WorldWideScience

Sample records for synthesized tio2 nanotubes

  1. An innovative approach to synthesize highly-ordered TiO2 nanotubes.

    Science.gov (United States)

    Isimjan, Tayirjan T; Yang, D Q; Rohani, Sohrab; Ray, Ajay K

    2011-02-01

    An innovative route to prepare highly-ordered and dimensionally controlled TiO2 nanotubes has been proposed using a mild sonication method. The nanotube arrays were prepared by the anodization of titanium in an electrolyte containing 3% NH4F and 5% H2O in glycerol. It is demonstrated that the TiO2 nanostructures has two layers: the top layer is TiO2 nanowire and underneath is well-ordered TiO2 nanotubes. The top layer can easily fall off and form nanowires bundles by implementing a mild sonication after a short annealing time. We found that the dimensions of the TiO2 nanotubes were only dependent on the anodizing condition. The proposed technique may be extended to fabricate reproducible well-ordered TiO2 nanotubes with large area on other metals.

  2. High pressure synthesis of amorphous TiO2 nanotubes

    Directory of Open Access Journals (Sweden)

    Quanjun Li

    2015-09-01

    Full Text Available Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD method. The starting anatase structure is stable up to ∼20GPa, and transforms into a high-density amorphous (HDA form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM study. In addition, the bulk modulus (B0 = 158 GPa of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa. We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  3. Photocatalytic decouloration of malachite green dye by application of TiO2 nanotubes

    International Nuclear Information System (INIS)

    Prado, Alexandre G.S.; Costa, Leonardo L.

    2009-01-01

    The nanotubes of titania were synthesized in a hydrothermal system and characterized by scanning electronic microscopy (SEM), FT-IR, FT-Raman, and surface charge density by surface area analyzer. These nanomaterials were applied to photocatalyse malachite green dye degradation. Photodegradation capacity of TiO 2 nanotubes was compared to TiO 2 anatase photoactivity. Malachite dye was completely degraded in 75 and 105 min of reaction photocatalysed by TiO 2 nanotubes and TiO 2 anatase, respectively. Catalysts displayed high photodegradation activity at pH 4. TiO 2 nanotubes were easily recycled whereas the reuse of TiO 2 anatase was not effective. Nanotubes maintained 80% of their activity after 10 catalytic cycles and TiO 2 anatase presented only 8% of its activity after 10 cycles.

  4. Electrochemically synthesized visible light absorbing vertically aligned N-doped TiO2 nanotube array films

    International Nuclear Information System (INIS)

    Antony, Rajini P.; Mathews, Tom; Ajikumar, P.K.; Krishna, D. Nandagopala; Dash, S.; Tyagi, A.K.

    2012-01-01

    Graphical abstract: Display Omitted Highlights: ► Single step electrochemical synthesis of N-doped TiO 2 nanotube array films. ► Effective substitutional N-doping achieved. ► Different N-concentrations were achieved by varying the N-precursor concentration in the electrolyte. ► Visible light absorption observed at high N-doping. -- Abstract: Visible light absorbing vertically aligned N-doped anatase nanotube array thin films were synthesized by anodizing Ti foils in ethylene glycol + NH 4 F + water mixture containing urea as nitrogen source. Different nitrogen concentrations were achieved by varying the urea content in the electrolyte. The structure, morphology, composition and optical band gap of the nanotube arrays were determined by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy (XPS) and diffuse reflectance spectroscopy, respectively. The substitution of O 2− ions by N 3− ions in the anion sublattice as well as the formulae of the doped samples was confirmed from the results of XPS. The optical band gap of the nanotube arrays was found to decrease with N-concentration. The sample with the highest concentration corresponding to the formula TiO 1.83 N 0.14 showed two regions in the Tauc's plot indicating the presence of interband states.

  5. Microstructure and antibacterial property of in situ TiO(2) nanotube layers/titanium biocomposites.

    Science.gov (United States)

    Cui, C X; Gao, X; Qi, Y M; Liu, S J; Sun, J B

    2012-04-01

    The TiO(2) nanotube layer was in situ synthesized on the surface of pure titanium by the electrochemical anodic oxidation. The diameter of nano- TiO(2) nanotubes was about 70~100 nm. The surface morphology and phase compositions of TiO(2) nanotube layers were observed and analyzed using the scanning electron microscope (SEM). The important processing parameters, including anodizing voltage, reaction time, concentration of electrolyte, were optimized in more detail. The photocatalytic activity of the nano- TiO(2) nanotube layers prepared with optimal conditions was evaluated via the photodegradation of methylthionine in aqueous solution. The antibacterial property of TiO(2) nanotube layers prepared with optimal conditions was evaluated by inoculating Streptococcus mutans on the TiO(2) nanotube layers in vitro. The results showed that TiO(2) nanotube layers/Ti biocomposites had very good antibacterial activity to resist Streptococcus mutans. As a dental implant biomaterial, in situ TiO(2) nanotube layer/Ti biocomposite has better and wider application prospects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Application of nitrogen-doped TiO2 nano-tubes in dye-sensitized solar cells

    DEFF Research Database (Denmark)

    Tran, Vy Anh; Thinh Troung, Trieu; Pham Phan, Thu Anh

    2017-01-01

    Our research aimed to improve the overall energy conversion efficiency of DSCs by applying nitrogen-doped TiO2 nano-tubes (N-TNT) for the preparation of DSCs photo-anodes. The none-doped TiO2 nano-tubes (TNTs) were synthesized by alkaline hydrothermal treatment of Degussa P25 TiO2 particles in 10...

  7. Photoelectrocatalytic properties of Ag nanoparticles loaded TiO2 nanotube arrays prepared by pulse current deposition

    International Nuclear Information System (INIS)

    Xie Kunpeng; Sun Lan; Wang Chenglin; Lai Yuekun; Wang Mengye; Chen Hongbo; Lin Changjian

    2010-01-01

    A pulse current deposition technique was adopted to construct highly dispersed Ag nanoparticles on TiO 2 nanotube arrays which were prepared by the electrochemical anodization. The morphology, crystallinity, elemental composition, and UV-vis absorption of Ag/TiO 2 nanotube arrays were characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and diffuse reflectance spectra (DRS). In particular, the photoelectrochemical properties and photoelectrocatalytic activity under UV light irradiation and the photocatalytic activity under visible light irradiation for newly synthesized Ag/TiO 2 nanotube arrays were investigated. The maximum incident photon to charge carrier efficiency (IPCE) value of Ag/TiO 2 nanotube arrays was 51%, much higher than that of pure TiO 2 nanotube arrays. Ag/TiO 2 nanotube arrays exhibited higher photocatalytic activities than the pure TiO 2 nanotube arrays under both UV and visible light irradiation. The photoelectrocatalytic activity of Ag/TiO 2 nanotube arrays under UV light irradiation was 1.6-fold enhancement compared with pure TiO 2 nanotube arrays. This approach can be used in synthesizing various metal-loaded nanotube arrays materials.

  8. Improving the Osteoblast Cell Adhesion on Electron Beam Controlled TiO2 Nanotubes

    Directory of Open Access Journals (Sweden)

    Sung Wook Yoon

    2014-01-01

    Full Text Available Here we investigate the osteogenesis and synostosis processes on the surface-modified TiO2 nanotubes via electron beam irradiation. The TiO2 nanotubes studied were synthesized by anodization process under different anodizing voltage. For the anodization voltage of 15, 20, and 25 V, TiO2 nanotubes with diameters of 59, 82, and 105 nm and length of 115, 276, and 310 nm were obtained, respectively. MC3T3-E1 osteoblast cell line was incubated on the TiO2 nanotubes to monitor the change in the cell adhesion before and after the electron beam irradiation. We observe that the electron beam irradiation affects the number of surviving osteoblast cells as well as the cultivation time. In particular, the high adhesion rate of 155% was obtained when the osteoblast cells were cultivated for 2 hours on the TiO2 nanotube, anodized under 20 V, and irradiated with 5,000 kGy of electron beam.

  9. Photoelectrolysis of water using heterostructural composite of TiO2 nanotubes and nanoparticles

    International Nuclear Information System (INIS)

    Das, Prajna P; Mohapatra, Susanta K; Misra, Mano

    2008-01-01

    Efficient photoelectrolysis of water to generate hydrogen (H 2 ) can be carried out by designing photocatalysts with good absorption as well as charge transport properties. One dimensional (1D), self-organized titania (TiO 2 ) nanotubes are known to have excellent charge transport properties and TiO 2 nanoparticles (NPs) are good for better photon absorption. This paper describes the synthesis of a composite photocatalyst combining the above two properties of TiO 2 nanocomposites with different morphologies. TiO 2 NPs (5-9 nm nanocrystals form 500-700 nm clusters) have been synthesized from TiCl 4 precursor on TiO 2 nanotubular arrays (∼80 nm diameter and ∼550 nm length) synthesized by the sonoelectrochemical anodization method. This TiO 2 nanotube-nanoparticle composite photoanode has enabled obtaining of enhanced photocurrent density (2.2 mA cm -2 ) as compared with NTs (0.9 mA cm -2 ) and NPs (0.65 mA cm -2 ) alone.

  10. Synthesis of highly ordered TiO2 nanotube in malonic acid solution by anodization.

    Science.gov (United States)

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2008-10-01

    We synthesized TiO2 nanotube array by anodizing in a solution of malonic acid (HOOCCH2COOH) and NH4F, and analyzed the morphology of the nanotube using scanning electron microscopy (SEM). The morphology of TiO2 nanotube was largely affected by anodizing time, anodizing voltage, and malonic acid concentration. With increasing the anodizing voltage from 5 V to 20 V, the diameter of TiO2 nanotube was increased from about 20 nm to 110 nm and its length from about 10 nm to 700 nm. In addition, the length of TiO2 nanotube was increased with increasing anodizing time up to 6 h at 20 V. We obtained the longest and the most highly ordered nanotube structure when anodizing Ti in a solution of 0.5 wt% NH4F and 1 M malonic acid at 20 V for 6 h.

  11. Synthesis of Fe2O3/TiO2 nanorod-nanotube arrays by filling TiO2 nanotubes with Fe

    International Nuclear Information System (INIS)

    Mohapatra, Susanta K; Banerjee, Subarna; Misra, Mano

    2008-01-01

    Synthesis of hematite (α-Fe 2 O 3 ) nanostructures on a titania (TiO 2 ) nanotubular template is carried out using a pulsed electrodeposition technique. The TiO 2 nanotubes are prepared by the sonoelectrochemical anodization method and are filled with iron (Fe) by pulsed electrodeposition. The Fe/TiO 2 composite is then annealed in an O 2 atmosphere to convert it to Fe 2 O 3 /TiO 2 nanorod-nanotube arrays. The length of the Fe 2 O 3 inside the TiO 2 nanotubes can be tuned from 50 to 550 nm by changing the deposition time. The composite material is characterized by scanning electron microscopy, transmission electron microscopy and diffuse reflectance ultraviolet-visible studies to confirm the formation of one-dimensional Fe 2 O 3 /TiO 2 nanorod-nanotube arrays. The present approach can be used for designing variable one-dimensional metal oxide heterostructures

  12. Plasma-induced synthesis of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation

    Science.gov (United States)

    Su, Nan; Hu, Xiulan; Zhang, Jianbo; Huang, Huihong; Cheng, Jiexu; Yu, Jinchen; Ge, Chao

    2017-03-01

    A Pt/C/TiO2 nanotube composite catalyst was successfully prepared for enhanced methanol electro-oxidation. Pt nanoparticles with a particle size of 2 nm were synthesized by plasma sputtering in water, and anatase TiO2 nanotubes with an inner diameter of approximately 100 nm were prepared by a simple two-step anodization method and annealing process. Field-emission scanning electron microscopy images indicated that the different morphologies of TiO2 synthesized on the surface of Ti foils were dependent on the different anodization parameters. The electrochemical performance of Pt/C/TiO2 catalysts for methanol oxidation showed that TiO2 nanotubes were more suitable for use as Pt nanoparticle support materials than irregular TiO2 short nanorods due to their tubular morphology and better electronic conductivity. X-ray photoelectron spectroscopy characterization showed that the binding energies of the Pt 4f of the Pt/C/TiO2 nanotubes exhibited a slightly positive shift caused by the relatively strong interaction between Pt and the TiO2 nanotubes, which could mitigate the poisoning of the Pt catalyst by COads, and further enhance the electrocatalytic performance. Thus, the as-obtained Pt/C/TiO2 nanotubes composites may become a promising catalyst for methanol electro-oxidation.

  13. Self-Assembled TiO2 Nanotube Arrays with U-Shaped Profile by Controlling Anodization Temperature

    Directory of Open Access Journals (Sweden)

    Jingfei Chen

    2010-01-01

    Full Text Available TiO2 nanotube arrays with uniform diameter from top to bottom were fabricated. The synthesizing approach is based on the investigation of the influence of electrolyte temperature on the tube diameter. We found that the inner diameter of the tubes increased with the electrolyte temperature. Accordingly, we improved the tube profile from the general V shape to U shape by raising the electrolyte temperature gradually. This is a simple and fast approach to fabricate uniform TiO2 nanotubes in diameter. The improved TiO2 nanotube arrays may show better properties and have broad potential applications.

  14. Study of TiO2 nanotubes as an implant application

    International Nuclear Information System (INIS)

    Hazan, Roshasnorlyza; Sreekantan, Srimala; Mydin, Rabiatul Basria S. M. N.; Mat, Ishak; Abdullah, Yusof

    2016-01-01

    Vertically aligned TiO 2 nanotubes have become the primary candidates for implant materials that can provide direct control of cell behaviors. In this work, 65 nm inner diameters of TiO 2 nanotubes were successfully prepared by anodization method. The interaction of bone marrow stromal cells (BMSC) in term of cell adhesion and cell morphology on bare titanium and TiO 2 nanotubes is reported. Field emission scanning electron microscopy (FESEM) analysis proved interaction of BMSC on TiO 2 nanotubes structure was better than flat titanium (Ti) surface. Also, significant cell adhesion on TiO 2 nanotubes surface during in vitro study revealed that BMSC prone to attach on TiO 2 nanotubes. From the result, it can be conclude that TiO 2 nanotubes are biocompatible to biological environment and become a new generation for advanced implant materials

  15. Photoelectrochemical oxidation of ibuprofen via Cu_2O-doped TiO_2 nanotube arrays

    International Nuclear Information System (INIS)

    Sun, Qiannan; Peng, Yen-Ping; Chen, Hanlin; Chang, Ken-Lin; Qiu, Yang-Neng; Lai, Shiau-Wu

    2016-01-01

    Highlights: • A p–n junction material was synthesized to enhance photocatalytic ability. • Cu_2O-doped TiO_2 nanotube arrays works as a photoanode in a PEC system. • Recombination of photo-generated holes and electrons were greatly reduced. • Synergetic effect was quantified in PEC degradation. • Recombination of photogenerated holes and electrons was greatly enhanced. - Abstract: A p–n junction based Cu_2O-doped TiO_2 nanotube arrays (Cu_2O-TNAs) were synthesized and used as a working anode in a photoelectrochemical (PEC) system. The results revealed that the Cu_2O-TNAs were dominated by the anatase phase and responded significantly to visible light. XPS analyses indicated that with an amount of 24.79% Cu doping into the structure, the band gap of Cu_2O-TNAs was greatly reduced. SEM images revealed that the supported TiO_2 nanotubes had diameters of approximately 80 nm and lengths of about 2.63 μm. Upon doping with Cu_2O, the TiO_2 nanotubes maintained their structural integrity, exhibiting no significant morphological change, favoring PEC applications. Under illumination, the photocurrent from Cu_2O/TNAs was 2.4 times larger than that from TNAs, implying that doping with Cu_2O significantly improved electron mobility by reducing the rate of recombination of electron-hole pairs. The EIS and Bode plot revealed that the estimated electron lifetimes, τ_e_l, of TNAs and Cu_2O/TNAs were 6.91 and 26.26 ms, respectively. The efficiencies of degradation of Ibuprofen by photoelectrochemical, photocatalytic (PC), electrochemical (EC) and photolytic (P) methods were measured.

  16. Room temperature alcohol sensing by oxygen vacancy controlled TiO2 nanotube array

    International Nuclear Information System (INIS)

    Hazra, A.; Dutta, K.; Bhowmik, B.; Bhattacharyya, P.; Chattopadhyay, P. P.

    2014-01-01

    Oxygen vacancy (OV) controlled TiO 2 nanotubes, having diameters of 50–70 nm and lengths of 200–250 nm, were synthesized by electrochemical anodization in the mixed electrolyte comprising NH 4 F and ethylene glycol with selective H 2 O content. The structural evolution of TiO 2 nanoforms has been studied by field emission scanning electron microscopy. Variation in the formation of OVs with the variation of the structure of TiO 2 nanoforms has been evaluated by photoluminescence and X-ray photoelectron spectroscopy. The sensor characteristics were correlated to the variation of the amount of induced OVs in the nanotubes. The efficient room temperature sensing achieved by the control of OVs of TiO 2 nanotube array has paved the way for developing fast responding alcohol sensor with corresponding response magnitude of 60.2%, 45.3%, and 36.5% towards methanol, ethanol, and 2-propanol, respectively.

  17. Visible light photoelectrocatalysis with salicylic acid-modified TiO2 nanotube array electrode for p-nitrophenol degradation

    International Nuclear Information System (INIS)

    Wang Xin; Zhao Huimin; Quan Xie; Zhao Yazhi; Chen Shuo

    2009-01-01

    This research focused on immersion method synthesis of visible light active salicylic acid (SA)-modified TiO 2 nanotube array electrode and its photoelectrocatalytic (PEC) activity. The SA-modified TiO 2 nanotube array electrode was synthesized by immersing in SA solution with an anodized TiO 2 nanotube array electrode. Scanning electron microscope (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), UV-vis diffuse reflectance spectrum (DRS), and Surface photovoltage (SPV) were used to characterize this electrode. It was found that SA-modified TiO 2 nanotube array electrode absorbed well into visible region and exhibited enhanced visible light PEC activity on the degradation of p-nitrophenol (PNP). The degradation efficiencies increased from 63 to 100% under UV light, and 79-100% under visible light (λ > 400 nm), compared with TiO 2 nanotube array electrode. The enhanced PEC activity of SA-modified TiO 2 nanotube array electrode was attributed to the amount of surface hydroxyl groups introduced by SA-modification and the extension of absorption wavelength range.

  18. Thermal degradation of TiO2 nanotubes on titanium

    Science.gov (United States)

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2014-10-01

    The objective of this research was to study thermal degradation behavior of TiO2 nanotubes on titanium (Ti). TiO2 nanotubes were grown via anodization method on commercially pure Ti (Cp-Ti) discs using two different electrolytes, 1 vol. % HF in deionized (DI) water and 1 vol. % HF + 0.5 wt. % NH4F + 10 vol. % DI water in ethylene glycol, to obtain nanotubes with two different lengths, 300 nm and 950 nm keeping the nanotube diameter constant at 100 ± 20 nm. As grown TiO2 nanotubes were subjected to heat treatment to understand thermal degradation as a function of both temperature and hold time. The signs of degradation were observed mainly when amorphous nanotubes started to crystallize, however the crystallization temperature varied based on TiO2 nanotubes length and anodizing condition. Overall, 300 nm nanotubes were thermally stable at least up to 400 °C for 12 h, while the 950 nm long nanotubes show signs of degradation from 400 °C for 6 h only. Clearly, length of nanotubes, heat treatment temperature as well as hold times show influence toward degradation kinetics of TiO2 nanotubes on titanium.

  19. Synthesis and photocatalytic activity of Ce-doped TiO2 and TiO2 nanotubes

    International Nuclear Information System (INIS)

    Arruda, L.B.; Pereira, E.A.; Paula, F.R.; Lisboa Filho, P.N.

    2016-01-01

    Full text: One-dimensional nanostructures have been intensively studied, from the point of view of their synthesis and mechanisms of formation, as well as their applications in photonics, solar energy conversion, environmental and photocatalysis, since their properties due high surface area, electrical conductivity and light dispersion effects. Titanium dioxide (TiO2) nanoparticles have been demonstrated to be an effective multifunctional material especially when the particle size is less than 50 nm exhibit photoinduced activities that originate from the semiconductor band gap. TiO2 is semiconductor more used in photocatalysis, for this reason various properties have been thoroughly investigated in order to show that the photocatalytic activity and TiO2 reaction mechanism are influenced by structure, defects and impurities, surface morphology. and interfaces in addition to the concentration of dopants, such as rare-earth elements. Cerium ions, for example, vary between Ce4+ and Ce3 + oxidation state making the cerium oxide appear as CeO2 and Ce2O3 under oxidation and reduction conditions. These different electronic structures of Ce3+ (4f15d0) and Ce4+ (4f05d0) provide different catalytic and optical properties at the TiO2. In this work, samples of Ce-doped TiO2 and TiO2 were synthesized by alkali route, and its photocatalytic activity analyzed in order to create a relationship between the response obtained and the structure and morphology of each sample. Alkali route consists in submitting TiO2 (anatase) powder directly in medium of the NaOH (10M) and maintained at 120°C/20 hours by a glycerin bath with subsequent washed with water and HCl (0.1M) until reaching the desired pH. The synthesized samples were then studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photocatalytic decomposition of rhodamine B (Rh.B) it was performed under UV irradiation and visible light in air. For the obtained

  20. Synthesis and photocatalytic activity of Ce-doped TiO2 and TiO2 nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Arruda, L.B.; Pereira, E.A.; Paula, F.R.; Lisboa Filho, P.N. [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2016-07-01

    Full text: One-dimensional nanostructures have been intensively studied, from the point of view of their synthesis and mechanisms of formation, as well as their applications in photonics, solar energy conversion, environmental and photocatalysis, since their properties due high surface area, electrical conductivity and light dispersion effects. Titanium dioxide (TiO2) nanoparticles have been demonstrated to be an effective multifunctional material especially when the particle size is less than 50 nm exhibit photoinduced activities that originate from the semiconductor band gap. TiO2 is semiconductor more used in photocatalysis, for this reason various properties have been thoroughly investigated in order to show that the photocatalytic activity and TiO2 reaction mechanism are influenced by structure, defects and impurities, surface morphology. and interfaces in addition to the concentration of dopants, such as rare-earth elements. Cerium ions, for example, vary between Ce4+ and Ce3 + oxidation state making the cerium oxide appear as CeO2 and Ce2O3 under oxidation and reduction conditions. These different electronic structures of Ce3+ (4f15d0) and Ce4+ (4f05d0) provide different catalytic and optical properties at the TiO2. In this work, samples of Ce-doped TiO2 and TiO2 were synthesized by alkali route, and its photocatalytic activity analyzed in order to create a relationship between the response obtained and the structure and morphology of each sample. Alkali route consists in submitting TiO2 (anatase) powder directly in medium of the NaOH (10M) and maintained at 120°C/20 hours by a glycerin bath with subsequent washed with water and HCl (0.1M) until reaching the desired pH. The synthesized samples were then studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photocatalytic decomposition of rhodamine B (Rh.B) it was performed under UV irradiation and visible light in air. For the obtained

  1. Low temperature synthesis of polyaniline-crystalline TiO2-halloysite composite nanotubes with enhanced visible light photocatalytic activity.

    Science.gov (United States)

    Li, Cuiping; Wang, Jie; Guo, Hong; Ding, Shujiang

    2015-11-15

    A series of one-dimensional polyaniline-crystalline TiO2-halloysite composite nanotubes with different mass ratio of polyaniline to TiO2 are facilely prepared by employing the low-temperature synthesis of crystalline TiO2 on halloysite nanotubes. The halloysite nanotubes can adsorb TiO2/polyaniline precursors and induce TiO2 nanocrystals/polyaniline to grow on the support in situ simultaneously. By simply adjusting the acidity of reaction system, PANI-crystalline TiO2-HA composite nanotubes composed of anatase, a mixed phase TiO2 and different PANI redox state are obtained. The XRD and UV-vis results show that the surface polyaniline sensitization has no effect on the crystalline structure of halloysite and TiO2 and the light response of TiO2 is extended to visible-light regions. Photocatalysis test results reveal the photocatalytic activity will be affected by the pH value and the volume ratio of ANI to TTIP. The highest photocatalytic activity is achieved with the composite photocatalysts prepared at pH 0.5 and 1% volume ratio of ANI and TTIP owing to the sensitizing effect of polyaniline and the charge transfer from the photoexcited PANI sensitizer to TiO2. Moreover, the PANI-TiO2-HA composite nanotubes synthesized by one-step at pH 0.5 with 1% volume ratio of ANI to TTIP exhibit higher visible light photocatalytic activity than those synthesized by the two-step. Heterogeneous PANI-TiO2-HA composite nanotubes prepared at pH 0.5 exhibit a higher degradation activity than that prepared at pH 1.5. The redoped experiment proves that the PANI redox state plays the main contribution to the enhanced visible light catalytic degradation efficiency of PANI-TiO2-HA prepared at pH 0.5. Furthermore, the heterogeneous PANI-crystalline TiO2-HA nanotubes have good photocatalytic stability and can be reused four times with only gradual loss of activity under visible light irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Study on photocatalysis of TiO2 nanotubes prepared by methanol ...

    Indian Academy of Sciences (India)

    TiO2 nanotubes were synthesized by the solvothermal process at low temperature in a highly alkaline water–methanol mixed solution. Their characteristics were identified by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), specific surface area (BET), Fourier transform infrared spectroscopy (FTIR) ...

  3. Electrical characterization of TiO2 nanotubes synthesized through electrochemical anodizing method

    Science.gov (United States)

    Manescu Paltanea, Veronica; Paltanea, Gheorghe; Popovici, Dorina; Jiga, Gabriel

    2016-05-01

    In the present paper, the electrochemical anodizing method was used for the obtaining of TiO2 nanotube layers, developed on titanium surface. Self-organized titanium nanotubes were obtained when an aqueous solution of 49.5 wt % H2O - 49.5 wt % glycerol - 1 wt % HF was used as electrolyte, the anodizing time being equal to 8 hours and the applied voltage to 25 V. Scanning electron microscopy shows that the one-dimensional nanostructure has a tubular configuration with an inner diameter of approximately 60 nm and an outer diameter of approximately 100 nm. The electrical properties of these materials were analyzed through dielectric spectroscopy method.

  4. Enhanced Photocatalytic Activity of La3+-Doped TiO2 Nanotubes with Full Wave-Band Absorption

    Science.gov (United States)

    Xia, Minghao; Huang, Lingling; Zhang, Yubo; Wang, Yongqian

    2018-06-01

    TiO2 nanotubes doped with La3+ were synthesized by anodic oxidation method and the photocatalytic activity was detected by photodegrading methylene blue. As-prepared samples improved the absorption of both ultraviolet light and visible light and have a great enhancement on the photocatalytic activity while contrasting with the pristine TiO2 nanotubes. A tentative mechanism for the enhancement of photocatalytic activity with full wave-band absorption is proposed.

  5. Flow-Regulated Growth of Titanium Dioxide (TiO2 ) Nanotubes in Microfluidics.

    Science.gov (United States)

    Fan, Rong; Chen, Xinye; Wang, Zihao; Custer, David; Wan, Jiandi

    2017-08-01

    Electrochemical anodization of titanium (Ti) in a static, bulk condition is used widely to fabricate self-organized TiO 2 nanotube arrays. Such bulk approaches, however, require extended anodization times to obtain long TiO 2 nanotubes and produce only vertically aligned nanotubes. To date, it remains challenging to develop effective strategies to grow long TiO 2 nanotubes in a short period of time, and to control the nanotube orientation. Here, it is shown that the anodic growth of TiO 2 nanotubes is significantly enhanced (≈16-20 times faster) under flow conditions in microfluidics. Flow not only controls the diameter, length, and crystal orientations of TiO 2 nanotubes, but also regulates the spatial distribution of nanotubes inside microfluidic devices. Strikingly, when a Ti thin film is deposited on silicon substrates and anodized in microfluidics, both vertically and horizontally aligned (relative to the bottom substrate) TiO 2 nanotubes can be produced. The results demonstrate previously unidentified roles of flow in the regulation of growth of TiO 2 nanotubes, and provide powerful approaches to effectively grow long, oriented TiO 2 nanotubes, and construct hierarchical TiO 2 nanotube arrays on silicon-based materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. MoSe2 modified TiO2 nanotube arrays with superior photoelectrochemical performance

    Science.gov (United States)

    Zhang, Yaping; Zhu, Haifeng; Yu, Lianqing; He, Jiandong; Huang, Chengxing

    2018-04-01

    TiO2 nanotube arrays (TNTs) are first prepared by anodization Ti foils in ethylene glycol electrolyte. Then, MoSe2 deposites electrochemically on TNTs. The as-synthesized MoSe2/TiO2 composite has a much higher photocurrent density of 1.07 mA cm‑2 at 0 V than pure TNTs of 0.38 mA cm‑2, which suggests that the MoSe2/TiO2 composite film has optimum photoelectrocatalysis properties. The electron transport resistances of the MoSe2/TiO2 decreases to half of pure TiO2, at 295.6 ohm/cm2. Both photocurrent-time and Mott-Schottky plots indicate MoSe2 a p-type semiconductor characteristics. MoSe2/TiO2 composite can achieve a maximum 5 orders of magnitude enhancement in carrier density (4.650 × 1027 cm‑3) than that of pure TiO2 arrays. It can be attributed to p-n heterojunction formed between MoSe2 and TiO2, and the composite can be potentially applied in photoelectrochemical, photocatalysis fields.

  7. A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

    Directory of Open Access Journals (Sweden)

    Donald K. L. Chan

    2014-05-01

    Full Text Available TiO2 nanotube arrays are well-known efficient UV-driven photocatalysts. The incorporation of graphene quantum dots could extend the photo-response of the nanotubes to the visible-light range. Graphene quantum dot-sensitized TiO2 nanotube arrays were synthesized by covalently coupling these two materials. The product was characterized by Fourier-transform infrared spectrometry (FTIR, scanning electron microscopy (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, thermogravimetric analysis (TGA and UV–vis absorption spectroscopy. The product exhibited high photocatalytic performance in the photodegradation of methylene blue and enhanced photocurrent under visible light irradiation.

  8. Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave-Assisted Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Nosipho Moloto

    2012-01-01

    Full Text Available A microwave-assisted hydrothermal method was used to synthesize ZnO and TiO2 nanostructures. The experimental results show that the method resulted in crystalline monodispersed ZnO nanorods that have pointed tips with hexagonal crystal phase. TiO2 nanotubes were also formed with minimum bundles. The mechanism for the formation of the tubes was validated by HRTEM results. The optical properties of both ZnO and TiO2 nanostructures showed characteristics of strong quantum confinement regime. The photoluminescence spectrum of TiO2 nanotubes shows good improvement from previously reported data.

  9. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light.

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-12-01

    We report the preparation of TiO 2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi 2 S 3 , to improve the photocathodic protection property of TiO 2 for metals under visible light. Bi 2 S 3 /TiO 2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi 2 S 3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO 2 and orthorhombic Bi 2 S 3 and exhibited a high visible light response. The photocurrent density of Bi 2 S 3 /TiO 2 was significantly higher than that of pure TiO 2 under visible light. The sensitization of Bi 2 S 3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO 2 . The Bi 2 S 3 /TiO 2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  10. Photocathodic Protection of 304 Stainless Steel by Bi2S3/TiO2 Nanotube Films Under Visible Light

    Science.gov (United States)

    Li, Hong; Wang, Xiutong; Wei, Qinyi; Hou, Baorong

    2017-01-01

    We report the preparation of TiO2 nanotubes coupled with a narrow bandgap semiconductor, i.e., Bi2S3, to improve the photocathodic protection property of TiO2 for metals under visible light. Bi2S3/TiO2 nanotube films were successfully synthesized using the successive ionic layer adsorption and reaction (SILAR) method. The morphology and structure of the composite films were studied by scanning electron microscopy and X-ray diffraction, respectively. UV-visible diffuse reflectance spectra were recorded to analyze the optical absorption property of the composite films. In addition, the influence of Bi2S3 deposition cycles on the photoelectrochemical and photocathodic protection properties of the composite films was also studied. Results revealed that the heterostructure comprised crystalline anatase TiO2 and orthorhombic Bi2S3 and exhibited a high visible light response. The photocurrent density of Bi2S3/TiO2 was significantly higher than that of pure TiO2 under visible light. The sensitization of Bi2S3 enhanced the separation efficiency of the photogenerated charges and photocathodic protection properties of TiO2. The Bi2S3/TiO2 nanotubes prepared by SILAR deposition with 20 cycles exhibited the optimal photogenerated cathodic protection performance on the 304 stainless steel under visible light.

  11. Fabrication of a TiO2-P25/(TiO2-P25+TiO2 nanotubes junction for dye sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Nguyen Huy Hao

    2016-08-01

    Full Text Available The dye sensitized solar cell (DSSC, which converts solar light into electric energy, is expected to be a promising renewable energy source for today's world. In this work, dye sensitized solar cells, one containing a single layer and one containing a double layer, were fabricated. In the double layer DSSC structure, the under-layer was TiO2-P25 film, and the top layer consisted of a mixture of TiO2-P25 and TiO2 nanotubes. The results indicated that the efficiency of the DSSC with the double layer structure was a significant improvement in comparison to the DSSC consisting of only a single film layer. The addition of TiO2-P25 in the top layer caused an improvement in the adsorption of dye molecules on the film rather than on the TiO2 nanotubes only. The presence of the TiO2 nanotubes together with TiO2-P25 in the top layer revealed the enhancement in harvesting the incident light and an improvement of electron transport through the film.

  12. Amorphous and crystalline TiO2 nanotube arrays for enhanced Li-ion intercalation properties.

    Science.gov (United States)

    Guan, Dongsheng; Cai, Chuan; Wang, Ying

    2011-04-01

    We have employed a simple process of anodizing Ti foils to prepare TiO2 nanotube arrays which show enhanced electrochemical properties for applications as Li-ion battery electrode materials. The lengths and pore diameters of TiO2 nanotubes can be finely tuned by varying voltage, electrolyte composition, or anodization time. The as-prepared nanotubes are amorphous and can be converted into anatase nanotubes with heat treatment at 480 degrees C. Rutile crystallites emerge in the anatase nanotube when the annealing temperature is increased to 580 degrees C, resulting in TiO2 nanotubes of mixed phases. The morphological features of nanotubes remain unchanged after annealing. Li-ion insertion performance has been studied for amorphous and crystalline TiO2 nanotube arrays. Amorphous nanotubes with a length of 3.0 microm and an outer diameter of 125 nm deliver a capacity of 91.2 microA h cm(-2) at a current density of 400 microA cm(-2), while those with a length of 25 microm and an outer diameter of 158 nm display a capacity of 533 microA h cm-2. When the 3-microm long nanotubes become crystalline, they deliver lower capacities: the anatase nanotubes and nanotubes of mixed phases show capacities of 53.8 microA h cm-2 and 63.1 microA h cm(-2), respectively at the same current density. The amorphous nanotubes show excellent capacity retention ability over 50 cycles. The cycled nanotubes show little change in morphology compared to the nanotubes before electrochemical cycling. All the TiO2 nanotubes demonstrate higher capacities than amorphous TiO2 compact layer reported in literature. The amorphous TiO2 nanotubes with a length of 1.9 microm exhibit a capacity five times higher than that of TiO2 compact layer even when the nanotube array is cycled at a current density 80 times higher than that for the compact layer. These results suggest that anodic TiO2 nanotube arrays are promising electrode materials for rechargeable Li-ion batteries.

  13. Hydrothermal transformation of titanate nanotubes into single-crystalline TiO2 nanomaterials with controlled phase composition and morphology

    International Nuclear Information System (INIS)

    Xu, Yuanmei; Fang, Xiaoming; Xiong, Jian; Zhang, Zhengguo

    2010-01-01

    Single-crystalline TiO 2 nanomaterials were synthesized by hydrothermally treating suspensions of H-titanate nanotubes and characterized by XRD, TEM, and HRTEM. The effects of the pH values of the suspensions and the hydrothermal temperatures on the phase composition and morphology of the obtained TiO 2 nanomaterials were systematically investigated. The H-titanate nanotubes were predominately transformed into anatase nanoparticle with rhombic shape when the pH value was greater than or equal to 1.0, whereas primarily turned into rutile nanorod with two pyramidal ends at the pH value less than or equal to 0.5. We propose a possible mechanism for hydrothermal transformation of H-titanate nanotubes into single-crystalline TiO 2 nanomaterials. While the H-titanate nanotubes transform into tiny anatase nanocrystallites of ca. 3 nm in size, the formed nanocrystallites as an intermediate grow into the TiO 2 nanomaterials with controlled phase composition and morphology. This growth process involves the steps of protonation, oriented attachment, and Ostwald ripening.

  14. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    International Nuclear Information System (INIS)

    Alves, Sofia A.; Patel, Sweetu B.; Sukotjo, Cortino; Mathew, Mathew T.; Filho, Paulo N.; Celis, Jean-Pierre

    2017-01-01

    Highlights: • A new surface modification methodology for bio-functionalization of TiO2 NTs is addressed • Bone-like structured TiO2 nanotubular surfaces containing Ca and P were synthesized. • Ca/P-doped TiO2 NTs enhanced adhesion and proliferation of osteoblastic-like cells. • The bio-functionalization granted improved bio-electrochemical stability to TiO2 NTs. - Abstract: The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO 2 ) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO 2 nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO 2 nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO 2 nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO 3 , Ca 3 (PO 4 ) 2 , CaHPO 4 and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated implants.

  15. Effect of RGD Peptide-Coated TiO2 Nanotubes on the Attachment, Proliferation, and Functionality of Bone-Related Cells

    Directory of Open Access Journals (Sweden)

    Seunghan Oh

    2013-01-01

    Full Text Available The purpose of this research was to characterize an Arg-Gly-Asp (RGD peptide immobilized on TiO2 nanotubes. In addition, we investigated the effects of the RGD peptide-coated TiO2 nanotubes on the cellular response, proliferation, and functionality of osteogenic-induced human mesenchymal stem cells (hMSCs, which are osteoclasts that have been induced by bone marrow macrophages. The RGD peptide was grafted covalently onto the surface of TiO2 nanotubes based on the results of SEM, FT-IR, and XPS. Furthermore, the RGD peptide promoted the initial attachment and proliferation of the hMSCs, regardless of the size of the TiO2 nanotubes. However, the RGD peptide did not prominently affect the osteogenic functionality of the hMSCs because the peptide suppressed hMSC motility associated with osteogenic differentiation. The result of an in vitro osteoclast test showed that the RGD peptide accelerated the initial attachment of preosteoclasts and the formation of mature osteoclasts, which could resorb the bone matrix. Therefore, we believe that an RGD coating on TiO2 nanotubes synthesized on Ti implants might not offer significant acceleration of bone formation in vivo because osteoblasts and osteoclasts reside in the same compartment.

  16. Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Xu, Y. N.; Wang, M. C.; Oloyede, A.; Bell, J. M.; Yan, C.; Liu, M. N.

    2015-01-01

    Titanium dioxide (TiO 2 ) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO 2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO 2 nanotube arrays using the nanoindentation technique. We found that the load–displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO 2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO 2 nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed

  17. Optimization of photoelectrochemical water splitting performance on hierarchical TiO 2 nanotube arrays

    KAUST Repository

    Zhang, Z.

    2012-02-10

    In this paper, we show that by varying the voltages during two-step anodization the morphology of the hierarchical top-layer/bottom-tube TiO 2 (TiO 2 NTs) can be finely tuned between nanoring/nanotube, nanopore/nanotube, and nanohole-nanocave/nanotube morphologies. This allows us to optimize the photoelectrochemical (PEC) water splitting performance on the hierarchical TiO 2 NTs. The optimized photocurrent density and photoconversion efficiency in this study, occurring on the nanopore/nanotube TiO 2 NTs, were 1.59 mA cm -2 at 1.23 V vs. RHE and 0.84% respectively, which are the highest values ever reported on pristine TiO 2 materials under illumination of AM 1.5G. Our findings contribute to further improvement of the energy conversion efficiency of TiO 2-based devices.

  18. Optimization of photoelectrochemical water splitting performance on hierarchical TiO 2 nanotube arrays

    KAUST Repository

    Zhang, Z.; Wang, Peng

    2012-01-01

    In this paper, we show that by varying the voltages during two-step anodization the morphology of the hierarchical top-layer/bottom-tube TiO 2 (TiO 2 NTs) can be finely tuned between nanoring/nanotube, nanopore/nanotube, and nanohole-nanocave/nanotube morphologies. This allows us to optimize the photoelectrochemical (PEC) water splitting performance on the hierarchical TiO 2 NTs. The optimized photocurrent density and photoconversion efficiency in this study, occurring on the nanopore/nanotube TiO 2 NTs, were 1.59 mA cm -2 at 1.23 V vs. RHE and 0.84% respectively, which are the highest values ever reported on pristine TiO 2 materials under illumination of AM 1.5G. Our findings contribute to further improvement of the energy conversion efficiency of TiO 2-based devices.

  19. Incorporation of TiO2 nanotubes in a polycrystalline zirconia: Synthesis of nanotubes, surface characterization, and bond strength.

    Science.gov (United States)

    Dos Santos, Angélica Feltrin; Sandes de Lucena, Fernanda; Sanches Borges, Ana Flávia; Lisboa-Filho, Paulo Noronha; Furuse, Adilson Yoshio

    2018-04-05

    Despite numerous advantages such as high strength, the bond of yttria-stabilized zirconia polycrystal (Y-TZP) to tooth structure requires improvement. The purpose of this in vitro study was to evaluate the incorporation of TiO 2 nanotubes into zirconia surfaces and the bond strength of resin cement to the modified ceramic. TiO 2 nanotubes were produced by alkaline synthesis, mixed with isopropyl alcohol (50 wt%) and applied on presintered zirconia disks. The ceramics were sintered, and the surfaces were characterized by confocal laser microscopy, scanning electron microscopy (SEM), and energy-dispersive x-ray spectroscopy (EDS) analysis. For bond strength, the following 6 groups (n=16) were evaluated: without TiO 2 and Single Bond Universal; with TiO 2 nanotubes and Single Bond Universal; without TiO 2 nanotubes and Z-prime; with TiO 2 nanotubes and Z-prime; without TiO 2 and Signum Zirconia Bond; with TiO 2 and Signum Zirconia Bond. After sintering, resin cement cylinders, diameter of 1.40 mm and 1 mm in height, were prepared and polymerized for 20 seconds. Specimens were stored in water at 37°C for 30 days and submitted to a shear test. Data were analyzed by 2-way ANOVA and Tukey honest significant difference (α=.05) tests. EDS analysis confirmed that nanoagglomerates were composed of TiO 2 . The shear bond strength showed statistically significant differences among bonding agents (P<.001). No significant differences were found with the application of nanotubes, regardless of the group analyzed (P=.682). The interaction among the bonding agent factors and addition of nanotubes was significant (P=.025). Nanotubes can be incorporated into zirconia surfaces. However, this incorporation did not improve bond strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Ultra-fine structural characterization and bioactivity evaluation of TiO2 nanotube layers.

