potential (-18 mV) increased to -9 mV during the HEA period, which would help to reduce branchial NH 4 + entry. During 3 h of acute environmental hypoxia (30 % saturation), M Amm-N declined, and recovered thereafter, similar to the response seen in other hypoxia-tolerant teleosts; M Urea-N did not change. However, during gradual hypoxia, M Amm-N remained constant, but M Urea-N eventually fell. The acute temperature sensitivities of M Amm-N and M N were low from 28 °C (acclimation) to 33 °C (Q10 ~1.5), but high (~3.8) from 33 to 38 °C, relative to [Formula: see text] (~1.9 throughout). In contrast, M Urea-N exhibited a different pattern over these temperature ranges (Q10 2.6 and 2.1, respectively). The nitrogen quotient (NQ = 0.16-0.23) was high at all temperatures, indicating a 60-85 % reliance on protein to fuel aerobic metabolism in these fasting animals. During steady-state aerobic exercise, [Formula: see text] and M Urea-N increased in parallel with velocity (up to 3.45 body lengths s -1 ), but M Amm (and thus M N ) remained approximately constant. Therefore, the NQ fell progressively, indicating a decreasing reliance on protein-based fuels, as work load increased. In group feeding trials using 45 % protein commercial pellets, tambaqui excreted 82 % (range 39-170 %) of the dietary N within 24 h; N-retention efficiency was inversely related to the ration voluntarily consumed. M

  14. Effects of an alfalfa protein hydrolysate on the gene expression and activity of enzymes of the tricarboxylic acid (TCA) cycle and nitrogen metabolism in Zea mays L.

    Science.gov (United States)

    Schiavon, Michela; Ertani, Andrea; Nardi, Serenella

    2008-12-24

    The effects through which an alfalfa protein hydrolysate (EM) possessing gibberellin- and auxin-like activity may promote plant nitrogen (N) nutrition have been investigated in Zea mays L. Treatment with 0.01 or 0.1 mg L(-1) EM for 48 h resulted in enhanced plant growth and leaf sugar accumulation. Concomitantly, the level of nitrates decreased, whereas total N percentage was unchanged. The activity of a number of enzymes involved in carbon (C) metabolism (malate dehydrogenase, MDH; isocitrate dehydrogenase, IDH; citrate synthase, CS) and N reduction and assimilation (nitrate reductase, NR; nitrite reductase, NiR; glutamine synthetase, GS; glutamate synthase, GOGAT; aspartate aminotransferase, AspAT) was significantly induced by EM supply to plants, and the transcription pattern of MDH, IDH, CS, and NR strongly correlated with data of enzyme activity. The transcript accumulation of asparagine synthetase (AS) was also induced by EM in the roots. The results suggest that EM might promote nitrogen assimilation in plants through a coordinate regulation of C and N metabolic pathways and open the way for further research on protein hydrolysates as a valid tool to improve N use efficiency and, as a consequence, to reduce the intensive use of inorganic N fertilizers in agriculture.

  15. Ethephon increases photosynthetic-nitrogen use efficiency, proline and antioxidant metabolism to alleviate decrease in photosynthesis under salinity stress in mustard.

    Science.gov (United States)

    Iqbal, Noushina; Umar, Shahid; Per, Tasir S; Khan, Nafees A

    2017-05-04

    Salinity is a serious threat to plant growth and development worldwide reducing agricultural productivity each year. Ethylene is an important phytohormone that affects plants performance under normal and abiotic stress conditions. In this study, role of ethylene was investigated in mitigating salinity stress (100 mM NaCl) effects on photosynthesis in mustard plants subjected to different nitrogen (N; 5 and 10 mM) levels. Plants under salinity stress exhibited marked increase in proline and reduced glutathione (GSH) content and activity of antioxidant enzymes. Nitrogen supplementation at 10 mM was better than 200 µl l -1 ethephon treatment under no stress. However, under salinity stress, both N and ethephon were equally effective. The combined application of 10 mM N and ethephon to salinity stressed plants produced greatest increase in photosynthesis by increasing proline and antioxidant metabolism. Ethylene evolution was high under salinity stress, but treatment of 10 mM N and 200 µl l -1 ethephon greatly decreased ethylene evolution that was equivalent to the 10 mM N treatment alone. This concentration of ethylene decreased the oxidative stress and increased the photosynthetic nitrogen use efficiency (NUE) maximally to increase photosynthesis. The use of ethylene action inhibitor, norbornadiene (NBD) showed reduction in ethylene mediated effects in alleviating salinity. Norbornadiene decreased the photosynthetic-NUE, proline and GSH content that resulted in decrease in photosynthesis under salinity stress. This study indicated that ethylene regulated the proline and antioxidant metabolism under salinity stress to increase photosynthetic functions of mustard grown with low and optimum N. The modulation of ethylene could be adopted in agricultural practices to increase photosynthesis under salinity stress.

  16. Effects of nitro-treatment on Salmonella, E. coli and nitrogen metabolism during composting of poultry litter

    Science.gov (United States)

    Poultry litter contains appreciable amounts of uric acid which makes it a good crude protein supplement for ruminants whose gut microbes transform the nitrogen in uric acid into high quality microbial protein. However, poultry litter must be treated to kill bacterial pathogens before feeding. Pres...

  17. Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying 13C- and 15N-labeled substrates simultaneously

    International Nuclear Information System (INIS)

    Blank, Lars M.; Desphande, Rahul R.; Schmid, Andreas; Hayen, Heiko

    2012-01-01

    Alternative metabolic pathways inside a cell can be deduced using stable isotopically labeled substrates. One prerequisite is accurate measurement of the labeling pattern of targeted metabolites. Experiments are generally limited to the use of single-element isotopes, mainly 13 C. Here, we demonstrate the application of direct infusion nanospray, ultrahigh-resolution Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) for metabolic studies using differently labeled elemental isotopes simultaneously - i.e., 13 C and 15 N - in amino acids of a total protein hydrolysate. The optimized strategy for the analysis of metabolism by a hybrid linear ion trap-FTICR-MS comprises the collection of multiple adjacent selected ion monitoring scans. By limiting both the width of the mass range and the number of ions entering the ICR cell with automated gain control, sensitive measurements of isotopologue distribution were possible without compromising mass accuracy and isotope intensity mapping. The required mass-resolving power of more than 60,000 is only achievable on a routine basis by FTICR and Orbitrap mass spectrometers. Evaluation of the method was carried out by comparison of the experimental data to the natural isotope abundances of selected amino acids and by comparison to GC/MS results obtained from a labeling experiment with 13 C-labeled glucose. The developed method was used to shed light on the complexity of the yeast Saccharomyces cerevisiae carbon-nitrogen co-metabolism by administering both 13 C-labeled glucose and 15 N-labeled alanine. The results indicate that not only glutamate but also alanine acts as an amino donor during alanine and valine synthesis. Metabolic studies using FTICR-MS can exploit new possibilities by the use of multiple-labeled elemental isotopes. (orig.)

  18. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator

    International Nuclear Information System (INIS)

    Wang Lin; Zhou Qixing; Ding Lingling; Sun Yuebing

    2008-01-01

    Hyperaccumulators are ideal plant species used for phytoremediation of soils contaminated by heavy metals. A full understanding of metal tolerance mechanisms of hyperaccumulators will facilitate enhancing their phytoremediation efficiency. However, how Cd affects N metabolism and which role plays the response of N metabolism to Cd toxicity in the tolerance of hyperaccumulators are still unknown. To clarify these questions, this study investigated the effects of various soil Cd levels on the concentrations of N forms and the activity of key enzymes involved in N metabolism in leaves of the Cd hyperaccumulator, Solanum nigrum L. The results showed that its growth and all N metabolism indicators were normal at low Cd exposure (≤12 mg kg -1 ). At 24 mg Cd kg -1 soil, nitrate assimilation indicators (nitrate concentration and activity of nitrate reductase) were reduced significantly, whereas most ammonia assimilation indicators (ammonium concentration and activity of glutamine synthetase) remained normal. However, when exposed to a higher Cd level (48 mg kg -1 ), growth and most N metabolism indicators were reduced significantly. Therefore, N metabolism in leaves of S. nigrum could be tolerant of Cd toxicity to a certain extent (soil Cd concentration ≤12 mg kg -1 ), and this might be involved in the Cd-tolerance of this Cd-hyperaccumulator

  19. Elucidation of rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated carbon dioxide and temperature using whole genome metagenomic approach.

    Science.gov (United States)

    Bhattacharyya, P; Roy, K S; Das, M; Ray, S; Balachandar, D; Karthikeyan, S; Nayak, A K; Mohapatra, T

    2016-01-15

    Carbon (C) and nitrogen (N) mineralization is one of the key processes of biogeochemical cycling in terrestrial ecosystem in general and rice ecology in particular. Rice rhizosphere is a rich niche of microbial diversity influenced by change in atmospheric temperature and concentration of carbon dioxide (CO2). Structural changes in microbial communities in rhizosphere influence the nutrient cycling. In the present study, the bacterial diversity and population dynamics were studied under ambient CO2 (a-CO2) and elevated CO2+temperature (e-CO2T) in lowland rice rhizosphere using whole genome metagenomic approach. The whole genome metagenomic sequence data of lowland rice exhibited the dominance of bacterial communities including Proteobacteria, Firmicutes, Acidobacteria, Actinobacteria and Planctomycetes. Interestingly, four genera related to methane production namely, Methanobacterium, Methanosphaera, Methanothermus and Methanothermococcus were absent in a-CO2 but noticed under e-CO2T. The acetoclastic pathway was found as the predominant pathway for methanogenesis, whereas, the serine pathway was found as the principal metabolic pathway for CH4 oxidation in lowland rice. The abundances of reads of enzymes in the acetoclastic methanogenesis pathway and serine pathways of methanotrophy were much higher in e-CO2T (328 and 182, respectively) as compared with a-CO2 (118 and 98, respectively). Rice rhizosphere showed higher structural diversities and functional activities in relation to N metabolism involving nitrogen fixation, assimilatory and dissimilatory nitrate reduction and denitrification under e-CO2T than that of a-CO2. Among the three pathways of N metabolism, dissimilarity pathways were predominant in lowland rice rhizosphere and more so under e-CO2T. Consequently, under e-CO2T, CH4 emission, microbial biomass nitrogen (MBN) and dehydrogenase activities were 45%, 20% and 35% higher than a-CO2, respectively. Holistically, a high bacterial diversity and

  20. Unraveling the involvement of ABA in the water deficit-induced modulation of nitrogen metabolism in Medicago truncatula seedlings.

    Science.gov (United States)

    Planchet, Elisabeth; Rannou, Olivier; Ricoult, Claudie; Limami, Anis M

    2011-07-01

    Effects of water deficit and/or abscisic acid (ABA) were investigated on early seedling growth of Medicago truncatula, and on glutamate metabolism under dark conditions. Water deficit (simulated by polyethylene glycol, PEG), ABA and their combination resulted in a reduction in growth rate of the embryo axis, and also in a synergistic increase of free amino acid (AA) content. However, the inhibition of water uptake retention induced by water deficit seemed to occur in an ABA-independent manner. Expression of several genes involved in glutamate metabolism was induced during water deficit, whereas ABA, in combination or not with PEG, repressed them. The only exception came from a gene encoding 1-pyrroline-5-carboxylate synthetase (P5CS) which appeared to be induced in an ABA-dependent manner under water deficit. Our results demonstrate clearly the involvement of an ABA-dependent and an ABA-independent regulatory system, governing growth and glutamate metabolism under water deficit.

  1. Urea and short-chain fatty acids metabolism in Holstein cows fed a low-nitrogen grass-based diet

    DEFF Research Database (Denmark)

    Røjen, B A; Lund, P; Kristensen, N B

    2008-01-01

    Three ruminally cannulated and multicatheterised lactating dairy cows were used to investigate the effect of different supplement strategies to fresh clover grass on urea and short-chain fatty acid (SCFA) metabolism in a zero-grazing experiment with 24-h blood and ruminal samplings.......Three ruminally cannulated and multicatheterised lactating dairy cows were used to investigate the effect of different supplement strategies to fresh clover grass on urea and short-chain fatty acid (SCFA) metabolism in a zero-grazing experiment with 24-h blood and ruminal samplings....

  2. Transcriptome Analysis of Two Rice Varieties Contrasting for Nitrogen Use Efficiency under Chronic N Starvation Reveals Differences in Chloroplast and Starch Metabolism-Related Genes

    Directory of Open Access Journals (Sweden)

    Subodh Kumar Sinha

    2018-04-01

    Full Text Available The nitrogen use efficiency (NUE of crop plants is limited and enhancing it in rice, a major cereal crop, would be beneficial for farmers and the environment alike. Here we report the genome-wide transcriptome analysis of two rice genotypes, IR 64 (IR64 and Nagina 22 (N22 under optimal (+N and chronic starvation (-N of nitrogen (N from 15-day-old root and shoot tissues. The two genotypes were found to be contrasting in their response to -N; IR64 root architecture and root dry weight remained almost equivalent to that under +N conditions, while N22 showed high foraging ability but a substantial reduction in biomass under -N. Similarly, the photosynthetic pigments showed a drastic reduction in N22 under low N, while IR64 was more resilient. Nitrate reductase showed significantly low specific activity under -N in both genotypes. Glutamate synthase (GOGAT and citrate synthase CS activity were highly reduced in N22 but not in IR64. Transcriptome analysis of these genotypes revealed nearly double the number of genes to be differentially expressed (DEGs in roots (1016 compared to shoots (571. The response of the two genotypes to N starvation was distinctly different reflecting their morphological/biochemical response with just two and eight common DEGs in the root and shoot tissues. There were a total of 385 nitrogen-responsive DEGs (106 in shoots and 279 in roots between the two genotypes. Fifty-two of the 89 DEGs identified as specific to N22 root tissues were also found to be differentially expressed between the two genotypes under -N. Most of these DEGs belonged to starch and chloroplast metabolism, followed by membrane and signaling proteins. Physical mapping of DEGs revealed 95 DEGs in roots and 76 in shoots to be present in quantitative trait loci (QTL known for NUE.

  3. Time-dependent regulation analysis dissects shifts between metabolic and gene-expression regulation during nitrogen starvation in baker's yeast

    NARCIS (Netherlands)

    van Eunen, Karen; Bouwman, Jildau; Lindenbergh, Alexander; Westerhoff, Hans V.; Bakker, Barbara M.

    2009-01-01

    Time-dependent regulation analysis is a new methodology that allows us to unravel, both quantitatively and dynamically, how and when functional changes in the cell are brought about by the interplay of gene expression and metabolism. In this first experimental implementation, we dissect the initial

  4. Cereal grain, rachis and pulse seed amino acid δ15N values as indicators of plant nitrogen metabolism.

    Science.gov (United States)

    Styring, Amy K; Fraser, Rebecca A; Bogaard, Amy; Evershed, Richard P

    2014-01-01

    Natural abundance δ(15)N values of plant tissue amino acids (AAs) reflect the cycling of N into and within plants, providing an opportunity to better understand environmental and anthropogenic effects on plant metabolism. In this study, the AA δ(15)N values of barley (Hordeum vulgare) and bread wheat (Triticum aestivum) grains and rachis and broad bean (Vicia faba) and pea (Pisum sativum) seeds, grown at the experimental farm stations of Rothamsted, UK and Bad Lauchstädt, Germany, were determined by GC-C-IRMS. It was found that the δ(15)N values of cereal grain and rachis AAs could be largely attributed to metabolic pathways involved in their biosynthesis and catabolism. The relative (15)N-enrichment of phenylalanine can be attributed to its involvement in the phenylpropanoid pathway and glutamate has a δ(15)N value which is an average of the other AAs due to its central role in AA-N cycling. The relative AA δ(15)N values of broad bean and pea seeds were very different from one another, providing evidence for differences in the metabolic routing of AAs to the developing seeds in these leguminous plants. This study has shown that AA δ(15)N values relate to known AA biosynthetic pathways in plants and thus have the potential to aid understanding of how various external factors, such as source of assimilated N, influence metabolic cycling of N within plants. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Metabolic Engineering of the Regulators in Nitrogen Catabolite Repression To Reduce the Production of Ethyl Carbamate in a Model Rice Wine System

    Science.gov (United States)

    Zhao, Xinrui; Zou, Huijun; Fu, Jianwei; Chen, Jian

    2014-01-01

    Rice wine has been one of the most popular traditional alcoholic drinks in China. However, the presence of potentially carcinogenic ethyl carbamate (EC) in rice wine has raised a series of food safety issues. During rice wine production, the key reason for EC formation is urea accumulation, which occurs because of nitrogen catabolite repression (NCR) in Saccharomyces cerevisiae. NCR represses urea utilization by retaining Gln3p in the cytoplasm when preferred nitrogen sources are present. In order to increase the nuclear localization of Gln3p, some possible phosphorylation sites on the nuclear localization signal were mutated and the nuclear localization regulation signal was truncated, and the disruption of URE2 provided an additional method of reducing urea accumulation. By combining these strategies, the genes involved in urea utilization (DUR1,2 and DUR3) could be significantly activated in the presence of glutamine. During shake flask fermentations of the genetically modified strains, very little urea accumulated in the medium. Furthermore, the concentrations of urea and EC were reduced by 63% and 72%, respectively, in a model rice wine system. Examination of the normal nutrients in rice wine indicated that there were few differences in fermentation characteristics between the wild-type strain and the genetically modified strain. These results show that metabolic engineering of the NCR regulators has great potential as a method for eliminating EC during rice wine production. PMID:24185848

  6. The master regulator PhoP coordinates phosphate and nitrogen metabolism, respiration, cell differentiation and antibiotic biosynthesis: comparison in Streptomyces coelicolor and Streptomyces avermitilis.

    Science.gov (United States)

    Martín, Juan F; Rodríguez-García, Antonio; Liras, Paloma

    2017-05-01

    Phosphate limitation is important for production of antibiotics and other secondary metabolites in Streptomyces. Phosphate control is mediated by the two-component system PhoR-PhoP. Following phosphate depletion, PhoP stimulates expression of genes involved in scavenging, transport and mobilization of phosphate, and represses the utilization of nitrogen sources. PhoP reduces expression of genes for aerobic respiration and activates nitrate respiration genes. PhoP activates genes for teichuronic acid formation and reduces expression of genes for phosphate-rich teichoic acid biosynthesis. In Streptomyces coelicolor, PhoP repressed several differentiation and pleiotropic regulatory genes, which affects development and indirectly antibiotic biosynthesis. A new bioinformatics analysis of the putative PhoP-binding sequences in Streptomyces avermitilis was made. Many sequences in S. avermitilis genome showed high weight values and were classified according to the available genetic information. These genes encode phosphate scavenging proteins, phosphate transporters and nitrogen metabolism genes. Among of the genes highlighted in the new studies was aveR, located in the avermectin gene cluster, encoding a LAL-type regulator, and afsS, which is regulated by PhoP and AfsR. The sequence logo for S. avermitilis PHO boxes is similar to that of S. coelicolor, with differences in the weight value for specific nucleotides in the sequence.

  7. Effects of dietary methionine supplementation on growth performance of cubs, nutrient digestibility, nitrogen metabolism and serum biochemical indicators of female blue foxes (Alopex lagopus

    Directory of Open Access Journals (Sweden)

    Jungang Guo

    2015-12-01

    Full Text Available The objective of the present study was to investigate the effects of methionine (Met supplementation on growth performance of cubs, nutrient digestibility, nitrogen metabolism and serum biochemical parameters of female blue foxes. One hundred primiparous female blue foxes that were similar in breeding date, pedigree, age, and weight were selected for the trial. The foxes were randomly assigned to four groups (n = 25 each group and fed diets supplemented with Met at 2 (Met2, 4 (Met4, 6 (Met6 and 8 g/kg (Met8, respectively, for 40 days. Our data showed that body weights at 20 and 40 d were significantly higher in the Met4 group than in the Met2 group (P < 0.05. The Met4 group also had the highest apparent digestibility of dry matter and crude protein compared with either the Met2, Met6, or Met8 group (P < 0.05. The serum Met and isoleucine (Ile concentrations were significantly higher in the Met4 group than in the Met6 or Met8 group (P < 0.05. In summary, these data indicate that supplementary Met improves growth performance of cubs likely due to increased crude protein and dry matter and increased nitrogen retention of female blue foxes. The optimal amount of Met supplementation is 10 g/kg basal diet.

  8. Effects of long-term (10 years) exposure to elevated CO2 and O3 on trembling Aspen carbon and nitrogen metabolism at the aspen FACE (Free-Air Carbon Dioxide Enrichment) study site [Abstract

    Science.gov (United States)

    R. Minocha; S. Long; S. Minocha; P Marquardt; M. Kubiske

    2010-01-01

    The objective of the present study was to evaluate the long-term (10 years) effects of elevated CO2 and O3 on the carbon and nitrogen metabolism of aspen trees. The study was conducted at the Aspen Free-Air Carbon Dioxide Enrichment (FACE) experimental site, Rhinelander, WI, (USA).

  9. Calcium and phosphate regulation of nitrogen metabolism in the cyanobacterium Spirulina platensis under the high light stress.

    Science.gov (United States)

    Singh, D P; Singh, N

    2000-11-01

    High light stress (40 W/m(2))-induced alterations in the nitrogen assimilatory enzymes in Spirulina platensis were studied under the Ca(2+) and phosphate (Pi)-supplemented as well as starved conditions. Results revealed that activities of nitrate reductase (NR), amino acid transferases (AST/GOT and ALT/GPT), and protease enzymes in the high-light-incubated cells were relatively higher under the Ca(2+)- and Pi-starved conditions. On the contrary, relative rates of glutamine synthetase (GS) and ATPase activities were lower in the Ca(2+)- and Pi-starved cells. But the Spirulina cells under the Ca(2+)- and Pi-added conditions showed enhanced activity of both GS and ATPase enzymes. During the high-light stress, a decline in the GS activity, particularly under the Ca(2+)- and Pi-starved conditions, was indicative of a nitrogen starvation-like condition. This could be one of the reasons for induction of the NR and protease enzymes. A higher rate of GS activity was recorded under both the Ca(2+)- and Pi-supplemented conditions, perhaps owing to the enhanced rate of ATPase activity in such conditions. But a declining pattern of both NR and protease activities in the presence of Ca(2+) and Pi, despite the higher rate of ATPase activity, might involve some other mechanism like the protein-kinase system.

  10. Nitrogen availability for nitrogen fixing cyanobacteria upon growth ...

    African Journals Online (AJOL)

    The filamentous cyanobacterium Nostoc PCC 7120 is able to convert dinitrogen to ammonia in the absence of combined nitrogen. The expression of 20% of coding sequences from all major metabolic categories was examined in nitrogen fixing and non-nitrogen fixing growth conditions. The expression data were correlated ...

  11. Genome sequencing of Sulfolobus sp. A20 from Costa Rica and comparative analyses of the putative pathways of carbon, nitrogen and sulfur metabolism in various Sulfolobus strains

    Directory of Open Access Journals (Sweden)

    Xin Dai

    2016-11-01

    Full Text Available The genome of Sulfolobus sp. A20 isolated from a hot spring in Costa Rica was sequenced. This circular genome of the strain is 2,688,317 bp in size and 34.8% in G+C content, and contains 2,591 open reading frames (ORFs. Strain A20 shares ~95.6% identity at the 16S rRNA gene sequence level and less than 30% DNA-DNA hybridization (DDH values with the most closely related known Sulfolobus species (i.e., S. islandicus and S. solfataricus, suggesting that it represents a novel Sulfolobus species. Comparison of the genome of strain A20 with those of the type strains of S. solfataricus, S. acidocaldarius, S. islandicus and S. tokodaii, which were isolated from geographically separated areas, identified 1,801 genes conserved among all Sulfolobus species analyzed (core genes. Comparative genome analyses show that central carbon metabolism in Sulfolobus is highly conserved, and enzymes involved in the Entner-Doudoroff pathway, the tricarboxylic acid cycle and the CO2 fixation pathways are predominantly encoded by the core genes. All Sulfolobus species encode genes required for the conversion of ammonium into glutamate/glutamine. Some Sulfolobus strains have gained the ability to utilize additional nitrogen source such as nitrate (i.e. S. islandicus strain REY15A, LAL14/1, M14.25 and M16.27 or urea (i.e. S. islandicus HEV10/4, S. tokodaii strain7 and S. metallicus DSM 6482. The strategies for sulfur metabolism are most diverse and least understood. S. tokodaii encodes sulfur oxygenase/reductase (SOR, whereas both S. islandicus and S. solfataricus contain genes for sulfur reductase (SRE. However, neither SOR nor SRE genes exist in the genome of strain A20, raising the possibility that an unknown pathway for the utilization of elemental sulfur may be present in the strain. The ability of Sulfolobus to utilize nitrate or sulfur is encoded by a gene cluster flanked by IS elements or their remnants. These clusters appear to have become fixed at a specific

  12. Integrated operation of the photorespiratory cycle and cytosolic metabolism in the modulation of primary nitrogen assimilation and export of organic N-transport compounds from leaves: a hypothesis.

    Science.gov (United States)

    Misra, Jitendra B

    2014-02-15

    Photorespiration is generally considered to be an essentially dissipative process, although it performs some protective and essential functions. A theoretical appraisal indicates that the loss of freshly assimilated CO2 due to photorespiration in well-watered plants may not be as high as generally believed. Even under moderately adverse conditions, these losses may not exceed 10%. The photorespiratory metabolism of the source leaves of well-watered and well-nourished crop plants ought to be different from that of other leaves because the fluxes of the export of both carbohydrates and organic N-transport compounds in source leaves is quite high. With a heuristic approach that involved the dovetailing of certain metabolic steps with the photorespiratory cycle (PR-cycle), a novel network is proposed to operate in the source-leaves of well-watered and well-nourished plants. This network allows for the diversion of metabolites from their cyclic-routes in sizeable quantities. With the removal of considerable quantities of glycine and serine from the cyclic route, the number of RuBP oxygenation events would be several times those of the formation of hydroxypyruvate. Thus, to an extreme extent, photorespiratory metabolism would become open-ended and involve much less futile recycling of glycine and serine. Conversion of glyoxylate to glycine has been proposed to be a crucial step in the determination of the relative rates of the futile (cyclic) and anabolic (open-ended) routes. Thus, in the source leaves of well-watered and well-nourished plants, the importance of the cyclic route is limited to the salvaging of photorespiratory intermediates for the regeneration of RuBP. The proposed network is resilient enough to coordinate the rates of the assimilation of carbon and nitrogen in accordance with the moisture and N-fertility statuses of the soil. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Whole-body nitrogen and tyrosine metabolism in surgical patients receiving branched-chain amino acid solutions

    International Nuclear Information System (INIS)

    Desai, S.P.; Bistrian, B.R.; Moldawer, L.L.; Blackburn, G.L.

    1985-01-01

    Fifteen patients undergoing gastric bypass surgery for morbid obesity received preoperatively a standard crystalline amino acid solution containing 15.6% branched-chain amino acids. During the first five postoperative days, the patients were randomized to receive one of three amino acid solutions of different branched-chain amino acid content. Whole-body amino acid appearance and oxidation were estimated using a continuous intravenous infusion of L-(U- 14 C)-tyrosine preoperatively and on the third postoperative day. This study suggests that an adequate nitrogen intake of a balanced amino acid mixture, as well as a solution enriched with branched-chain amino acids, maintains protein homeostasis and supports protein synthesis similarly in well-nourished patients following major abdominal surgery. A diet containing only branched-chain amino acids in isomolar ratios was as effective at maintaining protein retention and whole-body protein synthesis and albumin renewal postoperatively when compared with a standard amino acid formula

  14. Influence of Trypaea australiensis population density on benthic metabolism and nitrogen dynamics in sandy estuarine sediment: A mesocosm simulation

    Science.gov (United States)

    Jordan, Mark A.; Welsh, David T.; Dunn, Ryan J. K.; Teasdale, Peter R.

    2009-02-01

    Laboratory mesocosm incubations were undertaken to investigate the influence of natural densities of the thalassinidean shrimp, Trypaea australiensis (marine yabby) on sediment oxygen demand (SOD), inorganic nutrient fluxes, and the N-cycle processes of nitrification, denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Mesocosms (~ 0.1 m 2 × 55 cm deep) of sieved, natural T. australiensis inhabited sands were continually flushed with fresh seawater and pre-incubated for two weeks prior to being assigned to one of three treatments; control (no additions), low yabby density (40 T. australiensis m - 2 ) or high yabby density (80 T. australiensis m - 2 ). Thereafter, SOD and sediment-water column inorganic nutrient fluxes were determined periodically over a 38 day period. On the final day rates of denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were also determined using the 15N-isotope pairing technique. Yabbies consistently and significantly ( p nitrification rates by 31 and 46% in the low and high density treatments. However, somewhat surprisingly T. australiensis population density had no effect on rates of denitrification and DNRA despite the higher rates of nitrification and higher equilibrium water column nitrate concentration. Indeed, nitrate reduction processes became an increasingly unimportant element with increasing yabby density with for example, N 2 generated by coupled nitrification-denitrification representing 11.5, 5.2 and 2.8% of the total inorganic-N recycled to the water column in the control, low density and high density yabby treatments, respectively. Overall, the major influence of T. australiensis in the studied low organic matter content, sandy sediments was to enhance coupling between the benthic and pelagic systems through increased rates of inorganic nitrogen regeneration in the sediment and enhanced export of this nitrogen to the water column. Our results also suggest that the influences of

  15. Chloroplast Glutamine Synthetase, the Key Regulator of Nitrogen Metabolism in Wheat, Performs Its Role by Fine Regulation of Enzyme Activity via Negative Cooperativity of Its Subunits

    Directory of Open Access Journals (Sweden)

    Edit Németh

    2018-02-01

    Full Text Available Glutamine synthetase (GS is of central interest as the main route of ammonia assimilation in plants, and as a connection point between the organic and inorganic worlds. Even though GS activity is critical for producing high yields of crop plants, the autoregulation of substrate consumption of wheat GS remained unknown until now. Here we show kinetic evidence, that the chloroplast localized GS isoform (GS2 of wheat (Triticum aestivum L. cv. Jubilejnaja-50 takes place at the carbon-nitrogen metabolic branch point, where it is a mediator, and its enzymatic activity is regulated in a negatively cooperative allosteric manner. We have discovered that GS2 activity is described by a tetraphasic kinetic curve in response to increasing levels of glutamate supply. We constructed a model that explains the kinetic properties of glutamate consumption and this unique allosteric behavior. We also studied the subunit composition of both wheat leaf GS isoenzymes by a combination of two dimensional gel electrophoresis and protein blotting. Both leaf isozymes have homogeneous subunit composition. Glutamate is both a substrate, and an allosteric regulator of the biosynthetic reaction. We have concluded on the basis of our results and previous reports, that wheat GS2 is probably a homooctamer, and that it processes its substrate in a well-regulated, concentration dependent way, as a result of its negatively cooperative, allosteric activity. Thus, GS2 has a central role as a regulator between the nitrogen and the carbon cycles via maintaining glutamine-glutamate pool in the chloroplast on the level of substrates, in addition to its function in ammonia assimilation.

  16. Growth, photosynthesis and nitrogen metabolism in soybean varieties after exclusion of the UV-B and UV-A/B components of solar radiation

    Directory of Open Access Journals (Sweden)

    Sanjay Singh Baroniya

    2014-12-01

    Full Text Available A field experiment was conducted to study the impact of the exclusion of the solar UV components on growth, photosynthesis and nitrogen metabolism in soybean (Glycine max varieties PK-472, Pusa-24, JS 71-05, JS-335, NRC-7 and Kalitur. The plants were grown in specially designed UV exclusion chambers wrapped with filters to exclude UV-B or UV-A/B and transmitted all UV. Exclusion of UV significantly enhanced the growth of the aerial parts as well as the growth of the below ground parts in all of the six soybean varieties. Nitrate reductase activity (NRA was significantly reduced, whereas leghemoglobin (Lb content, total soluble protein, net photosynthesis (Pn and α-tocopherol content were enhanced after UV exclusion. The exclusion of solar UV-A/B enhanced all parameters to a larger extent than the exclusion of solar UV-B in four of the six varieties of soybean except for NRC-7 and Kalitur. These two varieties responded more to UV-B exclusion compared to UV-A/B exclusion. A significant inverse correlation between the NRA and the number of nodules per plant was observed. The extent of response in all parameters was greater in PK-472 and JS71-05 than that in Kalitur and JS-335 after UV exclusion. The exclusion of UV augmented the growth of nodules, Lb content and α-tocopherol levels and conferred higher rates of Pn to support better growth of nodules. Control plants (+ UV-A/B seemed to fulfill their N demand through the assimilation of NO3− resulting in lower symbiotic nitrogen fixation and higher NR activity.

  17. Effect of feeding dehydrated and ensiled tanniferous sainfoin (Onobrychis viciifolia) on nitrogen and mineral digestion and metabolism of lambs.

    Science.gov (United States)

    Scharenberg, Anna; Arrigo, Yves; Gutzwiller, Andreas; Wyss, Ueli; Hess, Hans D; Kreuzer, Michael; Dohme, Frigga

    2007-10-01

    The effects of tanniferous sainfoin on digestion and metabolism have been investigated in 12 lambs in an incomplete cross-over design (n = 6). Effects of condensed tannins (CT) were evaluated by comparing dehydrated and ensiled sainfoin treated with and without polyethylene glycol (PEG). Dehydrated and ensiled grass-clover mixtures served as controls. The lambs were fed the treatment diets, including a mineral supplement, for 21 d. During the last 7 d excreta, rumen fluid and blood were sampled. The CT of sainfoin decreased rumen fluid ammonia concentration (p Ensiling of sainfoin led to the lowest N-retention. In conclusion, the reduction in ruminal ammonia and urine-N losses by sainfoin CT did not improve N-retention.

  18. Effects of Corn and Soybean Meal Types on Rumen Fermentation, Nitrogen Metabolism and Productivity in Dairy Cows

    Directory of Open Access Journals (Sweden)

    J. S. Shen

    2015-03-01

    Full Text Available Twelve multiparous Holstein dairy cows in mid-lactation were selected for a replicated 4×4 Latin square design with a 2 ×2 factorial arrangement to investigate the effects of corn and soybean meal (SBM types on rumen fermentation, N metabolism and lactation performance in dairy cows. Two types of corn (dry ground [DGC] and steam-flaked corn [SFC] and two types of SBM (solvent-extracted and heat-treated SBM with different ruminal degradation rates and extents were used to formulate four diets with the same basal ingredients. Each period lasted for 21 days, including 14 d for adaptation and 7 d for sample collection. Cows receiving SFC had a lower dry matter (DM and total N intake than those fed DGC. However, the milk yield and milk protein yield were not influenced by the corn type, resulting in higher feed and N utilization efficiency in SFC-fed cows than those receiving DGC. Ruminal acetate concentrations was greater and total volatile fatty acids concentrations tended to be greater for cows receiving DGC relative to cows fed SFC, but milk fat content was not influenced by corn type. The SFC-fed cows had lower ruminal ammonia-N, less urea N in their blood and milk, and lower fecal N excretion than those on DGC. Compared with solvent-extracted SBM-fed cows, cows receiving heat-treated SBM had lower microbial protein yield in the rumen, but similar total tract apparent nutrient digestibility, N metabolism measurements, and productivity. Excessive supply of metabolizable protein in all diets may have caused the lack of difference in lactation performance between SBM types. Results of the present study indicated that increasing the energy degradability in the rumen could improve feed efficiency, and reduce environmental pollution.

  19. Effects of Corn and Soybean Meal Types on Rumen Fermentation, Nitrogen Metabolism and Productivity in Dairy Cows

    Science.gov (United States)

    Shen, J. S.; Song, L. J.; Sun, H. Z.; Wang, B.; Chai, Z.; Chacher, B.; Liu, J. X.

    2015-01-01

    Twelve multiparous Holstein dairy cows in mid-lactation were selected for a replicated 4×4 Latin square design with a 2 ×2 factorial arrangement to investigate the effects of corn and soybean meal (SBM) types on rumen fermentation, N metabolism and lactation performance in dairy cows. Two types of corn (dry ground [DGC] and steam-flaked corn [SFC]) and two types of SBM (solvent-extracted and heat-treated SBM) with different ruminal degradation rates and extents were used to formulate four diets with the same basal ingredients. Each period lasted for 21 days, including 14 d for adaptation and 7 d for sample collection. Cows receiving SFC had a lower dry matter (DM) and total N intake than those fed DGC. However, the milk yield and milk protein yield were not influenced by the corn type, resulting in higher feed and N utilization efficiency in SFC-fed cows than those receiving DGC. Ruminal acetate concentrations was greater and total volatile fatty acids concentrations tended to be greater for cows receiving DGC relative to cows fed SFC, but milk fat content was not influenced by corn type. The SFC-fed cows had lower ruminal ammonia-N, less urea N in their blood and milk, and lower fecal N excretion than those on DGC. Compared with solvent-extracted SBM-fed cows, cows receiving heat-treated SBM had lower microbial protein yield in the rumen, but similar total tract apparent nutrient digestibility, N metabolism measurements, and productivity. Excessive supply of metabolizable protein in all diets may have caused the lack of difference in lactation performance between SBM types. Results of the present study indicated that increasing the energy degradability in the rumen could improve feed efficiency, and reduce environmental pollution. PMID:25656206

  20. Nitrogen metabolism and growth enhancement in tomato plants challenged with Trichoderma harzianum expressing the Aspergillus nidulans acetamidase amdS gene

    Directory of Open Access Journals (Sweden)

    Sara Domínguez

    2016-08-01

    Full Text Available Trichoderma is a fungal genus that includes species that are currently being used as biological control agents and/or as biofertilizers. In addition to the direct application of Trichoderma spp. as biocontrol agents in plant protection, recent studies have focused on the beneficial responses exerted on plants, stimulating the growth, activating the defenses, and/or improving nutrient uptake. The amdS gene, encoding an acetamidase of Aspergillus, has been used as a selectable marker for the transformation of filamentous fungi, including Trichoderma spp., but the physiological effects of the introduction of this gene into the genome of these microorganisms still remains unexplored. No evidence of amdS orthologous genes has been detected within the Trichoderma spp. genomes and the amdS heterologous expression in T. harzianum T34 did not affect the growth of this fungus in media lacking acetamide. However, it did confer the ability for the fungus to use this amide as a nitrogen source. Although a similar antagonistic behavior was observed for T34 and amdS transformants in dual cultures against Rhizoctonia solani, Botrytis cinerea and Fusarium oxysporum, a significantly higher antifungal activity was detected in amdS transformants against F. oxysporum, compared to that of T34, in membrane assays on media lacking acetamide. In Trichoderma-tomato interaction assays, amdS transformants were able to promote plant growth to a greater extent than the wild-type T34, although compared with this strain the transformants showed similar capability to colonize tomato roots. Gene expression patterns from aerial parts of 3-week-old tomato plants treated with T34 and the amdS transformants have also been investigated using GeneChip Tomato Genome Arrays. The downregulation of defense genes and the upregulation of carbon and nitrogen metabolism genes observed in the microarrays were accompanied by i enhanced growth, ii increased carbon and nitrogen levels and iii a

  1. Feed conversion efficiency in dairy cows: Repeatability, variation in digestion and metabolism of energy and nitrogen, and ruminal methanogens.

    Science.gov (United States)

    Arndt, C; Powell, J M; Aguerre, M J; Crump, P M; Wattiaux, M A

    2015-06-01

    The objective was to study repeatability and sources of variation in feed conversion efficiency [FCE, milk kg/kg dry matter intake (DMI)] of lactating cows in mid to late lactation. Trials 1 and 2 used 16 cows (106 to 368 d in milk) grouped in 8 pairs of 1 high- and 1 low-FCE cow less than 16 d in milk apart. Trial 1 determined the repeatability of FCE during a 12-wk period. Trial 2 quantified the digestive and metabolic partitioning of energy and N with a 3-d total fecal and urine collection and measurement of CH4 and CO2 emission. Trial 3 studied selected ruminal methanogens in 2 pairs of cows fitted with rumen cannulas. Cows received a single diet including 28% corn silage, 27% alfalfa silage, 17% crude protein, and 28% neutral detergent fiber (dry matter basis). In trial 1, mean FCE remained repeatedly different and averaged 1.83 and 1.03 for high- and low-FCE cows, respectively. In trial 2, high-FCE cows consumed 21% more DMI, produced 98% more fat- and protein-corrected milk, excreted 42% less manure per kilogram of fat- and protein-corrected milk, but emitted the same daily amount of CH4 and CO2 compared with low-FCE cows. Percentage of gross energy intake lost in feces was higher (28.6 vs. 25.9%), but urinary (2.76 vs. 3.40%) and CH4 (5.23 vs. 6.99%) losses were lower in high- than low-FCE cows. Furthermore, high-FCE cows partitioned 15% more of gross energy intake toward net energy for maintenance, body gain, and lactation (37.5 vs. 32.6%) than low-FCE cows. Lower metabolic efficiency and greater heat loss in low-FCE cows might have been associated in part with greater energy demand for immune function related to subclinical mastitis, as somatic cell count was 3.8 fold greater in low- than high-FCE cows. As a percentage of N intake, high-FCE cows tended to have greater fecal N (32.4 vs. 30.3%) and had lower urinary N (32.2 vs. 41.7%) and greater milk N (30.3 vs. 19.1%) than low-FCE cows. In trial 3, Methanobrevibacter spp. strain AbM4 was less prevalent in

  2. Alterations in carbon and nitrogen metabolism induced by water deficit in the stems and leaves of Lupinus albus L.

    Science.gov (United States)

    Pinheiro, C; Chaves, M M; Ricardo, C P

    2001-05-01

    Water deficit (WD) in Lupinus albus L. brings about tissue-specific responses that are dependent on stress intensity. Carbohydrate metabolism is very sensitive to changes in plant water status. Six days from withholding water (DAW), sucrose, glucose and fructose levels of the leaf blade had already increased over 5-fold, and the activities of SS and INV(A) had increased c. 1.5-2 times. From 9 DAW on, when stress intensity was more pronounced, these effects were reversed with fructose and glucose concentrations as well as INV(A) activity dropping in parallel. The stem (specifically the stele) responded to the stress intensification with striking increases in the concentration of sugars, N and S, and in the induction of thaumatin-like-protein and an increase in chitinase and peroxidase. At 13 DAW, the plants lost most of the leaves but on rewatering they fully recovered. Thus, the observed changes appear to contribute to a general mechanism of survival under drought, the stem playing a key role in that process.

  3. Brucella, nitrogen and virulence.

    Science.gov (United States)

    Ronneau, Severin; Moussa, Simon; Barbier, Thibault; Conde-Álvarez, Raquel; Zuniga-Ripa, Amaia; Moriyon, Ignacio; Letesson, Jean-Jacques

    2016-08-01

    The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use.

  4. Evaluation of some feedstuffs with special emphasis on the effect of nitrate and other non-protein nitrogen fractions on ruminal microbial metabolism

    International Nuclear Information System (INIS)

    Nikolic, J.A.

    1988-01-01

    Green herbage grown under widely different conditions was examined for nitrate content. The mean value was 0.14% (range 0.01-0.32%) NO 3 -N in the dry matter (DM). It was concluded that the cut green fodder would induce high levels of blood methaemoglobin when fed to ruminants in mixed diets. Nevertheless, experiments in vitro indicated that relatively small amounts of dietary nitrate induced considerable microbial nitrate reducing activity in rumen contents. Moreover, nitrate reduction to ammonia was accompanied by alterations in microbial sulphur and energy metabolism. A technique for determining organic matter digestibility (OMD) in vitro was standardized and used to evaluate the potential nutritive value of some fruit wastes. Studies on apple pomace silage indicated that added urea did not significantly increase the silage protein content but remained as a potential source of non-protein nitrogen for rumen microorganisms. Apple pomace ensiled alone or preferably with other ingredients was acceptable to sheep and cattle, particularly as a supplement to their winter rations. (author). 27 refs, 2 figs, 5 tabs

  5. Metabolic and transcriptomic response of the wine yeast Saccharomyces cerevisiae strain EC1118 after an oxygen impulse under carbon-sufficient, nitrogen-limited fermentative conditions.

    Science.gov (United States)

    Orellana, Marcelo; Aceituno, Felipe F; Slater, Alex W; Almonacid, Leonardo I; Melo, Francisco; Agosin, Eduardo

    2014-05-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to continuously changing environmental conditions, such as decreasing sugar and increasing ethanol concentrations. Oxygen, a critical nutrient to avoid stuck and sluggish fermentations, is only discretely available throughout the process after pump-over operation. In this work, we studied the physiological response of the wine yeast S. cerevisiae strain EC1118 to a sudden increase in dissolved oxygen, simulating pump-over operation. With this aim, an impulse of dissolved oxygen was added to carbon-sufficient, nitrogen-limited anaerobic continuous cultures. Results showed that genes related to mitochondrial respiration, ergosterol biosynthesis, and oxidative stress, among other metabolic pathways, were induced after the oxygen impulse. On the other hand, mannoprotein coding genes were repressed. The changes in the expression of these genes are coordinated responses that share common elements at the level of transcriptional regulation. Beneficial and detrimental effects of these physiological processes on wine quality highlight the dual role of oxygen in 'making or breaking wines'. These findings will facilitate the development of oxygen addition strategies to optimize yeast performance in industrial fermentations. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Nitrogen balance of healthy Dutch women before and during pregnancy

    NARCIS (Netherlands)

    Mojtahedi, M.; Groot, de C.P.G.M.; Boekholt, H.A.; Raaij, van J.M.A.

    2002-01-01

    Background: Experimental studies including longitudinal nitrogen balance studies could provide insight into protein metabolism in pregnancy. Objective: Our aim was to determine the development of nitrogen balance during pregnancy compared with nitrogen balance before pregnancy in women consuming

  7. Nitrogen metabolism, acid-base regulation, and molecular responses to ammonia and acid infusions in the spiny dogfish shark (Squalus acanthias).

    Science.gov (United States)

    Nawata, C Michele; Walsh, Patrick J; Wood, Chris M

    2015-07-01

    Although they are ureotelic, marine elasmobranchs express Rh glycoproteins, putative ammonia channels. To address questions raised by a recent study on high environmental ammonia (HEA) exposure, dogfish were intravascularly infused for 24 h at 3 ml kg(-1) h(-1) with isosmotic NaCl (500 mmol l(-1), control), NH4HCO3 (500 mmol l(-1)), NH4Cl (500 mmol l(-1)), or HCl (as 125 mmol l(-1) HCl + 375 mmol l(-1) NaCl). While NaCl had no effect on arterial acid-base status, NH4HCO3 caused mild alkalosis, NH4Cl caused strong acidosis, and HCl caused lesser acidosis, all predominantly metabolic in nature. Total plasma ammonia (T(Amm)) and excretion rates of ammonia (J(Amm)) and urea-N (J(Urea-N)) were unaffected by NaCl or HCl. However, despite equal loading rates, plasma T(Amm) increased to a greater extent with NH4Cl, while J(Amm) increased to a greater extent with NH4HCO3 due to much greater increases in blood-to-water PNH3 gradients. As with HEA, both treatments caused large (90%) elevations of J(Urea-N), indicating that urea-N synthesis by the ornithine-urea cycle (OUC) is driven primarily by ammonia rather than HCO3(-). Branchial mRNA expressions of Rhbg and Rhp2 were unaffected by NH4HCO3 or NH4Cl, but v-type H(+)-ATPase was down-regulated by both treatments, and Rhbg and Na(+)/H(+) exchanger NHE2 were up-regulated by HCl. In the kidney, Rhbg was unresponsive to all treatments, but Rhp2 was up-regulated by HCl, and the urea transporter UT was up-regulated by HCl and NH4Cl. These responses are discussed in the context of current ideas about branchial, renal, and OUC function in this nitrogen-limited predator.

  8. Elevated atmospheric CO2 and increased nitrogen deposition : effects on C and N metabolism and growth of the peat moss Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) Warnst

    NARCIS (Netherlands)

    van der Heijden, E; Verbeek, S.K.; Kuiper, P.J C

    Sphagnum bogs play an important role when considering the impacts of global change on global carbon and nitrogen cycles. Sphagnum recurvum P. Beauv. var. mucronatum (Russ.) was grown at 360 (ambient) and 700 mu L L-1 (elevated) atmospheric [CO2] in combination with different nitrogen deposition

  9. An update on the use of benzoate, phenylacetate and phenylbutyrate ammonia scavengers for interrogating and modifying liver nitrogen metabolism and its implications in urea cycle disorders and liver disease.

    Science.gov (United States)

    De Las Heras, Javier; Aldámiz-Echevarría, Luis; Martínez-Chantar, María-Luz; Delgado, Teresa C

    2017-04-01

    Ammonia-scavenging drugs, benzoate and phenylacetate (PA)/phenylbutyrate (PB), modulate hepatic nitrogen metabolism mainly by providing alternative pathways for nitrogen disposal. Areas covered: We review the major findings and potential novel applications of ammonia-scavenging drugs, focusing on urea cycle disorders and liver disease. Expert opinion: For over 40 years, ammonia-scavenging drugs have been used in the treatment of urea cycle disorders. Recently, the use of these compounds has been advocated in acute liver failure and cirrhosis for reducing hyperammonemic-induced hepatic encephalopathy. The efficacy and mechanisms underlying the antitumor effects of these ammonia-scavenging drugs in liver cancer are more controversial and are discussed in the review. Overall, as ammonia-scavenging drugs are usually safe and well tolerated among cancer patients, further studies should be instigated to explore the role of these drugs in liver cancer. Considering the relevance of glutamine metabolism to the progression and resolution of liver disease, we propose that ammonia-scavenging drugs might also be used to non-invasively probe liver glutamine metabolism in vivo. Finally, novel derivatives of classical ammonia-scavenging drugs with fewer and less severe adverse effects are currently being developed and used in clinical trials for the treatment of acute liver failure and cirrhosis.

  10. Metabolic profiling of two maize (Zea mays L.) inbred lines inoculated with the nitrogen fixing plant-interacting bacteria Herbaspirillum seropedicae and Azospirillum brasilense.

    Science.gov (United States)

    Brusamarello-Santos, Liziane Cristina; Gilard, Françoise; Brulé, Lenaïg; Quilleré, Isabelle; Gourion, Benjamin; Ratet, Pascal; Maltempi de Souza, Emanuel; Lea, Peter J; Hirel, Bertrand

    2017-01-01

    Maize roots can be colonized by free-living atmospheric nitrogen (N2)-fixing bacteria (diazotrophs). However, the agronomic potential of non-symbiotic N2-fixation in such an economically important species as maize, has still not been fully exploited. A preliminary approach to improve our understanding of the mechanisms controlling the establishment of such N2-fixing associations has been developed, using two maize inbred lines exhibiting different physiological characteristics. The bacterial-plant interaction has been characterized by means of a metabolomic approach. Two established model strains of Nif+ diazotrophic bacteria, Herbaspirillum seropedicae and Azospirillum brasilense and their Nif- couterparts defficient in nitrogenase activity, were used to evaluate the impact of the bacterial inoculation and of N2 fixation on the root and leaf metabolic profiles. The two N2-fixing bacteria have been used to inoculate two genetically distant maize lines (FV252 and FV2), already characterized for their contrasting physiological properties. Using a well-controlled gnotobiotic experimental system that allows inoculation of maize plants with the two diazotrophs in a N-free medium, we demonstrated that both maize lines were efficiently colonized by the two bacterial species. We also showed that in the early stages of plant development, both bacterial strains were able to reduce acetylene, suggesting that they contain functional nitrogenase activity and are able to efficiently fix atmospheric N2 (Fix+). The metabolomic approach allowed the identification of metabolites in the two maize lines that were representative of the N2 fixing plant-bacterial interaction, these included mannitol and to a lesser extend trehalose and isocitrate. Whilst other metabolites such as asparagine, although only exhibiting a small increase in maize roots following bacterial infection, were specific for the two Fix+ bacterial strains, in comparison to their Fix- counterparts. Moreover, a number

  11. The nitrogen cycle.

    Science.gov (United States)

    Stein, Lisa Y; Klotz, Martin G

    2016-02-08

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Molecular evidence for the coordination of nitrogen and carbon metabolisms, revealed by a study on the transcriptional regulation of the agl3EFG operon that encodes a putative carbohydrate transporter in Streptomyces coelicolor.

    Science.gov (United States)

    Cen, Xu-Feng; Wang, Jing-Zhi; Zhao, Guo-Ping; Wang, Ying; Wang, Jin

    2016-03-18

    In the agl3EFGXYZ operon (SCO7167-SCO7162, abbreviated as agl3 operon) of Streptomyces coelicolor M145, agl3EFG genes encode a putative ABC-type carbohydrate transporter. The transcription of this operon has been proved to be repressed by Agl3R (SCO7168), a neighboring GntR-family regulator, and this repression can be released by growth on poor carbon sources. Here in this study, we prove that the transcription of agl3 operon is also directly repressed by GlnR, a central regulator governing the nitrogen metabolism in S. coelicolor. The electrophoretic mobility shift assay (EMSA) employing the agl3 promoter and mixtures of purified recombinant GlnR and Agl3R indicates that GlnR and Agl3R bind to different DNA sequences within the promoter region of agl3 operon, which is further confirmed by the DNase I footprinting assay. As Agl3R and GlnR have been demonstrated to sense the extracellular carbon and nitrogen supplies, respectively, it is hypothesized that the transcription of agl3 operon is stringently governed by the availabilities of extracellular carbon and nitrogen sources. Consistent with the hypothesis, the agl3 operon is further found to be derepressed only under the condition of poor carbon and rich nitrogen supplies, when both regulators are inactivated. It is believed that activation of the expression of agl3 operon may facilitate the absorption of extracellular carbohydrates to balance the ratio of intracellular carbon to nitrogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Uncoupling of silicon compared with carbon and nitrogen metabolisms and the role of the cell cycle in continuous cultures of Thalassiosira pseudonana (Bacillariophyceae) under light, nitrogen and phosphorus control

    NARCIS (Netherlands)

    Claquin, P.; Martin-Jézéquel, V.R.; Kromkamp, J.C.; Veldhuis, M.; Kraay, G.W.

    2002-01-01

    The elemental composition and the cell cycle stages of the marine diatom Thalassiosira pseudonana Hasle and Heimdal were studied in continuous cultures over a range of different light- (E), nitrogen- (N), and phosphorus- (P) limited growth rates. In all growth conditions investigated, the decrease

  14. Adaptations of the reed frog Hyperolius viridiflavus (Amphibia, Anura, Hyperoliidae) to its arid environment : III. Aspects of nitrogen metabolism and osmoregulation in the reed frog, Hyperolius viridiflavus taeniatus, with special reference to the role of iridophores.

    Science.gov (United States)

    Schmuck, R; Linsenmair, K E

    1988-04-01

    Reed frogs of the superspecies Hyperolius viridiflavus occur throughout the seasonally very dry and hot African savannas. Despite their small size (300-700 mg), estivating reed frogs do not avoid stressful conditions above ground by burrowing into the soil, but endure the inhospitable climate relatively unprotected, clinging to mostly dry grass stems. They must have efficient mechanisms to enable them to survive e.g. very high temperatures, low relative humidities, and high solar radiation loads. Mechanisms must also have developed to prevent poisoning by the nitrogenous wastes that inevitably result from protein and nucleotide turnover. In contrast to fossorial amphibians, estivating reed frogs do not become torpid. Reduction in metabolism is therefore rather limited so that nitrogenous wastes accumulate faster in these frogs than in fossorial amphibians. This severely aggravates the osmotic problems caused by dehydration. During dry periods total plasma osmolarity greatly increases, mainly due to urea accumulation. Of the total urea accumulated over 42 days of experimental water deprivation, 30% was produced during the first 7 days. In the next 7 days rise in plasma urea content was negligible. This strong initial increase of urea is seen as a byproduct of elevated amino acid catabolism following the onset of dry conditions. The rise in total plasma osmolarity due to urea accumulation, however, is not totally disadvantageous, but enables fast rehydration when water is available for very short periods only. Voiding of urine and feces ceases once evaporative water loss exceeds 10% of body weight. Therefore, during continuous water deprivation, nitrogenous end products are not excreted. After 42 days of water deprivation, bladder fluid was substantially depleted, and urea concentration in the remaining urine (up to 447 mM) was never greater than in plasma fluid. Feces voided at the end of the dry period after water uptake contained only small amounts of nitrogenous

  15. Metabolic adaptation, a specialized leaf organ structure and vascular responses to diurnal N2 fixation by nostoc azollae sustain the astonishing productivity of azolla ferns without nitrogen fertilizer

    NARCIS (Netherlands)

    Brouwer, Paul; Bräutigam, Andrea; Buijs, Valerie A.; Tazelaar, Anne O.E.; van der Werf, Adrie; Schlüter, Urte; Reichart, Gert-Jan; Bolger, Anthony; Usadel, Björn; Weber, Andreas P.M.; Schluepmann, Henriette

    2017-01-01

    Sustainable agriculture demands reduced input of man-made nitrogen (N) fertilizer, yet N2 fixation limits the productivity of crops with heterotrophic diazotrophic bacterial symbionts. We investigated floating ferns from the genus Azolla that host phototrophic diazotrophic Nostoc azollae in leaf

  16. Robust method for investigating nitrogen metabolism of 15N labeled amino acids using AccQ•Tag ultra performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry: application to a parasitic plant-plant interaction.

    Science.gov (United States)

    Gaudin, Zachary; Cerveau, Delphine; Marnet, Nathalie; Bouchereau, Alain; Delavault, Philippe; Simier, Philippe; Pouvreau, Jean-Bernard

    2014-01-21

    An AccQ•Tag ultra performance liquid chromatography-photodiode array-electrospray ionization-mass spectrometry (AccQ•Tag-UPLC-PDA-ESI-MS) method is presented here for the fast, robust, and sensitive quantification of (15)N isotopologue enrichment of amino acids in biological samples, as for example in the special biotic interaction between the cultivated specie Brassica napus (rapeseed) and the parasitic weed Phelipanche ramosa (broomrape). This method was developed and validated using amino acid standard solutions containing (15)N amino acid isotopologues and/or biological unlabeled extracts. Apparatus optimization, limits of detection and quantification, quantification reproducibility, and calculation method of (15)N isotopologue enrichment are presented. Using this method, we could demonstrate that young parasite tubercles assimilate inorganic nitrogen as (15)N-ammonium when supplied directly through batch incubation but not when supplied by translocation from host root phloem, contrary to (15)N2-glutamine. (15)N2-glutamine mobility from host roots to parasite tubercles followed by its low metabolism in tubercles suggests that the host-derived glutamine acts as an important nitrogen containing storage compound in the young tubercle of Phelipanche ramosa.

  17. Metabolic and physiological changes in Prymnesium parvum when grown under, and grazing on prey of, variable nitrogen

    DEFF Research Database (Denmark)

    Lundgren, Veronica M; Glibert, Patricia M.; Graneli, Edna

    2016-01-01

    the realization that mixotrophy is important ecologically. Laboratory experiments were conducted to examine changes in growth rates and physiological states of the toxic haptophyte Prymnesium parvum when fed Rhodomonas salina of varying nutritional status. Haemolytic activity of P. parvum and prey mortality of R....... salina were also measured. P. parvum cultures grown to be comparatively low in nitrogen (low-N), phosphorus (low-P) or low in both nutrients (low-NP) were mixed with low-NP, low-N, and low-P R. salina in all possible combinations, i.e., a 3 3 factorial design. N deficiency was obtained in the low...

  18. Nodule-enhanced expression of a sucrose phosphate synthase gene member (MsSPSA) has a role in carbon and nitrogen metabolism in the nodules of alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Aleman, Lorenzo; Ortega, Jose Luis; Martinez-Grimes, Martha; Seger, Mark; Holguin, Francisco Omar; Uribe, Diana J; Garcia-Ibilcieta, David; Sengupta-Gopalan, Champa

    2010-01-01

    Sucrose phosphate synthase (SPS) catalyzes the first step in the synthesis of sucrose in photosynthetic tissues. We characterized the expression of three different isoforms of SPS belonging to two different SPS gene families in alfalfa (Medicago sativa L.), a previously identified SPS (MsSPSA) and two novel isoforms belonging to class B (MsSPSB and MsSPSB3). While MsSPSA showed nodule-enhanced expression, both MsSPSB genes exhibited leaf-enhanced expression. Alfalfa leaf and nodule SPS enzymes showed differences in chromatographic and electrophoretic migration and differences in V (max) and allosteric regulation. The root nodules in legume plants are a strong sink for photosynthates with its need for ATP, reducing power and carbon skeletons for dinitrogen fixation and ammonia assimilation. The expression of genes encoding SPS and other key enzymes in sucrose metabolism, sucrose phosphate phosphatase and sucrose synthase, was analyzed in the leaves and nodules of plants inoculated with Sinorhizobium meliloti. Based on the expression pattern of these genes, the properties of the SPS isoforms and the concentration of starch and soluble sugars in nodules induced by a wild type and a nitrogen fixation deficient strain, we propose that SPS has an important role in the control of carbon flux into different metabolic pathways in the symbiotic nodules.

  19. Short chain nitrocompounds as a treatment of layer hen manure and litter; effects on in vitro survivability of Salmonella, generic E. coli and nitrogen metabolism.

    Science.gov (United States)

    Ruiz-Barrera, Oscar; Anderson, Robin C; Hume, Michael E; Corrales-Millan, Jonatan; Castillo-Castillo, Yamicela; Corral-Luna, Agustin; Guevara-Valdez, Jose Luis; Salinas-Chavira, Jaime; Rodriguez-Muela, Carlos; Arzola-Alvarez, Claudio

    2017-01-02

    The current study was conducted to assess the bactericidal effectiveness of several nitrocompounds against pathogens in layer hen manure and litter. Evidence from an initial study indicated that treatment of layer hen manure with 12 mM nitroethane decreased populations of generic E. coli and total coliforms by 0.7 and 2.2 log 10 colony forming units (CFU) g -1 , respectively, after 24 h aerobic incubation at ambient temperature when compared to untreated populations. Salmonella concentrations were unaffected by nitroethane in this study. In a follow-up experiment, treatment of 6-month-old layer hen litter (mixed with 0.4 mL water g -1 ) with 44 mM 2-nitroethanol, 2-nitropropanol or ethyl nitroacetate decreased an inoculated Salmonella typhimurium strain from its initial concentration (3 log 10 CFU g -1 ) by 0.7 to 1.7 log 10 CFU g -1 after 6 h incubation at 37°C in covered containers. After 24 h incubation, populations of the inoculated S. Typhmiurium in litter treated with 44 mM 2-nitroethanol, 2-nitropropanol, ethyl nitroacetate or nitroethane were decreased more than 3.2 log 10 CFU g -1 compared to populations in untreated control litter. Treatment of litter with 44 mM 2-nitroethanol, 2-nitropropanol, ethyl nitroacetate decreased rates of ammonia accumulation more than 70% compared to untreated controls (0.167 µmol mL -1 h -1 ) and loses of uric acid (nitrocompounds may help prevent loss of nitrogen in treated litter. Results warrant further research to determine if these nitrocompounds can be developed into an environmentally sustainable and safe strategy to eliminate pathogens from poultry litter, while preserving its nitrogen content as a nutritionally valuable crude protein source for ruminants.

  20. Dietary nitrogen and fish welfare.

    Science.gov (United States)

    Conceição, Luis E C; Aragão, Cláudia; Dias, Jorge; Costas, Benjamín; Terova, Genciana; Martins, Catarina; Tort, Lluis

    2012-02-01

    Little research has been done in optimizing the nitrogenous fraction of the fish diets in order to minimize welfare problems. The purpose of this review is to give an overview on how amino acid (AA) metabolism may be affected when fish are under stress and the possible effects on fish welfare when sub-optimal dietary nitrogen formulations are used to feed fish. In addition, it intends to evaluate the current possibilities, and future prospects, of using improved dietary nitrogen formulations to help fish coping with predictable stressful periods. Both metabolomic and genomic evidence show that stressful husbandry conditions affect AA metabolism in fish and may bring an increase in the requirement of indispensable AA. Supplementation in arginine and leucine, but also eventually in lysine, methionine, threonine and glutamine, may have an important role in enhancing the innate immune system. Tryptophan, as precursor for serotonin, modulates aggressive behaviour and feed intake in fish. Bioactive peptides may bring important advances in immunocompetence, disease control and other aspects of welfare of cultured fish. Fishmeal replacement may reduce immune competence, and the full nutritional potential of plant-protein ingredients is attained only after the removal or inactivation of some antinutritional factors. This review shows that AA metabolism is affected when fish are under stress, and this together with sub-optimal dietary nitrogen formulations may affect fish welfare. Furthermore, improved dietary nitrogen formulations may help fish coping with predictable stressful events.

  1. Dietary nitrogen and fish welfare

    NARCIS (Netherlands)

    Conceicao, L.E.C.; Aragao, C.; Dias, J.; Costas, B.; Terova, G.; Martins, C.I.; Tort, L.

    2012-01-01

    Little research has been done in optimizing the nitrogenous fraction of the fish diets in order to minimize welfare problems. The purpose of this review is to give an overview on how amino acid (AA) metabolism may be affected when fish are under stress and the possible effects on fish welfare when

  2. β-N-Oxalyl-l-α,β-diaminopropionic Acid (β-ODAP Content in Lathyrus sativus: The Integration of Nitrogen and Sulfur Metabolism through β-Cyanoalanine Synthase

    Directory of Open Access Journals (Sweden)

    Quanle Xu

    2017-02-01

    Full Text Available Grass pea (Lathyrus sativus L. is an important legume crop grown mainly in South Asia and Sub-Saharan Africa. This underutilized legume can withstand harsh environmental conditions including drought and flooding. During drought-induced famines, this protein-rich legume serves as a food source for poor farmers when other crops fail under harsh environmental conditions; however, its use is limited because of the presence of an endogenous neurotoxic nonprotein amino acid β-N-oxalyl-l-α,β-diaminopropionic acid (β-ODAP. Long-term consumption of Lathyrus and β-ODAP is linked to lathyrism, which is a degenerative motor neuron syndrome. Pharmacological studies indicate that nutritional deficiencies in methionine and cysteine may aggravate the neurotoxicity of β-ODAP. The biosynthetic pathway leading to the production of β-ODAP is poorly understood, but is linked to sulfur metabolism. To date, only a limited number of studies have been conducted in grass pea on the sulfur assimilatory enzymes and how these enzymes regulate the biosynthesis of β-ODAP. Here, we review the current knowledge on the role of sulfur metabolism in grass pea and its contribution to β-ODAP biosynthesis. Unraveling the fundamental steps and regulation of β-ODAP biosynthesis in grass pea will be vital for the development of improved varieties of this underutilized legume.

  3. β-N-Oxalyl-l-α,β-diaminopropionic Acid (β-ODAP) Content in Lathyrus sativus: The Integration of Nitrogen and Sulfur Metabolism through β-Cyanoalanine Synthase.

    Science.gov (United States)

    Xu, Quanle; Liu, Fengjuan; Chen, Peng; Jez, Joseph M; Krishnan, Hari B

    2017-02-28

    Grass pea ( Lathyrus sativus L.) is an important legume crop grown mainly in South Asia and Sub-Saharan Africa. This underutilized legume can withstand harsh environmental conditions including drought and flooding. During drought-induced famines, this protein-rich legume serves as a food source for poor farmers when other crops fail under harsh environmental conditions; however, its use is limited because of the presence of an endogenous neurotoxic nonprotein amino acid β- N -oxalyl-l-α,β-diaminopropionic acid (β-ODAP). Long-term consumption of Lathyrus and β-ODAP is linked to lathyrism, which is a degenerative motor neuron syndrome. Pharmacological studies indicate that nutritional deficiencies in methionine and cysteine may aggravate the neurotoxicity of β-ODAP. The biosynthetic pathway leading to the production of β-ODAP is poorly understood, but is linked to sulfur metabolism. To date, only a limited number of studies have been conducted in grass pea on the sulfur assimilatory enzymes and how these enzymes regulate the biosynthesis of β-ODAP. Here, we review the current knowledge on the role of sulfur metabolism in grass pea and its contribution to β-ODAP biosynthesis. Unraveling the fundamental steps and regulation of β-ODAP biosynthesis in grass pea will be vital for the development of improved varieties of this underutilized legume.

  4. Effect of replacing ground corn and soybean meal with licuri cake on the performance, digestibility, nitrogen metabolism and ingestive behavior in lactating dairy cows.

    Science.gov (United States)

    Ferreira, A C; Vieira, J F; Barbosa, A M; Silva, T M; Bezerra, L R; Nascimento, N G; de Freitas, J E; Jaeger, S M P L; Oliveira, P de A; Oliveira, R L

    2017-11-01

    Licuri (Syagrus coronate) cake is a biodiesel by-product used in ruminant feed as a beneficial energy source for supplementation in managed pastures. The objective was to evaluate the performance, digestibility, nitrogen balance, blood metabolites, ingestive behavior and diet profitability of eight crossbred Holstein (3/4)×Gyr (5/8) multiparous cows (480±25 kg BW and 100 days milking) grazing and supplemented with licuri cake partially replacing ground corn and soybean meal in concentrate (0, 200, 400 and 600 g/kg in dry matter (DM)), distributed in an experimental duplicated 4×4 Latin square design. Licuri cake partially replacing ground corn and soybean meal increased (Pcorn and soybean meal in concentrate did not affect the intake; fecal, urinary and mammary excretions; N balance; and triglycerides concentrations. However, the blood urea nitrogen (P=0.04) concentration decreased with the licuri cakes inclusion in cow supplementation. There was an increasing trend for serum creatinine (P=0.07). Licuri cake inclusion did not affect body condition score, production, yield, protein, lactose, total solids and solid non-fat contents of milk and Minas frescal cheese. There was a linear decrease in average daily weight gain (g/day). The milk fat concentration and cheese fat production (Pcorn and soybean meal with licuri cakes. The addition of licuri cake did not alter the time spent feeding, ruminating or idling. There was an increasing trend in NDF feeding efficiency (P=0.09). The replacing of ground corn and soybean meal with licuri cake up to 600 g/kg decreased the concentrate cost by US$0.45/cow per day. Licuri cake replacing corn and soybeans (400 g/kg) in concentrate promoted a profit of US$0.07/animal per day. Licuri cake is indicated to concentrate the supplementation of dairy cows with average productions of 10 kg/day at levels up to 400 g/kg in the concentrate supplement because it provides an additional profit of US$0.07/animal per day and increased milk

  5. The metabolic effect of resistant starch and yoghurt on the renal and faecal nitrogen and ammonia excretion in humans as measured by lactose-[(15)N2]ureide.

    Science.gov (United States)

    Wutzke, Klaus D; Scholübbers, Debora

    2013-01-01

    Resistant starch (RS) and Lactobacillus acidophilus yoghurt (LC1) were supplemented simultaneously in healthy adults to evaluate the effect on the urinary and faecal nitrogen and ammonia excretion by means of lactose-[(15)N2]ureide ((15)N-LU) degradation. Nineteen subjects received a regular daily diet either without or with supplementation of an RS-LC1-mixture composed of fibre of potatoes (RS type 1), wrinkle pea starch (RS type 2), and LC1 over a 20-day period in randomised order. Thereafter, (15)N-LU was administered together with breakfast. Urine and faeces were collected over a period of 48 and 72 h, respectively. The (15)N abundances were measured by isotope ratio mass spectrometry. The intake of the pre- and probiotic mixture composed of RS of type 1, type 2 and of LC1 significantly lowered the colonic generation and the renal excretion of toxic (15)NH3 and functioned as an ammonia shift from urinary to faecal (15)N excretion when using (15)N-LU as a xenobiotic marker.

  6. Kresoxim-methyl primes Medicago truncatula plants against abiotic stress factors via altered reactive oxygen and nitrogen species signalling leading to downstream transcriptional and metabolic readjustment.

    Science.gov (United States)

    Filippou, Panagiota; Antoniou, Chrystalla; Obata, Toshihiro; Van Der Kelen, Katrien; Harokopos, Vaggelis; Kanetis, Loukas; Aidinis, Vassilis; Van Breusegem, Frank; Fernie, Alisdair R; Fotopoulos, Vasileios

    2016-03-01

    Biotic and abiotic stresses, such as fungal infection and drought, cause major yield losses in modern agriculture. Kresoxim-methyl (KM) belongs to the strobilurins, one of the most important classes of agricultural fungicides displaying a direct effect on several plant physiological and developmental processes. However, the impact of KM treatment on salt and drought stress tolerance is unknown. In this study we demonstrate that KM pre-treatment of Medicago truncatula plants results in increased protection to drought and salt stress. Foliar application with KM prior to stress imposition resulted in improvement of physiological parameters compared with stressed-only plants. This protective effect was further supported by increased proline biosynthesis, modified reactive oxygen and nitrogen species signalling, and attenuation of cellular damage. In addition, comprehensive transcriptome analysis identified a number of transcripts that are differentially accumulating in drought- and salinity-stressed plants (646 and 57, respectively) after KM pre-treatment compared with stressed plants with no KM pre-treatment. Metabolomic analysis suggests that the priming role of KM in drought- and to a lesser extent in salinity-stressed plants can be attributed to the regulation of key metabolites (including sugars and amino acids) resulting in protection against abiotic stress factors. Overall, the present study highlights the potential use of this commonly used fungicide as a priming agent against key abiotic stress conditions. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Molecular cloning of the cDNA encoding aspartate aminotransferase from bean root nodules and determination of its role in nodule nitrogen metabolism.

    Science.gov (United States)

    Silvente, Sonia; Camas, Alberto; Lara, Miguel

    2003-06-01

    A cDNA clone encoding aspartate aminotransferase (PVAAT-2) (EC 2.6.1.1) was isolated from the common bean Phaseolus vulgaris nodule cDNA library. The nucleotide sequence analysis of the full-length cDNA allowed its identification by comparison with sequence databases. The amino acid sequence of the bean PvAAT-2 showed high similarity with the AAT-2 isoforms described in other leguminous plants. The amino-terminal region of the PvAAT-2 contains a sequence, which shares common features of plastid transit peptides. Southern blot analysis showed that the PvAAT-2 clone is encoded by a single gene in the P. vulgaris genome. Analysis of the PvAAT-2 mRNA levels suggests that the expression of this gene is nodule enhanced. The PvAAT-2 transcript is more abundant in nodules with increased synthesis of amides and is down-regulated in conditions where ureides accumulate. When plants were supplemented with ureides or with amides, PvAAT-2 expression was reduced, while it was not affected when plants were treated with allopurinol, an inhibitor of ureide synthesis. On the other hand, the expression of asparagine synthetase (another enzyme involved in the synthesis of amides) is not affected either by ureides or amides. These data suggest a role for AAT-2 in the mechanism involved in the synthesis of nitrogen compounds in bean nodules.

  8. Effects of supplementing different levels of sun-dried groundnut foliage on intake, apparent digestibility and nitrogen metabolism in cattle offered a basal diet of a mixture of rice straw and para grass.

    Science.gov (United States)

    Samkol, Pok; Sath, Keo; Patel, Mikaela; Holtenius, Kjell

    2017-10-01

    Eight male Cambodian yellow cattle, initial body weight (BW) 136 ± 11.9 (±SD) kg; age 20 ± 2.5 (±SD) months, were randomly allocated to treatments in a double 4 × 4 Latin square design to investigate the effects of different levels of crude protein (CP) from sun-dried groundnut (Arachis hypogaea L.) foliage (DGF) on feed intake, apparent digestibility and nitrogen metabolism. All animals were fed a basal diet of rice straw ad libitum and para grass (Brachiaria mutica) at 1% of BW. The DGF was offered as a supplement at 0, 1, 2 and 3 g CP/kg BW, denoted DGF0, DGF1, DGF2 and DGF3, respectively. The results showed that the intake of DGF contributed 0, 25, 34 and 42% of total dry matter (DM) intake. Rice straw intake decreased when DGF intake increased. Total intake of DM, organic matter (OM), digestible OM, ash, neutral detergent fibre and acid detergent fibre increased with increased level of DGF inclusion but did not differ for the two highest DGF levels. Total DM intake as proportion of BW increased from 2.3% in DGF0 to 2.8% in DGF3. Crude protein digestibility and nitrogen retention improved as DGF intake increased. Daily weight gain of DGF1 cattle was higher than DGF0 but was not further improved at the higher levels of DGF inclusion. Microbial protein synthesis and efficiency of microbial protein production in DGF1 did not differ from DGF0 but both measures were higher in DGF2 and DGF3. The responses were diminished at higher DGF inclusion so it is suggested that DGF supplementation at 1 g CP/kg BW may be the optimal level.

  9. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.

    Science.gov (United States)

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela; Ma, Wujun

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.

  10. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.

    Directory of Open Access Journals (Sweden)

    Sadegh Balotf

    Full Text Available Nitrogen (N is one of the most important nutrients for plants and nitric oxide (NO as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE. This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3 treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.

  11. Endogenous Losses of Nitrogen and Protein Requirement for ...

    African Journals Online (AJOL)

    Four fistulated and four intact West African dwarf wether sheep, maintained on hay and concentrate supplements were used for a study of metabolic faecal nitrogen (MEN) and endogenous urinary nitrogen (EUN). The composition of the faecal losses was examined. The values obtained enabled calculation of nitrogen ...

  12. Effect of glycine nitrogen on lettuce growth under soilless culture: a metabolomics approach to identify the main changes occurred in plant primary and secondary metabolism.

    Science.gov (United States)

    Yang, Xiao; Feng, Lei; Zhao, Li; Liu, Xiaosong; Hassani, Danial; Huang, Danfeng

    2018-01-01

    Lettuce is a significant source of antioxidants and bioactive compounds. Nitrate is a cardinal fertilizer in horticulture and influences vegetable yield and quality; however, the negative effects of nitrate on the biosynthesis of flavonoids require further study. It is expected that using fertilizers containing organic nitrogen (N) could promote the synthesis of health-promoting compounds. Lettuces were hydroponically cultured in media containing 9 mmol L -1 nitrate or 9 mmol L -1 glycine for 4 weeks. Primary and secondary metabolites were analyzed using gas chromatography/mass spectrometry (GC/MS) and ultra-performance liquid chromatography/ion mobility spectrometry/quadrupole time-of-flight mass spectrometry (UPLC/IMS/QTOF-MS). Data analysis revealed that 29 metabolites were significantly altered between nitrate and glycine treatments. Metabolites were tentatively identified by comparison with online databases, literature and standards and using collision cross-section values. Significant differences in flavonoid biosynthesis, phenolic biosynthesis and the tricarboxylic acid (TCA) cycle response were observed between N sources. Compared with nitrate, glycine promoted accumulation of glycosylated flavonoids (quercetin 3-glucoside, quercetin 3-(6″-malonyl-glucoside), luteolin 7-glucuronide, luteolin 7-glucoside), ascorbic acid and amino acids (l-valine, l-leucine, l-glutamine, asparagine, l-serine, l-ornithine, 4-aminobutanoic acid, l-phenylalanine) but reduced phenolic acids (dihydroxybenzoic acid hexose isomers 1 and 2, chicoric acid, chicoric acid isomer 1) and TCA intermediates (fumaric, malic, citric and succinic acids). The novel methodology applied in this study can be used to characterize metabolites in lettuce. Accumulation of glycosylated flavonoids, amino acids and ascorbic acid in response to glycine supply provides strong evidence supporting the idea that using amino acids as an N source alters the nutritional value of vegetable crops. © 2017

  13. The Type II NADPH Dehydrogenase Facilitates Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory Metabolism during Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation.

    Science.gov (United States)

    Saroussi, Shai I; Wittkopp, Tyler M; Grossman, Arthur R

    2016-04-01

    When photosynthetic organisms are deprived of nitrogen (N), the capacity to grow and assimilate carbon becomes limited, causing a decrease in the productive use of absorbed light energy and likely a rise in the cellular reduction state. Although there is a scarcity of N in many terrestrial and aquatic environments, a mechanistic understanding of how photosynthesis adjusts to low-N conditions and the enzymes/activities integral to these adjustments have not been described. In this work, we use biochemical and biophysical analyses of photoautotrophically grown wild-type and mutant strains of Chlamydomonas reinhardtii to determine the integration of electron transport pathways critical for maintaining active photosynthetic complexes even after exposure of cells to N deprivation for 3 d. Key to acclimation is the type II NADPH dehydrogenase, NDA2, which drives cyclic electron flow (CEF), chlororespiration, and the generation of an H(+) gradient across the thylakoid membranes. N deprivation elicited a doubling of the rate of NDA2-dependent CEF, with little contribution from PGR5/PGRL1-dependent CEF The H(+) gradient generated by CEF is essential to sustain nonphotochemical quenching, while an increase in the level of reduced plastoquinone would promote a state transition; both are necessary to down-regulate photosystem II activity. Moreover, stimulation of NDA2-dependent chlororespiration affords additional relief from the elevated reduction state associated with N deprivation through plastid terminal oxidase-dependent water synthesis. Overall, rerouting electrons through the NDA2 catalytic hub in response to photoautotrophic N deprivation sustains cell viability while promoting the dissipation of excess excitation energy through quenching and chlororespiratory processes. © 2016 American Society of Plant Biologists. All Rights Reserved.

  14. The Type II NADPH Dehydrogenase Facilitates Cyclic Electron Flow, Energy-Dependent Quenching, and Chlororespiratory Metabolism during Acclimation of Chlamydomonas reinhardtii to Nitrogen Deprivation1[OPEN

    Science.gov (United States)

    Grossman, Arthur R.

    2016-01-01

    When photosynthetic organisms are deprived of nitrogen (N), the capacity to grow and assimilate carbon becomes limited, causing a decrease in the productive use of absorbed light energy and likely a rise in the cellular reduction state. Although there is a scarcity of N in many terrestrial and aquatic environments, a mechanistic understanding of how photosynthesis adjusts to low-N conditions and the enzymes/activities integral to these adjustments have not been described. In this work, we use biochemical and biophysical analyses of photoautotrophically grown wild-type and mutant strains of Chlamydomonas reinhardtii to determine the integration of electron transport pathways critical for maintaining active photosynthetic complexes even after exposure of cells to N deprivation for 3 d. Key to acclimation is the type II NADPH dehydrogenase, NDA2, which drives cyclic electron flow (CEF), chlororespiration, and the generation of an H+ gradient across the thylakoid membranes. N deprivation elicited a doubling of the rate of NDA2-dependent CEF, with little contribution from PGR5/PGRL1-dependent CEF. The H+ gradient generated by CEF is essential to sustain nonphotochemical quenching, while an increase in the level of reduced plastoquinone would promote a state transition; both are necessary to down-regulate photosystem II activity. Moreover, stimulation of NDA2-dependent chlororespiration affords additional relief from the elevated reduction state associated with N deprivation through plastid terminal oxidase-dependent water synthesis. Overall, rerouting electrons through the NDA2 catalytic hub in response to photoautotrophic N deprivation sustains cell viability while promoting the dissipation of excess excitation energy through quenching and chlororespiratory processes. PMID:26858365

  15. Zinc induces distinct changes in the metabolism of reactive oxygen and nitrogen species (ROS and RNS) in the roots of two Brassica species with different sensitivity to zinc stress

    Science.gov (United States)

    Feigl, Gábor; Lehotai, Nóra; Molnár, Árpád; Ördög, Attila; Rodríguez-Ruiz, Marta; Palma, José M.; Corpas, Francisco J.; Erdei, László; Kolbert, Zsuzsanna

    2015-01-01

    Background and Aims Zinc (Zn) is an essential micronutrient naturally present in soils, but anthropogenic activities can lead to accumulation in the environment and resulting damage to plants. Heavy metals such as Zn can induce oxidative stress and the generation of reactive oxygen and nitrogen species (ROS and RNS), which can reduce growth and yield in crop plants. This study assesses the interplay of these two families of molecules in order to evaluate the responses in roots of two Brassica species under high concentrations of Zn. Methods Nine-day-old hydroponically grown Brassica juncea (Indian mustard) and B. napus (oilseed rape) seedlings were treated with ZnSO4 (0, 50, 150 and 300 µm) for 7 d. Stress intensity was assessed through analyses of cell wall damage and cell viability. Biochemical and cellular techniques were used to measure key components of the metabolism of ROS and RNS including lipid peroxidation, enzymatic antioxidants, protein nitration and content of superoxide radical (O2·−), nitric oxide (NO) and peroxynitrite (ONOO−). Key Results Analysis of morphological root damage and alterations of microelement homeostasis indicate that B. juncea is more tolerant to Zn stress than B. napus. ROS and RNS parameters suggest that the oxidative components are predominant compared with the nitrosative components in the root system of both species. Conclusions The results indicate a clear relationship between ROS and RNS metabolism as a mechanism of response against stress caused by an excess of Zn. The oxidative stress components seem to be more dominant than the elements of the nitrosative stress in the root system of these two Brassica species. PMID:25538112

  16. Combined use of δ¹³C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit.

    Science.gov (United States)

    Yousfi, Salima; Serret, Maria Dolores; Márquez, Antonio José; Voltas, Jordi; Araus, José Luis

    2012-04-01

    • Accurate phenotyping remains a bottleneck in breeding for salinity and drought resistance. Here the combined use of stable isotope compositions of carbon (δ¹³C), oxygen (δ¹⁸O) and nitrogen (δ¹⁵N) in dry matter is aimed at assessing genotypic responses of durum wheat under different combinations of these stresses. • Two tolerant and two susceptible genotypes to salinity were grown under five combinations of salinity and irrigation regimes. Plant biomass, δ¹³C, δ¹⁸O and δ¹⁵N, gas-exchange parameters, ion and N concentrations, and nitrate reductase (NR) and glutamine synthetase (GS) activities were measured. • Stresses significantly affected all traits studied. However, only δ¹³C, δ¹⁸O, δ¹⁵N, GS and NR activities, and N concentration allowed for clear differentiation between tolerant and susceptible genotypes. Further, a conceptual model explaining differences in biomass based on such traits was developed for each growing condition. • Differences in acclimation responses among durum wheat genotypes under different stress treatments were associated with δ¹³C. However, except for the most severe stress, δ¹³C did not have a direct (negative) relationship to biomass, being mediated through factors affecting δ¹⁸O or N metabolism. Based upon these results, the key role of N metabolism in durum wheat adaptation to salinity and water stress is highlighted. No claim to original US government works. New Phytologist © 2012 New Phytologist Trust.