    Science.gov (United States)

    Jang, JaeMyung; Kwon, TaeYub; Kim, KyoHan

    2008-10-01

    For an application as biomedical materials of high performance with a good biocompatibility, the TiO2 nanotube-type oxide film on Ti substrate has been fabricated by electrochemical method, and the effects of surface characteristics of TiO2 naotube layer have been investigated. The surface morphology of TiO2 nanotube layer depends on factors such as anodizing time, current density, and electrolyte temperature. Moreover, the cell and pore size gradually were increased with the passage of anodizing time. X-ray diffraction (XRD) results indicated that the TiO2 nanotube layer formed in acidic electrolytes was mainly composed of anatase structure containing rutile. From the analysis of chemical states of TiO2 nanotube layer using X-ray photoelectron spectroscopy (XPS), Ti2p, P2p and O1s were observed in the nanotubes layer, which were penetrated from the electrolyte into the oxide layer during anodic process. The incorporated phosphate species were found mostly in the forms of HPO4-, PO4-, and PO3-. From the result of biological evaluation in simulated body fluid (SBF) the TiO2 nanotube layer was effective for bioactive property.

  1. Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization

    Science.gov (United States)

    Pishkar, Negin; Ghoranneviss, Mahmood; Ghorannevis, Zohreh; Akbari, Hossein

    2018-06-01

    Highly ordered hexagonal closely packed titanium dioxide nanotubes (TiO2 NTs) were successfully grown by a two-step anodization process. The TiO2 NTs were synthesized by electrochemical anodization of titanium foils in an ethylene glycol based electrolyte solution containing 0.3 wt% NH4F and 2 vol% deionized (DI) water at constant potential (50 V) for 1 h at room temperature. Physical properties of the TiO2 NTs, which were prepared via one and two-step anodization, were investigated. Atomic Force Microscopy (AFM) analysis revealed that anodization and subsequently peeled off the TiO2 NTs caused to the periodic pattern on the Ti surface. In order To study the nanotubes morphology, Field Emission Scanning Electron Microscopy (FESEM) was used, which was revealed that the two-step anodization resulted highly ordered hexagonal TiO2 NTs. Crystal structures of the TiO2 NTs were mainly anatase, determined by X-ray diffraction analysis. Optical studies were performed by Diffuse Reflection Spectra (DRS) and Photoluminescence (PL) analysis showed that the band gap of TiO2 NTs prepared via two-step anodization was lower than the band gap of samples prepared by one-step anodization process.

  2. Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity.

    Science.gov (United States)

    Faraji, Masoud; Mohaghegh, Neda; Abedini, Amir

    2018-01-01

    A series of g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plates were fabricated via simple dipping of TiO 2 nanotubes/Ti in a solution containing SnCl 2 and g-C 3 N 4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C 3 N 4 -SnO 2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO 2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis illuminations. Detailed characterization and results of photocatalytic and antibacterial activity tests revealed that semiconductor coupling significantly affected the photocatalyst properties synthesized and hence their photocatalytic and antibacterial activities. Modification of TiO 2 nanotubes/Ti plates with g-C 3 N 4 -SnO 2 deposits resulted in enhanced photocatalytic activities in both chemical and microbial systems. The g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate exhibited the highest photocatalytic and antibacterial activity, probably due to the heterojunction between g-C 3 N 4 -SnO 2 and TiO 2 nanotubes/Ti in the ternary composite plate and thus lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antibacterial mechanism for the degradation of E. coli bacteria and chemical pollutants over g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate were proposed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Novel bamboo structured TiO2 nanotubes for energy storage/production applications

    Science.gov (United States)

    Samuel, J. J.; Beh, K. P.; Cheong, Y. L.; Yusuf, W. A. A.; Yam, F. K.

    2018-04-01

    Nanostructured TiO2 received much attention owing to its high surface-to-volume ratio, which can be advantageous in energy storage and production applications. However, the increase in energy consumption at present and possibly the foreseeable future has demanded energy storage and production devices of even higher performance. A direct approach would be manipulating the physical aspects of TiO2 nanostructures, particularly, nanotubes. In this work, dual voltage anodization system has been implemented to fabricate bamboo shaped TiO2 nanotubes, which offers even greater surface area. This unique nanostructure would be used in Dye Sensitized Solar Cell (DSSC) fabrication and its performance will be evaluated and compared along other forms of TiO2 nanotubes. The results showed that bamboo shaped nanotubes indeed are superior morphologically, with an increase of efficiency of 107% at 1.130% efficiency when compared to smooth walled nanotubes at 0.546% efficiency.

  4. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials

    International Nuclear Information System (INIS)

    Morgado, Edisson Jr; Jardim, P M; Marinkovic, Bojan A; Rizzo, Fernando C; Abreu, Marco A S de; Zotin, Jose L; Araujo, Antonio S

    2007-01-01

    H-trititanate nanotubes obtained by alkali hydrothermal treatment of TiO 2 followed by proton exchange were compared to their bulk H 2 Ti 3 O 7 counterpart with respect to their thermally induced structural transformation paths. As-synthesized and heat-treated samples were characterized by XRD, TEM/SAED, DSC and spectroscopy techniques, indicating that H 2 Ti 3 O 7 nanotubes showed the same sequence of structural transformations as their bulk counterpart obtained by conventional solid state reaction. Nanostructured H 2 Ti 3 O 7 converts into TiO 2 (B) via multistep transformation without losing its nanotubular morphology. The transformation occurs between 120 and 400 deg. C through topotactic mechanisms with the intermediate formation of nanostructured H 2 Ti 6 O 13 and H 2 Ti 12 O 25 , which are more condensed layered titanates eventually rearranging to TiO 2 (B). Our results suggest that the intermediate tunnel structure H 2 Ti 12 O 25 is the final layered intermediate phase, on which TiO 2 (B) nucleates and grows. The conversion of nanostructured TiO 2 (B) into anatase is completed at a much lower temperature than its bulk counterpart and is accompanied by loss of the nanotubular morphology

  5. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials.

    Science.gov (United States)

    Morgado, Edisson; Jardim, P M; Marinkovic, Bojan A; Rizzo, Fernando C; de Abreu, Marco A S; Zotin, José L; Araújo, Antonio S

    2007-12-12

    H-trititanate nanotubes obtained by alkali hydrothermal treatment of TiO(2) followed by proton exchange were compared to their bulk H(2)Ti(3)O(7) counterpart with respect to their thermally induced structural transformation paths. As-synthesized and heat-treated samples were characterized by XRD, TEM/SAED, DSC and spectroscopy techniques, indicating that H(2)Ti(3)O(7) nanotubes showed the same sequence of structural transformations as their bulk counterpart obtained by conventional solid state reaction. Nanostructured H(2)Ti(3)O(7) converts into TiO(2)(B) via multistep transformation without losing its nanotubular morphology. The transformation occurs between 120 and 400 degrees C through topotactic mechanisms with the intermediate formation of nanostructured H(2)Ti(6)O(13) and H(2)Ti(12)O(25), which are more condensed layered titanates eventually rearranging to TiO(2)(B). Our results suggest that the intermediate tunnel structure H(2)Ti(12)O(25) is the final layered intermediate phase, on which TiO(2)(B) nucleates and grows. The conversion of nanostructured TiO(2)(B) into anatase is completed at a much lower temperature than its bulk counterpart and is accompanied by loss of the nanotubular morphology.

  6. Multistep structural transition of hydrogen trititanate nanotubes into TiO2-B nanotubes: a comparison study between nanostructured and bulk materials

    Science.gov (United States)

    Morgado, Edisson, Jr.; Jardim, P. M.; Marinkovic, Bojan A.; Rizzo, Fernando C.; de Abreu, Marco A. S.; Zotin, José L.; Araújo, Antonio S.

    2007-12-01

    H-trititanate nanotubes obtained by alkali hydrothermal treatment of TiO2 followed by proton exchange were compared to their bulk H2Ti3O7 counterpart with respect to their thermally induced structural transformation paths. As-synthesized and heat-treated samples were characterized by XRD, TEM/SAED, DSC and spectroscopy techniques, indicating that H2Ti3O7 nanotubes showed the same sequence of structural transformations as their bulk counterpart obtained by conventional solid state reaction. Nanostructured H2Ti3O7 converts into TiO2(B) via multistep transformation without losing its nanotubular morphology. The transformation occurs between 120 and 400 °C through topotactic mechanisms with the intermediate formation of nanostructured H2Ti6O13 and H2Ti12O25, which are more condensed layered titanates eventually rearranging to TiO2(B). Our results suggest that the intermediate tunnel structure H2Ti12O25 is the final layered intermediate phase, on which TiO2(B) nucleates and grows. The conversion of nanostructured TiO2(B) into anatase is completed at a much lower temperature than its bulk counterpart and is accompanied by loss of the nanotubular morphology.

  7. Controlled Directional Growth of TiO2 Nanotubes

    DEFF Research Database (Denmark)

    In, Su-il; Hou, Yidong; Abrams, Billie

    2010-01-01

    We demonstrate how the anodization direction and growth rate of vertically aligned, highly ordered TiO2 nanotube (NT) arrays can be controlled and manipulated by the local concentration of O-2 in the electrolyte. This leads to the growth of highly active TiO2 NT arrays directly on nonconducting s...

  8. Hydrogenated TiO2 nanotube photonic crystals for enhanced photoelectrochemical water splitting.

    Science.gov (United States)

    Meng, Ming; Zhou, Sihua; Yang, Lun; Gan, Zhixing; Liu, Kuili; Tian, Fengshou; Zhu, Yu; Li, ChunYang; Liu, Weifeng; Yuan, Honglei; Zhang, Yan

    2018-04-02

    We report the design, fabrication and characterization of novel TiO 2 nanotube photonic crystals with a crystalline core/disordered shell structure as well as substantial oxygen vacancies for photoelectrochemical (PEC) water splitting. The novel TiO 2 nanotube photonic crystals are fabricated by annealing of anodized TiO 2 nanotube photonic crystals in hydrogen atmosphere at various temperatures. The optimized novel TiO 2 nanotube photonic crystals produce a maximal photocurrent density of 2.2 mA cm -2 at 0.22 V versus Ag/AgCl, which is two times higher that of the TiO 2 nanotube photonic crystals annealed in air. Such significant PEC performance improvement can be ascribed to synergistic effects of the disordered surface layer and oxygen vacancies. The reduced band gap owing to the disordered surface layer and localized states induced by oxygen vacancies can enhance the efficient utilization of visible light. In addition, the disordered surface layer and substantial oxygen vacancies can promote the efficiency for separation and transport of the photogenerated carriers. This work may open up new opportunities for the design and construction of the high efficient and low-cost PEC water splitting system.

  9. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Zhang, Ruopeng; Wu, Hongliu; Ni, Jiahua; Zhao, Changli; Chen, Yifan; Zheng, Chengjunyi; Zhang, Xiaonong

    2015-01-01

    The significantly enhanced osteoblast adhesion, proliferation and alkaline phosphatase (ALP) activity were observed on TiO 2 nanotube surface in recent studies in which the scale of nanotube diameter was restricted under 100 nm. In this paper, a series of highly ordered TiO 2 nanotube arrays with larger diameters ranging from 150 nm to 470 nm were fabricated via high voltage anodization. The behaviors of MC3T3-E1 cells in response to the diameter-controlled TiO 2 nanotubes were investigated. A contrast between the trend of proliferation and the trend of cell elongation was observed. The highest cell elongation (nearly 10:1) and the lowest cell number were observed on the TiO 2 nanotube arrays with 150 nm diameter. While, the lowest cell elongation and highest cell number were achieved on the TiO 2 nanotube arrays with 470 nm diameter. Furthermore, the ALP activity peaked on the 150 nm diameter TiO 2 nanotube arrays and decreased dramatically with the increase of nanotube diameter. Thus a narrow range of diameter (100–200 nm) that could induce the greatest bone-forming activity is determined. It is expected that more delicate design of orthopedic implant with regional abduction of cell proliferation or bone forming could be achieved by controlling the diameter of TiO 2 nanotubes. - Highlights: • Improved anodization methods leading to more ordered large diameter TiO 2 nanotubes • Significantly enhanced ALP activity was observed on 150 nm diameter TiO 2 nanotubes. • The highest cell density was observed on 470 nm diameter TiO 2 nanotube arrays. • Similar cell response was observed on the amorphous and anatase phased nanotube surface

  10. A mechanistic study on templated electrodeposition of one-dimensional TiO2 nanorods and nanotubes using TiOSO4 as a precursor

    KAUST Repository

    Teo, Gladys Y.

    2014-10-01

    One-dimensional (1D) TiO2 nanorods and nanotubes have been successfully synthesized by templated electrodeposition within an anodic aluminium oxide membrane (AAM) using an aqueous precursor containing TiOSO 4. The deposition voltages were found to influence the resultant nanostructure of TiO2. Using a precursor of aqueous TiOSO4 at pH 3 maintained at 10 °C, TiO2 nanorods were electrodeposited in the AAM between applied voltages of - 1.4 V to - 1.0 V (vs. Ag/AgCl), while TiO2 nanotubes were obtained at less negative voltages of - 1.0 V to - 0.3 V (vs. Ag/AgCl). Cyclic voltammetry (CV) revealed that nitrate reduction in the voltage range of - 0.3 V to - 1.4 V played an essential role in the formation of TiO2. The mechanism for TiO2 nanotube formation has been elucidated, paving the way for the future tailoring of metal oxide nanostructures by templated electrodeposition. © 2014 Elsevier B.V.

  11. A mechanistic study on templated electrodeposition of one-dimensional TiO2 nanorods and nanotubes using TiOSO4 as a precursor

    KAUST Repository

    Teo, Gladys Y.; Ryan, Mary P.; Riley, D. Jason

    2014-01-01

    One-dimensional (1D) TiO2 nanorods and nanotubes have been successfully synthesized by templated electrodeposition within an anodic aluminium oxide membrane (AAM) using an aqueous precursor containing TiOSO 4. The deposition voltages were found to influence the resultant nanostructure of TiO2. Using a precursor of aqueous TiOSO4 at pH 3 maintained at 10 °C, TiO2 nanorods were electrodeposited in the AAM between applied voltages of - 1.4 V to - 1.0 V (vs. Ag/AgCl), while TiO2 nanotubes were obtained at less negative voltages of - 1.0 V to - 0.3 V (vs. Ag/AgCl). Cyclic voltammetry (CV) revealed that nitrate reduction in the voltage range of - 0.3 V to - 1.4 V played an essential role in the formation of TiO2. The mechanism for TiO2 nanotube formation has been elucidated, paving the way for the future tailoring of metal oxide nanostructures by templated electrodeposition. © 2014 Elsevier B.V.

  12. The effects of nanostructures on the mechanical and tribological properties of TiO2 nanotubes

    Science.gov (United States)

    Yoon, Yeoungchin; Park, Jeongwon

    2018-04-01

    TiO2 nanotubes were prepared by anodization on Ti substrates with a diameter variation of 30-100 nm, and the structure of the nanotubes were studied using x-ray diffraction and Raman spectroscopy, which confirmed the structure changes from the anatase phase to the rutile phase of TiO2 at a diameter below 50 nm. The tribological behaviors of TiO2 nanotubes were investigated with different diameters. The effectiveness of the rutile phase and the diameter size enhanced the frictional performance of TiO2 nanotubes.

  13. Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation.

    Science.gov (United States)

    Wu, Chung-Hsin; Kuo, Chao-Yin; Chen, Shih-Ting

    2013-01-01

    This study synthesized a TiO2/carbon nanotubes (CNTs) composite via the sol-gel method. The surface characteristics of the TiO2/CNTs composite were determined by X-ray diffraction, transmission electron microscopy, specific surface area analyser, ultraviolent (UV)-vis spectroscopy, X-ray photoelectron spectroscopy and Raman spectrometer. The photocatalytic activity ofthe TiO2/CNTs composite was evaluated by decolourizing C.I. Reactive Red 2 (RR2) under visible light irradiation. Furthermore, the effects of calcination temperature, pH, RR2 concentration, and the TiO2/CNTs composite dosage on RR2 decolourization were determined simultaneously. The optimal calcination temperature to generate TiO2 and the TiO2/CNTs composite was 673 K, as the percentage of anatase crystallization at this temperature was highest. The specific surface area of the TiO2/CNTs composite and TiO2 were 45 and 42 m2/g, respectively. The band gap of TiO2 and the TiO2/CNTs composite was 2.97 and 2.71 eV by UV-vis measurements, respectively. Experimental data indicate that the Ti-O-C bond formed in the TiO2/CNTs composite. The RR2 decolourization rates can be approximated by pseudo-first-order kinetics; moreover, only the TiO2/CNTs composite had photocatalytic activity under visible light irradiation. At pH 7, the RR2 decolourization rate constant of 0.5, 1 and 2 g/L TiO2/CNTs addition was 0.005, 0.0015, and 0.0047 min(-1), respectively. Decolourization rate increased as pH and the RR2 concentration decreased. The CNTs functioned as electron acceptors, promoting separation of photoinduced electron-hole pairs to retard their recombination; thus, photocatalytic activity of the TiO2/CNTs composite exceeded that of TiO2.

  14. A Facile Method for Synthesizing TiO2 Sea-Urchin-Like Structures and Their Applications in Solar Energy Harvesting

    International Nuclear Information System (INIS)

    Wang Wen-Hui; Xu Hong-Xing; Wang Wen-Zhong

    2011-01-01

    We present a new method to prepare TiO 2 sea-urchin-like structures, which involves the initial formation of tubular nanostructures and subsequent self-assembly of the nanotubes into micrometer-scale sea-urchin-like structures. We also investigate the important role of alkali aqueous conditions in the preparation of TiO 2 sea-urchin-like structures. This facile and cost-effective approach provides a new route for the preparation of self-assembled TiO 2 structures. In addition, the performance of the as-synthesized TiO 2 sea-urchin-like structures as the active layer of an efficient solar energy harvester is also studied and discussed. (cross-disciplinary physics and related areas of science and technology)

  15. TiO2 nanotubes supported NiW hydrodesulphurization catalysts: Characterization and activity

    International Nuclear Information System (INIS)

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jiratova, K.

    2013-01-01

    Highlights: ► NiW catalysts supported on TiO 2 nanotubes, titania and alumina. ► The best results are obtained with NiW/TiO 2 nanotubes in hydrodesulfurization (HDS) of thiophene. ► Active phase is Ni-WO x S y . ► Electronic promotion of W by Ti. - Abstract: High surface area TiO 2 nanotubes (Ti-NT) synthesized by alkali hydrothermal method were used as a support for NiW hydrodesulphurization catalyst. Nickel salt of 12-tungstophosphoric acid – Ni 3/2 PW 12 O 40 was applied as oxide precursor of the active components. The catalyst was characterized by S BET , XRD, UV–vis DRS, Raman spectroscopy, XPS, TPR and HRTEM. The results obtained were compared with those for the NiW catalysts prepared over high surface area titania and alumina supports. A polytungstate phase evidenced by Raman spectroscopy was observed indicating the destruction of the initial heteropolyanion. The catalytic experiments revealed two times higher thiophene conversion on NiW catalyst supported on Ti-NT than those of catalysts supported on alumina and titania. Increased HDS activity of the NiW catalyst supported on Ti-NT could be related to a higher amount of W oxysulfide entities interacting with Ni sulfide particles as consequence of the electronic effects of the Ti-NT observed with XPS analysis.

  16. Efficient silver modification of TiO2 nanotubes with enhanced photocatalytic activity

    Science.gov (United States)

    Huang, Jing; Ding, Lei; Xi, Yaoning; Shi, Liang; Su, Ge; Gao, Rongjie; Wang, Wei; Dong, Bohua; Cao, Lixin

    2018-06-01

    In this paper, Ag(CH3NH2)2+, Ag(NH3)2+ and Ag+ with different radii have been used as silver sources to find out the distribution of Ag ions on the H-TNT surface, which is critical to the final performance. The influence of this distribution on visible photocatalytic activity is further studied. The results indicate that, when Ag+ used as silver source with low concentration, these small sized silver ions mainly distribute on interlayer spacing of H-TNT. After heat-treatment and photo-reduction, the generated silver nanoparticles uniformly embed in the anatase TiO2 nanotube walls, and bring large interfacial area between Ag particles and TiO2 nanotubes. The separation effect of photogenerated electron-hole pair in TiO2 is enhanced by Ag particles, and achieves the best at 0.15 g/L, much higher than P25, TiO2/0, Ag-N@TiO2 and Ag-C-N@TiO2. This paper provides new ideas for the modification of TiO2 nanotubes.

  17. Formation mechanism of TiO2 nanotubes and their applications in photoelectrochemical water splitting and supercapacitors.

    Science.gov (United States)

    Chen, Bo; Hou, Junbo; Lu, Kathy

    2013-05-14

    Structural observations of the transition of TiO2 nanopores into nanotubes by increasing the OH(-) concentration in the electrolyte challenge the validity of existing formation mechanisms of anodic TiO2 nanotubes. In this study, dehydration of titanium hydroxide in the cell wall is proposed as the mechanism that leads to the separation of neighboring nanotubes. Based on this understanding, bamboo-type TiO2 nanotubes with large surface area and excellent interconnectivity are achieved by cycling high and low applied potentials. After thermal treatment in a H2 atmosphere, the bamboo-type TiO2 nanotubes show large photoelectrochemical water splitting efficiency and supercapacitors performace.

  18. Enhanced Photocatalytic Properties of Ag-Loaded N-Doped Tio2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Gao Dawei

    2018-03-01

    Full Text Available Highly ordered TiO2 nanotube (TiO2 NT arrays were prepared by anodic oxidizing method on the surface of the Ti substrate. Nitrogen-doped TiO2 nanotube (N-TiO2 NT arrays were carried out by ammonia solution immersion, and Ag nanoparticles loaded N-doped TiO2 nanotube (Ag/N-TiO2 NT arrays were obtained by successive ionic layer adsorption and reaction (SILAR technique. The samples were characterized by the X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, field emission scanning electron microscopy (FESEM, high-resolution transmission electron microscopy (HRTEM, photoluminescence (PL emission spectra, ultraviolet–visible (UV–vis diffuse reflectance spectroscopy (DRS. The result indicated that the diameter and wall thickness of the TiO2 NT are 100–120 and 20–30 nm, respectively. Moreover, the morphology and structure of the highly ordered TiO2 NTs were not affected by N-doping. Furthermore, Ag nanoparticles were evenly deposited on the surface of TiO2 NTs in the form of elemental silver. Finally, the photocatalytic activity of Ag/N-TiO2 NTs was evaluated by degradation of methyl orange (MO under visible-light irradiation. The Ag/N-TiO2 NTs exhibited enhanced photocatalytic properties, which could reach 95% after 90-min irradiation.

  19. Lead titanate nanotubes synthesized via ion-exchange method: Characteristics and formation mechanism

    International Nuclear Information System (INIS)

    Song Liang; Cao Lixin; Li Jingyu; Liu Wei; Zhang Fen; Zhu Lin; Su Ge

    2011-01-01

    Highlights: → Lead titanate nanotubes PbTi 3 O 7 were firstly synthesized by ion-exchange method. → Sodium titanate nanotubes have ion exchangeability. → Lead titanate nanotubes show a distinct red shift on absorption edge. - Abstract: A two-step method is presented for the synthesis of one dimensional lead titanate (PbTi 3 O 7 ) nanotubes. Firstly, titanate nanotubes were prepared by an alkaline hydrothermal process with TiO 2 nanopowder as precursor, and then lead titanate nanotubes were formed through an ion-exchange reaction. We found that sodium titanate nanotubes have ion exchangeability with lead ions, while protonated titanate nanotubes have not. For the first time, we distinguished the difference between sodium titanate nanotubes and protonated titanate nanotubes in the ion-exchange process, which reveals a layer space effect of nanotubes in the ion-exchange reaction. In comparison with sodium titanate, the synthesized lead titanate nanotubes show a narrowed bandgap.

  20. Adsorption of methyl orange by synthesized and functionalized-CNTs with 3-aminopropyltriethoxysilane loaded TiO2 nanocomposites.

    Science.gov (United States)

    Ahmad, Amirah; Razali, Mohd Hasmizam; Mamat, Mazidah; Mehamod, Faizatul Shimal Binti; Anuar Mat Amin, Khairul

    2017-02-01

    This study aims to develop a highly efficient adsorbent material. CNTs are prepared using a chemical vapor deposition method with acetylene and synthesized mesoporous Ni-MCM41 as the carbon source and catalyst, respectively, and are then functionalized using 3-aminopropyltriethoxysilane (APTES) through the co-condensation method and loaded with commercial TiO 2 . Results of X-ray powder diffraction (XRD), Raman spectra, and Fourier transform infrared spectroscopy (FTIR) confirm that the synthesized CNTs grown are multi-walled carbon nanotubes (MWNTs). Transmission electron microscopy shows good dispersion of TiO 2 nanoparticles onto functionalized-CNTs loaded TiO 2 , with the diameter of a hair-like structure measuring between 3 and 8 nm. The functionalized-CNTs loaded TiO 2 are tested as an adsorbent for removal of methyl orange (MO) in aqueous solution, and results show that 94% of MO is removed after 10 min of reaction, and 100% after 30 min. The adsorption kinetic model of functionalized-CNTs loaded TiO 2 follows a pseudo-second order with a maximum adsorption capacity of 42.85 mg/g. This study shows that functionalized-CNTs loaded TiO 2 has considerable potential as an adsorbent material due to the short adsorption time required to achieve equilibrium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Investigation on the Photoelectrocatalytic Activity of Well-Aligned TiO2 Nanotube Arrays

    Directory of Open Access Journals (Sweden)

    Xiaomeng Wu

    2012-01-01

    Full Text Available Well-aligned TiO2 nanotube arrays were fabricated by anodizing Ti foil in viscous F− containing organic electrolytes, and the crystal structure and morphology of the TiO2 nanotube array were characterized and analyzed by XRD, SEM, and TEM, respectively. The photocatalytic activity of the TiO2 nanotube arrays was evaluated in the photocatalytic (PC and photoelectrocatalytic (PEC degradation of methylene blue (MB dye in different supporting solutions. The excellent performance of ca. 97% for color removal was reached after 90 min in the PEC process compared to that of PC process which indicates that a certain external potential bias favors the promotion of the electrode reaction rate on TiO2 nanotube array when it is under illumination. In addition, it is found that PEC process conducted in supporting solutions with low pH and containing Cl− is also beneficial to accelerate the degradation rate of MB.

  2. Effects of highly ordered TiO2 nanotube substrates on the nucleation of Cu electrodeposits.

    Science.gov (United States)

    Ryu, Won Hee; Park, Chan Jin; Kwon, Hyuk Sang

    2010-05-01

    We investigated the effects of TiO2 nanotube substrates on the nucleation density of Cu during electrodeposition in a solution of CuSO4 and H2SO4 at 50 degrees C compared with those of pure Ti and micro-porous TiO2 substrates. During electrodeposition, the density of Cu nuclei on the TiO2 nanotube substrate increased and the average size of Cu nuclei decreased with increasing anodizing voltage and time for the synthesis of the substrate. In addition, the nucleation density of Cu electrodeposits on the highly ordered TiO2 nanotube substrate was much higher than that on pure Ti and micro-porous TiO2 substrates.

  3. Synthesis of carbon-coated TiO 2 nanotubes for high-power lithium-ion batteries

    Science.gov (United States)

    Park, Sang-Jun; Kim, Young-Jun; Lee, Hyukjae

    Carbon-coated TiO 2 nanotubes are prepared by a simple one-step hydrothermal method with an addition of glucose in the starting powder, and are characterized by morphological analysis and electrochemical measurement. A thin carbon coating on the nanotube surface effectively suppresses severe agglomeration of TiO 2 nanotubes during hydrothermal reaction and post calcination. This action results in better ionic and electronic kinetics when applied to lithium-ion batteries. Consequently, carbon-coated TiO 2 nanotubes deliver a remarkable lithium-ion intercalation/deintercalation performance, such as reversible capacities of 286 and 150 mAh g -1 at 250 and 7500 mA g -1, respectively.

  4. Amine functionalized TiO2-carbon nanotube composite: synthesis, characterization and application to glucose biosensing

    Science.gov (United States)

    Tasviri, Mahboubeh; Rafiee-Pour, Hossain-Ali; Ghourchian, Hedayatollah; Gholami, Mohammad Reza

    2011-12-01

    The synthesis of amine functionalized TiO2-coated multiwalled carbon nanotubes (NH2-TiO2-CNTs) using sol-gel method was investigated. The synthesized nanocomposite was characterized with XRD, FTIR spectroscopy, BET test and SEM imaging. The results demonstrated a unique nanostructure with no destruction of the CNTs' shape. In addition, the presence of amine groups on the composite surface was confirmed by FTIR. This nanocomposite was used for one-step immobilization of glucose oxidase (GOx) to sense glucose. The result of cyclic voltammetry showed a pair of well-defined and quasi-reversible peaks for direct electron transfer of GOx in the absence of glucose. Also, the result of electrochemical impedance spectroscopy indicated that GOx was successfully immobilized on the surface of NH2-TiO2-CNTs. Furthermore, good amperometric response showed that immobilized GOx on the NH2-TiO2-CNTs exhibits exceptional bioelectrocatalytic activity toward glucose oxidation.

  5. The directed preparation of TiO2 nanotubes film on FTO substrate via hydrothermal method for gas sensing application

    Directory of Open Access Journals (Sweden)

    Pham Van Viet

    2016-04-01

    Full Text Available In this research, we directly synthesized TiO2 nanotubes film on Fluorine doped Tin oxide (FTO substrate via hydrothermal method from commercial TiO2 in NaOH solution at 135 ℃ for 24 hours. The samples were characterized by X-ray diffraction (XRD pattern, field emission scanning electron microscopy (FESEM and transmitting electron microscopy (TEM. The average diameter of TiO2 nanotubes (TNTs is about 10–12 nm and their length is about a few hundred nanometers. The sensitivity ability of TNTs increases as the gas concentration increases and developing to the highest sensitivity of TNTs is 2.4 at 700 ppm of the ethanol concentration. The same as the gas concentration, the sensitivity of TNTs increases when the temperature increases. Besides, the sensitivity of samples at 250 ℃ is doubled compared to samples determined at 100 ℃.

  6. Optical properties of TiO2 nanotube arrays fabricated by the electrochemical anodization method

    International Nuclear Information System (INIS)

    Ly, Ngoc Tai; Nguyen, Van Chien; Dao, Thi Hoa; Hoang To, Le Hong; Pham, Duy Long; Do, Hung Manh; Vu, Dinh Lam; Le, Van Hong

    2014-01-01

    Perpendicularly self-aligned TiO 2 nanotube samples of size of 3 × 5 cm 2 were fabricated by the electrochemical anodization method using a solution containing NH 4 F. Influences of the technological conditions such as NH 4 F concentration and anodization voltage were studied. It was found that NH 4 F concentration in the solution and anodization voltage significantly affect the diameter and length of a TiO 2 nanotube. The diameter and the length of a TiO 2 nanotube were observed and estimated by using scanning electron microscopy. It has shown that the largest diameter and the longest length of about 80 nm and 20 μm, respectively, were obtained for the sample anodized in a solution containing 0.4% of NH 4 F, under a voltage of 48 V. Photoluminescence spectra excited by laser lights having wavelengths of 325 and 442 nm (having energies higher and lower than the band gap energy of TiO 2 ) was recorded at room temperature for the TiO 2 nanotube arrays. An abnormal luminescence result was observed. It is experimental evidence that the manufactured TiO 2 nanotube array is an expected material for hydrogen splitting from water by photochemical effect under sunlight as well as for the nano solar cells. (paper)

  7. Fabrication of doped TiO2 nanotube array films with enhanced photo-catalytic activity

    Science.gov (United States)

    Peighambardoust, Naeimeh-Sadat; Khameneh-asl, Shahin; Khademi, Adib

    2018-01-01

    In the present work, we investigate the N and Fe-doped TiO2 nanotube array film prepared by treating TiO2 nanotube array film with ammonia solution and anodizing in Fe(NO3)3 solution respectively. This method avoided the use of hazardous ammonia gas, or laborious ion implantation process. N and Fe-doped TiO2 nanotube arrays (TiO2 NTs) were prepared by electrochemical anodization process in 0.5 wt % HF aqueous solution. The anodization was performed at the conditions of 20 V and 20 min, Followed by a wet immersion in NH3.H2O (1M) for N-doping for 2 hr and annealing post-treatment at 450 °C. The morphology and structure of the nanotube films were characterized by field emission scanning electron microscope (FESEM) and EDX. UV-vis. illumination test were done to observe photo-enhanced catalysis. The effect of different annealing temperature on the structure and photo-absorption property of the TiO2-TNTs was investigated. The results showed that N-TNTs nanotubes exhibited higher photocatalytic activity compared whit the Fe-doped and pure TNTs, because doping N promoted the separation of the photogenerated electrons and holes.

  8. Synthesis and magnetotransport studies of CrO2 films grown on TiO2 nanotube arrays by chemical vapor deposition

    Science.gov (United States)

    Wang, Xiaoling; Zhang, Caiping; Wang, Lu; Lin, Tao; Wen, Gehui

    2018-04-01

    The CrO2 films have been prepared on the TiO2 nanotube array template via atmospheric pressure chemical vapor deposition method. And the growth procedure was studied. In the beginning of the deposition process, the CrO2 grows on the cross section of the TiO2 nanotubes wall, forms a nanonet-like layer. And the grain size of CrO2 is very small. With the increase of the deposition time, the grain size of CrO2 also increases, and the nanonet-like layer changes into porous film. With the further increase of the deposition time, all the nanotubes are covered by CrO2 grains and the surface structure becomes polycrystalline film. The average grain size on the surface of the CrO2 films deposited for 1 h, 2 h and 5 h is about 190 nm, 300 nm and 470 nm. The X-ray diffraction pattern reveals that the rutile CrO2 film has been synthesized on the TiO2 nanotube array template. The CrO2 films show large magnetoresistance (MR) at low temperature, which should originate from spin-dependent tunneling through grain boundaries between CrO2 grains. And the tunneling mechanism of the CrO2 films can be well described by the fluctuation-induced tunneling (FIT) model. The CrO2 film deposited for 2 h shows insulator behavior from 5 k to 300 K, but the CrO2 film deposited for 5 h shows insulator-metal transition around 140 K. The reason is briefly discussed.

  9. Photo-electrocatalytic activity of TiO2 nanotubes prepared with two-step anodization and treated under UV light irradiation

    Directory of Open Access Journals (Sweden)

    Mohamad Mohsen Momeni

    2016-01-01

    Full Text Available To improve the photo-catalytic degradation of salicylic acid, we reported the fabrication of ordered TiO2 nanotube arrays by a simple and effective two-step anodization method and then these TiO2 nanotubes treated in a methanol solution under UV light irradiation. The TiO2 nanotubes prepared in the two-step anodization process showed better photo-catalytic activity than TiO2 nanotubes prepared in one-step anodization process. Also, compared with TiO2 nanotubes without the UV pretreatment, the TiO2 nanotubes pretreated in a methanol solution under UV light irradiation exhibited significant enhancements in both photocurrent and activity. The treated TiO2 nanotubes exhibited a 5-fold enhancement in photocurrent and a 2.5-fold increase in the photo-catalytic degradation of salicylic acid. Also the effect of addition of persulfate and periodate on the photo-catalytic degradation of salicylic acid were investigated. The results showed that the degradation efficiency of salicylic acid increased with increasing persulfate and periodate concentrations. These treated TiO2 nanotubes are promising candidates for practical photochemical reactors.

  10. Low Pt content of carbon supported Pt-Ni-TiO2 nanotube electrocatalysts for direct methanol fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q.Z; Wu, X.; Ma, Z.F. [Shanghai Jiao Tong Univ., Shanghai, (China). Dept. of Chemical Engineering

    2008-07-01

    Interest in titanium oxide (TiO2) nanomaterial is growing due to their special characteristics for optics, catalysis, and photoelectricity conversion. In this study, the anatase/rutile crystalline of TiO2 nanoparticles was synthesized by co-deposition. TiO2 nanotubes were then obtained by microwave irradiations. This paper described the mechanism to fabricate TiO2 nanotubes. The conditions for preparing TiO2 nanotubes by microwave irradiation were optimized. Electrocatalysts were then prepared on the basis of the synthesized TiO2 nanotube. Their performances were investigated by the electro-oxidation of methanol. When Pt electrocatalysts were doped with a certain content of TiO2 nanotubes, they had more electrocatalytic activity for methanol electro-oxidation, particularly if the second transition metal, such as Ni, was added into the electrocatalyst. The electrocatalysts contained 5 and 10 wt per cent of Pt and Ni respectively. The 10 wt per cent TiO2 nanotubes showed better activities than any other catalysts for methanol electro-oxidation. According to XRD and TEM results, the size of nanoparticles of Pt became smaller after adding TiO2 nanotubes into the catalysts. It was concluded that here might be some interactions between Pt, Ni, and TiO2 nanotubes.

  11. Electrochemical synthesis of self-organized TiO2 crystalline nanotubes without annealing

    Science.gov (United States)

    Giorgi, Leonardo; Dikonimos, Theodoros; Giorgi, Rossella; Buonocore, Francesco; Faggio, Giuliana; Messina, Giacomo; Lisi, Nicola

    2018-03-01

    This work demonstrates that upon anodic polarization in an aqueous fluoride-containing electrolyte, TiO2 nanotube array films can be formed with a well-defined crystalline phase, rather than an amorphous one. The crystalline phase was obtained avoiding any high temperature annealing. We studied the formation of nanotubes in an HF/H2O medium and the development of crystalline grains on the nanotube wall, and we found a facile way to achieve crystalline TiO2 nanotube arrays through a one-step anodization. The crystallinity of the film was influenced by the synthesis parameters, and the optimization of the electrolyte composition and anodization conditions (applied voltage and time) were carried out. For comparison purposes, crystalline anatase TiO2 nanotubes were also prepared by thermal treatment of amorphous nanotubes grown in an organic bath (ethylene glycol/NH4F/H2O). The morphology and the crystallinity of the nanotubes were studied by field emission gun-scanning electron microscopy (FEG-SEM) and Raman spectroscopy, whereas the electrochemical and semiconducting properties were analyzed by means of linear sweep voltammetry, impedance spectroscopy, and Mott-Schottky plots. X-ray photoelectron spectroscopy (XPS) and ultraviolet photoelectron spectroscopy (UPS) allowed us to determine the surface composition and the electronic structure of the samples and to correlate them with the electrochemical data. The optimal conditions to achieve a crystalline phase with high donor concentration are defined.

  12. ELECTROPHORETIC DEPOSITION OF TIO2-MULTI-WALLED CARBON NANOTUBE COMPOSITE COATINGS: MORPHOLOGICAL STUDY

    Directory of Open Access Journals (Sweden)

    M. S. MAHMOUDI JOZEE

    2016-09-01

    Full Text Available A homogenous TiO2 / multi-walled carbon nanotubes(MWCNTs composite film were prepared by electrophoretic co-deposition from organic suspension on a stainless steel substrate.  In this study, MWCNTs was incorporated to the coating because of their long structure and their capability to be functionalized by different inorganic groups on the surface. FTIR spectroscopy showed the existence of carboxylic groups on the modified carbon nanotubes surface. The effect of applied electrical fields, deposition time and concentration of nanoparticulates on coatings morphology were investigated by scanning electron microscopy. It was found that combination of MWCNTs within TiO2 matrix eliminating micro cracks presented on TiO2 coating. Also, by increasing the deposition voltages, micro cracks were increased. SEM observation of the coatings revealed that TiO2/multi-walled carbon nanotubes coatings produced from optimized electric field was uniform and had good adhesive to the substrate.

  13. Influence of anodization parameters on the morphology of TiO 2 nanotube arrays

    Science.gov (United States)

    Omidvar, Hamid; Goodarzi, Saba; Seif, Ahmad; Azadmehr, Amir R.

    2011-07-01

    TiO 2 nanotube arrays can be fabricated by electrochemical anodization in organic and inorganic electrolytes. Morphology of these nanotube arrays changes when anodization parameters such as applied voltage, type of electrolyte, time and temperature are varied. Nanotube arrays fabricated by anodization of commercial titanium in electrolytes containing NH 4F solution and either sulfuric or phosphoric acid were studied at room temperature; time of anodization was kept constant. Applied voltage, fluoride ion concentration, and acid concentrations were varied and their influences on TiO 2 nanotubes were investigated. The current density of anodizing was recorded by computer controlled digital multimeter. The surface morphology (top-view) of nanotube arrays were observed by SEM. The nanotube arrays in this study have inner diameters in range of 40-80 nm.

  14. Synthesis and characterization of Ag-doped TiO2 nanotubes on Ti-6Al-4V and Ti-6Al-7Nb alloy

    Science.gov (United States)

    Ulfah, Ika Maria; Bachtiar, Boy M.; Murnandityas, Arnita Rut; Slamet

    2018-05-01

    The present paper is focused on comparative behavior of nanotubes growth on Ti-6Al-4V and Ti-6Al-7Nb alloy using electrochemical anodization method. These alloys were anodized in electrolytes solution containing glycerol, water and 0.5wt.% of NH4F. Silver-doped TiO2 nanotubes were synthesized using photo-assisted deposition (PAD) at various Ag loading concentration in 0.05 M, 0.10 M, and 0.15 M. The phase composition and morphological characteristics were investigated by XRD and FESEM/EDX, respectively. The surface wettability was measured by contact angle meter. The results showed that TiO2 nanotubes can be grown on these surface alloys. XRD profiles revealed crystal formation of anatase, rutile and Ag on these surface alloys. According to FESEM images, the average nanotube diameter of Ti-6Al-4V alloy and Ti-6Al-7Nb alloy are 134 nm and 120 nm, respectively. EDX-Mapping analysis showed that Ag desposited over surface of TiO2 nanotubes. The surface wettability indicated hydrophilicity properties on Ti-4Al-4V alloy and Ti-6Al-7Nb alloy surface. This study may contribute to the development of silver-doped TiO2 nanotubes on Ti-6Al-4V alloy and Ti-6Al-7Nb alloy can be considered in various photocatalytic applications such as biomedical devicesdue to photocatalytic mechanism and antibacterial ability.

  15. Icariin-Loaded TiO2 Nanotubes for Regulation of the Bioactivity of Bone Marrow Cells

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-01-01

    Full Text Available To explore the effects of icariin on the biocompatibility of dental implants, icariin- (ICA- loaded TiO2 nanotubes were fabricated on Ti substrates via anodic oxidation and physical absorption. The surface characteristics of the specimens were monitored by field emission scanning electron microscopy (FE-SEM, X-ray diffractometry (XRD, contact angle measurements (CA, and high-pressure liquid chromatography. Additionally, the activities of bone marrow cells, such as cytoskeletal, proliferative activities, mineralization, and osteogenesis-related gene expression on the substrates were investigated in detail. The characterization results demonstrated that ICA-loaded TiO2 nanotubes were successfully fabricated and the hydrophilicity of these TiO2 nanotubes was significantly higher than that of the pure Ti groups. The results also showed that ICA-loaded TiO2 nanotubes might not have enhanced effects on cell proliferation and ALP expression. However, it seemed to significantly promote differentiation of bone marrow cells, demonstrated by enhancing the formation of mineralized nodule and the upregulation of the gene expression such as OC, BSP, OPN, and COL-1. The results indicated that ICA-loaded TiO2 nanotubes can modulate bioactivity of bone marrow cells, which is promising for potential applications in the orthopedics field.