  17. Drought-Induced Effects on Nitrate Reductase Activity and mRNA and on the Coordination of Nitrogen and Carbon Metabolism in Maize Leaves1

    Science.gov (United States)

    Foyer, Christine H.; Valadier, Marie-Hélène; Migge, Andrea; Becker, Thomas W.

    1998-01-01

    Maize (Zea mays L.) plants were grown to the nine-leaf stage. Despite a saturating N supply, the youngest mature leaves (seventh position on the stem) contained little NO3− reserve. Droughted plants (deprived of nutrient solution) showed changes in foliar enzyme activities, mRNA accumulation, photosynthesis, and carbohydrate and amino acid contents. Total leaf water potential and CO2 assimilation rates, measured 3 h into the photoperiod, decreased 3 d after the onset of drought. Starch, glucose, fructose, and amino acids, but not sucrose (Suc), accumulated in the leaves of droughted plants. Maximal extractable phosphoenolpyruvate carboxylase activities increased slightly during water deficit, whereas the sensitivity of this enzyme to the inhibitor malate decreased. Maximal extractable Suc phosphate synthase activities decreased as a result of water stress, and there was an increase in the sensitivity to the inhibitor orthophosphate. A correlation between maximal extractable foliar nitrate reductase (NR) activity and the rate of CO2 assimilation was observed. The NR activation state and maximal extractable NR activity declined rapidly in response to drought. Photosynthesis and NR activity recovered rapidly when nutrient solution was restored at this point. The decrease in maximal extractable NR activity was accompanied by a decrease in NR transcripts, whereas Suc phosphate synthase and phosphoenolpyruvate carboxylase mRNAs were much less affected. The coordination of N and C metabolism is retained during drought conditions via modulation of the activities of Suc phosphate synthase and NR commensurate with the prevailing rate of photosynthesis. PMID:9576798

  18. Centelloside accumulation in leaves of Centella asiatica is determined by resource partitioning between primary and secondary metabolism while influenced by supply levels of either nitrogen, phosphorus or potassium.

    Science.gov (United States)

    Müller, Viola; Lankes, Christa; Zimmermann, Benno F; Noga, Georg; Hunsche, Mauricio

    2013-09-01

    In the present study we aimed to investigate the relevance of either N, P or K supply for herb and leaf yield and for centelloside concentrations in Centella asiatica L. Urban leaves. In this regard, we elucidated the causal relationship between assimilation rate, leaf N, P and K concentrations, herb and leaf production, and centelloside accumulation. The experiments were conducted consecutively in a greenhouse where C. asiatica was grown in hydroponic culture and fertigated with nutrient solutions at either 0, 30, 60, 100 or 150% of the N, P or K amount in a standard Hoagland solution. In general, the increase in N, P or K supply enhanced assimilation rate and herb and leaf yield. However, exceeding specific thresholds, the high availability of one single nutrient caused lower leaf N concentrations and a decline in assimilation rate and plant growth. Irrespective of N, P and K supply, the leaf centelloside concentrations were negatively associated with herb and leaf yield, which is in accordance with the assumptions of the carbon/nutrient balance and the growth differentiation balance hypotheses. Moreover, we found strong negative correlations between saponins and leaf N concentrations, while the respective sapogenins were negatively correlated with K concentrations. Using C. asiatica as model system, our experiments reveal for the first time that the accumulation of saponins and sapogenins is affected by resource allocation between primary and secondary metabolism and that besides carbon, also nutrient availability is relevant for the regulation of the centelloside synthesis. Finally, our results highlight the huge potential of optimized and carefully controlled mineral nutrition of medicinal plants for steering the bio-production of high-quality natural products. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Effects of varying ruminally undegradable protein supplementation on forage digestion, nitrogen metabolism, and urea kinetics in Nellore cattle fed low-quality tropical forage.

    Science.gov (United States)

    Batista, E D; Detmann, E; Titgemeyer, E C; Valadares Filho, S C; Valadares, R F D; Prates, L L; Rennó, L N; Paulino, M F

    2016-01-01

    Effects of supplemental RDP and RUP on nutrient digestion, N metabolism, urea kinetics, and muscle protein degradation were evaluated in Nellore heifers () consuming low-quality signal grass hay (5% CP and 80% NDF, DM basis). Five ruminally and abomasally cannulated Nellore heifers (248 ± 9 kg) were used in a 5 × 5 Latin square. Treatments were the control (no supplement) and RDP supplementation to meet 100% of the RDP requirement plus RUP provision to supply 0, 50, 100, or 150% of the RUP requirement. Supplemental RDP (casein plus NPN) was ruminally dosed twice daily, and RUP supply (casein) was continuously infused abomasally. Jugular infusion of [NN]-urea with measurement of enrichment in urine was used to evaluate urea kinetics. The ratio of urinary 3-methylhistidine to creatinine was used to estimate skeletal muscle protein degradation. Forage NDF intake (2.48 kg/d) was not affected ( ≥ 0.37) by supplementation, but supplementation did increase ruminal NDF digestion ( supplementation and also linearly increased with RUP provision. Urea entry rate and gastrointestinal entry rate of urea were increased by supplementation ( Supplementation with RUP linearly increased ( = 0.02) urea entry rate and tended ( = 0.07) to linearly increase gastrointestinal entry rate of urea. Urea use for anabolic purposes tended ( = 0.07) to be increased by supplementation, and RUP provision also tended ( = 0.08) to linearly increase the amount of urea used for anabolism. The fraction of recycled urea N incorporated into microbial N was greater ( supplemented (9%) heifers. Urinary 3-methylhistidine:creatinine of control heifers was more than double that of supplemented heifers ( supplemented heifers. Overall, unsupplemented heifers had greater mobilization of AA from myofibrillar protein, which provided N for urea synthesis and subsequent recycling. Supplemental RUP, when RDP was supplied, not only increased N retention but also supported increased urea N recycling and increased

  20. Forest fuel reduces the nitrogen load

    International Nuclear Information System (INIS)

    Lundborg, A.

    1993-03-01

    A study of the literature was made on the basis of the following hypothesis: ''If nitrogen-rich felling residues are removed from the forest, the nitrogen load on the forest ecosystem is decreased and the risk of nitrogen saturation also decreases''. The study was designed to provide information on how the nitrogen situation is influenced if felling residues are removed from nitrogen-loaded forests and used as fuel. Felling residues release very little nitrogen during the first years after felling. They can immobilize nitrogen from the surroundings, make up a considerable addition to the nitrogen store in the soil, but also release nitrogen in later stages of degradation. The slash has an influence on the soil climate and thus on soil processes. Often there is an increase in the mineralization of litter and humus below the felling residues. At the same time, nitrification is favoured, particularly if the slash is left in heaps. Felling residues contain easily soluble nutrients that stimulate the metabolization of organic matter that otherwise is rather resistant to degradation. The slash also inhibits the clear-cut vegetation and its uptake of nitrogen. These effects result in increased leaching of nitrogen and minerals if the felling residues are left on the site. (99 refs.)

  1. Nitrogen tank

    CERN Multimedia

    2006-01-01

    Wanted The technical file about the pressure vessel RP-270 It concerns the Nitrogen tank, 60m3, 22 bars, built in 1979, and installed at Point-2 for the former L3 experiment. If you are in possession of this file, or have any files about an equivalent tank (probably between registered No. RP-260 and -272), please contact Marc Tavlet, the ALICE Glimos.

  2. Urea metabolism in plants.

    Science.gov (United States)

    Witte, Claus-Peter

    2011-03-01

    Urea is a plant metabolite derived either from root uptake or from catabolism of arginine by arginase. In agriculture, urea is intensively used as a nitrogen fertilizer. Urea nitrogen enters the plant either directly, or in the form of ammonium or nitrate after urea degradation by soil microbes. In recent years various molecular players of plant urea metabolism have been investigated: active and passive urea transporters, the nickel metalloenzyme urease catalyzing the hydrolysis of urea, and three urease accessory proteins involved in the complex activation of urease. The degradation of ureides derived from purine breakdown has long been discussed as a possible additional metabolic source for urea, but an enzymatic route for the complete hydrolysis of ureides without a urea intermediate has recently been described for Arabidopsis thaliana. This review focuses on the proteins involved in plant urea metabolism and the metabolic sources of urea but also addresses open questions regarding plant urea metabolism in a physiological and agricultural context. The contribution of plant urea uptake and metabolism to fertilizer urea usage in crop production is still not investigated although globally more than half of all nitrogen fertilizer is applied to crops in the form of urea. Nitrogen use efficiency in crop production is generally well below 50% resulting in economical losses and creating ecological problems like groundwater pollution and emission of nitric oxides that can damage the ozone layer and function as greenhouse gasses. Biotechnological approaches to improve fertilizer urea usage bear the potential to increase crop nitrogen use efficiency. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Continuous Silicate Utilization Over Multiple 14L:10D Day:Night Cycles Confirms Night Metabolism in Lake Michigan Diatom Enrichments Using Either Nitrate or Ammonium as a Nitrogen Source

    Science.gov (United States)

    Soderling, M.; Aguilar, C.; Cuhel, R. L.

    2016-02-01

    Diatoms are single-celled organelle containing eukaryotes living in "glass houses". As diatoms only take up silica when they replicate, measuring the amounts of dissolved and particulate silicate were an important aspect of this study. Silica was used as a proxy of the diatom reproduction. Depending on growth conditions, some algal species divide throughout the day and night; this suggests that protein synthesis can be an important component of algal night metabolism and hence nitrogen utilization. The goal of this experiment was to measure the amount of night protein synthesis occurring in a culture of diatoms from Lake Michigan. Diatoms were enriched with light for energy and excess nutrients—including phosphate, silicate, nitrate and limited ammonium for some—along with use of physical separation methods. Growing conditions were prepared in a way which anticipated the diatoms would synchronize to a 14:10 day/night cycle and store energy, during their day phase, to use for night protein synthesis and replication. Their growth was monitored by taking samples before and after the transitions of light to dark along with midday and midnight samples. Assays of dissolved and particulate silicate were used to measure utilization, which confirmed their nighttime growth. As hypothesized, the diatoms had significant growth during their night phase. There were decreases in the nighttime dissolved silicate and increases in the nighttime particulate silicate. When available, the diatoms preferred to use ammonium instead of nitrate. Cell division during the night phase indicated sufficient daytime energy storage to fuel night protein synthesis and cell replication. Uptake of nutrients occurred at night almost as if the "sun" did not set. There was continuous growth of this photosynthetic community.

  4. Relationships Between Nitrogen Metabolism and Photosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Bassham, James A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Lab. of Chemical Biodynamics; Larsen, Peder O. [Royal Veterinary and Agricultural Univ., Copenhagen (Denmark). Chemistry Dept.; Lawyer, Arthur L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Lab. of Chemical Biodynamics; Cornwell, Karen L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Lab. of Chemical Biodynamics

    1981-01-01

    Photosynthetic green cells generate reducing power from the oxidation of water to O2, and use the reducing power for the reduction of CO2, nitrate and sulfate. Finally, the principal products of green cells then are oxygen, sucrose and other carbon compounds, amino groups of amino acids, and sulfhydryl groups of amino acids.

  5. Nitrogen Catabolite Repression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hofman-Bang, H Jacob Peider

    1999-01-01

    In Saccharomyces cerevisiae the expression of all known nitrogen catabolite pathways are regulated by four regulators known as Gln3, Gat1, Da180, and Deh1. This is known as nitrogen catabolite repression (NCR). They bind to motifs in the promoter region to the consensus sequence S' GATAA 3'. Gln3...... and Gat1 act positively on gene expression whereas :Da180 and Deh1 act negatively. Expression of nitrogen catabolite pathway genes known to be regulated by these four regulators are glutamine, glutamate, proline, urea, arginine, GABA, and allantoine. In addition, the expression of the genes encoding...... thereby providing a nitrogen source to the cell.In this review, all known promoter sequences related to expression of nitrogen catabolite pathways are discussed as well as other regulatory proteins. Overview of metabolic pathways and promoters are presented....

  6. Nitrogenous air pollutants: Chemical and biological implications

    International Nuclear Information System (INIS)

    Grosjean, D.

    1979-01-01

    Theoretical and experimental studies on the health effects and chemistry of gaseous and particulate nitrogenous air pollutants are presented. Specific topics include Fourier transform infrared studies of nitrogenous compounds, the mechanism of peroxynitric acid formation, N-nitroso compounds in the air, the chemical transformations of nitrogen oxides during the sampling of combustion products, the atmospheric chemistry of peroxy nitrates, and the effects of nitrogen dioxide on lung metabolism. Attention is also given to the interaction of nitrogen oxides and aromatic hydrocarbons under simulated atmospheric conditions, the characterization of particulate amines, the role of ammonia in atmospheric aerosol chemistry, the relationship between sulfates and nitrates and tropospheric measurements of nitric acid vapor and particulate nitrates

  7. Microalgae respond differently to nitrogen availability during culturing

    Indian Academy of Sciences (India)

    2015-04-17

    Apr 17, 2015 ... Variations in the exogenous nitrogen level are known to significantly affect the physiological status and metabolism of microalgae. However, responses of red, green and yellow-green algae to nitrogen (N) availability have not been compared yet. Porphyridium cruentum, Scenedesmus incrassatulus and ...

  8. Xylem sap nitrogen compounds of some Crotalaria species

    Directory of Open Access Journals (Sweden)

    Vitória Angela Pierre

    1999-01-01

    Full Text Available Thirteen species of Crotalaria were analysed for nitrogen compounds in the xylem root bleeding sap. Amino acids were the main form of organic nitrogen found, but only traces of ureides were present. Of the four species analysed for amino acid composition, asparagine was found to be the major amino acid, accounting for over 68% of the nitrogen transported. No striking deviations from this general pattern was found between species, between vegetative and floral stages of development, or between nodulated and non-nodulated plants. It was concluded that the Crotalaria species studied here have an asparagine-based nitrogen metabolism, consistent with many other non-ureide-producing legume species.

  9. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    OpenAIRE

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact ...

  10. A Mathematic Approach to Nitrogen Fixation Through Earth History

    Science.gov (United States)

    Delgado-Bonal, Alfonso; Martín-Torres, F. Javier

    Nitrogen is essential for life as we know it. According to phylogenetic studies, all organisms capable of fixing nitrogen are prokaryotes, both bacteria and archaea, suggesting that nitrogen fixation and ammonium assimilation were metabolic features of the Last Universal Common Ancestor of all organisms. At present time the amount of biologically fixed nitrogen is around 2 × 1{0}^{13} g/year (Falkowski 1997), an amount much larger than the corresponding to the nitrogen fixed abiotically (between 2. 6 ×109 and 3 × 1{0}^{11} g/year) (Navarro-González et al. 2001). The current amount of nitrogen fixed is much higher than it was on Earth before the Cambrian explosion, where the symbiotic associations with leguminous plants, the major nitrogen fixer currently, did not exist and nitrogen was fixed only by free-living organisms as cyanobacteria. It has been suggested (Navarro-González et al. 2001) that abiotic sources of nitrogen fixation during Early Earth times could have an important role triggering a selection pressure favoring the evolution of nitrogenase and an increase in the nitrogen fixation rate. In this study we present briefly a method to analyze the amount of fixed nitrogen, both biotic and abiotic, through Earth's history.

  11. Nitrogen and in vitro fermentation of nitrogenous substrates in caecal contents of the pig

    Czech Academy of Sciences Publication Activity Database

    Marounek, Milan; Adamec, T.; Skřivanová, V.; Latsik, N.

    2002-01-01

    Roč. 71, - (2002), s. 429-433 ISSN 0001-7213 R&D Projects: GA AV ČR KSK5020115 Grant - others:GA NATO(XX) MO-99-04 Keywords : Pig * caecum * nitrogenous substances Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 0.370, year: 2002

  12. Variation in amino acid content and its relationship to nitrogen content and growth rate in Ulva ohnoi (Chlorophyta).

    Science.gov (United States)

    Angell, Alex R; Mata, Leonardo; de Nys, Rocky; Paul, Nicholas A

    2014-02-01

    To evaluate the quantitative and qualitative changes in amino acids related to internal nitrogen content and growth rate of Ulva ohnoi, the supply of nitrogen to outdoor cultures of the seaweed was manipulated by simultaneously varying water nitrogen concentrations and renewal rate. Both internal nitrogen content and growth rate varied substantially, and the quantitative and qualitative changes in amino acids were described in the context of three internal nitrogen states: nitrogen-limited, metabolic, and luxury. The nitrogen limited state was defined by increases in all amino acids with increasing nitrogen content and growth up until 1.2% internal nitrogen. The metabolic nitrogen state was defined by increases in all amino acids with increasing internal nitrogen content up to 2.6%, with no increases in growth rate. Luxury state was defined by internal nitrogen content above 2.6%, which occurred only when nitrogen availability was high but growth rates were reduced. In this luxury circumstance, excess nitrogen was accumulated as free amino acids, in two phases. The first phase was distinguished by a small increase in the majority of amino acids up to ≈3.3% internal nitrogen, and the second by a large increase in glutamic acid, glutamine, and arginine up to 4.2% internal nitrogen. These results demonstrate that the relationship between internal nitrogen content and amino acid quality is dynamic but predictable, and could be used for the selective culture of seaweeds. © 2013 Phycological Society of America.

  13. Acute metabolic and physiologic response of goats to narcosis

    Science.gov (United States)

    Schatte, C. L.; Bennett, P. B.

    1973-01-01

    Assessment of the metabolic consequences of exposure to elevated partial pressures of nitrogen and helium under normobaric and hyperbaric conditions in goats. The results include the finding that hyperbaric nitrogen causes and increase in metabolic rate and a general decrease in blood constituent levels which is interpreted as reflecting a shift toward fatty acid metabolism at the expense of carbohydrates. A similar but more pronounced pattern was observed with hyperbaric helium.

  14. Metabolic Panel

    Science.gov (United States)

    A metabolic panel is a group of tests that measures different chemicals in the blood. These tests are usually done on ... and liver. There are two types: basic metabolic panel (BMP) and comprehensive metabolic panel (CMP). The BMP ...

  15. Food, Feed and Fuel: a Story About Nitrogen

    Science.gov (United States)

    Galloway, J. N.; Burke, M. B.; Mooney, H. A.; Steinfeld, H.

    2008-12-01

    Humans obtain metabolic energy by eating food. Nitrogen is required to grow food, but natural supplies of N for human purposes have been inadequate since the beginning of the twentieth century. The Haber-Bosch process now provides a virtually inexhaustible supply of nitrogen, limited primarily by the cost of energy. However, most nitrogen used in food production is lost to the environment, where it cascades through environmental reservoirs contributing to many of the major environmental issues of the day. Furthermore, growing international trade in nitrogen-containing commodities is increasingly replacing wind and water as an important international transporter of nitrogen around the globe. Finally, the rapid growth in crop-based biofuels, and its attendant effects on the global production and trade of all agricultural commodities, could greatly affect global patterns of N use and loss. In the light of the findings above, this paper examines the role of nitrogen in food, feed and fuel production. It describes the beneficial consequences for food production and the negative consequences associated with the commodity nitrogen cascade and the environmental nitrogen cascade. The paper reviews estimates of future projections of nitrogen demands for food and fuel, including the impact of changing diets in the developing world. The paper concludes by presenting the potential interactions among global change, agricultural production and the nitrogen and carbon cycles.

  16. Linseed oil and DGAT1 K232A polymorphism: Effects on methane emission, energy and nitrogen metabolism, lactation performance, ruminal fermentation, and rumen microbial composition of Holstein-Friesian cows

    NARCIS (Netherlands)

    Gastelen, van S.; Visker, M.H.P.W.; Edwards, J.E.; Antunes Fernandes, E.C.; Hettinga, K.A.; Alferink, S.J.J.; Hendriks, W.H.; Bovenhuis, H.; Smidt, H.; Dijkstra, J.

    2017-01-01

    Complex interactions between rumen microbiota, cow genetics, and diet composition may exist. Therefore, the effect of linseed oil, DGAT1 K232A polymorphism (DGAT1), and the interaction between linseed oil and DGAT1 on CH4 and H2 emission, energy and N metabolism, lactation performance, ruminal

  17. Albert Behnke: nitrogen narcosis.

    Science.gov (United States)

    Grover, Casey A; Grover, David H

    2014-02-01

    As early as 1826, divers diving to great depths noted that descent often resulted in a phenomenon of intoxication and euphoria. In 1935, Albert Behnke discovered nitrogen as the cause of this clinical syndrome, a condition now known as nitrogen narcosis. Nitrogen narcosis consists of the development of euphoria, a false sense of security, and impaired judgment upon underwater descent using compressed air below 3-4 atmospheres (99 to 132 feet). At greater depths, symptoms can progress to loss of consciousness. The syndrome remains relatively unchanged in modern diving when compressed air is used. Behnke's use of non-nitrogen-containing gas mixtures subsequent to his discovery during the 1939 rescue of the wrecked submarine USS Squalus pioneered the use of non-nitrogen-containing gas mixtures, which are used by modern divers when working at great depth to avoid the effects of nitrogen narcosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Marine nitrogen cycle

    Digital Repository Service at National Institute of Oceanography (India)

    Naqvi, S.W.A.

    of the marine nitrogen cycle and its influence on atmospheric CO 2 , in: The Ocean Carbon Cycle and Climate, edited by: Follows, M., and Oguz, T., Kluwer Academic, Dordrecht, 97-148, 2004. ISBN 1402020864. Citation Naqvi, Syed. 2006. "Marine nitrogen cycle...]. nitrogen_cycle> All text is available under the terms of the Creative Commons Attribution-Share Alike license. Please see the Encyclopedia of Earth's website for Terms of Use information. Supported...

  19. Developments in nitrogen generators

    International Nuclear Information System (INIS)

    Ayres, C.L.; Abrardo, J.M.; Himmelberger, L.M.

    1984-01-01

    Three process cycles for the production of nitrogen by the cryogenic separation of air are described in detail. These cycles are: (1) a waste expander cycle; (2) an air expander cycle; and (3) a cycle for producing large quantities of gaseous nitrogen. Each cycle has distinct advantages for various production ranges and delivery pressures. A dicussion of key parameters that must be considered when selecting a cycle to meet specific product requirements is presented. The importance of high plant reliability and a dependable liquid nitrogen back up system is also presented. Lastly, a discussion of plant safety dealing with the hazards of nitrogen, enriched oxygen, and hydrocarbons present in the air is reviewed

  20. Studies on nitrogen retention in growing pigs

    DEFF Research Database (Denmark)

    Thorbek, G; Henckel, S; Chwalibog, André

    1987-01-01

    Nitrogen retention (RN) was measured in 60 barrows of Danish Landrace and a total of 470 balance periods was carried out during the growth period from 20 to 85 kg live weight. In the first serie (Expt A) six different feed compounds of high biological value (HBV) were fed to 48 barrows, while...... in the second serie (Expt B) 12 barrows were measured on feed compounds of HBV or low biological value (LBV). Three different levels of gross energy were used in Expt B. Individual differences of 10-20% in the pigs capability for nitrogen retention were observed. Nitrogen retention increased from 12 to 21 g N....../d on the HBV-compounds and was not influenced by increasing nitrogen or energy intake. Nitrogen retention was curvilinear in relation to metabolic live weight (kg0.75) in both series. A parabolic function on kg0.75 gave the best fit to the data with the following regression equations: Expt A + B: RN, g/d = 1...

  1. Microbial nitrogen cycling in Arctic snowpacks

    International Nuclear Information System (INIS)

    Larose, Catherine; Vogel, Timothy M; Dommergue, Aurélien

    2013-01-01

    Arctic snowpacks are often considered as chemical reactors for a variety of chemicals deposited through wet and dry events, but are overlooked as potential sites for microbial metabolism of reactive nitrogen species. The fate of deposited species is critical since warming leads to the transfer of contaminants to snowmelt-fed ecosystems. Here, we examined the role of microorganisms and the potential pathways involved in nitrogen cycling in the snow. Next generation sequencing data were used to follow functional gene abundances and a 16S rRNA (ribosomal ribonucleic acid) gene microarray was used to follow shifts in microbial community structure during a two-month spring-time field study at a high Arctic site, Svalbard, Norway (79° N). We showed that despite the low temperatures and limited water supply, microbial communities inhabiting the snow cover demonstrated dynamic shifts in their functional potential to follow several different pathways of the nitrogen cycle. In addition, microbial specific phylogenetic probes tracked different nitrogen species over time. For example, probes for Roseomonas tracked nitrate concentrations closely and probes for Caulobacter tracked ammonium concentrations after a delay of one week. Nitrogen cycling was also shown to be a dominant process at the base of the snowpack. (letter)

  2. Investigation on the Assimilation of Nitrogen by Maize Roots and the Transport of Some Major Nitrogen Compounds by Xylem Sap. II

    DEFF Research Database (Denmark)

    Ingversen, J.; Ivanko, S.

    1971-01-01

    The amino acid and protein metabolism of roots of maize has been studied. The important role of the free amino acids and proteins of the roots as active agents in nitrogen assimilation is pointed out. Nitrogen supplied as nitrate is preferably incorporated into α-ketoglutaric acid, and then by tr...

  3. Soybean Nitrogen Fixing Attributes

    African Journals Online (AJOL)

    reproductive unit and nitrogen fixing attributes (Carruthers er. al., 2000). In combination with various lupin and forages, these authors showed that soybean grain yield was decreased by most treatments. In order to limit over population and pollution risks, low nitrogen fertilizer agricultural systems are likely to be advocated.

  4. Update: Biological Nitrogen Fixation.

    Science.gov (United States)

    Wiseman, Alan; And Others

    1985-01-01

    Updates knowledge on nitrogen fixation, indicating that investigation of free-living nitrogen-fixing organisms is proving useful in understanding bacterial partners and is expected to lead to development of more effective symbioses. Specific areas considered include biochemistry/genetics, synthesis control, proteins and enzymes, symbiotic systems,…

  5. Nitrogen use efficiency (NUE)

    NARCIS (Netherlands)

    Oenema, O.

    2015-01-01

    There is a need for communications about resource use efficiency and for measures to increase the use efficiency of nutrients in relation to food production. This holds especially for nitrogen. Nitrogen (N) is essential for life and a main nutrient element. It is needed in relatively large

  6. Nitrogen trading tool

    Science.gov (United States)

    The nitrogen cycle is impacted by human activities, including those that increase the use of nitrogen in agricultural systems, and this impact can be seen in effects such as increased nitrate (NO3) levels in groundwater or surface water resources, increased concentration of nitrous oxide (N2O) in th...

  7. Diet-consumer nitrogen isotope fractionation for prolonged fasting arthropods.

    Science.gov (United States)

    Mizota, Chitoshi; Yamanaka, Toshiro

    2011-12-01

    Nitrogen acquisition for cellular metabolism during diapause is a primary concern for herbivorous arthropods. Analyses of naturally occurring stable isotopes of nitrogen help elucidate the mechanism. Relevant articles have cited (58 times up to mid-June 2011) anomalously elevated δ(15)N (per mil deviation of (15)N/(14)N, relative to atmospheric nitrogen=0 ‰) values (diet-consumer nitrogen isotope fractionation; up to 12 ‰) for a prolonged fasting raspberry beetle (Byturus tomentosus Degeer (Coleoptera: Byturidae)), which feeds on red raspberries (Rubus idaeus: δ(15)N= ~ +2 ‰). Biologists have hypothesised that extensive recycling of amino acid nitrogen is responsible for the prolonged fasting. Since this hypothesis was proposed in 1995, scientists have integrated biochemical and molecular knowledge to support the mechanism of prolonged diapausing of animals. To test the validity of the recycling hypothesis, we analysed tissue nitrogen isotope ratios for four Japanese arthropods: the shield bug Parastrachia japonensis Scott (Hemiptera: Cydnidae), the burrower bug Canthophorus niveimarginatus Scott (Hemiptera: Cydnidae), leaf beetle Gastrophysa atrocyanea Motschulsky (Coleoptera: Chrysomelidae) and the Japanese oak silkworm Antheraea yamamai (Lepidoptera: Saturniidae), all of which fast for more than 6 months as part of their life-history strategy. Resulting diet-consumer nitrogen isotope discrimination during fasting ranged from 0 to 7‰, as in many commonly known terrestrial arthropods. We conclude that prolonged fasting of arthropods does not always result in anomalous diet-consumer nitrogen isotope fractionation, since the recycling process is closed or nearly closed with respect to nitrogen isotopes.

  8. Effects of Synchronization of Carbohydrate and Protein Supply in Total Mixed Ration with Korean Rice Wine Residue on Ruminal Fermentation, Nitrogen Metabolism and Microbial Protein Synthesis in Holstein Steers

    Science.gov (United States)

    Piao, Min Yu; Kim, Hyun J.; Seo, J. K.; Park, T. S.; Yoon, J. S.; Kim, K. H.; Ha, Jong K.

    2012-01-01

    Three Holstein steers in the growing phase, each with a ruminal cannula, were used to test the hypothesis that the synchronization of the hourly rate of carbohydrate and nitrogen (N) released in the rumen would increase the amount of retained nitrogen for growth and thus improve the efficiency of microbial protein synthesis (EMPS). In Experiment 1, in situ degradability coefficients of carbohydrate and N in feeds including Korean rice wine residue (RWR) were determined. In Experiment 2, three total mixed ration (TMR) diets having different rates of carbohydrate and N release in the rumen were formulated using the in situ degradability of the feeds. All diets were made to contain similar contents of crude protein (CP) and neutral detergent fiber (NDF) but varied in their hourly pattern of nutrient release. The synchrony index of the three TMRs was 0.51 (LS), 0.77 (MS) and 0.95 (HS), respectively. The diets were fed at a restricted level (2% of the animal’s body weight) in a 3×3 Latin-square design. Synchronizing the hourly supply of energy and N in the rumen did not significantly alter the digestibility of dry matter, organic matter, crude protein, NDF or acid detergent fiber (ADF) (p>0.05). The ruminal NH3-N content of the LS group at three hours after feeding was significantly higher (pruminal NH3-N, pH and VFA concentration among the three groups were not significantly different (p>0.05). In addition, the purine derivative (PD) excretion in urine and microbial-N production (MN) among the three groups were not significantly different (p>0.05). In conclusion, synchronizing dietary energy and N supply to the rumen did not have a major effect on nutrient digestion or microbial protein synthesis (MPS) in Holstein steers. PMID:25049518

  9. Effects of Synchronization of Carbohydrate and Protein Supply in Total Mixed Ration with Korean Rice Wine Residue on Ruminal Fermentation, Nitrogen Metabolism and Microbial Protein Synthesis in Holstein Steers

    Directory of Open Access Journals (Sweden)

    Min Yu Piao

    2012-11-01

    Full Text Available Three Holstein steers in the growing phase, each with a ruminal cannula, were used to test the hypothesis that the synchronization of the hourly rate of carbohydrate and nitrogen (N released in the rumen would increase the amount of retained nitrogen for growth and thus improve the efficiency of microbial protein synthesis (EMPS. In Experiment 1, in situ degradability coefficients of carbohydrate and N in feeds including Korean rice wine residue (RWR were determined. In Experiment 2, three total mixed ration (TMR diets having different rates of carbohydrate and N release in the rumen were formulated using the in situ degradability of the feeds. All diets were made to contain similar contents of crude protein (CP and neutral detergent fiber (NDF but varied in their hourly pattern of nutrient release. The synchrony index of the three TMRs was 0.51 (LS, 0.77 (MS and 0.95 (HS, respectively. The diets were fed at a restricted level (2% of the animal’s body weight in a 3×3 Latin-square design. Synchronizing the hourly supply of energy and N in the rumen did not significantly alter the digestibility of dry matter, organic matter, crude protein, NDF or acid detergent fiber (ADF (p>0.05. The ruminal NH3-N content of the LS group at three hours after feeding was significantly higher (p0.05. In addition, the purine derivative (PD excretion in urine and microbial-N production (MN among the three groups were not significantly different (p>0.05. In conclusion, synchronizing dietary energy and N supply to the rumen did not have a major effect on nutrient digestion or microbial protein synthesis (MPS in Holstein steers.

  10. Ammonia Nitrogen Added to Diets Deficient in Dispensable Amino Acid Nitrogen Is Poorly Utilized for Urea Production in Growing Pigs.

    Science.gov (United States)

    Mansilla, Wilfredo D; Silva, Kayla E; Zhu, Cuilan L; Nyachoti, Charles M; Htoo, John K; Cant, John P; de Lange, Cornelis Fm

    2017-12-01

    Background: Including ammonia in low-crude protein (CP) diets deficient in dispensable amino acid (DAAs) increases nitrogen retention in growing pigs. Objective: We investigated the absorption and metabolism of dietary ammonia nitrogen in the portal-drained viscera (PDV) and liver of pigs fed a diet deficient in DAA nitrogen. Methods: Eight pigs with an initial mean ± SD body weight (BW) of 26.5 ± 1.4 kg were surgically fitted with 4 catheters each (portal, hepatic and mesenteric veins, and carotid artery). The pigs were fed (2.8 × 191 kcal/kg BW 0.60 ), for 7 d and every 8 h, a diet deficient in DAA nitrogen supplemented with increasing amounts of ammonia nitrogen (CP: 7.76%, 9.27%, and 10.77%; indispensable amino acid nitrogen:total nitrogen ratio: 0.71, 0.59, and 0.50 for control and low- and high-ammonia diets, respectively). The treatment sequence was based on a Latin square design with 3 consecutive periods. On the last day of each period, blood flows in the portal and hepatic veins were determined with a continuous infusion of ρ-amino hippuric acid into the mesenteric vein. Serial blood samples were taken to determine ammonia and urea nitrogen concentration. Net balances of ammonia and urea nitrogen were calculated for the PDV and liver. Results: Cumulative (8 h) ammonia nitrogen appearance in the portal vein increased ( P ≤ 0.05) with ammonia intake (433, 958, and 1629 ± 60 mg ammonia nitrogen/meal for control and low- and high-ammonia diets, respectively). The cumulative hepatic uptake of ammonia nitrogen increased ( P ≤ 0.05) with ammonia nitrogen supply. The cumulative urea nitrogen appearance in the hepatic vein tended to increase ( P ≤ 0.10) only in high-ammonia treatment (-92.5, -59.4, and 209.7 ± 92 mg urea nitrogen/meal for control and low- and high-ammonia diets, respectively) and, relative to the control diet, represented -6.0% and 11% of ammonia nitrogen intake. Conclusion: Dietary ammonia nitrogen is poorly utilized for urea

  11. Metabolic Syndrome

    Science.gov (United States)

    Metabolic syndrome is a group of conditions that put you at risk for heart disease and diabetes. These conditions ... agree on the definition or cause of metabolic syndrome. The cause might be insulin resistance. Insulin is ...

  12. Drug Metabolism

    Indian Academy of Sciences (India)

    IAS Admin

    Chemistry of Drug Metabolism. Drug metabolism is a chemical process, where enzymes play a crucial role in the conversion of one chemical species to another. The major family of enzymes associated with these metabolic reactions is the cytochrome P450 family. The structural features and functional activity of these ...

  13. Aphids alter host-plant nitrogen isotope fractionation

    Science.gov (United States)

    Wilson, Alex C. C.; Sternberg, Leonel da S. L.; Hurley, Katherine B.

    2011-01-01

    Plant sap-feeding insects and blood-feeding parasites are frequently depleted in 15N relative to their diet. Unfortunately, most fluid-feeder/host nitrogen stable-isotope studies simply report stable-isotope signatures, but few attempt to elucidate the mechanism of isotopic trophic depletion. Here we address this deficit by investigating the nitrogen stable-isotope dynamics of a fluid-feeding herbivore-host plant system: the green peach aphid, Myzus persicae, feeding on multiple brassicaceous host plants. M. persicae was consistently more than 6‰ depleted in 15N relative to their hosts, although aphid colonized plants were 1.5‰ to 2.0‰ enriched in 15N relative to uncolonized control plants. Isotopic depletion of aphids relative to hosts was strongly related to host nitrogen content. We tested whether the concomitant aphid 15N depletion and host 15N enrichment was coupled by isotopic mass balance and determined that aphid 15N depletion and host 15N enrichment are uncoupled processes. We hypothesized that colonized plants would have higher nitrate reductase activity than uncolonized plants because previous studies had demonstrated that high nitrate reductase activity under substrate-limiting conditions can result in increased plant δ15N values. Consistent with our hypothesis, nitrate reductase activity in colonized plants was twice that of uncolonized plants. This study offers two important insights that are likely applicable to understanding nitrogen dynamics in fluid-feeder/host systems. First, isotopic separation of aphid and host depends on nitrogen availability. Second, aphid colonization alters host nitrogen metabolism and subsequently host nitrogen stable-isotope signature. Notably, this work establishes a metabolic framework for future hypothesis-driven studies focused on aphid manipulation of host nitrogen metabolism. PMID:21646532

  14. Commercial Nitrogen Fertilizer Purchased

    Data.gov (United States)

    U.S. Environmental Protection Agency — Amounts of fertilizer nitrogen (N) purchased by states in individual years 2003, 2005, 2007, 2009 and 2011, and the % change in average amounts purchased per year...

  15. Mineral commodity profiles: nitrogen

    Science.gov (United States)

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  16. Blood Urea Nitrogen Test

    Science.gov (United States)

    ... Culture Blood Gases Blood Ketones Blood Smear Blood Typing Blood Urea Nitrogen (BUN) BNP and NT-proBNP ... Luteinizing Hormone (LH) Lyme Disease Tests Magnesium Maternal Serum Screening, Second Trimester Measles and Mumps Tests Mercury ...

  17. Azospirillum Inoculation Alters Nitrate Reductase Activity and Nitrogen Uptake in Wheat Plant Under Water Deficit Conditions

    OpenAIRE

    N. Aliasgharzad, N. Aliasgharzad; Heydaryan, Zahra; Sarikhani, M.R

    2014-01-01

    Water deficit stress usually diminishes nitrogen uptake by plants. There are evidences that some nitrogen fixing bacteria can alleviate this stress by supplying nitrogen and improving its metabolism in plants. Four Azospirillum strains, A. lipoferum AC45-II, A. brasilense AC46-I, A. irakense AC49-VII and A. irakense AC51-VI were tested for nitrate reductase activity (NRA). In a pot culture experiment using a sandy loam soil, wheat plants (Triticum aestivum L. cv. Sardari) were inoculated with...

  18. Nitrogen requirements of commercial wine yeast strains during fermentation of a synthetic grape must.

    Science.gov (United States)

    Gutiérrez, Alicia; Chiva, Rosana; Sancho, Marta; Beltran, Gemma; Arroyo-López, Francisco Noé; Guillamon, José Manuel

    2012-08-01

    Nitrogen deficiencies in grape musts are one of the main causes of stuck or sluggish wine fermentations. Currently, the most common method for dealing with nitrogen-deficient fermentations is adding supplementary nitrogen (usually ammonium phosphate). However, it is important to know the specific nitrogen requirement of each strain, to avoid excessive addition that can lead to microbial instability and ethyl carbamate accumulation. In this study, we aimed to determine the effect of increasing nitrogen concentrations of three different nitrogen sources on growth and fermentation performance in four industrial wine yeast strains. This task was carried out using statistical modeling techniques. The strains PDM and RVA showed higher growth-rate and maximum population size and consumed nitrogen much more quickly than strains ARM and TTA. Likewise, the strains PDM and RVA were also the greatest nitrogen demanders. Thus, we can conclude that these differences in nitrogen demand positively correlated with higher growth rate and higher nitrogen uptake rate. The most direct effect of employing an adequate nitrogen concentration is the increase in biomass, which involves a higher fermentation rate. However, the impact of nitrogen on fermentation rate is not exclusively due to the increase in biomass because the strain TTA, which showed the worst growth behavior, had the best fermentation activity. Some strains may adapt a strategy whereby fewer cells with higher metabolic activity are produced. Regarding the nitrogen source used, all the strains showed the better and worse fermentation performance with arginine and ammonium, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Protein as a sole source of nitrogen for in vitro grown tobacco plantlets

    Czech Academy of Sciences Publication Activity Database

    Synková, Helena; Hýsková, V.; Garčeková, K.; Křížová, S.; Ryšlavá, H.

    2016-01-01

    Roč. 60, č. 4 (2016), s. 635-644 ISSN 0006-3134 Institutional support: RVO:61389030 Keywords : glutamate-dehydrogenase * inorganic nitrogen * nitrate transport * organic nitrogen * amino-acids * metabolism * seedlings * leaves * roots * assimilation * ammonium * casein * chlorophyll fluorescence * nitrate * photosynthesis Subject RIV: EF - Botanics Impact factor: 1.551, year: 2016

  20. Nutrient co-limited Trichodesmium as nitrogen source or sink in a future ocean.

    Science.gov (United States)

    Walworth, Nathan G; Fu, Fei-Xue; Lee, Michael D; Cai, Xiaoni; Saito, Mak A; Webb, Eric A; Hutchins, David A

    2017-11-27

    Nitrogen-fixing (N 2 ) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen-fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally-important N 2 -fixer Trichodesmium fundamentally shifts nitrogen metabolism towards organic-nitrogen scavenging following long-term high-CO 2 adaptation under iron and/or phosphorus (co)-limitation. Global shifts in transcripts and proteins under high CO 2 /Fe-limited and/or P-limited conditions include decreases in the N 2 -fixing nitrogenase enzyme, coupled with major increases in enzymes that oxidize trimethylamine (TMA). TMA is an abundant, biogeochemically-important organic nitrogen compound that supports rapid Trichodesmium growth while inhibiting N 2 fixation. In a future high-CO 2 ocean, this whole-cell energetic reallocation towards organic nitrogen scavenging and away from N 2 -fixation may reduce new-nitrogen inputs by Trichodesmium , while simultaneously depleting the scarce fixed-nitrogen supplies of nitrogen-limited open ocean ecosystems. Importance Trichodesmium is among the most biogeochemically-significant microorganisms in the ocean, since it supplies up to 50% of the new nitrogen supporting open ocean food webs. We used Trichodesmium cultures adapted to high CO 2 for 7 years followed by additional exposure to iron and/or phosphorus (co)-limitation. We show that 'future ocean' conditions of high CO 2 and concurrent nutrient limitation(s) fundamentally shift nitrogen metabolism away from nitrogen fixation, and instead towards upregulation of organic-nitrogen scavenging pathways. We show that Trichodesmium's responses to projected future ocean conditions include decreases in the nitrogen-fixing nitrogenase enzymes, coupled with

  1. The nitrogen cycle: Atmosphere interactions

    Science.gov (United States)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  2. Biomonitors of atmospheric nitrogen deposition: potential uses and limitations.