  16. Flexible symmetric supercapacitors based on vertical TiO2 and carbon nanotubes

    Science.gov (United States)

    Chien, C. J.; Chang, Pai-Chun; Lu, Jia G.

    2010-03-01

    Highly conducting and porous carbon nanotubes are widely used as electrodes in double-layer-effect supercapacitors. In this presentation, vertical TiO2 nanotube array is fabricated by anodization process and used as supercapacitor electrode utilizing its compact density, high surface area and porous structure. By spin coating carbon nanotube networks on vertical TiO2 nanotube array as electrodes with 1M H2SO4 electrolyte in between, the specific capacitance can be enhanced by 30% compared to using pure carbon nanotube network alone because of the combination of double layer effect and redox reaction from metal oxide materials. Based on cyclic voltammetry and galvanostatic charge-discharge measurements, this type of hybrid electrode has proven to be suitable for high performance supercapacitor application and maintain desirable cycling stability. The electrochemical impedance spectroscopy technique shows that the electrode has good electrical conductivity. Furthermore, we will discuss the prospect of extending this energy storage approach in flexible electronics.

  17. Structure and dye-sensitized solar cell application of TiO2 nanotube arrays fabricated by the anodic oxidation method

    Science.gov (United States)

    Ok, Seon-Yeong; Cho, Kwon-Koo; Kim, Ki-Won; Ryu, Kwang-Sun

    2010-05-01

    Well-ordered TiO2 nanotube arrays were fabricated by the potentiostatic anodic oxidation method using pure Ti foil as a working electrode and ethylene glycol solution as an electrolyte with the small addition of NH4F and H2O. The influence of anodization temperature and time on the morphology and formation of TiO2 nanotube arrays was examined. The TiO2 nanotube arrays were applied as a photoelectrode to dye-sensitized solar cells. Regardless of anodizing temperature and time, the average diameter and wall thickness of TiO2 nanotube arrays show a similar value, whereas the length increases with decreasing reaction temperature. The conversion efficiency is very low, which is due to a morphology breaking of the TiO2 nanotube arrays in the manufacturing process of a photoelectrode.

  18. Crystallization of TiO2 Nanotubes by In Situ Heating TEM

    KAUST Repository

    Casu, Alberto

    2018-01-15

    The thermally-induced crystallization of anodically grown TiO2 amorphous nanotubes has been studied so far under ambient pressure conditions by techniques such as differential scanning calorimetry and in situ X-ray diffraction, then looking at the overall response of several thousands of nanotubes in a carpet arrangement. Here we report a study of this phenomenon based on an in situ transmission electron microscopy approach that uses a twofold strategy. First, a group of some tens of TiO2 amorphous nanotubes was heated looking at their electron diffraction pattern change versus temperature, in order to determine both the initial temperature of crystallization and the corresponding crystalline phases. Second, the experiment was repeated on groups of few nanotubes, imaging their structural evolution in the direct space by spherical aberration-corrected high resolution transmission electron microscopy. These studies showed that, differently from what happens under ambient pressure conditions, under the microscope’s high vacuum (p < 10−5 Pa) the crystallization of TiO2 amorphous nanotubes starts from local small seeds of rutile and brookite, which then grow up with the increasing temperature. Besides, the crystallization started at different temperatures, namely 450 and 380 °C, when the in situ heating was performed irradiating the sample with electron beam energy of 120 or 300 keV, respectively. This difference is due to atomic knock-on effects induced by the electron beam with diverse energy.

  19. Adhesion measurement of highly-ordered TiO2 nanotubes on Ti-6Al-4V alloy

    Directory of Open Access Journals (Sweden)

    Masoud Sarraf

    2017-12-01

    Full Text Available Self-assembled nanotubular arrays on Ti alloys could be used for more effective implantable devices in various medical approaches. In the present work, the adhesion of TiO2 nanotubes (TiO2 NTs on Ti-6Al-4V (Ti64 was investigated by laser spallation and scratch test techniques. At first, electrochemical anodization was performed in an ammonium fluoride solution dissolved in a 90:10 ethane-1,2-diol (ethylene glycol and water solvent mixture. This process was performed at room temperature (23 °C at a steady potential of 60 V for 1 h. Next, the TiO2 nanotubes layer was heat-treated to improve the adhesion of the coating. The formation of selforganized TiO2 nanotubes as well as the microstructural evolution, are strongly dependent on the processing parameters and subsequent annealing. From microscopic analysis, highly oriented arrays of TiO2 nanotubes were grown by thermal treatment for 90 min at 500 °C. Further heat treatment above 500 °C led to the detachment of the nanotubes and the complete destruction of the nanotubes occurred at temperature above 700 °C. Scratch test analysis over a constant scratch length (1000 µm indicated that the failure point was shifted from 247.4 to 557.9 µm while the adhesion strength was increased from ∼862 to ∼1814 mN after annealing at 500 °C. The adhesion measurement determined by laser spallation technique provided an intrinsic adhesion strength of 51.4 MPa for the TiO2 nanotubes on the Ti64 substrate.

  20. Influence of sterilization methods on cell behavior and functionality of osteoblasts cultured on TiO2 nanotubes

    International Nuclear Information System (INIS)

    Oh, Seunghan; Brammer, Karla S.; Moon, Kyung-Suk; Bae, Ji-Myung; Jin, Sungho

    2011-01-01

    We investigated the adhesion, proliferation and osteogenic functionality of osteoblasts cultured on titanium dioxide (TiO 2 ) nanotubes in response to different sterilization methods (dry autoclaving vs. wet autoclaving). We prepared various sizes (30-100 nm diameter) of TiO 2 nanotubes on titanium substrates by anodization, sterilized nanotubes by different conditions, and seeded osteoblast cells onto the nanotube surfaces with two different cell seeding densities (10,000 vs. 50,000 cells/well in 12-culture well). The result of this study indicates that the adhesion, proliferation and alkaline phosphatase activity of osteoblasts cultured on only the larger 70 and 100 nm TiO 2 nanotube arrays were dramatically changed by the different sterilization conditions at a low cell seeding density. However, with a higher cell seeding density (50,000 cells/well in 12-cell culture well), the results revealed no significant difference among altered nanotube geometry, 30-100 nm diameters, nor sterilization methods. Next, it was revealed that the nanofeatures of proteins adhered on nanotubular TiO 2 morphology are altered by the sterilization method. It was determined that this protein adhesion effect, in combination with the cell density of osteoblasts seeded onto such TiO 2 nanotube surfaces, has profound effects on cell behavior. This study clearly shows that these are some of the important in vitro culture factors that need to be taken into consideration, as well as TiO 2 nanotube diameters which play an important role in the improvement of cell behavior and functionality.

  1. An Alternative to Annealing TiO2 Nanotubes for Morphology Preservation: Atmospheric Pressure Plasma Jet Treatment.

    Science.gov (United States)

    Seo, Sang-Hee; Uhm, Soo-Hyuk; Kwon, Jae-Sung; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-03-01

    Titanium oxide nanotube layer formed by plasma electrolytic oxidation (PEO) is known to be excellent in biomaterial applications. However, the annealing process which is commonly performed on the TiO2 nanotubes cause defects in the nanotubular structure. The purpose of this work was to apply a non-thermal atmospheric pressure plasma jet on diameter-controlled TiO2 nanotubes to mimic the effects of annealing while maintaining the tubular structure for use as biomaterial. Diameter-controlled nanotube samples fabricated by plasma electrolytic oxidation were dried and prepared under three different conditions: untreated, annealed at 450 °C for 1 h in air with a heating rate of 10 °C/min, and treated with an air-based non-thermal atmospheric pressure plasma jet for 5 minutes. The contact angle measurement was investigated to confirm the enhanced hydrophilicity of the TiO2 nanotubes. The chemical composition of the surface was studied using X-ray photoelectron spectroscopy, and the morphology of TiO2 nanotubes was examined by field emission scanning electron microscopy. For the viability of the cell, the attachment of the osteoblastic cell line MC3T3-E1 was determined using the water-soluble tetrazolium salt assay. We found that there are no morphological changes in the TiO2 nanotubular structure after the plasma treatment. Also, we investigated a change in the chemical composition and enhanced hydrophilicity which result in improved cell behavior. The results of this study indicated that the non-thermal atmospheric pressure plasma jet results in osteoblast functionality that is comparable to annealed samples while maintaining the tubular structure of the TiO2 nanotubes. Therefore, this study concluded that the use of a non-thermal atmospheric pressure plasma jet on nanotube surfaces may replace the annealing process following plasma electrolytic oxidation.

  2. Bacterial adhesion and inactivation on Ag decorated TiO2-nanotubes under visible light: Effect of the nanotubes geometry on the photocatalytic activity.

    Science.gov (United States)

    Hajjaji, A; Elabidi, M; Trabelsi, K; Assadi, A A; Bessais, B; Rtimi, S

    2018-06-05

    This study investigates the effect of the diameter of TiO 2 nanotubes and silver decorated nanotubes on optical properties and photocatalytic inactivation of Escherichia coli under visible light. The TiO 2 nanotubes (TiO 2 -NTs) were prepared using the electrochemical method varying the anodization potential starting from 20 V until 70 V. The Ag nanoparticles were carried out using the photoreduction process under the same experimental conditions. The diameter size was determined using the scanning electronic microscopy (SEM). TiO 2 -NTs diameter reached ∼100 nm at 70 V. Transmission electronic microscopy (TEM) imaging confirmed the TiO 2 -NTs surface decoration by silver nanoparticles. The Ag-NPs average size was found to be equal to 8 nm. The X-Ray diffraction (XRD) analysis confirm that all TiO 2 -NTs crystallize in the anatase phases regardless the used anodization potential. The decrease of the photoluminescence (PL) intensity of Ag NPs decorated TiO 2 -NTs indicates the decrease of the specific area when the nanotubes diameter increases. The UV-vis absorbance show that the absorption edges was bleu shifted with the increasing of nanotubes diameter, which can be explained by the increase of the crystallites average size. The bacterial adhesion and inactivation tests were carried in the dark and under light. Bacteria were seen to adhere on TiO 2 -NTs in the dark; however, under light the bacteria were killed before they establish a strong contact with the TiO 2 -NTs and Ag/TiO 2 -NTs surfaces. Bacterial inactivation kinetics were faster when the anodizing potential of the NTs-preparation increases. A total bacterial inactivation was obtained on ∼100 nm nanotubes diameter within 90 min. This result was attributed to the enhancement of the TNTs crystallinity leading to reduced surface defects. Redox catalysis was seen to occur under light on the TiO 2 -NTs and Ag/TiO 2 -NTs. the photo-induced antibacterial activity on the AgO/Ag 2 O decorated TiO

  3. Synthesis and Characterization of Hierarchical Structured TiO2 Nanotubes and Their Photocatalytic Performance on Methyl Orange

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2015-01-01

    Full Text Available Hierarchical structured TiO2 nanotubes were prepared by mechanical ball milling of highly ordered TiO2 nanotube arrays grown by electrochemical anodization of titanium foil. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, specific surface area analysis, UV-visible absorption spectroscopy, photocurrent measurement, photoluminescence spectra, electrochemical impedance spectra, and photocatalytic degradation test were applied to characterize the nanocomposites. Surface area increased as the milling time extended. After 5 h ball milling, TiO2 hierarchical nanotubes exhibited a corn-like shape and exhibited enhanced photoelectrochemical activity in comparison to commercial P25. The superior photocatalytic activity is suggested to be due to the combined advantages of high surface area of nanoparticles and rapid electron transfer as well as collection of the nanotubes in the hierarchical structure. The hierarchical structured TiO2 nanotubes could be applied into flexible applications on solar cells, sensors, and other photoelectrochemical devices.

  4. Effect of TiO2 nanotube length and lateral tubular spacing on ...

    Indian Academy of Sciences (India)

    Abstract. The main objective of this study is to show the effect of TiO2 nanotube length, diameter and intertubular ... formation of nanotube arrays spread uniformly over a large area. ... 36, 48 and 72 h at an applied voltage of 40 V. The anodized ... and phase analysis for the obtained nanotubes were done .... Using an extra-.

  5. TiO2 micro-flowers composed of nanotubes and their application to dye-sensitized solar cells

    Science.gov (United States)

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2014-02-01

    TiO2 micro-flowers were made to bloom on Ti foil by the anodic oxidation of Ti-protruding dots with a cylindrical shape. Arrays of the Ti-protruding dots were prepared by photolithography, which consisted of coating the photoresists, attaching a patterned mask, illuminating with UV light, etching the Ti surface by reactive ion etching (RIE), and stripping the photoresist on the Ti foil. The procedure for the blooming of the TiO2 micro-flowers was analyzed by field emission scanning electron microscopy (FESEM) as the anodizing time was increased. Photoelectrodes of dye-sensitized solar cells (DSCs) were fabricated using TiO2 micro-flowers. Bare TiO2 nanotube arrays were used for reference samples. The short-circuit current ( J sc) and the power conversion efficiency of the DSCs based on the TiO2 micro-flowers were 4.340 mA/cm2 and 1.517%, respectively. These values of DSCs based on TiO2 micro-flowers were higher than those of bare samples. The TiO2 micro-flowers had a larger surface area for dye adsorption compared to bare TiO2 nanotube arrays, resulting in improved J sc characteristics. The structure of the TiO2 micro-flowers allowed it to adsorb dyes very effectively, also demonstrating the potential to achieve higher power conversion efficiency levels for DSCs compared to a bare TiO2 nanotube array structure and the conventional TiO2 nanoparticle structure.

  6. Dye-sensitized solar cells based on Cr-doped TiO2 nanotube photoanodes

    Institute of Scientific and Technical Information of China (English)

    M.M.Momeni

    2017-01-01

    The effect of chromium doping on the photovoltaic efficiency of dye-sensitized solar cells (DSSCs) with anodized TiO2 nanotubes followed by an annealing process was investigated.Cr-doped TiO2 nanotubes (CrTNs) with different amounts of chromium were obtained by anodizing of titanium foils in a single-step process using potassium chromate as the chromium source.Film features were investigated by scanning electron microscopy (SEM),X-ray diffraction (XRD),energy-dispersive X-ray spectroscopy (EDX),and ultraviolet-visible (UV-Vis) spectroscopy.It is clearly seen that highly ordered TiO2 nanotubes are formed in an anodizing solution free of potassium chromate,and with a gradual increase in the potassium chromate concentration,these nanotube structures change to nanoporous and compact films without porosity.The photovoltaic efficiencies of fabricated DSSCs were characterized by a solar cell measurement system via the photocurrent-voltage (Ⅰ-Ⅴ) curves.It is found that the photovoltaic efficiency of DSSCs with CrTNsl sample is improved by more than three times compared to that of DSSCs with undoped TNs.The energy conversion efficiency increases from 1.05 % to 3.89 % by doping of chromium.

  7. Synthesis and Characterization of TiO2(B Nanotubes Prepared by Hydrothermal Method Using [Ti8O12(H2O24]Cl8.HCl.7H2O as Precursor

    Directory of Open Access Journals (Sweden)

    Hari Sutrisno

    2010-04-01

    Full Text Available Low-dimension TiO2-related material has been synthesized by hydrothermal treatment of [Ti8O12(H2O24]Cl8.HCl.7H2O crystal as precursor in a 10 M NaOh aqueous solution at 150 C for 24 h. Characterization of the obtained product was carried out by a range of techniques including X-ray diffraction (XRD, high resolution scanning electron microscopy (HRSEM, high resolution transmission electron microscopy (HRTEM, Raman spectroscopy and nitrogen adsorption-desorption isotherm (Brunauer-Emmett-Teller (BET-Barret-Joyner-Halender (BJH. From HRTEM, XRD and Raman spectra showed that the obtained product has a TiO2(B structure. According to HRTEM observations, it was found that TiO2(B has nanotubular structure with approximately 5-8 nm in outer and 3-6 nm in inner diameter. The BET surface area of TiO2(B nanotubes is quiet large, values of 418.3163 m2/g being obtained. Pore structure analyisis by the BJH method showed that the average pore diameter of TiO2(B nanotubes has 5.5781 nm.

  8. Scanning electron microscopy of heat treated TiO2 nanotubes arrays obtained by anodic oxidation

    Science.gov (United States)

    Naranjo, D. I.; García-Vergara, S. J.; Blanco, S.

    2017-12-01

    Scanning electron microscopy was used to investigate the anatase-rutile transformation of self-organized TiO2 nanotubes obtained on titanium foil by anodizing and subsequent heat treatment. The anodizing was carried out at 20V in an 1% v/v HF acid and ethylene glycol:water (50:50) electrolyte at room temperature. The anodized samples were initially pre-heat treated at 450°C for 4 hours to modify the amorphous structure of TiO2 nanotubes into anatase structure. Then, the samples were heated between 600 to 800°C for different times, in order to promote the transformation to rutile structure. The formation of TiO2 nanotubes is evident by SEM images. Notably, when the samples are treated at high temperature, the formation of rutile crystals starts to become evident at the nanotubes located on the originally grain boundaries of the titanium. Thus, the anatase - rutile transformation has a close relationship with the microstructure of the titanium, more exactly with grain boundaries.

  9. Fast fabrication of long TiO2 nanotube array with high photoelectrochemical property on flexible stainless steel.

    Science.gov (United States)

    Tao, Jie; Wu, Tao; Gao, Peng

    2012-03-01

    Oriented highly ordered long TiO2 nanotube array films with nanopore structure and high photoelectrochemical property were fabricated on flexible stainless steel substrate (50 microm) by anodization treatment of titanium thin films in a short time. The samples were characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and photoelectrochemical methods, respectively. The results showed that Ti films deposited at the condition of 0.7 Pa Ar pressure and 96 W sputtering power at room temperature was uniform and dense with good homogeneity and high crystallinity. The voltage and the anodization time both played significant roles in the formation of TiO2 nanopore-nanotube array film. The optimal voltage was 60 V and the anodization time is less than 30 min by anodizing Ti films in ethylene glycerol containing 0.5% (w) NH4F and 3% (w) H2O. The growth rate of TiO2 nanotube array was as high as 340 nm/min. Moreover, the photocurrent-potential curves, photocurrent response curves and electrochemical impedance spectra results indicated that the TiO2 nanotube array film with the nanoporous structure exhibited a better photo-response ability and photoelectrochemical performance than the ordinary TiO2 nanotube array film. The reason is that the nanoporous structure on the surface of the nanotube array can separate the photo electron-hole pairs more efficiently and completely than the tubular structure.

  10. Hydroxyapatite/gelatin functionalized graphene oxide composite coatings deposited on TiO2 nanotube by electrochemical deposition for biomedical applications

    International Nuclear Information System (INIS)

    Yan, Yajing; Zhang, Xuejiao; Mao, Huanhuan; Huang, Yong; Ding, Qiongqiong; Pang, Xiaofeng

    2015-01-01

    Highlights: • Graphene oxide cross-linked gelatin was firstly employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO 2 nanotube arrays. • Gelatin functionalized graphene oxide induced the formation of hydroxyapatite coatings. • The success of gelatin and graphene oxide incorporation was evidenced with FTIR and XPS. • The synthesized composite coatings showed good biocompatibility and no adverse effect in cell culture tests. - Abstract: Graphene oxide cross-linked gelatin was employed as reinforcement fillers in hydroxyapatite coatings by electrochemical deposition process on TiO 2 nanotube arrays (TNs). The TNs were grown on titanium by electrochemical anodization in hydrofluoric electrolyte using constant voltage. Fourier transform infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Field emission scanning electron microscopy equipped with energy dispersive X-ray analysis and biological studies were used to characterize the coatings. The corrosion resistance of the coatings was also investigated by electrochemical method in simulated body fluid solution

  11. Polyoxometalate-modified TiO2 nanotube arrays photoanode materials for enhanced dye-sensitized solar cells

    Science.gov (United States)

    Liu, Ran; Sun, Zhixia; Zhang, Yuzhuo; Xu, Lin; Li, Na

    2017-10-01

    In this work, we prepared for the first time the TiO2 nanotube arrays (TNAs) photoanode with polyoxometalate(POMs)-modified TiO2 electron-transport layer for improving the performance of zinc phthalocyanine(ZnPc)-sensitized solar cells. The as-prepared POMs/TNAs/ZnPc composite photoanode exhibited higher photovoltaic performances than the TNAs/ZnPc photoanode, so that the power conversion efficiency of the solar cell device based on the POMs/TNAs/ZnPc photoanode displayed a notable improvement of 45%. These results indicated that the POMs play a key role in reducing charge recombination in phthalocyanine-sensitized solar cells, together with TiO2 nanotube arrays being helpful for electron transport. The mechanism of the performance improvement was demonstrated by the measurements of electrochemical impedance spectra and open-circuit voltage decay curves. Although the resulting performance is still below that of the state-of-the-art dye-sensitized solar cells, this study presents a new insight into improving the power conversion efficiency of phthalocyanine-sensitized solar cells via polyoxometalate-modified TiO2 nanotube arrays photoanode.

  12. Photodegradation of rhodamine B and methyl orange over one-dimensional TiO2 catalysts under simulated solar irradiation

    International Nuclear Information System (INIS)

    Guo Changsheng; Xu Jian; He Yan; Zhang Yuan; Wang Yuqiu

    2011-01-01

    In this paper, two one-dimensional (1D) TiO 2 nanostructures, nanotube and nanowire were synthesized by a hydrothermal method using Degussa P25 TiO 2 as a precursor. The synthesized anatase TiO 2 nanotubes with the diameters of 10-20 nm and length of several hundred nanometers were formed from P25 and NaOH with the hydrothermal treatment temperature at 150 deg. C, and anatase TiO 2 nanowires with the diameters of 10-40 nm and length up to several micrometers were prepared at 180 deg. C. The photocatalytic activity of the two nanostructures was evaluated by degrading rhodamine B (RhB) and methyl orange (MO) in aqueous solutions under simulated solar light irradiation. The results suggested that the TiO 2 nanocatalysts displayed higher degradation activity compared to P25. For RhB, 98.9% and 91.9% of RhB were removed by nanotubes and nanowires, respectively after 60 min irradiation in comparison to the 81.8% removal by P25. Similar trend was observed for MO, with the removal percentage of 95.6%, 88.3% and 74.9%, respectively by TiO 2 nanotubes, nanowires and P25. Meanwhile, RhB and MO showed different photodegradation rates in nanotubes and nanowires suspensions, probably due to the morphology and crystal structure of the TiO 2 nanocatalysts which play important roles in the degradation activity of the catalysts.

  13. Synthesis of stable TiO2 nanotubes: effect of hydrothermal treatment, acid washing and annealing temperature.

    Science.gov (United States)

    López Zavala, Miguel Ángel; Lozano Morales, Samuel Alejandro; Ávila-Santos, Manuel

    2017-11-01

    Effect of hydrothermal treatment, acid washing and annealing temperature on the structure and morphology of TiO 2 nanotubes during the formation process was assessed. X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy analysis were conducted to describe the formation and characterization of the structure and morphology of nanotubes. Hydrothermal treatment of TiO 2 precursor nanoparticles and acid washing are fundamental to form and define the nanotubes structure. Hydrothermal treatment causes a change in the crystallinity of the precursor nanoparticles from anatase phase to a monoclinic phase, which characterizes the TiO 2 nanosheets structure. The acid washing promotes the formation of high purity nanotubes due to Na + is exchanged from the titanate structure to the hydrochloric acid (HCl) solution. The annealing temperature affects the dimensions, structure and the morphology of the nanotubes. Annealing temperatures in the range of 400 °C and 600 °C are optimum to maintain a highly stable tubular morphology of nanotubes. Additionally, nanotubes conserve the physicochemical properties of the precursor Degussa P25 nanoparticles. Temperatures greater than 600 °C alter the morphology of nanotubes from tubular to an irregular structure of nanoparticles, which are bigger than those of the precursor material, i.e., the crystallinity turn from anatase phase to rutile phase inducing the collapse of the nanotubes.

  14. High quantum yield graphene quantum dots decorated TiO_2 nanotubes for enhancing photocatalytic activity

    International Nuclear Information System (INIS)

    Qu, Ailan; Xie, Haolong; Xu, Xinmei; Zhang, Yangyu; Wen, Shengwu; Cui, Yifan

    2016-01-01

    Highlights: • High concentration yellow GQDs and TiO_2 nanotubes were achieved by a simple and green method. • High quantum yield GQDs enhanced the photodegradation capacity of TiO_2 nanotube. • The catalytic performance of GQDs/TiO_2 depends on the GQDs loading. • The improved photocatalytic activity of GQDs/TiO_2 was attributed to three aspects. - Abstract: Graphene quantum dots (GQDs) with high quantum yield (about 23.6% at an excitation wavelength of 320 nm) and GQDs/TiO_2 nanotubes (GQDs/TiO_2 NTs) composites were achieved by a simple hydrothermal method at low temperature. Photoluminescence characterization showed that the GQDs exhibited the down-conversion PL features at excitation from 300 to 420 nm and up-conversion photoluminescence in the range of 600–800 nm. The photocatalytic activity of prepared GQDs/TiO_2 NTs composites on the degradation of methyl orange (MO) was significantly enhanced compared with that of pure TiO_2 nanotubes (TiO_2 NTs). For the composites coupling with 1.5%, 2.5% and 3.5% GQDs, the degradation of MO after 20 min irradiation under UV–vis light irradiation (λ = 380–780 nm) were 80.52%, 94.64% and 51.91%, respectively, which are much higher than that of pure TiO_2 NTs (35.41%). It was inferred from the results of characterization that the improved photocatalytic activity of the GQDs/TiO_2 NTs composites was attributed to the synergetic effect of up-conversion properties of the GQDs, enhanced visible light absorption and efficient separation of photogenerated electron-holes of the GQDs/TiO_2 composite.

  15. Biomimetic Approach to Solar Cells Based on TiO2 Nanotubes

    National Research Council Canada - National Science Library

    Allen, Jan L; Lee, Ivan C; Wolfenstine, Jeff

    2008-01-01

    The goal of this research was to explore the use of nanotube titanium dioxide (TiO2) as an electrode material in dye-sensitized solar cells in order to further the development of solar cell technology...

  16. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Giorgio Sberveglieri

    2013-10-01

    Full Text Available Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes

  17. Homogeneous growth of TiO2-based nanotubes on nitrogen-doped reduced graphene oxide and its enhanced performance as a Li-ion battery anode

    Science.gov (United States)

    Mehraeen, Shayan; Taşdemir, Adnan; Alkan Gürsel, Selmiye; Yürüm, Alp

    2018-06-01

    The pursuit of a promising replacement candidate for graphite as a Li-ion battery anode, which can satisfy both engineering criteria and market needs has been the target of researchers for more than two decades. In this work, we have investigated the synergistic effect of nitrogen-doped reduced graphene oxide (NrGO) and nanotubular TiO2 to achieve high rate capabilities with high discharge capacities through a simple, one-step and scalable method. First, nanotubes of hydrogen titanate were hydrothermally grown on the surface of NrGO sheets, and then converted to a mixed phase of TiO2-B and anatase (TB) by thermal annealing. Specific surface area, thermal gravimetric, structural and morphological characterizations were performed on the synthesized product. Electrochemical properties were investigated by cyclic voltammetry and cyclic charge/discharge tests. The prepared anode showed high discharge capacity of 150 mAh g‑1 at 1 C current rate after 50 cycles. The promising capacity of synthesized NrGO-TB was attributed to the unique and novel microstructure of NrGO-TB in which long nanotubes of TiO2 have been grown on the surface of NrGO sheets. Such architecture synergistically reduces the solid-state diffusion distance of Li+ and increases the electronic conductivity of the anode.

  18. Homogeneous growth of TiO2-based nanotubes on nitrogen-doped reduced graphene oxide and its enhanced performance as a Li-ion battery anode.

    Science.gov (United States)

    Mehraeen, Shayan; Taşdemir, Adnan; Gürsel, Selmiye Alkan; Yürüm, Alp

    2018-06-22

    The pursuit of a promising replacement candidate for graphite as a Li-ion battery anode, which can satisfy both engineering criteria and market needs has been the target of researchers for more than two decades. In this work, we have investigated the synergistic effect of nitrogen-doped reduced graphene oxide (NrGO) and nanotubular TiO 2 to achieve high rate capabilities with high discharge capacities through a simple, one-step and scalable method. First, nanotubes of hydrogen titanate were hydrothermally grown on the surface of NrGO sheets, and then converted to a mixed phase of TiO 2 -B and anatase (TB) by thermal annealing. Specific surface area, thermal gravimetric, structural and morphological characterizations were performed on the synthesized product. Electrochemical properties were investigated by cyclic voltammetry and cyclic charge/discharge tests. The prepared anode showed high discharge capacity of 150 mAh g -1 at 1 C current rate after 50 cycles. The promising capacity of synthesized NrGO-TB was attributed to the unique and novel microstructure of NrGO-TB in which long nanotubes of TiO 2 have been grown on the surface of NrGO sheets. Such architecture synergistically reduces the solid-state diffusion distance of Li + and increases the electronic conductivity of the anode.

  19. Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation

    Science.gov (United States)

    Dong, Zhenbiao; Ding, Dongyan; Li, Ting; Ning, Congqin

    2018-04-01

    Photoelectrochemical (PEC) water splitting based doping modified one dimensional (1D) titanium dioxide (TiO2) nanostructures provide an efficient method for hydrogen generation. Here we first successfully fabricated 1D Si-doped TiO2 (Ti-Si-O) nanotube arrays through anodizing Ti-Si alloys with different Si amount, and reported the PEC properties for water splitting. The Ti-Si-O nanotube arrays fabricated on Ti-5 wt.% Si alloy and annealed at 600 °C possess higher PEC activity, yielding a higher photocurrent density of 0.83 mA/cm2 at 0 V vs. Ag/AgCl. The maximum photoconversion efficiency was 0.54%, which was 2.7 times the photoconversion efficiency of undoped TiO2.

  20. Self-organized TiO2 nanotubes grown on Ti substrates with different crystallographic preferential orientations: Local structure of TiO2 nanotubes vs. photo-electrochemical response

    Czech Academy of Sciences Publication Activity Database

    Krbal, M.; Sopha, H.; Pohl, D.; Beneš, L.; Damm, C.; Rellinghaus, B.; Kupčík, Jaroslav; Bezdička, Petr; Šubrt, Jan; Macák, J. M.

    2018-01-01

    Roč. 264, FEB (2018), s. 393-399 ISSN 0013-4686 Institutional support: RVO:61388980 Keywords : Anatase * Anodization * Photo-current * Stoichiometry * TiO nanotubes 2 Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 4.798, year: 2016

  1. Asymmetric photoelectric property of transparent TiO2 nanotube films loaded with Au nanoparticles

    International Nuclear Information System (INIS)

    Wang, Hui; Liang, Wei; Liu, Yiming; Zhang, Wanggang; Zhou, Diaoyu; Wen, Jing

    2016-01-01

    Highlights: • Highly transparent films of TiO 2 nanotube arrays were directly fabricated on FTO glasses. • Semitransparent TNT-Au composite films were obtained and exhibited excellent photoelectrocatalytic ability. • Back-side of TNT-Au composite films was firstly irradiated and tested to compare with front-side of films. - Abstract: Semitransparent composite films of Au loaded TiO 2 nanotubes (TNT-Au) were prepared by sputtering Au nanoparticles on highly transparent TiO 2 nanotubes films, which were fabricated directly on FTO glasses by anodizing the Ti film sputtered on the FTO glasses. Compared with pure TNT films, the prepared TNT-Au films possessed excellent absorption ability and high photocurrent response and improved photocatalytic activity under visible-light irradiation. It could be concluded that Au nanoparticles played important roles in improving the photoelectrochemical performance of TNT-Au films. Moreover, in this work, both sides of TNT-Au films were researched and compared owing to theirs semitransparency. It was firstly found that the photoelectric activity of TNT-Au composite films with back-side illumination was obviously superior to front-side illumination.

  2. Synthesis and Photocatalytic Activity of Anatase TiO2 Nanoparticles-coated Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Xie Yi

    2009-01-01

    Full Text Available Abstract A simple and straightforward approach to prepare TiO2-coated carbon nanotubes (CNTs is presented. Anatase TiO2 nanoparticles (NPs with the average size ~8 nm were coated on CNTs from peroxo titanic acid (PTA precursor even at low temperature of 100 °C. We demonstrate the effects of CNTs/TiO2 molar ratio on the adsorption capability and photocatalytic efficiency under UV–visible irradiation. The samples showed not only good optical absorption in visible range, but also great adsorption capacity for methyl orange (MO dye molecules. These properties facilitated the great enhancement of photocatalytic activity of TiO2 NPs-coated CNTs photocatalysts. The TiO2 NPs-coated CNTs exhibited 2.45 times higher photocatalytic activity for MO degradation than that of pure TiO2.

  3. Preparation and characterization of titanate nanotubes/carbon composites

    International Nuclear Information System (INIS)

    Wang Xiaodong; Pan Hui; Xue Xiaoxiao; Qian Junjie; Yu Laigui; Yang Jianjun; Zhang Zhijun

    2011-01-01

    Highlights: → Titanate nanotubes/carbon composites were synthesized from TiO 2 -carbon composites. → The carbon shell of TiO 2 particles obstructed the reaction between TiO 2 and NaOH. → TEM, XRD, and Raman spectra reveal the formation processes of the TNT/CCs. - Abstract: Titanate nanotubes/carbon composites(TNT/CCs) were synthesized by allowing carbon-coated TiO 2 (CCT) powder to react with a dense aqueous solution of NaOH at 120 deg. C for a proper period of time. As-prepared CCT and TNT/CCs were characterized by means of transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectrometry. The processes for formation of titanate nanotubes/carbon composites were discussed. It was found that the TiO 2 particles in TiO 2 -carbon composite were enwrapped by a fine layer of carbon with a thickness of about 4 nm. This carbon layer functioned to inhibit the transformation from anatase TiO 2 to orthorhombic titanate. As a result, the anatase TiO 2 in CCT was incompletely transformed into orthorhombic titanate nanotubes upon 24 h of reaction in the dense and hot NaOH solution. When the carbon layers were gradually peeled off along with the formation of more orthorhombic titanate nanotubes at extended reaction durations (e.g., 72 h), anatase TiO 2 particles in CCT were completely transformed into orthorhombic titanate nanotubes, yielding TNT/CCs whose morphology was highly dependent on the reaction time and temperature.

  4. Conventional hydrothermal synthesis of titanate nanotubes: Systematic discussions on structural, optical, thermal and morphological properties

    Directory of Open Access Journals (Sweden)

    S. Muniyappan

    2017-12-01

    Full Text Available Titanate nanotubes were successfully synthesized by hydrothermal technique under acidic-base medium. The anatase and titanate phase of the starting TiO2 and tubular titanate was confirmed by powder XRD technique. The UV–vis-NIR spectroscopy was used to study the absorption nature of titanate nanotubes and the band gap was calculated as 3.3 eV. Infrared technique was employed to detect the presence of all the functional groups in the synthesized titanate nanotube material. Thermal properties of the title material were studied by TG-DTA analyses. The shrinkage of interlayer distance of TiO2 network confirms the nanotube formation. Morphology and size information about the synthesized material were carried out using FESEM and TEM analysis. Titanate nanotubes are having the maximum length of 2.24 µm and the average diameter of 169.73 nm. EDX analysis gives out the elemental composition of the as synthesized product. This report may fetch an efficient way to synthesize TiO2 nanotubes using TiO2 nanoparticles.

  5. Effects of incorporation of 2.5 and 5 wt% TiO2 nanotubes on fracture toughness, flexural strength, and microhardness of denture base poly methyl methacrylate (PMMA).

    Science.gov (United States)

    Abdulrazzaq Naji, Sahar; Behroozibakhsh, Marjan; Jafarzadeh Kashi, Tahereh Sadat; Eslami, Hossein; Masaeli, Reza; Mahgoli, Hosseinali; Tahriri, Mohammadreza; Ghavvami Lahiji, Mehrsima; Rakhshan, Vahid

    2018-04-01

    The aim of this preliminary study was to investigate, for the first time, the effects of addition of titania nanotubes (n-TiO 2 ) to poly methyl methacrylate (PMMA) on mechanical properties of PMMA denture base. TiO 2 nanotubes were prepared using alkaline hydrothermal process. Obtained nanotubes were assessed using FESEM-EDX, XRD, and FT-IR. For 3 experiments of this study (fracture toughness, three-point bending flexural strength, and Vickers microhardness), 135 specimens were prepared according to ISO 20795-1:2013 (n of each experiment=45). For each experiment, PMMA was mixed with 0% (control), 2.5 wt%, and 5 wt% nanotubes. From each TiO 2 :PMMA ratio, 15 specimens were fabricated for each experiment. Effects of n-TiO 2 addition on 3 mechanical properties were assessed using Pearson, ANOVA, and Tukey tests. SEM images of n-TiO 2 exhibited the presence of elongated tubular structures. The XRD pattern of synthesized n-TiO 2 represented the anatase crystal phase of TiO 2 . Moderate to very strong significant positive correlations were observed between the concentration of n-TiO 2 and each of the 3 physicomechanical properties of PMMA (Pearson's P value ≤.001, correlation coefficient ranging between 0.5 and 0.9). Flexural strength and hardness values of specimens modified with both 2.5 and 5 wt% n-TiO 2 were significantly higher than those of control ( P ≤.001). Fracture toughness of samples reinforced with 5 wt% n-TiO 2 (but not those of 2.5% n-TiO 2 ) was higher than control ( P =.002). Titania nanotubes were successfully introduced for the first time as a means of enhancing the hardness, flexural strength, and fracture toughness of denture base PMMA.

  6. Efficient suppression of nanograss during porous anodic TiO2 nanotubes growth

    Science.gov (United States)

    Gui, Qunfang; Yu, Dongliang; Li, Dongdong; Song, Ye; Zhu, Xufei; Cao, Liu; Zhang, Shaoyu; Ma, Weihua; You, Shiyu

    2014-09-01

    When Ti foil was anodized in fluoride-containing electrolyte for a long time, undesired etching-induced "nanograss" would inevitably generate on the top of porous anodic TiO2 nanotubes (PATNTs). The nanograss will hinder the ions transport and in turn yield depressed (photo) electrochemical performance. In order to obtain nanograss-free nanotubes, a modified three-step anodization and two-layer nanostructure of PATNTs were designed to avoid the nanograss. The first layer (L1) nanotubes were obtained by the conventional two-step anodization. After washing and drying processes, the third-step anodization was carried out with the presence of L1 nanotubes. The L1 nanotubes, serving as a sacrificed layer, was etched and transformed into nanograss, while the ultralong nanotubes (L2) were maintained underneath the L1. The bi-layer nanostructure of the nanograss/nanotubes (L1/L2) was then ultrasonically rinsed in deionized water to remove the nanograss (L1 layer). Then much longer nanotubes (L2 layer) with intact nanotube mouths could be obtained. Using this novel approach, the ultralong nanotubes without nanograss can be rationally controlled by adjusting the anodizing times of two layers.

  7. Synthesis and enhanced photoelectrocatalytic activity of p–n junction Co3O4/TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Dai Gaopeng; Liu Suqin; Liang Ying; Luo Tianxiong

    2013-01-01

    Highlights: ► Co 3 O 4 /TiO 2 nanotube arrays (NTs) were prepared by an impregnating–deposition–decompostion method treatment. ► Co 3 O 4 /TiO 2 NTs exhibit high photoelectrocatalytic (PEC) activity. ► The high PEC activity was attribute to the formation of p–n junction between Co 3 O 4 and TiO 2 . - Abstract: Co 3 O 4 /TiO 2 nanotube arrays (NTs) were prepared by depositing Co 3 O 4 nanoparticles (NPs) on the tube wall of the self-organized TiO 2 NTs using an impregnating–deposition–decompostion method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV–vis absorption spectroscopy. The photoelectrocatalytic (PEC) activity is evaluated by degradation of methyl orange (MO) aqueous solution. The prepared Co 3 O 4 /TiO 2 NTs exhibit much higher PEC activity than TiO 2 NTs due to the p–n junction formed between Co 3 O 4 and TiO 2 .

  8. Dominant factors governing the rate capability of a TiO2 nanotube anode for high power lithium ion batteries.

    Science.gov (United States)

    Han, Hyungkyu; Song, Taeseup; Lee, Eung-Kwan; Devadoss, Anitha; Jeon, Yeryung; Ha, Jaehwan; Chung, Yong-Chae; Choi, Young-Min; Jung, Yeon-Gil; Paik, Ungyu

    2012-09-25

    Titanium dioxide (TiO(2)) is one of the most promising anode materials for lithium ion batteries due to low cost and structural stability during Li insertion/extraction. However, its poor rate capability limits its practical use. Although various approaches have been explored to overcome this problem, previous reports have mainly focused on the enhancement of both the electronic conductivity and the kinetic associated with lithium in the composite film of active material/conducting agent/binder. Here, we systematically explore the effect of the contact resistance between a current collector and a composite film of active material/conducting agent/binder on the rate capability of a TiO(2)-based electrode. The vertically aligned TiO(2) nanotubes arrays, directly grown on the current collector, with sealed cap and unsealed cap, and conventional randomly oriented TiO(2) nanotubes electrodes were prepared for this study. The vertically aligned TiO(2) nanotubes array electrode with unsealed cap showed superior performance with six times higher capacity at 10 C rate compared to conventional randomly oriented TiO(2) nanotubes electrode with 10 wt % conducting agent. On the basis of the detailed experimental results and associated theoretical analysis, we demonstrate that the reduction of the contact resistance between electrode and current collector plays an important role in improving the electronic conductivity of the overall electrode system.

  9. 1 composite mixture of TiO2 nanoparticles and nanotubes in dye

    Indian Academy of Sciences (India)

    Administrator

    Abstract. TiO2-based nanotubes (NTs), nanoparticles (NPs) and composite structural film (50% NP + 50% ... of faster electron injection ratio compared with other .... exist in this system. .... the open circuit voltage, Im the maximum current and.

  10. High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach

    International Nuclear Information System (INIS)

    Wu, Hui; Li, Dongdong; Zhu, Xufei; Yang, Chunyan; Liu, Dongfang; Chen, Xiaoyuan; Song, Ye; Lu, Linfeng

    2014-01-01

    Although one-dimensional anodic TiO 2 nanotube arrays have shown promise as supercapacitor electrode materials, their poor electronic conductivity embarrasses the practical applications. Here, we develop a simple electrochemical doping method to significantly improve the electronic conductivity and the electrochemical performances of TiO 2 nanotube electrodes. These TiO 2 nanotube electrodes treated by the electrochemical hydrogenation doping (TiO 2 -H) exhibit a very high average specific capacitance of 20.08 mF cm −2 at a current density of 0.05 mA cm −2 , ∼20 times more than the pristine TiO 2 nanotube electrodes. The improved electrochemical performances can be attributed to ultrahigh conductivity of TiO 2 -H due to the introduction of interstitial hydrogen ions and oxygen vacancies by the doping. The supercapacitor device assembled by the doped electrodes delivers a specific capacitance of 5.42 mF cm −2 and power density of 27.66 mW cm −2 , on average, at the current density of 0.05 mA cm −2 . The device also shows an outstanding rate capability with 60% specific capacitance retained when the current density increases from 0.05 to 4.00 mA cm −2 . More interestingly, the electrochemical performances of the supercapacitor after cycling can be recovered by the same doping process. This strategy boosts the performances of the supercapacitor, especially cycling stability

  11. Modification of TiO(2) nanotube surfaces by electro-spray deposition of amoxicillin combined with PLGA for bactericidal effects at surgical implantation sites.

    Science.gov (United States)

    Lee, Jung-Hwan; Moon, Seung-Kyun; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2013-01-01

    To fabricate the antibiotic-releasing coatings on TiO(2) nanotube surfaces for wide applications of implant and bone plate in medical and dental surgery, the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures was found. FE-SEM, ESD and FT-IR were used for confirming deposition of amoxicillin/PLGA on the TiO(2) surface. Also, the elution of amoxicillin/PLGA in a TiO(2) nanotube surface was measured by a UV-VIS spectrophotometer. The bactericidal effect of amoxicillin on the TiO(2) nanotube surface was evaluated by using Staphylococcus aureus (S. aureus). The cytotoxicity and cell proliferation were observed by WST assay using MC3T3-E1 osteoblast cells. The results indicated that the TiO(2) nanotube surface controlled by electro-spray deposition time with amoxicillin/PLGA solution could provide a high bactericidal effect against S. aureus by the bactericidal effect of amoxicillin, as well as good osteoblast cell proliferation at the TiO(2) nanotube surface without toxicity. This study used electro-spray deposition (ESD) methodology to obtain amoxicillin deposition in nanotube structures of TiO(2) and found the optimal deposition time of amoxicillin/PLGA solution simultaneously performing non-toxicity and a high bactericidal effect for preventing early implant failures.

  12. Optimizing TiO2 nanotube top geometry for use in dye-sensitized solar cells.

    Science.gov (United States)

    Mir, Nooshin; Lee, Kiyoung; Paramasivam, Indhumati; Schmuki, Patrik

    2012-09-17

    Recombination dynamics: For TiO(2) nanotube-based dye-sensitized solar cells, the efficiency can be drastically enhanced by a synergetic effect that occurs when using nanowire-ended nanotubes in combination with an adequate nanoparticle decoration (see figure). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. TiO2 nanotube-based dye solar cell research in South Africa

    CSIR Research Space (South Africa)

    Cummings, F

    2009-10-01

    Full Text Available Vertically orientated titanium dioxide (TiO2) nanotubes hold great potential for application in dye-sensitized solar cells (DSCs) as they provide an unscathed, one-dimensional transport route for photo-generated charge carriers, thereby increasing...

  14. Tantalum coating on TiO2 nanotubes induces superior rate of matrix mineralization and osteofunctionality in human osteoblasts

    International Nuclear Information System (INIS)

    Frandsen, Christine J.; Brammer, Karla S.; Noh, Kunbae; Johnston, Gary; Jin, Sungho

    2014-01-01

    Nanostructured surface geometries have been the focus of a multitude of recent biomaterial research, and exciting findings have been published. However, only a few publications have directly compared nanostructures of various surface chemistries. The work herein directly compares the response of human osteoblast cells to surfaces of identical nanotube geometries with two well-known orthopedic biomaterials: titanium oxide (TiO 2 ) and tantalum (Ta). The results reveal that the Ta surface chemistry on the nanotube architecture enhances alkaline phosphatase activity, and promotes a ∼ 30% faster rate of matrix mineralization and bone-nodule formation when compared to results on bare TiO 2 nanotubes. This study implies that unique combinations of surface chemistry and nanostructure may influence cell behavior due to distinctive physico-chemical properties. These findings are of paramount importance to the orthopedics field for understanding cell behavior in response to subtle alterations in nanostructure and surface chemistry, and will enable further insight into the complex manipulation of biomaterial surfaces. With increased focus in the field of orthopedic materials research on nanostructured surfaces, this study emphasizes the need for careful and systematic review of variations in surface chemistry in concurrence with nanotopographical changes. - Highlights: • A TiO 2 nanotube surface structure was coated with tantalum. • Osteoblast cell response was compared between the tantalum coated and as-formed TiO 2 nanotube surface. • We observed superior rates of bone matrix mineralization and osteoblast maturation on the tantalum coated nanotube surface

  15. Investigation of anodic TiO2 nanotube composition with high spatial resolution AES and ToF SIMS

    Science.gov (United States)

    Dronov, Alexey; Gavrilin, Ilya; Kirilenko, Elena; Dronova, Daria; Gavrilov, Sergey

    2018-03-01

    High resolution Scanning Auger Electron Spectroscopy (AES) and Time-of-Flight Secondary Ion Mass-Spectrometry (ToF SIMS) were used to investigate structure and elemental composition variation of both across an array of TiO2 nanotubes (NTs) and single tube of an array. The TiO2 NT array was grown by anodic oxidation of Ti foil in fluorine-containing ethylene glycol electrolyte. It was found that the studied anodic TiO2 nanotubes have a layered structure with rather sharp interfaces. The differences in AES depth profiling results of a single tube with the focused primary electron beam (point analysis) and over an area of 75 μm in diameter of a nanotube array with the defocused primary electron beam are discussed. Depth profiling by ToF SIMS was carried out over approximately the same size of a nanotube array to determine possible ionic fragments in the structure. The analysis results show that the combination of both mentioned methods is useful for a detailed analysis of nanostructures with complex morphology and multi-layered nature.

  16. Photocatalytic methane decomposition over vertically aligned transparent TiO2 nanotube arrays

    DEFF Research Database (Denmark)

    In, Su-il; Nielsen, Morten Godtfred; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    Vertically aligned transparent TiO2 nanotube arrays grown by the one-step anodic oxidation technique (on non-conductive supports such as Pyrex) and their photocatalytic performance for methane decomposition in a single-pass micro-fabricated reactor under UV light....

  17. Incorporating TiO2 nanotubes with a peptide of D-amino K122-4 (D) for enhanced mechanical and photocatalytic properties

    Science.gov (United States)

    Guo, L. Q.; Hu, Y. W.; Yu, B.; Davis, E.; Irvin, R.; Yan, X. G.; Li, D. Y.

    2016-02-01

    Titanium dioxide (TiO2) nanotubes are promising for a wide variety of potential applications in energy, biomedical and environmental sectors. However, their low mechanical strength and wide band gap limit their widespread technological use. This article reports our recent efforts to increase the mechanical strength of TiO2 nanotubes with lowered band gap by immobilizing a peptide of D-amino K122-4 (D) onto the nanotubes. Topographies and chemical compositions of the peptide-coated and uncoated TiO2 nanotubular arrays were characterized by scanning electron microscopy and X-ray photoelectron spectroscopy (XPS). Properties of the peptide-coated and uncoated TiO2 nanotubular arrays, including hardness, elastic modulus, electron work function and photocurrent, were evaluated using micromechanical probe, Kelvin Probe and electrochemical system. Effect of the peptide on surface conductivity was also investigated through current mapping and I-V curve analysis with conductive atomic force microscopy. It is demonstrated that the peptide coating simultaneously enhances the mechanical strength, photocatalytic and electrical properties of TiO2 nanotubes.

  18. Synthesis of Hydroxyapatite/Ag/TiO2 Nanotubes and Evaluation of Their Anticancer Activity on Breast Cancer Cell Line MCF-7

    Directory of Open Access Journals (Sweden)

    Sara Rahimnejad

    2016-06-01

    Full Text Available In this research, TiO2 nanotubes were synthesized by anodized oxidation method and were covered with a hydroxyapatite-silver nanoparticles using photodeposition and dip coating for loading silver nanoparticles and coated hydroxyapatite (HA. The morphological texture of TiO2 nanotube and Ag-HA nanoparticles on TiO2 nanotubes surface were studied by field emission scanning electron microscopy (FESEM, energy dispersive X-ray spectroscopy (EDAX analysis and X-ray diffraction (XRD. The MCF-7 cell lines were treated with concentrations 1, 10 and 100 µg/ml of TiO2 nanotubes and HA/Ag/TiO2 nanotube for 24 and 48h. Finally, the cell viability and IC50% were evaluated using MTT assay. The results show that the HA/Ag/TiO2 has more positive effect on enhancing the cell death compare to TiO2 nanotubes and also exerts a time and concentration-dependent inhibition effect on viability of MCF-7 cells

  19. Synthesis of gold nanoclusters: a fluorescent marker for water-soluble TiO2 nanotubes

    International Nuclear Information System (INIS)

    Ratanatawanate, Chalita; Yu Jing; Zhou Chen; Zheng Jie; Balkus, Kenneth J Jr

    2011-01-01

    The first example of a water-soluble wrapped titania nanotube (TNT) decorated with fluorescent gold nanoparticles has been prepared. Gold nanoparticles ∼ 1.6 nm in diameter were grown on the TiO 2 nanotubes using a thiolactic acid linker to control the size. The gold clusters emit at 660 nm in water and were imaged using confocal microscopy. The gold decorated TNTs were suspended in water by wrapping the nanotubes with poly-L-arginine.

  20. Gold nanoparticles-immobilized, hierarchically ordered, porous TiO2 nanotubes for biosensing of glutathione

    Directory of Open Access Journals (Sweden)

    Sheen Mers SV

    2015-10-01

    Full Text Available SV Sheen Mers,1,2 Elumalai Thambuswamy Deva Kumar,1 V Ganesh1,2 1Electrodics and Electrocatalysis (EEC Division, Council of Scientific and Industrial Research–Central Electrochemical Research Institute (CSIR–CECRI, Karaikudi, Tamil Nadu, India; 2Academy of Scientific and Innovative Research (AcSIR, New Delhi, India Abstract: Glutathione (GSH is vital for several functions of our human body such as neutralization of free radicals and reactive oxygen compounds, maintaining the active forms of vitamin C and E, regulation of nitric oxide cycle, iron metabolism, etc. It is also an endogenous antioxidant in most of the biological reactions. Given the importance of GSH, a simple strategy is proposed in this work to develop a biosensor for quantitative detection of GSH. This particular biosensor comprises of gold nanoparticles (Au NPs-immobilized, hierarchically ordered titanium dioxide (TiO2 porous nanotubes. Hexagonally arranged, honeycomb-like nanoporous tubular TiO2 electrodes are prepared by using a simple electrochemical anodization process by applying a constant potential of 30 V for 24 hours using ethylene glycol consisting of ammonium fluoride as an electrolytic medium. Structural morphology and crystalline nature of such TiO2 nanotubes are analyzed using field emission scanning electron microscope (FESEM and X-ray diffraction (XRD. Interestingly, nanocomposites of TiO2 with Au NPs is prepared in an effort to alter the intrinsic properties of TiO2, especially tuning of its band gap. Au NPs are prepared by a well-known Brust and Schiffrin method and are immobilized onto TiO2 electrodes which act as a perfect electrochemical sensing platform for GSH detection. Structural characterization and analysis of these modified electrodes are performed using FESEM, XRD, and UV-visible spectroscopic studies. GSH binding events on Au NPs-immobilized porous TiO2 electrodes are monitored by electrochemical techniques, namely, cyclic voltammetry (CV and

  1. A Facile Method for Loading CeO2 Nanoparticles on Anodic TiO2 Nanotube Arrays.

    Science.gov (United States)

    Liao, Yulong; Yuan, Botao; Zhang, Dainan; Wang, Xiaoyi; Li, Yuanxun; Wen, Qiye; Zhang, Huaiwu; Zhong, Zhiyong

    2018-04-03

    In this paper, a facile method was proposed to load CeO 2 nanoparticles (NPs) on anodic TiO 2 nanotube (NT) arrays, which leads to a formation of CeO 2 /TiO 2 heterojunctions. Highly ordered anatase phase TiO 2 NT arrays were fabricated by using anodic oxidation method, then these individual TiO 2 NTs were used as tiny "nano-containers" to load a small amount of Ce(NO 3 ) 3 solutions. The loaded anodic TiO 2 NTs were baked and heated to a high temperature of 450 °C, under which the Ce(NO 3 ) 3 would be thermally decomposed inside those nano-containers. After the thermal decomposition of Ce(NO 3 ) 3 , cubic crystal CeO 2 NPs were obtained and successfully loaded into the anodic TiO 2 NT arrays. The prepared CeO 2 /TiO 2 heterojunction structures were characterized by a variety of analytical technologies, including XRD, SEM, and Raman spectra. This study provides a facile approach to prepare CeO 2 /TiO 2 films, which could be very useful for environmental and energy-related areas.

  2. Hydrothermal synthesis of 1D TiO2 nanostructures for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Tacchini, I.; Ansón-Casaos, A.; Yu, Youhai; Martínez, M.T.; Lira-Cantu, M.

    2012-01-01

    Highlights: ► Hydrothermal synthesis allows the preparation of different 1D TiO 2 nanostructures easily. ► Nanotubular morphology demonstrates the highest photovoltaic efficiencies in dye sensitized cells (DSCs). ► Morphology at the nanoscale level is as decisive for DSC efficiency as it is TiO 2 crystal structure and surface area. - Abstract: Mono-dimensional titanium oxide nanostructures (multi-walled nanotubes and nanorods) were synthesized by the hydrothermal method and applied to the construction of dye sensitized solar cells (DSCs). First, nanotubes (TiNTs) and nanotubes loaded with titanium oxide nanoparticles (TiNT/NPs) were synthesized with specific surface areas of 253 m 2 /g and 304 m 2 /g, respectively. After that, thermal treatment of the nanotubes at 500 °C resulted in their transformation into the corresponding anatase nanorods (TiNT-Δ and TiNT/NPs-Δ samples). X-ray diffraction and Raman spectroscopy data indicated that titanium oxide in the pristine TiNT and TiNT/NP samples was converted into anatase phase TiO 2 during the heating. Additionally, specific surface areas and water adsorption capacities decreased after the heat treatment due to the sample agglomeration and the collapse of the inner nanotube channels. DSCs were fabricated with the nanotube TiNT and TiNT/NP samples and with the anatase nanorod TiNT-Δ and TiNT/NPs-Δ samples as well. The highest power conversion efficiency of η = 3.12% was obtained for the TiNT sample, despite its lower specific surface compared with the corresponding nanoparticle-loaded sample (TiNT/NP).

  3. Carbon nanotube TiO2 hybrid films for detecting traces of O2

    Science.gov (United States)

    Llobet, E.; Espinosa, E. H.; Sotter, E.; Ionescu, R.; Vilanova, X.; Torres, J.; Felten, A.; Pireaux, J. J.; Ke, X.; Van Tendeloo, G.; Renaux, F.; Paint, Y.; Hecq, M.; Bittencourt, C.

    2008-09-01

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO2 films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. beverage industry.

  4. Nanoscale Optimization and Statistical Modeling of Photoelectrochemical Water Splitting Efficiency of N-Doped TiO2 Nanotubes

    KAUST Repository

    Isimjan, Tayirjan T.

    2014-12-19

    Highly ordered nitrogen-doped titanium dioxide (N-doped TiO2) nanotube array films with enhanced photo-electrochemical water splitting efficiency (PCE) for hydrogen generation were fabricated by electrochemical anodization, followed by annealing in a nitrogen atmosphere. Morphology, structure and composition of the N-doped TiO2 nanotube array films were investigated by FE-SEM, XPS, UV-Vis and XRD. The effect of annealing temperature, heating rate and annealing time on the morphology, structure, and photo-electrochemical property of the N-doped TiO2 nanotube array films were investigated. A design of experiments method was applied in order to minimize the number of experiments and obtain a statistical model for this system. From the modelling results, optimum values for the influential factors were obtained in order to achieve the maximum PCE. The optimized experiment resulted in 7.42 % PCE which was within 95 % confidence interval of the predicted value by the model. © 2014 Springer Science+Business Media.

  5. Morphological evolution of TiO2 nanotube arrays with lotus-root-shaped nanostructure

    Science.gov (United States)

    Yu, Dongliang; Song, Ye; Zhu, Xufei; Yang, Ruiquan; Han, Aijun

    2013-07-01

    TiO2 nanotube arrays (TNAs) with lotus-root-shaped nanostructure have been fabricated by a modified two-step electrochemical anodization method. In the present work, different morphologies formed under different anodizing voltages are investigated in detail by field-emission scanning electron microscope. The results show that the concaves left by the first-step anodization can guide the uniform growth of TNAs in some degree as the second-step anodizing voltage is the same with that in the first step, however, when lower voltages are adopted in the second-step anodization, no guidance can be achieved, and different morphological TNAs with lotus-root-shaped nanostructure are fabricated. And we find that the nanotube diameters are directly proportional to the applied voltage in the second-step anodization. Furthermore, a possible mechanism for the growth of the TiO2 nanotubes with the special morphology is proposed for the first time, which depends on both the oxygen bubble mold and the viscous flow of the barrier oxide from the pore base to the pore wall.

  6. Mesoporous 1D TiO_2 nanostructures obtained by the hydrothermal method

    International Nuclear Information System (INIS)

    Cabrera, Julieta; Vilchez, Ricardo; Alarcon, Hugo; Rodriguez, Juan; Lopez, Alcides

    2014-01-01

    Mesoporous one dimensional nanostructures (1D) such as nanotubes/nanorods of TiO_2 were synthesized by alkaline hydrothermal treatment of TiO_2 nanoparticles obtained by Sol Gel process (SG-TiO_2). The electronic microscopy images revealed the nanotubes formation of approximately 8 nm in diameter and more than around 400 nm long after hydrothermal treatment of 18 h and 24 h. These tube-like structures were maintained after acid treatment but after annealing at 400 °C during 2 hours these turn into rod-like structures of crystalline TiO_2 corresponding to anatase phase as revealed the diffraction patterns obtained by X-Ray Diffraction (XRD). The conversion of nanoparticles into nanotubes and afterward into rodlike shape was also confirmed by the variations in the BET surface area from 201, 269 and 97 m"2/g around, respectively. The adsorption-desorption isotherms also revealed hysteresis loop typical of mesoporous materials. These qualities are attractive to use these materials for the treatment of pollutants in water, for example. (author)

  7. Au Nanoclusters Sensitized Black TiO2-x Nanotubes for Enhanced Photodynamic Therapy Driven by Near-Infrared Light.

    Science.gov (United States)

    Yang, Dan; Gulzar, Arif; Yang, Guixin; Gai, Shili; He, Fei; Dai, Yunlu; Zhong, Chongna; Yang, Piaoping

    2017-12-01

    The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO 2- x nanotubes (abbreviated as Au 25 /B-TiO 2- x NTs) are synthesized by gaseous reduction of anatase TiO 2 NTs and subsequent deposition of noble metal. The Au 25 /B-TiO 2- x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti 3+ on the surface of TiO 2 , which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au 25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal-TiO 2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO 2 can expend the light response range (UV) of TiO 2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electrocatalytic glucose oxidation via hybrid nanomaterial catalyst of multi-wall TiO2 nanotubes supported Ni(OH)2 nanoparticles: Optimization of the loading level

    International Nuclear Information System (INIS)

    Gu, Yingying; Liu, Yicheng; Yang, Haihong; Li, Benqiang; An, Yarui

    2015-01-01

    Highlights: • Multi-wall TiO 2 nanotube supported Ni(OH) 2 nanoparticles, Ni(OH) 2 /TNTs, was prepared and investigated as anode electro-catalysts for glucose oxidation. • Ni(OH) 2 -24.2%/TNTs obtains the best catalytic activity. • Compared with Ni(OH) 2, the current density of Ni(OH) 2 -24.2%/TNTs increased 5.9 times in 0.1 M NaOH solution. - Abstract: The novel hybrid nanomaterial catalyst of multi-wall TiO 2 nanotube supported Ni(OH) 2 nanoparticles (Ni(OH) 2 /TNTs) was prepared through hydrothermal method and investigated as anode electro-catalysts for glucose oxidation. The nanostructure was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), thermogravimetry-differential thermal analysis (TGA) and nitrogen adsorption-desorption (BET-BJH). The electrochemical performance was measured by a range of electrochemical measurements. Compared with Ni(OH) 2 , the current density of Ni(OH) 2 /TNTs modified GC electrode increased 5.9 times in 0.1 M NaOH solution. The results indicated that the synthesized nanoparticles exhibited good electro-catalytic activity and stability for glucose oxidation. Meanwhile, the hybrid nanomaterial of Ni(OH) 2 /TNTs may be a potential candidate catalyst for direct glucose fuel cell

  9. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility

    Science.gov (United States)

    Liu, Wenwen; Su, Penglei; Chen, Su; Wang, Na; Ma, Yuanping; Liu, Yiran; Wang, Jinshu; Zhang, Zhenting; Li, Hongyi; Webster, Thomas J.

    2014-07-01

    To endow titanium (Ti) with antibacterial properties, different concentrations of zinc oxide (ZnO) nanoparticles were decorated on anodized titanium dioxide (TiO2) nanotubes by a simple hydrothermal treatment method. The particle sizes of ZnO, which were evenly distributed and tightly adherent to the walls of the Ti nanotubes, ranged from 20-50 nm. Results from this study showed that Zn was released from the TiO2 nanotubes in a constant, slow, and biologically inspired manner. Importantly, the results showed that the ZnO decorated TiO2 nanotubular samples inhibited Streptococcus mutants and Porphyromonas gingivalis growth compared to control unmodified Ti samples. Specifically, S. mutants and P. gingivalis growth were both reduced 45-85% on the ZnO decorated Ti samples compared to Ti controls after 7 days of culture. When examining the mechanism of action, it has been further found for the first time that the ZnO decorated Ti samples inhibited the expression of Streptococcus mutans bacterial adhesion genes. Lastly, the results showed that the same samples which decreased bacterial growth the most (0.015 M precursor Zn(NO3)2 samples) did not inhibit mesenchymal stem cell growth compared to Ti controls for up to 7 days. In summary, results from this study showed that compared to plain TiO2 nanotubes, TiO2 decorated with 0.015 M ZnO provided unprecedented antibacterial properties while maintaining the stem cell proliferation capacity necessary for enhancing the use of Ti in numerous medical applications, particularly in dentistry.

  10. TiO2 nanosheets synthesized by atomic layer deposition for photocatalysis

    Directory of Open Access Journals (Sweden)

    Riyanto Edy

    2016-10-01

    Full Text Available Two-dimensional TiO2 nanosheets were synthesized by atomic layer deposition (ALD on dissolvable sacrificial polymer layer. The photocatalytic performance of free-standing TiO2 nanosheets prepared with different numbers of ALD cycles (100, 300, 500, and 1000 were investigated by evaluating the degradation rates of methyl orange solutions. It is shown that the photocatalytic activity increases due to Ti3+ defect and the locally ordered structures in amorphous TiO2 nanosheets. The difference in the surface areas of nanosheets may also play a crucial role in the photocatalytic activity. The results obtained in this work can have potential applications in fields like water splitting and dye-sensitized solar cells.

  11. Influence of surface treatment on preparing nanosized TiO2 supported on carbon nanotubes

    International Nuclear Information System (INIS)

    Wang Shuo; Ji Lijun; Wu Bin; Gong Qianming; Zhu Yuefeng; Liang Ji

    2008-01-01

    In this paper, nanosize titanium dioxide (TiO 2 ) deposited on pristine and acid treated carbon nanotubes (CNTs) were prepared by a modified sol-gel method. The nanoscale materials were extensively characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and Raman spectra. The results indicated that about 6.8 nm TiO 2 nanoparticles were successfully deposited on acid-treated CNTs surface homogeneously and densely, which was smaller than TiO 2 coated on pristine CNTs. The surface state of CNTs was a critical factor in obtaining a homogeneous distribution of nanoscale TiO 2 particles. Acid oxidization could etch the surface of CNTs and introduce functional groups, which were beneficial to controllable homogeneous deposition. The TiO 2 coated on acid-treated CNTs was used as photocatalyst for Reactive Brilliant Red X-3B dye degradation under UV irradiation, which showed higher efficiency than that of TiO 2 coated on pristine CNTs and commercial photocatalyst P25.

  12. Rapid charge-discharge property of Li4Ti5O12-TiO2 nanosheet and nanotube composites as anode material for power lithium-ion batteries.

    Science.gov (United States)

    Yi, Ting-Feng; Fang, Zi-Kui; Xie, Ying; Zhu, Yan-Rong; Yang, Shuang-Yuan

    2014-11-26

    Well-defined Li4Ti5O12-TiO2 nanosheet and nanotube composites have been synthesized by a solvothermal process. The combination of in situ generated rutile-TiO2 in Li4Ti5O12 nanosheets or nanotubes is favorable for reducing the electrode polarization, and Li4Ti5O12-TiO2 nanocomposites show faster lithium insertion/extraction kinetics than that of pristine Li4Ti5O12 during cycling. Li4Ti5O12-TiO2 electrodes also display lower charge-transfer resistance and higher lithium diffusion coefficients than pristine Li4Ti5O12. Therefore, Li4Ti5O12-TiO2 electrodes display lower charge-transfer resistance and higher lithium diffusion coefficients. This reveals that the in situ TiO2 modification improves the electronic conductivity and electrochemical activity of the electrode in the local environment, resulting in its relatively higher capacity at high charge-discharge rate. Li4Ti5O12-TiO2 nanocomposite with a Li/Ti ratio of 3.8:5 exhibits the lowest charge-transfer resistance and the highest lithium diffusion coefficient among all samples, and it shows a much improved rate capability and specific capacity in comparison with pristine Li4Ti5O12 when charging and discharging at a 10 C rate. The improved high-rate capability, cycling stability, and fast charge-discharge performance of Li4Ti5O12-TiO2 nanocomposites can be ascribed to the improvement of electrochemical reversibility, lithium ion diffusion, and conductivity by in situ TiO2 modification.

  13. A Novel of Buton Asphalt and Methylene Blue as Dye-Sensitized Solar Cell using TiO2/Ti Nanotubes Electrode

    Science.gov (United States)

    Nurhidayani; Muzakkar, M. Z.; Maulidiyah; Wibowo, D.; Nurdin, M.

    2017-11-01

    A study of TiO2/Ti nanotubes arrays (NTAs) based on Dye-Sensitized Solar Cell (DSSC) used Asphalt Buton (Asbuton) extract and methylene blue (MB) as a photosensitizer dye has been conducted. The aim of this research is that the Asbuton extract and Methylene Blue (MB) performance as a dye on DSSC solar cells is able to obtain the voltage-currents produced by visible light irradiation. Electrode TiO2/Ti NTAs have been successfully synthesized by anodizing methods, then characterized by using XRD showed that the anatase crystals formed. Subsequently, the morphology showed that the nanotubes formed which has coated by Asbuton extract. The DSSC system was formed by a sandwich structure and tested by using Multimeter Digital with Potentiostat instrument. The characteristics of current (I) and potential (V) versus time indicated that the Asbuton was obtained in a high-performance in 30s of 14,000µV 0.844µA, meanwhile MB dyes were 8,000µV0.573µA. Based on this research, the Asbuton extract from Buton Island-Southeast Sulawesi-Indonesia was potential for natural dyes in DSSC system.

  14. Biofilm formation on a TiO2 nanotube with controlled pore diameter and surface wettability

    International Nuclear Information System (INIS)

    Anitha, V C; Narayan Banerjee, Arghya; Woo Joo, Sang; Lee, Jin-Hyung; Lee, Jintae; Ki Min, Bong

    2015-01-01

    Titania (TiO 2 ) nanotube arrays (TNAs) with different pore diameters (140 − 20 nm) are fabricated via anodization using hydrofluoric acid (HF) containing ethylene glycol (EG) by changing the HF-to-EG volume ratio and the anodization voltage. To evaluate the effects of different pore diameters of TiO 2 nanotubes on bacterial biofilm formation, Shewanella oneidensis (S. oneidensis) MR-1 cells and a crystal-violet biofilm assay are used. The surface roughness and wettability of the TNA surfaces as a function of pore diameter, measured via the contact angle and AFM techniques, are correlated with the controlled biofilm formation. Biofilm formation increases with the decreasing nanotube pore diameter, and a 20 nm TiO 2 nanotube shows the maximum biofilm formation. The measurements revealed that 20 nm surfaces have the least hydrophilicity with the highest surface roughness of ∼17 nm and that they show almost a 90% increase in the effective surface area relative to the 140 nm TNAs, which stimulate the cells more effectively to produce the pili to attach to the surface for more biofilm formation. The results demonstrate that bacterial cell adhesion (and hence, biofilm formation) can effectively be controlled by tuning the roughness and wettability of TNAs via controlling the pore diameters of TNA surfaces. This biofilm formation as a function of the surface properties of TNAs can be a potential candidate for both medical applications and as electrodes in microbial fuel cells. (paper)

  15. Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes

    International Nuclear Information System (INIS)

    Adán, C.; Marugán, J.; Sánchez, E.; Pablos, C.; Grieken, R. van

    2016-01-01

    A comprehensive report on the correlation between the morphology and the photocatalytic (PC) and photoelectrocatalytic (PEC) activity of TiO 2 nanotubes (NTs) electrodes is presented. New insights are provided to support the effect of the anodization conditions on the photon-to-current efficiency of the electrodes based on the dimensional characteristics of the TiO 2 -NTs. Electrodes with promising properties based on the characterization data were scaled-up to test their activity on the PC and PEC oxidation of methanol. Results indicate that the length of the nanotubes significantly influences the photodegradation efficiency. The enhancement achieved in both PC and PEC processes with longer nanotubes can be explained by the higher surface area in contact with the electrolyte and the increase in the light absorption as the TiO 2 layer becomes thicker. However, as the length of the nanotubes increases, a reduction in the enhancement achieved by the application of a potential bias is observed. Kinetic constants of both reactions (PC and PEC) tend to get closer and the charge separation effect diminishes. In relative terms, the effect of the electric potential is more pronounced for electrodes with the shorter NTs. The reason is that once the TiO 2 layer is thick enough to absorb the available radiation, a further increase in the NTs length increases the resistance of the electrons to reach the back contact and the diffusional restrictions to the mass transport of the reactants/products along the tubes. Consequently, the existence of a compromise between reactivity and transport properties lead to the existence of an optimal NTs length.

  16. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro.

    Science.gov (United States)

    Lai, Min; Jin, Ziyang; Tang, Qiang; Lu, Min

    2017-10-01

    To control the sustained release of melatonin and modulate the osteogenic differentiation of mesenchymal stem cells (MSCs), melatonin was firstly loaded onto TiO 2 nanotubes by direct dropping method, and then a multilayered film was coated by a spin-assisted layer-by-layer technique, which was composed of chitosan (Chi) and gelatin (Gel). Successful fabrication was characterized by field emission scanning electron microscopy, atomic force microscope, X-ray photoelectron spectroscopy and contact angle measurement, respectively. The efficient sustained release of melatonin was measured by UV-visible-spectrophotometer. After 2 days of culture, well-spread morphology was observed in MSCs grown on the Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates as compared to different groups. After 4, 7, 14 and 21 days of culture, the multilayered-coated melatonin-loaded TiO 2 nanotube substrates increased cell proliferation, increased alkaline phosphatase (ALP) and mineralization, increased expression of mRNA levels for runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN) and osteocalcin (OC), indicative of osteoblastic differentiation. These results demonstrated that Chi/Gel multilayer-coated melatonin-loaded TiO 2 nanotube substrates promoted cell adhesion, spreading, proliferation and differentiation and could provide an alternative fabrication method for titanium-based implants to enhance the osteointegration between bone tissues and implant surfaces.

  17. Preparation of TiO2-based nanotubes/nanoparticles composite thin film electrodes for their electron transport properties

    International Nuclear Information System (INIS)

    Zhao, Wanyu; Fu, Wuyou; Chen, Jingkuo; Li, Huayang; Bala, Hari; Wang, Xiaodong; Sun, Guang; Cao, Jianliang; Zhang, Zhanying

    2015-01-01

    The composite thin film electrodes were prepared with one-dimensional (1D) TiO 2 -B nanotubes (NTs) and zero-dimensional TiO 2 nanoparticles (NPs) based on different weight ratios. The electron transport properties of the NTs/NPs composite thin film electrodes applied for dye-sensitized solar cells had been investigated systematically. The results indicated that although the amount of dye adsorption decreased slightly, the devices with the NTs/NPs composite thin film electrodes could obtain higher open-circuit voltage and overall conversion efficiency compared to devices with pure TiO 2 NPs electrodes by rational tuning the weight ratio of TiO 2 -B NTs and TiO 2 NPs. When the weight ratio of TiO 2 -B NTs in the NTs/NPs composite thin film electrodes increased, the density of states and recombination rate decreased. The 1D structure of TiO 2 -B NTs can provide direct paths for electron transport, resulting in higher electron lifetime, electron diffusion coefficient and electron diffusion length. The composite thin film electrodes possess the merits of the rapid electron transport of TiO 2 -B NTs and the high surface area of TiO 2 NPs, which has great applied potential in the field of photovoltaic devices. - Highlights: • The composite thin film electrodes (CTFEs) were prepared with nanotubes and nanoparticles. • The CTFEs possess the rapid electron transport and high surface area. • The CTFEs exhibit lower recombination rate and longer electron life time. • The CTFEs have great applied potential in the field of photovoltaic devices

  18. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Agarwala, S.; Ho, G.W.

    2012-01-01

    In the present work, electrochemical anodization has been used to prepare uniform TiO 2 nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is ∼180 nm, 14 μm and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO 2 nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO 2 nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO 2 nanotube array with Ag nanoparticles. Highlights: ► Uniform array of TiO 2 nanotubes synthesized via electrochemical anodization. ► Back illuminated DSSC gave a cell performance of 4.5%. ► TiO 2 nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  19. Structure reconstruction of TiO2-based multi-wall nanotubes: first-principles calculations.

    Science.gov (United States)

    Bandura, A V; Evarestov, R A; Lukyanov, S I

    2014-07-28

    A new method of theoretical modelling of polyhedral single-walled nanotubes based on the consolidation of walls in the rolled-up multi-walled nanotubes is proposed. Molecular mechanics and ab initio quantum mechanics methods are applied to investigate the merging of walls in nanotubes constructed from the different phases of titania. The combination of two methods allows us to simulate the structures which are difficult to find only by ab initio calculations. For nanotube folding we have used (1) the 3-plane fluorite TiO2 layer; (2) the anatase (101) 6-plane layer; (3) the rutile (110) 6-plane layer; and (4) the 6-plane layer with lepidocrocite morphology. The symmetry of the resulting single-walled nanotubes is significantly lower than the symmetry of initial coaxial cylindrical double- or triple-walled nanotubes. These merged nanotubes acquire higher stability in comparison with the initial multi-walled nanotubes. The wall thickness of the merged nanotubes exceeds 1 nm and approaches the corresponding parameter of the experimental patterns. The present investigation demonstrates that the merged nanotubes can integrate the two different crystalline phases in one and the same wall structure.

  20. TiO2 Nanotubes on Transparent Substrates: Control of Film Microstructure and Photoelectrochemical Water Splitting Performance

    Directory of Open Access Journals (Sweden)

    Matus Zelny

    2018-01-01

    Full Text Available Transfer of semiconductor thin films on transparent and or flexible substrates is a highly desirable process to enable photonic, catalytic, and sensing technologies. A promising approach to fabricate nanostructured TiO2 films on transparent substrates is self-ordering by anodizing of thin metal films on fluorine-doped tin oxide (FTO. Here, we report pulsed direct current (DC magnetron sputtering for the deposition of titanium thin films on conductive glass substrates at temperatures ranging from room temperature to 450 °C. We describe in detail the influence that deposition temperature has on mechanical, adhesion and microstructural properties of titanium film, as well as on the corresponding TiO2 nanotube array obtained after anodization and annealing. Finally, we measure the photoelectrochemical water splitting activity of different TiO2 nanotube samples showing that the film deposited at 150 °C has much higher activity correlating well with the lower crystallite size and the higher degree of self-organization observed in comparison with the nanotubes obtained at different temperatures. Importantly, the film showing higher water splitting activity does not have the best adhesion on glass substrate, highlighting an important trade-off for future optimization.

  1. 1D TiO2 Nanostructures Prepared from Seeds Presenting Tailored TiO2 Crystalline Phases and Their Photocatalytic Activity for Escherichia coli in Water

    Directory of Open Access Journals (Sweden)

    Julieta Cabrera

    2018-01-01

    Full Text Available TiO2 nanotubes were synthesized by alkaline hydrothermal treatment of TiO2 nanoparticles with a controlled proportion of anatase and rutile. Tailoring of TiO2 phases was achieved by adjusting the pH and type of acid used in the hydrolysis of titanium isopropoxide (first step in the sol-gel synthesis. The anatase proportion in the precursor nanoparticles was in the 3–100% range. Tube-like nanostructures were obtained with an anatase percentage of 18 or higher while flake-like shapes were obtained when rutile was dominant in the seed. After annealing at 400°C for 2 h, a fraction of nanotubes was conserved in all the samples but, depending on the anatase/rutile ratio in the starting material, spherical and rod-shaped structures were also observed. The photocatalytic activity of 1D nanostructures was evaluated by measuring the deactivation of E. coli in stirred water in the dark and under UV-A/B irradiation. Results show that in addition to the bactericidal activity of TiO2 under UV-A illumination, under dark conditions, the decrease in bacteria viability is ascribed to mechanical stress due to stirring.

  2. On Multiple Zagreb Indices of TiO2 Nanotubes.

    Science.gov (United States)

    Malik, Mehar Ali; Imran, Muhammad

    2015-01-01

    The First and Second Zagreb indices were first introduced by I. Gutman and N. Trinajstic in 1972. It is reported that these indices are useful in the study of anti-inflammatory activities of certain chemical instances, and in elsewhere. Recently, the first and second multiple Zagreb indices of a graph were introduced by Ghorbani and Azimi in 2012. In this paper, we calculate the Zagreb indices and the multiplicative versions of the Zagreb indices of an infinite class of Titania nanotubes TiO(2)[m,n].

  3. Preparation of Sb2S3 nanocrystals modified TiO2 dendritic structure with nanotubes for hybrid solar cell

    Science.gov (United States)

    Li, Yingpin; Wei, Yanan; Feng, Kangning; Hao, Yanzhong; Pei, Juan; Sun, Bao

    2018-06-01

    Array of TiO2 dendritic structure with nanotubes was constructed on transparent conductive fluorine-doped tin oxide glass (FTO) with titanium potassium oxalate as titanium source. Sb2S3 nanocrystals were successfully deposited on the TiO2 substrate via spin-coating method. Furthermore, TiO2/Sb2S3/P3HT/PEDOT:PSS composite film was prepared by successively spin-coating P3HT and PEDOT:PSS on TiO2/Sb2S3. It was demonstrated that the modification of TiO2 dendritic structure with Sb2S3 could enhance the light absorption in the visible region. The champion hybrid solar cell assembled by TiO2/Sb2S3/P3HT/PEDOT:PSS composite film achieved a power conversion efficiency (PCE) of 1.56%.

  4. Influence of different types of nanomaterials on their bioaccumulation in a paddy microcosm: A comparison of TiO2 nanoparticles and nanotubes

    International Nuclear Information System (INIS)

    Yeo, Min-Kyeong; Nam, Dong-Ha

    2013-01-01

    We investigated the environmental fate and bioaccumulation of TiO 2 nanomaterials in a simplified paddy microcosm over a period of 17 days. Two types of TiO 2 nanomaterials, nanoparticles (TiO 2 -NP) and nanotubes (TiO 2 -NT), were synthesized to have a negative surface charge. Ti concentrations in the environmental media (water, soil), crops (quillworts, water dropworts), and some lower and higher trophic organisms (biofilms, algae, plant-parasitic nematodes, white butterfly larva, mud snail, ricefish) were quantified after exposure periods of 0, 7, and 17 days. The titanium levels of the two nanomaterials were the highest in biofilms during the exposure periods. Bioaccumulation factors indicated that TiO 2 -NP and TiO 2 -NT were largely transferred from a prey (e.g., biofilm, water dropwort) to its consumer (e.g., nematodes, mud snail). Considering the potential entries of such TiO 2 nanomaterials in organisms, their bioaccumulation throughout the food chain should be regarded with great concern in terms of the overall health of the ecosystem. -- Highlights: •A high amount of nanomaterial was transferred within low trophic level organisms. •Nanomaterial transfer occurred from water dropwort roots to nematodes and snails. •Nanomaterial transfer occurred from the biofilm-consuming plankton to ricefish. •TiO 2 nanomaterials can accumulate in the organisms of an artificial ecosystem. -- TiO 2 nanomaterials can accumulate in the organisms of an artificial ecosystem

  5. Investigation on the influence of pH on structure and photoelectrochemical properties of CdSe electrolytically deposited into TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Xue, Jinbo; Shen, Qianqian; Yang, Fei; Liang, Wei; Liu, Xuguang

    2014-01-01

    Highlights: • There-dimensional CdSe-TiO 2 multijunction was fabricated by electrochemical method. • CdSe nanoparticles had a good bonding with the walls of TiO 2 nanotube. • pH value played an important role in the quality of CdSe-TiO 2 interfaces. - Abstract: In this work, we fabricated CdSe/TiO 2 nanotube arrays (NTAs) by electrochemical method. In electrodeposition, the pH value of the electrolyte played an important role in formation of CdSe nanoparticles. As the pH value decreased, more CdSe deposited on TiO 2 NTAs. Scanning electron microscopy and transmission electron microscopy characterization shows that the CdSe nanoparticles were uniformly deposited on and into TiO 2 nanotubes when the pH value was 3, and this structure fully utilized the three-dimensional (3D) space of TiO 2 nanotubes to form 3D multijunction heterostructures. According to the photoelectrochemical test, the CdSe/TiO 2 NTAs sample prepared at pH = 3 exhibited maximum photocurrent and open circuit potential. This is because that the deposited CdSe nanoparticles had better bond with the walls of TiO 2 nanotube than the samples deposited at other pH values, which facilitated the propagation and kinetic separation of photogenerated charges

  6. Structural and electrical properties of TiO2/ZnO core–shell nanoparticles synthesized by hydrothermal method

    International Nuclear Information System (INIS)

    Vlazan, P.; Ursu, D.H.; Irina-Moisescu, C.; Miron, I.; Sfirloaga, P.; Rusu, E.