    Science.gov (United States)

    Díaz-Álvarez, Edison A; Lindig-Cisneros, Roberto; de la Barrera, Erick

    2018-01-01

    Atmospheric nitrogen deposition is the third largest cause of global biodiversity loss, with rates that have more than doubled over the past century. This is especially threatening for tropical regions where the deposition may soon exceed 25 kg of N ha -1 year -1 , well above the threshold for physiological damage of 12-20 kg of N ha -1 year -1 , depending on plant species and nitrogenous compound. It is thus urgent to monitor these regions where the most diverse biotas occur. However, most studies have been conducted in Europe, the USA and recently in China. This review presents the case for the potential use of biological organisms to monitor nitrogen deposition, with emphasis on tropical plants. We first present an overview of atmospheric chemistry and the nitrogen metabolism of potential biomonitors, followed by a framework for monitoring nitrogen deposition based on the simultaneous use of various functional groups. In particular, the tissue nitrogen content responds to the rate of deposition, especially for mosses, whose nitrogen content increases by 1‰ per kilogram of N ha -1 year -1 . The isotopic signature, δ 15 N, is a useful indicator of the nitrogen source, as the slightly negative values (e.g. 5‰) of plants from natural environments can become very negative (-11.2‰) in sites with agricultural and husbandry activities, but very positive (13.3‰) in urban environments with high vehicular activity. Mosses are good biomonitors for wet deposition and atmospheric epiphytes for dry deposition. In turn, the nitrogen saturation of ecosystems can be monitored with trees whose isotopic values increase with saturation. Although given ecophysiological limitations of different organisms, particular studies should be conducted in each area of interest to determine the most suitable biomonitors. Overall, biomonitors can provide an integrative approach for characterizing nitrogen deposition in regions where the deployment of automated instruments or passive

  3. Nucleotide Metabolism

    DEFF Research Database (Denmark)

    Martinussen, Jan; Willemoës, M.; Kilstrup, Mogens

    2011-01-01

    Metabolic pathways are connected through their utilization of nucleotides as supplier of energy, allosteric effectors, and their role in activation of intermediates. Therefore, any attempt to exploit a given living organism in a biotechnological process will have an impact on nucleotide metabolism...

  4. Tissue protein metabolism in parasitized animals

    International Nuclear Information System (INIS)

    Symons, L.E.A.; Steel, J.W.; Jones, W.O.

    1981-01-01

    The effects of gastrointestinal nematode infection of mammals, particularly of the small intestine of the sheep, on protein metabolism of skeletal muscle, liver, the gastrointestinal tract and wool are described. These changes have been integrated to explain poor growth and production in the sheep heavily infected with Trichostrongylus colubriformis. The rates of both synthesis and catabolism of muscle protein are depressed, but nitrogen is lost from this tissue because the depression of synthesis exceeds that of catabolism. Anorexia is the major cause of these changes. Although the effect on liver protein synthesis is unclear, it is probable that the leakage of plasma proteins into the gastrointestinal tract stimulates an early increase in the rate of synthesis of these proteins, but this eventually declines and is insufficient to correct developing hypoalbuminaemia. Changes in the intestinal tract are complex. Exogenous nitrogen is reduced by anorexia, but the flow of nitrogen through the tract from abomasum to faeces is above normal because of the increase of endogenous protein from leakage of plasma protein and, presumably, from exfoliated epithelial cells. There is evidence that protein metabolism of intestinal tissue, particularly in the uninfected distal two-thirds, is increased. Synthesis of wool protein is decreased. As the result of anorexia, intestinal loss of endogenous protein and an increased rate of intestinal protein metabolism there is a net movement of amino nitrogen from muscle, liver and possibly skin to the intestine of the heavily infected sheep. Thus, the availability of amino nitrogen for growth and wool production is reduced. (author)

  5. Haemodialysis and peritoneal dialysis: metabolic alterations and nutritional status.

    Science.gov (United States)

    Cano, N

    1999-07-01

    In dialysis patients, malnutrition is an independent factor causing morbidity and mortality. Both inadequate alimentation and metabolic alterations, which involve nitrogen and energy metabolism, contribute to malnutrition. Future research must address the treatment of anorexia and inflammation-induced catabolism, as well as the evaluation of nutritional supplementation techniques and anabolic drugs.

  6. 'Trophic' and 'source' amino acids in trophic estimation: a likely metabolic explanation.

    Science.gov (United States)

    O'Connell, T C

    2017-06-01

    Amino acid nitrogen isotopic analysis is a relatively new method for estimating trophic position. It uses the isotopic difference between an individual's 'trophic' and 'source' amino acids to determine its trophic position. So far, there is no accepted explanation for the mechanism by which the isotopic signals in 'trophic' and 'source' amino acids arise. Yet without a metabolic understanding, the utility of nitrogen isotopic analyses as a method for probing trophic relations, at either bulk tissue or amino acid level, is limited. I draw on isotopic tracer studies of protein metabolism, together with a consideration of amino acid metabolic pathways, to suggest that the 'trophic'/'source' groupings have a fundamental metabolic origin, to do with the cycling of amino-nitrogen between amino acids. 'Trophic' amino acids are those whose amino-nitrogens are interchangeable, part of a metabolic amino-nitrogen pool, and 'source' amino acids are those whose amino-nitrogens are not interchangeable with the metabolic pool. Nitrogen isotopic values of 'trophic' amino acids will reflect an averaged isotopic signal of all such dietary amino acids, offset by the integrated effect of isotopic fractionation from nitrogen cycling, and modulated by metabolic and physiological effects. Isotopic values of 'source' amino acids will be more closely linked to those of equivalent dietary amino acids, but also modulated by metabolism and physiology. The complexity of nitrogen cycling suggests that a single identifiable value for 'trophic discrimination factors' is unlikely to exist. Greater consideration of physiology and metabolism should help in better understanding observed patterns in nitrogen isotopic values.

  7. Nitrogen Fixation in Cyanobacteria

    NARCIS (Netherlands)

    Stal, L.J.

    2008-01-01

    Cyanobacteria are oxygenic photosynthetic bacteria that are widespread in marine, freshwater and terrestrial environments and many of them are capable of fixing atmospheric nitrogen. But ironically, nitrogenase, the enzyme that is responsible for the reduction of N2, is extremely sensitive to O2.

  8. Phosphorus-nitrogen compounds

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 120; Issue 4. Phosphorus-nitrogen compounds: Part 15. Synthesis, anisochronism and the relationship between crystallographic and spectral data of monotopic spiro-crypta phosphazenes. Nuran Asmafi̇li̇z Eli̇f Ece İl Ter Zeynel Kiliç Tuncer Hökelek Ertan Şahin.

  9. The Global Nitrogen Cycle

    Science.gov (United States)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  10. Drug Metabolism

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 3. Drug Metabolism: A Fascinating Link Between Chemistry and Biology. Nikhil Taxak Prasad V Bharatam. General Article Volume 19 Issue 3 March 2014 pp 259-282 ...

  11. Drug Metabolism

    Indian Academy of Sciences (India)

    IAS Admin

    Drug metabolism may be defined as the biochemical modifica- tion of one chemical form to another, occurring usually through ..... Endogenous. Enzyme. Drugs. Cofactor. Glucuronidation. UDP glucoronic. UDP-. Chloramphenicol, acid glucuronosyltransferase morphine, paracetamol, salicylic acid, fenoprofen, desipramine,.

  12. Early anaerobic metabolisms

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity......Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were...... of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent...

  13. Bacteria and the Nitrogen Economy.

    Science.gov (United States)

    Ayanaba, A.

    1982-01-01

    Biological nitrogen fixation accounts for almost 70 percent of nitrogen for plant growth. If food is to keep abreast of population growth, even more nitrogen must be fixed. For this international research institutes continue the search for natural variants in the bacterial population while also pursuing novel genetic engineering methods. (Author)

  14. Metabolic Myopathies.

    Science.gov (United States)

    Tarnopolsky, Mark A

    2016-12-01

    Metabolic myopathies are genetic disorders that impair intermediary metabolism in skeletal muscle. Impairments in glycolysis/glycogenolysis (glycogen-storage disease), fatty acid transport and oxidation (fatty acid oxidation defects), and the mitochondrial respiratory chain (mitochondrial myopathies) represent the majority of known defects. The purpose of this review is to develop a diagnostic and treatment algorithm for the metabolic myopathies. The metabolic myopathies can present in the neonatal and infant period as part of more systemic involvement with hypotonia, hypoglycemia, and encephalopathy; however, most cases present in childhood or in adulthood with exercise intolerance (often with rhabdomyolysis) and weakness. The glycogen-storage diseases present during brief bouts of high-intensity exercise, whereas fatty acid oxidation defects and mitochondrial myopathies present during a long-duration/low-intensity endurance-type activity or during fasting or another metabolically stressful event (eg, surgery, fever). The clinical examination is often normal between acute events, and evaluation involves exercise testing, blood testing (creatine kinase, acylcarnitine profile, lactate, amino acids), urine organic acids (ketones, dicarboxylic acids, 3-methylglutaconic acid), muscle biopsy (histology, ultrastructure, enzyme testing), MRI/spectroscopy, and targeted or untargeted genetic testing. Accurate and early identification of metabolic myopathies can lead to therapeutic interventions with lifestyle and nutritional modification, cofactor treatment, and rapid treatment of rhabdomyolysis.

  15. Animal metabolism

    International Nuclear Information System (INIS)

    Walburg, H.E.

    1977-01-01

    Studies on placental transport included the following: clearance of tritiated water as a baseline measurement for transport of materials across perfused placentas; transport of organic and inorganic mercury across the perfused placenta of the guinea pig in late gestation; and transport of cadmium across the perfused placenta of the guinea pig in late gestation. Studies on cadmium absorption and metabolism included the following: intestinal absorption and retention of cadmium in neonatal rats; uptake and distribution of an oral dose of cadmium in postweanling male and female, iron-deficient and normal rats; postnatal viability and growth in rat pups after oral cadmium administration during gestation; and the effect of calcium and phosphorus on the absorption and toxicity of cadmium. Studies on gastrointestinal absorption and mineral metabolism included: uptake and distribution of orally administered plutonium complex compounds in male mice; gastrointestinal absorption of 144 Ce in the newborn mouse, rat, and pig; and gastrointestinal absorption of 95 Nb by rats of different ages. Studies on iodine metabolism included the following: influence of thyroid status and thiocyanate on iodine metabolism in the bovine; effects of simulated fallout radiation on iodine metabolism in dairy cattle; and effects of feeding iodine binding agents on iodine metabolism in the calf

  16. Comparison of Nitrogen Depletion and Repletion on Lipid Production in Yeast and Fungal Species

    Directory of Open Access Journals (Sweden)

    Shihui Yang

    2016-08-01

    Full Text Available Although it is well known that low nitrogen stimulates lipid accumulation, especially for algae and some oleaginous yeast, few studies have been conducted in fungal species, especially on the impact of different nitrogen deficiency strategies. In this study, we use two promising consolidated bioprocessing (CBP candidates to examine the impact of two nitrogen deficiency strategies on lipid production, which are the extensively investigated oleaginous yeast Yarrowia lipolytica, and the commercial cellulase producer Trichoderma reesei. We first utilized bioinformatics approaches to reconstruct the fatty acid metabolic pathway and demonstrated the presence of a triacylglycerol (TAG biosynthesis pathway in Trichoderma reesei. We then examined the lipid production of Trichoderma reesei and Y. lipomyces in different media using two nitrogen deficiency strategies of nitrogen natural repletion and nitrogen depletion through centrifugation. Our results demonstrated that nitrogen depletion was better than nitrogen repletion with about 30% lipid increase for Trichoderma reesei and Y. lipomyces, and could be an option to improve lipid production in both oleaginous yeast and filamentous fungal species. The resulting distinctive lipid composition profiles indicated that the impacts of nitrogen depletion on yeast were different from those for fungal species. Under three types of C/N ratio conditions, C16 and C18 fatty acids were the predominant forms of lipids for both Trichoderma reesei and Y. lipolytica. While the overall fatty acid methyl ester (FAME profiles of Trichoderma reesei were similar, the overall FAME profiles of Y. lipolytica observed a shift. The fatty acid metabolic pathway reconstructed in this work supports previous reports of lipid production in T. reesei, and provides a pathway for future omics studies and metabolic engineering efforts. Further investigation to identify the genetic targets responsible for the effect of nitrogen depletion on

  17. What is Metabolic Syndrome?

    Science.gov (United States)

    ... Research Home / Metabolic Syndrome Metabolic Syndrome What Is Metabolic syndrome is the name for a group of risk ... three metabolic risk factors to be diagnosed with metabolic syndrome. A large waistline. This also is called abdominal ...

  18. The fertilizer nitrogen problem

    International Nuclear Information System (INIS)

    Olson, R.A.; Halstead, E.H.

    1974-01-01

    A world-wide fossil fuel crisis has surfaced in the past year by reason of shortage and high cost, which is felt throughout all segments of human society. Nor has the agriculture sector, with its very high demand for energy to supply its power, machinery, fertilizer, processing and transport, escaped the energy crisis. Among the agricultural inputs, fertilizer nitrogen is one of major concern. This commodity is currently in extremely short supply, world prices having more than doubled in the past year alone. Serious as this situation is to agricultural production in the highly developed countries of the world, it is a real disaster to the production potential of the developing countries. The birth of the 'Green Revolution' in those countries in the last ten years came about from an amalgamation of higher yielding varieties, improved pest and disease control, better crop watering practices, and the introduction of fertilizer nitrogen. Shortcomings in any one of these requisites invalidates the entire package. (author)

  19. Phosphate glasses, containing nitrogen

    International Nuclear Information System (INIS)

    Lisitsyna, E.A.; Khalilev, V.D.; Koryavin, A.A.; Goncharova, L.N.

    1987-01-01

    Possibilities of nitrogen-containing glass synthesis by the introduction into the charge of ammonium salts, as well as aluminium nitride, are studied. Zinc alumoyttrium phosphate glass (mol. %) Zn(PO 3 ) 2 - 4O, Al(PO 3 ) 3 - 3O, Y(PO 3 ) 3 -3O is suggested as a matrix. It is shown that the effect of amide and imide groups on the properties of the glass is less noticeable than the effect of nitride groups. Direct introduction of nitride constituent was realized using AlN, but aluminium introduction was taken into account so that the oxide was subtracted. The attempt to introduce more than 2.5 mass % of nitrogen into initial matrix by aluminium nitride has failed due to repeated restoration of glass with amorphous phosphorus isolation

  20. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, S.M.; Habash, D.Z.

    2009-07-02

    Glutamine synthetase assimilates ammonium into amino acids, thus it is a key enzyme for nitrogen metabolism. The cytosolic isoenzymes of glutamine synthetase assimilate ammonium derived from primary nitrogen uptake and from various internal nitrogen recycling pathways. In this way, cytosolic glutamine synthetase is crucial for the remobilization of protein-derived nitrogen. Cytosolic glutamine synthetase is encoded by a small family of genes that are well conserved across plant species. Members of the cytosolic glutamine synthetase gene family are regulated in response to plant nitrogen status, as well as to environmental cues, such as nitrogen availability and biotic/abiotic stresses. The complex regulation of cytosolic glutamine synthetase at the transcriptional to post-translational levels is key to the establishment of a specific physiological role for each isoenzyme. The diverse physiological roles of cytosolic glutamine synthetase isoenzymes are important in relation to current agricultural and ecological issues.

  1. Nitrogen Research Programme STOP

    International Nuclear Information System (INIS)

    Erisman, J.W.; Van der Eerden, L.

    2000-01-01

    Nitrogen pollution is one of the main threats to the environment now in the Netherlands as well as other parts of Europe. In order to address the main gaps on the issues of nitrogen pollution related to the local scale, the Ministries of Housing, Physical Planning and Environment (VROM) and of Agriculture, Nature Management and Fisheries (LNV) have initiated a research programme, the Dutch Nitrogen Research Programme (STOP), which aims to provide a scientific basis to develop and implement policy on a local scale for the realisation and conservation of the EHS ('Dutch Mainframe of Natural Landscapes'). The results of the programme show that the description of emissions from manure in the field is difficult to describe and show large uncertainties. On the contrary, emissions from housings could be modelled well, if local actual data were available. The OPS model to describe the dispersion and deposition was evaluated with the measurements and the limitations were quantified. It appears that the model works well on the long term, whereas on the short term (hours) and short distance (tenths of meters) there is large uncertainty, especially in complex terrain. Critical loads for nitrogen for ecosystems were evaluated. Furthermore, the effect of management options was quantified. A method to determine critical loads as a function of soil conditions, such as acidification and water availability was derived. This resulted in a combination of the soil model SMART and the so-called 'nature planner' (Natuurplanner). It was concluded that the combination of SMART, the nature planner and OPS provide a good tool to develop and support policy on the local scale. 4 refs

  2. High Nitrogen Stainless Steel

    Science.gov (United States)

    2011-07-19

    crack growth (FCG) test (ASTM E 647-95a) - square bar specimen of 0.4x0.4x2.8 in. in L-orientation with a Charpy notch at the mid- length for SCC...Hydrogen Embrittlement in Steel by the Increment Loading Technique. Fractography: After the stress-life fatigue tests , the fracture surface morphology...NAWCADPAX/TR-2011/162 HIGH NITROGEN STAINLESS STEEL by E. U. Lee R. Taylor 19 July 2011 Approved for

  3. Nitrogen in germanium

    Science.gov (United States)

    Chambouleyron, I.; Zanatta, A. R.

    1998-07-01

    The known properties of nitrogen as an impurity in, and as an alloy element of, the germanium network are reviewed in this article. Amorphous and crystalline germanium-nitrogen alloys are interesting materials with potential applications for protective coatings and window layers for solar conversion devices. They may also act as effective diffusion masks for III-V electronic devices. The existing data are compared with similar properties of other group IV nitrides, in particular with silicon nitride. To a certain extent, the general picture mirrors the one found in Si-N systems, as expected from the similar valence structure of both elemental semiconductors. However, important differences appear in the deposition methods and alloy composition, the optical properties of as grown films, and the electrical behavior of nitrogen-doped amorphous layers. Structural studies are reviewed, including band structure calculations and the energies of nitrogen-related defects, which are compared with experimental data. Many important aspects of the electronic structure of Ge-N alloys are not yet completely understood and deserve a more careful investigation, in particular the structure of defects associated with N inclusion. The N doping of the a-Ge:H network appears to be very effective, the activation energy of the most effectively doped samples becoming around 120 meV. This is not the case with N-doped a-Si:H, the reasons for the difference remaining an open question. The lack of data on stoichiometric β-Ge3N4 prevents any reasonable assessment on the possible uses of the alloy in electronic and ceramic applications.

  4. Is nitrogen the next carbon?

    Science.gov (United States)

    Battye, William; Aneja, Viney P.; Schlesinger, William H.

    2017-09-01

    Just as carbon fueled the Industrial Revolution, nitrogen has fueled an Agricultural Revolution. The use of synthetic nitrogen fertilizers and the cultivation of nitrogen-fixing crops both expanded exponentially during the last century, with most of the increase occurring after 1960. As a result, the current flux of reactive, or fixed, nitrogen compounds to the biosphere due to human activities is roughly equivalent to the total flux of fixed nitrogen from all natural sources, both on land masses and in the world's oceans. Natural fluxes of fixed nitrogen are subject to very large uncertainties, but anthropogenic production of reactive nitrogen has increased almost fivefold in the last 60 years, and this rapid increase in anthropogenic fixed nitrogen has removed any uncertainty on the relative importance of anthropogenic fluxes to the natural budget. The increased use of nitrogen has been critical for increased crop yields and protein production needed to keep pace with the growing world population. However, similar to carbon, the release of fixed nitrogen into the natural environment is linked to adverse consequences at local, regional, and global scales. Anthropogenic contributions of fixed nitrogen continue to grow relative to the natural budget, with uncertain consequences.

  5. [Metabolic myopathies].

    Science.gov (United States)

    Papazian, Óscar; Rivas-Chacón, Rafael

    2013-09-06

    To review the metabolic myopathies manifested only by crisis of myalgias, cramps and rigidity of the muscles with decreased voluntary contractions and normal inter crisis neurologic examination in children and adolescents. These metabolic myopathies are autosomic recessive inherited enzymatic deficiencies of the carbohydrates and lipids metabolisms. The end result is a reduction of intra muscle adenosine triphosphate, mainly through mitochondrial oxidative phosphorylation, with decrease of available energy for muscle contraction. The one secondary to carbohydrates intra muscle metabolism disorders are triggered by high intensity brief (fatty acids metabolism disorders are triggered by low intensity prolonged (> 10 min) exercises. The conditions in the first group in order of decreasing frequency are the deficiencies of myophosforilase (GSD V), muscle phosphofructokinase (GSD VII), phosphoglycerate mutase 1 (GSD X) and beta enolase (GSD XIII). The conditions in the second group in order of decreasing frequency are the deficiencies of carnitine palmitoyl transferase II and very long chain acyl CoA dehydrogenase. The differential characteristics of patients in each group and within each group will allow to make the initial presumptive clinical diagnosis in the majority and then to order only the necessary tests to achieve the final diagnosis. Treatment during the crisis includes hydration, glucose and alkalinization of urine if myoglobin in blood and urine are elevated. Prevention includes avoiding exercise which may induce the crisis and fasting. The prognosis is good with the exception of rare cases of acute renal failure due to hipermyoglobinemia because of severe rabdomyolisis.

  6. Nitrogenous compounds stimulate glucose-derived acid production by oral Streptococcus and Actinomyces.

    Science.gov (United States)

    Norimatsu, Yuka; Kawashima, Junko; Takano-Yamamoto, Teruko; Takahashi, Nobuhiro

    2015-09-01

    Both Streptococcus and Actinomyces can produce acids from dietary sugars and are frequently found in caries lesions. In the oral cavity, nitrogenous compounds, such as peptides and amino acids, are provided continuously by saliva and crevicular gingival fluid. Given that these bacteria can also utilize nitrogen compounds for their growth, it was hypothesized that nitrogenous compounds may influence their acid production; however, no previous studies have examined this topic. Therefore, the present study aimed to assess the effects of nitrogenous compounds (tryptone and glutamate) on glucose-derived acid production by Streptococcus and Actinomyces. Acid production was evaluated using a pH-stat method under anaerobic conditions, whereas the amounts of metabolic end-products were quantified using high performance liquid chromatography. Tryptone enhanced glucose-derived acid production by up to 2.68-fold, whereas glutamate enhanced Streptococcus species only. However, neither tryptone nor glutamate altered the end-product profiles, indicating that the nitrogenous compounds stimulate the whole metabolic pathways involving in acid production from glucose, but are not actively metabolized, nor do they alter metabolic pathways. These results suggest that nitrogenous compounds in the oral cavity promote acid production by Streptococcus and Actinomyces in vivo. © 2015 The Societies and Wiley Publishing Asia Pty Ltd.

  7. Identification of genes related to nitrogen uptake in wine strains of Saccharomyces cerevisiae.

    Science.gov (United States)

    Contreras, A; García, V; Salinas, F; Urzúa, U; Ganga, M A; Martínez, C

    2012-03-01

    The yeast Saccharomyces cerevisiae is the main microorganism responsible for wine fermentation and its development influences the quality of wine. A problem affecting these types of fermentations, generating important losses in this industry, are the slow or stuck fermentations which may result from low nitrogen availability in the must. Therefore, several studies have been directed towards identifying genes involved in nitrogen metabolism using high throughput strategies which include subjecting the yeast to changes in the type or concentration of the available nitrogen source. However, this type of approach can also generate responses in the yeast that do not necessarily alter the expression of genes related to nitrogen metabolism. In this work, by using intraspecific hybridisation of wild wine yeast strains we obtained genetically and oenologically similar strains with differences in the consumption of nitrogen sources. Using the same must, the global expression patterns of these yeasts were compared by microarrays, the analysis of which identified 276 genes that varied in their expression between the strains analysed. The functional analysis of the genes with a known function indicates that some participate in nitrogen metabolism, alcoholic fermentation, ion transport and transcriptional regulation. Furthermore, differences were observed in the expression of genes which have been partially associated to nitrogen, as in the case of ZRT1 and ATO2. Interestingly, many of the genes identified have no known function or have not been previously associated to this phenotype.

  8. ASN1-encoded asparagine synthetase in floral organs contributes to nitrogen filling in Arabidopsis seeds.

    Science.gov (United States)

    Gaufichon, Laure; Marmagne, Anne; Belcram, Katia; Yoneyama, Tadakatsu; Sakakibara, Yukiko; Hase, Toshiharu; Grandjean, Olivier; Clément, Gilles; Citerne, Sylvie; Boutet-Mercey, Stéphanie; Masclaux-Daubresse, Céline; Chardon, Fabien; Soulay, Fabienne; Xu, Xiaole; Trassaert, Marion; Shakiebaei, Maryam; Najihi, Amina; Suzuki, Akira

    2017-08-01

    Despite a general view that asparagine synthetase generates asparagine as an amino acid for long-distance transport of nitrogen to sink organs, its role in nitrogen metabolic pathways in floral organs during seed nitrogen filling has remained undefined. We demonstrate that the onset of pollination in Arabidopsis induces selected genes for asparagine metabolism, namely ASN1 (At3g47340), GLN2 (At5g35630), GLU1 (At5g04140), AapAT2 (At5g19950), ASPGA1 (At5g08100) and ASPGB1 (At3g16150), particularly at the ovule stage (stage 0), accompanied by enhanced asparagine synthetase protein, asparagine and total amino acids. Immunolocalization confined asparagine synthetase to the vascular cells of the silique cell wall and septum, but also to the outer and inner seed integuments, demonstrating the post-phloem transport of asparagine in these cells to developing embryos. In the asn1 mutant, aberrant embryo cell divisions in upper suspensor cell layers from globular to heart stages assign a role for nitrogen in differentiating embryos within the ovary. Induction of asparagine metabolic genes by light/dark and nitrate supports fine shifts of nitrogen metabolic pathways. In transgenic Arabidopsis expressing promoter Ca MV 35S ::ASN1 fusion, marked metabolomics changes at stage 0, including a several-fold increase in free asparagine, are correlated to enhanced seed nitrogen. However, specific promoter Napin2S ::ASN1 expression during seed formation and a six-fold increase in asparagine toward the desiccation stage result in wild-type seed nitrogen, underlining that delayed accumulation of asparagine impairs the timing of its use by releasing amide and amino nitrogen. Transcript and metabolite profiles in floral organs match the carbon and nitrogen partitioning to generate energy via the tricarboxylic acid cycle, GABA shunt and phosphorylated serine synthetic pathway. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine...

  10. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    Science.gov (United States)

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  11. Nitrogen balance in patients with hemiparetic stroke during the subacute rehabilitation phase.

    Science.gov (United States)

    Wada, A; Kawakami, M; Otsuka, T; Aoki, H; Anzai, A; Yamada, Y; Liu, F; Otaka, E; Akaboshi, K; Liu, M

    2017-06-01

    In highly invasive diseases, metabolism commonly changes. Hypercatabolism is frequent in acute stroke, and nitrogen balance tends to be negative. However, there has been no study describing nitrogen balance in subacute and chronic stroke patients. The present study aimed to examine nitrogen balance in the subacute and chronic phases and to identify the factors related to it. Nitrogen balance was calculated from the collected urine of 56 patients with subacute stroke [mean (SD) 53.8 (18.4) days post-stroke] who were admitted for rehabilitation for their first-ever ischaemic or nonsurgical haemorrhagic stroke. In the first experiment, their nitrogen balance was measured during the rehabilitation phase, and factors (type, severity of hemiparesis, activities of daily living, dysphagia and malnutrition status) related to it were evaluated. The second experiment was performed to describe the time course of nitrogen balance in 31 consecutive patients, with assessments made at admission and at discharge. Nitrogen balance was positive in all patients in the subacute phase. A significant difference was seen in nitrogen balance between high and low fat-free mass in male patients. In the chronic phase, nitrogen balance was positive in 96% of the patients. There was no significant difference in nitrogen balance between discharge and admission. In the subacute and chronic phases of stroke, it was confirmed that hypercatabolism had resolved and that intensive rehabilitation is possible in the convalescent period of stroke. © 2017 The British Dietetic Association Ltd.

  12. Nitrogen supply of crops by biological nitrogen fixation. 2

    International Nuclear Information System (INIS)

    Jensen, E.S.; Andersen, A.J.; Soerensen, H.; Thomsen, J.D.

    1985-02-01

    In the present work the contributions from combined N-sources and symbiotic nitrogen fixation to the nitrogen supply of field-grown peas and field beans were evaluated by means of 15 N fertilizer dilution. The effect of N-fertilizer, supplied at sowing and at different stages of plant development, on nitrogen fixation, yield and protein production in peas, was studied in pot experiments. (author)

  13. Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts

    Science.gov (United States)

    2014-01-01

    Currently, pursuing yeast strains that display both a high potential fitness for alcoholic fermentation and a favorable impact on quality is a major goal in the alcoholic beverage industry. This considerable industrial interest has led to many studies characterizing the phenotypic and metabolic traits of commercial yeast populations. In this study, 20 Saccharomyces cerevisiae strains from different geographical origins exhibited high phenotypic diversity when their response to nine biotechnologically relevant conditions was examined. Next, the fermentation fitness and metabolic traits of eight selected strains with a unique phenotypic profile were evaluated in a high-sugar synthetic medium under two nitrogen regimes. Although the strains exhibited significant differences in nitrogen requirements and utilization rates, a direct relationship between nitrogen consumption, specific growth rate, cell biomass, cell viability, acetic acid and glycerol formation was only observed under high-nitrogen conditions. In contrast, the strains produced more succinic acid under the low-nitrogen regime, and a direct relationship with the final cell biomass was established. Glucose and fructose utilization patterns depended on both yeast strain and nitrogen availability. For low-nitrogen fermentation, three strains did not fully degrade the fructose. This study validates phenotypic and metabolic diversity among commercial wine yeasts and contributes new findings on the relationship between nitrogen availability, yeast cell growth and sugar utilization. We suggest that measuring nitrogen during the stationary growth phase is important because yeast cells fermentative activity is not exclusively related to population size, as previously assumed, but it is also related to the quantity of nitrogen consumed during this growth phase. PMID:24949272

  14. Differences in nitrogen and urea metabolism between goats bred for ...

    African Journals Online (AJOL)

    collected for the following 24 h, sub-sampled and frozen until analysis. Urea concentration was determined using the. Berthelot method (Faulkner & King, 1982). For counting radioactivity, 100 ~l of urine was mixed with 100 ~l of glacial acetic acid and dried over H2S04 and soda lime to remove radioactivity associated with ...

  15. Nitrogen and amino acid metabolism in dairy cows

    NARCIS (Netherlands)

    Tamminga, S.

    1981-01-01

    For the process of milk production, the dairy cow requires nutrients of which energy supplying nutrients and protein or amino acid supplying nutrients are the most important. Amino acid supplying nutrients have to be absorbed from the small intestine and the research reported in this thesis mainly

  16. Digestion and nitrogen metabolism of grass fed dairy cows

    NARCIS (Netherlands)

    Vuuren, van A.M.

    1993-01-01

    Until recently, young, highly digestible grass was considered an ideal feed for dairy cows. However, research during the last decades has shown that the nutrient supply of grazing animals is insufficient for milk productions above c. 29 kg per day. Experiments in England and New Zealand

  17. Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples

    DEFF Research Database (Denmark)

    Otte, S.; Kuenen, JG; Nielsen, LP

    1999-01-01

    in combination with (15)N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min(-1) mg of protein(-1). Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min(-1......) mg of protein(-1). The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol...

  18. Utilization of tritiated water dilution technique in determination of nitrogen partitioning in cashmere goats

    International Nuclear Information System (INIS)

    Wang Linfeng; Yang Gaiqing; Liu Ping; Zhang Shijun

    2010-01-01

    In order to investigate nitrogen partitioning in local cashmere goats, six Inner Mogolia White Cashmere goats between 2 to 2.5 years old were used to determine the nitrogen partitioning in cashmere goats. The total retained nitrogen (TN) in body, distribution of body nitrgen and hair nitrogen were measured by general digestive and metabolism method combined with tritiated water dilution technique. Results showed that the combined methods were ideal for determining body nitrgen (BN) and hair nitrogen (fur nitrogen, FN) of Cashmere goats. There were obvious significance between BN and FN in different seasons. In telogen, BN and FN partitioning was 75.7% ± 0.62% and 24.3% ± 0.62%, respectively. Whereas, it changed to 66.6% ± 2.2% and 33.4% ± 2.2% in anagen. BN partitioning decreased when the season changed from telogen to anagen, while FN partitioning increased, which indicated that more nitrogen substance was partitioned to body growth in telogen, and more nitrogen substance was distribute to cashmere growth in anagen. These transformation were related to the changing of photoperiod and some hormones, such as melatonin (MT), prolactin (PRL) and IGF-I. It could be concluded that tritiated water dilution technique can be used to detect body protein content as well as BN, combining general digestive and metabolism experiment, FN partitoning can be determined. BN and FN partitoning varied with the season in cashmere goats because of hormones changing. (authors)

  19. Metabolic Engineering

    Indian Academy of Sciences (India)

    IAS Admin

    and in vitro to be able to alter properties of the encoded enzyme, and (6) assemble an array of genes for their expression inside the host cell. Although bacteria and yeast are the pioneering hosts for metabolic engineering, other organisms such as fungi, animal as well as plant cells are also used nowadays for similar experi ...

  20. Metabolic Engineering

    Indian Academy of Sciences (India)

    IAS Admin

    Metabolic engineering is a process for modulating the me- tabolism of the organisms so as to produce the required amounts of the desired metabolite through genetic manipula- tions. Considering its advantages over the other chemical synthesis routes, this area of biotechnology is likely to revolu- tionize the way in which ...

  1. Metabolic syndrome

    Science.gov (United States)

    ... gov/pubmed/26718656 . Ruderman NB, Shulman GI. Metabolic syndrome. In: Jameson JL, De Groot LJ, de Kretser DM, et al, eds. Endocrinology: Adult and Pediatric . 7th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 43. Review ... NIH MedlinePlus Magazine Read more Health ...

  2. Metabolic Disorders

    Science.gov (United States)

    Metabolism is the process your body uses to get or make energy from the food you eat. Food is made up of proteins, carbohydrates, and fats. Chemicals in your digestive system break the food parts down into sugars and acids, your body's ...

  3. Key applications of plant metabolic engineering.

    Directory of Open Access Journals (Sweden)

    Warren Lau

    2014-06-01

    Full Text Available Great strides have been made in plant metabolic engineering over the last two decades, with notable success stories including Golden rice. Here, we discuss the field's progress in addressing four long-standing challenges: creating plants that satisfy their own nitrogen requirement, so reducing or eliminating the need for nitrogen fertilizer; enhancing the nutrient content of crop plants; engineering biofuel feed stocks that harbor easy-to-access fermentable saccharides by incorporating self-destructing lignin; and increasing photosynthetic efficiency. We also look to the future at emerging areas of research in this field.

  4. Nitrogen fixation apparatus

    Science.gov (United States)

    Chen, Hao-Lin

    1984-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  5. Understanding Nitrogen Fixation

    Energy Technology Data Exchange (ETDEWEB)

    Paul J. Chirik

    2012-05-25

    The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactions are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The

  6. Nitrogen Control in VIM Melts

    Science.gov (United States)

    Jablonski, P. D.; Hawk, J. A.

    NETL has developed a design and control philosophy for the addition of nitrogen to austenitic and ferritic steels. The design approach uses CALPHAD as the centerpiece to predict the level to which nitrogen is soluble in both the melt and the solid. Applications of this technique have revealed regions of "exclusion" in which the alloy, while within specification limits of prescribed, cannot be made by conventional melt processing. Furthermore, other investigations have found that substantial retrograde solubility of nitrogen exists, which can become problematic during subsequent melt processing and/or other finishing operations such as welding. Additionally, the CALPHAD method has been used to adjust primary melt conditions. To that end, nitrogen additions have been made using chrome nitride, silicon nitride, high-nitrogen ferrochrome as well as nitrogen gas. The advantages and disadvantages of each approach will be discussed and NETL experience in this area will be summarized with respect to steel structure.

  7. Metabolic alkalosis.

    Science.gov (United States)

    Khanna, A; Kurtzman, N A

    2006-01-01

    Metabolic alkalosis is a primary pathophysiologic event characterized by the gain of bicarbonate or the loss of nonvolatile acid from extracellular fluid. The kidney preserves normal acid-base balance by two mechanisms: bicarbonate reclamation mainly in the proximal tubule and bicarbonate generation predominantly in the distal nephron. Bicarbonate reclamation is mediated mainly by a Na-H antiporter and to a smaller extent by the H-ATPase. The principal factors affecting HCO 3 reabsorption include effective arterial blood volume, glomerular filtration rate, chloride, and potassium. Bicarbonate regeneration is primarily affected by distal Na delivery and reabsorption, aldosterone, arterial pH, and arterial pCO2. To generate metabolic alkalosis, either a gain of base or a loss of acid, must occur. The loss of acid may be via the GI tract or by the kidney. Excess base may be gained by oral or parenteral HCO 3 administration or by lactate, acetate, or citrate administration. Factors that help maintain metabolic alkalosis include decreased glomerular filtration rate (GFR), volume contraction, hypokalemia, hypochloremia, and aldosterone excess. Clinical states associated with metabolic alkalosis are vomiting, mineralocorticoid excess, the adrenogenital syndrome, licorice ingestion, diuretic administration, and Bartter's and Gitelma's Syndromes. The effects of metabolic alkalosis on the body are varied and include effects on the central nervous system, myocardium, skeletal muscle, and the liver. Treatment of this disorder is simple, once the pathophysiology of the cause is delineated. Therapy consists of reversing the contributory factors promoting alkalosis and in severe cases, administration of carbonic anhydrase inhibitors, acid infusion, and low bicarbonate dialysis.

  8. Ordered Semiconducting Nitrogen-Graphene Alloys

    OpenAIRE

    H. J. Xiang; B. Huang; Z. Y. Li; S.-H. Wei; J. L. Yang; X. G. Gong

    2012-01-01

    The interaction between substitutional nitrogen atoms in graphene is studied by performing first-principles calculations. The effective nearest-neighbor interaction between nitrogen dopants is found to be highly repulsive because of the strong electrostatic repulsion between nitrogen atoms. This interaction prevents the full nitrogen-carbon phase separation in nitrogen-doped graphene. Interestingly, there are two relatively stable nitrogen-nitrogen pair configurations, whose stability can be ...

  9. Influence of road salt on the biological removal of nitrogen

    OpenAIRE

    Eliška Horniaková; Milan Búgel

    2007-01-01

    Processes occuring in the aeration tank remove nitrogen from the organic substances in wastewater by using the bacterii. Nitrification utilize the metabolism of aerobic bacterii Nitrosomonas, Nitrococus, Nitrospira, Nitrobacter Nitrocystis a Nitrosobolus. Pseudosomonas, Chromobacterium, Denitrobacillus a Micrococus are denitrification anaerobic bacterii. The bacterii are lithotrophic and they are sensitive to pH of wastewater. Chlorine and heavy metals are toxic for these bacterii. For a corr...

  10. Metabolic requirements for cancer cell proliferation.

    Science.gov (United States)

    Keibler, Mark A; Wasylenko, Thomas M; Kelleher, Joanne K; Iliopoulos, Othon; Vander Heiden, Matthew G; Stephanopoulos, Gregory

    2016-01-01

    The study of cancer metabolism has been largely dedicated to exploring the hypothesis that oncogenic transformation rewires cellular metabolism to sustain elevated rates of growth and division. Intense examination of tumors and cancer cell lines has confirmed that many cancer-associated metabolic phenotypes allow robust growth and survival; however, little attention has been given to explicitly identifying the biochemical requirements for cell proliferation in a rigorous manner in the context of cancer metabolism. Using a well-studied hybridoma line as a model, we comprehensively and quantitatively enumerate the metabolic requirements for generating new biomass in mammalian cells; this indicated a large biosynthetic requirement for ATP, NADPH, NAD(+), acetyl-CoA, and amino acids. Extension of this approach to serine/glycine and glutamine metabolic pathways suggested lower limits on serine and glycine catabolism to supply one-carbon unit synthesis and significant availability of glutamine-derived carbon for biosynthesis resulting from nitrogen demands alone, respectively. We integrated our biomass composition results into a flux balance analysis model, placing upper bounds on mitochondrial NADH oxidation to simulate metformin treatment; these simulations reproduced several empirically observed metabolic phenotypes, including increased reductive isocitrate dehydrogenase flux. Our analysis clarifies the differential needs for central carbon metabolism precursors, glutamine-derived nitrogen, and cofactors such as ATP, NADPH, and NAD(+), while also providing justification for various extracellular nutrient uptake behaviors observed in tumors. Collectively, these results demonstrate how stoichiometric considerations alone can successfully predict empirically observed phenotypes and provide insight into biochemical dynamics that underlie responses to metabolic perturbations.

  11. Consumo, digestibilidade e excreção de uréia e derivados de purinas em vacas de diferentes níveis de produção de leite Intake, digestibility and nitrogen metabolism in Holstein cows with different milk production levels

    Directory of Open Access Journals (Sweden)

    Mário Luiz Chizzotti

    2007-02-01

    Full Text Available Objetivou-se avaliar o efeito do nível de produção de leite sobre o consumo e a digestibilidade dos nutrientes (MS, MO, EE, PB, FDNcp e CNF corrigidos, o consumo de NDT, a produção de proteína microbiana e a excreção de compostos nitrogenados na urina. Foram avaliadas as concentrações de N uréico no soro (NUS e no leite (NUL de animais de diferentes níveis de produção de leite. Foram comparadas as metodologias de coletas de urina spot e total para quantificação do fluxo de N microbiano. Quinze vacas holandesas foram alocadas em delineamento inteiramente casualizado, com três tratamentos, de acordo com a produção de leite: 5,88 (baixa; 18,54 (média e 32,6 kg de leite/dia (alta. A dieta foi constituída de silagem de milho fornecida à vontade e 1 kg de concentrado para cada 3 kg de leite produzido. Os consumos de todos os nutrientes, exceto FDNcp, foram maiores nos animais mais produtivos. As digestibilidades de MS e MO e o teor de NDT não diferiram entre os tratamentos, mas as digestibilidades da PB e da FDNcp foram influenciadas pelo nível de produção, sendo maior e menor, respectivamente, nos animais de alta produção. Os teores de NUS e NUL e a excreção de compostos nitrogenados na urina foram altamente correlacionados e superiores nos animais mais produtivos, indicando que a concentração ótima varia com o nível de produção de leite. A produção microbiana não diferiu entre as metodologias de coleta spot e total de urina, sendo inferior nos animais menos produtivos. Assim, a coleta de urina spot pode ser utilizada para estimar a excreção de compostos nitrogenados na urina e a produção de proteína microbiana no rúmen.The objective of this trial was to evaluate the effect of milk production level on intake, digestibility of nutrients, microbial protein synthesis, and nitrogen (N metabolism in Holstein cows. It was also of particular interest to compare spot urine sampling and total urine collection as

  12. Restoration using Azolla imbricata increases nitrogen functional bacterial groups and genes in soil.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen; Yang, Ke

    2017-05-01

    Microbial groups are major factors that influence soil function. Currently, there is a lack of studies on microbial functional groups. Although soil microorganisms play an important role in the nitrogen cycle, systematic studies of the effects of environmental factors on microbial populations in relation to key metabolic processes in the nitrogen cycle are seldom reported. In this study, we conducted a systematic analysis of the changes in nitrogen functional groups in mandarin orange garden soil treated with Azolla imbricata. The structures of the major functional bacterial groups and the functional gene abundances involved in key processes of the soil nitrogen cycle were analyzed using high-throughput sequencing (HTS) and quantitative real-time PCR, respectively. The results indicated that returning A. imbricata had an important influence on the composition of soil nitrogen functional bacterial communities. Treatment with A. imbricata increased the diversity of the nitrogen functional bacteria. The abundances of nitrogen functional genes were significantly higher in the treated soil compared with the control soil. Both the diversity of the major nitrogen functional bacteria (nifH bacteria, nirK bacteria, and narG bacteria) and the abundances of nitrogen functional genes in the soil showed significant positive correlations with the soil pH, the organic carbon content, available nitrogen, available phosphorus, and NH 4 + -N and NO 3 - -N contents. Treatment with 12.5 kg fresh A. imbricata per mandarin orange tree was effective to improve the quality of the mandarin orange garden soil. This study analyzed the mechanism of the changes in functional bacterial groups and genes involved in key metabolic processes of the nitrogen cycle in soil treated by A. imbricata.

  13. Nitrogen accumulation and residual effects of nitrogen catch crops

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1991-01-01

    The nitrogen accumulation in Italian ryegrass (Lolium multiflorum Lam.), perennial ryegrass (Lolium perenne L.), white mustard (Sinapis alba L.) and tansy phacelia (Phacelia tanacetifolia L.), under- or aftersown as nitrogen catch crops to spring barley (Hordeum vulgare L.) and field pea (Pisum...

  14. Nitrogen remobilization in wheat as influenced by nitrogen ...

    African Journals Online (AJOL)

    Pre-anthesis stored nitrogen in wheat (Triticum aestivum L.) is important because grain filling greatly depends on the remobilization of pre-anthesis nitrogen under Mediterranean growth conditions. This field study was conducted to assess the effect of post-anthesis water deficit and three N fertilizer levels on N ...

  15. Response of Pearl Millet to nitrogen as affected by water deficit

    OpenAIRE

    Diouf , O.; Brou , Yao Télesphore; Diouf , M.; Sarr , B.; Eyletters , M.; Roy-Macauley , H.; Delhaye , J.

    2004-01-01

    International audience; In the Sahelian zone, low soil N could be as limiting as drought in pearl millet production. Although growth and crop productivity depend on several biochemical reactions in which the nitrogen metabolism plays a great role, there is little information available on how N uptake and key enzymes, nitrate reductase and glutamine synthetase, are affected by nitrogen and water interaction in millet. For this purpose, the millet variety cv. Souna III was grown in the field du...

  16. The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi

    NARCIS (Netherlands)

    Bolton, M.D.; Thomma, B.P.H.J.

    2008-01-01

    Plant pathogens secrete effector molecules that contribute to the establishment of disease in their plant hosts. The identification of cellular cues that regulate effector gene expression is an important aspect of understanding the infection process. Nutritional status in the cell has been

  17. Modelling Nitrogen Transformation in Horizontal Subsurface Flow ...

    African Journals Online (AJOL)

    Accretion of organic nitrogen was a major pathway accounting for 0.279 g/m2.d, which is 19.2% of all the influent nitrogen. The accumulation of ammonia nitrogen was found to be high compared to other water phase state variables (organic nitrogen and nitrate nitrogen). Journal of Civil Engineering Research and Practice ...

  18. Oceanic nitrogen reservoir regulated by plankton diversity and ocean circulation.

    Science.gov (United States)

    Weber, Thomas; Deutsch, Curtis

    2012-09-20

    The average nitrogen-to-phosphorus ratio of marine phytoplankton (16N:1P) is closely matched to the nutrient content of mean ocean waters (14.3N:1P). This condition is thought to arise from biological control over the ocean's nitrogen budget, in which removal of bioavailable nitrogen by denitrifying bacteria ensures widespread selection for diazotrophic phytoplankton that replenish this essential nutrient when it limits the growth of other species. Here we show that in the context of a realistic ocean circulation model, and a uniform N:P ratio of plankton biomass, this feedback mechanism yields an oceanic nitrate deficit more than double its observed value. The critical missing phenomenon is diversity in the metabolic N:P requirement of phytoplankton, which has recently been shown to exhibit large-scale patterns associated with species composition. When we model these variations, such that diazotrophs compete with high N:P communities in subtropical regions, the ocean nitrogen inventory rises and may even exceed the average N:P ratio of plankton. The latter condition, previously considered impossible, is prevented in the modern ocean by shallow circulations that communicate stoichiometric signals from remote biomes dominated by diatoms with low N:P ratios. Large-scale patterns of plankton diversity and the circulation pathways connecting them are thus key factors determining the availability of fixed nitrogen in the ocean.

  19. Nitrogen Assimilation in Escherichia coli: Putting Molecular Data into a Systems Perspective

    Science.gov (United States)

    van Heeswijk, Wally C.; Westerhoff, Hans V.

    2013-01-01

    SUMMARY We present a comprehensive overview of the hierarchical network of intracellular processes revolving around central nitrogen metabolism in Escherichia coli. The hierarchy intertwines transport, metabolism, signaling leading to posttranslational modification, and transcription. The protein components of the network include an ammonium transporter (AmtB), a glutamine transporter (GlnHPQ), two ammonium assimilation pathways (glutamine synthetase [GS]-glutamate synthase [glutamine 2-oxoglutarate amidotransferase {GOGAT}] and glutamate dehydrogenase [GDH]), the two bifunctional enzymes adenylyl transferase/adenylyl-removing enzyme (ATase) and uridylyl transferase/uridylyl-removing enzyme (UTase), the two trimeric signal transduction proteins (GlnB and GlnK), the two-component regulatory system composed of the histidine protein kinase nitrogen regulator II (NRII) and the response nitrogen regulator I (NRI), three global transcriptional regulators called nitrogen assimilation control (Nac) protein, leucine-responsive regulatory protein (Lrp), and cyclic AMP (cAMP) receptor protein (Crp), the glutaminases, and the nitrogen-phosphotransferase system. First, the structural and molecular knowledge on these proteins is reviewed. Thereafter, the activities of the components as they engage together in transport, metabolism, signal transduction, and transcription and their regulation are discussed. Next, old and new molecular data and physiological data are put into a common perspective on integral cellular functioning, especially with the aim of resolving counterintuitive or paradoxical processes featured in nitrogen assimilation. Finally, we articulate what still remains to be discovered and what general lessons can be learned from the vast amounts of data that are available now. PMID:24296575

  20. Transcriptome landscape of Synechococcus elongatus PCC 7942 for nitrogen starvation responses using RNA-seq

    Science.gov (United States)

    Choi, Sun Young; Park, Byeonghyeok; Choi, In-Geol; Sim, Sang Jun; Lee, Sun-Mi; Um, Youngsoon; Woo, Han Min

    2016-01-01

    The development of high-throughput technology using RNA-seq has allowed understanding of cellular mechanisms and regulations of bacterial transcription. In addition, transcriptome analysis with RNA-seq has been used to accelerate strain improvement through systems metabolic engineering. Synechococcus elongatus PCC 7942, a photosynthetic bacterium, has remarkable potential for biochemical and biofuel production due to photoautotrophic cell growth and direct CO2 conversion. Here, we performed a transcriptome analysis of S. elongatus PCC 7942 using RNA-seq to understand the changes of cellular metabolism and regulation for nitrogen starvation responses. As a result, differentially expressed genes (DEGs) were identified and functionally categorized. With mapping onto metabolic pathways, we probed transcriptional perturbation and regulation of carbon and nitrogen metabolisms relating to nitrogen starvation responses. Experimental evidence such as chlorophyll a and phycobilisome content and the measurement of CO2 uptake rate validated the transcriptome analysis. The analysis suggests that S. elongatus PCC 7942 reacts to nitrogen starvation by not only rearranging the cellular transport capacity involved in carbon and nitrogen assimilation pathways but also by reducing protein synthesis and photosynthesis activities. PMID:27488818

  1. The solution of nitrogen inversion in amidases.

    Science.gov (United States)

    Syrén, Per-Olof

    2013-07-01

    An important mechanistic aspect of enzyme catalyzed amide bond hydrolysis is the specific orientation of the lone pair of the nitrogen of the scissile amide bond during catalysis. As discussed in the literature during the last decades, stereoelectronic effects cause the single lone pair in the formed tetrahedral intermediate to be situated in a non-productive conformation in the enzyme active site and hence nitrogen inversion or rotation is necessary. By discussing recent mechanistic findings in the literature relevant for the conformation of the lone pair of the reacting amide nitrogen atom, it will be demonstrated that nature has evolved at least two catalytic strategies to cope with the stereoelectronic constraints inherent to amide bond hydrolysis regardless of the fold or catalytic mechanism. One solution to the inversion problem is to stabilize the transition state of inversion by hydrogen bond formation; another is to introduce a concerted proton shuttle mechanism that avoids inversion and delivers a hydrogen to the lone pair. By using molecular modeling it is demonstrated that the H-bond strategy is general and can be expanded to include many amidases/proteases with important metabolic functions, including the proteasome. Some examples of the proton shuttle mechanism will also be mentioned. To complete the picture of efficient enzyme catalyzed amide bond hydrolysis, general interactions in the active site of these catalysts will be discussed. An expanded knowledge of the prerequisites of efficient amide bond hydrolysis beyond the oxyanion hole and the catalytic dyad/triad will be of importance for enzyme and drug design. © 2013 The Author Journal compilation © 2013 FEBS.

  2. Regulation of amino-acid metabolism controls flux to lipid accumulation in Yarrowia lipolytica

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Pomraning, Kyle R.; Baker, Scott E.

    2016-01-01

    accumulation in Y. lipolytica does not involve transcriptional regulation of lipid metabolism but is associated with regulation of amino-acid biosynthesis, resulting in redirection of carbon flux during nitrogen limitation from amino acids to lipids. Lipid accumulation in Y. lipolytica at nitrogen limitation...

  3. The interaction between nutrition and metabolism in West African dwarf goats, infected with trypanosomes

    NARCIS (Netherlands)

    Dam, van J.T.P.

    1996-01-01

    In a series of experiments the interaction between nutrition and energy- and nitrogen metabolism of West African Dwarf goats, infected with trypanosomes was studied. Animals were injected with trypanosomes, and feed intake, energy and nitrogen balance and blood metabolites and hormones were measured

  4. Different nitrogen sources change the transcriptome of welan gum-producing strain Sphingomonas sp. ATCC 31555.

    Science.gov (United States)

    Xu, Xiaopeng; Nie, Zuoming; Zheng, Zhiyong; Zhu, Li; Zhang, Hongtao; Zhan, Xiaobei

    2017-09-01

    To reveal effects of different nitrogen sources on the expressions and functions of genes in Sphingomonas sp. ATCC 31555, it was cultivated in medium containing inorganic nitrogen (IN), organic nitrogen (ON), or inorganic-organic combined nitrogen (CN). Welan gum production and bacterial biomass were determined, and RNA sequencing (RNA-seq) was performed. Differentially expressed genes (DEGs) between the different ATCC 31555 groups were identified, and their functions were analyzed. Welan gum production and bacterial biomass were significantly higher in the ON and CN groups compared with those in the IN group. RNA-seq produced 660 unigenes, among which 488, 731, and 844 DEGs were identified between the IN vs. ON, IN vs. CN, and ON vs. CN groups, respectively. All the DEGs were related significantly to metabolic process and signal transduction. DEGs between the IN vs. CN and ON vs. CN groups were potentially associated with bacterial chemotaxis. Real-time PCR confirmed the expressions of selected DEGs. Organic nitrogen led to higher bacterial biomass and welan gum production than inorganic nitrogen, which might reflect differences in gene expression associated with metabolic process, signal transduction, and bacterial chemotaxis induced by different nitrogen sources.

  5. Nitrogen regulator GlnR controls uptake and utilization of non-phosphotransferase-system carbon sources in actinomycetes.

    Science.gov (United States)

    Liao, Cheng-Heng; Yao, Lili; Xu, Ya; Liu, Wei-Bing; Zhou, Ying; Ye, Bang-Ce

    2015-12-22

    The regulatory mechanisms underlying the uptake and utilization of multiple types of carbohydrates in actinomycetes remain poorly understood. In this study, we show that GlnR (central regulator of nitrogen metabolism) serves as a universal regulator of nitrogen metabolism and plays an important, previously unknown role in controlling the transport of non-phosphotransferase-system (PTS) carbon sources in actinomycetes. It was observed that GlnR can directly interact with the promoters of most (13 of 20) carbohydrate ATP-binding cassette (ABC) transporter loci and can activate the transcription of these genes in response to nitrogen availability in industrial, erythromycin-producing Saccharopolyspora erythraea. Deletion of the glnR gene resulted in severe growth retardation under the culture conditions used, with select ABC-transported carbohydrates (maltose, sorbitol, mannitol, cellobiose, trehalose, or mannose) used as the sole carbon source. Furthermore, we found that GlnR-mediated regulation of carbohydrate transport was highly conserved in actinomycetes. These results demonstrate that GlnR serves a role beyond nitrogen metabolism, mediating critical functions in carbon metabolism and crosstalk of nitrogen- and carbon-metabolism pathways in response to the nutritional states of cells. These findings provide insights into the molecular regulation of transport and metabolism of non-PTS carbohydrates and reveal potential applications for the cofermentation of biomass-derived sugars in the production of biofuels and bio-based chemicals.

  6. Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen?

    Directory of Open Access Journals (Sweden)

    Cara L Fiore

    Full Text Available BACKGROUND: Sponges have long been known to be ecologically important members of the benthic fauna on coral reefs. Recently, it has been shown that sponges are also important contributors to the nitrogen biogeochemistry of coral reefs. The studies that have been done show that most sponges are net sources of dissolved inorganic nitrogen (DIN; NH4 (+ and NO3 (- and that nitrification, mediated by their symbiotic prokaryotes, is the primary process involved in supplying DIN to adjacent reefs. METHODOLOGY/PRINCIPAL FINDINGS: A natural experiment was conducted with the Caribbean sponge Xestospongia muta from three different locations (Florida Keys, USA; Lee Stocking Island, Bahamas and Little Cayman, Cayman Islands. The DIN fluxes of sponges were studied using nutrient analysis, stable isotope ratios, and isotope tracer experiments. Results showed that the fluxes of DIN were variable between locations and that X. muta can be either a source or sink of DIN. Stable isotope values of sponge and symbiotic bacterial fractions indicate that the prokaryotic community is capable of taking up both NH4 (+ and NO3 (- while the differences in δ (15N between the sponge and bacterial fractions from the NH4 (+ tracer experiment suggest that there is translocation of labeled N from the symbiotic bacteria to the host. CONCLUSIONS/SIGNIFICANCE: Nitrogen cycling in X. muta appears to be more complex than previous studies have shown and our results suggest that anaerobic processes such as denitrification or anammox occur in these sponges in addition to aerobic nitrification. Furthermore, the metabolism of this sponge and its prokaryotic symbionts may have a significant impact on the nitrogen biogeochemistry on Caribbean coral reefs by releasing large amounts of DIN, including higher NH4 (+ concentrations that previously reported.

  7. Nitrogen biogeochemistry in the Caribbean sponge, Xestospongia muta: a source or sink of dissolved inorganic nitrogen?

    Science.gov (United States)

    Fiore, Cara L; Baker, David M; Lesser, Michael P

    2013-01-01

    Sponges have long been known to be ecologically important members of the benthic fauna on coral reefs. Recently, it has been shown that sponges are also important contributors to the nitrogen biogeochemistry of coral reefs. The studies that have been done show that most sponges are net sources of dissolved inorganic nitrogen (DIN; NH4 (+) and NO3 (-)) and that nitrification, mediated by their symbiotic prokaryotes, is the primary process involved in supplying DIN to adjacent reefs. A natural experiment was conducted with the Caribbean sponge Xestospongia muta from three different locations (Florida Keys, USA; Lee Stocking Island, Bahamas and Little Cayman, Cayman Islands). The DIN fluxes of sponges were studied using nutrient analysis, stable isotope ratios, and isotope tracer experiments. Results showed that the fluxes of DIN were variable between locations and that X. muta can be either a source or sink of DIN. Stable isotope values of sponge and symbiotic bacterial fractions indicate that the prokaryotic community is capable of taking up both NH4 (+) and NO3 (-) while the differences in δ (15)N between the sponge and bacterial fractions from the NH4 (+) tracer experiment suggest that there is translocation of labeled N from the symbiotic bacteria to the host. Nitrogen cycling in X. muta appears to be more complex than previous studies have shown and our results suggest that anaerobic processes such as denitrification or anammox occur in these sponges in addition to aerobic nitrification. Furthermore, the metabolism of this sponge and its prokaryotic symbionts may have a significant impact on the nitrogen biogeochemistry on Caribbean coral reefs by releasing large amounts of DIN, including higher NH4 (+) concentrations that previously reported.

  8. Eighth international congress on nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  9. Efficiency of nitrogen fertilizers for rice

    OpenAIRE

    Roger, Pierre-Armand; Grant, I.F.; Reddy, P.M.; Watanabe, I.

    1987-01-01

    The photosynthetic biomass that develops in the floodwater of wetland rice fields affects nitrogen dynamics in the ecosystem. This review summarizes available data on the nature, productivity, and composition of the photosynthetic aquatic biomass, and its major activities regarding the nitrogen cycle, i.e., nitrogen fixation by free living blue-green algae and #Azolla$, nitrogen trapping, nitrogen accumulation at the soil surface, its effect on nitrogen losses by ammonia volatilization, nitro...

  10. The role of nitrogen uptake on the competition ability of three vineyard Saccharomyces cerevisiae strains.

    Science.gov (United States)

    Vendramini, Chiara; Beltran, Gemma; Nadai, Chiara; Giacomini, Alessio; Mas, Albert; Corich, Viviana

    2017-10-03

    Three vineyard strains of Saccharomyces cerevisiae, P301.4, P304.4 and P254.12, were assayed in comparison with a commercial industrial strain, QA23. The aim was to understand if nitrogen availability could influence strain competition ability during must fermentation. Pairwise-strain fermentations and co-fermentations with the simultaneous presence of the four strains were performed in synthetic musts at two nitrogen levels: control nitrogen condition (CNC) that assured the suitable assimilable nitrogen amount required by the yeast strains to complete the fermentation and low nitrogen condition (LNC) where nitrogen is present at very low level. Results suggested a strong involvement of nitrogen availability, as the frequency in must of the vineyard strains, respect to QA23, in LNC was always higher than that found in CNC. Moreover, in CNC only strain P304.4 reached the same strain frequency as QA23. P304.4 competition ability increased during the fermentation, indicating better performance when nitrogen availability was dropping down. P301.4 was the only strain sensitive to QA23 killer toxin. In CNC, when it was co-inoculated with the industrial strain QA23, P301.4 was never detected. In LNC, P301.4 after 12h accounted for 10% of the total population. This percentage increased after 48h (20%). Single-strain fermentations were also run in both conditions and the nitrogen metabolism further analyzed. Fermentation kinetics, ammonium and amino-acid consumptions and the expression of genes under nitrogen catabolite repression evidenced that vineyard yeasts, and particularly strain P304.4, had higher nitrogen assimilation rate than the commercial control. In conclusion, the high nitrogen assimilation rate seems to be an additional strategy that allowed vineyard yeasts successful competition during the growth in grape musts. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effect of two doses of urea foliar application on leaves and grape nitrogen composition during two vintages.

    Science.gov (United States)

    Pérez-Álvarez, Eva P; Garde-Cerdán, Teresa; García-Escudero, Enrique; Martínez-Vidaurre, José María

    2017-06-01

    Nitrogen affects grapevine growth and also yeast metabolism, which have a direct influence on fermentation kinetics and the formation of different volatile compounds. Throughout the grapevine cycle, soil nitrogen availability and grape nitrogen composition can vary because of different factors. Nitrogen foliar applications can contribute toward enhancing grapevine nitrogen status and minimize the problem of leaching that traditional nitrogen-soil applications can provoke. The present study aimed to evaluate the influence of urea foliar applications on grapevine nitrogen status and grape amino acid content. Accordingly, two different doses of urea were applied over the leaves of a 'Tempranillo' vineyard. The highest urea doses affected nitrogen content on blade leaf tissues after veraison. Must amino acid profiles were modified by urea application and some of the compounds increased their concentrations. The effect of year on the increase of must total amino acid concentrations was more important than the effect of the doses applied. Urea foliar applications can be an interesting tool for decreasing grapevine nitrogen deficiencies. This method of nitrogen implementation in the vineyard could avoid sluggish fermentation problems during winemaking, enhance must nitrogen composition, and contribute to improving wine quality. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. Nitrogen-efficient and nitrogen-inefficient Indian mustard cultivars show differential protein expression in response to elevated CO2 and low nitrogen

    Directory of Open Access Journals (Sweden)

    Peerjada Yasir Yousof

    2016-07-01

    Full Text Available Carbon (C and nitrogen (N are two essential elements that influence plant growth and development. The C and N metabolic pathways influence each other to affect gene expression, but little is known about which genes are regulated by interaction between C and N or the mechanisms by which the pathways interact. In the present investigation, proteome analysis of N-efficient and N-inefficient Indian mustard, grown under varied combinations of low-N, sufficient-N, ambient [CO2] and elevated [CO2] was carried out to identify proteins and the encoding genes of the interactions between C and N. Two-dimensional gel electrophoresis (2-DE revealed 158 candidate protein spots. Among these, 72 spots were identified by matrix-assisted laser desorption ionization-time of flight/time of flight mass spectrometry (MALDI-TOF/TOF. The identified proteins are related to various molecular processes including photosynthesis, energy metabolism, protein synthesis, transport and degradation, signal transduction, nitrogen metabolism and defense to oxidative, water and heat stresses. Identification of proteins like PII-like protein, cyclophilin, elongation factor-TU, oxygen-evolving enhancer protein and rubisco activase offers a peculiar overview of changes elicited by elevated [CO2], providing clues about how N-efficient cultivar of Indian mustard adapt to low N supply under elevated [CO2] conditions. This study provides new insights and novel information for a better understanding of adaptive responses to elevated [CO2] under N deficiency in Indian mustard.

  13. Systems biology of bacterial nitrogen fixation: High-throughput technology and its integrative description with constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Resendis-Antonio Osbaldo

    2011-07-01

    Full Text Available Abstract Background Bacterial nitrogen fixation is the biological process by which atmospheric nitrogen is uptaken by bacteroids located in plant root nodules and converted into ammonium through the enzymatic activity of nitrogenase. In practice, this biological process serves as a natural form of fertilization and its optimization has significant implications in sustainable agricultural programs. Currently, the advent of high-throughput technology supplies with valuable data that contribute to understanding the metabolic activity during bacterial nitrogen fixation. This undertaking is not trivial, and the development of computational methods useful in accomplishing an integrative, descriptive and predictive framework is a crucial issue to decoding the principles that regulated the metabolic activity of this biological process. Results In this work we present a systems biology description of the metabolic activity in bacterial nitrogen fixation. This was accomplished by an integrative analysis involving high-throughput data and constraint-based modeling to characterize the metabolic activity in Rhizobium etli bacteroids located at the root nodules of Phaseolus vulgaris (bean plant. Proteome and transcriptome technologies led us to identify 415 proteins and 689 up-regulated genes that orchestrate this biological process. Taking into account these data, we: 1 extended the metabolic reconstruction reported for R. etli; 2 simulated the metabolic activity during symbiotic nitrogen fixation; and 3 evaluated the in silico results in terms of bacteria phenotype. Notably, constraint-based modeling simulated nitrogen fixation activity in such a way that 76.83% of the enzymes and 69.48% of the genes were experimentally justified. Finally, to further assess the predictive scope of the computational model, gene deletion analysis was carried out on nine metabolic enzymes. Our model concluded that an altered metabolic activity on these enzymes induced

  14. Nitrogen system for the SSC

    International Nuclear Information System (INIS)

    McAshan, M.; Thirumaleshwar, M.; Abramovich, S.; Ganni, V.

    1992-10-01

    The Superconducting Super Collider consists of two parallel magnet rings, each 87,120 m in circumference, constructed in a tunnel 25 m to 74 m below ground level. They are operated at a controlled low helium temperature in order to maintain the magnet windings in the superconducting state. To obtain this condition, the magnet cryostat is designed with a high-quality insulation obtained by a high vacuum chamber, multilayer insulation, and thermal shields at nominal temperatures of 84 K and 20 K. Thermal radiation and the conduction heat load through the supports are intercepted and absorbed by the 84-K shield. Liquid nitrogen provides the refrigeration for these loads. The 84-K shield is anchored to two 63.5-mm stainless-steel tubes. One of the tubes, the ''liquid line,'' serves as a conduit in the distribution system of liquid nitrogen. The other tube, the ''vapor line,'' is used to collect the nitrogen vapor generated in the cooling process and to supply this vapor to,the helium refrigerators for precooling. The vapor line may also be used as a continuous cooler by injecting controlled amounts of liquid nitrogen. The nitrogen system consists of nitrogen supplies; ten nitrogen dewars for the collider and two for the High Energy Booster located on the ground at the main shaft entrances; liquid and vapor transfer lines through the shaft to connect the surface and the tunnel systems; and transfer lines to bypass warm equipment sections of the collider. The nitrogen system is expected to operate at steady state condition except for cooldown, warmup, and system repair, for which transients are expected. During normal operation and standby modes of the collider, temperature, pressure, and mass flow are expected to be constant in all circuits of the nitrogen system. The conceptual design requirements for various flow schemes and the engineering considerations are presented in this report

  15. Early anaerobic metabolisms

    Science.gov (United States)

    Canfield, Don E; Rosing, Minik T; Bjerrum, Christian

    2006-01-01

    Before the advent of oxygenic photosynthesis, the biosphere was driven by anaerobic metabolisms. We catalogue and quantify the source strengths of the most probable electron donors and electron acceptors that would have been available to fuel early-Earth ecosystems. The most active ecosystems were probably driven by the cycling of H2 and Fe2+ through primary production conducted by anoxygenic phototrophs. Interesting and dynamic ecosystems would have also been driven by the microbial cycling of sulphur and nitrogen species, but their activity levels were probably not so great. Despite the diversity of potential early ecosystems, rates of primary production in the early-Earth anaerobic biosphere were probably well below those rates observed in the marine environment. We shift our attention to the Earth environment at 3.8 Gyr ago, where the earliest marine sediments are preserved. We calculate, consistent with the carbon isotope record and other considerations of the carbon cycle, that marine rates of primary production at this time were probably an order of magnitude (or more) less than today. We conclude that the flux of reduced species to the Earth surface at this time may have been sufficient to drive anaerobic ecosystems of sufficient activity to be consistent with the carbon isotope record. Conversely, an ecosystem based on oxygenic photosynthesis was also possible with complete removal of the oxygen by reaction with reduced species from the mantle. PMID:17008221

  16. Energy, industry and nitrogen: strategies for decreasing reactive nitrogen emissions.

    Science.gov (United States)

    Moomaw, William R

    2002-03-01

    Nitrogen oxides are released during atmospheric combustion of fossil fuels and biomass, and during the production of certain chemicals and products. They can react with natural or man-made volatile organic compounds to produce smog, or else can be further oxidized to produce particulate haze, or acid rain that can eutrophy land and water. The reactive nitrogen that begins in the energy sector thus cascades through the atmosphere, the hydrosphere and soils before being eventually partially denitrifed to the global warming and stratospheric ozone-depleting gas nitrous oxide or molecular nitrogen. This paper will suggest how an economic analysis of the nitrogen cycle can identify the most cost-effective places to intervene. Nitrogen oxides released during fossil-fuel combustion in vehicles, power plants and heating boilers can either be controlled by add-on emission control technology, or can be eliminated by many of the same technical options that lead to carbon dioxide reduction. These integrated strategies also address sustainability, economic development and national security issues. Similarly in industrial production, it is more effective to focus on redesigning industrial processes rather than on nitrogen oxide pollution elimination from the current system. This paper will suggest which strategies might be utilized to address multiple benefits rather than focusing on single pollutants.

  17. Nitrogen assimilation in Citrus based on CitEST data mining

    Directory of Open Access Journals (Sweden)

    Ester Wickert

    2007-01-01

    Full Text Available Assimilation of nitrate and ammonium are vital procedures for plant development and growth. From these primary paths of inorganic nitrogen assimilation, this metabolism integrates diverse paths for biosynthesis of macromolecules, such as amino acids and nucleotides, and the central intermediate metabolism, like carbon metabolism and photorespiration. This paper reports research performed in the CitEST (Citrus Expressed Sequence Tag database for the main genes involved in nitrogen metabolism and those previously described in other organisms. The results show that a complete cluster of genes involved in the assimilation of nitrogen and the metabolisms of glutamine, glutamate, aspartate and asparagine can be found in the CitEST data. The main enzymes found were nitrate reductase (NR, nitrite reductase (NiR, glutamine synthetase (GS, glutamate synthetase (GOGAT, glutamate dehydrogenase (GDH, aspartate aminotransferase (AspAT and asparagine synthetase (AS. The different enzymes involved in this metabolism have been shown to be highly conserved among the Citrus and Poncirus species. This work serves as a guide for future functional analysis of these enzymes in citrus.

  18. Síntese de proteína microbiana e concentrações de uréia em vacas alimentadas com diferentes fontes de proteína Estimation of microbial protein synthesis and urea nitrogen metabolism in lactating dairy cows fed diets supplemented with different protein sources

    Directory of Open Access Journals (Sweden)

    Douglas dos Santos Pina

    2006-08-01

    Full Text Available Foram utilizadas 12 vacas Holandesas puras e mestiças, distribuídas em três quadrados latinos 4 x 4, organizados de acordo com os dias em lactação, com o objetivo de avaliar o efeito de diferentes fontes protéicas sobre a síntese, a eficiência de síntese de proteína microbiana, a concentração de nitrogênio uréico no soro (NUS e no leite (NUL, a concentração de nitrogênio amoniacal e o pH ruminal. Utilizou-se silagem de milho como volumoso, na proporção de 60% da MS total. Os concentrados foram constituídos de diferentes fontes protéicas (FS - farelo de soja; FA38 - farelo de algodão 38%PB; FA28 - farelo de algodão 28%PB e FSU - farelo de soja + 5% de uréia/sulfato de amônia na MS do concentrado. As coletas spot de urina e de sangue foram realizadas no 18º dia do período experimental 4 horas após o fornecimento da alimentação aos animais, no período da manhã. Não foram observadas diferenças entre as dietas para o volume urinário (V, a excreção total de derivados de purinas (PT, a síntese e a eficiência de síntese de PB microbiana, expressa em g de PB/kg de NDT consumido. As concentrações de NUS e NUL também não diferiram entre as dietas. As concentrações de NUS e NUL e a síntese de PB microbiana não foram influenciadas pelas diferentes fontes de proteína dietéticas, inclusive com a adição de uréia (5% MS do concentrado.Twelve Holstein lactating dairy cows were blocked by days in milk and randomly assigned to three replicated 4 x 4 Latin square to evaluate the effect of different protein sources on efficiency of microbial protein synthesis, concentration of serum (NUS and milk (MUN urea nitrogen, and ruminal metabolism. A basal corn silage diet (60% of the total dry matter was fed plus one of the following proteins sources (DM basis: soybean meal (SBM, cottonseed meal with 38% of crude protein (CSM38, cottonseed meal with 28% of crude protein (CSM28, or soybean meal plus 5% of urea

  19. Total Nitrogen in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess nitrogen in surface water can result in eutrophication. TOTALN is reported in kilograms/hectare/year. More information about these resources, including the...

  20. Responses of Nannochloropsis oceanica IMET1 to Long-Term Nitrogen Starvation and Recovery.

    Science.gov (United States)

    Dong, Hong-Po; Williams, Ernest; Wang, Da-zhi; Xie, Zhang-Xian; Hsia, Ru-ching; Jenck, Alizée; Halden, Rolf; Li, Jing; Chen, Feng; Place, Allen R

    2013-06-01

    The Nannochloropsis genus contains oleaginous microalgae that have served as model systems for developing renewable biodiesel. Recent genomic and transcriptomic studies on Nannochloropsis species have provided insights into the regulation of lipid production in response to nitrogen stress. Previous studies have focused on the responses of Nannochloropsis species to short-term nitrogen stress, but the effect of long-term nitrogen deprivation remains largely unknown. In this study, physiological and proteomic approaches were combined to understand the mechanisms by which Nannochloropsis oceanica IMET1 is able to endure long-term nitrate deprivation and its ability to recover homeostasis when nitrogen is amended. Changes of the proteome during chronic nitrogen starvation espoused the physiological changes observed, and there was a general trend toward recycling nitrogen and storage of lipids. This was evidenced by a global down-regulation of protein expression, a retained expression of proteins involved in glycolysis and the synthesis of fatty acids, as well as an up-regulation of enzymes used in nitrogen scavenging and protein turnover. Also, lipid accumulation and autophagy of plastids may play a key role in maintaining cell vitality. Following the addition of nitrogen, there were proteomic changes and metabolic changes observed within 24 h, which resulted in a return of the culture to steady state within 4 d. These results demonstrate the ability of N. oceanica IMET1 to recover from long periods of nitrate deprivation without apparent detriment to the culture and provide proteomic markers for genetic modification.

  1. Nitrogen fixation and molecular oxygen: comparative genomic reconstruction of transcription regulation in Alphaproteobacteria

    Directory of Open Access Journals (Sweden)

    Olga V Tsoy

    2016-08-01

    Full Text Available Biological nitrogen fixation plays a crucial role in the nitrogen cycle. An ability to fix atmospheric nitrogen, reducing it to ammonium, was described for multiple species of Bacteria and Archaea. Being a complex and sensitive process, nitrogen fixation requires a complicated regulatory system, also, on the level of transcription. The transcriptional regulatory network for nitrogen fixation was extensively studied in several representatives of the class Alphaproteobacteria. This regulatory network includes the activator of nitrogen fixation NifA, working in tandem with the alternative sigma-factor RpoN as well as oxygen-responsive regulatory systems, one-component regulators FnrN/FixK and two-component system FixLJ. Here we used a comparative genomics analysis for in silico study of the transcriptional regulatory network in 50 genomes of Alphaproteobacteria. We extended the known regulons and proposed the scenario for the evolution of the nitrogen fixation transcriptional network. The reconstructed network substantially expands the existing knowledge of transcriptional regulation in nitrogen-fixing microorganisms and can be used for genetic experiments, metabolic reconstruction, and evolutionary analysis.

  2. The nitrogen cycle on Mars

    Science.gov (United States)

    Mancinelli, Rocco L.

    1989-01-01

    Nirtogen is an essential element for the evolution of life, because it is found in a variety of biologically important molecules. Therefore, N is an important element to study from a exobiological perspective. In particular, fixed nitrogen is the biologically useful form of nitrogen. Fixed nitrogen is generally defines as NH3, NH4(+), NO(x), or N that is chemically bound to either inorganic or organic molecules, and releasable by hydrolysis to NH3 or NH4(+). On Earth, the vast majority of nitrogen exists as N2 in the atmosphere, and not in the fixes form. On early Mars the same situations probably existed. The partial pressure of N2 on early Mars was thought to be 18 mb, significantly less than that of Earth. Dinitrogen can be fixed abiotically by several mechanisms. These mechanisms include thernal shock from meteoritic infall and lightning, as well as the interaction of light and sand containing TiO2 which produces NH3 that would be rapidly destroyed by photolysis and reaction with OH radicals. These mechanisms could have been operative on primitive Mars.The chemical processes effecting these compounds and possible ways of fixing or burying N in the Martian environment are described. Data gathered in this laboratory suggest that the low abundance of nitrogen along (compared to primitive Earth) may not significantly deter the origin and early evolution of a nitrogen utilizing organisms. However, the conditions on current Mars with respect to nitrogen are quite different, and organisms may not be able to utilize all of the available nitrogen.

  3. [Dynamics of nitrogen-containing compounds in the hemolymph of 2d- and 3d-stage larvae of the reindeer warblefly (Hypodermatidae)].

    Science.gov (United States)

    Borozdina, N I

    1979-01-01

    The content of the total protein, residual and amine nitrogen, urea and ammoniac depends on the physiological state of the warble fly larvae of the reindeer. Metabolism of nitrogen-containing compounds carries out most intensively in the growing organism and during the moulting period. The moulting period is characterized by the fall in the total protein, residual and amine nitrogen and increase of the ammonias and urea.

  4. Metabolic host responses to infection by intracellular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Wolfgang eEisenreich

    2013-07-01

    Full Text Available The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defence answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies.

  5. Target of rapamycin complex 1 and Tap42-associated phosphatases are required for sensing changes in nitrogen conditions in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Li, Jinmei; Yan, Gonghong; Liu, Sichi; Jiang, Tong; Zhong, Mingming; Yuan, Wenjie; Chen, Shaoxian; Zheng, Yin; Jiang, Yong; Jiang, Yu

    2017-12-01

    In yeast target of rapamycin complex 1 (TORC1) and Tap42-associated phosphatases regulate expression of genes involved in nitrogen limitation response and the nitrogen discrimination pathway. However, it remains unclear whether TORC1 and the phosphatases are required for sensing nitrogen conditions. Utilizing temperature sensitive mutants of tor2 and tap42, we examined the role of TORC1 and Tap42 in nuclear entry of Gln3, a key transcription factor in yeast nitrogen metabolism, in response to changes in nitrogen conditions. Our data show that TORC1 is essential for Gln3 nuclear entry upon nitrogen limitation and downshift in nitrogen quality. However, Tap42-associated phosphatases are required only under nitrogen limitation condition. In cells grown in poor nitrogen medium, the nitrogen permease reactivator kinase (Npr1) inhibits TORC1 activity and alters its association with Tap42, rendering Tap42-associated phosphatases unresponsive to nitrogen limitation. These findings demonstrate a direct role for TORC1 and Tap42-associated phosphatases in sensing nitrogen conditions and unveil an Npr1-dependent mechanism that controls TORC1 and the phosphatases in response to changes in nitrogen quality. © 2017 John Wiley & Sons Ltd.

  6. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    Science.gov (United States)

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  7. [Metabolic integration of organisms within symbiotic systems].

    Science.gov (United States)

    Provorov, N A; Dolgikh, E A

    2006-01-01

    Adaptation of organisms to coexisence in symbiotic systems is usually related to significant metabolic changes resulting in the integration of the biochemical pathways of the partners. In the symbioses between plants and nitrogen-fixing organisms, between heterotrophic and autotrophic organisms, as well as between animals and microorganisms providing the consumption of plant biomass, the systems of C- and N-metabolism, controlling the utilization of various sources of nitrogen (N2, organic and inorganic compounds, metabolic waste of the host) and carbon (CO2, plant polymers), of the partners are tightly integrated. Bilateral biochemical links between partners are typical to mutualistic symbioses (wherein biotrophic nutrition predominates, in some cases including necrotrophy of secondary origin). In antagonistic symbioses, unilateral links predominate, though active assimilation of the pathogen's secondary metabolites by the host is also possible. In most mutualistic symbioses, integrated metabolic ties have derived from trophic chains in biocenoses (syntrophic consortia, "predator-prey" systems), but not from the systems where the pathogens consume host metabolites. At the same time, molecular analysis of symbiotic interactions has shown that symbioses considerably differ from biocenoses, where the cycling of nutrients and energy implies no functional integration of the partner's genes.

  8. Nitrogen balance during growth of cauliflower

    NARCIS (Netherlands)

    Everaarts, A.P.

    2000-01-01

    The potential for loss of nitrogen to the environment during growth of cauliflower was investigated. A comparison was made between cauliflower growth and nitrogen uptake without, and with, nitrogen application of the recommended amount (=225 kg ha-1 minus mineral nitrogen in the soil layer 0–60 cm,

  9. Carbohydrate Metabolism Disorders

    Science.gov (United States)

    ... you eat. Food is made up of proteins, carbohydrates, and fats. Chemicals in your digestive system (enzymes) ... metabolic disorder, something goes wrong with this process. Carbohydrate metabolism disorders are a group of metabolic disorders. ...

  10. Imaging cerebral 2-ketoisocaproate metabolism with hyperpolarized (13)C Magnetic Resonance Spectroscopic Imaging

    DEFF Research Database (Denmark)

    Butt, Sadia Asghar; Søgaard, Lise Vejby-Christensen; Magnusson, Peter O.

    2012-01-01

    The branched chain amino acid transaminase (BCAT) has an important role in nitrogen shuttling and glutamate metabolism in the brain. The purpose of this study was to describe the cerebral distribution and metabolism of hyperpolarized 2-keto[1-(13)C]isocaproate (KIC) in the normal rat using magnetic...

  11. Yeast Creates a Niche for Symbiotic Lactic Acid Bacteria through Nitrogen Overflow.

    Science.gov (United States)

    Ponomarova, Olga; Gabrielli, Natalia; Sévin, Daniel C; Mülleder, Michael; Zirngibl, Katharina; Bulyha, Katsiaryna; Andrejev, Sergej; Kafkia, Eleni; Typas, Athanasios; Sauer, Uwe; Ralser, Markus; Patil, Kiran Raosaheb

    2017-10-25

    Many microorganisms live in communities and depend on metabolites secreted by fellow community members for survival. Yet our knowledge of interspecies metabolic dependencies is limited to few communities with small number of exchanged metabolites, and even less is known about cellular regulation facilitating metabolic exchange. Here we show how yeast enables growth of lactic acid bacteria through endogenous, multi-component, cross-feeding in a readily established community. In nitrogen-rich environments, Saccharomyces cerevisiae adjusts its metabolism by secreting a pool of metabolites, especially amino acids, and thereby enables survival of Lactobacillus plantarum and Lactococcus lactis. Quantity of the available nitrogen sources and the status of nitrogen catabolite repression pathways jointly modulate this niche creation. We demonstrate how nitrogen overflow by yeast benefits L. plantarum in grape juice, and contributes to emergence of mutualism with L. lactis in a medium with lactose. Our results illustrate how metabolic decisions of an individual species can benefit others. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Ultilization of nitrogen from feed protein and NPN for milk protein synthesis in the ewe

    International Nuclear Information System (INIS)

    Ulbrich, M.; Boldt, E.; Geissler, C.

    1989-01-01

    Two lactating Merino ewes with a rumen fistula were housed in metabolic boxes for N balance studies and fed a diet composed of oats, sugar beet pulp and hay. After adaptation on dietary ammonium sulfate suplementation the ewes received 21 g 15 N-ammonium sulfate daily lasting for 10 days. Uptake and utilization of nitrogen especially for protein syntheses were determined. (author)

  13. Nitrile Metabolizing Enzymes in Biocatalysis and Biotransformation.

    Science.gov (United States)

    Bhalla, Tek Chand; Kumar, Vijay; Kumar, Virender; Thakur, Neerja; Savitri

    2018-01-30

    Nitrile metabolizing enzymes, i.e., aldoxime dehydratase, hydroxynitrile lyase, nitrilase, nitrile hydratase, and amidase, are the key catalysts in carbon nitrogen triple bond anabolism and catabolism. Over the past several years, these enzymes have drawn considerable attention as prominent biocatalysts in academia and industries because of their wide applications. Research on various aspects of these biocatalysts, i.e., sources, screening, function, purification, molecular cloning, structure, and mechanisms, has been conducted, and bioprocesses at various scales have been designed for the synthesis of myriads of useful compounds. This review is focused on the potential of nitrile metabolizing enzymes in the production of commercially important fine chemicals such as nitriles, carboxylic acids, and amides. A number of opportunities and challenges of nitrile metabolizing enzymes in bioprocess development for the production of bulk and fine chemicals are discussed.