    2015-01-01

    TiO 2 /ZnO core–shell nanoparticles were successfully synthesized by hydrothermal method in two stages: first stage is the hydrothermal synthesis of ZnO nanoparticles and second stage the obtained ZnO nanoparticles are encapsulated in TiO 2 . The obtained ZnO, TiO 2 and TiO 2 /ZnO core–shell nanoparticles were investigated by means of X-ray diffraction, transmission electron microscopy, Brunauer, Emmett, Teller and resistance measurements. X-ray diffraction analysis revealed the presence of both, TiO 2 and ZnO phases in TiO 2 /ZnO core–shell nanoparticles. According to transmission electron microscopy images, ZnO nanoparticles have hexagonal shapes, TiO 2 nanoparticles have a spherical shape, and TiO 2 /ZnO core–shell nanoparticles present agglomerates and the shape of particles is not well defined. The activation energy of TiO 2 /ZnO core–shell nanoparticles was about 101 meV. - Graphical abstract: Display Omitted - Highlights: • TiO 2 /ZnO core–shell nanoparticles were synthesized by hydrothermal method. • TiO 2 /ZnO core–shell nanoparticles were investigated by means of XRD, TEM and BET. • Electrical properties of TiO 2 /ZnO core–shell nanoparticles were investigated. • The activation energy of TiO 2 /ZnO core–shell nanoparticles was about E a = 101 meV

  7. Preparation of Fe-Doped TiO2 Nanotubes and Their Photocatalytic Activities under Visible Light

    Directory of Open Access Journals (Sweden)

    Honghui Teng

    2013-01-01

    Full Text Available Fe-doped TiO2 nanotubes (Fe-TNTs have been prepared by ultrasonic-assisted hydrothermal method. The structure and composition of the as-prepared TiO2 nanotubes were characterized by transmission electron microscopy, X-ray diffraction, and UV-Visible absorption spectroscopy. Their photocatalytic activities were evaluated by the degradation of MO under visible light. The UV-visible absorption spectra of the Fe-TNT showed a red shift and an enhancement of the absorption in the visible region compared to the pure TNT. The Fe-TNTs were provided with good photocatalytic activities and photostability and under visible light irradiation, and the optimum molar ratio of Ti : Fe was found to be 100 : 1 in our experiments.

  8. Synthesis of LaVO4/TiO2 heterojunction nanotubes by sol-gel coupled with hydrothermal method for photocatalytic air purification.

    Science.gov (United States)

    Zou, Xuejun; Li, Xinyong; Zhao, Qidong; Liu, Shaomin

    2012-10-01

    With the aim of improving the effective utilization of visible light, the LaVO(4)/TiO(2) heterojunction nanotubes were fabricated by sol-gel coupled with hydrothermal method. The photocatalytic ability was demonstrated through catalytic removal of gaseous toluene species. The nanotube samples were characterized by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), surface photovoltage (SPV), Raman spectra and N(2) adsorption-desorption measurements. The characterization results showed that the samples with high specific surface areas were of typical nanotubular morphology, which would lead to the high separation and transfer efficiency of photo induced electron-hole pairs. The as-prepared nanotubes exhibited high photocatalytic activity in decomposing toluene species under visible light irradiation with fine photochemical stability. The enhanced photocatalytic performance of LaVO(4)/TiO(2) nanotubes might be attributed to the matching band potentials, the interconnected heterojunction of LaVO(4) versus TiO(2), and the large specific surface areas of nanotubes. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Enhanced photoelectrocatalytic performance for degradation of diclofenac and mechanism with TiO2 nano-particles decorated TiO2 nano-tubes arrays photoelectrode

    International Nuclear Information System (INIS)

    Cheng, Xiuwen; Liu, Huiling; Chen, Qinghua; Li, Junjing; Wang, Pu

    2013-01-01

    In this study, TiO 2 nano-particles decorated TiO 2 nano-tubes arrays (TiO 2 NPs/TiO 2 NTAs) photoelectrodes have been successfully prepared through anodization, combined with ultrasonic strategy, followed by annealing post-treatment. The morphology and structure of the as-prepared TiO 2 NPs/TiO 2 NTAs photoelectrodes were characterized by scanning electrons microscopy (SEM), N 2 adsorption/desorption isotherms, X-ray diffraction (XRD) and UV–visible light diffuse reflection spectroscopy (DRS). In addition, the generation of hydroxyl radicals (·OH) was detected by a photoluminescence (PL) spectra using terephthalic acid (TA) as a probe molecule. Furthermore, the photoelectrochemical (PECH) properties of TiO 2 NPs/TiO 2 NTAs photoanode were investigated through transient open circuit potential (OCP), photocurrent response (PCR) and electrochemical impedance spectroscopy (EIS). It was found that TiO 2 NPs/TiO 2 NTAs photoelectrode exhibited a distinct decrease of OCP of −0.219 mV cm −2 and PCR of 0.049 mA cm −2 , while a significantly enhanced photoelectrocatalytic (PEC) efficiency of 63.6% (0.4 V vs. SCE) for the degradation of diclofenac. Moreover, the enhanced PEC mechanism of TiO 2 NPs/TiO 2 NTAs photoanode was proposed. The high PEC performance could be attributed to the decoration of TiO 2 NPs, which could improve the mobility and separation efficiency of photoinduced charge carriers under external potential

  10. Ag and CdS nanoparticles co-sensitized TiO2 nanotubes for enhancing visible photoelectrochemical performance

    International Nuclear Information System (INIS)

    Wang Qingyao; Yang Xiuchun; Liu Dan; Chi Lina; Hou Junwei

    2012-01-01

    Highlights: ► Ag and CdS nanoparticles co-sensitized TiO 2 nanotubes were fabricated by the SILAR method. ► The co-sensitization expands the photoresponse range of TiO 2 NTs to 668.7 nm. ► Visible light photocurrents and photocatalytic activities of CdS–Ag/TiO 2 NTs were studied. ► The electron transfer mechanism of CdS–Ag/TiO 2 NTs was proposed. - Abstract: The Ag and CdS nanoparticles co-sensitization of TiO 2 nanotubes (CdS–Ag/TiO 2 NTs) were prepared by successive ionic layer adsorption and reaction (SILAR) technique. The phase composition, morphology and optical property were characterized by the X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV–vis diffusion reflection spectroscopy (DRS). The co-modification of Ag and CdS nanoparticles expanded the photoresponse range of TiO 2 NTs from ultraviolet region to 668.7 nm, and the CdS–Ag/TiO 2 NTs prepared by SILAR deposition of 5 cycles exhibited higher visible photocurrent and stability against photocorrosion. The detailed electrons transfer mechanism of CdS–Ag/TiO 2 NTs was proposed, and photocatalytic activity toward degradation of methyl orange (MO) under visible-light irradiation was also investigated.

  11. Three-dimensional hot electron photovoltaic device with vertically aligned TiO2 nanotubes.

    Science.gov (United States)

    Goddeti, Kalyan C; Lee, Changhwan; Lee, Young Keun; Park, Jeong Young

    2018-05-09

    Titanium dioxide (TiO 2 ) nanotubes with vertically aligned array structures show substantial advantages in solar cells as an electron transport material that offers a large surface area where charges travel linearly along the nanotubes. Integrating this one-dimensional semiconductor material with plasmonic metals to create a three-dimensional plasmonic nanodiode can influence solar energy conversion by utilizing the generated hot electrons. Here, we devised plasmonic Au/TiO 2 and Ag/TiO 2 nanodiode architectures composed of TiO 2 nanotube arrays for enhanced photon absorption, and for the subsequent generation and capture of hot carriers. The photocurrents and incident photon to current conversion efficiencies (IPCE) were obtained as a function of photon energy for hot electron detection. We observed enhanced photocurrents and IPCE using the Ag/TiO 2 nanodiode. The strong plasmonic peaks of the Au and Ag from the IPCE clearly indicate an enhancement of the hot electron flux resulting from the presence of surface plasmons. The calculated electric fields and the corresponding absorbances of the nanodiode using finite-difference time-domain simulation methods are also in good agreement with the experimental results. These results show a unique strategy of combining a hot electron photovoltaic device with a three-dimensional architecture, which has the clear advantages of maximizing light absorption and a metal-semiconductor interface area.

  12. Microwave synthesized nanostructured TiO2-activated carbon composite electrodes for supercapacitor

    International Nuclear Information System (INIS)

    Selvakumar, M.; Bhat, D. Krishna

    2012-01-01

    Highlights: ► Nanostructure TiO 2 has been prepared by a microwave assisted synthesis method. ► Microwave irradiation was varied with time duration on the formation of nanoparticles. ► TiO 2 -activate carbon show very good specific capacitance for supercapacitor. ► Electrochemical properties were studied on electroanalytical techniques. - Abstract: Electrochemical properties of a supercapacitor based on nanocomposite electrodes of activated carbon with TiO 2 nano particles synthesized by a microwave method have been determined. The TiO 2 /activated carbon nanocomposite electrode with a composition of 1:3 showed a specific capacitance 92 Fg −1 . The specific capacitance of the electrode decreased with increase in titanium dioxide content. The p/p symmetrical supercapacitor fabricated with TiO 2 /activated carbon composite electrodes showed a specific capacitance of 122 Fg −1 . The electrochemical behavior of the neat TiO 2 nanoparticles has also been studied for comparison purpose. The galvanostatic charge–discharge test of the fabricated supercapacitor showed that the device has good coulombic efficiency and cycle life. The specific capacitance of the supercapacitor was stable up to 5000 cycles at current densities of 2, 4, 6 and 7 mA cm −2 .

  13. Chalcogenide Sensitized Carbon Based TiO2 Nanomaterial For Solar Driven Applications

    Science.gov (United States)

    Pathak, Pawan

    The demand for renewable energy is growing because fossils fuels are depleting at a rapid pace. Solar energy an abundant green energy resource. Utilizing this resource in a smart manner can resolve energy-crisis related issues. Sun light can be efficiently harvested using semiconductor based materials by utilizing photo-generated charges for numerous beneficial applications. The main goal of this thesis is to synthesize different nanostructures of TiO2, develop a novel method of coupling and synthesizing chalcogenide nanocrystals with TiO2 and to study the charge transportation effects of the various carbon allotropes in the chalcogenide nanocrystal sensitized TiO2 nanostructure. We have fabricated different nanostructures of TiO2 as solar energy harvesting materials. Effects of the different phases of TiO2 have also been studied. The anatase phase of TiO2 is more photoactive than the rutile phase of TiO2, and the higher dimension of the TiO2 can increase the surface area of the material which can produce higher photocurrent. Since TiO2 only absorbs in the UV range; to increase the absorbance TiO2 should be coupled to visible light absorbing materials. This dissertation presents a simple approach to synthesize and couple chalcogenide nanocrystals with TiO2 nanostructure to form a heterostructured composite. An atmospheric pressure based, single precursor, one-pot approach has been developed and tested to assemble chalcogenide nanocrystal on the TiO2 surface. Surface characterization using microscopy, X-ray diffraction, and elemental analysis indicates the formation of nanocrystals along the nanotube walls and inter-tubular spacing. Optical measurements indicate that the chalcogenide nanocrystals absorb in the visible region and demonstrate an increase in photocurrent in comparison to bare TiO2 nanostructure. The CdS synthesized TiO2 nanostructure produced the highest photocurrent as measured in the three electrode system. We have also assembled the PbS nanocrystal

  14. Photoelectrocatalytic degradation of atrazine by boron-fluorine co-doped TiO2 nanotube arrays.

    Science.gov (United States)

    Wang, He-Xuan; Zhu, Li-Nan; Guo, Fu-Qiao

    2018-06-23

    Atrazine, one of the most widespread herbicides in the world, is considered as an environmental estrogen and has potential carcinogenicity. In this study, atrazine was degraded on boron-fluorine co-doped TiO 2 nanotube arrays (B, F-TiO 2 NTAs), which had similar morphology with the pristine TiO 2 NTAs. The structure and morphology of TiO 2 nanotube samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-visible diffuse reflectance spectroscopy (DRS). It showed that the decoration of fluorine and boron made both the absorption in the visible region enhanced and the band edge absorption shifted. The efficiency of atrazine degradation by B, F-TiO 2 NTAs through photoelectrocatalysis was investigated by current, solution pH, and electrolyte concentration, respectively. The atrazine removal rate reached 76% through photoelectrocatalytic reaction by B, F-TiO 2 NTAs, which was 46% higher than that under the photocatalysis process. Moreover, the maximum degradation rate was achieved at pH of 6 in 0.01 M of Na 2 SO 4 electrolyte solution under a current of 0.02 A and visible light for 2 h in the presence of B, F-TiO 2 NTAs. These results showed that B, F-TiO 2 NTAs exhibit remarkable photoelectrocatalytic activity in degradation of atrazine.

  15. Photocatalytic performance of pure anatase nanocrystallite TiO2 synthesized under low temperature hydrothermal conditions

    International Nuclear Information System (INIS)

    Sayilkan, Funda; Erdemoglu, Sema; Asiltuerk, Meltem; Akarsu, Murat; Sener, Sadiye; Sayilkan, Hikmet; Erdemoglu, Murat; Arpac, Ertugrul

    2006-01-01

    Photocatalytic performance of a hydrothermally synthesized pure anatase TiO 2 with 8 nm average crystallite size for decomposition of Reactive Red 141 was examined by investigating the effects of UV-light irradiation time, irradiation power, amount of TiO 2 and initial dye concentration. Change in the UV absorbance of the dye during irradiation was monitored. One wt.% TiO 2 in 30 mg/l Reactive Red 141 aqueous solution was found adequate for complete decolorization in 70 min at 770 W/m 2 irradiation power. It was realized that, compared to Degussa P-25, the synthesized nano-TiO 2 can be repeatedly used as a new catalyst. The results also proved that Reactive Red 141 is decomposed catalytically due to the pseudo first-order reaction kinetics

  16. XAFS Study on TiO2 Photocatalyst Loaded on Zeolite Synthesized from Steel Slag

    International Nuclear Information System (INIS)

    Kuwahara, Yasutaka; Ohmichi, Tetsutaro; Mori, Kosuke; Katayama, Iwao; Yamashita, Hiromi

    2007-01-01

    The convenient route for the synthesis of Y-zeolites by utilizing steel slag as a material source was developed. Through hydrothermal treatment, well-crystallized Y-zeolite was obtained. We also synthesized TiO2-loaded Y-zeolites by an impregnation method. The structure of titanium oxide species highly dispersed on the zeolite, which couldn't be detected by XRD patterns, was investigated by XAFS analysis. Photocatalytic activity for decomposition of 2-propanol in liquid phase was found to be enhanced by the hydrophobic surface property of zeolite. It has been demonstrated that the zeolite synthesized from steel slag would be applicable as a promising support of TiO2 photocatalyst

  17. Dye-sensitized solar cells based on anatase TiO2/multi-walled carbon nanotubes composite nanofibers photoanode

    International Nuclear Information System (INIS)

    Du, Pingfan; Song, Lixin; Xiong, Jie; Li, Ni; Wang, Lijun; Xi, Zhenqiang; Wang, Naiyan; Gao, Linhui; Zhu, Hongliang

    2013-01-01

    Highlights: ► TiO 2 /multi-walled carbon nanotubes (MWCNTs) hybrid nanofibers are prepared via electrospinning. ► Dye-sensitized solar cells (DSSCs) are assembled using TiO 2 /MWCNTs nanofibers film as photoanode. ► Energy conversion efficiency of DSSCs is greatly dependent on the content of MWCNTs. ► Moderate MWCNTs incorporation can substantially enhance the performance of DSSCs. - Abstract: Anatase TiO 2 /multi-walled carbon nanotubes (TiO 2 /MWCNTs) hybrid nanofibers (NFs) film was prepared via a facile electrospinning method. Dye-sensitized solar cells (DSSCs) based on TiO 2 /MWCNTs composite NFs photoanodes with different contents of MWCNTs (0, 0.1, 0.3, 0.5, 1 wt.%) were assembled using N719 dye as sensitizer. Field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), and Raman spectrometer were used to characterize the TiO 2 /MWCNTs electrode films. The photocurrent–voltage (I–V) characteristic, incident photo-to-current conversion efficiency (IPCE) spectrum, and electrochemical impedance spectroscopy (EIS) measurements were carried out to evaluate the photoelectric properties of the DSSCs. The results reveal that the energy conversion efficiency is greatly dependent on the content of MWCNTs in the composite NFs film, and a moderate incorporation of MWCNTs can substantially enhance the performance of DSSCs. When the electrode contains 0.3 wt.% MWCNTs, the corresponding solar cell yield the highest efficiency of 5.63%. This efficiency value is approximately 26% larger than that of the unmodified counterpart.

  18. Fabrication, characterization and photocatalytic properties of Ag nanoparticles modified TiO2 NTs

    International Nuclear Information System (INIS)

    Wang Qingyao; Yang Xiuchun; Liu Dan; Zhao Jianfu

    2012-01-01

    Graphical abstract: The TiO 2 NTs were first treated with bi-functional mercaptoacetic acid linkers (HOOC–R–S). The –OH group on the surface of TiO 2 NT provides a strong affinity with the carboxylate group in the linker molecules. The thiol functional group in the linker molecules facilitates the binding with Ag from AgNO 3 solution. After Ag + ions were reduced by NaBH 4 , Ag nanoparticles formed by nucleation and growth. Highlights: ► Ag nanoparticles with an average diameter of 9.2 nm were filled in the TiO 2 nanotubes by a successive ionic layer adsorption and reaction (SILAR) technique. ► Bi-functional mercaptoacetic acid linkers were used to bind TiO 2 nanotubes with Ag nanoparticles. ► Ag nanoparticles modification of TiO 2 NTs largely enhanced the photocatalytic degradation of methyl orange under ultraviolet light irradiation. - Abstract: Ordered anatase TiO 2 nanotubes (TiO 2 NTs) on Ti substrate were synthesized by electrochemical anodization and subsequently vapor-thermal treatment. Ag nanoparticles were decorated on TiO 2 NTs by successive ionic layer adsorption and reaction (SILAR) technique. Raman spectroscopy, X-ray absorption near edge spectroscopy (XANES), X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used for the characterization of surface morphology, phase composition, and microstructure of the original TiO 2 NTs, the vapor-thermally treated TiO 2 NTs and the Ag nanoparticles decorated TiO 2 NTs. The results indicate that vapor-thermal treatment favors to the transformation of amorphous TiO 2 into anatase phase. Increasing the SILAR cycle times favors to increase the loaded amounts of Ag nanoparticles in TiO 2 NTs. Ag nanoparticles are uniformly distributed in the TiO 2 NTs, and the SILAR process does not damage the ordered tubular structure. A possible formation mechanism of Ag/TiO 2 NTs has also been proposed. The

  19. Effects of additives on microstructures of titanate based nanotubes prepared by the hydrothermal process

    International Nuclear Information System (INIS)

    Kubo, Takashi; Sugimoto, Keijiro; Onoki, Takamasa; Nakahira, Atsushi; Yamasaki, Yuki

    2009-01-01

    Silica-containing TiO 2 -derived titanate nanotubes were prepared by the addition of a small amount of tetraethyl orthosilicate (TEOS) to TiO 2 -derived titanate nanotubes prepared by the hydrothermal process and a subsequent heat-treatment at 473 K in air. The microstructure and thermal behavior of synthesized silica containing TiO 2 -derived titanate nanotubes were investigated by various methods such as X-ray diffraction (XRD), X-ray absorption fine structure (XAF), and X-ray photoelectron spectroscopy (XPS). As a result, the addition of a small amount of TEOS leaded to the improvement of the thermal stability for TiO 2 -derived titanate nanotubes. XPS results revealed that Si was combined onto the surface of TiO 2 -derived titanate nanotubes, forming partial Si-O-Ti chemical bonds. Therefore, it was inferred that the thermal stability could be modified by forming partial Si-O-Ti chemical bonds at interface of silica and TiO 2 -derived titanate nanotubes. (author)

  20. Low temperature RF plasma nitriding of self-organized TiO2 nanotubes for effective bandgap reduction

    Science.gov (United States)

    Bonelli, Thiago Scremin; Pereyra, Inés

    2018-06-01

    Titanium dioxide is a widely studied semiconductor material found in many nanostructured forms, presenting very interesting properties for several applications, particularly photocatalysis. TiO2 nanotubes have a high surface-to-volume ratio and functional electronic properties for light harvesting. Despite these manifold advantages, TiO2 photocatalytic activity is limited to UV radiation due to its large band gap. In this work, TiO2 nanotubes produced by electrochemical anodization were submitted to plasma nitriding processes in a PECVD reactor. The plasma parameters were evaluated to find the best conditions for gap reduction, in order to increase their photocatalytic activity. The pressure and RF power density were varied from 0.66 to 2.66 mbar and 0.22 to 3.51 W/cm2 respectively. The best gap reduction, to 2.80 eV, was achieved using a pressure of 1.33 mbar and 1.75 W/cm2 RF power at 320 °C, during a 2-h process. This leads to a 14% reduction in the band gap value and an increase of 25.3% in methylene blue reduction, doubling the range of solar photons absorption from 5 to 10% of the solar spectrum.

  1. An Experimental Study on the Shape Changes of TiO2 Nanocrystals Synthesized by Microemulsion-Solvothermal Method

    Directory of Open Access Journals (Sweden)

    Wei Kong

    2011-01-01

    Full Text Available Titanium dioxide (TiO2 nanocrystals of different shape were successfully synthesized in a new microemulsion system through a solvothermal process. The TiO2 nanocrystals were prepared from the reaction of tetrabutyl titanate (TBT, H2O, and oleic acid (OA, which were used as solvent and surfactant at 300∘C and 240∘C in a stainless steel autoclave. The sphere, polygon, and rhombus-shaped nanocrystals have been prepared at 300∘C and the dot- and- rod shaped nanocrystals have been synthesized at 240∘C. The effect of the reaction time on the shape and size of TiO2 nanocrystals in this method was studied in the present paper. The size distribution of TiO2 nanocrystals prepared at 300∘C for different hours is also studied. In addition, an attempt to describe the mechanism of shape change of TiO2 nanocrystals was presented in this paper.

  2. Influence of Different Defects in Vertically Aligned Carbon Nanotubes on TiO2 Nanoparticle Formation through Atomic Layer Deposition.

    Science.gov (United States)

    Acauan, Luiz; Dias, Anna C; Pereira, Marcelo B; Horowitz, Flavio; Bergmann, Carlos P

    2016-06-29

    The chemical inertness of carbon nanotubes (CNT) requires some degree of "defect engineering" for controlled deposition of metal oxides through atomic layer deposition (ALD). The type, quantity, and distribution of such defects rules the deposition rate and defines the growth behavior. In this work, we employed ALD to grow titanium oxide (TiO2) on vertically aligned carbon nanotubes (VACNT). The effects of nitrogen doping and oxygen plasma pretreatment of the CNT on the morphology and total amount of TiO2 were systematically studied using transmission electron microscopy, Raman spectroscopy, and thermogravimetric analysis. The induced chemical changes for each functionalization route were identified by X-ray photoelectron and Raman spectroscopies. The TiO2 mass fraction deposited with the same number of cycles for the pristine CNT, nitrogen-doped CNT, and plasma-treated CNT were 8, 47, and 80%, respectively. We demonstrate that TiO2 nucleation is dependent mainly on surface incorporation of heteroatoms and their distribution rather than structural defects that govern the growth behavior. Therefore, selecting the best way to functionalize CNT will allow us to tailor TiO2 distribution and hence fabricate complex heterostructures.

  3. Porous TiO2 Conformal Coating on Carbon Nanotubes as Energy Storage Materials

    International Nuclear Information System (INIS)

    Yan, Litao; Xu, Yun; Zhou, Meng; Chen, Gen; Deng, Shuguang; Smirnov, Sergei; Luo, Hongmei; Zou, Guifu

    2015-01-01

    The controllable synthesis of strongly coupled inorganic materials/carbon nanotubes (CNTs) hybrids represents a long-standing challenge for developing advanced catalysts and energy-storage materials. Here we report a simple sol-gel method for facile synthesis of TiO 2 /CNTs hybrid. The porous anatase TiO 2 nanoparticles are uniformly coated on the CNTs conducting network, which leads to remarkably improved electrochemical performances such as exceptional cycling stability, good high rate durability, and reduced resistance. This hybrid exhibits a reversible capacity as high as 200 mA·h g −1 at a current density of 0.1 A g −1 as an anode in lithium-ion battery (LIB). As a supercapacitor (SC), it shows a specific supercapacitance of 145 F g −1 in 0.5 M H 2 SO 4 electrolyte, higher than that of the previously reported TiO 2 based supercapacitors. Moreover, this hybrid also exhibits excellent durability after 1000 cycles for both LIBs and SCs. Such superior performance and cycling durability demonstrate the reinforced synergistic effects between the porous TiO 2 and interweaved CNTs network, indicating a great application potential for such hybrid materials in high power LIBs and SCs

  4. Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays.

    Science.gov (United States)

    Jiao, Zhengbo; Chen, Tao; Xiong, Jinyan; Wang, Teng; Lu, Gongxuan; Ye, Jinhua; Bi, Yingpu

    2013-01-01

    Well-aligned TiO2 nanotube arrays have become of increasing significance because of their unique highly ordered array structure, high specific surface area, unidirectional charge transfer and transportation features. However, their poor visible light utilization as well as the high recombination rate of photoexcited electron-hole pairs greatly limited their practical applications. Herein, we demonstrate the fabrication of visible-light-responsive heterostructured Cr-doped SrTiO3/TiO2 nanotube arrays by a simple hydrothermal method, which facilitate efficient charge separation and thus improve the photoelectrochemical as well as photocatalytic performances.

  5. Enhancement in photo-electrochemical efficiency by reducing recombination rate in branched TiO2 nanotube array on functionalizing with ZnO micro crystals

    Science.gov (United States)

    Boda, Muzaffar Ahmad; Ashraf Shah, Mohammad

    2018-06-01

    In this study, branched TiO2 nanotube array were fabricated through electrochemical anodization process at constant voltage using third generation electrolyte. On account of morphological advantage, these nanotubes shows significant enhancement in photo-electrochemical property than compact or conventional titania nanotube array. However, their photo-electrochemical efficiency intensifies on coating with ZnO micro-crystals. ZnO coated branched TiO2 nanotube array shows a photocurrent density of 27.8 mA cm‑2 which is 1.55 times the photocurrent density (17.2 mA cm‑2) shown by bare branched titania nanotubes. The significant enhancement in photocurrent density shown by the resulting ZnO/TiO2 hybrid structure is attributed to suppression in electron–hole recombination phenomenon by offering smooth pathway to photo generated excitons on account of staggered band edge positions in individual semiconductors.

  6. TiO2 nanotube formation by Ti film anodization and their transport properties for dye-sensitized solar cells

    NARCIS (Netherlands)

    Iraj, M.; Kolahdouz, M.; Asl-Soleimani, E.; Esmaeili, E.; Kolahdouz Esfahani, Z.

    2016-01-01

    In this paper, we present the synthesis of TiO2 nanotube (NT) arrays formed by anodization of Ti film deposited on a fluorine-doped tin oxide-coated glass substrate by direct current magnetron sputtering. NH4F/ethylene glycol electrolyte was used to demonstrate the growth of stable nanotubes at room

  7. Au Nanoparticles Decorated TiO2 Nanotube Arrays as a Recyclable Sensor for Photoenhanced Electrochemical Detection of Bisphenol A.

    Science.gov (United States)

    Hu, Liangsheng; Fong, Chi-Chun; Zhang, Xuming; Chan, Leo Lai; Lam, Paul K S; Chu, Paul K; Wong, Kwok-Yin; Yang, Mengsu

    2016-04-19

    A photorefreshable and photoenhanced electrochemical sensing platform for bisphenol A (BPA) detection based on Au nanoparticles (NPs) decorated carbon doped TiO2 nanotube arrays (TiO2/Au NTAs) is described. The TiO2/Au NTAs were prepared by quick annealing of anodized nanotubes in argon, followed by controllable electrodeposition of Au NPs. The decoration of Au NPs not only improved photoelectrochemical behavior but also enhanced electrocatalytic activities of the resulted hybrid NTAs. Meanwhile, the high photocatalytic activity of the NTAs allowed the electrode to be readily renewed without damaging the microstructures and surface states after a short UV treatment. The electrochemical detection of BPA on TiO2/Au NTAs electrode was significantly improved under UV irradiation as the electrode could provide fresh reaction surface continuously and the further increased photocurrent resulting from the improved separation efficiency of the photogenerated electron-hole pairs derived from the consumption of holes by BPA. The results showed that the refreshable TiO2/Au NTAs electrode is a promising sensor for long-term BPA monitoring with the detection limit (S/N = 3) of 6.2 nM and the sensitivity of 2.8 μA·μM(-1)·cm(-2).

  8. A facile and novel strategy to synthesize reduced TiO₂ nanotubes photoelectrode for photoelectrocatalytic degradation of diclofenac.

    Science.gov (United States)

    Cheng, Xiuwen; Cheng, Qingfeng; Deng, Xiaoyong; Wang, Pu; Liu, Huiling

    2016-02-01

    TiO2 nano-materials have been considered as a versatile candidate for the photoelectrochemical (PECH) applications. In this study, we reported a facile and novel strategy to synthesize reduced TiO2 nanotubes (TiO2 NTs) photoelectrode. The microwave reduction could introduce oxygen vacancy in the lattice of TiO2, while the rapid-production of oxygen vacancy facilitated the generation of impurity level between the forbidden band and greatly enhancement of visible light absorption, thereby resulting in an improved separation efficiency of photogenerated charge carriers and photocatalytic (PC) performance. Additionally, the derived valence band X-ray photoelectron spectroscopy (VBXPS) and photoluminescence (PL) spectra confirmed the existence of oxygen vacancy in the lattice of TiO2 NTs photoelectrode, in which the valence bond maximum (VBM) and charge carriers concentration of reduced TiO2 NTs photoelectrode was determined to be 1.75 eV and 5.36 × 10(19) cm(-3), respectively. Furthermore, the scavenging experiments revealed that ·OH radical was the dominated species for the degradation of diclofenac. The enhanced-visible-light PC mechanism could mainly be attributed to the generation of oxygen vacancy, which can provide not only the visible light absorption capacity but also charge separation efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Self-organized TiO2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures

    International Nuclear Information System (INIS)

    Mahajan, V K; Misra, M; Raja, K S; Mohapatra, S K

    2008-01-01

    The effect of crystallization and surface chemistry of nanotubular titanium dioxide (TiO 2 ) in connection with the photoelectrochemical process is reported in this investigation. TiO 2 nanotubular arrays were synthesized by a simple anodization process in an acidified fluoride electrolyte at room temperature. The TiO 2 nanotubes were amorphous in as-anodized condition; their transformation to crystalline phases was a function of annealing temperature and gaseous environment. The anatase phase was observed predominantly after annealing in non-oxidizing atmospheres, whereas annealing in an oxygen environment showed a mixture of anatase and rutile phases. X-ray photoelectron spectroscopy was used to determine the chemical environment of the surface, which revealed the presence of phosphate, oxygen vacancies and pentacoordinated Ti in hydrogen annealed samples. Diffuse reflectance photospectrometry of non-oxygen annealed samples showed long absorption tails extending in the visible region. The photoelectrochemical response of the TiO 2 nanotubes annealed in different conditions was investigated. Photoelectrochemical performance under simulated solar light was improved by annealing the nanotubular TiO 2 samples in non-oxidizing environment

  10. Study on photocatalysis of TiO2 nanotubes prepared by methanol ...

    Indian Academy of Sciences (India)

    Titanate nanotubes were synthesized in methanol–water volume ratios of 10:90, 20:80 and 30:70 which still .... atmospheric pressure. .... pore volume of the largest titania nanotubes were observed ... affect phase structure and microstructure of titanate nanotubes .... Left inset in figure 7 is an enlarged picture of a tube wall.

  11. CdTe and graphene co-sensitized TiO2 nanotube array photoanodes for protection of 304SS under visible light

    International Nuclear Information System (INIS)

    Li, Hong; Wang, Xiutong; Hou, Baorong; Zhang, Liang

    2015-01-01

    CdTe/graphene/TiO 2 films that served as photoanodes for cathodic protection application were prepared by an electrochemical deposition method. The deposition of graphene and CdTe nanoparticles (NPs) on the surface of the TiO 2 nanotubes was confirmed by scanning electron microscope and transmission electron microscopy. The composites exhibited high light absorption in both the UV and visible light region. The results indicated that TiO 2 nanotube photoelectrodes sensitized by 20-cycle graphene and 30-cycle CdTe NPs exhibited effective photocathodic protection properties for 304 stainless steel (304SS) under the visible-light illumination, with an photopotential of −750 mV versus saturated calomel electrode and a current density of 560 μA cm −2 . Due to the efficient photogenerated charge separation, the three-component CdTe/graphene/TiO 2 showed stronger photoresponse than pure TiO 2 under visible-light illumination. In summary, the CdTe/graphene could improve the photocathodic protection properties of TiO 2 films. (paper)

  12. Distinguishing between deep trapping transients of electrons and holes in TiO2 nanotube arrays using planar microwave resonator sensor.

    Science.gov (United States)

    Zarifi, Mohammad H; Wiltshire, Benjamin Daniel; Mahdi, Najia; Shankar, Karthik; Daneshmand, Mojgan

    2018-05-16

    A large signal DC bias and a small signal microwave bias were simultaneously applied to TiO2 nanotube membranes mounted on a planar microwave resonator. The DC bias modulated the electron concentration in the TiO2 nanotubes, and was varied between 0 and 120 V in this study. Transients immediately following the application and removal of DC bias were measured by monitoring the S-parameters of the resonator as a function of time. The DC bias stimulated Poole-Frenkel type trap-mediated electrical injection of excess carriers into TiO2 nanotubes which resulted in a near constant resonant frequency but a pronounced decrease in the microwave amplitude due to free electron absorption. When ultraviolet illumination and DC bias were both present and then step-wise removed, the resonant frequency shifted due to trapping -mediated change in the dielectric constant of the nanotube membranes. Characteristic lifetimes of 60-80 s, 300-800 s and ~3000 s were present regardless of whether light or bias was applied and are also observed in the presence of a hole scavenger, which we attribute to oxygen adsorption and deep electron traps while another characteristic lifetime > 9000 s was only present when illumination was applied, and is attributed to the presence of hole traps.

  13. Nanoscale Optimization and Statistical Modeling of Photoelectrochemical Water Splitting Efficiency of N-Doped TiO2 Nanotubes

    KAUST Repository

    Isimjan, Tayirjan T.; Trifkovic, Milana; Abdullahi, Inusa; Rohani, Sohrab M F; Ray, Ajay

    2014-01-01

    Highly ordered nitrogen-doped titanium dioxide (N-doped TiO2) nanotube array films with enhanced photo-electrochemical water splitting efficiency (PCE) for hydrogen generation were fabricated by electrochemical anodization, followed by annealing

  14. Photocatalytic degradation of methyl orange with W-doped TiO2 synthesized by a hydrothermal method

    International Nuclear Information System (INIS)

    Tian Hua; Ma Junfeng; Li Kang; Li Jinjun

    2008-01-01

    Nanosized W-doped TiO 2 photocatalysts were synthesized by a simple hydrothermal method, and characterized by energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET surface area analyzer. The photocatalytic activity of undoped TiO 2 and W-doped TiO 2 photocatalysts was evaluated by the photocatalytic oxidation degradation of methyl orange in aqueous solution. The results show that the photocatalytic activity of the W-doped TiO 2 photocatalyst is much higher than that of undoped TiO 2 , and the optimum percentage of W doped is 2.0 mol%. The enhanced photocatalytic activity of the doped photocatalyst may be attributed to the increase in the charge separation efficiency and the presence of surface acidity

  15. Formation and Morphology Evolution of Anodic TiO2 Nanotubes under Negative Pressure

    International Nuclear Information System (INIS)

    Lu, Hongyan; Fan, Haowen; Jin, Rong; Chong, Bin; Shen, Xiaoping; Yan, Shuo; Zhu, Xufei

    2016-01-01

    Highlights: • Nernst equation is applied to explain electrochemical reactions during anodization. • Longer nanotubes were obtained under 0.02 MPa, as compared to atmospheric conditions. • The total anodizing current was separated into ionic current and electronic current. • Explanation for the particularity of nanotubes obtained under 0.02 MPa is presented. - Abstract: Anodic TiO 2 nanotubes (ATNTs) have attracted extensive interest in the past decade. ATNTs are generally fabricated by anodization of Ti foils under atmospheric conditions (0.1 MPa). To date, the growth kinetics of ATNTs remains unclear. Herein anodizations of Ti foils under negative pressure are designed to overcome this challenge. Longer nanotubes were fabricated under negative pressure, as compared to atmospheric conditions. Variations of the nanotube length and surface morphology of ATNTs provide evidences for oxygen bubble mould, in which the ionic current contributes to nanotube growth while the electronic current gives rise to the oxygen evolution. Nernst equation was firstly applied to simulate variations of electronic current and ionic current during anodization. The in-depth analysis of the morphology variations could help elucidate the formation mechanism, thus paving the way for the optimization of the synthesis process of ATNTs.

  16. Three-dimensional observation of TiO2 nanostructures by electron tomography

    KAUST Repository

    Suh, Young Joon

    2013-03-01

    Three-dimensional nanostructures of TiO2 related materials including nanotubes, electron acceptor materials in hybrid polymer solar cells, and working electrodes of dye sensitized solar cells (DSSCs) were visualized by electron tomography as well as TEM micrographs. The regions on the wall of TiO2 nanotubes where the streptavidins were attached were elucidated by electron tomogram analysis. The coverage of TiO2 nanotubes by streptavidin was also investigated. The TiO2 nanostructures in hybrid polymer solar cells made by sol-gel and atomic layer deposition (ALD) methods and the morphologies of pores between TiO2 particles in DSSCs were also observed by reconstructed three-dimensional images made by electron tomography. © 2012 Elsevier Ltd.

  17. Chemically synthesized TiO2 and PANI/TiO2 thin films for ethanol sensing applications

    Science.gov (United States)

    Gawri, Isha; Ridhi, R.; Singh, K. P.; Tripathi, S. K.

    2018-02-01

    Ethanol sensing properties of chemically synthesized titanium dioxide (TiO2) and polyaniline/titanium dioxide nanocomposites (PANI/TiO2) had been performed at room temperature. In-situ oxidative polymerization process had been employed with aniline as a monomer in presence of anatase titanium dioxide nanoparticles. The prepared samples were structurally and morphologically characterized by x-ray diffraction, fourier transform infrared spectra, high resolution-transmission electron microscopy and field emission-scanning electron microscopy. The crystallinity of PANI/TiO2 nanocomposite was revealed by XRD and FTIR spectra confirmed the presence of chemical bonding between the polymer chains and metal oxide nanoparticles. HR-TEM micrographs depicted that TiO2 particles were embedded in polymer matrix, which provides an advantage over pure TiO2 nanoparticles in efficient adsorption of vapours. These images also revealed that the TiO2 nanoparticles were irregular in shape with size around 17 nm. FE-SEM studies revealed that in the porous structure of PANI/TiO2 film, the intercalation of TiO2 in PANI chains provides an advantage over pure TiO2 film for uniform interaction with ethanol vapors. The sensitivity values of prepared samples were examined towards ethanol vapours at room temperature. The PANI/TiO2 nanocomposite exhibited better sensing response and faster response-recovery examined at different ethanol concentrations ranging from 5 ppm to 20 ppm in comparison to pure TiO2 nanoparticles. The increase in vapour sensing of PANI/TiO2 sensing film as compared to pure TiO2 film had been explained in detail with the help of gas sensing mechanism of TiO2 and PANI/TiO2. This provides strong evidence that gas sensing properties of TiO2 had been considerably improved and enhanced with the addition of polymer matrix.

  18. Black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic activity

    Science.gov (United States)

    Wang, Xiangdong; Fu, Rong; Yin, Qianqian; Wu, Han; Guo, Xiaoling; Xu, Ruohan; Zhong, Qianyun

    2018-04-01

    Utilizing solar energy for hydrogen evolution is a great challenge for its insufficient visible-light power conversion. In this paper, we report a facile magnesiothermic reduction of commercial TiO2 nanoparticles under Ar atmosphere and at 550 °C followed by acid treatment to synthesize reduced black TiO2 powders, which possesses a unique crystalline core-amorphous shell structure composed of disordered surface and oxygen vacancies and shows significantly improved optical absorption in the visible region. The unique core-shell structure and high absorption enable the reduced black TiO2 powders to exhibit enhanced photocatalytic activity, including splitting of water in the presence of Pt as a cocatalyst and degradation of methyl blue (MB) under visible light irradiation. Photocatalytic evaluations indicate that the oxygen vacancies play key roles in the catalytic process. The maximum hydrogen production rates are 16.1 and 163 μmol h-1 g-1 under the full solar wavelength range of light and visible light, respectively. This facile and versatile method could be potentially used for large scale production of colored TiO2 with remarkable enhancement in the visible light absorption and solar-driven hydrogen production.

  19. The influence of CdS intermediate layer on CdSe/CdS co-sensitized free-standing TiO2 nanotube solar cells

    Science.gov (United States)

    Ren, Xuefeng; Yu, Libo; Li, Zhen; Song, Hai; Wang, Qingyun

    2018-01-01

    We build CdSe quantum dots (QDs) sensitized TiO2 NT solar cells (CdSe/TiO2 solar cells) by successive ionic layer adsorption reaction (SILAR) method on free-standing translucent TiO2 nanotube (NT) film. The best power conversion efficiency (PCE) 0.74% is obtained with CdSe/TiO2 NT solar cells, however, it is very low. Hence, we introduced the CdS QDs layer located between CdSe QDs and TiO2 NT to achieve an enhanced photovoltaic performance. The J-V test results indicated that the insert of CdS intermediate layer yield a significant improvement of PCE to 2.52%. Combining experimental and theoretical analysis, we find that the effects caused by a translucent TiO2 nanotube film, a better lattices match between CdS and TiO2, and a new formed stepwise band edges structure not only improve the light harvesting efficiency but also increase the driving force of electrons, leading to the improvement of photovoltaic performance.

  20. Microporous TiO2-WO3/TiO2 films with visible-light photocatalytic activity synthesized by micro arc oxidation and DC magnetron sputtering

    International Nuclear Information System (INIS)

    Wu, Kee-Rong; Hung, Chung-Hsuang; Yeh, Chung-Wei; Wu, Jiing-Kae

    2012-01-01

    Highlights: ► A simple MAO is used to prepare porous WO 3 /TiO 2 layer on Ti sheet as a visible-light enabled catalyst. ► The photocatalytic activity of the WO 3 /TiO 2 is enhanced by sputtering over an N,C-TiO 2 layer. ► This is ascribed to the synergetic effect of hybrid sample prepared by two-step method. - Abstract: This study reports the preparation of microporous TiO 2 -WO 3 /TiO 2 films with a high surface area using a two-step approach. A porous WO 3 /TiO 2 template was synthesized by oxidizing a titanium sheet using a micro arc oxidation (MAO) process. This sheet was subsequently overlaid with a visible light (Vis)-enabled TiO 2 (N,C-TiO 2 ) film, which was deposited by codoping nitrogen (N) and carbon (C) ions into a TiO 2 lattice using direct current magnetron sputtering. The resulting microporous TiO 2 -WO 3 /TiO 2 film with a 0.38-μm-thick N,C-TiO 2 top-layer exhibited high photocatalytic activity in methylene blue (MB) degradation among samples under ultraviolet (UV) and Vis irradiation. This is attributable to the synergetic effect of two-step preparation method, which provides a highly porous microstructure and the well-crystallized N,C-TiO 2 top-layer. This is because a higher surface area with high crystallinity favors the adsorption of more MB molecules and more photocatalytic active areas. Thus, the microporous TiO 2 -WO 3 /TiO 2 film has promising applications in the photocatalytic degradation of dye solution under UV and Vis irradiation. These results imply that the microporous WO 3 /TiO 2 can be used as a template of hybrid electrode because it enables rapid fabrication.