  14. Role of carbohydrate metabolism in grass tetany

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.K.; Madsen, F.C.; Lentz, D.E.; Hansard, S.L.

    1977-01-01

    Clinical hypomagnesemia is confined primarily to beef cattle in the United States but also occurs in dairy cattle in other countries, probably due to different management practices. During periods when grass tetany is likely, early vegetative temperate zone grasses are usually low in total readily available carbohydrates and magnesium but high in potassium and nitrogen. The tetany syndrome may include hypoglycemia and ketosis, suggesting an imbalance in intermediary energy metabolism. Many enzyme systems critical to cellular metabolism, including those which hydrolyze and transfer phosphate groups, are activated by Mg. Thus, by inference, Mg is required for normal glucose utilization, fat, protein, nucleic acid and coenzyme synthesis, muscle contraction, methyl group transfer, and sulfate, acetate, and formate activation. Numerous clinical and experimental studies suggest an intimate relationship between metabolism of Mg and that of carbohydrate, glucagon, and insulin. The objective is to review this literature and suggest ways in which these relationships might contribute to a chain of events leading to grass tetany.

  15. Nitrogen cycling in Hot Spring Sediments and Biofilms (Invited)

    Science.gov (United States)

    Meyer-Dombard, D. R.; Burton, M. S.; Havig, J. R.; Shock, E.

    2010-12-01

    capacity for nitrogen fixation as a function of changing community structure become apparent. Our results provide insight into shifts in genomic and transcriptomic function in the context of niches within hot spring environments, and the effect of availability of fixed nitrogen on the growth habit of microbial communities in situ in these ecosystems. [1] Havig et al., 2010. Merging isotopes and community genomics in a siliceous sinter-depositing hot spring. Journal of Geophysical Research-Biogeosciences (in press). [2] Raymond et al., 2008. EOS Trans AGU. Abstract B14A-03. [3] Hall et al., 2008. Molecular characterization of the diversity and distribution of a thermal spring microbial community using rRNA and metabolic genes. AEM 74:4910-4922. [4] Steunou et al., 2006. In situ analysis of nitrogen fixation and metabolic switching in unicellular thermophilic Cyanobacteria inhabiting hot spring microbial mats. PNAS 103:2398-2403. [5] Boyd et al., 2009. CO2 uptake and fixation by a thermoacidophilic microbial community attached to precipitated sulfur in a geothermal spring. AEM 75:4289-4296.

  16. Nitrogen nutrition effects on development, growth and nitrogen accumulation of vegetables

    NARCIS (Netherlands)

    Biemond, H.

    1995-01-01

    In order to be able to match nitrogen supply and nitrogen requirement of vegetable crops, insight is necessary in the responses to nitrogen of important processes of growth and development. This study focused on effects of amount of nitrogen applied and fractionation of nitrogen supply on

  17. The Effect of Percentage of Nitrogen in Plasma Gas on Nitrogen ...

    African Journals Online (AJOL)

    Increase in nitrogen percent in the plasma gas results in increased content of dissociated nitrogen and molecular nitrogen possessing excess vibrational energy and therefore the increased solution of nitrogen in the liquid iron. It would appear that above 35% nitrogen in the plasma gas, frequency of collisions of species in ...

  18. Structural and metabolic responses of Ceratophyllum demersum to ...

    African Journals Online (AJOL)

    Eutrophication in water bodies affects the growth of aquatic plants. In this study, we conducted static experiments to better understand the structural and metabolic responses of Ceratophyllum demersum under eutrophication conditions. The anatomical structure, nitrogen (N) and phosphorous (P) levels in tissue, ...

  19. Sulfur containing air pollutants and their effects on plant metabolism

    NARCIS (Netherlands)

    De Kok, L.J.; Maas, F.M.; Stulen, I.; Kuiper, P.J.C.; Mathy, P.

    1988-01-01

    H2S and SO2 affected plant yield at relative low levels without causing visible injury. In general H2S was more toxic than SO2. Short-term exposure (24 to 48 h) of plants to the pollutants affected sulfur, nitrogen and energy metabolism. Both exposure of plants to H2S and SO2 resulted in an

  20. [Assimilation of biological nitrogen by European beaver].

    Science.gov (United States)

    Vecherskiĭ, M V; Naumova, E I; Kostina, N V; Umarov, M M

    2009-01-01

    Nitrogenase activity, the abundance of diazotrophic bacteria, the structure and functional characteristics of the complex of microorganisms, and the content of nitrogen and carbon were determined in the contents of the gastrointestinal tract of the European beaver. A high nitrogen-fixing activity in the large intestine correlated with an increase in nitrogen content in the chyme upon its transfer over the gastrointestinal tract. It is assumed that microbial nitrogen fixation plays a major role in nitrogen nutrition of the European beaver.

  1. Redox stratified biofilms to support completely autotrophic nitrogen removal: Principles and results

    DEFF Research Database (Denmark)

    Pellicer i Nàcher, Carles; Smets, Barth F.

    liquid. If operated properly, MABRs yield compact and homogeneous redox-stratified biofilms capable of hosting side-by-side aerobic and anaerobic microbial communities. We have recently demonstrated that completely autotrophic nitrogen removal is feasible in MABRs at nitrogen removal rates as high as 5...... bacteria in compact reaction zones about 100 m thick separated by an intermediate zone with low or null metabolic activity. Both identified microbial communities showed a very low diversity and were dominated by halophilic and halotolerant Nitrosomonas sp. and Candidatus Brocadia anammoxidans....... The continuous and sustained inoculation of metabolically active anaerobic oxidizing bacteria from a biofilm reactor placed in the recirculation line of our MABRs showed to shorten considerably the onset of autotrophic nitrogen removal. However, the main hurdle keeping MABRs from attaining high removal...

  2. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling

    International Nuclear Information System (INIS)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R.; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  3. Microalgal Metabolic Network Model Refinement through High Throughput Functional Metabolic Profiling

    Directory of Open Access Journals (Sweden)

    Amphun eChaiboonchoe

    2014-12-01

    Full Text Available Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The Phenotype Microarray (PM technology (Biolog, Hayward, CA, USA provides an efficient, high throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi but it has not been reported for the phenotyping of microalgae. Here we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of D-amino acids, L-dipeptides, and L-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  4. Microalgal Metabolic Network Model Refinement through High-Throughput Functional Metabolic Profiling.

    Science.gov (United States)

    Chaiboonchoe, Amphun; Dohai, Bushra Saeed; Cai, Hong; Nelson, David R; Jijakli, Kenan; Salehi-Ashtiani, Kourosh

    2014-01-01

    Metabolic modeling provides the means to define metabolic processes at a systems level; however, genome-scale metabolic models often remain incomplete in their description of metabolic networks and may include reactions that are experimentally unverified. This shortcoming is exacerbated in reconstructed models of newly isolated algal species, as there may be little to no biochemical evidence available for the metabolism of such isolates. The phenotype microarray (PM) technology (Biolog, Hayward, CA, USA) provides an efficient, high-throughput method to functionally define cellular metabolic activities in response to a large array of entry metabolites. The platform can experimentally verify many of the unverified reactions in a network model as well as identify missing or new reactions in the reconstructed metabolic model. The PM technology has been used for metabolic phenotyping of non-photosynthetic bacteria and fungi, but it has not been reported for the phenotyping of microalgae. Here, we introduce the use of PM assays in a systematic way to the study of microalgae, applying it specifically to the green microalgal model species Chlamydomonas reinhardtii. The results obtained in this study validate a number of existing annotated metabolic reactions and identify a number of novel and unexpected metabolites. The obtained information was used to expand and refine the existing COBRA-based C. reinhardtii metabolic network model iRC1080. Over 254 reactions were added to the network, and the effects of these additions on flux distribution within the network are described. The novel reactions include the support of metabolism by a number of d-amino acids, l-dipeptides, and l-tripeptides as nitrogen sources, as well as support of cellular respiration by cysteamine-S-phosphate as a phosphorus source. The protocol developed here can be used as a foundation to functionally profile other microalgae such as known microalgae mutants and novel isolates.

  5. Nitrogen Compounds in Radiation Chemistry

    International Nuclear Information System (INIS)

    Sims, H.E.; Dey, G.R.; Vaudey, C.E.; Peaucelle, C.; Boucher, J.L.; Toulhoat, N.; Bererd, N.; Koppenol, W.H.; Janata, E.; Dauvois, V.; Durand, D.; Legand, S.; Roujou, J.L.; Doizi, D.; Dannoux, A.; Lamouroux, C.

    2009-01-01

    Water radiolysis in presence of N 2 is probably the topic the most controversy in the field of water radiolysis. It still exists a strong discrepancy between the different reports of ammonia formation by water radiolysis in presence of N 2 and moreover in absence of oxygen there is no agreement on the formation or not of nitrogen oxide like NO 2 - and NO 3 -. These discrepancies come from multiple sources: - the complexity of the reaction mechanisms where nitrogen is involved - the experimental difficulties - and, the irradiation conditions. The aim of the workshop is to capitalize the knowledge needed to go further in simulations and understanding the problems caused (or not) by the presence of nitrogen / water in the environment of radioactive materials. Implications are evident in terms of corrosion, understanding of biological systems and atmospheric chemistry under radiation. Topics covered include experimental and theoretical approaches, application and fundamental researches: - Nitrate and Ammonia in radiation chemistry in nuclear cycle; - NOx in biological systems and atmospheric chemistry; - Formation of Nitrogen compounds in Nuclear installations; - Nitrogen in future power plant projects (Gen4, ITER...) and large particle accelerators. This document gathers the transparencies available for 7 of the presentations given at this workshop. These are: - H.E SIMS: 'Radiation Chemistry of Nitrogen Compounds in Nuclear Power Plant'; - G.R. DEY: 'Nitrogen Compounds Formation in the Radiolysis of Aqueous Solutions'; - C.E. VAUDEY et al.: 'Radiolytic corrosion of nuclear graphite studied with the dedicated gas irradiation cell of IPNL'; - J.L. BOUCHER: 'Roles and biosynthesis of NO in eukaryotes and prokaryotes'; - W.H. KOPPENOL: 'Chemistry of NOx'; - E. JANATA: 'Yield of OH in N 2 O saturated aqueous solution'; - V. DAUVOIS: 'Analytical strategy for the study of radiolysis gases'

  6. Nitrogen accumulation and residual effects of nitrogen catch crops

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1991-01-01

    sativum L.), was studied in three field experiments. The effect of catch crop incorporation in the soil on the yield and N accumulation in succeeding crops was also investigated. An aftersown catch crop should be used for pea, since undersown ryegrasses reduced the pea yield. Undersown perennial ryegrass......The nitrogen accumulation in Italian ryegrass (Lolium multiflorum Lam.), perennial ryegrass (Lolium perenne L.), white mustard (Sinapis alba L.) and tansy phacelia (Phacelia tanacetifolia L.), under- or aftersown as nitrogen catch crops to spring barley (Hordeum vulgare L.) and field pea (Pisum...... or an aftersown catch crop can be used for spring barley. The catch crops had accumulated up to 70 kg N ha-1 at the time of ploughdown in early December. The nitrogen accumulation in catch crops following pea was significantly higher than in the catch crop following barley supplied with 100 kg N ha-1. Barley...

  7. Redirection of metabolism for hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Harwood, Caroline S.

    2011-11-28

    This project is to develop and apply techniques in metabolic engineering to improve the biocatalytic potential of the bacterium Rhodopseudomonas palustris for nitrogenase-catalyzed hydrogen gas production. R. palustris, is an ideal platform to develop as a biocatalyst for hydrogen gas production because it is an extremely versatile microbe that produces copious amounts of hydrogen by drawing on abundant natural resources of sunlight and biomass. Anoxygenic photosynthetic bacteria, such as R. palustris, generate hydrogen and ammonia during a process known as biological nitrogen fixation. This reaction is catalyzed by the enzyme nitrogenase and normally consumes nitrogen gas, ATP and electrons. The applied use of nitrogenase for hydrogen production is attractive because hydrogen is an obligatory product of this enzyme and is formed as the only product when nitrogen gas is not supplied. Our challenge is to understand the systems biology of R. palustris sufficiently well to be able to engineer cells to produce hydrogen continuously, as fast as possible and with as high a conversion efficiency as possible of light and electron donating substrates. For many experiments we started with a strain of R. palustris that produces hydrogen constitutively under all growth conditions. We then identified metabolic pathways and enzymes important for removal of electrons from electron-donating organic compounds and for their delivery to nitrogenase in whole R. palustris cells. For this we developed and applied improved techniques in 13C metabolic flux analysis. We identified reactions that are important for generating electrons for nitrogenase and that are yield-limiting for hydrogen production. We then increased hydrogen production by blocking alternative electron-utilizing metabolic pathways by mutagenesis. In addition we found that use of non-growing cells as biocatalysts for hydrogen gas production is an attractive option, because cells divert all resources away from growth and

  8. Additional nitrogen fertilization at heading time of rice down-regulates cellulose synthesis in seed endosperm.

    Directory of Open Access Journals (Sweden)

    Keiko Midorikawa

    Full Text Available The balance between carbon and nitrogen is a key determinant of seed storage components, and thus, is of great importance to rice and other seed-based food crops. To clarify the influence of the rhizosphere carbon/nitrogen balance during the maturation stage of several seed components, transcriptome analysis was performed on the seeds from rice plants that were provided additional nitrogen fertilization at heading time. As a result, it was assessed that genes associated with molecular processes such as photosynthesis, trehalose metabolism, carbon fixation, amino acid metabolism, and cell wall metabolism were differentially expressed. Moreover, cellulose and sucrose synthases, which are involved in cellulose synthesis, were down-regulated. Therefore, we compared cellulose content of mature seeds that were treated with additional nitrogen fertilization with those from control plants using calcofluor staining. In these experiments, cellulose content in endosperm from plants receiving additional nitrogen fertilization was less than that in control endosperm. Other starch synthesis-related genes such as starch synthase 1, starch phosphorylase 2, and branching enzyme 3 were also down-regulated, whereas some α-amylase and β-amylase genes were up-regulated. On the other hand, mRNA expression of amino acid biosynthesis-related molecules was up-regulated. Moreover, additional nitrogen fertilization caused accumulation of storage proteins and up-regulated Cys-poor prolamin mRNA expression. These data suggest that additional nitrogen fertilization at heading time changes the expression of some storage substance-related genes and reduces cellulose levels in endosperm.

  9. Additional nitrogen fertilization at heading time of rice down-regulates cellulose synthesis in seed endosperm.

    Science.gov (United States)

    Midorikawa, Keiko; Kuroda, Masaharu; Terauchi, Kaede; Hoshi, Masako; Ikenaga, Sachiko; Ishimaru, Yoshiro; Abe, Keiko; Asakura, Tomiko

    2014-01-01

    The balance between carbon and nitrogen is a key determinant of seed storage components, and thus, is of great importance to rice and other seed-based food crops. To clarify the influence of the rhizosphere carbon/nitrogen balance during the maturation stage of several seed components, transcriptome analysis was performed on the seeds from rice plants that were provided additional nitrogen fertilization at heading time. As a result, it was assessed that genes associated with molecular processes such as photosynthesis, trehalose metabolism, carbon fixation, amino acid metabolism, and cell wall metabolism were differentially expressed. Moreover, cellulose and sucrose synthases, which are involved in cellulose synthesis, were down-regulated. Therefore, we compared cellulose content of mature seeds that were treated with additional nitrogen fertilization with those from control plants using calcofluor staining. In these experiments, cellulose content in endosperm from plants receiving additional nitrogen fertilization was less than that in control endosperm. Other starch synthesis-related genes such as starch synthase 1, starch phosphorylase 2, and branching enzyme 3 were also down-regulated, whereas some α-amylase and β-amylase genes were up-regulated. On the other hand, mRNA expression of amino acid biosynthesis-related molecules was up-regulated. Moreover, additional nitrogen fertilization caused accumulation of storage proteins and up-regulated Cys-poor prolamin mRNA expression. These data suggest that additional nitrogen fertilization at heading time changes the expression of some storage substance-related genes and reduces cellulose levels in endosperm.

  10. Profiling metabolic networks to study cancer metabolism.

    Science.gov (United States)

    Hiller, Karsten; Metallo, Christian M

    2013-02-01

    Cancer is a disease of unregulated cell growth and survival, and tumors reprogram biochemical pathways to aid these processes. New capabilities in the computational and bioanalytical characterization of metabolism have now emerged, facilitating the identification of unique metabolic dependencies that arise in specific cancers. By understanding the metabolic phenotype of cancers as a function of their oncogenic profiles, metabolic engineering may be applied to design synthetically lethal therapies for some tumors. This process begins with accurate measurement of metabolic fluxes. Here we review advanced methods of quantifying pathway activity and highlight specific examples where these approaches have uncovered potential opportunities for therapeutic intervention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Increased bioplastic production with an RNA polymerase sigma factor SigE during nitrogen starvation in Synechocystis sp. PCC 6803.

    Science.gov (United States)

    Osanai, Takashi; Numata, Keiji; Oikawa, Akira; Kuwahara, Ayuko; Iijima, Hiroko; Doi, Yoshiharu; Tanaka, Kan; Saito, Kazuki; Hirai, Masami Yokota

    2013-12-01

    Because cyanobacteria directly harvest CO2 and light energy, their carbon metabolism is important for both basic and applied sciences. Here, we show that overexpression of the sigma factor sigE in Synechocystis sp. PCC 6803 widely changes sugar catabolism and increases production of the biodegradable polyester polyhydroxybutyrate (PHB) during nitrogen starvation. sigE overexpression elevates the levels of proteins implicated in glycogen catabolism, the oxidative pentose phosphate pathway, and polyhydroxyalkanoate biosynthesis. PHB accumulation is enhanced by sigE overexpression under nitrogen-limited conditions, yet the molecular weights of PHBs synthesized by the parental glucose-tolerant and sigE overexpression strain are similar. Although gene expression induced by nitrogen starvation is changed and other metabolites (such as GDP-mannose and citrate) accumulate under sigE overexpression, genetic engineering of this sigma factor altered the metabolic pathway from glycogen to PHB during nitrogen starvation.

  12. Nitrogen assimilation by nodulate plants of Phaseolus vulgaris l. and Vigna unguiculata (l. ) walp

    Energy Technology Data Exchange (ETDEWEB)

    Neves, M.C.P.; Fernandes, M.S.; Sa, M.F.M. (Universidade Federal Rural do Rio de Janeiro (Brazil). Dept. de Solos)

    1982-05-01

    Under field conditions, the processes of nitrogen assimilation via nitrogenase and nitrate-reductase, the transport and the accumulation of nitrogen in nodulated plants of Phaseolus vulgaris cv. Rio Tibagi and Vigna unguiculata cv. Vita 34 were compared and contrasted. V. unguiculata showed better nodulation than P. vulgaris and consequently had higher rates of nitrogenase activity. The small nodulation of P. vulgaris resulted in greater dependence on soil mineral nitrogen as indicated by the higher rates of nitrate-reductase acitivty compared with V. unguiculata, especially during reproductive stage of growth. The superiority of V. unguiculata in terms of assimilation and remobilization of stored nitrogen resulted in a seed yield 28% greater than that of P. vulgaris. P. vulgaris showed a negative correlation between the nitrate-reductase activity and the ureide content of the sap indicating that the metabolic pathways leading to ureide production operates alternatively to nitrate assimilation.

  13. Nitrogen assimilation by nodulate plants of Phaseolus vulgaris l. and Vigna unguiculata (l.) walp

    International Nuclear Information System (INIS)

    Neves, M.C.P.; Fernandes, M.S.; Sa, M.F.M.

    1982-01-01

    Under field conditions, the processes of nitrogen assimilation via nitrogenase and nitrate-reductase, the transport and the accumulation of nitrogen in nodulated plants of Phaseolus vulgaris cv. Rio Tibagi and Vigna unguiculata cv. Vita 34 were compared and contrasted. V. unguiculata showed better nodulation than P. vulgaris and consequently had higher rates of nitrogenase activity. The small nodulation of P. vulgaris resulted in greater dependence on soil mineral nitrogen as indicated by the higher rates of nitrate-reductase acitivty compared with V. unguiculata, especially during reproductive stage of growth. The superiority of V. unguiculata in terms of assimilation and remobilization of stored nitrogen resulted in a seed yield 28% greater than that of P. vulgaris. P. vulgaris showed a negative correlation between the nitrate-reductase activity and the ureide content of the sap indicating that the metabolic pathways leading to ureide production operates alternatively to nitrate assimilation. (Author) [pt

  14. Metabolism Disrupting Chemicals and Metabolic Disorders

    Science.gov (United States)

    Heindel, Jerrold J.; Blumberg, Bruce; Cave, Mathew; Machtinger, Ronit; Mantovani, Alberto; Mendez, Michelle A.; Nadal, Angel; Palanza, Paola; Panzica, Giancarlo; Sargis, Robert; Vandenberg, Laura N.; Saal, Frederick vom

    2016-01-01

    The recent epidemics of metabolic diseases, obesity, type 2 diabetes(T2D), liver lipid disorders and metabolic syndrome have largely been attributed to genetic background and changes in diet, exercise and aging. However, there is now considerable evidence that other environmental factors may contribute to the rapid increase in the incidence of these metabolic diseases. This review will examine changes to the incidence of obesity, T2D and non-alcoholic fatty liver disease (NAFLD), the contribution of genetics to these disorders and describe the role of the endocrine system in these metabolic disorders. It will then specifically focus on the role of endocrine disrupting chemicals (EDCs) in the etiology of obesity, T2D and NAFLD while finally integrating the information on EDCs on multiple metabolic disorders that could lead to metabolic syndrome. We will specifically examine evidence linking EDC exposures during critical periods of development with metabolic diseases that manifest later in life and across generations. PMID:27760374

  15. Terrestrial nitrogen cycles: Some unanswered questions

    Science.gov (United States)

    Vitousek, P.

    1984-01-01

    Nitrogen is generally considered to be the element which most often limits the growth of plants in both natural and agricultural ecosystems. It regulates plant growth because photosynthetic rates are strongly dependent on the concentration of nitrogen in leaves, and because relatively large mounts of protein are required for cell division and growth. Yet nitrogen is abundant in the biosphere - the well-mixed pool in the atmosphere is considered inexhaustible compared to biotic demand, and the amount of already fixed organic nitrogen in soils far exceeds annual plant uptake in terrestrial ecosystems. In regions where natural vegetation is not nitrogen limited, continuous cultivation induces nitrogen deficiency. Nitrogen loss from cultivated lands is more rapid than that of other elements, and nitrogen fertilization is generally required to maintain crop yield under any continuous system. The pervasiveness of nitrogen deficiency in many natural and most managed sites is discussed.

  16. Insects as a Nitrogen Source for Plants

    Directory of Open Access Journals (Sweden)

    Michael J. Bidochka

    2013-07-01

    Full Text Available Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates.

  17. Insects as a Nitrogen Source for Plants

    Science.gov (United States)

    Behie, Scott W.; Bidochka, Michael J.

    2013-01-01

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427

  18. Metabolic and Transcriptional Reprogramming in Developing Soybean (Glycine max Embryos

    Directory of Open Access Journals (Sweden)

    Ruth Grene

    2013-05-01

    Full Text Available Soybean (Glycine max seeds are an important source of seed storage compounds, including protein, oil, and sugar used for food, feed, chemical, and biofuel production. We assessed detailed temporal transcriptional and metabolic changes in developing soybean embryos to gain a systems biology view of developmental and metabolic changes and to identify potential targets for metabolic engineering. Two major developmental and metabolic transitions were captured enabling identification of potential metabolic engineering targets specific to seed filling and to desiccation. The first transition involved a switch between different types of metabolism in dividing and elongating cells. The second transition involved the onset of maturation and desiccation tolerance during seed filling and a switch from photoheterotrophic to heterotrophic metabolism. Clustering analyses of metabolite and transcript data revealed clusters of functionally related metabolites and transcripts active in these different developmental and metabolic programs. The gene clusters provide a resource to generate predictions about the associations and interactions of unknown regulators with their targets based on “guilt-by-association” relationships. The inferred regulators also represent potential targets for future metabolic engineering of relevant pathways and steps in central carbon and nitrogen metabolism in soybean embryos and drought and desiccation tolerance in plants.

  19. Large centric diatoms allocate more cellular nitrogen to photosynthesis to counter slower RUBISCO turnover rates

    Directory of Open Access Journals (Sweden)

    Yaping eWu

    2014-12-01

    Full Text Available Diatoms contribute ~40% of primary production in the modern ocean and encompass the largest cell size range of any phytoplankton group. Diatom cell size influences their nutrient uptake, photosynthetic light capture, carbon export efficiency, and growth responses to increasing pCO2. We therefore examined nitrogen resource allocations to the key protein complexes mediating photosynthesis across six marine centric diatoms, spanning 5 orders of magnitude in cell volume, under past, current and predicted future pCO2 levels, in balanced growth under nitrogen repletion. Membrane bound photosynthetic protein concentrations declined with cell volume in parallel with cellular concentrations of total protein, total nitrogen and chlorophyll. Larger diatom species, however, allocated a greater fraction (by 3.5 fold of their total cellular nitrogen to the soluble RUBISCO carbon fixation complex than did smaller species. Carbon assimilation per unit of RUBISCO large subunit (C RbcL-1 s-1 decreased with cell volume, from ~8 to ~2 C RbcL-1 s-1 from the smallest to the largest cells. Whilst a higher allocation of cellular nitrogen to RUBISCO in larger cells increases the burden upon their nitrogen metabolism, the higher RUBISCO allocation buffers their lower achieved RUBISCO turnover rate to enable larger diatoms to maintain carbon assimilation rates per total protein comparable to small diatoms. Individual species responded to increased pCO2, but cell size effects outweigh pCO2 responses across the diatom species size range examined. In large diatoms a higher nitrogen cost for RUBISCO exacerbates the higher nitrogen requirements associated with light absorption, so the metabolic cost to maintain photosynthesis is a cell size-dependent trait.

  20. Soil biochemical properties of grassland ecosystems under anthropogenic emission of nitrogen compounds

    Science.gov (United States)

    Kudrevatykh, Irina; Ivashchenko, Kristina; Ananyeva, Nadezhda

    2016-04-01

    Inflow of pollutants in terrestrial ecosystems nowadays increases dramatically, that might be led to disturbance of natural biogeochemical cycles and landscapes structure. Production of nitrogen fertilizers is one of the air pollution sources, namely by nitrogen compounds (NH4+, NO3-, NO2-). Air pollution by nitrogen compounds of terrestrial ecosystems might be affected on soil biochemical properties, which results increasing mineral nitrogen content in soil, changing soil P/N and Al/Ca ratios, and, finally, the deterioration of soil microbial community functioning. The research is focused on the assessment of anthropogenic emission of nitrogen compounds on soil properties of grassland ecosystems in European Russia. Soil samples (Voronic Chernozem Pachic, upper 10 cm mineral layer, totally 10) were taken from grassland ecosystem: near (5-10 m) nitrogen fertilizer factory (NFF), and far from it (20-30 km, served as a control) in Tula region. In soil samples the NH4+ and NO3- (Kudeyarov's photocolorimetric method), P, Ca, Al (X-ray fluorescence method) contents were measured. Soil microbial biomass carbon (Cmic) was analyzed by substrate-induced respiration method. Soil microbial respiration (MR) was assessed by CO2 rate production. Soil microbial metabolic quotient (qCO2) was calculated as MR/Cmic ratio. Near NFF the soil ammonium and nitrate nitrogen contents were a strongly varied, variation coefficient (CV) was 42 and 86This study was supported by Russian Foundation of Basic Research Grant No. 14-04-00098, 15-44-03220, 15-04-00915.

  1. Robust biological nitrogen fixation in a model grass-bacterial association.

    Science.gov (United States)

    Pankievicz, Vânia C S; do Amaral, Fernanda P; Santos, Karina F D N; Agtuca, Beverly; Xu, Youwen; Schueller, Michael J; Arisi, Ana Carolina M; Steffens, Maria B R; de Souza, Emanuel M; Pedrosa, Fábio O; Stacey, Gary; Ferrieri, Richard A

    2015-03-01

    Nitrogen-fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen-13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen-limiting conditions when inoculated with an ammonium-excreting strain of Azospirillum brasilense. (11)C-labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen-starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen-sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  2. Diazotroph diversity and nitrogen fixation in the coral Stylophora pistillata from the Great Barrier Reef.

    Science.gov (United States)

    Lesser, Michael P; Morrow, Kathleen M; Pankey, Sabrina M; Noonan, Sam H C

    2018-03-01

    Diazotrophs, both Bacteria and Archaea, capable of fixing nitrogen (N 2 ), are present in the tissues and mucous, of corals and can supplement the coral holobiont nitrogen budget with fixed nitrogen (N) in the form of ammonia (NH 3 ). Stylophora pistillata from Heron Island on the Great Barrier Reef collected at 5 and 15 m, and experimentally manipulated in the laboratory, showed that the rates of net photosynthesis, steady state quantum yields of photosystem II (PSII) fluorescence (∆F v /F m ') and calcification varied based on irradiance as expected. Rates of N 2 fixation were, however, invariant across treatments while the amount of fixed N contributing to Symbiodinium spp. N demand is irradiance dependent. Additionally, both the Symbiodinium and diazotrophic communities are significantly different based on depth, and novel Cluster V nifH gene phylotypes, which are not known to fix nitrogen, were recovered. A functional analysis using PICRUSt also showed that shallow corals were enriched in genes involved in nitrogen metabolism, and N 2 fixation specifically. Corals have evolved a number of strategies to derive nitrogen from organic (e.g., heterotrophic feeding) and inorganic sources (e.g., N 2 fixation) to maintain critical pathways such as protein synthesis to succeed ecologically in nitrogen-limited habitats.

  3. Supplementary nitrogen in leeks based on crop nitrogen status

    NARCIS (Netherlands)

    Booij, R.; Meurs, E.J.J.

    2002-01-01

    From a number of basic relationships between several crop ecological components (Booij et al., 1996a) a system was developed for giving supplementary nitrogen application in leeks, that was based on the measurement of light interception. A description of the approach is given and a comparison is

  4. Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation

    Science.gov (United States)

    Bible, Amber N.; Khalsa-Moyers, Gurusahai K.; Mukherjee, Tanmoy; Green, Calvin S.; Mishra, Priyanka; Purcell, Alicia; Aksenova, Anastasia; Hurst, Gregory B.

    2015-01-01

    The ability of bacteria to monitor their metabolism and adjust their behavior accordingly is critical to maintain competitiveness in the environment. The motile microaerophilic bacterium Azospirillum brasilense navigates oxygen gradients by aerotaxis in order to locate low oxygen concentrations that can support metabolism. When cells are exposed to elevated levels of oxygen in their surroundings, motile A. brasilense cells implement an alternative response to aerotaxis and form transient clumps by cell-to-cell interactions. Clumping was suggested to represent a behavior protecting motile cells from transiently elevated levels of aeration. Using the proteomics of wild-type and mutant strains affected in the extent of their clumping abilities, we show that cell-to-cell clumping represents a metabolic scavenging strategy that likely prepares the cells for further metabolic stresses. Analysis of mutants affected in carbon or nitrogen metabolism confirmed this assumption. The metabolic changes experienced as clumping progresses prime cells for flocculation, a morphological and metabolic shift of cells triggered under elevated-aeration conditions and nitrogen limitation. The analysis of various mutants during clumping and flocculation characterized an ordered set of changes in cell envelope properties accompanying the metabolic changes. These data also identify clumping and early flocculation to be behaviors compatible with the expression of nitrogen fixation genes, despite the elevated-aeration conditions. Cell-to-cell clumping may thus license diazotrophy to microaerophilic A. brasilense cells under elevated oxygen conditions and prime them for long-term survival via flocculation if metabolic stress persists. PMID:26407887

  5. Effects of urban stream burial on nitrogen uptake and ...

    Science.gov (United States)

    Urbanization has resulted in extensive burial and channelization of headwater streams, yet little is known about impacts on stream ecosystem functions critical for reducing downstream nitrogen pollution. To characterize the biogeochemical impact of stream burial, we measured NO3- uptake, using 15N-NO3- isotope tracer releases, and whole stream metabolism, during four seasons in three paired buried and open streams reaches within the Baltimore Ecosystem Study Long-term Ecological Research Network. Stream burial increased NO3- uptake lengths, by a factor of 7.5 (p metabolism were primarily explained by decreased transient storage and light availability in buried streams. We estimate that stream burial increases daily watershed nitrate export by as much as 500% due to decreased in-stream retention and may considerably decrease carbon export via decreased primary production. These results

  6. Nitrogen uptake and assimilation in proliferating embryogenic cultures of Norway spruce-Investigating the specific role of glutamine.

    Directory of Open Access Journals (Sweden)

    Johanna Carlsson

    Full Text Available Somatic embryogenesis is an in vitro system employed for plant propagation and the study of embryo development. Nitrogen is essential for plant growth and development and, hence, the production of healthy embryos during somatic embryogenesis. Glutamine has been shown to increase plant biomass in many in vitro applications, including somatic embryogenesis. However, several aspects of nitrogen nutrition during somatic embryogenesis remain unclear. Therefore, we investigated the uptake and assimilation of nitrogen in Norway spruce pro-embryogenic masses to elucidate some of these aspects. In our study, addition of glutamine had a more positive effect on growth than inorganic nitrogen. The nitrogen uptake appeared to be regulated, with a strong preference for glutamine; 67% of the assimilated nitrogen in the free amino acid pool originated from glutamine-nitrogen. Glutamine addition also relieved the apparently limited metabolism (as evidenced by the low concentration of free amino acids of pro-embryogenic masses grown on inorganic nitrogen only. The unusually high alanine concentration in the presence of glutamine, suggests that alanine biosynthesis was involved in alleviating these constraints. These findings inspire further studies of nitrogen nutrition during the somatic embryogenesis process; identifying the mechanism(s that govern glutamine enhancement of pro-embryogenic masses growth is especially important in this regard.

  7. Foliage nitrogen turnover: differences among nitrogen absorbed at different times by Quercus serrata saplings

    Science.gov (United States)

    Ueda, Miki U.; Mizumachi, Eri; Tokuchi, Naoko

    2011-01-01

    Background and Aims Nitrogen turnover within plants has been intensively studied to better understand nitrogen use strategies. However, differences among the nitrogen absorbed at different times are not completely understood and the fate of nitrogen absorbed during winter is largely uncharacterized. In the present study, nitrogen absorbed at different times of the year (growing season, winter and previous growing season) was traced, and the within-leaf nitrogen turnover of a temperate deciduous oak Quercus serrata was investigated. Methods The contributions of nitrogen absorbed at the three different times to leaf construction, translocation during the growing season, and the leaf-level resorption efficiency during leaf senescence were compared using 15N. Key Results Winter- and previous growing season-absorbed nitrogen significantly contributed to leaf construction, although the contribution was smaller than that of growing season-absorbed nitrogen. On the other hand, the leaf-level resorption efficiency of winter- and previous growing season-absorbed nitrogen was higher than that of growing season-absorbed nitrogen, suggesting that older nitrogen is better retained in leaves than recently absorbed nitrogen. Conclusions The results demonstrate that nitrogen turnover in leaves varies with nitrogen absorption times. These findings are important for understanding plant nitrogen use strategies and nitrogen cycles in forest ecosystems. PMID:21515608

  8. Utilization of nitrogen fixing trees

    Energy Technology Data Exchange (ETDEWEB)

    Brewbaker, J.L.; Beldt, R. van den; MacDicken, K.; Budowski, G.; Kass, D.C.L.; Russo, R.O.; Escalante, G.; Herrera, R.; Aranguren, J.; Arkcoll, D.B.; Doebereinger, J. (cord.)

    1983-01-01

    Six papers from the symposium are noted. Brewbaker, J.L., Beldt, R. van den, MacDicken, K. Fuelwood uses and properties of nitrogen-fixing trees, pp 193-204, (Refs. 15). Includes a list of 35 nitrogen-fixing trees of high fuelwood value. Budowski, G.; Kass, D.C.L.; Russo, R.O. Leguminous trees for shade, pp 205-222, (Refs. 68). Escalante, G., Herrera, R., Aranguren, J.; Nitrogen fixation in shade trees (Erythrina poeppigiana) in cocoa plantations in northern Venezuela, pp 223-230, (Refs. 13). Arkcoll, D.B.; Some leguminous trees providing useful fruits in the North of Brazil, pp 235-239, (Refs. 13). This paper deals with Parkia platycephala, Pentaclethra macroloba, Swartzia sp., Cassia leiandra, Hymenaea courbaril, dipteryz odorata, Inga edulis, I. macrophylla, and I. cinnamonea. Baggio, A.J.; Possibilities of the use of Gliricidia sepium in agroforestry systems in Brazil, pp 241-243; (Refs. 15). Seiffert, N.F.; Biological nitrogen and protein production of Leucaena cultivars grown to supplement the nutrition of ruminants, pp 245-249, (Refs. 14). Leucaena leucocephala cv. Peru, L. campina grande (L. leucocephala), and L. cunningham (L. leucocephalae) were promising for use as browse by beef cattle in central Brazil.

  9. Can mushrooms fix atmospheric nitrogen?

    Indian Academy of Sciences (India)

    Unknown

    culation was maintained as a control. At maximum mycelial colonization by the ... cant increase in nitrogen concentration were observed in the inoculated cultures compared to the controls. The mycelial weight reduction could be .... ing of Belgian Administration for Development Corpora- tion (BADC) during that period were ...

  10. Artificial wetlands performance: nitrogen removal.

    Science.gov (United States)

    Durán-de-Bazúa, Carmen; Guido-Zárate, Alejandro; Huanosta, Thalía; Padrón-López, Rosa Martha; Rodríguez-Monroy, Jesús

    2008-01-01

    Artificial wetlands (AW) are a promising option for wastewater treatment in small communities due to their high performance in nutrients removal and low operation and maintenance costs. Nitrogen can favour the growth of algae in water bodies causing eutrophication when present at high concentrations. Nitrogen can be removed through different mechanisms (e.g. nitrification-denitrification, adsorption and plant uptake). Environmental conditions such as temperature and relative humidity can play an important role in the performance of these systems by promoting the growth of macrophytes such as reeds and cattails (e.g. Phragmites australis, Typha latifolia respectively). In this paper, two AW systems were compared, one located in Mexico City, Mexico at an altitude higher than 2,000 m above the sea level, and the second one located in Villahermosa, Tabasco, Mexico at an a altitude near the sea level (27 m). Both systems comprised five reactors (147-L plastic boxes) filled with volcanic slag and gravel and intermittently fed with synthetic water. The removal nitrogen efficiency found for the system located in Mexico City was higher than that of the Tabasco system (90 and 80% as TKN respectively). The higher temperatures in the Tabasco system did not enhanced the nitrogen removal as expected. Copyright IWA Publishing 2008.

  11. Nitrogen trailer acceptance test report

    International Nuclear Information System (INIS)

    Kostelnik, A.J.

    1996-01-01

    This Acceptance Test Report documents compliance with the requirements of specification WHC-S-0249. The equipment was tested according to WHC-SD-WM-ATP-108 Rev.0. The equipment being tested is a portable contained nitrogen supply. The test was conducted at Norco's facility

  12. 9 Nitrogen Uptake in Soils

    African Journals Online (AJOL)

    User

    Measured uptake was greatest for the plants under the 30 cm treatment, followed by the 15 cm treatment ... by the plants. Introduction. Nitrogen availability is often the main factor limiting the realization of yield potentials in irrigated rice, and, according to Cassman et al. (1997) ... increase in dry weight, tillering, height and.

  13. Nitrogen deposition and terrestrial biodiversity

    Science.gov (United States)

    Christopher M. Clark; Yongfei Bai; William D. Bowman; Jane M. Cowles; Mark E. Fenn; Frank S. Gilliam; Gareth K. Phoenix; Ilyas Siddique; Carly J. Stevens; Harald U. Sverdrup; Heather L. Throop

    2013-01-01

    Nitrogen deposition, along with habitat losses and climate change, has been identified as a primary threat to biodiversity worldwide (Butchart et al., 2010; MEA, 2005; Sala et al., 2000). The source of this stressor to natural systems is generally twofold: burning of fossil fuels and the use of fertilizers in modern intensive agriculture. Each of these human...

  14. THE EMERGING HALLMARKS OF CANCER METABOLISM

    Science.gov (United States)

    Pavlova, Natalya N.; Thompson, Craig B.

    2015-01-01

    Tumorigenesis is dependent on the reprogramming of cellular metabolism as both direct and indirect consequence of oncogenic mutations. A common feature of cancer cell metabolism is the ability to acquire necessary nutrients from a frequently nutrient-poor environment and utilize these nutrients to both maintain viability and build new biomass. The alterations in intracellular and extracellular metabolites that can accompany cancer-associated metabolic reprogramming have profound effects on gene expression, cellular differentiation and the tumor microenvironment. In this Review, we have organized known cancer-associated metabolic changes into six hallmarks: (1) deregulated uptake of glucose and amino acids, (2) use of opportunistic modes of nutrient acquisition, (3) use of glycolysis/TCA cycle intermediates for biosynthesis and NADPH production, (4) increased demand for nitrogen, (5) alterations in metabolite-driven gene regulation, and (6) metabolic interactions with the microenvironment. While few tumors display all six hallmarks, most display several. The specific hallmarks exhibited by an individual tumor may ultimately contribute to better tumor classification and aid in directing treatment. PMID:26771115

  15. Structural behaviour of nitrogen in oxide ceramics

    International Nuclear Information System (INIS)

    Ghauri, K.M.

    1997-01-01

    The solubility of nitrogen in molten oxides has significant consideration for two quite different types of engineering materials. The implication of a knowledge of the role of nitrogen in these oxides for refining high nitrogen steels in obvious but similar nitrogen-bearing oxide melts are of critical importance in the densification of silicon nitride ceramics. Present paper discusses structural behaviour and phase equilibria qualitatively in the light of knowledge available on slag structure through infrared and x-ray diffraction. Nitrogen solubility in glasses and related sialon based ceramics may be of paramount importance to understand the role of nitrogen in these materials as these oxides are similar in composition, structure and characteristics to sintering glasses in nitrogen ceramics. It is quite logical to infer that the same oxide model can be applied in order to massively produce nitrogen alloyed steels which are actively competing to be the materials of the next century. (author)

  16. Recent studies of the ocean nitrogen cycle

    Science.gov (United States)

    Eppley, R. W.