  1. Properties of Sn-doped TiO2 nanotubes fabricated by anodization of co-sputtered Ti–Sn thin films

    International Nuclear Information System (INIS)

    Kyeremateng, Nana Amponsah; Hornebecq, Virginie; Knauth, Philippe; Djenizian, Thierry

    2012-01-01

    Self-organized Sn-doped TiO 2 nanotubes (nts) were fabricated for the first time, by anodization of co-sputtered Ti and Sn thin films. This nanostructured material was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, UV–vis spectroscopy and transmission electron microscopy. Due to their remarkable properties, Sn-doped TiO 2 nts can find potential applications in Li-ion microbatteries, photovoltaics, and catalysis. Particularly, the electrochemical performance as an anode material for Li-ion microbatteries was evaluated in Li test cells. With current density of 70 μA cm −2 (1 C) and cut-off potential of 1 V, Sn-doped TiO 2 nts showed improved performance compared to simple TiO 2 nts, and differential capacity plots revealed that the material undergoes full electrochemical reaction as a Rutile-type TiO 2 .

  2. Osseointegration of Implants Surface-Treated with Various Diameters of TiO2 Nanotubes in Rabbit

    Directory of Open Access Journals (Sweden)

    Cheul-Goo Kang

    2015-01-01

    Full Text Available The aim of this study was to evaluate the osseointegration of implants which were surface-treated with various diameters of TiO2 nanotubes (30 nm, 70 nm, and 100 nm in rabbit. Resorbable blast media (RBM surfaced implants (Osstem, Busan, Korea 3.5 mm in diameter and 8.5 mm in length were designated as the control group and the implants surface-treated with various diameters of nanotubes (30 nm, 70 nm, and 100 nm with the same shapes were designated as the experimental groups. The implants were maintained unloaded for 4 and 12 weeks. After this period, the animals were sacrificed and micro-CT analysis, histomorphometric analysis (bone to implant contact (BIC, bone volume (BV, and removal torque test were performed. Micro-CT analysis, histomorphometric analysis, and removal torque test results all showed the similar pattern, showing that 70 nm experimental group had the highest value at 4 weeks while 30 nm experimental group had the highest value at 12 weeks. Therefore, on the basis of the results above, it can be concluded that 30 nm and 70 nm TiO2 nanotubes may have positive effects on osteogenesis and osseointegration depending on the healing time.

  3. Multiwalled carbon nanotubes decorated with nitrogen, palladium co-doped TiO2 (MWCNT/N, Pd co-doped TiO2) for visible light photocatalytic degradation of Eosin Yellow in water

    Science.gov (United States)

    Kuvarega, Alex T.; Krause, Rui W. M.; Mamba, Bhekie B.

    2012-03-01

    Multiwalled carbon nanotube (MWCNT/N), Pd co-doped TiO2 nanocomposites were prepared by calcining the hydrolysis products of the reaction of titanium isopropoxide, Ti(OC3H7)4 containing multiwalled carbon nanotubes with aqueous ammonia. The prepared samples were characterised by Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, diffuse reflectance UV-Vis spectrophotometry (DRUV-Vis), XRD, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). DRUV-Vis analysis confirmed the red shift in the absorption edge at lower MWCNT percentages. SEM and TEM images showed the complete coverage of the MWCNTs with clusters of anatase TiO2 at low MWCNT percentages. Higher MWCNT levels led to their aggregation and consequently poor coverage by N, Pd co-doped TiO2. The photocatalytic activities of the nanocomposites were monitored by photodegradation of Eosin Yellow under simulated solar and visible light irradiation (λ > 450 nm). Irradiation with simulated solar radiation gave higher dye-degradation rates compared to visible radiation. The optimum MWCNT weight percentage in the composites was found to be 0.5. High degradation-rate constants of 3.42 × 10-2 and 5.18 × 10-3 min-1 were realised for the 0.5% MWCNT/N, Pd co-doped TiO2 composite, using simulated solar light and visible light, respectively.

  4. Electrochemically conductive treatment of TiO2 nanotube arrays in AlCl3 aqueous solution for supercapacitors

    Science.gov (United States)

    Zhong, Wenjie; Sang, Shangbin; Liu, Yingying; Wu, Qiumei; Liu, Kaiyu; Liu, Hongtao

    2015-10-01

    Highly ordered TiO2 nanotube arrays (NTAs) with excellent stability and large specific surface area make them competitive using as supercapacitor materials. Improving the conductivity of TiO2 is of great concern for the construction of high-performance supercapacitors. In this work, we developed a novel approach to improve the performance of TiO2 materials, involving the fabrication of Al-doped TiO2 NTAs by a simple electrochemical cathodic polarization treatment in AlCl3 aqueous solution. The prepared Al-doped TiO2 NTAs exhibited excellent electrochemical performances, attributing to the remarkably improved electrical conductivity (i.e., from approx. 10 kΩ to 20 Ω). Further analysis showed that Al3+ ions rather than H+ protons doped into TiO2 lattice cause this high conductivity. A MnO2/Al-TiO2 composite was evaluated by cyclic voltammetry, and achieved the specific capacitance of 544 F g-1, and the Ragone plot of the sample showed a high power density but less reduction of energy density. These results indicate that the MnO2/Al-TiO2 NTAs sample could be served as a promising electrode material for high -performance supercapacitors.

  5. Photoelectrochemical properties of TiO2 Nanotube Arrays Modified with BiOCl nanosheets

    International Nuclear Information System (INIS)

    Liu, Haipeng; Xu, Guangqing; Wang, Jinwen; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2014-01-01

    Highlights: • BiOCl were deposited on TiO2 NTAs by sequential chemical bath deposition. • BiOCl can decrease background photocurrent and increase current response. • High sensitivity BiOCl/TiO2 is due to the direct oxidation of organics on BiOCl. - Abstract: BiOCl nanosheets were deposited on anodized TiO 2 nanotube arrays (NTAs) by sequential chemical bath deposition method to get BiOCl/TiO 2 NTAs for photoelectrochemical detection of organic compounds (represented by glucose). The structures, elemental components and morphologies of TiO 2 and BiOCl/TiO 2 NTAs were characterized by using X-ray diffraction diffractometer, scanning electron microscope and transmission electron microscope. The photoelectrochemical behaviors of TiO 2 and BiOCl/TiO 2 NTAs in the buffer and glucose solutions were measured by cyclic votammetry and amperometry with different optical powers. The modification of BiOCl nanosheets on TiO 2 NTAs decreases the photocurrents of TiO 2 NTAs in the buffer solution and increases the current response to glucose. Both of the background photocurrent decrease and current response increase are benefit for photoelectrochemical detection of organic compounds. When glucose was used as the target organic compound, the optimized BiOCl/TiO 2 NTAs sensor achieved a sensitivity of 0.327 μA/μM (0.417 μA·cm −2 ·μM −1 ), linear range from 0 to 1300 μM and calculated detection limit of 5.7 μM. Mechanisms of BiOCl modification were studied by measuring the optical absorption and hydroxyl radical HO· productivity. The transfer of holes from TiO 2 to BiOCl and the direct oxidation of organic compounds on BiOCl nanosheets led to the decrease of background photocurrent (lower reaction rate of water splitting on BiOCl nanosheets) and the increase of current response to organic compounds (higher reaction rate of direct oxidation of organic compounds)

  6. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Science.gov (United States)

    Madian, Mahmoud; Ummethala, Raghunandan; Abo El Naga, Ahmed Osama; Ismail, Nahla; Rümmeli, Mark Hermann; Eychmüller, Alexander; Giebeler, Lars

    2017-01-01

    TiO2 nanotubes (NTs) synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs)@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability. PMID:28773032

  7. Ternary CNTs@TiO2/CoO Nanotube Composites: Improved Anode Materials for High Performance Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Mahmoud Madian

    2017-06-01

    Full Text Available TiO2 nanotubes (NTs synthesized by electrochemical anodization are discussed as very promising anodes for lithium ion batteries, owing to their high structural stability, high surface area, safety, and low production cost. However, their poor electronic conductivity and low Li+ ion diffusivity are the main drawbacks that prevent them from achieving high electrochemical performance. Herein, we report the fabrication of a novel ternary carbon nanotubes (CNTs@TiO2/CoO nanotubes composite by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2/CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2/CoO NTs, without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity, promoting a strongly favored lithium insertion into the TiO2/CoO NT framework, and hence resulting in high capacity and an extremely reproducible high rate capability.

  8. TiO2/Cu2O composite based on TiO2 NTPC photoanode for photoelectrochemical (PEC) water splitting under visible light

    KAUST Repository

    Shi, Le

    2015-05-01

    Water splitting through photoelectrochemical reaction is widely regarded as a major method to generate H2 , a promising source of renewable energy to deal with the energy crisis faced up to human being. Efficient exploitation of visible light in practice of water splitting with pure TiO2 material, one of the most popular semiconductor material used for photoelectrochemical water splitting, is still challenging. One dimensional TiO2 nanotubes is highly desired with its less recombination with the short distance for charge carrier diffusion and light-scattering properties. This work is based on TiO2 NTPC electrode by the optimized two-step anodization method from our group. A highly crystalized p-type Cu2O layer was deposited by optimized pulse potentiostatic electrochemical deposition onto TiO2 nanotubes to enhance the visible light absorption of a pure p-type TiO2 substrate and to build a p-n junction at the interface to improve the PEC performance. However, because of the real photocurrent of Cu2O is far away from its theoretical limit and also poor stability in the aqueous environment, a design of rGO medium layer was added between TiO2 nanotube and Cu2O layer to enhance the photogenerated electrons and holes separation, extend charge carrier diffusion length (in comparison with those of conventional pure TiO2 or Cu2O materials) which could significantly increase photocurrent to 0.65 mA/cm2 under visible light illumination (>420 nm) and also largely improve the stability of Cu2O layer, finally lead to an enhancement of water splitting performance.

  9. TiO2/Cu2O composite based on TiO2 NTPC photoanode for photoelectrochemical (PEC) water splitting under visible light

    KAUST Repository

    Shi, Le

    2015-01-01

    in practice of water splitting with pure TiO2 material, one of the most popular semiconductor material used for photoelectrochemical water splitting, is still challenging. One dimensional TiO2 nanotubes is highly desired with its less recombination

  10. Interface architecture determined electrocatalytic activity of Pt on vertically oriented TiO(2) nanotubes.

    Science.gov (United States)

    Rettew, Robert E; Allam, Nageh K; Alamgir, Faisal M

    2011-02-01

    The surface atomic structure and chemical state of Pt is consequential in a variety of surface-intensive devices. Herein we present the direct interrelationship between the growth scheme of Pt films, the resulting atomic and electronic structure of Pt species, and the consequent activity for methanol electro-oxidation in Pt/TiO(2) nanotube hybrid electrodes. X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) measurements were performed to relate the observed electrocatalytic activity to the oxidation state and the atomic structure of the deposited Pt species. The atomic structure as well as the oxidation state of the deposited Pt was found to depend on the pretreatment of the TiO(2) nanotube surfaces with electrodeposited Cu. Pt growth through Cu replacement increases Pt dispersion, and a separation of surface Pt atoms beyond a threshold distance from the TiO(2) substrate renders them metallic, rather than cationic. The increased dispersion and the metallic character of Pt results in strongly enhanced electrocatalytic activity toward methanol oxidation. This study points to a general phenomenon whereby the growth scheme and the substrate-to-surface-Pt distance dictates the chemical state of the surface Pt atoms, and thereby, the performance of Pt-based surface-intensive devices.

  11. Study on isopropanol degradation by UV/TiO2 nanotube

    Science.gov (United States)

    Cheng, Hsiu-Yueh; Chang, Kai-Chau; Lin, Kae-Long; Ma, Chih-Ming

    2018-04-01

    When a semiconductor molecule absorbs photons with energy equal to or greater than its band-gap, electrons in the valence band can be excited and jump up into the conduction band and thus charge carriers are generated. When these charge carriers successfully migrate to the solid surface without recombining, the electrons and holes may undergo electron-transfer processes with adsorbates of suitable redox potentials. The photogenerated holes react with the water to produce hydroxyl radicals, while the photogenerated electrons react with molecular oxygen to give superoxide radical anions. These radicals so produced are highly reactive and they work together to completely oxidize the organic species. In this study, TiO2 nanotube has been prepared and was to be used to control acetone. In this work, mesoporous nanotubes by hydrothermal treatment in aqueous sodium hydroxide solution have been synthesized. Direct hydrothermal synthesis method is easy and efficient to synthesize titanate nanotubes. Using sodium hydroxide, the considerable decrease in reaction time and reaction temperature was achieved.

  12. The comparison of photocatalytic activity of synthesized TiO2 and ZrO2 nanosize onto wool fibers

    International Nuclear Information System (INIS)

    Moafi, Hadi Fallah; Shojaie, Abdollah Fallah; Zanjanchi, Mohammad Ali

    2010-01-01

    TiO 2 and ZrO 2 nanocrystals were successfully synthesized and deposited onto wool fibers using the sol-gel technique at low temperature. The photocatalytic activities of TiO 2 -coated and ZrO 2 -coated wool fibers were measured by studying photodegradation of methylene blue and eosin yellowish dyes. The initial and the treated samples were characterized by several techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance spectroscopy (DRS) and X-ray diffraction. The TEM study shows dispersed particles with 10-30 nm in size for TiO 2 -coated and 20-40 nm in size for ZrO 2 -coated samples on the fiber surface. Comparison of the photocatalytic activity of the coated samples reveals superiority of TiO 2 modified sample with respect to that of ZrO 2 for degradation of both dyes. Our observations indicate that by applying this technique to the fabrics, self-cleaning materials could be designed for practical application.

  13. Corrosion protection of AISI 1018 steel using Co-doped TiO_2/polypyrrole nanocomposites in 3.5% NaCl solution

    International Nuclear Information System (INIS)

    Ladan, Magaji; Basirun, Wan Jeffrey; Kazi, Salim Newaz; Rahman, Fariza Abdul

    2017-01-01

    A polypyrrole nanocomposites (PPy NTCs) have been effectively synthesized in the presence of TiO_2 and Co-doped TiO_2 nanoparticles (NPs) by an in situ chemical oxidative polymerization. Field Emission Scanning Electron Microscopy and Transmission Electron Microscopy revealed a tube shape structure of the PPy. The TEM results confirmed that the nanocomposite size of Co-doped TiO_2/PPy NTCs was smaller than TiO_2/PPy NTCs thereby increasing the interaction between the PPy nanotube and the AISI steel surface. The corrosion performance of the coatings was evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements in 3.5% NaCl solution. The EIS results show that the log |Z| of AISI 1018 coated with Co-doped TiO_2/PPy NTCs and TiO_2/PPy NTCs reached about 8.2 and 6.0 respectively after 30 days of exposure in 3.5% NaCl solution. This is likely due to the increased surface area of the PPy synthesized in the presence of Co-doped TiO_2 NPs. The EIS results are confirmed by the potentiodynamic polarization and open circuit potential values of the Co-doped TiO_2/PPy which indicated little changes between 1 and 30 days of exposure which confirms the protection ability of this coating. . It is evident that the presence of Co-doped TiO_2 NPs can enhance the resistance against corrosion at the steel/electrolyte interface. - Highlights: • Polymerization of pyrrole monomer in the presence of Co-doped TiO_2 decreases the size of the polypyrrole nanotube (PPy NT). • The corrosion protection increases with the increase in PPy NT dispersion. • The corrosion resistance of steel coated with Co-doped TiO_2/PPy NTCs is considerably higher. • TiO_2/PPy with Co doping reduces the charge transfer across the electrolyte/AISI 1018 steel interface.

  14. Hydrothermal synthesis of Ti oxide nanostructures and TiO2:SnO2 heterostructures applied to the photodegradation of rhodamine B

    International Nuclear Information System (INIS)

    Mourão, Henrique A.J.L.; Junior, Waldir Avansi; Ribeiro, Caue

    2012-01-01

    The present study describes the synthesis, characterization and testing of the photocatalytic potential of TiO 2 nanoparticles (NPs), TiO 2 :SnO 2 heterostructures and potassium titanate nanotubes (TNTs) obtained by the alkaline hydrothermal method. The materials were characterized by X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, surface area estimated from the N 2 physisorption isotherm (BET), X-ray absorption near-edge structure (XANES) spectroscopy, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM) and Fourier transform near-infrared (FT-NIR) spectroscopy, among other methods. Photocatalytic potential was assessed by rhodamine B dye photodegradation under UVC radiation. The properties of the materials were shown to depend on the KOH concentration. Potassium TNTs with high surface area were obtained only in 5 mol L −1 KOH. The material composed of TiO 2 anatase phase, which was obtained in KOH solution ranging from 10 −4 to 1 mol L −1 , showed higher photocatalytic activity than the TNTs, despite the lower surface area and lower density of hydroxyl groups on the anatase. In the heterostructure syntheses, SnO 2 NPs were identified attached to TiO 2 when 10 −4 and 10 −2 mol L −1 KOH were used, whereas at [KOH] = 1 and 5 mol L −1 , Sn remained in solution during the synthetic process and only the respective TiO 2 phase was identified. The TiO 2 :SnO 2 heterostructures were more active than the material without SnO 2 prepared at the same KOH concentrations. Highlights: ► The formation of the materials depends on the [KOH] used during syntheses. ► The heterostructures were obtained with the lower [KOH]. ► Photoactivity of the heterostructures was higher than the respective TiO 2 nanostructures. ► Titanate nanotubes showed high concentration of OH groups but low photoactivity.

  15. Fabrication of transparent TiO2 nanotube-based photoanodes for CdS/CdTe quantum co-sensitized solar cells

    Science.gov (United States)

    Gualdrón-Reyes, A. F.; Cárdenas-Arenas, A.; Martínez, C. A.; Kouznetsov, V. V.; Meléndez, A. M.

    2017-01-01

    In order to fabricate a solar cell, ordered TiO2 nanotube (TNT) arrays were prepared by double anodization. TNT arrays with variable lengths were obtained by changing the duration of the anodizing process of up to 3h. TNT membranes were transferred to indium tin oxide substrates and attached with a B-TiO2 sol. TNT photoanode with the best photoelectrochemical performance was sensitized with CdS by SILAR method. On other hand, CdTe quantum dots prepared via colloidal synthesis were deposited on TNT photoanodes for 2h, 4h and 6h. In addition, TNT/CdS was loaded with CdTe quantum dots for 4 h. Morphology and chemical modification of TiO2 were characterized by FESEM and XPS, while their photoelectrochemical performance was measured by open-circuit photopotential and photovoltammetry under visible light. TiO2 nanotubes grown during 2.5h showed the highest photocurrent due to presence of Ti3+ donor states by N and F co-doping, increasing the number of photogenerated electrons transported to back collector. TNT/CdS/CdTe photoanode reach the highest conversion efficiency under AM 1.5G simulated solar illumination.

  16. The Mossbauer spectra of carbon nanotubes synthesize using ferrite catalyst

    International Nuclear Information System (INIS)

    Zhang Haiyan; Lin Jiapeng; Peng Zuxiong; Zeng Guoxun; Pang Jinshan; Chen Yiming

    2009-01-01

    The ferrite powder with honeycombed structure obtained by chemical combustion was used as catalyst to synthesize multi-walled carbon nanotubes by chemical vapor deposition. The magnetic components and characters of the the carbon nanotubes synthesized were investigated by X-ray diffraction (XRD), Mossbauer spectra and vibrating-sample magnetometer (VSM). The ferric components of the carbon nanotubes samples can be identified by Mossbauer spectra. The Mossbauer spectra of carbon nanotubes sample after purification contains two ferromagnetic sextet components corresponding to α-Fe species and Fe 3 C (cementite) species. While the Mossbauer spectra of the carbon nanotubes sample before purification contains three ferromagnetic sextet components corresponding to α-Fe species, Fe 3 C species and γ-Fe 2 O 3 . The saturation magnetization intensity Ms of carbon nanotubes sample after purification is decreased from 46.61 to 2.94 emu/g, but the coercive force increasd and reached 328Oe.

  17. Electrochemical performance of mixed crystallographic phase nanotubes and nanosheets of titania and titania-carbon/silver composites for lithium-ion batteries

    International Nuclear Information System (INIS)

    Das, Shyamal K.; Bhattacharyya, Aninda J.

    2011-01-01

    Highlights: → Carbon wired TiO 2 nanotubes as anode for lithium ion batteries. → Mixed phase nanotubes show higher energy and power density than titania nanosheets. → Lithium storage and phase stabilization influenced by morphology of carbon coating. - Abstract: The role of homogeneity in ex situ grown conductive coatings and dimensionality in the lithium storage properties of TiO 2 is discussed here. TiO 2 nanotube and nanosheet comprising of mixed crystallographic phases of anatase and TiO 2 (B) have been synthesized by an optimized hydrothermal method. Surface modifications of TiO 2 nanotube are realized via coating the nanotube with Ag nanoparticles and amorphous carbon. The first discharge cycle capacity (at current rate = 10 mA g -1 ) for TiO 2 nanotube and nanosheet were 355 mAh g -1 and 225 mAh g -1 , respectively. The conductive surface coating stabilized the titania crystallographic structure during lithium insertion-deinsertion processes via reduction in the accessibility of lithium ions to the trapping sites. The irreversible capacity is beneficially minimized from 110 mAh g -1 for TiO 2 nanotubes to 96 mAh g -1 and 57 mAh g -1 respectively for Ag and carbon modified TiO 2 nanotubes. The homogeneously coated amorphous carbon over TiO 2 renders better lithium battery performance than randomly distributed Ag nanoparticles coated TiO 2 due to efficient hopping of electrons.

  18. Hydrothermal solid-gas route to TiO2 nanoparticles/nanotube arrays for high-performance supercapacitors

    Science.gov (United States)

    Fan, Haowen; Zhang, He; Luo, Xiaolei; Liao, Maoying; Zhu, Xufei; Ma, Jing; Song, Ye

    2017-07-01

    Although TiO2 nanotube arrays (TNTAs) have shown great promise as supercapacitor materials, their specific capacitances are still not comparable with some typical materials. Here, TiO2 nanoparticles (NPs)/TNTAs hybrid structure has been derived from the anodized TNTAs by a facile hydrothermal solid-gas method (HSGM), which can avoid cracking or curling of the TNTAs from Ti substrate. The obtained NPs/TNTAs hybrid structure can exhibit a ∼4.90 times increase in surface area and a ∼5.49 times increase in areal specific capacitance compared to the TNTAs without HSGM treatment. Besides, the argon-atmosphere annealing can offer improved areal capacitance and cycling stability relative to the air-atmosphere annealing. The hydrothermal vapor pressure is a key factor for controlling microscopic morphologies of TNTAs, the morphology transformations of TNTAs during the HSGM treatment can be accelerated under enhanced vapor pressures. The highest areal capacitance of HSGM-treated TNTAs is up to 76.12 mF cm-2 at 0.5 mA cm-2, well above that of any TiO2 materials reported to date.

  19. Enhanced photoelectrocatalytic degradation of 2,4-dichlorophenoxyacetic acid by CuInS2 nanoparticles deposition onto TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Liu Ronghua; Liu Yutang; Liu Chengbin; Luo Shenglian; Teng Yarong; Yang Lixia; Yang Renbin; Cai Qingyun

    2011-01-01

    Research highlights: → The photocatalytic application of CuInS 2 with a direct band gap of about 1.5 eV and a high absorption coefficient remains unknown. → We describe an impulse electrodeposition approach to deposit CuInS 2 nanoparticles in uniform size of about 20 nm onto the top surface of the highly oriented TiO 2 NT arrays while minimizing the clogging of the tube entrances. → The novel photocatalyst exhibits a highly visible-light photocatalytic degradation activity for the target organic pollutant. → Moreover, the stability of the modified TiO 2 NT is good. → Therefore, CuInS 2 nanoparticles modified TiO 2 NT photocatalysts have potential utility in practical purification of organic wastewater. - Abstract: Surface modification of TiO 2 nanotube (NT) arrays with CuInS 2 nanoparticles (NPs) for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was reported. A pulse electrodeposition technique was used to prepare the CuInS 2 NPs, and the resulted CuInS 2 NPs, with a uniform size of about 20 nm, were found to deposit on the top surface of the highly oriented TiO 2 NT while without clogging the tube entrances. Compared with the unmodified TiO 2 NT, the CuInS 2 NPs modified TiO 2 NT (CuInS 2 -TiO 2 NT) showed significantly enhanced photocatalytic activity towards 2,4-D under visible light. After 160 min irradiation, the removal rate of 2,4-D is 100% by using CuInS 2 -TiO 2 NT, much higher than 65.2% by using the unmodified TiO 2 NT in photoelectrocatalytic process. The increased photodegradation efficiency mainly results from the improved photocurrent density as results of enhanced visible-light absorption and decreased hole-electron recombination due to the presence of narrow-band-gap p-type semiconductor CuInS 2 .

  20. Structural, optical, and magnetic properties of polycrystalline Co-doped TiO2 synthesized by solid-state method

    International Nuclear Information System (INIS)

    Bouaine, Abdelhamid; Schmerber, G.; Ihiawakrim, D.; Derory, A.

    2012-01-01

    Highlights: ► Influence of Co doping on the TiO 2 tetragonal structure. ► Decrease of the energy band gap after doping with Co atoms. ► Appearance of ferromagnetism in Co-doped TiO 2 diluted magnetic semiconductors. - Abstract: We have used a solid-state method to synthesize polycrystalline Co-doped TiO 2 diluted magnetic semiconductors (DMSs) with Co concentrations of 0, and 0.5 at.%. X-ray diffraction patterns reveal that Co doped TiO 2 crystallizes in the rutile tetragonal structure with no additional peaks. Transmission electron microscopy (TEM) did not indicate the presence of magnetic parasitic phases and confirmed that Co ions are uniformly distributed inside the samples. Optical absorbance measurements showed an energy band gap which decreases after doping with the Co atoms into the TiO 2 matrix. Magnetization measurements revealed a paramagnetic behavior for the as-prepared Co-doped TiO 2 and a ferromagnetic behavior for the same samples after annealed under a mixture of H 2 /N 2 atmosphere.

  1. Solar cells with PbS quantum dot sensitized TiO2-multiwalled carbon nanotube composites, sulfide-titania gel and tin sulfide coated C-fabric.

    Science.gov (United States)

    Kokal, Ramesh K; Deepa, Melepurath; Kalluri, Ankarao; Singh, Shrishti; Macwan, Isaac; Patra, Prabir K; Gilarde, Jeff

    2017-10-04

    Novel approaches to boost quantum dot solar cell (QDSC) efficiencies are in demand. Herein, three strategies are used: (i) a hydrothermally synthesized TiO 2 -multiwalled carbon nanotube (MWCNT) composite instead of conventional TiO 2 , (ii) a counter electrode (CE) that has not been applied to QDSCs until now, namely, tin sulfide (SnS) nanoparticles (NPs) coated over a conductive carbon (C)-fabric, and (iii) a quasi-solid-state gel electrolyte composed of S 2- , an inert polymer and TiO 2 nanoparticles as opposed to a polysulfide solution based hole transport layer. MWCNTs by virtue of their high electrical conductivity and suitably positioned Fermi level (below the conduction bands of TiO 2 and PbS) allow fast photogenerated electron injection into the external circuit, and this is confirmed by a higher efficiency of 6.3% achieved for a TiO 2 -MWCNT/PbS/ZnS based (champion) cell, compared to the corresponding TiO 2 /PbS/ZnS based cell (4.45%). Nanoscale current map analysis of TiO 2 and TiO 2 -MWCNTs reveals the presence of narrowly spaced highly conducting domains in the latter, which equips it with an average current carrying capability greater by a few orders of magnitude. Electron transport and recombination resistances are lower and higher respectively for the TiO 2 -MWCNT/PbS/ZnS cell relative to the TiO 2 /PbS/ZnS cell, thus leading to a high performance cell. The efficacy of SnS/C-fabric as a CE is confirmed from the higher efficiency achieved in cells with this CE compared to the C-fabric based cells. Lower charge transfer and diffusional resistances, slower photovoltage decay, high electrical conductance and lower redox potential impart high catalytic activity to the SnS/C-fabric assembly for sulfide reduction and thus endow the TiO 2 -MWCNT/PbS/ZnS cell with a high open circuit voltage (0.9 V) and a large short circuit current density (∼20 mA cm -2 ). This study attempts to unravel how simple strategies can amplify QDSC performances.

  2. Effects of Hydroxylation on PbS Quantum Dot Sensitized TiO2 Nanotube Array Photoelectrodes

    International Nuclear Information System (INIS)

    Liu, Zhongqing; Wang, Bin; Wu, Jianchun; Dong, Qiang; Zhang, Xiaoming; Xu, He

    2016-01-01

    ABSTRACT: The contact state at the heterojunction interfaces greatly influences the interfacial kinetics of the photoinduced charge carriers. In this study, we used a facile NaOH pretreatment to replenish the hydroxyl groups lost during the heat treatment for crystallization of TiO 2 nanotube arrays (TNAs) prepared via anodic oxidization. By reacting the carboxylic acid groups of thioglycolic acid (TGA) with the TiO 2 surface hydroxyl groups, TGA molecules were covalently linked to the TiO 2 surface and then PbS quantum dots (QDs) were anchored onto the TNAs via the successive ionic layer adsorption and reaction (SILAR) method. The sample microstructure and photoelectrochemical properties were analyzed with X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM),current–voltage characteristics (J–V), electrochemical impedance spectroscopy (EIS), transient photovoltage plots and Mott-Schottky curves. The contact state and electrostatic potential distribution between TiO 2 {1 0 1} and PbS {1 1 1} planes were estimated by using first principle simulation. It was found that the NaOH pretreatment could enhance the crystallization degree of PbS QDs, decrease the crystal face mismatch, dangling bond density and the interfacial resistance between PbS QDs and TiO 2 , and accelerate the interfacial separation and transfer of photoinduced charge carriers. The first principle calculations demonstrated that the PbS QDs and TiO 2 interfacial contact was strengthened, and the built-in electric field was induced from TiO 2 {1 0 1} towards PbS {1 1 1}. These combined effects apparently improved the device photoelectrochemical performance. Compared to the sample without pretreatment, the specimen pretreated with NaOH demonstrated 19.96% and 29.93% increases in peak photoconversion efficiency after five and ten cycles of SILAR deposition, respectively.

  3. Synthesis of highly-ordered TiO2 nanotube arrays with tunable sizes

    Science.gov (United States)

    Wang, Xian; Zha, Chenyang; Ji, Cheng; Zhang, Xiaoyan; Shen, Liming; Wang, Yifeng; Gupta, Arunava; Yoriya, Sorachon; Bao, Ningzhong

    2014-09-01

    Vertically-oriented one-dimensional TiO2 nanotube (TNT) arrays have been fabricated by anodic oxidation using different electrolyte solvents, including ethylene glycol (EG), diethylene glycol (DEG), and dimethyl sulfoxide (DMSO), in the presence of hydrofluoric acid (HF) or ammonium fluoride (NH4F). The influence of synthetic conditions, including the nature of the electrolyte and anodization voltage, on nanotube microstructure has been systematically investigated. Highly-ordered TNTs with tube length of ˜0.5-26.7 μm, inner diameter of ˜13-201 nm, and outer diameter of ˜28-250 nm have been obtained. The conversion of as-prepared TNT arrays from amorphous phase to crystalline structure has been achieved by a post-synthetic annealing at 500 °C for 3 h in oxygen ambient. The TNT arrays with tunable sizes and structures are attractive for use as electrode materials in fabrication of thin film solar cells and highly active photocatalysts.

  4. Synthesis of highly-ordered TiO2 nanotube arrays with tunable sizes

    International Nuclear Information System (INIS)

    Wang, Xian; Zha, Chenyang; Ji, Cheng; Zhang, Xiaoyan; Shen, Liming; Wang, Yifeng; Bao, Ningzhong; Gupta, Arunava; Yoriya, Sorachon

    2014-01-01

    Vertically-oriented one-dimensional TiO 2 nanotube (TNT) arrays have been fabricated by anodic oxidation using different electrolyte solvents, including ethylene glycol (EG), diethylene glycol (DEG), and dimethyl sulfoxide (DMSO), in the presence of hydrofluoric acid (HF) or ammonium fluoride (NH 4 F). The influence of synthetic conditions, including the nature of the electrolyte and anodization voltage, on nanotube microstructure has been systematically investigated. Highly-ordered TNTs with tube length of ∼0.5–26.7 μm, inner diameter of ∼13–201 nm, and outer diameter of ∼28–250 nm have been obtained. The conversion of as-prepared TNT arrays from amorphous phase to crystalline structure has been achieved by a post-synthetic annealing at 500 °C for 3 h in oxygen ambient. The TNT arrays with tunable sizes and structures are attractive for use as electrode materials in fabrication of thin film solar cells and highly active photocatalysts. (paper)

  5. A Designed TiO2 /Carbon Nanocomposite as a High-Efficiency Lithium-Ion Battery Anode and Photocatalyst.

    Science.gov (United States)

    Peng, Liang; Zhang, Huijuan; Bai, Yuanjuan; Feng, Yangyang; Wang, Yu

    2015-10-12

    Herein, a peapod-like TiO2 /carbon nanocomposite has successfully been synthesized by a rational method for the first time. The novel nanostructure exhibits a distinct feature of TiO2 nanoparticles encapsulated inside and the carbon fiber coating outside. In the synthetic process, H2 Ti3 O7 nanotubes serve as precursors and templates, and glucose molecules act as the green carbon source. With the alliciency of hydrogen bonding between H2 Ti3 O7 and glucose, a thin polymer layer is hydrothermally assembled and subsequently converted into carbon fibers through calcinations under an inert atmosphere. Meanwhile, the precursors of H2 Ti3 O7 nanotubes are transformed into the TiO2 nanoparticles encapsulated in carbon fibers. The achieved unique nanocomposites can be used as excellent anode materials in lithium-ion batteries (LIBs) and photocatalytic reagents in the degradation of rhodamine B. Due to the synergistic effect derived from TiO2 nanoparticles and carbon fibers, the obtained peapod-like TiO2 /carbon cannot only deliver a high specific capacity of 160 mAh g(-1) over 500 cycles in LIBs, but also perform a much faster photodegradation rate than bare TiO2 and P25. Furthermore, owing to the low cost, environmental friendliness as well as abundant source, this novel TiO2 /carbon nanocomposite will have a great potential to be extended to other application fields, such as specific catalysis, gas sensing, and photovoltaics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Water Adsorption on Clean and Defective Anatase TiO2 (001) Nanotube Surfaces: A Surface Science Approach.

    Science.gov (United States)

    Kenmoe, Stephane; Lisovski, Oleg; Piskunov, Sergei; Bocharov, Dmitry; Zhukovskii, Yuri F; Spohr, Eckhard

    2018-04-11

    We use ab initio molecular dynamics simulations to study the adsorption of thin water films with 1 and 2 ML coverage on anatase TiO 2 (001) nanotubes. The nanotubes are modeled as 2D slabs, which consist of partially constrained and partially relaxed structural motifs from nanotubes. The effect of anion doping on the adsorption is investigated by substituting O atoms with N and S impurities on the nanotube slab surface. Due to strain-induced curvature effects, water adsorbs molecularly on defect-free surfaces via weak bonds on Ti sites and H bonds to surface oxygens. While the introduction of an S atom weakens the interaction of the surface with water, which adsorbs molecularly, the presence of an N impurity renders the surface more reactive to water, with a proton transfer from the water film and the formation of an NH group at the N site. At 2 ML coverage, a further surface-assisted proton transfer takes place in the water film, resulting in the formation of an OH - group and an NH 2 + cationic site on the surface.

  7. Antibacterial activity and inflammation inhibition of ZnO nanoparticles embedded TiO2 nanotubes

    Science.gov (United States)

    Yao, Shenglian; Feng, Xujia; Lu, Jiaju; Zheng, Yudong; Wang, Xiumei; Volinsky, Alex A.; Wang, Lu-Ning

    2018-06-01

    Titanium (Ti) with nanoscale structure on the surface exhibits excellent biocompatibility and bone integration. Once implanted, the surgical implantation may lead to bacterial infection and inflammatory reaction, which cause the implant failure. In this work, irregular and nanorod-shaped ZnO nanoparticles were doped into TiO2 nanotubes (TNTs) with inner diameter of about 50 nm by electro-deposition. The antibacterial properties of ZnO incorporated into TiO2 nanotubes (TNTs/ZnO) were evaluated using Staphylococcus aureus (S. aureus). Zn ions released from the nanoparticles and the morphology could work together, improving antibacterial effectiveness up to 99.3% compared with the TNTs. Macrophages were cultured on the samples to determine their respective anti-inflammatory properties. The proliferation and viability of macrophages were evaluated by the CCK-8 method and Live&Dead stain, and the morphology of the cells was observed by scanning electron microscopy. Results indicated that TNTs/ZnO has a significant inhibitory effect on the proliferation and adhesion of macrophages, which could be used to prevent chronic inflammation and control the inflammatory reaction. Besides, the release of Zn ions from the ZnO nanoparticles is a long-term process, which could be beneficial for bone integration. Results demonstrate that ZnO deposited into TNTs improved the antibacterial effectiveness and weakened the inflammatory reaction of titanium-based implants, which is a promising approach to enhance their bioactivity.

  8. Double-side illuminated titania nanotubes for high volume hydrogen generation by water splitting

    Science.gov (United States)

    Mohapatra, Susanta K.; Mahajan, Vishal K.; Misra, Mano

    2007-11-01

    A sonoelectrochemical anodization method is proposed to synthesize TiO2 nanotubular arrays on both sides of a titanium foil (TiO2/Ti/TiO2). Highly ordered TiO2 nanotubular arrays of 16 cm2 area with uniform surface distribution can be obtained using this anodization procedure. These double-sided TiO2/Ti/TiO2 materials are used as both photoanode (carbon-doped titania nanotubes) and cathode (Pt nanoparticles dispersed on TiO2 nanotubes; PtTiO2/Ti/PtTiO2) in a specially designed photoelectrochemical cell to generate hydrogen by water splitting at a rate of 38 ml h-1. The nanomaterials are characterized by FESEM, HRTEM, STEM, EDS, FFT, SAED and XPS techniques. The present approach can be used for large-scale hydrogen generation using renewable energy sources.

  9. Quantitative Measurements of Photocatalytic CO-Oxidation as a Function of Light Intensity and Wavelength over TiO2 Nanotube Thin Films in mu-Reactors

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; In, Su-il; Olsen, Jacob L.

    2010-01-01

    Gas-phase photooxidation of CO over TiO2 catalysts (P25 and TiO2 nanotubes) in mu-reactors with quantitative product detection was used to study turnover as a function of illumination intensity over 4 orders of magnitude. Turnover was found to be of order 0.84 in illumination intensity. A CO phot...

  10. An electrochemical aptasensor based on TiO2/MWCNT and a novel synthesized Schiff base nanocomposite for the ultrasensitive detection of thrombin.

    Science.gov (United States)

    Heydari-Bafrooei, Esmaeil; Amini, Maryam; Ardakani, Mehdi Hatefi

    2016-11-15

    A sensitive aptasensor based on a robust nanocomposite of titanium dioxide nanoparticles, multiwalled carbon nanotubes (MWCNT), chitosan and a novel synthesized Schiff base (SB) (TiO2/MWCNT/CHIT/SB) on the surface of a glassy carbon electrode (GCE) was developed for thrombin detection. The resultant nanocomposite can provide a large surface area, excellent electrocatalytic activity, and high stability, which would improve immobilization sites for biological molecules, allow remarkable amplification of the electrochemical signal and contribute to improved sensitivity. Thrombin aptamers were simply immobilized onto the TiO2-MWCNT/CHIT-SB nanocomposite matrix through simple π - π stacking and electrostatic interactions between CHIT/SB and aptamer strands. The electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to analyze the surface characterization of unmodified GCE and TiO2-MWCNT/CHIT-SB modified GCE, and also the interaction between aptamer and thrombin. In the presence of thrombin, the aptamer on the adsorbent layer captures the target on the electrode interface, which makes a barrier for electrons and inhibits electron transfer, thereby resulting in decreased DPV and increased impedance signals of the TiO2-MWCNT/CHIT-SB modified GCE. Furthermore, the proposed aptasensor has a very low LOD of 1.0fmolL(-1) thrombin within the detection range of 0.00005-10nmolL(-1). The aptasensor also presents high specificity and reproducibility for thrombin, which is unaffected by the coexistence of other proteins. Clinical application was performed with analysis of the thrombin levels in blood and CSF samples obtained from patients with MS, Parkinson, Epilepsy and Polyneuropathy using both the aptasensor and commercial ELISA kit. The results revealed the proposed system to be a promising candidate for clinical analysis of thrombin. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Synthesis of calcium-phosphorous doped TiO{sub 2} nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Sofia A., E-mail: sofiafonso@msn.com [CMEMS – Center of MicroElectroMechanical Systems, Department of Mechanical Engineering, University of Minho, 4800-058 Guimarães (Portugal); IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Patel, Sweetu B. [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Department of Mechanical Engineering, Michigan Technological University, 49931 Houghton, MI (United States); Sukotjo, Cortino [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Departmenmt of Restorative Dentistry, University of Illinois at Chicago, 60612 Chicago, IL (United States); Mathew, Mathew T. [IBTN/US – American Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UIC College of Dentistry, 60612 Chicago, IL (United States); Department of Orthopedic Surgery, Rush University Medical Center, 60612 Chicago, IL (United States); Department of Biomedical Science, UIC School of Medicine at Rockford, 61107 Rockford, IL (United States); Filho, Paulo N. [IBTN/Br – Brazilian Branch of the Institute of Biomaterials, Tribocorrosion and Nanomedicine, UNESP – Universidade Estadual Paulista, Faculdade de Ciências, 17033-360 Bauru, São Paulo (Brazil); Faculdade de Ciências, Departamento de Física, UNESP - Universidade Estadual Paulista, 17033-360 Bauru, São Paulo (Brazil); Celis, Jean-Pierre [Department of Materials Engineering, KU Leuven, 3001 Leuven (Belgium); and others

    2017-03-31

    Highlights: • A new surface modification methodology for bio-functionalization of TiO2 NTs is addressed • Bone-like structured TiO2 nanotubular surfaces containing Ca and P were synthesized. • Ca/P-doped TiO2 NTs enhanced adhesion and proliferation of osteoblastic-like cells. • The bio-functionalization granted improved bio-electrochemical stability to TiO2 NTs. - Abstract: The modification of surface features such as nano-morphology/topography and chemistry have been employed in the attempt to design titanium oxide surfaces able to overcome the current dental implants failures. The main goal of this study is the synthesis of bone-like structured titanium dioxide (TiO{sub 2}) nanotubes enriched with Calcium (Ca) and Phosphorous (P) able to enhance osteoblastic cell functions and, simultaneously, display an improved corrosion behavior. To achieve the main goal, TiO{sub 2} nanotubes were synthetized and doped with Ca and P by means of a novel methodology which relied, firstly, on the synthesis of TiO{sub 2} nanotubes by anodization of titanium in an organic electrolyte followed by reverse polarization and/or anodization, in an aqueous electrolyte. Results show that hydrophilic bone-like structured TiO{sub 2} nanotubes were successfully synthesized presenting a highly ordered nano-morphology characterized by non-uniform diameters. The chemical analysis of such nanotubes confirmed the presence of CaCO{sub 3}, Ca{sub 3}(PO{sub 4}){sub 2}, CaHPO{sub 4} and CaO compounds. The nanotube surfaces submitted to reverse polarization, presented an improved cell adhesion and proliferation compared to smooth titanium. Furthermore, these surfaces displayed a significantly lower passive current in artificial saliva, and so, potential to minimize their bio-degradation through corrosion processes. This study addresses a very simple and promising multidisciplinary approach bringing new insights for the development of novel methodologies to improve the outcome of osseointegrated

  12. Photocatalytical Properties and Theoretical Analysis of N, Cd-Codoped TiO2 Synthesized by Thermal Decomposition Method

    Directory of Open Access Journals (Sweden)

    Hongtao Gao

    2012-01-01

    Full Text Available N, Cd-codoped TiO2 have been synthesized by thermal decomposition method. The products were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, UV-visible diffuse reflectance spectra (DRS, X-ray photoelectron spectroscopy (XPS, and Brunauer-Emmett-Teller (BET specific surface area analysis, respectively. The products represented good performance in photocatalytic degradation of methyl orange. The effect of the incorporation of N and Cd on electronic structure and optical properties of TiO2 was studied by first-principle calculations on the basis of density functional theory (DFT. The impurity states, introduced by N 2p or Cd 5d, lied between the valence band and the conduction band. Due to dopants, the band gap of N, Cd-codoped TiO2 became narrow. The electronic transition from the valence band to conduction band became easy, which could account for the observed photocatalytic performance of N, Cd-codoped TiO2. The theoretical analysis might provide a probable reference for the experimentally element-doped TiO2 synthesis.

  13. Influence of controlled-charge anodization processes on the morphology of TiO2 nanotubes and their efficiency in dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Vaenas, Naoum; Stergiopoulos, Thomas; Kontos, Athanassios G.; Likodimos, Vlassis; Falaras, Polycarpos

    2013-01-01

    The effect of the electrochemical anodization growth process on the development of self-organized TiO 2 nanotube (NT) films and their efficiency as photoelectrodes in dye sensitized solar cells (DSCs) has been comparatively investigated, by keeping constant the total anodization charge. Slow and rapid potentiostatic anodization processes were accordingly compared to the galvanostatic one, while a two step potentiostatic–galvanostatic technique was applied for the first time for the growth of TiO 2 NT arrays, as a step forward in relation to the existing potentiostatic–potentiostatic (P–P) technique. Scanning electron microscopy and Raman spectroscopy verified the wide diversity in the morphological and structural characteristics of the TiO 2 NTs obtained by the different anodization modes. The novel approach of galvanostatic tube growth on a potentiostatically patterned Ti foil provided the most uniform TiO 2 nanotubular films with clean top surface exempt of nanograss or cracks over extended areas. Evaluation of the TiO 2 NTs performance as photoelectrodes in DSC devices showed distinct differences of their electrical parameters that reflected finely the underlying structure/morphology variations of the different anodic oxidation conditions. Galvanostatic TiO 2 NT films presented the most favorable (open-ordered) structure for DSC photoelectrodes with superior electrical performance, essentially impaired by a relatively low fill factor that requires improvement by appropriate post-treatment. Furthermore, despite the marked differences in morphology, the TiO 2 NT photoelectrodes exhibited comparable overall performance (of the order of 4%), with only exception the P–P samples which presented slightly lower (about 25%) photovoltaic efficiency. These results indicate that the anodization charge is a critical factor that effectively controls the nanotubes behavior when they are used as photoelectrodes in DSCs

  14. Self-assembly graphitic carbon nitride quantum dots anchored on TiO_2 nanotube arrays: An efficient heterojunction for pollutants degradation under solar light

    International Nuclear Information System (INIS)

    Su, Jingyang; Zhu, Lin; Geng, Ping; Chen, Guohua

    2016-01-01

    Highlights: • Carbon nitride quantum dots (CNQDs) were decorated onto TiO_2 nanotube arrays (NTAs). • The CNQDs/TiO_2 NTAs exhibits much improved photoelectrochemical activity. • The heterojunction displays efficient removal efficiencies for RhB and phenol. • Pollutants degradation mechanism over CNQDs/TiO_2 NTAs was clarified. - Abstract: In this study, an efficient heterojunction was constructed by anchoring graphitic carbon nitride quantum dots onto TiO_2 nanotube arrays through hydrothermal reaction strategy. The prepared graphitic carbon nitride quantum dots, which were prepared by solid-thermal reaction and sequential dialysis process, act as a sensitizer to enhance light absorption. Furthermore, it was demonstrated that the charge transfer and separation in the formed heterojunction were significantly improved compared with pristine TiO_2. The prepared heterojunction was used as a photoanode, exhibiting much improved photoelectrochemical capability and excellent photo-stability under solar light illumination. The photoelectrocatalytic activities of prepared heterojunction were demonstrated by degradation of RhB and phenol in aqueous solution. The kinetic constants of RhB and phenol degradation using prepared photoelectrode are 2.4 times and 4.9 times higher than those of pristine TiO_2, respectively. Moreover, hydroxyl radicals are demonstrated to be dominant active radicals during the pollutants degradation.

  15. Drug release characteristics of quercetin-loaded TiO2 nanotubes coated with chitosan.

    Science.gov (United States)

    Mohan, L; Anandan, C; Rajendran, N

    2016-12-01

    TiO 2 nanotubes formed by anodic oxidation of Ti-6Al-7Nb were loaded with quercetin (TNTQ) and chitosan was coated on the top of the quercetin (TNTQC) to various thicknesses. Field emission scanning electron microscopy (FESEM), 3D and 2D analyses were used to characterize the samples. The drug release studies of TNTQ and TNTQC were studied in Hanks' solution for 192h. The studies showed that the native oxide on the sample is substituted by self assembled nanotube arrays by anodisation. FESEM images of chitosan-loaded TNT samples showed that filling of chitosan takes place in inter-tubular space and pores. Drug release studies revealed that the release of drug into the local environment during that duration was constant. The local concentration of the drug can be controlled and tuned by controlling the thickness of the chitosan (0.6, 1 and 3μm) to fit into an optimal therapeutic window in order to treat postoperative infections, inflammation and for quick healing with better osseointegration of the titanium implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Low-cost transparent solar cells: Potential of TiO2 nanotubes in the improvement of these next generation solar cells

    CSIR Research Space (South Africa)

    Cummings, F

    2010-09-01

    Full Text Available This paper provides a background to photovoltaics, and goes on to discuss dye-sensitised solar cell research and development at the CSIR. An overview of TiO2 nanotube synthesis is given, followed by the discussing the manufacturing process of dye...

  17. Mechanistic formation of TiO 2 nanotubes via anodisation – effect of operating voltage and time

    CSIR Research Space (South Africa)

    Cummings, FR

    2008-07-01

    Full Text Available Titanium dioxide (TiO) nanotubes hold great potential for application in dye-sensitised solar cells for they provide a one-dimensional transport route for generated charge carriers. An investigation is launched into the formation of these structures...

  18. The Electrochemical Properties of Low-crystallinity TiO2(B)-Carbon Composite as an Anode Material in Lithium Ion Battery

    International Nuclear Information System (INIS)

    Furuya, Yasuyuki; Zhao, Wenwen; Unno, Masashi; Noguchi, Hideyuki

    2014-01-01

    Highlights: • TiO 2 (B)-carbon composites was synthesized from Lepidocrocite-type compounds. • Tight adhesion between TiO 2 (B) and CNT in the composite is confirmed. • TiO 2 (B)-carbon composite delivers higher capacity than that of bare TiO 2 (B). • TiO 2 (B)-carbon composite exhibits improved rate performance. - Abstract: We have prepared two types TiO 2 (B)-carbon composites from Lepidocrocite-type compounds (K 0.86 Li 0.26 T i1.72 O 4 ) heated at 700 and 900 °C under presence of carbon nanotube (CNT) and glucose as carbon sources. The XRD data shows that it contains a single phase of TiO 2 (B) and the existence of carbon was confirmed by Raman spectra. TEM image confirms that TiO 2 (B) primary particles and carbon nanotube are scattered randomly and contact tightly in the composite. Carbon content in the composite was found to be 5 - 8% and CNT is the major carbonaceous material. The charge and discharge curves of TiO 2 (B)-carbon composite prepared from precursor heated at 700 °C resemble with that of amorphous TiO 2 . The calculated discharge capacity of the composite is 323 mAh g −1 at a cut off voltage of 0.9 V, which is higher than that of bare TiO 2 (B). It is suggested that the electrochemical performance of this material is strongly influenced by both the operating temperature and cut off voltage. The discharge capacity can reach 198 mAh g −1 at 4.5 C rate at a cut off voltage 1.3 V and the coulombic efficiency is over 99.8% after 10 th cycles

  19. Síntese, caracterização e atividade fotocatalítica de catalisadores nanoestruturados de TiO2 dopados com metais Synthesis, characterization and photocatalytic activity of nanostructured TiO2 catalysts doped with metals

    Directory of Open Access Journals (Sweden)

    William Leonardo da Silva

    2013-01-01

    Full Text Available Titanium dioxide nanostructured catalysts (nanotubes doped with different metals (silver, gold, copper, palladium and zinc were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.

  20. Anodically-grown TiO_2 nanotubes: Effect of the crystallization on the catalytic activity toward the oxygen reduction reaction

    International Nuclear Information System (INIS)

    Sacco, Adriano; Garino, Nadia; Lamberti, Andrea; Pirri, Candido Fabrizio; Quaglio, Marzia

    2017-01-01

    Highlights: • Anodically-grown TiO_2 nanotubes as catalysts for the oxygen reduction reaction. • Amorphous NTs compared to thermal- and vapor-treated crystalline nanostructures. • The selection of the crystallization conditions leads to performance similar to Pt. - Abstract: In this work we investigated the behavior of TiO_2 nanotube (NT) arrays, grown by anodic oxidation of Ti foil, as catalysts for the oxygen reduction reaction (ORR) in alkaline water solution. In particular, as-grown amorphous NTs were compared to crystalline anatase nanostructures, obtained following two different procedures, namely thermal and vapor-induced crystallizations. The catalytic activity of these materials toward the ORR was evaluated by cyclic voltammetry measurements. ORR polarization curves, combined with the rotating disk technique, indicated a predominant four-electrons reduction path, especially for crystalline samples. The effect of the structural characteristics of the investigated materials on the catalytic activity was analyzed in details by electrochemical impedance spectroscopy. The catalytic performance of the crystalline NTs is only slightly lower with respect to the reference material for fuel cell applications, namely platinum, but is in line with other cost-effective catalysts recently proposed in the literature. However, if compared to the larger part of these low-cost catalysts, anodically-grown TiO_2 NTs are characterized by a synthesis route which is highly reproducible and easily up-scalable.

  1. Electrodeposition of Ru in TiO_2 nanotubes: increase of photocatalytical activity and identification of deposition route

    International Nuclear Information System (INIS)

    Castelhano, Douglas Iafrate; Rodrigues, Christiane de Arruda; Bertazzoli, Rodnei

    2014-01-01

    TiO2 nanotubes are semiconductors widely used in heterogeneous photocatalysis processes. It has a band gap energy (E_b_g) of 3,2 eV and an photoactive crystalline structure (anatase). To increase the photocatalytic activity of this oxide, by lowering the Ebg and reduction of charge recombination rate, a modification of oxide crystalline layer was made with ruthenium, using electrochemical deposition at constant potential. TiO_2 layer was made by anodization process at 20V, followed by thermic treatment in 450 deg C and electrodeposition of Ru at constant potential. Voltammetric studies showed that Ru electrodeposition occurs in two stages, and in the second stage is the deposition of metallic Ru. Photocurrent studies showed that the amount of Ru in the oxide layer varies according with the applied potential and a significant increase of semiconductor activity is obtained with the introduction of small quantities of Ru, increasing at least 70% in current values. Morphological and crystallinity analysis were made using SEM and XRD. To identify and quantify Ru in TiO_2 was used WDS. (author)

  2. Exchange of TiO2 nanoparticles between streams and streambeds.

    Science.gov (United States)

    Boncagni, Natalia Ticiana; Otaegui, Justo Manuel; Warner, Evelyn; Curran, Trisha; Ren, Jianhong; de Cortalezzi, Maria Marta Fidalgo

    2009-10-15

    The expanding use of manufactured nanoparticles has increased the potential for their release into the natural environment. Particularly, TiO2 nanoparticles pose significant exposure risk to humans and other living species due to their extensive use in a wide range of fields. To better understand the environmental and health risks associated with the release of TiO2 nanoparticles, knowledge on their fate and transport is needed. This study evaluates the transport of two different TiO2 nanoparticles: one commercially available (P25 TiO2 and the other synthesized at a lab scale (synthesized TiO2). Laboratory flume, column, and batch experiments were conducted to investigate the processes dominating the transport of TiO2 nanoparticles between streams and streambeds and to characterize the properties of these nanoparticles under different physicochemical conditions. Results show that the synthesized TiO2 was more stable compared to the P25 TiO2, which underwent significant aggregation under the same experimental conditions. As a result, P25 TiO2 deposited at a faster rate than the synthesized TiO2 in the streambed. Both types of TiO2 nanoparticles deposited in the streambed were easily released when the stream velocity was increased. The aggregation and deposition of P25 TiO2 were highly dependent on pH. A process-based colloid exchange model was applied to interpret the observed transport behavior of the TiO2 nanoparticles.

  3. Recent Progress in Dye-Sensitized Solar Cells for Improving Efficiency: TiO2 Nanotube Arrays in Active Layer

    Directory of Open Access Journals (Sweden)

    Won-Yeop Rho

    2015-01-01

    Full Text Available Dye-sensitized solar cells (DSSCs have been widely studied due to several advantages, such as low cost-to-performance ratio, low cost of fabrication, functionality at wide angles and low intensities of incident light, mechanical robustness, and low weight. This paper summarizes the recent progress in DSSC technology for improving efficiency, focusing on the active layer in the photoanode, with a part of the DSSC consisting of dyes and a TiO2 film layer. In particular, this review highlights a huge pool of studies that report improvements in the efficiency of DSSCs using TiO2 nanotubes, which exhibit better electron transport. Finally, this paper suggests opportunities for future research.

  4. Photoelectrochemical Performances and Potential Applications of TiO2 Nanotube Arrays Modified with Ag and Pt Nanoparticles

    International Nuclear Information System (INIS)

    Xu, Guangqing; Liu, Haipeng; Wang, Jinwen; Lv, Jun; Zheng, Zhixiang; Wu, Yucheng

    2014-01-01

    TiO 2 nanotube arrays (NTAs) modified with Ag (Ag/TiO 2 ) and Pt (Pt/TiO 2 ) nanoparticles were fabricated by anodic oxidation combined with photoreduction and hydrothermal methods, respectively. Structures, element components and morphologies of TiO 2 , Ag/TiO 2 and Pt/TiO 2 NTAs were measured by X-ray diffraction diffractometer, X-ray photoelectron spectroscopy, scanning electron microscope and transmission electron microscope. The photoeletrochemical performances of TiO 2 , Pt/TiO 2 and Ag/TiO 2 NTAs were characterized by cyclic voltammetry and amperometry in phosphate buffer solution in absence and presence of glucose. Modifications of Ag and Pt nanoparticles play different roles in the photoelectrochemical process and have different potential applications. Ag nanoparticles decrease the photocurrent in buffer solution but increase the photocurrent response to organic compounds, which is fit for electrochemical detection of organic compounds due to the low background photocurrent and high photocurrent response. Ag/TiO 2 NTAs achieve the best detection performance with sensitivity of 0.152 μA/μM and detection limit of 0.53 μM. On the contrary, Pt nanoparticles can enhance the photocurrent of TiO 2 NTAs in buffer solution but decrease the photocurrent response to organic compounds, which are benefit for photocatalytic water splitting but not for photoelectrochemical detection

  5. Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys

    International Nuclear Information System (INIS)

    Rahman, Zia Ur; Haider, Waseem; Pompa, Luis; Deen, K.M.

    2016-01-01

    TiO 2 nanotubes were grafted on the surface of cpTi, Ti6Al4V and Ti6Al4V-ELI with the aim to provide a new podium for human pre-osteoblast cell (MC3T3) adhesion and proliferation. The surface morphology and chemistry of these alloys were examined with scanning electron microscopy and energy dispersive x-ray spectroscopy. TiO 2 nanotubes were further characterized by cyclic potentiodynamic polarization tests and electrochemical impedance spectroscopy. The vertically aligned nanotubes were subjected to pre-osteoblast cell proliferation in order to better understand cell–material interaction. The study demonstrated that these cells interact differently with nanotubes of different titanium alloys. The significant acceleration in the growth rate of pre-osteoblast cell adhesion and proliferation is also witnessed. Additionally, the cytotoxicity of the leached metal ions was evaluated by using a tetrazolium-based bio-assay, MTS. Each group of data was operated for p < 0.05, concluded one way ANOVA to investigate the significance difference. - Highlights: • TiO 2 nanotubes were grafted on cpTi, Ti6Al4V and Ti6Al4V-ELI via anodization. • MC3T3 cells interact differently with nanotubes of different titanium alloys. • TiO 2 nanotubes have a positive impact on the osteoblast cell viability.

  6. Effect of ambient pressure on the crystalline phase of nano TiO2 particles synthesized by a dc thermal plasma reactor

    International Nuclear Information System (INIS)

    Banerjee, I.; Karmakar, Soumen; Kulkarni, Naveen V.; Nawale, Ashok B.; Mathe, V. L.; Das, A. K.; Bhoraskar, S. V.

    2010-01-01

    The synthesis of nanoparticles of titanium dioxide (TiO 2 ) with varying percentages of anatase and rutile phases is reported. This was achieved by controlling the operating pressure in a transferred-arc, direct current thermal plasma reactor in which titanium vapors are evaporated, and then exposed to ambient oxygen. The average particle size remained around 15 nm in each case. The crystalline structure of the as-synthesized nanoparticles of TiO 2 was studied with X-ray diffraction analysis; whereas the particle morphology was investigated with the help of transmission electron microscopy. The precursor species responsible for the growth of these nanoparticles was studied with the help of optical emission spectroscopy. As inferred from the X-ray diffraction analysis, the relative abundance of anatase TiO 2 was found to be dominant when synthesized at 760 Torr, and the same showed a decreasing trend with decreasing chamber pressure. The study also reveals that anatase TiO 2 is a more effective photocatalytic agent in degrading methylene blue by comparison to its rutile phase.

  7. TiO2 Nanotube Arrays Composite Film as Photoanode for High-Efficiency Dye-Sensitized Solar Cell

    Directory of Open Access Journals (Sweden)

    Jinghua Hu

    2014-01-01

    Full Text Available A double-layered photoanode made of hierarchical TiO2 nanotube arrays (TNT-arrays as the overlayer and commercial-grade TiO2 nanoparticles (P25 as the underlayer is designed for dye-sensitized solar cells (DSSCs. Crystallized free-standing TNT-arrays films are prepared by two-step anodization process. For photovoltaic applications, DSSCs based on double-layered photoanodes produce a remarkably enhanced power conversion efficiency (PCE of up to 6.32% compared with the DSSCs solely composed of TNT-arrays (5.18% or nanoparticles (3.65% with a similar thickness (24 μm at a constant irradiation of 100 mW cm−2. This is mainly attributed to the fast charge transport paths and superior light-scattering ability of TNT-arrays overlayer and good electronic contact with F-doped tin oxide (FTO glass provided from P25 nanoparticles as a bonding layer.

  8. Photo-electrochemical properties of graphene wrapped hierarchically branched nanostructures obtained through hydrothermally transformed TiO2 nanotubes

    Science.gov (United States)

    Rambabu, Y.; Jaiswal, Manu; Roy, Somnath C.

    2017-10-01

    Hierarchically structured nanomaterials play an important role in both light absorption and separation of photo-generated charges. In the present study, hierarchically branched TiO2 nanostructures (HB-MLNTs) are obtained through hydrothermal transformation of electrochemically anodized TiO2 multi-leg nanotubes (MLNT) arrays. Photo-anodes based on HB-MLNTs demonstrated 5 fold increase in applied bias to photo-conversion efficiency (%ABPE) over that of TiO2 MLNTs without branches. Further, such nanostructures are wrapped with reduced graphene oxide (rGO) films to enhance the charge separation, which resulted in ∼6.5 times enhancement in %ABPE over that of bare MLNTs. We estimated charge transport (η tr) and charge transfer (η ct) efficiencies by analyzing the photo-current data. The ultra-fine nano branches grown on the MLNTs are effective in increasing light absorption through multiple scattering and improving charge transport/transfer efficiencies by enlarging semiconductor/electrolyte interface area. The charge transfer resistance, interfacial capacitance and electron decay time have been estimated through electrochemical impedance measurements which correlate with the results obtained from photocurrent measurements.

  9. Single-crystalline MFe(2)O(4) nanotubes/nanorings synthesized by thermal transformation process for biological applications.

    Science.gov (United States)

    Fan, Hai-Ming; Yi, Jia-Bao; Yang, Yi; Kho, Kiang-Wei; Tan, Hui-Ru; Shen, Ze-Xiang; Ding, Jun; Sun, Xiao-Wei; Olivo, Malini Carolene; Feng, Yuan-Ping

    2009-09-22

    We report a general thermal transformation approach to synthesize single-crystalline magnetic transition metal oxides nanotubes/nanorings including magnetite Fe(3)O(4), maghematite gamma-Fe(2)O(3), and ferrites MFe(2)O(4) (M = Co, Mn, Ni, Cu) using hematite alpha-Fe(2)O(3) nanotubes/nanorings template. While the straightforward reduction or reduction-oxides process was employed to produce Fe(3)O(4) and gamma-Fe(2)O(3), the alpha-Fe(2)O(3)/M(OH)(2) core/shell nanostructure was used as precursor to prepare MFe(2)O(4) nanotubes via MFe(2)O(4-x) (0 MFe(2)O(4) nanocrystals with tunable size, shape, and composition have exhibited unique magnetic properties. Moreover, they have been demonstrated as a highly effective peroxidase mimic catalysts for laboratory immunoassays or as a universal nanocapsules hybridized with luminescent QDs for magnetic separation and optical probe of lung cancer cells, suggesting that these biocompatible magnetic nanotubes/nanorings have great potential in biomedicine and biomagnetic applications.

  10. Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer

    Institute of Scientific and Technical Information of China (English)

    Mehdi Ahmadi; Sajjad Rashidi Dafeh; Samaneh Ghazanfarpour; Mohammad Khanzadeh

    2017-01-01

    We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly (3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester (PCBM).1% vanadium-doped TiO2 nanoparticles were synthesized via the solvothermal method.Crystalline structure,morphology,and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction,scanning electron microscopy,transmittance electron microscopy,and UV-visible transmission spectrum.The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm.The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm.The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm2 compared with its pure counterpart.In the cells using 60 nm pure and vanadium-doped TiO2 layers,the cell using the doped layer showed much higher efficiency.It is remarkable that the extemal quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.

  11. Towards TiO2 nanotubes modified by WO3 species: influence of ex situ crystallization of precursor on the photocatalytic activities of WO3/TiO2 composites

    Science.gov (United States)

    Sun, Hui; Dong, Bohua; Su, Ge; Gao, Rongjie; Liu, Wei; Song, Liang; Cao, Lixin

    2015-09-01

    TiO2 nanotubes (TNT) crystallized at different temperatures were loaded with WO3 hydrate through the reaction between (NH4)6W7O24·6H2O and an aqueous solution of HCl. The photocatalytic activities of nanocomposites firstly increase and then decrease as a function of the crystallized temperature of the TNT precursor. The structural, morphologic and optical properties of WO3/TiO2 nanocomposites were also investigated in this study. The samples, initially anatase titania (573 K-773 K), presented phase transition to rutile titania at 873 K. With the crystallized temperature increasing, an evolution of samples morphology changing from nanotube-like structure to nanorod-like structure was observed. Meanwhile, the absorption edge of samples exhibited a red shift, and correspondingly their band gap decreased. Consistent with x-ray diffraction diffractograms, the existence of rutile titania as an impurity in the precursor TNT, crystallized at higher than 873 K, depressed photocatalytic activity evidently. As a result, the degradation rate of methyl orange (MO) increased with the samples crystallinity firstly, and then reduced due to the appearance of rutile titania. In our experimental conditions, the optimal photocatalytic activity was achieved for the sample crystalized at 773 K. Its degradation rate could reach 98.76% after 90 min UV light irradiation.

  12. Towards TiO2 nanotubes modified by WO3 species: influence of ex situ crystallization of precursor on the photocatalytic activities of WO3/TiO2 composites

    International Nuclear Information System (INIS)

    Sun, Hui; Dong, Bohua; Su, Ge; Gao, Rongjie; Liu, Wei; Cao, Lixin; Song, Liang

    2015-01-01

    TiO 2 nanotubes (TNT) crystallized at different temperatures were loaded with WO 3 hydrate through the reaction between (NH 4 ) 6 W 7 O 24 ·6H 2 O and an aqueous solution of HCl. The photocatalytic activities of nanocomposites firstly increase and then decrease as a function of the crystallized temperature of the TNT precursor. The structural, morphologic and optical properties of WO 3 /TiO 2 nanocomposites were also investigated in this study. The samples, initially anatase titania (573 K–773 K), presented phase transition to rutile titania at 873 K. With the crystallized temperature increasing, an evolution of samples morphology changing from nanotube-like structure to nanorod-like structure was observed. Meanwhile, the absorption edge of samples exhibited a red shift, and correspondingly their band gap decreased. Consistent with x-ray diffraction diffractograms, the existence of rutile titania as an impurity in the precursor TNT, crystallized at higher than 873 K, depressed photocatalytic activity evidently. As a result, the degradation rate of methyl orange (MO) increased with the samples crystallinity firstly, and then reduced due to the appearance of rutile titania. In our experimental conditions, the optimal photocatalytic activity was achieved for the sample crystalized at 773 K. Its degradation rate could reach 98.76% after 90 min UV light irradiation. (paper)

  13. Recent advances on smart TiO2 nanotube platforms for sustainable drug delivery applications

    Directory of Open Access Journals (Sweden)

    Wang Q

    2016-12-01

    Full Text Available Qun Wang,1,2,* Jian-Ying Huang,2,* Hua-Qiong Li,3,4 Allan Zi-Jian Zhao,4 Yi Wang,4 Ke-Qin Zhang,2,5 Hong-Tao Sun,1 Yue-Kun Lai,2,5 1College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 2National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 3Institute of Biomaterials and Engineering, Wenzhou Medical University, 4Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences, Wenzhou, 5Research Center of Cooperative Innovation for Functional Organic/Polymer Material Micro/Nanofabrication, Suzhou, People’s Republic of China *These authors contributed equally to this work Abstract: To address the limitations of traditional drug delivery, TiO2 nanotubes (TNTs are recognized as a promising material for localized drug delivery systems. With regard to the excellent biocompatibility and physicochemical properties, TNTs prepared by a facile electrochemical anodizing process have been used to fabricate new drug-releasing implants for localized drug delivery. This review discusses the development of TNTs applied in localized drug delivery systems, focusing on several approaches to control drug release, including the regulation of the dimensions of TNTs, modification of internal chemical characteristics, adjusting pore openings by biopolymer coatings, and employing polymeric micelles as drug nanocarriers. Furthermore, rational strategies on external conditions-triggered stimuli-responsive drug release for localized drug delivery systems are highlighted. Finally, the review concludes with the recent advances on TNTs for controlled drug delivery and corresponding prospects in the future. Keywords: TiO2 nanotubes, electrochemical anodization, modification, stimulated drug delivery, drug-releasing implant

  14. Sol-gel synthesis of TiO2 nanoparticles and photocatalytic degradation of methyl orange in aqueous TiO2 suspensions

    International Nuclear Information System (INIS)

    Yang Huaming; Zhang Ke; Shi Rongrong; Li Xianwei; Dong Xiaodan; Yu Yongmei

    2006-01-01

    Anatase TiO 2 nanoparticles of about 16 nm in crystal size have been successfully synthesized via a sol-gel method. Thermal treatment of the precursor at 500-600 deg. C results in the formation of different TiO 2 phase compositions. The samples were characterized by means of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Effects of the pH value of the solution, H 2 O 2 addition, TiO 2 phase composition and recycled TiO 2 on the photocatalytic degradation of methyl orange (MeO) in TiO 2 suspensions under ultraviolet (UV) illumination were primarily investigated. The results indicate that a low pH value, proper amount of H 2 O 2 and pure anatase TiO 2 will facilitate the photocatalytic oxidation of the MeO solution. The photodegradation degree decreases with increasing the pH value of the solution and varies with different amounts of H 2 O 2 . Pure anatase TiO 2 shows better photocatalytic activity for MeO decolorization than biphase TiO 2 . The photocatalytic mechanism of the as-synthesized TiO 2 nanoparticles was discussed

  15. Characterization and Comparison of Photocatalytic Activity Silver Ion doped on TiO2(TiO2/Ag+) and Silver Ion doped on Black TiO2(Black TiO2/Ag+)

    Science.gov (United States)

    Kim, Jin Yi; Sim, Ho Hyung; Song, Sinae; Noh, Yeoung Ah; Lee, Hong Woon; Taik Kim, Hee

    2018-03-01

    Titanium dioxide (TiO2) is one of the representative ceramic materials containing photocatalyst, optic and antibacterial activity. The hydroxyl radical in TiO2 applies to the intensive oxidizing agent, hence TiO2 is suitable to use photocatalytic materials. Black TiO2was prepared through reduction of amorphous TiO2 conducting under H2 which leads to color changes. Its black color is proven that absorbs 100% light across the whole-visible light, drawing enhancement of photocatalytic property. In this study, we aimed to compare the photocatalytic activity of silver ion doped on TiO2(TiO2/Ag+) and silver ion doped on black TiO2(black TiO2/Ag+) under visible light range. TiO2/Ag+ was fabricated following steps. 1) TiO2 was synthesized by a sol-gel method from Titanium tetraisopropoxide (TTIP). 2) Then AgNO3 was added during an aging process step for silver ion doping on the surface of TiO2. Moreover, Black TiO2/Ag+ was obtained same as TiO2/Ag+ except for calcination under H2. The samples were characterized X-ray diffraction (XRD), UV-visible reflectance (UV-vis DRS), and Methylene Blue degradation test. XRD analysis confirmed morphology of TiO2. The band gap of black TiO2/Ag+ was confirmed (2.6 eV) through UV-vis DRS, which was lower than TiO2/Ag+ (2.9 eV). The photocatalytic effect was conducted by methylene blue degradation test. It demonstrated that black TiO2/Ag+ had a photocatalytic effect under UV light also visible light.

  16. The influence of geometrical characteristics on the photocatalytic activity of TiO2 nanotube arrays for degradation of refractory organic pollutants in wastewater.

    Science.gov (United States)

    Noeiaghaei, T; Yun, J-H; Nam, S W; Zoh, K D; Gomes, V G; Kim, J O; Chae, S R

    2015-01-01

    The effects of geometrical characteristics such as surface area (SA) and porosity of TiO2 nanotube arrays (TNAs) on its photocatalytic activity were investigated by applying variable voltages and reaction times for the anodization of Ti substrates. While larger SA of nanotubes was observed under higher applied potential, the porosity of TNAs decreased by increasing anodizing voltage. Under applied potential of 80 V, the SA of TNAs increased from 0.164 to 0.471 m2/g as anodization time increased from 1 to 5 hours, respectively. However, no significant effect on the porosity of TNAs was observed. On the other hand, both SA and porosity of TNAs, synthesized at 60 V, increased by augmenting the anodization time from 1 to 3 hours. But further increasing of anodization time to 5 hours resulted in a decreased SA of TNAs with no effect on their porosity. Accordingly, the TNAs with SA of 0.368 m2/g and porosity of 47% showed the highest photocatalytic activity for degradation of 4-chlorobenzoic acid (4CBA). Finally, the degradation of refractory model compounds such as carbamazepine and bisphenol-A was tested and more than 50% of both compounds could be degraded under UV-A irradiation (λmax=365 nm).

  17. Dye-Sensitized Solar Cells Based on TiO_2 Nanotube and Shelled Arrayed Structures

    International Nuclear Information System (INIS)

    Zhang, Jie; Kusumawati, Yuly; Pauporté, Thierry

    2016-01-01

    Anatase TiO_2 nanostructure arrays were synthetized starting from a template made of self-standing ZnO NWs prepared by an electrodeposition technique. By controlling the liquid phase deposition step, the obtained structures could be varied from free-standing nanotube (NT) arrays with controlled morphology to hierarchical spiky radiating core-shell rods. The nanotubes were made of assembled nanocrystals with an average size of 7–8 nm. The structures were investigated as n-type layers in DSSCs. The efficiency was enhanced for the core-shell layer and by starting with longer initial ZnO NW templates. The limitation of the cell efficiency was shown related to the specific surface area and dye loading. The cell functioning was in-depth investigated by electrochemical impedance spectroscopy over a large applied voltage range and compared to a cell based on a nanoparticle TO_2 mesoporous layer. A slow recombination rate was found. The enhancement of electron transport with nanocrystallite size explained the conductivity results. We also found that the prepared structures presented a high charge collection efficiency.

  18. Synthesis of carbon nanotube-TiO2 nanotubular material for reversible hydrogen storage

    International Nuclear Information System (INIS)

    Mishra, Amrita; Banerjee, Subarna; Mohapatra, Susanta K; Graeve, Olivia A; Misra, Mano

    2008-01-01

    A material consisting of multi-walled carbon nanotubes (MWCNTs) and larger titania (TiO 2 ) nanotube arrays has been produced and found to be efficient for reversible hydrogen (H 2 ) storage. The TiO 2 nanotube arrays (diameter ∼60 nm and length ∼2-3 μm) are grown on a Ti substrate, and MWCNTs a few μm in length and ∼30-60 nm in diameter are grown inside these TiO 2 nanotubes using chemical vapor deposition with cobalt as a catalyst. The resulting material has been used in H 2 storage experiments based on a volumetric method using the pressure, composition, and temperature relationship of the storage media. This material can store up to 2.5 wt% of H 2 at 77 K under 25 bar with more than 90% reversibility.

  19. Synthesis of carbon nanotube-TiO(2) nanotubular material for reversible hydrogen storage.

    Science.gov (United States)

    Mishra, Amrita; Banerjee, Subarna; Mohapatra, Susanta K; Graeve, Olivia A; Misra, Mano

    2008-11-05

    A material consisting of multi-walled carbon nanotubes (MWCNTs) and larger titania (TiO(2)) nanotube arrays has been produced and found to be efficient for reversible hydrogen (H(2)) storage. The TiO(2) nanotube arrays (diameter ∼60 nm and length ∼2-3 µm) are grown on a Ti substrate, and MWCNTs a few µm in length and ∼30-60 nm in diameter are grown inside these TiO(2) nanotubes using chemical vapor deposition with cobalt as a catalyst. The resulting material has been used in H(2) storage experiments based on a volumetric method using the pressure, composition, and temperature relationship of the storage media. This material can store up to 2.5 wt% of H(2) at 77 K under 25 bar with more than 90% reversibility.

  20. Heterostructured ZnFe2O4/Fe2TiO5/TiO2 Composite Nanotube Arrays with an Improved Photocatalysis Degradation Efficiency Under Simulated Sunlight Irradiation

    Science.gov (United States)

    Xiong, Kun; Wang, Kunzhou; Chen, Lin; Wang, Xinqing; Fan, Qingbo; Courtois, Jérémie; Liu, Yuliang; Tuo, Xianguo; Yan, Minhao

    2018-03-01

    To improve the visible light absorption and photocatalytic activity of titanium dioxide nanotube arrays (TONTAs), ZnFe2O4 (ZFO) nanocrystals were perfused into pristine TONTA pipelines using a novel bias voltage-assisted perfusion method. ZFO nanocrystals were well anchored on the inner walls of the pristine TONTAs when the ZFO suspensions (0.025 mg mL-1) were kept under a 60 V bias voltage for 1 h. After annealing at 750 °C for 2 h, the heterostructured ZFO/Fe2TiO5 (FTO)/TiO2 composite nanotube arrays were successfully obtained. Furthermore, Fe3+ was reduced to Fe2+ when solid solution reactions occurred at the interface of ZFO and the pristine TONTAs. Introducing ZFO significantly enhanced the visible light absorption of the ZFO/FTO/TONTAs relative to that of the annealed TONTAs. The coexistence of type I and staggered type II band alignment in the ZFO/FTO/TONTAs facilitated the separation of photogenerated electrons and holes, thereby improving the efficiency of the ZFO/FTO/TONTAs for photocatalytic degradation of methylene blue when irradiated with simulated sunlight. [Figure not available: see fulltext.

  1. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    Science.gov (United States)

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  2. Well-defined copolymers synthesized by RAFT polymerization as effective modifiers to enhance the photocatalytic performance of TiO_2

    International Nuclear Information System (INIS)

    Vasilaki, E.; Kaliva, M.; Katsarakis, N.; Vamvakaki, M.

    2017-01-01

    Highlights: • Well-defined, random functional copolymers were synthesized by RAFT polymerization. • Novel TiO_2 particles in-situ modified with copolymers were synthesized. • The hybrid catalysts exhibited reduced aggregation and particle size. • The photocatalytic removal of methylene blue was higher for the hybrid catalysts. - Αbstract: The enhancement of the photocatalytic performance of anatase TiO_2 nanoparticles is demonstrated by a facile route, involving their in-situ surface modification with preformed polymer chains. Random copolymers of poly(ethylene glycol) methyl ether acrylate-co-methacrylic acid (PEGA-co-MAA) or poly(ethylene glycol) methyl ether acrylate-co-dopamine methacrylamide (PEGA-co-DMA) were synthesized by reversible addition−fragmentation chain-transfer (RAFT) polymerization and were bound onto the surface of anatase titania nanoparticles via the “grafting to” method. The hybrid nanocatalysts were characterized by fourier transform infrared spectroscopy, zeta-potential measurements, X-ray powder diffraction, thermogravimetric analysis and transmission electron microscopy. Their photocatalytic performance was evaluated by the decoloration of methylene blue (MB) dye in aqueous media under UV–vis light irradiation. The enhanced photoactivity and reusability of the polymer modified photocatalysts compared to that of bare TiO_2 nanoparticles was attributed to their improved dispersability and colloidal stability, the smaller particle size that leads to a larger surface area and the increased adsorption capacity of the dye onto the polymer modified nanoparticles.

  3. Effect of Anodizing Time and Annealing Temperature on Photoelectrochemical Properties of Anodized TiO2 Nanotube for Corrosion Prevention Application

    Directory of Open Access Journals (Sweden)

    Misriyani Misriyani

    2017-07-01

    Full Text Available A study on the influence of anodizing time, annealing temperature and photoelectrochemical properties of TiO2 nanotube (TiO2 NT has been investigated. The crystallinity was investigated using X-Ray Diffraction and the anti-corrosion performance of stainless steel 304 (SS 304 coupled with TiO2 NT was evaluated using electrochemical techniques under ultraviolet exposure. The optimum anodizing condition occurs at a voltage of 20 V for 3 h. After anodizing, the TiO2 NT amorf was calcined at 500 °C to obtain anatase crystalline phase. For the photoelectrochemical property, the effects of pH and NaCl concentration on corrosion prevention have been examined. The result showed that the corrosion rate of stainless steel 304 coupled with TiO2 NT can be reduced up to 1.7 times compared to the uncoupled stainless steel 304 (3.05×10-6 to 1.78×10-6 mpy under ultraviolet exposure by shifted the photopotential to the more negative value (-0.302 V to -0.354 V at a pH of 8 and 3% NaCl concentration (-0.264 V to -0.291 V. In conclusion, the TiO2 NT films, which was prepared by anodization and followed by annealing can prevent the corrosion of stainless steel 304.

  4. Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity

    Science.gov (United States)

    Niu, Xiaoyou; Yan, Weijing; Zhao, Hongli; Yang, Jingkai

    2018-05-01

    Limited by the narrowed photoresponse range and unsatisfactory recombination of photoinduced electron-hole pairs, the photocatalytic efficiency of TiO2 is still far below what is expected. Here, we initially doped TiO2 nanotubes (TNTS) by transition metal ion Nb, then it is coupled with reduced graphene oxide (rGO) to construct a heterostructure photocatalyst. The defect state presented in TiO2 leading to the formation of localized midgap states (MS) in the bandgap, which regulating the band structure of TiO2 and extending the optical absorption to visible light region. The internal charge transport and transfer behavior analyzed by electrochemical impedance spectroscopy (EIS) reveal that the coupling of rGO with TNTS results in the formation of electron transport channel in the heterostructure, which makes a great contribution to the photoinduced charge separation. As expected, the Nb-TNTS/rGO exhibits a stable and remarkably enhanced photocatalytic activity in the visible-light irradiation degradation of methylene blue (MB), up to ∼5 times with respect to TNTS, which is attributed to the effective inhibition of charge recombination, the reduction of bandgap and higher redox potential, as well as the great adsorptivity.

  5. A novel photoelectrochemical immunosensor by integration of nanobody and TiO2 nanotubes for sensitive detection of serum cystatin C

    International Nuclear Information System (INIS)

    Mi, Li; Wang, Pingyan; Yan, Junrong; Qian, Jing; Lu, Jusheng; Yu, Jiachao; Wang, Yuzhen; Liu, Hong; Zhu, Min; Wan, Yakun; Liu, Songqin

    2016-01-01

    Cystatin C (CysC) is a sensitive marker for the estimation of the glomerular filtration rate and the clinical diagnosis of different diseases. In this paper, CysC-specific nanobodies (Nbs) were isolated from a phage display nanobody library. A simple and sensitive photoelectrochemical immunosensor based on TiO 2 nanotube arrays (TNAs) was proposed for the sensitive detection of CysC. The TiO 2 nanotube arrays deposited by electrochemical anodization displayed a high and stable photocurrent response under irradiation. After coupling CysC-specific nanobody to TNA (Nb/TNA), the proposed immunosensor for CysC can be utilized for tracking the photocurrent change of Nb/TNA caused by immunoreactions between CysC and the immobilized CysC-specific Nb. This allowed for the determination of CysC with a calibration range from 0.72 pM to 7.19 nM. The variation of the photocurrent was in a linear relationship with the logarithm of the CysC concentration in the range of 0.72 pM–3.6 nM. The immunosensor had a correlation coefficient of 0.97 and a detection limit of 0.14 pM at a signal-to-noise ratio of 3. The proposed immunosensor showed satisfactory intra- and inter-assay accuracy, high selectivity and good stability. As a result, this proposed strategy would offer a novel and simple approach for the detection of immunoreactions, provide new insights in popularizing the diagnosis of CysC, and extend the application of TiO 2 nanotubes. - Highlights: • CysC-specific nanobody to CysC is isolated from phage display nanobody library. • A photoelectrochemical immunosensor for CysC develops by Nb modified TNA. • An excellent sensitivity and good selectivity of CysC sensing was obtained.

  6. Eco-friendly synthesis of TiO2, Au and Pt doped TiO2 nanoparticles for dye sensitized solar cell applications and evaluation of toxicity

    Science.gov (United States)

    Gopinath, K.; Kumaraguru, S.; Bhakyaraj, K.; Thirumal, S.; Arumugam, A.