    1984-01-01

    The nitrogen cycle in the ocean is dominated by the activities of organisms. External nitrogen inputs from land and from the atmosphere are small compared with rates of consumption and production by organisms and with rates of internal rearrangements of nitrogen pools within the ocean. The chief reservoirs of nitrogen are, in decreasing order of size: nitrogen in sediments, dissolved N2, nitrate, dissolved organic nitrogen (DON), particulate organic nitrogen (PON) (mostly organisms and their by-products). The biogenic fluxes of nitrogen were reviewed. The rate of PON decomposition in the surface layer must be comparable to the rate of ammonium consumption; and at the same time the nitrate consumption rate will be similar to the rates of: (1) sinking of PON out of the surface layer and its decompositon at depth, (2) the rate of nitrification at depth, and (3) the rate of nitrate return to the surface layer by upwelling.

  17. Reactive Nitrogen and Oxygen Intermediates in Patients with Cutaneous Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Erel Ozcan

    1999-01-01

    Full Text Available The metabolisms of reactive nitrogen and oxygen intermediates (RNI and ROI in patients with cutaneous leishmaniasis (CL were investigated and compared with those of healthy subjects. To determine RNI metabolism, nitrite plus nitrate concentrations were measured spectrophotometrically. Nitrite concentration in plasma was determined directly by the Griess method. Nitrate levels in plasma were measured after reduction into nitrite by using copper-cadmium-zinc. ROI metabolism was evaluated by measuring erythrocyte superoxide dismutase, catalase and glutathione peroxidase activities. Plasma nitrite plus nitrate levels and erythrocyte superoxide dismutase activity were higher in the patient group than healthy subjects (p<0.01. In contrast, erythrocyte catalase and glutathione peroxidase activities were lower (p<0.05, p<0.01, respectively. ROI metabolism was altered in relation to hydrogen peroxide elevation in patients with CL. These alterations in ROI enable nitric oxide (NO to amplify its leishmanicidal effect. The determination of ROI and RNI in patients with CL may be a useful tool to evaluate effector mechanisms of NO and clinical manifestations.

  18. Functional Analysis of the Nitrogen Metabolite Repression Regulator Gene nmrA in Aspergillus flavus

    Directory of Open Access Journals (Sweden)

    Xiaoyun Han

    2016-11-01

    Full Text Available In Aspergillus nidulans, the nitrogen metabolite repression regulator NmrA plays a major role in regulating the activity of the GATA transcription factor AreA during nitrogen metabolism. However, the function of nmrA in Aspergillus flavus has notbeen previously studied. Here, we report the identification and functional analysis of nmrA in A. flavus. Our work showed that the amino acid sequences of NmrA are highly conserved among Aspergillus species and that A. flavus NmrA protein contains a canonical Rossmann fold motif. Deletion of nmrA slowed the growth of A. flavus but significantly increased conidiation and sclerotia production. Moreover, seed infection experiments indicated that nmrA is required for the invasive virulence of A. flavus. In addition, the ΔnmrA mutant showed increased sensitivity to rapamycin and methyl methanesulfonate, suggesting that nmrA could be responsive to target of rapamycin signaling and DNA damage. Furthermore, quantitative real-time reverse transcription polymerase chain reaction analysis suggested that nmrA might interact with other nitrogen regulatory and catabolic genes. Our study provides a better understanding of nitrogen metabolite repression and the nitrogen metabolism network in fungi.

  19. GlnK Facilitates the Dynamic Regulation of Bacterial Nitrogen Assimilation

    Science.gov (United States)

    Gosztolai, Adam; Schumacher, Jörg; Behrends, Volker; Bundy, Jacob G.; Heydenreich, Franziska; Bennett, Mark H.; Buck, Martin; Barahona, Mauricio

    2017-05-01

    Ammonium assimilation in E. coli is regulated by two paralogous proteins (GlnB and GlnK), which orchestrate interactions with regulators of gene expression, transport proteins and metabolic pathways. Yet how they conjointly modulate the activity of glutamine synthetase (GS), the key enzyme for nitrogen assimilation, is poorly understood. We combine experiments and theory to study the dynamic roles of GlnB and GlnK during nitrogen starvation and upshift. We measure time-resolved in vivo concentrations of metabolites, total and post-translationally modified proteins, and develop a concise biochemical model of GlnB and GlnK that incorporates competition for active and allosteric sites, as well as functional sequestration of GlnK. The model predicts the responses of GS, GlnB and GlnK under time-varying external ammonium level in the wild type and two genetic knock-outs. Our results show that GlnK is tightly regulated under nitrogen-rich conditions, yet it is expressed during ammonium run-out and starvation. This suggests a role for GlnK as a buffer of nitrogen shock after starvation, and provides a further functional link between nitrogen and carbon metabolisms.

  20. Microbial functional genes elucidate environmental drivers of biofilm metabolism in glacier-fed streams.

    Science.gov (United States)

    Ren, Ze; Gao, Hongkai; Elser, James J; Zhao, Qiudong

    2017-10-04

    Benthic biofilms in glacier-fed streams harbor diverse microorganisms driving biogeochemical cycles and, consequently, influencing ecosystem-level processes. Benthic biofilms are vulnerable to glacial retreat induced by climate change. To investigate microbial functions of benthic biofilms in glacier-fed streams, we predicted metagenomes from 16s rRNA gene sequence data using PICRUSt and identified functional genes associated with nitrogen and sulfur metabolisms based on KEGG database and explored the relationships between metabolic pathways and abiotic factors in glacier-fed streams in the Tianshan Mountains in Central Asia. Results showed that the distribution of functional genes was mainly associated with glacier area proportion, glacier source proportion, total nitrogen, dissolved organic carbon, and pH. For nitrogen metabolism, the relative abundance of functional genes associated with dissimilatory pathways was higher than those for assimilatory pathways. The relative abundance of functional genes associated with assimilatory sulfate reduction was higher than those involved with the sulfur oxidation system and dissimilatory sulfate reduction. Hydrological factors had more significant correlations with nitrogen metabolism than physicochemical factors and anammox was the most sensitive nitrogen cycling pathway responding to variation of the abiotic environment in these glacial-fed streams. In contrast, sulfur metabolism pathways were not sensitive to variations of abiotic factors in these systems.

  1. Nitrogen Soil Testing for Corn in Virginia

    OpenAIRE

    Evanylo, Gregory K.; Alley, Marcus M., 1947-

    2009-01-01

    An adequate supply of plant-available nitrogen (N) is crucial for efficient corn production, and corn N requirements are greater than any other nutrient. This publication reviews the link between nitrogen and corn production, nitrogen behavior, soil testing, test procedures and recommendations.

  2. Experimental and numerical investigations on nitrogen species ...

    Indian Academy of Sciences (India)

    ... the peak nitrate nitrogen concentration of 1,620 mg/l is observed at first day due to high permeability and high soil background nitrogen concentration. Additionally, the model results show that the application of high nitrogen content wastewater for irrigation in Ludhiana soil will affect the groundwater quality even when the ...

  3. 21 CFR 582.1540 - Nitrogen.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Nitrogen. 582.1540 Section 582.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS... Nitrogen. (a) Product. Nitrogen. (b) Conditions of use. This substance is generally recognized as safe when...

  4. 21 CFR 184.1540 - Nitrogen.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nitrogen. 184.1540 Section 184.1540 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9...

  5. 46 CFR 154.1755 - Nitrogen.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Nitrogen. 154.1755 Section 154.1755 Shipping COAST GUARD... Nitrogen. Except for deck tanks and their piping systems, cargo containment systems and piping systems carrying nitrogen must be specially approved by the Commandant (CG-522). [CGD 74-289, 44 FR 26009, May 3...

  6. Toward a nitrogen footprint calculator for Tanzania

    NARCIS (Netherlands)

    Hutton, Mary Olivia; Leach, A.M.; Leip, Adrian; Galloway, J.N.; Bekunda, M.; Sullivan, C.; Lesschen, J.P.

    2017-01-01

    We present the first nitrogen footprint model for a developing country: Tanzania. Nitrogen (N) is a crucial element for agriculture and human nutrition, but in excess it can cause serious environmental damage. The Sub-Saharan African nation of Tanzania faces a two-sided nitrogen problem: while there

  7. Identification of genotypic variation for nitrogen response in potato (Solanum tuberosum) under low nitrogen input circumstances

    NARCIS (Netherlands)

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Struik, P.C.

    2009-01-01

    Nitrogen is an essential nutrient for crop growth. The demand for nitrogen in the potato crop is relatively high. However, in organic farming nitrogen input is rather limited, compared with conventional farming. In this research nine potato varieties were tested at three nitrogen levels. Genotypic

  8. Atmospheric deposition of nitrogen, runoff of organic nitrogen, and critical loads for soils and waters

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Richard F.; Raastad, Inger Aandahl; Kaste, Oeyvind

    1997-12-31

    This report tests the hypothesis that increased deposition of inorganic nitrogen compounds leads to increased leaching and runoff of organic nitrogen and thus a higher critical load. The authors use mainly Norwegian data from input-output fluxes at small catchments, national lake surveys, and large-scale experiments with nitrogen deposition to whole catchments. Concentrations of organic nitrogen are not significantly related to nitrogen deposition. Much of the variance in organic nitrogen levels are explained by total organic carbon concentrations. For the small catchments, there is a significant relationship between the carbon/nitrogen (C/N) ratio in dissolved organic matter and the nitrogen deposition. The sites with high nitrogen deposition have low C/N ratio. Chronically high nitrogen deposition and long-term accumulation of nitrogen in soils and biomass may have led to organic matter more enriched in nitrogen relative to pristine sites. Time trend data from manipulated catchments do not show changes in organic-N leaching over 4 to 10 years. Although organic-N levels may have increased as a result of nitrogen deposition, the resultant effect on estimate of critical load for nitrogen for freshwater is minor. For practical purposes, organic nitrogen outputs can be neglected in estimating and mapping critical loads for nitrogen in Norway. 23 refs., 11 figs., 4 tabs.

  9. Modeling nitrogen fluxes in Germany - where does the nitrogen go?

    Science.gov (United States)

    Klement, Laura; Bach, Martin; Breuer, Lutz

    2016-04-01

    According to the latest inventory of the EU Water Framework Directive, 26.3% of German groundwater bodies are in a poor chemical state regarding nitrate. Additionally, the EU initiated infringement proceedings against Germany for not meeting the quality standards of the EU Nitrate Directive. Agriculture has been determined as the main source of nitrate pollution due to over-fertilization and regionally high density of livestock farming. The nitrogen balance surplus is commonly used as an indicator characterizing the potential of nitrate leaching into groundwater bodies and thus also serves as a foundation to introduce legislative restrictions or to monitor the success of mitigation measures. Currently, there is an ongoing discussion which measures are suitable for reducing the risk of nitrate leaching and also to what extent. However, there is still uncertainty about just how much the nitrogen surplus has to be reduced to meet the groundwater quality standards nationwide. Therefore, the aims of our study were firstly to determine the level of the nitrogen surplus that would be acceptable at the utmost and secondly whether the currently discussed target value of 30 kg N per hectare agricultural land for the soil surface nitrogen balance would be sufficient. The models MONERIS (Modeling Nutrient Emissions in River System) and MoRE (Modelling of Regionalized Emissions), the latter based on the first, are commonly used for estimating nitrogen loads into the river system in Germany at the mesoscale, as well as the effect of mitigation measures in the context of the EU directive 2008/105/EC (Environmental quality standards applicable to surface water). We used MoRE to calculate nitrate concentration for 2759 analytical units in Germany. Main factors are the surplus of the soil surface nitrogen balance, the percolation rate and an exponent representing the denitrification in the vadose zone. The modeled groundwater nitrate concentrations did not correspond to the regional

  10. Metabolism of fluoroacetate in lettuce

    Energy Technology Data Exchange (ETDEWEB)

    Ward, P.F.V.; Huskisson, N.S.

    1972-01-01

    Whole lettuce plants were incubated with (1) (l-/sup 14/C)acetate, (2) fluoroacetate followed by (l-/sup 14/C)acetate, (3) fluoro(l-/sup 14/C)acetate, (4) fluoro(2-/sup 14/C)acetate or (5) S-carboxy-(/sup 14/C)methylglutathione. 2. Fluoroacetate did not affect the expiration of /sup 14/CO/sub 2/ from (l-/sup 14/C)acetate and only a small amount of /sup 14/CO/sub 2/ was produced from either fluoro(l-/sup 14/C)-acetate or fluoro(2-/sup 14/C)acetate in 43 h. 3. Fluoroacetate at 50 mg/kg wet wt. doubled the plant citrate concentration after 43 h incubation, and depending on the age and size of the plant 50-100% of the compound was metabolized. 4. With both fluoro(l-/sup 14/C)acetate and fluoro(2-/sup 14/C)acetate all the radioactivity except that in the CO/sub 2/ was found in the water-soluble fraction. About 2% was in fluorocitrate and the remainder, apart from unchanged fluoroacetate, was in a number of compounds devoid of fluorine but containing nitrogen and sulphur. These were peptide-like and could be separated by chromatography on an amino acid analyser. 5. Identical compounds were obtained from the spontaneous reaction between iodo(2-/sup 14/C)acetate and glutathione, the major product being S-carboxy-methylglutathione. 6. S-Carboxymethylcysteine was also isolated and its mass spectrum compared with a commercial sample. 7. Reaction rates of all the monohaloacetates with glutathione were studied at pH 7 at 25/sup 0/C. No reaction was observed with fluoroacetate. 8. The metabolism of fluoroacetate by lettuce is discussed in relation to that of aliphatic and aromatic halogen compounds, including fluoroacetate, by mammalian liver and to the metabolism of fluoroacetate by different plants reported by other workers.

  11. Indigenous Fixed Nitrogen on Mars: Implications for Habitability

    Science.gov (United States)

    Stern, J. C.; Sutter, B.; Navarro-Gonzalez, R.; McKay, C. P.; Freissinet, C.; Archer, D., Jr.; Eigenbrode, J. L.; Mahaffy, P. R.; Conrad, P. G.

    2015-12-01

    Nitrate has been detected in Mars surface sediments and aeolian deposits by the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory Curiosity rover (Stern et al., 2015). This detection is significant because fixed nitrogen is necessary for life, a requirement that drove the evolution of N-fixing metabolism in life on Earth. The question remains as to the extent to which a primitive N cycle ever developed on Mars, and whether N is currently being deposited on the martian surface at a non-negligible rate. It is also necessary to consider processes that could recycle oxidized N back into the atmosphere, and how these processes may have changed the soil inventory of N over time. The abundance of fixed nitrogen detected as NO from thermal decomposition of nitrate is consistent with both delivery of nitrate via impact generated thermal shock early in martian history and dry deposition from photochemistry of thermospheric NO, occurring in the present. Processes that could recycle N back into the atmosphere may include nitrate reduction by Fe(II) in aqueous environments on early Mars, impact decomposition, and/or UV photolysis. In order to better understand the history of nitrogen fixation on Mars, we look to cycling of N in Mars analog environments on Earth such as the Atacama Desert and the Dry Valleys of Antarctica. In particular, we examine the ratio of nitrate to perchlorate (NO3-/ClO4-) in these areas compared to those calculated from data acquired on Mars.

  12. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile

    Science.gov (United States)

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non-Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non-Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non-Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non-Saccharomyces yeasts (Starmerella bacillaris, Metschnikowia pulcherrima, and Pichia membranifaciens) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae, to assess the impact of the non-Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae. Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae. We report here, for the first time, that non-Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris, aspartic acid was assimilated very slowly by M. pulcherrima, and glutamine was not assimilated by P. membranifaciens. By contrast, cysteine appeared to be a preferred nitrogen source for all non-Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non-Saccharomyces yeasts may account for some of the

  13. Non-SaccharomycesYeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile.

    Science.gov (United States)

    Gobert, Antoine; Tourdot-Maréchal, Raphaëlle; Morge, Christophe; Sparrow, Céline; Liu, Youzhong; Quintanilla-Casas, Beatriz; Vichi, Stefania; Alexandre, Hervé

    2017-01-01

    Nitrogen sources in the must are important for yeast metabolism, growth, and performance, and wine volatile compounds profile. Yeast assimilable nitrogen (YAN) deficiencies in grape must are one of the main causes of stuck and sluggish fermentation. The nitrogen requirement of Saccharomyces cerevisiae metabolism has been described in detail. However, the YAN preferences of non- Saccharomyces yeasts remain unknown despite their increasingly widespread use in winemaking. Furthermore, the impact of nitrogen consumption by non- Saccharomyces yeasts on YAN availability, alcoholic performance and volatile compounds production by S. cerevisiae in sequential fermentation has been little studied. With a view to improving the use of non- Saccharomyces yeasts in winemaking, we studied the use of amino acids and ammonium by three strains of non- Saccharomyces yeasts ( Starmerella bacillaris, Metschnikowia pulcherrima , and Pichia membranifaciens ) in grape juice. We first determined which nitrogen sources were preferentially used by these yeasts in pure cultures at 28 and 20°C (because few data are available). We then carried out sequential fermentations at 20°C with S. cerevisiae , to assess the impact of the non- Saccharomyces yeasts on the availability of assimilable nitrogen for S. cerevisiae . Finally, 22 volatile compounds were quantified in sequential fermentation and their levels compared with those in pure cultures of S. cerevisiae . We report here, for the first time, that non- Saccharomyces yeasts have specific amino-acid consumption profiles. Histidine, methionine, threonine, and tyrosine were not consumed by S. bacillaris , aspartic acid was assimilated very slowly by M. pulcherrima , and glutamine was not assimilated by P. membranifaciens . By contrast, cysteine appeared to be a preferred nitrogen source for all non- Saccharomyces yeasts. In sequential fermentation, these specific profiles of amino-acid consumption by non- Saccharomyces yeasts may account for

  14. Members of the LBD Family of Transcription Factors Repress Anthocyanin Synthesis and Affect Additional Nitrogen Responses in Arabidopsis

    OpenAIRE

    Rubin, G.; Tohge, T.; Matsuda, F.; Saito, K.; Scheible, W.

    2009-01-01

    Nitrogen (N) and nitrate (NO3-) per se regulate many aspects of plant metabolism, growth, and development. N/NO3- also suppresses parts of secondary metabolism, including anthocyanin synthesis. Molecular components for this repression are unknown. We report that three N/NO3--induced members of the LATERAL ORGAN BOUNDARY DOMAIN (LBD) gene family of transcription factors (LBD37, LBD38, and LBD39) act as negative regulators of anthocyanin biosynthesis in Arabidopsis thaliana. Overexpression of e...

  15. De novo RNA-Seq based transcriptome analysis of Papiliotrema laurentii strain RY1 under nitrogen starvation.

    Science.gov (United States)

    Sarkar, Soumyadev; Chakravorty, Somnath; Mukherjee, Avishek; Bhattacharya, Debanjana; Bhattacharya, Semantee; Gachhui, Ratan

    2018-03-01

    Nitrogen is a key nutrient for all cell forms. Most organisms respond to nitrogen scarcity by slowing down their growth rate. On the contrary, our previous studies have shown that Papiliotrema laurentii strain RY1 has a robust growth under nitrogen starvation. To understand the global regulation that leads to such an extraordinary response, we undertook a de novo approach for transcriptome analysis of the yeast. Close to 33 million sequence reads of high quality for nitrogen limited and enriched condition were generated using Illumina NextSeq500. Trinity analysis and clustered transcripts annotation of the reads produced 17,611 unigenes, out of which 14,157 could be annotated. Gene Ontology term analysis generated 44.92% cellular component terms, 39.81% molecular function terms and 15.24% biological process terms. The most over represented pathways in general were translation, carbohydrate metabolism, amino acid metabolism, general metabolism, folding, sorting, degradation followed by transport and catabolism, nucleotide metabolism, replication and repair, transcription and lipid metabolism. A total of 4256 Single Sequence Repeats were identified. Differential gene expression analysis detected 996 P-significant transcripts to reveal transmembrane transport, lipid homeostasis, fatty acid catabolism and translation as the enriched terms which could be essential for Papiliotrema laurentii strain RY1 to adapt during nitrogen deprivation. Transcriptome data was validated by quantitative real-time PCR analysis of twelve transcripts. To the best of our knowledge, this is the first report of Papiliotrema laurentii strain RY1 transcriptome which would play a pivotal role in understanding the biochemistry of the yeast under acute nitrogen stress and this study would be encouraging to initiate extensive investigations into this Papiliotrema system. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Identification of genotypic variation for nitrogen response in potato (Solanum tuberosum) under low nitrogen input circumstances

    OpenAIRE

    Tiemens-Hulscher, M.; Lammerts Van Bueren, E.; Struik, P.C.

    2009-01-01

    Nitrogen is an essential nutrient for crop growth. The demand for nitrogen in the potato crop is relatively high. However, in organic farming nitrogen input is rather limited, compared with conventional farming. In this research nine potato varieties were tested at three nitrogen levels. Genotypic variation for yield, leaf area index, period of maximum soil cover, sensitivity for N-shortage and nitrogen efficiency under low input circumstances was found. However, in these experiments varietie...

  17. Physiological implications of arginine metabolism in plants

    Directory of Open Access Journals (Sweden)

    Gudrun eWinter

    2015-07-01

    Full Text Available Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO, although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions.

  18. Deciphering the Principles of Bacterial Nitrogen Dietary Preferences: a Strategy for Nutrient Containment.

    Science.gov (United States)

    Wang, Jilong; Yan, Dalai; Dixon, Ray; Wang, Yi-Ping

    2016-07-19

    A fundamental question in microbial physiology concerns why organisms prefer certain nutrients to others. For example, among different nitrogen sources, ammonium is the preferred nitrogen source, supporting fast growth, whereas alternative nitrogen sources, such as certain amino acids, are considered to be poor nitrogen sources, supporting much slower exponential growth. However, the physiological/regulatory logic behind such nitrogen dietary choices remains elusive. In this study, by engineering Escherichia coli, we switched the dietary preferences toward amino acids, with growth rates equivalent to that of the wild-type strain grown on ammonia. However, when the engineered strain was cultured together with wild-type E. coli, this growth advantage was diminished as a consequence of ammonium leakage from the transport-and-catabolism (TC)-enhanced (TCE) cells, which are preferentially utilized by wild-type bacteria. Our results reveal that the nitrogen regulatory (Ntr) system fine tunes the expression of amino acid transport and catabolism components to match the flux through the ammonia assimilation pathway such that essential nutrients are retained, but, as a consequence, the fast growth rate on amino acids is sacrificed. Bacteria exhibit different growth rates under various nutrient conditions. These environmentally related behaviors reflect the coordination between metabolism and the underlying regulatory networks. In the present study, we investigated the intertwined nitrogen metabolic and nitrogen regulatory systems to understand the growth differences between rich and poor nitrogen sources. Although maximal growth rate is considered to be evolutionarily advantageous for bacteria (as remarked by François Jacob, who said that the "dream" of every cell is to become two cells), we showed that negative-feedback loops in the regulatory system inhibit growth rates on amino acids. We demonstrated that in the absence of regulatory feedback, amino acids are capable

  19. Enzymology and ecology of the nitrogen cycle.

    Science.gov (United States)

    Martínez-Espinosa, Rosa María; Cole, Jeffrey A; Richardson, David J; Watmough, Nicholas J

    2011-01-01

    The nitrogen cycle describes the processes through which nitrogen is converted between its various chemical forms. These transformations involve both biological and abiotic redox processes. The principal processes involved in the nitrogen cycle are nitrogen fixation, nitrification, nitrate assimilation, respiratory reduction of nitrate to ammonia, anaerobic ammonia oxidation (anammox) and denitrification. All of these are carried out by micro-organisms, including bacteria, archaea and some specialized fungi. In the present article, we provide a brief introduction to both the biochemical and ecological aspects of these processes and consider how human activity over the last 100 years has changed the historic balance of the global nitrogen cycle.

  20. Biological Nitrogen Fixation on Legume

    Directory of Open Access Journals (Sweden)

    Armiadi

    2009-03-01

    Full Text Available Nitrogen (N is one of the major limiting factors for crop growth and is required in adequate amount, due to its function as protein and enzyme components. In general, plants need sufficient nitrogen supply at all levels of growth, especially at the beginning of growth phase. Therefore, the availability of less expensive N resources would reduce the production cost. The increasing use of chemical fertilizer would probably disturb soil microorganisms, reduce the physical and chemical characteristics of soil because not all of N based fertilizer applied can be absorbed by the plants. Approximately only 50% can be used by crops, while the rest will be altered by microorganism into unavailable N for crops or else dissappear in the form of gas. Leguminous crops have the capacity to immobilize N2 and convert into the available N if innoculated with Rhizobium. The amount of N2 fixed varies depending on legume species and their environment.

  1. Inborn errors of metabolism

    Science.gov (United States)

    Metabolism - inborn errors of ... Bodamer OA. Approach to inborn errors of metabolism. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 205. Rezvani I, Rezvani GA. An ...

  2. Lipid Metabolism Disorders

    Science.gov (United States)

    ... metabolic disorder, something goes wrong with this process. Lipid metabolism disorders, such as Gaucher disease and Tay-Sachs disease, involve lipids. Lipids are fats or fat-like substances. They ...

  3. Cold-induced metabolism

    NARCIS (Netherlands)

    Lichtenbelt, W. van Marken; Daanen, H.A.M.

    2003-01-01

    Purpose of review Cold response can be insulative (drop in peripheral temperature) or metabolic (increase in energy expenditure). Nonshivering thermogenesis by sympathetic, norepinephrine-induced mitochondrial heat production in brown adipose tissue is a well known component of this metabolic

  4. Investigation of metabolic encephalopathy

    African Journals Online (AJOL)

    , and. Table 1. Confirmed IMD cases associated with metabolic encephalopathy diagnosed at Red Cross Children's Hospital Metabolic Disease. Laboratory, 2006 - 2012. Name of disorder. Number of cases. Glutaric aciduria type 1 (GA1)*. 23.

  5. nitrogen saturation in stream ecosystems

    OpenAIRE

    Earl, S. R.; Valett, H. M.; Webster, J. R.

    2006-01-01

    The concept of nitrogen (N) saturation has organized the assessment of N loading in terrestrial ecosystems. Here we extend the concept to lotic ecosystems by coupling Michaelis-Menten kinetics and nutrient spiraling. We propose a series of saturation response types, which may be used to characterize the proximity of streams to N saturation. We conducted a series of short-term N releases using a tracer ((NO3)-N-15-N) to measure uptake. Experiments were conducted in streams spanning a gradient ...

  6. Chemistry of nitrogen oxide compounds

    International Nuclear Information System (INIS)

    Wells, A.

    1987-01-01

    The structure of nitrogen oxide compounds including: nitrates and nitrites, nitrosyl compounds of transition metals, rare earth, transition metal and actinide complexes, where nitrite- and nitrate ions are presented as ligands, is considered. Oxonitrate compounds, e.g. RbUO 2 (NO 3 ) 3 are also considered. The values of lengths and angles of bonds for some of these compounds are presented, volatility of Cd, Be and other metal nitrates are also discussed

  7. Ecology of the nitrogen cycle

    Energy Technology Data Exchange (ETDEWEB)

    Sprent, J.J.

    1987-01-01

    This book consists of two parts, approximately equal in size. The first part covers the general features of the nitrogen cycle, while the second part consists of case histories from particular environments. These include arid and semi-arid areas, tundras, peat soils, lakes, marshes, and such saline systems as salt marshes, coral reefs, intertidal zones, and the open sea. The last chapter discusses the human impact on the cycle through agriculture, forestry, and acidification.

  8. Neuroendocrine Regulation of Metabolism

    OpenAIRE

    Cornejo, Maria P.; Hentges, Shane T.; Maliqueo, Manuel; Coirini, Hector; Becu-Villalobos, Damasia; Elias, Carol F.

    2016-01-01

    Given the current environment in most developed countries, it is a challenge to maintain a good balance between calories consumed and calories burned, although maintenance of metabolic balance is key to good health. Therefore, understanding how metabolic regulation is achieved and how the dysregulation of metabolism affects health is an area of intense research. Most studies are focused on the hypothalamus, which is a brain area that acts as a key regulator of metabolism. Among the nuclei tha...

  9. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    Science.gov (United States)

    Huhe; Borjigin, Shinchilelt; Buhebaoyin; Wu, Yanpei; Li, Minquan; Cheng, Yunxiang

    2016-01-01

    In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P nitrogen cycle in recently abandoned croplands.

  10. Microbial Nitrogen-Cycle Gene Abundance in Soil of Cropland Abandoned for Different Periods.

    Directory of Open Access Journals (Sweden)

    Huhe

    Full Text Available In Inner Mongolia, steppe grasslands face desertification or degradation because of human overuse and abandonment after inappropriate agricultural management. The soils in these abandoned croplands exist in heterogeneous environments characterized by widely fluctuating microbial growth. Quantitative polymerase chain reaction analysis of microbial genes encoding proteins involved in the nitrogen cycle was used to study Azotobacter species, nitrifiers, and denitrifiers in the soils from steppe grasslands and croplands abandoned for 2, 6, and 26 years. Except for nitrifying archaea and nitrous oxide-reducing bacteria, the relative genotypic abundance of microbial communities involved in nitrogen metabolism differed by approximately 2- to 10-fold between abandoned cropland and steppe grassland soils. Although nitrogen-cycle gene abundances varied with abandonment time, the abundance patterns of nitrogen-cycle genes separated distinctly into abandoned cropland versus light-grazing steppe grassland, despite the lack of any cultivation for over a quarter-century. Plant biomass and plant diversity exerted a significant effect on the abundance of microbial communities that mediate the nitrogen cycle (P < 0.002 and P < 0.03, respectively. The present study elucidates the ecology of bacteria that mediate the nitrogen cycle in recently abandoned croplands.

  11. Physiological Effects of GLT1 Modulation in Saccharomyces cerevisiae Strains Growing on Different Nitrogen Sources.

    Science.gov (United States)

    Brambilla, Marco; Adamo, Giusy Manuela; Frascotti, Gianni; Porro, Danilo; Branduardi, Paola

    2016-02-01

    Saccharomyces cerevisiae is one of the most employed cell factories for the production of bioproducts. Although monomeric hexose sugars constitute the preferential carbon source, this yeast can grow on a wide variety of nitrogen sources that are catabolized through central nitrogen metabolism (CNM). To evaluate the effects of internal perturbations on nitrogen utilization, we characterized strains deleted or overexpressed in GLT1, encoding for one of the key enzymes of the CNM node, the glutamate synthase. These strains, together with the parental strain as control, have been cultivated in minimal medium formulated with ammonium sulfate, glutamate, or glutamine as nitrogen source. Growth kinetics, together with the determination of protein content, viability, and reactive oxygen species (ROS) accumulation at the single cell level, revealed that GLT1 modulations do not significantly influence the cellular physiology, whereas the nitrogen source does. As important exceptions, GLT1 deletion negatively affected the scavenging activity of glutamate against ROS accumulation, when cells were treated with H2O2, whereas Glt1p overproduction led to lower viability in glutamine medium. Overall, this confirms the robustness of the CNM node against internal perturbations, but, at the same time, highlights its plasticity in respect to the environment. Considering that side-stream protein-rich waste materials are emerging as substrates to be used in an integrated biorefinery, these results underline the importance of preliminarily evaluating the best nitrogen source not only for media formulation, but also for the overall economics of the process.

  12. Metabolic Engineering X Conference

    Energy Technology Data Exchange (ETDEWEB)

    Flach, Evan [American Institute of Chemical Engineers

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  13. Virtual Nitrogen Losses from Organic Food Production

    Science.gov (United States)

    Cattell Noll, L.; Galloway, J. N.; Leach, A. M.; Seufert, V.; Atwell, B.; Shade, J.

    2015-12-01

    Reactive nitrogen (Nr) is necessary for crop and animal production, but when it is lost to the environment, it creates a cascade of detrimental environmental impacts. The nitrogen challenge is to maximize the food production benefits of Nr, while minimizing losses to the environment. The first nitrogen footprint tool was created in 2012 to help consumers learn about the Nr losses to the environment that result from an individual's lifestyle choices. The nitrogen lost during food production was estimated with virtual nitrogen factors (VNFs) that quantify the amount of nitrogen lost to the environment per unit nitrogen consumed. Alternative agricultural systems, such as USDA certified organic farms, utilize practices that diverge from conventional production. In order to evaluate the potential sustainability of these alternative agricultural systems, our team calculated VNFs that reflect organic production. Initial data indicate that VNFs for organic grains and organic starchy roots are comparable to, but slightly higher than conventional (+10% and +20% respectively). In contrast, the VNF for organic vegetables is significantly higher (+90%) and the VNF for organic legumes is significantly lower (-90%). Initial data on organic meat production shows that organic poultry and organic pigmeat are comparable to conventional production (both <5% difference), but that the organic beef VNF is significantly higher (+30%). These data show that in some cases organic and conventional production are comparable in terms of nitrogen efficiency. However, since conventional production relies heavily on the creation of new reactive nitrogen (Haber-Bosch, biological nitrogen fixation) and organic production primarily utilizes already existing reactive nitrogen (manure, crop residue, compost), the data also show that organic production contributes less new reactive nitrogen to the environment than conventional production (approximately 70% less). Therefore, we conclude that on a local

  14. Responses of Nannochloropsis oceanica IMET1 to Long-Term Nitrogen Starvation and Recovery1[C][W][OA

    Science.gov (United States)

    Dong, Hong-Po; Williams, Ernest; Wang, Da-zhi; Xie, Zhang-Xian; Hsia, Ru-ching; Jenck, Alizée; Halden, Rolf; Li, Jing; Chen, Feng; Place, Allen R.

    2013-01-01

    The Nannochloropsis genus contains oleaginous microalgae that have served as model systems for developing renewable biodiesel. Recent genomic and transcriptomic studies on Nannochloropsis species have provided insights into the regulation of lipid production in response to nitrogen stress. Previous studies have focused on the responses of Nannochloropsis species to short-term nitrogen stress, but the effect of long-term nitrogen deprivation remains largely unknown. In this study, physiological and proteomic approaches were combined to understand the mechanisms by which Nannochloropsis oceanica IMET1 is able to endure long-term nitrate deprivation and its ability to recover homeostasis when nitrogen is amended. Changes of the proteome during chronic nitrogen starvation espoused the physiological changes observed, and there was a general trend toward recycling nitrogen and storage of lipids. This was evidenced by a global down-regulation of protein expression, a retained expression of proteins involved in glycolysis and the synthesis of fatty acids, as well as an up-regulation of enzymes used in nitrogen scavenging and protein turnover. Also, lipid accumulation and autophagy of plastids may play a key role in maintaining cell vitality. Following the addition of nitrogen, there were proteomic changes and metabolic changes observed within 24 h, which resulted in a return of the culture to steady state within 4 d. These results demonstrate the ability of N. oceanica IMET1 to recover from long periods of nitrate deprivation without apparent detriment to the culture and provide proteomic markers for genetic modification. PMID:23637339

  15. [Effects of sprinkler irrigation on the plant nitrogen accumulation and translocation and kernel protein content of winter wheat].

    Science.gov (United States)

    Yao, Su-mei; Kang, Yue-hu; Ru, Zhen-gang; Liu, Ming-jiu; Yang, Wen-ping; Li, Gan

    2013-08-01

    Taking wheat cultivar Bainong AK58 as test material, a field experiment was conducted to study the plant nitrogen accumulation and translocation and kernel protein content of winter wheat under sprinkler irrigation and surface irrigation, aimed to understand the differences in the nitrogen metabolism characteristics of winter wheat under different irrigation regimes. At booting stage, no significant difference was observed in the total amount of plant nitrogen accumulation between sprinkler irrigation and surface irrigation; while from booting stage to maturing stage, the total amount of plant nitrogen accumulation under sprinkler irrigation was significantly higher. Under sprinkler irrigation, the translocation amount and contribution rate of the nitrogen stored in leaf, glume, stem and sheath at pre-anthesis to the kernel increased, while the contribution rate of the assimilated nitrogen after anthesis to the kernel nitrogen declined. Both the relative protein content and the total protein yield in the kernel increased significantly under sprinkler irrigation. In conclusion, sprinkler irrigation could significantly regulate the nitrogen translocation and kernel protein accumulation of winter wheat.

  16. Cooperative Metabolism in a Three-Partner Insect-Bacterial Symbiosis Revealed by Metabolic Modeling.

    Science.gov (United States)

    Ankrah, Nana Y D; Luan, Junbo; Douglas, Angela E

    2017-08-01

    An important factor determining the impact of microbial symbionts on their animal hosts is the balance between the cost of nutrients consumed by the symbionts and the benefit of nutrients released back to the host, but the quantitative significance of nutrient exchange in symbioses involving multiple microbial partners has rarely been addressed. In this study on the association between two intracellular bacterial symbionts, " Candidatus Portiera aleyrodidarum" and " Candidatus Hamiltonella defensa," and their animal host, the whitefly Bemisia tabaci , we apply metabolic modeling to investigate host-symbiont nutrient exchange. Our in silico analysis revealed that >60% of the essential amino acids and related metabolites synthesized by " Candidatus Portiera aleyrodidarum" are utilized by the host, including a substantial contribution of nitrogen recycled from host nitrogenous waste, and that these interactions are required for host growth. In contrast, " Candidatus Hamiltonella defensa" retains most or all of the essential amino acids and B vitamins that it is capable of synthesizing. Furthermore, " Candidatus Hamiltonella defensa" suppresses host growth in silico by competition with " Candidatus Portiera aleyrodidarum" for multiple host nutrients, by suppressing " Candidatus Portiera aleyrodidarum" growth and metabolic function, and also by consumption of host nutrients that would otherwise be allocated to host growth. The interpretation from these modeling outputs that " Candidatus Hamiltonella defensa" is a nutritional parasite could not be inferred reliably from gene content alone but requires consideration of constraints imposed by the structure of the metabolic network. Furthermore, these quantitative models offer precise predictions for future experimental study and the opportunity to compare the functional organization of metabolic networks in different symbioses. IMPORTANCE The metabolic functions of unculturable intracellular bacteria with much reduced

  17. Metabolic recycling of ammonia via glutamate dehydrogenase supports breast cancer biomass.

    Science.gov (United States)

    Spinelli, Jessica B; Yoon, Haejin; Ringel, Alison E; Jeanfavre, Sarah; Clish, Clary B; Haigis, Marcia C

    2017-11-17

    Ammonia is a ubiquitous by-product of cellular metabolism; however, the biological consequences of ammonia production are not fully understood, especially in cancer. We found that ammonia is not merely a toxic waste product but is recycled into central amino acid metabolism to maximize nitrogen utilization. In our experiments, human breast cancer cells primarily assimilated ammonia through reductive amination catalyzed by glutamate dehydrogenase (GDH); secondary reactions enabled other amino acids, such as proline and aspartate, to directly acquire this nitrogen. Metabolic recycling of ammonia accelerated proliferation of breast cancer. In mice, ammonia accumulated in the tumor microenvironment and was used directly to generate amino acids through GDH activity. These data show that ammonia is not only a secreted waste product but also a fundamental nitrogen source that can support tumor biomass. Copyright © 2017, American Association for the Advancement of Science.

  18. Oceanic nitrogen isotopes and their uses in determining the source of sedimentary nitrogen

    International Nuclear Information System (INIS)

    Sweeney, R.E.; Liu, K.K.; Kaplan, I.R.

    1978-01-01

    The major source of nutrient nitrogen in the ocean is inorganic nitrate, whereas the source for terrestrial soils is atmospheric nitrogen. Significant stable isotope ( 15 N/ 14 N) compositional differences exist between these sources, as oceanic nitrate is enriched in 15 N relative to atmospheric nitrogen. This leads to the utility of 15 N measurements for tracing the source of organic nitrogen in sediment. The global nitrogen cycle, the isotopic fractionation processes for nitrogen, and the distribution of 15 N for natural substances are discussed. Denitrification, recognised as the major process responsible for loss of fixed nitrogen in the ocean, is discussed in relation to maintaining the isotopically heavy composition of nitrate. Nitrogen-rich sewage effluent discharged into the marine environment near Whites Point, California, is shown to be traceable by the 15 N/ 14 N composition of nitrogen in the sediment. The numerical relation between delta 15 N and the content of total nitrogen in the sediment indicates that delta 15 N measurements may be used as a quantitative tool for determining the origin of nitrogen. Application of a two-source mixing model for the input of nitrogen into the sediment of Santa Barbara Basin on the California Continental Shelf indicated that, although between 25 and 50% of the total nitrogen in the sediment appears to be of terrestrial origin it is the marine-derived nitrogen which is preferentially utilised by bacterial processes during early diagenesis.(auth.)

  19. Altered metabolism in cancer

    Directory of Open Access Journals (Sweden)

    Locasale Jason W

    2010-06-01

    Full Text Available Abstract Cancer cells have different metabolic requirements from their normal counterparts. Understanding the consequences of this differential metabolism requires a detailed understanding of glucose metabolism and its relation to energy production in cancer cells. A recent study in BMC Systems Biology by Vasquez et al. developed a mathematical model to assess some features of this altered metabolism. Here, we take a broader look at the regulation of energy metabolism in cancer cells, considering their anabolic as well as catabolic needs. See research article: http://www.biomedcentral.com/1752-0509/4/58/

  20. Cancer stem cell metabolism.

    Science.gov (United States)

    Peiris-Pagès, Maria; Martinez-Outschoorn, Ubaldo E; Pestell, Richard G; Sotgia, Federica; Lisanti, Michael P

    2016-05-24

    Cancer is now viewed as a stem cell disease. There is still no consensus on the metabolic characteristics of cancer stem cells, with several studies indicating that they are mainly glycolytic and others pointing instead to mitochondrial metabolism as their principal source of energy. Cancer stem cells also seem to adapt their metabolism to microenvironmental changes by conveniently shifting energy production from one pathway to another, or by acquiring intermediate metabolic phenotypes. Determining the role of cancer stem cell metabolism in carcinogenesis has become a major focus in cancer research, and substantial efforts are conducted towards discovering clinical targets.

  1. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  2. Systems Biology of Metabolism.

    Science.gov (United States)

    Nielsen, Jens

    2017-06-20

    Metabolism is highly complex and involves thousands of different connected reactions; it is therefore necessary to use mathematical models for holistic studies. The use of mathematical models in biology is referred to as systems biology. In this review, the principles of systems biology are described, and two different types of mathematical models used for studying metabolism are discussed: kinetic models and genome-scale metabolic models. The use of different omics technologies, including transcriptomics, proteomics, metabolomics, and fluxomics, for studying metabolism is presented. Finally, the application of systems biology for analyzing global regulatory structures, engineering the metabolism of cell factories, and analyzing human diseases is discussed.

  3. Metabolic processes of Methanococcus maripaludis and potential applications.

    Science.gov (United States)

    Goyal, Nishu; Zhou, Zhi; Karimi, Iftekhar A

    2016-06-10

    Methanococcus maripaludis is a rapidly growing, fully sequenced, genetically tractable model organism among hydrogenotrophic methanogens. It has the ability to convert CO2 and H2 into a useful cleaner energy fuel (CH4). In fact, this conversion enhances in the presence of free nitrogen as the sole nitrogen source due to prolonged cell growth. Given the global importance of GHG emissions and climate change, diazotrophy can be attractive for carbon capture and utilization applications from appropriately treated flue gases, where surplus hydrogen is available from renewable electricity sources. In addition, M. maripaludis can be engineered to produce other useful products such as terpenoids, hydrogen, methanol, etc. M. maripaludis with its unique abilities has the potential to be a workhorse like Escherichia coli and S. cerevisiae for fundamental and experimental biotechnology studies. More than 100 experimental studies have explored different specific aspects of the biochemistry and genetics of CO2 and N2 fixation by M. maripaludis. Its genome-scale metabolic model (iMM518) also exists to study genetic perturbations and complex biological interactions. However, a comprehensive review describing its cell structure, metabolic processes, and methanogenesis is still lacking in the literature. This review fills this crucial gap. Specifically, it integrates distributed information from the literature to provide a complete and detailed view for metabolic processes such as acetyl-CoA synthesis, pyruvate synthesis, glycolysis/gluconeogenesis, reductive tricarboxylic acid (RTCA) cycle, non-oxidative pentose phosphate pathway (NOPPP), nitrogen metabolism, amino acid metabolism, and nucleotide biosynthesis. It discusses energy production via methanogenesis and its relation to metabolism. Furthermore, it reviews taxonomy, cell structure, culture/storage conditions, molecular biology tools, genome-scale models, and potential industrial and environmental applications. Through the

  4. Nitrogen uptake and fertilizer nitrogen use efficiency of wheat under different soil water conditions

    International Nuclear Information System (INIS)

    Wang Baiqun; Zhang Wei; Yu Cunzu

    1999-01-01

    The pot experiment was conducted to study the effects of soil water regime and fertilizer nitrogen rate on the yields, nitrogen uptake and fertilizer nitrogen utilization of wheat by using 15 N tracer method. The results showed that the aboveground biomass, stem yield and grain yield increased with the increase of soil moisture in the fertilizer nitrogen treatments. All the yield increased with the increase of the fertilizer nitrogen rate in the soil water treatments. It was found that both soil water regime and fertilizer nitrogen rate significantly influenced the amount of nitrogen uptake by wheat according to the variance analysis. The amount of nitrogen uptake increased with the rise of the soil moisture in fertilizer nitrogen treatments and the amount also increased with the increase of the urea nitrogen rate in the soil water regime. Soil water regimes not only had an impact on nitrogen uptake but also had a close relationship with soil nitrogen supply and fertilizer nitrogen use efficiency. The soil A values decreased in urea treatment and increased with the rise of the soil moisture in the combination treatment of urea with pig manure. The fertilizer nitrogen use efficiency rose with the rise of the soil moisture in the same fertilizer nitrogen treatment. The fertilizer nitrogen use efficiency of the urea treatment was 13.3%, 27.9% and 32.3% in the soils with 50%, 70% and 90% of the field water capacity, respectively. The fertilizer nitrogen use efficiency in the combination treatment of urea with pig manure was 20.0%, 29.9% and 34.4% in the soils of above three levels, respectively. It was concluded that the low soil moisture restricted urea nitrogen use efficiency (UNUE) and the UNUE could be raised by combination treatment of urea with manure in the soil of enough moisture

  5. Dietary structured lipids for post-weaning piglets: fat digestibility, nitrogen retention and fatty acid profiles of tissues

    DEFF Research Database (Denmark)

    Straarup, Ellen Marie; Danielsen, V.; Høy, Carl-Erik

    2006-01-01

    of age were collected quantitatively during three periods each of 5 days, in which the piglets were kept in metabolism cages for measurement of apparent faecal nutrient and energy digestibility and nitrogen retention. Apparent faecal fat digestibilities were significantly improved in groups fed...

  6. Use of a wine yeast deletion collection reveals genes that influence fermentation performance under low-nitrogen conditions.

    Science.gov (United States)

    Peter, Josephine J; Watson, Tommaso L; Walker, Michelle E; Gardner, Jennifer M; Lang, Tom A; Borneman, Anthony; Forgan, Angus; Tran, Tina; Jiranek, Vladimir

    2018-05-01

    A deficiency of nitrogenous nutrients in grape juice can cause stuck and sluggish alcoholic fermentation, which has long been a problem in winemaking. Nitrogen requirements vary between wine yeast strains, and the ability of yeast to assimilate nitrogen depends on the nature and concentration of nitrogen present in the medium. In this study, a wine yeast gene deletion collection (1844 deletants in the haploid AWRI1631 background) was screened to identify genes whose deletion resulted in a reduction in the time taken to utilise all sugars when grown in a chemically defined grape juice medium supplemented with limited nitrogen (75 mg L-1 as a free amino acid mixture). Through micro-scale and laboratory-scale fermentations, 15 deletants were identified that completed fermentation in a shorter time than the wildtype (c.a. 15%-59% time reduction). This group of genes was annotated to biological processes including protein modification, transport, metabolism and ubiquitination (UBC13, MMS2, UBP7, UBI4, BRO1, TPK2, EAR1, MRP17, MFA2 and MVB12), signalling (MFA2) and amino acid metabolism (AAT2). Deletion of MFA2, encoding mating factor-a, resulted in a 55% decrease in fermentation duration. Mfa2Δ was chosen for further investigation to understand how this gene deletion conferred fermentation efficiency in limited nitrogen conditions.

  7. Construction of a Genome-Scale Metabolic Model of Arthrospira platensis NIES-39 and Metabolic Design for Cyanobacterial Bioproduction.

    Directory of Open Access Journals (Sweden)

    Katsunori Yoshikawa

    Full Text Available Arthrospira (Spirulina platensis is a promising feedstock and host strain for bioproduction because of its high accumulation of glycogen and superior characteristics for industrial production. Metabolic simulation using a genome-scale metabolic model and flux balance analysis is a powerful method that can be used to design metabolic engineering strategies for the improvement of target molecule production. In this study, we constructed a genome-scale metabolic model of A. platensis NIES-39 including 746 metabolic reactions and 673 metabolites, and developed novel strategies to improve the production of valuable metabolites, such as glycogen and ethanol. The simulation results obtained using the metabolic model showed high consistency with experimental results for growth rates under several trophic conditions and growth capabilities on various organic substrates. The metabolic model was further applied to design a metabolic network to improve the autotrophic production of glycogen and ethanol. Decreased flux of reactions related to the TCA cycle and phosphoenolpyruvate reaction were found to improve glycogen production. Furthermore, in silico knockout simulation indicated that deletion of genes related to the respiratory chain, such as NAD(PH dehydrogenase and cytochrome-c oxidase, could enhance ethanol production by using ammonium as a nitrogen source.

  8. Construction of a Genome-Scale Metabolic Model of Arthrospira platensis NIES-39 and Metabolic Design for Cyanobacterial Bioproduction

    Science.gov (United States)

    Yoshikawa, Katsunori; Aikawa, Shimpei; Kojima, Yuta; Toya, Yoshihiro; Furusawa, Chikara; Kondo, Akihiko; Shimizu, Hiroshi

    2015-01-01

    Arthrospira (Spirulina) platensis is a promising feedstock and host strain for bioproduction because of its high accumulation of glycogen and superior characteristics for industrial production. Metabolic simulation using a genome-scale metabolic model and flux balance analysis is a powerful method that can be used to design metabolic engineering strategies for the improvement of target molecule production. In this study, we constructed a genome-scale metabolic model of A. platensis NIES-39 including 746 metabolic reactions and 673 metabolites, and developed novel strategies to improve the production of valuable metabolites, such as glycogen and ethanol. The simulation results obtained using the metabolic model showed high consistency with experimental results for growth rates under several trophic conditions and growth capabilities on various organic substrates. The metabolic model was further applied to design a metabolic network to improve the autotrophic production of glycogen and ethanol. Decreased flux of reactions related to the TCA cycle and phosphoenolpyruvate reaction were found to improve glycogen production. Furthermore, in silico knockout simulation indicated that deletion of genes related to the respiratory chain, such as NAD(P)H dehydrogenase and cytochrome-c oxidase, could enhance ethanol production by using ammonium as a nitrogen source. PMID:26640947

  9. An Untargeted Metabolomics Survey from a Perturbation Model of Nitrogen Transformation in a Tropical Wastewater Community

    DEFF Research Database (Denmark)

    Kirkegaard, Rasmus Hansen; Angel Cokro, Anisa; Umashankar, Shivshankar

    In order to understand metabolic changes occurring during nitrogen transformation in a complex wastewater community, we conducted a metabolome time series study on a volume of freshly sourced, anoxic activated sludge, studying metabolic changes associated with the transition from anoxic to aerobic...... states. We develop analytic procedures for identifying reliable mass features that are modulated over the time, and are significantly correlated with shifts in physiochemical states. Our methods are widely applicable, and point towards to development of an eco-systems biology approach suitable...

  10. S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway.

    Science.gov (United States)

    Frungillo, Lucas; Skelly, Michael J; Loake, Gary J; Spoel, Steven H; Salgado, Ione

    2014-11-11

    Nitrogen assimilation plays a vital role in plant metabolism. Assimilation of nitrate, the primary source of nitrogen in soil, is linked to the generation of the redox signal nitric oxide (NO). An important mechanism by which NO regulates plant development and stress responses is through S-nitrosylation, that is, covalent attachment of NO to cysteine residues to form S-nitrosothiols (SNO). Despite the importance of nitrogen assimilation and NO signalling, it remains largely unknown how these pathways are interconnected. Here we show that SNO signalling suppresses both nitrate uptake and reduction by transporters and reductases, respectively, to fine tune nitrate homeostasis. Moreover, NO derived from nitrate assimilation suppresses the redox enzyme S-nitrosoglutathione Reductase 1 (GSNOR1) by S-nitrosylation, preventing scavenging of S-nitrosoglutathione, a major cellular bio-reservoir of NO. Hence, our data demonstrates that (S)NO controls its own generation and scavenging by modulating nitrate assimilation and GSNOR1 activity.

  11. Nitrogen balancing and xylose addition enhances growth capacity and protein content in Chlorella minutissima cultures.

    Science.gov (United States)

    Freitas, B C B; Esquível, M G; Matos, R G; Arraiano, C M; Morais, M G; Costa, J A V

    2016-10-01

    This study aimed to examine the metabolic changes in Chlorella minutissima cells grown under nitrogen-deficient conditions and with the addition of xylose. The cell density, maximum photochemical efficiency, and chlorophyll and lipid levels were measured. The expression of two photosynthetic proteins, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the beta subunit (AtpB) of adenosine triphosphate synthase, were measured. Comparison of cells grown in medium with a 50% reduction in the nitrogen concentration versus the traditional medium solution revealed that the cells grown under nitrogen-deficient conditions exhibited an increased growth rate, higher maximum cell density (12.7×10(6)cellsmL(-1)), optimal PSII efficiency (0.69) and decreased lipid level (25.08%). This study has taken the first steps toward protein detection in Chlorella minutissima, and the results can be used to optimize the culturing of other microalgae. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Photosynthetic carbon metabolism in freshwater phytoplankton

    International Nuclear Information System (INIS)

    Groeger, A.W.

    1986-01-01

    Photosynthetic carbon metabolism of natural assemblages of freshwater phytoplankton was measured by following the flow of inorganic 14 C into the photosynthetic end products polysaccharide protein, lipid, and soluble metabolites. Data were collected from a wide range of physical, chemical, and trophic conditions in six southern United States reservoirs, with the primary environmental variables of interest being light intensity and nutrient supply. Polysaccharide and protein were consistently the primary products of photosynthetic carbon metabolism, comprising an average of 70% of the total carbon fixation over a wide range of light intensities. Polysaccharide was quantitatively more important at higher light intensities, and protein at lower light intensities, as light intensity varied both with depth within the water column and over diurnal cycles. Polysaccharide synthesis was more variable over the diurnal period than was protein synthesis. Phytoplankton in the downlake epilimnion of Normandy Lake, a central Tennessee reservoir, responded to summer nitrogen (N) deficiency by increasing relative rates of lipid synthesis from 10-15% to 20-25% of the total photosynthetic carbon fixation. Phytoplankton in more nitrogen-sufficient areas of the reservoir maintained lower rates of lipid synthesis throughout the summer. These results document the occurrence in nature of a relationship between N-deficiency and increased lipid synthesis previously observed only in laboratory algal culture studies

  13. Nitrogen-13-labeled ammonia for myocardial imaging

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, W.F.; Fill, H.R.; Harper, P.V.

    1977-01-01

    Cyclotron-produced nitrogen-13 (half-life 10 min), as labeled ammonia (/sup 13/NH/sub 4//sup +/), has been evaluated as a myocardial perfusion imaging agent. The regional myocardial uptake of /sup 13/NH/sub 4//sup +/ has been shown to be proportional to regional tissue perfusion in animal studies. Intravenously administered /sup 13/NH/sub 4//sup +/ is rapidly cleared from the circulation, being extracted by the liver (15 percent), lungs, myocardium (2 percent--4 percent), brain, kidney, and bladder. Myocardial ammonia is metabolized mainly to glutamine via the glutamine synthetase pathway. Pulmonary uptake is substantial, but usually transient, except in smokers where clearance may be delayed. The positron annihilation irradiation (511 keV) of /sup 13/N may be imaged with a scintillation camera, using either a specially designed tungsten collimator or a pinhole collimator. After early technical problems with collimation and the production method of /sup 13/NH/sub 4//sup +/ were overcome, reproducible high quality myocardial images were consistently obtained. The normal myocardial image was established to be of a homogeneous ''doughnut'' configuration. Imaging studies performed in patients with varying manifestations of ischemic and valvular heart disease showed a high incidence of localized perfusion defects, especially in patients with acute myocardial infarction. Sequential studies at short intervals in patients with acute infarction showed correlation between alterations in regional perfusion and the clinical course of the patient. It is concluded that myocardial imaging with /sup 13/NH/sub 4//sup +/ and a scintillation camera provides a valid and noninvasive means of assessing regional myocardial perfusion. This method is especially suitable for sequential studies of acute cardiac patients at short intervals. Coincidence imaging of the 511 keV annihilation irradiation provides a tomographic and potentially quantitative assessment of the

  14. Nitrogen Risk Assessment Model for Scotland: I. Nitrogen leaching

    Directory of Open Access Journals (Sweden)

    S. M. Dunn

    2004-01-01

    Full Text Available The Nitrogen Risk Assessment Model for Scotland (NIRAMS has been developed for prediction of streamwater N concentrations draining from agricultural land in Scotland. The objective of the model is to predict N concentrations for ungauged catchments, to fill gaps in monitoring data and to provide guidance in relation to policy development. The model uses nationally available data sets of land use, soils, topography and meteorology and has been developed within a Geographic Information System (GIS. The model includes modules to calculate N inputs to the land, residual N remaining at the end of the growing season, weekly time-series of leached N and transport of N at the catchment scale. This paper presents the methodology for calculating N balances for different land uses and for predicting the time sequence of N leaching after the end of the growing season. Maps are presented of calculated residual N and N leaching for the whole of Scotland and the spatial variability in N leaching is discussed. The results demonstrate the high variability in N leaching across Scotland. The simulations suggest that, in the areas with greatest residual N, the losses of N are not directly proportional to the amount of residual N, because of their coincidence with lower rainfall. In the companion paper, the hydrological controls on N transport within NIRAMS are described, and results of the full model testing are presented. Keywords: nitrogen, diffuse pollution, agriculture, leaching, land use, model, national, catchment

  15. [Study on the method for the determination of nitric nitrogen, ammoniacal nitrogen and total nitrogen in plant].

    Science.gov (United States)

    Lü, Wei-xian; Ge, Ying; Wu, Jian-zhi; Chang, Jie

    2004-02-01

    This paper reports the determination of three nitrogen states in plants: nitric nitrogen, ammoniacal nitrogen and total nitrogen. The plant sample was digested by the Kjeldathl method with H2SO4 + H2O2. The solution of the sample was determined by three methods: absorption photometric method, indigotic colorimetry, and UV absorption photometric method after K2S2O8 oxidation. By comparing the results, the relationship among the three N states is that the total N = NH4+ + NO3-. Suitable methods were found for the determination of the elements, thus providing a scientific basis for the selection of suitable methods for chemical element analysis in plants.

  16. Seasonal Nitrogen Cycles on Pluto

    Science.gov (United States)

    Hansen, Candice J.; Paige, David A.

    1996-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model was used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters. Volatile transport was confirmed to have a significant effect on Pluto's climate as nitrogen moved around on a seasonal time scale between hemispheres, and sublimed into and condensed out of the atmosphere. Pluto's high obliquity was found to have a significant effect on the distribution of frost on its surface. Conditions that would lead to permanent polar caps on Triton were found to lead to permanent zonal frost bands on Pluto. In some instances, frost sublimed from the middle of a seasonal cap outward, resulting in a "polar bald spot". Frost which was darker than the substrate did not satisfy observables on Pluto, in contrast to our findings for Triton. Bright frost (brighter than the substrate) came closer to matching observables. Atmospheric pressure varied seasonally. The amplitudes, and to a lesser extent the phase, of the variation depended significantly on frost and substrate properties. Atmospheric pressure was found to be determined both by Pluto's distance from the sun and by the subsolar latitude. In most cases two peaks in atmospheric pressure were observed annually: a greater one associated with the sublimation of the north polar cap just as Pluto receded from perihelion, and a lesser one associated with the sublimation of the south polar cap as Pluto approached perihelion. Our model predicted frost-free dark substrate surface temperatures in the 50 to 60 K range, while frost temperatures typically ranged between 30 to 40 K. Temporal changes in frost coverage illustrated by our results, and changes in the viewing geometry of Pluto from the Earth, may be important for interpretation of ground-based measurements of Pluto's thermal emission.

  17. Nitrogen fixation method and apparatus

    Science.gov (United States)

    Chen, H.L.

    1983-08-16

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O[sub 2]/cm promotes the formation of vibrationally excited N[sub 2]. Atomic oxygen interacts with vibrationally excited N[sub 2] at a much quicker rate than unexcited N[sub 2], greatly improving the rate at which NO is formed. 1 fig.

  18. Modeling nitrogen chemistry in combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Miller, James A.; Ruscic, Branko

    2018-01-01

    Understanding of the chemical processes that govern formation and destruction of nitrogen oxides (NOx) in combustion processes continues to be a challenge. Even though this area has been the subject of extensive research over the last four decades, there are still unresolved issues that may limit...... via NNH or N2O are discussed, along with the chemistry of NO removal processes such as reburning and Selective Non-Catalytic Reduction of NO. Each subset of the mechanism is evaluated against experimental data and the accuracy of modeling predictions is discussed....

  19. Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress

    Science.gov (United States)

    Serra, Anne-Antonella; Couée, Ivan; Renault, David; Gouesbet, Gwenola; Sulmon, Cécile

    2015-01-01

    Plant communities are confronted with a great variety of environmental chemical stresses. Characterization of chemical stress in higher plants has often been focused on single or closely related stressors under acute exposure, or restricted to a selective number of molecular targets. In order to understand plant functioning under chemical stress conditions close to environmental pollution conditions, the C3 grass Lolium perenne was subjected to a panel of different chemical stressors (pesticide, pesticide degradation compound, polycyclic aromatic hydrocarbon, and heavy metal) under conditions of seed-level or root-level subtoxic exposure. Physiological and metabolic profiling analysis on roots and shoots revealed that all of these subtoxic chemical stresses resulted in discrete physiological perturbations and complex metabolic shifts. These metabolic shifts involved stressor-specific effects, indicating multilevel mechanisms of action, such as the effects of glyphosate and its degradation product aminomethylphosphonic acid on quinate levels. They also involved major generic effects that linked all of the subtoxic chemical stresses with major modifications of nitrogen metabolism, especially affecting asparagine, and of photorespiration, especially affecting alanine and glycerate. Stress-related physiological effects and metabolic adjustments were shown to be integrated through a complex network of metabolic correlations converging on Asn, Leu, Ser, and glucose-6-phosphate, which could potentially be modulated by differential dynamics and interconversion of soluble sugars (sucrose, trehalose, fructose, and glucose). Underlying metabolic, regulatory, and signalling mechanisms linking these subtoxic chemical stresses with a generic impact on nitrogen metabolism and photorespiration are discussed in relation to carbohydrate and low-energy sensing. PMID:25618145

  20. [Microbial metabolism in typical flooded paddy soils ].

    Science.gov (United States)

    Cai, Yuanfeng; Wu, Yucheng; Wang, Shuwei; Yan, Xiaoyuan; Zhu, Yongguan; Jia, Zhongjun

    2014-09-04

    [OBJECTIVE] The object of this study is to reveal the composition of active microorganism and their metabolic activities in flooded paddy soils with long-term fertilization ( Mineral nitrogen, phosphorus, and potassium, NPK) and without fertilizer (Control check, CK) by environmental transcriptomics. [METHODS] Flooded soil microcosms were incubated in the laboratory for two weeks, then total RNA were extracted from the soil for transcriptome sequencing. Resulting fastq files were uploaded to the Metagenomics Analysis Server (MG-RAST) for taxonomic analysis, gene annotation and function classification. [RESULTS] Transcripts from diverse active microorganism, including bacteria ( > 95% ) , archaea, eukaryotes and viruses, were detected in both flooded paddy soils of CK and NPK treatments. Most of the transcripts (active genes) of bacteria and archaea were derived from Proteobacteria (more than 50% of total bacterial transcripts) and Thaumarchaaeota (about 70% of total archaeal transcripts ) respectively in both treatments. Transcriptional activity of Acidobacteria in NPK treatment paddy soil was significantly higher than that in CK treatment paddy soil. As for other phyla of bacteria and archaea, there were no significant differences of transcriptional activity of them between CK and NPK treatment paddy soils. The highest expressed gene in both CK and NPK treatment paddy soils is ABC transporter encoding gene which related to the transmembrane transport of substances. Based on gene function category of COG (Clusters of Orthologous Genes), Subsystem and KEGG (Kyoto Encyclopedia of Genes and Genomes) database, we found that the main metabolic activities of microorganisms in both CK and NPK treatment paddy soils were related to energy production and conversion, carbohydrate metabolism, protein metabolism and amino acid metabolism, and the dominant KEGG pathways were oxidative phosphorylation and aminoacyl-tRNA biosynthesis. [ CONCLUSION] Composition of active

  1. The nitrogen fertilizer utilization and nitrogen balance by winter wheat in sandy soil

    International Nuclear Information System (INIS)

    Kou Changlin; Wang Hengyu

    2003-01-01

    The effects of different fertilization stage on wheat yield, nitrogen uptake, utilization, residue, distribution and nitrogen balance were studied by potted plant experiment. The results showed that the highest yield obtained appeared in the treatment of topdressing on shooting age when 1/2 nitrogen fertilizer applied as base fertilizer. Topdressing on earning stage reached higher yield than that on regreening stage on the case of lower nitrogen applied. There was no difference between these two treatment if higher nitrogen applied. Nitrogen plant uptake in 1/2 nitrogen as topdressing treatment was significantly higher than that of all as base fertilizer, which mainly because of improved efficiency of nitrogen fertilizer. 31.7%-66.8% of residue nitrogen in soil was distributed in 0-40 cm soil layer after harvest and proportion of residue nitrogen in this layer was increased when nitrogen fertilizer applied later. However, in the treatment of all nitrogen applied as base fertilizer and topdressing on regreening stage, proportion of residue nitrogen in the subsoil was higher than topdressing in later state, which in 80-100 cm depth was even exceeded that in the topsoil

  2. Apple wine processing with different nitrogen contents

    Directory of Open Access Journals (Sweden)

    Aline Alberti

    2011-06-01

    Full Text Available The aim of this work was to evaluate the nitrogen content in different varieties of apple musts and to study the effect of different nitrogen concentrations in apple wine fermentation. The average total nitrogen content in 51 different apples juices was 155.81 mg/L, with 86.28 % of the values above 100 mg/L. The apple must with 59.0, 122.0 and 163.0 mg/L of total nitrogen content showed the maximum population of 2.05x 10(7; 4.42 x 10(7 and 8.66 x 10(7 cell/mL, respectively. Therefore, the maximum fermentation rates were dependent on the initial nitrogen level, corresponding to 1.4, 5.1 and 9.2 g/L.day, respectively. The nitrogen content in the apple musts was an important factor of growth and fermentation velocity.

  3. AMMI analysis of nitrogen harvest index in bread wheat

    OpenAIRE

    Gorjanović Biljana M.; Kraljević-Balalić Marija M.

    2010-01-01

    Nitrogen harvest index - NHI is a measure of efficiency of nitrogen translocation from vegetative organs to grain. The goal of this paper is to investigate variability and stability of nitrogen harvest index of twelve bread wheat genotypes, on three nitrogen levels. ANOVA showed that nitrogen harvest index was mostly under influence of the year x genotype interaction, year of investigation and genotype, and in the smallest amount of the nitrogen rate. Increasing doses of nitrogen did no...

  4. Dynamics of Nitric Oxide and Nitrous Oxide Emission during Nitrogen Conversion Processes

    OpenAIRE

    Kampschreur, M.J.

    2010-01-01

    Nitric oxide (NO) and nitrous oxide (N2O) emissions can be a serious threat to the environment. Rising levels of N2O in the atmosphere contribute to global warming and destruction of the ozone layer. This thesis describes an investigation on the emission of NO and N2O during nitrogen conversion processes. Emissions were measured at wastewater treatment plants and at lab-scale reactors to investigate the underlying mechanisms. Metabolic and kinetic models were used to identify pathways leading...

  5. Identification of gene fragments related to nitrogen deficiency in Eichhornia crassipes (Pontederiaceae).

    Science.gov (United States)

    Fu, Minghui; Jiang, Lihua; Li, Yuanmei; Yan, Guohua; Zheng, Lijun; Jinping, Peng

    2014-12-01

    Eichhornia crassipes is an aquatic plant native to the Amazon River Basin. It has become a serious weed in freshwater habitats in rivers, lakes and reservoirs both in tropical and warm temperate areas worldwide. Some research has stated that it can be used for water phytoremediation, due to its strong assimilation of nitrogen and phosphorus, and the accumulation of heavy metals, and its growth and spread may play an important role in environmental ecology. In order to explore the molecular mechanism of E. crassipes to responses to nitrogen deficiency, we constructed forward and reversed subtracted cDNA libraries for E. crassipes roots under nitrogen deficient condition using a suppressive subtractive hybridization (SSH) method. The forward subtraction included 2,100 clones, and the reversed included 2,650 clones. One thousand clones were randomly selected from each library for sequencing. About 737 (527 unigenes) clones from the forward library and 757 (483 unigenes) clones from the reversed library were informative. Sequence BlastX analysis showed that there were more transporters and adenosylhomocysteinase-like proteins in E. crassipes cultured in nitrogen deficient medium; while, those cultured in nitrogen replete medium had more proteins such as UBR4-like e3 ubiquitin-protein ligase and fasciclin-like arabinogalactan protein 8-like, as well as more cytoskeletal proteins, including actin and tubulin. Cluster of Orthologous Group (COG) analysis also demonstrated that in the forward library, the most ESTs were involved in coenzyme transportation and metabolism. In the reversed library, cytoskeletal ESTs were the most abundant. Gene Ontology (GO) analysis categories demonstrated that unigenes involved in binding, cellular process and electron carrier were the most differentially expressed unigenes between the forward and reversed libraries. All these results suggest that E. crassipes can respond to different nitrogen status by efficiently regulating and controlling

  6. Nitrogen cycling in Yellowstone National Park thermal features: using gene expression to reveal ecological function

    Science.gov (United States)

    Lafree, S. T.; Burton, M. S.; Meyer-Dombard, D. R.

    2010-12-01

    Studies of biodiversity, metabolic strategies, and functional ecology in modern hydrothermal systems have the potential to provide insight into the metabolism and evolution of life. The geochemical and microbial diversity present at Yellowstone National Park (YNP), Wyoming, USA, makes it an ideal place for studying the functional ecology and metabolic processes of prokaryotic organisms. While much work in terrestrial hydrothermal features is focused on phylogenetic and geochemical analyses, a few recent investigations in YNP and other hydrothermal areas have focused on “gene hunting”: screening thermal sediment and biofilm samples for the presence of genes utilized in specific metabolic processes [2, 3, 6, 7, 8]. Although research has evaluated and confirmed the presence of many of these genes in various thermophilic microbial communities, the existence of a gene in the DNA of an organism does not verify its use, and few researchers have done work to confirm the utilization (expression) of the genes discovered in thermal samples [1, 6, 7, 8]. Disequilibrium between reduced hydrothermal fluid of YNP thermal features and the atmosphere provides a copious source of potential energy to be harnessed through microbial metabolic processes, with NO3- and NO2- serving as the preferred electron acceptors and top energy sources after O2 [4, 5]. Consequentially, nitrogen cycling likely plays a vital role in microbial metabolic processes, as well as nutrient availability. This study explores the presence and utilization of functional genes that are key in steps of the nitrogen cycle, such as nitrogen fixation (NifH), denitrification (nirKS), and ammonia oxidation (amoA). Both DNA and RNA were extracted from thermal sediment and streamer biofilm communities collected in the chemosynthetic zone of various thermal features of the Sentinel Meadows Group in Lower Geyser Basin, YNP. Extracted DNA and reverse transcribed RNA (cDNA) were amplified using the polymerase chain

  7. Liquid nitrogen ingestion followed by gastric perforation.

    Science.gov (United States)

    Berrizbeitia, Luis D; Calello, Diane P; Dhir, Nisha; O'Reilly, Colin; Marcus, Steven

    2010-01-01

    Ingestion of liquid nitrogen is rare but carries catastrophic complications related to barotrauma to the gastrointestinal tract. We describe a case of ingestion of liquid nitrogen followed by gastric perforation and respiratory insufficiency and discuss the mechanism of injury and management of this condition. Liquid nitrogen is widely available and is frequently used in classroom settings, in gastronomy, and for recreational purposes. Given the potentially lethal complications of ingestion, regulation of its use, acquisition, and storage may be appropriate.

  8. Nitrogen uptake and assimilation by corn roots

    International Nuclear Information System (INIS)

    Yoneyama, Tadakatsu; Akiyama, Yoko; Kumazawa, Kikuo

    1977-01-01

    The site of nitrogen uptake in the apical root zone of corn was experimentally investigated. Two experiments were performed. The one is to see the assimilation of nitrate and ammonium and the effects of low temperature on it. The 4-day-old roots were treated with 15 N-labelled inorganic nitrogen of 20 ppm N in 5 x 10 -4 M CaSO 4 solution at 30 deg. C and 0 deg. C. The other is to see the nitrogen uptake at apical root zone and the utilization of newly absorbed nitrogen at the root top. The 4-day-old roots were transferred into 5 x 10 -4 M CaSO 4 solution containing 15 N-labelled ammonium nitrate of 40 ppm N. As a result, the effect of low temperature on the nitrogen uptake appeared to be more drastic in the case of nitrate than ammonium. The 15 N content of amino acids indicates that ammonium is assimilated into amino acids even at 0 deg. C, but nitrate is not. The ammonium nitrogen seemed to be absorbed at both cell dividing and elongating zones. On the other hand, nitrate nitrogen seemed to be strongly absorbed at cell elongating zone. The nitrogen in the apical part may be supplied not only by direct absorption but also by translocation from the basal part. The clear difference was found in the utilization of nitrate and ammonium nitrogen at the root top when the root was elongating. This may be due to the difference of assimilation products of inorganic nitrogen. Newly absorbed ammonium nitrogen is more utilizable for the growth of root top than nitrate nitrogen. (Iwakiri, K.)

  9. Urine features used to survey nitrogen excretion in rabbits

    Directory of Open Access Journals (Sweden)

    L. Gasco

    2014-09-01

    Full Text Available The aim of this work was to estimate liquid and faecal nitrogen (N excretion from rabbit herds using 2 clinical analyses of urine samples (urinary urea, UU and creatininury, CU combined with the daily nitrogen intake (DNI and metabolic weight of growing and lactating rabbit does. In the framework of 6 experiments, 81 growing rabbits, divided into 17 groups, weighing from 1.8 to 2.8 kg, and 18 multiparous lactating does, divided into 2 groups, were reared in metabolic cages. Five experimental groups of growing rabbits and one of lactating does received diets with lower crude protein content (from –8 to –19% less. The urine was collected (4-d and 1-d collection period for the growing rabbits and lactating does, respectively and the daily weight (DUW: on av. 188±66 g/d, urinary urea (UU: 1012±463 mg/dL and creatininury concentrations (CU: 46±25 mg/dL were recorded. Lactating does showed higher DNI (+127%; P<0.001, which was excreted more in the faeces (DFN: +141%; P<0.001 than in the urine (DUN: +35%; P=0.36, compared to the growing rabbits on a daily per-capita basis. Consequently, the faecal-N to urine N ratio was higher for the does compared to growing rabbits (F/U: +93%; P<0.001. The percentage of retained N (PRN for the lactating does and growing rabbits was not different (50.8 vs. 56.6%; P=0.31. Forward regression models were used to predict the daily nitrogen excretion. Successful r-square fit results were obtained (P<0.005 for the per-capita daily quantity of urinary N (DUN: R2=0.79 and faecal N (DFN: 0.93, mainly depending on DNI. The individual DNI was accurately fitted (R2=0.994; standard error=0.03, considering the 2 model estimates of the DUN and of the DFN, the metabolic weight and the type of animal. Relativising the N excreta as a percentage of the DNI, or as a ratio of the faecal –to urinary–N, led to less stable results of the regression models. The daily N intake, combined with the collection of urine

  10. Substantial nitrogen pollution embedded in international trade

    Science.gov (United States)

    Oita, Azusa; Malik, Arunima; Kanemoto, Keiichiro; Geschke, Arne; Nishijima, Shota; Lenzen, Manfred

    2016-02-01

    Anthropogenic emissions of reactive nitrogen to the atmosphere and water bodies can damage human health and ecosystems. As a measure of a nation’s contribution to this potential damage, a country’s nitrogen footprint has been defined as the quantity of reactive nitrogen emitted during the production, consumption and transportation of commodities consumed within that country, whether those commodities are produced domestically or internationally. Here we use global emissions databases, a global nitrogen cycle model, and a global input-output database of domestic and international trade to calculate the nitrogen footprints for 188 countries as the sum of emissions of ammonia, nitrogen oxides and nitrous oxide to the atmosphere, and of nitrogen potentially exportable to water bodies. Per-capita footprints range from under 7 kg N yr-1 in some developing countries to over 100 kg N yr-1 in some wealthy nations. Consumption in China, India, the United States and Brazil is responsible for 46% of global emissions. Roughly a quarter of the global nitrogen footprint is from commodities that were traded across country borders. The main net exporters have significant agricultural, food and textile exports, and are often developing countries, whereas important net importers are almost exclusively developed economies. We conclude that substantial local nitrogen pollution is driven by demand from consumers in other countries.

  11. The Bevatron liquid nitrogen circulation system

    International Nuclear Information System (INIS)

    Hunt, D.; Stover, G.

    1987-03-01

    A nitrogen liquefier and computer controlled valving system have been added to the Bevatron cryoliner vacuum system to cut operating costs by reducing liquid nitrogen consumption. The computer and interface electronic systems, which control the temperatures of twenty-eight liquid nitrogen circuits, have been chosen and designed to operate in the Bevatron's pulsating magnetic field. The nitrogen exhaust is routed back to a liquefier, of about five kilowatt capacity, liquefied, and rerouted through the cooling circuits. A description of the system and operating results are presented

  12. Characterization of organic nitrogen in IBCSP coals

    Energy Technology Data Exchange (ETDEWEB)

    Kruge, M.A.

    1991-01-01

    The overall objective of this study was to determine the content and distribution of organic nitrogen in a series of IBCSP coals and their isolated macerals. The specific objectives were: to determine the bulk nitrogen contents for coals, isolated macerals, oxidation products and residues, solvent extracts and their liquid chromatographic fractions, and pyrolyzates; to determine the distribution of organic nitrogen in all coal derivatives enumerated in Objective 1 which are Gas Chromatography (GC)-amenable. This will be accomplished by GC-Thermionic Specific Detectors; to determine the molecular structure of the major nitrogen compounds detected in Objective 2, using mass spectrometry.

  13. Nitrogen and argon doped zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Silva, C; Costa, A R G; Cruz, M M; Borges, R P; Godinho, M [Centro de Fisica da Materia Condensada da Universidade de Lisboa, Ed C8, Campo Grande, 1749-016 Lisboa (Portugal); Da Silva, R C; Alves, L C [Laboratorio de Feixe de Ioes, Departamento Fisica, Instituto Tecnologico e Nuclear, Estrada Nacional 10, 2686-953 Sacavem (Portugal)

    2010-09-01

    In this work argon and nitrogen were implanted into ZnO single crystals in order to compare the influence of these non-magnetic elements in the magnetic and electrical behaviour of zinc oxide. The results indicate that both nitrogen and argon implantations induce magnetic defects in ZnO, although these do not remain stable upon annealing. The comparison between the electrical behaviour of argon and nitrogen implanted crystals indicates that mobile charge carriers exist in the argon implanted sample after annealing, but were not detected in the nitrogen implanted sample.

  14. Determination of nitride nitrogen in irradiated materials

    International Nuclear Information System (INIS)

    Maez, M.A.

    1979-03-01

    A method for determining nitride nitrogen was adapted for analyses of irradiated samples in a hot cell. Sections of stainless steel cladding material or fuel are dissolved remotely using various combinations of H 2 SO 4 , HCl, and HF. The nitrogen is separated from the highly radioactive sample solution by steam distillation using the Kjeldahl method. The collected distillates are moved from the hot cell to an open-front box where they are treated with Nessler's reagents for spectrophotometric measurement. The absorbance is measured at a 410-nm wavelength. The standard deviation for measuring 50 μg of nitrogen is < 2 μg of nitrogen using this method

  15. Glutamate dehydrogenase and glutamine synthetase are regulated in response to nitrogen availability in Myocbacterium smegmatis

    Directory of Open Access Journals (Sweden)

    van Helden Paul

    2010-05-01

    Full Text Available Abstract Background The assimilation of nitrogen is an essential process in all prokaryotes, yet a relatively limited amount of information is available on nitrogen metabolism in the mycobacteria. The physiological role and pathogenic properties of glutamine synthetase (GS have been extensively investigated in Mycobacterium tuberculosis. However, little is known about this enzyme in other mycobacterial species, or the role of an additional nitrogen assimilatory pathway via glutamate dehydrogenase (GDH, in the mycobacteria as a whole. We investigated specific enzyme activity and transcription of GS and as well as both possible isoforms of GDH (NAD+- and NADP+-specific GDH under varying conditions of nitrogen availability in Mycobacterium smegmatis as a model for the mycobacteria. Results It was found that the specific activity of the aminating NADP+-GDH reaction and the deaminating NAD+-GDH reaction did not change appreciably in response to nitrogen availability. However, GS activity as well as the deaminating NADP+-GDH and aminating NAD+-GDH reactions were indeed significantly altered in response to exogenous nitrogen concentrations. Transcription of genes encoding for GS and the GDH isoforms were also found to be regulated under our experimental conditions. Conclusions The physiological role and regulation of GS in M. smegmatis was similar to that which has been described for other mycobacteria, however, in our study the regulation of both NADP+- and NAD+-GDH specific activity in M. smegmatis appeared to be different to that of other Actinomycetales. It was found that NAD+-GDH played an important role in nitrogen assimilation rather than glutamate catabolism as was previously thought, and is it's activity appeared to be regulated in response to nitrogen availability. Transcription of the genes encoding for NAD+-GDH enzymes seem to be regulated in M. smegmatis under the conditions tested and may contribute to the changes in enzyme activity

  16. Nitrogen Source Stabilization of Quorum Sensing in the Pseudomonas aeruginosa Bioaugmentation Strain SD-1.

    Science.gov (United States)

    Wang, Mei-Zhen; Lai, Bai-Min; Dandekar, Ajai A; Yang, Yu-Sheng; Li, Na; Yin, Jun; Shen, Dong-Sheng

    2017-08-15

    Pseudomonas aeruginosa SD-1 is efficient at degrading aromatic compounds and can therefore contribute to the bioremediation of wastewater. P. aeruginosa uses quorum sensing (QS) to regulate the production of numerous secreted "public goods." In wastewater bioaugmentation applications, there are myriad nitrogen sources, and we queried whether various nitrogen sources impact the stabilities of both QS and the bacterial populations. In a laboratory strain of P. aeruginosa , PAO1, the absence of a nitrogen source has been shown to destabilize these populations through the emergence of QS mutant "cheaters." We tested the ability of SD-1 to grow in casein broth, a condition that requires QS for growth, when the nitrogen source with either NH 4 Cl, NaNO 3 , or NaNO 2 or with no added nitrogen source. There was great variability in susceptibility to invasion by QS mutant cheaters and, by extension, the stability of the SD-1 population. When grown with NH 4 Cl as an extra nitrogen source, no population collapse was observed; by contrast, two-thirds of cultures grown in the presence of NaNO 2 collapsed. In the populations that collapsed, the frequency of social cheaters exceeded 40%. NaNO 3 and NaNO 2 directly favor QS mutants of P. aeruginosa SD-1. Although the mechanism by which these nitrogen sources act is not clear, these data indicate that the metabolism of nitrogen can affect the stability of bacterial populations, an important observation for continuing industrial applications with this species. IMPORTANCE Bioaugmentation as a method to help remediate wastewater pollutant streams holds significant potential to enhance traditional methods of treatment. Addition of microbes that can catabolize organic pollutants can be an effective method to remove several toxic compounds. Such bioaugmented strains of bacteria have been shown to be susceptible to competition from the microbiota that are present in wastewater streams, limiting their potential effectiveness. Here, we

  17. Effects of split nitrogen fertilization on post-anthesis photoassimilates, nitrogen use efficiency and grain yield in malting barley

    DEFF Research Database (Denmark)

    Cai, Jian; Jiang, Dong; Liu, Fulai

    2011-01-01

    photosynthesis after anthesis, dry matter accumulation and assimilates remobilization, nitrogen use efficiency and grain yield to fraction of topdressed nitrogen treatments were investigated in malting barley. Net photosynthetic rate of the penultimate leaf, leaf area index and light extinction coefficient...... and agronomic nitrogen use efficiencies. The enhanced nitrogen use efficiency was corresponding to the improved photosynthetic nitrogen-use efficiency in the leaves at fraction of topdressed nitrogen of 30%. In conclusion, appropriate fraction of topdressed nitrogen application on malting barley improved...

  18. DREAMS of metabolism.

    Science.gov (United States)

    Soh, Keng Cher; Hatzimanikatis, Vassily

    2010-10-01

    Metabolic networks have been studied for several decades, and sophisticated computational frameworks are needed to augment experimental approaches to harness these complex networks. BNICE (Biochemical Network Integrated Computational Explorer), a computational approach for the discovery of novel biochemical pathways that is based on biochemical transformations, overcomes many of the current limitations. BNICE and similar frameworks can be used in several different areas: (i) 'Design' of novel pathways for metabolic engineering; (ii) 'Retrosynthesis' of metabolic compounds; (iii) 'Evolution' analysis between metabolic pathways of different organisms; (iv) 'Analysis' of metabolic pathways; (v) 'Mining' of omics data; and (vi) 'Selection' of targets for enzyme engineering. Here, we discuss the issues and challenges in building such frameworks as well as the gamut of applications in biotechnology, metabolic engineering and synthetic biology. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. [Menopause and metabolic syndrome].

    Science.gov (United States)

    Meirelles, Ricardo M R

    2014-03-01

    The incidence of cardiovascular disease increases considerably af