    2016-04-01

    Driven by the demand of pure TiO2, Au and Pt doped TiO2 NPs were successfully synthesized using Terminalia arjuna bark extract. The eco-friendly synthesized NPs were characterized by UV-Vis-DRS, ATR-FT-IR, PL, XRD, Raman, SEM with EDX and TEM analysis. The synthesized NPs were investigation for dye sensitized solar cell applications. UV-Vis-Diffused Reflectance Spectra clearly showed that the expected TiO2 inter band absorption below 306 nm, incorporation of gold shows surface plasma resonant (SPR) near 555 nm and platinum incorporated TiO2 NPs shows absorbance at 460 nm. The energy conversion efficiency for Au doped TiO2 NPs when compared to pure and Pt doped TiO2 NPs. In addition to that, Au noble metal present TiO2 matrix and an improve open-circuit voltage (Voc) of DSSC. Synthesized NPs was evaluated into antibacterial and antifungal activities by disk diffusion method. It is observed that NPs have not shown any activities in all tested bacterial and fungal strains. In this eco-friendly synthesis method to provide non toxic and environmental friendly nanomaterials can be used for solar energy device application.

  7. Fabrication and Characteristics of Macroporous TiO2 Photocatalyst

    Directory of Open Access Journals (Sweden)

    Guiyun Yi

    2014-01-01

    Full Text Available Macroporous TiO2 photocatalyst was synthesized by a facile nanocasting method using polystyrene (PS spherical particles as the hard template. The synthesized photocatalyst was characterized by transmission electron microscope (TEM, scanning electron microscopy (SEM, thermogravimetry-differential thermogravimetry (TG-DTG, X-ray diffraction (XRD, and N2-sorption. TEM, SEM, and XRD characterizations confirmed that the macroporous TiO2 photocatalyst is composed of anatase phase. The high specific surface area of 87.85 m2/g can be achieved according to the N2-sorption analysis. Rhodamine B (RhB was chosen as probe molecule to evaluate the photocatalytic activity of the TiO2 catalysts. Compared with the TiO2 materials synthesized in the absence of PS spherical template, the macroporous TiO2 photocatalyst sintered at 500°C exhibits much higher activity on the degradation of RhB under the UV irradiation, which can be assigned to the well-structured macroporosity. The macroporous TiO2 material presents great potential in the fields of environmental remediation and energy conversion and storage.

  8. Influence of energy band alignment in mixed crystalline TiO2 nanotube arrays: good for photocatalysis, bad for electron transfer

    Science.gov (United States)

    Mohammadpour, Raheleh

    2017-12-01

    Despite the wide application ranges of TiO2, the precise explanation of the charge transport dynamic through a mixed crystal phase of this semiconductor has remained elusive. Here, in this research, mixed-phase TiO2 nanotube arrays (TNTAs) consisting of anatase and 0-15% rutile phases has been formed through various annealing processes and employed as a photoelectrode of a photovoltaic cell. Wide ranges of optoelectronic experiments have been employed to explore the band alignment position, as well as the depth and density of trap states in TNTAs. Short circuit potential, as well as open circuit potential measurements specified that the band alignment of more than 0.2 eV exists between the anatase and rutile phase Fermi levels, with a higher electron affinity for anatase; this can result in a potential barrier in crystallite interfaces and the deterioration of electron mobility through mixed phase structures. Moreover, a higher density of shallow localized trap states below the conduction band with more depth (133 meV in anatase to 247 meV in 15% rutile phase) and also deep oxygen vacancy traps have been explored upon introducing the rutile phase. Based on our results, employing TiO2 nanotubes as just the electron transport medium in mixed crystalline phases can deteriorate the charge transport mechanism, however, in photocatalytic applications when both electrons and holes are present, a robust charge separation in crystalline anatase/rutile interphases will result in better performances.

  9. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai; Yang, Xiulin; Hedhili, Mohamed N.; Ahmed, Elaf S.; Shi, Le; Wang, Peng

    2014-01-01

    In this article, we report that the combination of microwave heating and ethylene glycol, a mild reducing agent, can induce Ti3+ self-doping in TiO2. A hierarchical TiO2 nanotube array with the top layer serving as TiO2 photonic crystals (TiO2 NTPCs

  10. Synthesis of titanate, TiO2 (B), and anatase TiO2 nanofibers from natural rutile sand

    International Nuclear Information System (INIS)

    Pavasupree, Sorapong; Suzuki, Yoshikazu; Yoshikawa, Susumu; Kawahata, Ryoji

    2005-01-01

    Titanate nanofibers were synthesized by hydrothermal method (150 deg. C for 72 h) using natural rutile sand as the starting materials. TiO 2 (B) and anatase TiO 2 (high crystallinity) nanofibers with the diameters of 20-100 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 and 700 deg. C (in air), respectively. The samples characterized by XRD, SEM, TEM, SAED, HRTEM, and BET surface area. This synthesis method provides a simple route to fabricate one-dimensional nanostructured TiO 2 from low cost material. -- Graphical abstract: Titanate nanofibers (b) were synthesized by hydrothermal method (150 deg. C for 72 h) using natural rutile sand (a) as the starting materials. TiO 2 (B) (c) and anatase TiO 2 (d) nanofibers with the diameters of 20-50 nm and the lengths of 10-100 μm were obtained by calcined titanate nanofibers for 4 h at 400 deg. C and 700 deg. C (in air), respectively

  11. Photoelectrocatalytic reduction of CO2 into chemicals using Pt-modified reduced graphene oxide combined with Pt-modified TiO2 nanotubes.

    Science.gov (United States)

    Cheng, Jun; Zhang, Meng; Wu, Gai; Wang, Xin; Zhou, Junhu; Cen, Kefa

    2014-06-17

    The photoelectrocatalytic (PEC) reduction of CO2 into high-value chemicals is beneficial in alleviating global warming and advancing a low-carbon economy. In this work, Pt-modified reduced graphene oxide (Pt-RGO) and Pt-modified TiO2 nanotubes (Pt-TNT) were combined as cathode and photoanode catalysts, respectively, to form a PEC reactor for converting CO2 into valuable chemicals. XRD, XPS, TEM, AFM, and SEM were employed to characterize the microstructures of the Pt-RGO and Pt-TNT catalysts. Reduction products, such as C2H5OH and CH3COOH, were obtained from CO2 under band gap illumination and biased voltage. A combined liquid product generation rate (CH3OH, C2H5OH, HCOOH, and CH3COOH) of approximately 600 nmol/(h·cm(2)) was observed. Carbon atom conversion rate reached 1,130 nmol/(h·cm(2)), which were much higher than those achieved using Pt-modified carbon nanotubes and platinum carbon as cathode catalysts.

  12. Hydroxyapatite electrodeposition on anodized titanium nanotubes for orthopedic applications

    Science.gov (United States)

    Parcharoen, Yardnapar; Kajitvichyanukul, Puangrat; Sirivisoot, Sirinrath; Termsuksawad, Preecha

    2014-08-01

    Nanotubes modification for orthopedic implants has shown interesting biological performances (such as improving cell adhesion, cell differentiation, and enhancing osseointegration). The purpose of this study is to investigate effect of titanium dioxide (TiO2) nanotube feature on performance of hydroxyapatite-coated titanium (Ti) bone implants. TiO2 nanotubes were prepared by anodization using ammonium fluoride electrolyte (NH4F) with and without modifiers (PEG400 and Glycerol) at various potential forms, and times. After anodization, the nanotubes were subsequently annealed. TiO2 nanotubes were characterized by scanning electron microscope and X-ray diffractometer. The amorphous to anatase transformation due to annealing was observed. Smooth and highly organized TiO2 nanotubes were found when high viscous electrolyte, NH4F in glycerol, was used. Negative voltage (-4 V) during anodization was confirmed to increase nanotube thickness. Length of the TiO2 nanotubes was significantly increased by times. The TiO2 nanotube was electrodeposited with hydroxyapatite (HA) and its adhesion was estimated by adhesive tape test. The result showed that nanotubes with the tube length of 560 nm showed excellent adhesion. The coated HA were tested for biological test by live/dead cell straining. HA coated on TiO2 nanotubes showed higher cells density, higher live cells, and more spreading of MC3T3-E1 cells than that growing on titanium plate surface.

  13. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials.

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-08

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO 2 epitaxial growth and BaTiO 3 conversion. Through the TiO 2 epitaxial growth on FTO substrate, (001) oriented TiO 2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO 2 NBA was conducted to enlarge the surface area for effective Ba 2+ ion diffusion during the perovskite conversion process from TiO 2 to BaTiO 3 . The final structure of perovskite BaTiO 3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO 3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  14. Highly piezoelectric BaTiO3 nanorod bundle arrays using epitaxially grown TiO2 nanomaterials

    Science.gov (United States)

    Jang, Seon-Min; Yang, Su Chul

    2018-06-01

    Low-dimensional piezoelectric nanostructures such as nanoparticles, nanotubes, nanowires, nanoribbons and nanosheets have been developed for potential applications as energy harvesters, tunable sensors, functional transducers and low-power actuators. In this study, lead-free BaTiO 3 nanorod bundle arrays (NBA) with highly piezoelectric properties were successfully synthesized on fluorine-doped tin oxide (FTO) substrate via a two-step process consisting of TiO2 epitaxial growth and BaTiO3 conversion. Through the TiO2 epitaxial growth on FTO substrate, (001) oriented TiO2 nanostructures formed vertically-aligned NBA with a bundle diameter of 80 nm and an aspect ratio of six. In particular, chemical etching of the TiO2 NBA was conducted to enlarge the surface area for effective Ba2+ ion diffusion during the perovskite conversion process from TiO2 to BaTiO3. The final structure of perovskite BaTiO3 NBA was found to exhibit a feasible piezoelectric response of 3.56 nm with a clear phase change of 180° from the single BaTiO3 bundle, by point piezoelectric forced microscopy (PFM) analysis. Consequently, highly piezoelectric NBA could be a promising nanostructure for various nanoscale electronic devices.

  15. Optical and morphological properties of ZnO- and TiO2-derived nanostructures synthesized via a microwave-assisted hydrothermal method

    CSIR Research Space (South Africa)

    Moloto, N

    2012-01-01

    Full Text Available Corporation International Journal of Photoenergy Volume 2012, Article ID 189069, 6 pages doi:10.1155/2012/189069 Research Article Optical and Morphological Properties of ZnO- and TiO2-Derived Nanostructures Synthesized via a Microwave... International Journal of Photoenergy the sol-gel, hydrothermal process, and pulse laser deposition [22?24]. Although the sol-gel method is widely accepted for the preparation of both ZnO and TiO2 nanostructures, the calcinations process is essential and can...

  16. Genotoxic and cytotoxic activity of green synthesized TiO2 nanoparticles

    Science.gov (United States)

    Koca, Fatih Doğan; Duman, Fatih

    2018-03-01

    Nowadays, nanomaterials that are smaller than 100 nm in size are very attractive owing to their enhanced physicochemical properties. Although they have been used widely for industrial applications, their toxicity still remains a problem. This article is a new record of the synthesis of titanium dioxide nanoparticles (TiO2 NPs) by a Mentha aquatica leaf extract and determination of its toxicity to rat marrow mesenchymal stem cells. In this study, we aimed to determine the genotoxic and cytotoxic effects of biologically synthetized TiO2 NPs. The characteristic peak of the nanomaterial was observed at 354 nm. The mean size of the nanomaterial was measured to be 69 nm from SEM images. According to zeta analysis, the surface charge of the nanomaterial was - 37.6 mV. The crystalline structure of the nanomaterial was determined using XRD analysis. It was concluded that the obtained nanomaterial was TiO2 The results of the FT-IR analysis showed that the functional groups that were found in the plant extract could play an important role in the formation and stabilization of TiO2 NPs. The effective size of the TiO2 NPs was found to be 304 nm using DLS analysis. The TGA analysis results showed that the total mass loss was 4% at 900 °C. According to DNA cleavage analysis results, TiO2 NPs cause damage to the plasmid pBR322 DNA in a concentration-dependant matter. It has been noted that TiO2 NPs lead to decreased cell viability during increased time and concentration of applications on rat marrow mesenchymal stem cells. It has also been determined that bulk TiO2 causes a greater reduction in the stem cell viability compared to the biosynthesized NPs. The obtained results could be useful for further application and toxicity studies.

  17. A study on the structure and thermal stability of titanate nano-tubes as a function of sodium content

    International Nuclear Information System (INIS)

    Morgado, E.; Abreu, M.A.S. de; Pravia, O.R.C.; Marinkovic, B.A.; Jardim, P.M.; Rizzo, F.C.; Araujo, A.S.

    2006-01-01

    Titanate Nano-Tubes (TTNT) were synthesized by hydrothermal treatment of TiO 2 anatase in 10 M NaOH at 120 C followed by repeated water washing, with and without ion exchanging by HCl 0.1 M. Samples with different contents of remnant sodium in nano-tubes were characterized, as synthesized and after heat-treatment, by X-ray diffraction, transmission electron microscopy, thermal analysis and N 2 adsorption. It was demonstrated that TTNT consisted of a tri-titanate structure with general formula Na x H 2 -xTi 3 O 7 .nH 2 O, where 0≤x≤2 and n≤1.2, depending on the degree of proton exchange after washing. As-synthesized nano-tubes retained interlayer water in its multi-walled structure. The removal of sodium reduced the amount of this intercalated water and increased the specific surface area, while thermal stability was reduced. The mechanism through which TTNT dehydrated and converted into their condensed titanates and/or TiO 2 polymorphs after thermal treatment as a function of the sodium content was discussed and a schematic picture of the thermal transformations was proposed. (authors)

  18. Polyaniline nanotubes coated with TiO2&γ-Fe2O3@graphene oxide as a novel and effective visible light photocatalyst for removal of rhodamine B from water

    Science.gov (United States)

    Ghavami, Monireh; Kassaee, Mohammad Zaman; Mohammadi, Reza; Koohi, Maryam; Haerizadeh, Bibi Narjes

    2014-12-01

    Synthesis of polyaniline-nanotubes (PANI-NT), in the presence of TiO2 and γ-Fe2O3 functionalized graphene oxide (GO), gives a green and magnetically recyclable photocatalyst, TiO2&γ-Fe2O3@GO/PANI-NT. The later orchestrates 94% photocatalytic efficiency in removal of rhodamine B (RB) from water, under simulated solar light irradiation. This is far higher than the 36% observed in the presence of TiO2&γ-Fe2O3@GO alone, where PANI-NT is excluded from the structure. Morphology, composition, and structural properties of our economically sound photocatalyst are characterized by X-ray diffraction, energy-dispersive X-ray spectroscopy, thermo-gravimetric, transmission electron microscopy, inductively coupled plasma, RAMAN and Fourier-transform infrared spectroscopy.

  19. Eu"2"+ doped TiO_2 nano structures synthesized by HYSYCVD for thermoluminescence dosimetry

    International Nuclear Information System (INIS)

    Perez A, J. A.; Leal C, A. L.; Melendrez A, R.; Barboza F, M.

    2016-10-01

    Titania (TiO_2) has attracted interest owing his potential applications as dosimetry material given his excellent optical, electrical and thermal properties and the ability to shape his structure make TiO_2 suitable for research and dosimetry applications. In this work, a systematic study to know the magnitude of processing parameters influence on thermoluminescent properties of undoped (TiO_2) and doped (TiO_2:Eu"2"+) nano materials obtained by hybrid precursor systems chemical vapor deposition (HYSYCVD) technique is presented. Synthesis of one dimension nano structures of TiO_2:Eu"2"+ was carried out using K_2TiF_6 and EuCl_2 as dopant at 0.5, 1, 2.5 and 5 wt %. The nano structures samples were irradiated with β-ray in a doses range of 0.083-3000 Gy. All thermoluminescence (Tl) glow curves showed 3 broad Tl peaks around 373, 473 and 573 K, and a dosimetric linear behavior from 0.083 to 300 Gy. The Tl has a good reproducibility, with deviations of around 5%, making these TiO_2:Eu"2"+ nano materials suitable for dosimetric applications. (Author)

  20. Studies on the Fe3+ Doping Effect on Structural, Optical and Catalytic Properties of Hydrothermally Synthesized TiO2 Photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kamble, Ravi [Department of Physics, Jaysingpur College, Jaysingpur-416101, India; Sabale, Sandip [P.G. Department of Chemistry, Jaysingpur College, Jaysingpur-416101, Maharashtra, India; Chikode, Prashant [Department of Physics, Jaysingpur College, Jaysingpur-416101, India; Puri, Vijaya [Department of Physics, Shivaji University, Kolhapur-416004, India; Yu, Xiao-Ying [Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, WA 99352, United States; Mahajan, Smita [Department of Physics, Jaysingpur College, Jaysingpur-416101, India

    2017-08-01

    Pure TiO2 and Fe3+-TiO2 nanoparticles have been prepared by simple hydrothermal method with different Fe3+ concentrations. The synthesized nanoparticles are analysed to determine its structural, optical, morphological and compositional properties using X-ray diffraction, Raman, UV-DRS, photoluminescence, Mossbauer, XPS, TEM and SEM/EDS. The EDS micrograph confirms the existence of Fe3+ atoms in the TiO2 matrix with 0.85, 1.52 and 1.87 weight percent. The crystallite size and band gap decrease with increase in Fe3+concentration. The average particle size obtained from TEM is 7-11 nm which is in good agreement with XRD results. Raman bands at 640 cm-1, 517 cm-1 and 398 cm-1 further confirm pure phase anatase in all samples. XPS shows the proper substitutions of few sites of Ti4+ ions by Fe3+ ions in the TiO2 host lattice. The intensity of PL spectra for Fe3+-TiO2 shows a gradual decrease in the peak intensity with increasing Fe3+ concentration in TiO2, and it indicates lower recombination rate as Fe3+ ions increases. These nanoparticles are further studied for its photocatalytic activities using malachite green dye under UV light, visible light and sunlight.

  1. Crystal growth and design of a facile synthesized uniform single crystalline football-like anatase TiO2 microspheres with exposed {0 0 1} facets

    International Nuclear Information System (INIS)

    Liu, Bitao; Jin, Chunhua; Ju, Yue; Peng, Lingling; Tian, Liangliang; Wang, Jinbiao; Zhang, Tiejun

    2014-01-01

    Graphical abstract: - Highlights: • Football-like TiO 2 synthesized by a facile hydrothermal method. • The formation mechanism of football-like TiO 2 was investigated. • The DSSC efficiency assembled by football-like TiO 2 is 23.3% higher than P25. - Abstract: Uniform football-like anatase TiO 2 particles exposed by {0 0 1} facets were successfully synthesized by an environment-friendly, facile and low-temperature hydrothermal method in water solution without any additional capping agent. The crystallographic structure and the growth mechanism of anatase TiO 2 particles were investigated systematically by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectra (XPS), respectively. The formation mechanism of football-like anatase TiO 2 particles exposed by {0 0 1} facets is investigated. It was found that there existed a selective adsorption of F − ions on different facets by analyzed with the density functional theory (DFT) computer simulation results, and it would lead to a selective nucleation and crystal growth of anatase football-like TiO 2 particles. Additionally, this type of exposed {0 0 1} facets football-like TiO 2 microspheres were used as a scattering overlayer on a transparent P25 film for fabrication of photoanodes for dye-sensitized solar cells (DSSCs). The results showed that an overall light conversion efficiency of this film was 6.31%, which is higher than that of the overall efficiency (5.13%) obtained from the P25 photoanode owing to the superior light scattering effect of microspheres and excellent light reflecting ability of the mirror-like plane {0 0 1} facets

  2. Multiwalled Carbon Nanotube-TiO2 Nanocomposite for Visible-Light-Induced Photocatalytic Hydrogen Evolution

    Directory of Open Access Journals (Sweden)

    Ke Dai

    2014-01-01

    Full Text Available Multiwalled carbon nanotube- (MWCNT- TiO2 nanocomposite was synthesized via hydrothermal process and characterized by X-ray diffraction, UV-vis diffuse reflectance spectroscopy, field emission scanning electron microscope, thermogravimetry analysis, and N2 adsorption-desorption isotherms. Appropriate pretreatment on MWCNTs could generate oxygen-containing groups, which is beneficial for forming intimate contact between MWCNTs and TiO2 and leads to a higher thermal stability of MWCNT-TiO2 nanocomposite. Modification with MWCNTs can extend the visible-light absorption of TiO2. 5 wt% MWCNT-TiO2 derived from hydrothermal treatment at 140°C exhibiting the highest hydrogen generation rate of 15.1 μmol·h−1 under visible-light irradiation and a wide photoresponse range from 350 to 475 nm with moderate quantum efficiency (4.4% at 420 nm and 3.7% at 475 nm. The above experimental results indicate that the MWCNT-TiO2 nanocomposite is a promising photocatalyst with good stability and visible-light-induced photoactivity.

  3. Electrochemically Obtained TiO2/CuxOy Nanotube Arrays Presenting a Photocatalytic Response in Processes of Pollutants Degradation and Bacteria Inactivation in Aqueous Phase

    Directory of Open Access Journals (Sweden)

    Magda Kozak

    2018-06-01

    Full Text Available TiO2/CuxOy nanotube (NT arrays were synthesized using the anodization method in the presence of ethylene glycol and different parameters applied. The presence, morphology, and chemical character of the obtained structures was characterized using a variety of methods—SEM (scanning electron microscopy, XPS (X-ray photoelectron spectroscopy, XRD (X-ray crystallography, PL (photoluminescence, and EDX (energy-dispersive X-ray spectroscopy. A p-n mixed oxide heterojunction of Ti-Cu was created with a proved response to the visible light range and the stable form that were in contact with Ti. TiO2/CuxOy NTs presented the appearance of both Cu2O (mainly and CuO components influencing the dimensions of the NTs (1.1–1.3 µm. Additionally, changes in voltage have been proven to affect the NTs’ length, which reached a value of 3.5 µm for Ti90Cu10_50V. Degradation of phenol in the aqueous phase was observed in 16% of Ti85Cu15_30V after 1 h of visible light irradiation (λ > 420 nm. Scavenger tests for phenol degradation process in presence of NT samples exposed the responsibility of superoxide radicals for degradation of organic compounds in Vis light region. Inactivation of bacteria strains Escherichia coli (E. coli, Bacillus subtilis (B. subtilis, and Clostridium sp. in presence of obtained TiO2/CuxOy NT photocatalysts, and Vis light has been studied showing a great improvement in inactivation efficiency with a response rate of 97% inactivation for E. coli and 98% for Clostridium sp. in 60 min. Evidently, TEM (transmission electron microscopy images confirmed the bacteria cells’ damage.

  4. Are TiO2 nanotubes worth using in photocatalytic purification of air and water?

    Science.gov (United States)

    Pichat, Pierre

    2014-09-19

    Titanium dioxide nanotubes (TNT) have mainly been used in dye sensitized solar cells, essentially because of a higher transport rate of electrons from the adsorbed photo-excited dye to the Ti electrode onto which TNT instead of TiO2 nanoparticles (TNP) are attached. The dimension ranges and the two main synthesis methods of TNT are briefly indicated here. Not surprisingly, the particular and regular texture of TNT was also expected to improve the photocatalytic efficacy for pollutant removal in air and water with respect to TNP. In this short review, the validity of this expectation is checked using the regrettably small number of literature comparisons between TNT and commercialized TNP referring to films of similar thickness and layers or slurries containing an equal TiO2 mass. Although the irradiated geometrical area differed for each study, it was identical for each comparison considered here. For the removal of toluene (methylbenzene) or acetaldehyde (ethanal) in air, the average ratio of the efficacy of TNT over that of TiO2 P25 was about 1.5, and for the removal of dyes in water, it was around 1. This lack of major improvement with TNT compared to TNP could partially be due to TNT texture disorders as seems to be suggested by the better average performance of anodic oxidation-prepared TNT. It could also come from the fact that the properties influencing the efficacy are more numerous, their interrelations more complex and their effects more important for pollutant removal than for dye sensitized solar cells and photoelectrocatalysis where the electron transport rate is the crucial parameter.

  5. Assembly, characterization, and photocatalytic activities of TiO2 nanotubes/CdS quantum dots nanocomposites

    International Nuclear Information System (INIS)

    Zhou Qiang; Fu Minglai; Yuan Baoling; Cui Haojie; Shi Jianwen

    2011-01-01

    The semiconductor quantum dots (QDs) can be very efficient to tune the response of photocatalyst of TiO 2 to visible light. In this study, CdS QDs formed in situ with about 8 nm have been successfully deposited onto the surfaces of TiO 2 nanotubes (TNTs) to form TNTs/CdS QDs nanocomposites by use of a simple bifunctional organic linker, thiolactic acid. The diffuse reflectance spectroscopy (DRS) spectra of as prepared samples showed that the absorption edge of the TNTs/CdS composite is extended to visible range, with absorption edge at 530 nm. The photocatalytic activity and stability of TNTs/CdS were also evaluated for the photodegradation of rhodamine B. The results showed that when TNTs/CdS QDs was used, photocatalytic degradation of RhB under visible light irradiation reached 91.6%, higher than 45.4 and 30.5% for P25 and TNTs, respectively. This study indicated that the TNTs/CdS QDs nanocomposites were superior catalysts for photodegradation under visible light irradiation compared with TNTs and P25 samples, which may find wide application as a powerful photocatalyst in environmental field.

  6. A comparative study of two techniques for determining photocatalytic activity of nitrogen doped TiO2 nanotubes under visible light irradiation: Photocatalytic reduction of dye and photocatalytic oxidation of organic molecules

    DEFF Research Database (Denmark)

    In, Su-Il; Vesborg, Peter Christian Kjærgaard; Abrams, Billie

    2011-01-01

    Nitrogen-doping (N-doping) is a popular strategy for promoting the absorption of visible light in TiO2 and other photocatalysts. We have grown TiO2 nanotubes onto non-conducting Pyrex in a one step process via single layer titanium films. In an attempt to improve the self-cleaning ability of vert...

  7. Enhancing the photocatalytic properties of TiO2 by coupling with carbon nanotubes and supporting gold

    International Nuclear Information System (INIS)

    Wang, Huihu; Dong, Shijie; Chang, Ying; Faria, Joaquim L.

    2012-01-01

    Highlights: ► Au–CNT–TiO 2 composites were synthesized by coupling CNT and Au to TiO 2 . ► The activity of Au–CNT–TiO 2 materials is higher than that of CNT–TiO 2 and Au–TiO 2 . ► The Au–CNT–TiO 2 composites possess both advantages of CNTs and Au. ► The Au–CNT–TiO 2 composites also overcome the disadvantages of surplus CNTs addition. - Abstract: The photodegradation of methylene blue in aqueous solutions is studied using various photocatalysts, including neat TiO 2 , CNT–TiO 2 , Au–TiO 2 , and Au–CNT–TiO 2 composites MB. Materials were synthesized and extensively characterized by XRD, TEM, DRFIT spectroscopy, N 2 adsorption–desorption isotherms, as well as diffuse reflectance UV–vis spectroscopy. By using CNT–TiO 2 composite as catalysts, it was found that CNT act as adsorbent and photosensitizer to improve the photoactivity of neat TiO 2 . Among the CNT–TiO 2 composites with different CNT weight ratio (0.2–20%), the 2%CNT–TiO 2 shows the best photoactivity. When CNT content is larger than 2%, the surplus CNT may absorb and scatter light photons. Combined with the decrease of TiO 2 amount in composite, the photoactivity is reduced. To further improve the photoactivity of 2%CNT–TiO 2 , different Au loads varying from 0.25% to 1% were introduced by the deposition–precipitation method. The 0.25%Au–2%CNT–TiO 2 composite had the highest photoactivity. The increase in activity was explained by the surface plasmon resonance of Au that makes the composite to absorb more photons than the 2%CNT–TiO 2 , thus overcoming the disadvantages of surplus CNT addition. On the other hand, 0.25%Au–2%CNT–TiO 2 composite also presents higher activity than 0.25%Au–TiO 2 due to higher adsorption capacity provided by CNT introduction. The addition of CNT and Au simultaneously has a much stronger synergic role than when each of them is introduced individually.

  8. A new approach of tailoring wetting properties of TiO2 nanotubular surfaces

    KAUST Repository

    Isimjan, Tayirjan T.

    2012-11-01

    TiO2 nanotube layers were grown on a Ti surface by electrochemical anodization. As prepared, these layers showed a superhydrophilic wetting behavior. Modified with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES), the layers showed a superhydrophobic behavior. We demonstrate how to change the surface characteristics of the TiO2 nanotube layers in order to achieve any desirable degree of hydrophobicity between 100° to 170°. The treated superhydrophobic TiO2 nanotube layers have an advanced contact angle exceeding 165°, a receding angle more than 155°and a slide angle less than 5°. It is found that the surface morphology of the film which depends on anodization time among other variables, has a great influence on the superhydrophobic properties of the surface after PTES treatment. The hydrodynamic properties of the surface are discussed in terms of both Cassie and Wenzel mechanisms. The layers are characterized with dynamic contact angle measurements, SEM, and XPS analyses. © 2012 American Scientific Publishers.

  9. Influence of electrical parameters on morphology of nanostructured TiO2 layers developed by electrochemical anodization

    Directory of Open Access Journals (Sweden)

    Strnad Gabriela

    2017-01-01

    Full Text Available Ti6Al4V alloy micro rough surfaces with TiO2 self-organized nanostructured layers were synthesized using electrochemical anodization in phosphate/fluoride electrolyte, at different end potentials (5V, 10V, 15V, and 20 V. The current – time characteristics were recorded, and the link between current evolution and the morphology of developing oxide layers was investigated. On flat surfaces of Ti6Al4V alloy we developed TiO2 layers with different morphologies (random pores, nanopores of 25…50 nm, and highly organized nanotubes of 50…100 nm in diameter depending on electrical parameters of anodization process. In our anodization cell, in optimized conditions, we are able to superimpose nanostructured oxide layers (nanotubular or nanoporous over micro structured surfaces of titanium based materials used for biomedical implants.

  10. Photocatalysis-assisted water filtration: using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7.

    Science.gov (United States)

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri

    2013-10-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO2) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO2/MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope-energy dispersive analysis of X-ray (SEM-EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO2/MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (Paligned MWCNT network. © 2013 Elsevier B.V. All rights reserved.

  11. Síntese, caracterização e atividade fotocatalítica de catalisadores nanoestruturados de TiO2 dopados com metais

    Directory of Open Access Journals (Sweden)

    William Leonardo da Silva

    2013-01-01

    Full Text Available Titanium dioxide nanostructured catalysts (nanotubes doped with different metals (silver, gold, copper, palladium and zinc were synthesized by the hydrothermal method in order to promote an increase in their photocatalytic activity under visible light. The catalysts were characterized by X-ray diffraction, diffuse reflectance spectroscopy, transmission electron microscopy and specific area and pore volume determination. The materials' photocatalytic activity was evaluated by rhodamine B decomposition in a glass batch reactor. Under UV radiation, only nanotubes doped with palladium were more active than the TiO2 P25, but the samples doped with silver, palladium and gold exhibited better results than the undoped samples under visible light.

  12. Dispersions of geometric TiO2 nanomaterials and their toxicity to RPMI 2650 nasal epithelial cells

    Science.gov (United States)

    Tilly, Trevor B.; Kerr, Lei L.; Braydich-Stolle, Laura K.; Schlager, John J.; Hussain, Saber M.

    2014-11-01

    Titanium dioxide (TiO2) based nanofilaments—nanotube, nanowire, nanorod—have gained interest for industrial, electrical, and as of recent, medical applications due to their superior performance over TiO2 nanoparticles. Safety assessment of these nanomaterials is critical to protect workers, patients, and bystanders as these technologies become widely implemented. Additionally, TiO2 based nanofilaments can easily be inhaled by humans and their high aspect ratio, much like asbestos fibers, may make them toxic in the respiratory system. The tendency of TiO2 nanofilaments to aggregate makes evaluating their nanotoxicity difficult and the results controversial, because incomplete dispersion results in larger particle sizes that are no longer in the nano dimensional size range. TiO2 nanofilaments are aggregated and difficult to disperse homogeneously in solution by conventional methods, such as sonication and vortexing. In this study, a microfluidic device was utilized to produce stable, homogeneous dosing solutions necessary for in vitro toxicity evaluation by eliminating any toxicity caused by aggregated TiO2 nanomaterials. The toxicity results could then be directly correlated to the TiO2 nanostructure itself. The toxicity of four TiO2 nanogeometries—nanotube, nanowire, nanorod, and nanoparticle—were assessed in RPMI 2650 human nasal epithelial cells at representative day, week, and month in vitro exposure dosages of 10, 50, 100 μg/ml, respectively. All TiO2 based nanomaterials dispersed by the microfluidic method were nontoxic to RPMI 2650 cells at the concentrations tested, whereas higher concentrations of 100 μg/ml of nanowires and nanotubes dispersed by sonication reduced viability up to 27 %, indicating that in vitro toxicity results may be controlled by the dispersion of dosing solutions.

  13. Structural transformation and enhanced gas sensing characteristics of TiO2 nanostructures induced by annealing

    Science.gov (United States)

    Tshabalala, Zamaswazi P.; Motaung, David E.; Swart, Hendrik C.

    2018-04-01

    The improved sensitivity and selectivity, and admirable stability are fundamental features required for the current age gas sensing devices to appease future humanity and environmental requirements. Therefore, herein, we report on the room temperature gas sensing behaviour of TiO2 nanotubes with significance response and sensitivity towards 60 ppm NO2 gas. Improved sensitivity of 29.44 ppm-1 and admirable selectivity towards NO2, among other gases ensuring adequate safety in monitoring NO2 in automobile and food industries. The improved sensitivity of TiO2 nanotubes was attributed to larger surface area provided by the hollow nanotubes resulting to improved gas adsorption and the relatively high concentration of oxygen vacancies.

  14. Engineering of highly ordered TiO2 nanopore arrays by anodization

    Science.gov (United States)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  15. Selective microwave sensors exploiting the interaction of analytes with trap states in TiO2 nanotube arrays

    Science.gov (United States)

    Zarifi, M. H.; Farsinezhad, S.; Abdolrazzaghi, M.; Daneshmand, M.; Shankar, K.

    2016-03-01

    Sensing of molecular analytes by probing the effects of their interaction with microwaves is emerging as a cheap, compact, label-free and highly sensitive detection and quantification technique. Microstrip ring-type resonators are particularly favored for this purpose due to their planar sensing geometry, electromagnetic field enhancements in the coupling gap and compatibility with established printed circuit board manufacturing. However, the lack of selectivity in what is essentially a permittivity-sensing method is an impediment to wider adoption and implementation of this sensing platform. By placing a polycrystalline anatase-phase TiO2 nanotube membrane in the coupling gap of a microwave resonator, we engineer selectivity for the detection and differentiation of methanol, ethanol and 2-propanol. The scavenging of reactive trapped holes by aliphatic alcohols adsorbed on TiO2 is responsible for the alcohol-specific detection while the different short chain alcohols are distinguished on the basis of differences in their microwave response. Electrodeless microwave sensors which allow spectral and time-dependent monitoring of the resonance frequency and quality factor provide a wealth of information in comparison with electrode-based resistive sensors for the detection of volatile organic compounds. A high dynamic range (400 ppm-10 000 ppm) is demonstrated for methanol detection.Sensing of molecular analytes by probing the effects of their interaction with microwaves is emerging as a cheap, compact, label-free and highly sensitive detection and quantification technique. Microstrip ring-type resonators are particularly favored for this purpose due to their planar sensing geometry, electromagnetic field enhancements in the coupling gap and compatibility with established printed circuit board manufacturing. However, the lack of selectivity in what is essentially a permittivity-sensing method is an impediment to wider adoption and implementation of this sensing platform

  16. Visible-light photocatalytic activity of the metastable Bi20TiO32 synthesized by a high-temperature quenching method

    International Nuclear Information System (INIS)

    Cheng Hefeng; Huang Baibiao; Dai Ying; Qin Xiaoyan; Zhang Xiaoyang; Wang Zeyan; Jiang Minhua

    2009-01-01

    Metastable Bi 20 TiO 32 samples were synthesized by a high-temperature quenching method using α-Bi 2 O 3 and anatase TiO 2 as raw materials. The photocatalytic activity of the as-prepared samples was measured with the photodegradation of methyl orange at room temperature under visible light irradiation. The Bi 20 TiO 32 samples exhibited good absorption in the visible light region with a band gap of about 2.38 eV and the band structure of Bi 20 TiO 32 was studied. Photodegradation against methyl orange was much better than α-Bi 2 O 3 prepared by the same way. The photocatalytic activity of Bi 20 TiO 32 samples is supposed to be associated with the hybridized Bi 6s and O 2p orbitals. In addition, the dispersive characteristic of Bi 6s orbital in the hybridized valence band facilitates the mobility of the photogenerated carriers and hampers their recombination. - Graphical abstract: Metastable Bi 20 TiO 32 samples were successfully synthesized by a quenching process. Photodegradation against methyl orange showed high visible-light activity and it was supposed to be associated with its corresponding band structure.

  17. Heterojunctions of mixed phase TiO2 nanotubes with Cu, CuPt, and Pt nanoparticles: interfacial band alignment and visible light photoelectrochemical activity

    Science.gov (United States)

    Kar, Piyush; Zhang, Yun; Mahdi, Najia; Thakur, Ujwal K.; Wiltshire, Benjamin D.; Kisslinger, Ryan; Shankar, Karthik

    2018-01-01

    Anodically formed, vertically oriented, self-organized cylindrical TiO2 nanotube arrays composed of the anatase phase undergo an interesting morphological and phase transition upon flame annealing to square-shaped nanotubes composed of both anatase and rutile phases. This is the first report on heterojunctions consisting of metal nanoparticles (NPs) deposited on square-shaped TiO2 nanotube arrays (STNAs) with mixed rutile and anatase phase content. A simple photochemical deposition process was used to form Cu, CuPt, and Pt NPs on the STNAs, and an enhancement in the visible light photoelectrochemical water splitting performance for the NP-decorated STNAs was observed over the bare STNAs. Under narrow band illumination by visible photons at 410 nm and 505 nm, Cu NP-decorated STNAs performed the best, producing photocurrents 80% higher and 50 times higher than bare STNAs, respectively. Probing the energy level structure at the NP-STNA interface using ultraviolet photoelectron spectroscopy revealed Schottky barrier formation in the NP-decorated STNAs, which assists in separating the photogenerated charge carriers, as also confirmed by longer charge carrier lifetimes in NP-decorated STNAs. While all the NP-decorated STNAs showed enhanced visible light absorption compared to the bare STNAs, only the Cu NPs exhibited a clear plasmonic behavior with an extinction cross section that peaked at 550 nm.

  18. General Syntheses of Nanotubes Induced by Block Copolymer Self-Assembly

    DEFF Research Database (Denmark)

    Zhao, Jianming; Huang, Wei; Si, Pengchao

    2018-01-01

    Amphiphilic block copolymer templating strategies are extensively used for syntheses of mesoporous materials. However, monodisperse tubular nanostructures are limited. Here, a general method is developed to synthesize monodisperse nanotubes with narrow diameter distribution induced by self...

  19. Effect of TiO2 on the Gas Sensing Features of TiO2/PANi Nanocomposites

    Directory of Open Access Journals (Sweden)

    Duong Ngoc Huyen

    2011-02-01

    Full Text Available A nanocomposite of titanium dioxide (TiO2 and polyaniline (PANi was synthesized by in-situ chemical polymerization using aniline (ANi monomer and TiCl4 as precursors. SEM pictures show that the nanocomposite was created in the form of long PANi chains decorated with TiO2 nanoparticles. FTIR, Raman and UV-Vis spectra reveal that the PANi component undergoes an electronic structure modification as a result of the TiO2 and PANi interaction. The electrical resistor of the nanocomposite is highly sensitive to oxygen and NH3 gas, accounting for the physical adsorption of these gases. A nanocomposite with around 55% TiO2 shows an oxygen sensitivity of 600–700%, 20–25 times higher than that of neat PANi. The n-p contacts between TiO2 nanoparticles and PANi matrix give rise to variety of shallow donors and acceptor levels in the PANi band gap which enhance the physical adsorption of gas molecules.

  20. TiO2/PbS/ZnS heterostructure for panchromatic quantum dot sensitized solar cells synthesized by wet chemical route

    Science.gov (United States)

    Bhat, T. S.; Mali, S. S.; Sheikh, A. D.; Korade, S. D.; Pawar, K. K.; Hong, C. K.; Kim, J. H.; Patil, P. S.

    2017-11-01

    So far we developed the efficient photoelectrodes which can harness the UV as well as the visible regime of the solar spectrum effectively. In order to exploit a maximum portion of solar spectrum, it is necessary to study the synergistic effect of a photoelectrode comprising UV and visible radiations absorbing materials. Present research work highlights the efforts to study the synchronized effect of TiO2 and PbS on the power conversion efficiency of quantum dot sensitized solar cell (QDSSC). A cascade structure of TiO2/PbS/ZnS QDSSC is achieved to enhance the photoconversion efficiency of TiO2/PbS system by incorporating a surface passivation layer of ZnS which avoids the recombination of charge carriers. A QDSSC is fabricated using a simple and cost-effective technique such as hydrothermally grown TiO2 nanorod arrays decorated with PbS and ZnS using successive ionic layer adsorption and reaction (SILAR) method. Synthesized electrode materials are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FE-SEM), High resolution-transmission electron microscopy (TEM), STEM-EDS mapping, optical and solar cell performances. Phase formation of TiO2, PbS and ZnS get confirmed from the XPS study. FE-SEM images of the photoelectrode show uniform coverage of PbS QDs onto the TiO2 nanorods which increases with increasing number of SILAR cycles. The ZnS layer not only improves the charge transport but also reduces the photocorrosion of lead chalcogenides in the presence of a liquid electrolyte. Finally, the photoelectrochemical (PEC) study is carried out using an optimized photoanode comprising TiO2/PbS/ZnS assembly. Under AM 1.5G illumination the TiO2/PbS/ZnS QDSSC photoelectrode shows 4.08 mA/cm2 short circuit current density in a polysulfide electrolyte which is higher than that of a bare TiO2 nanorod array.

  1. Study of phase development and thermal stability in as synthesized TiO2 nanoparticles by laser pyrolysis: ethylene uptake and oxygen enrichment

    Science.gov (United States)

    Ilie, Alina Georgiana; Scarisoreanu, Monica; Dutu, Elena; Dumitrache, Florian; Banici, Ana-Maria; Fleaca, Claudiu Teodor; Vasile, Eugenia; Mihailescu, Ion

    2018-01-01

    Laser pyrolysis has proven a viable and trustworthy method of TiO2 nanoparticles fabrication, ensuring good quality and wide variety of nanoparticle morphologies and sizes. This work is aimed to phase control, experimentally studied, by parameter modulation, during one step laser pyrolysis synthesis or in combination with thermal annealing. High phase purity anatase and rutile TiO2 nanoparticles, oxygen abundant, are synthesized from TiCl4 and C2H4 gas mixtures, in the presence of air as oxygen donor, under CO2 laser radiation. The nano-titania samples are analyzed by X-ray Diffraction, EDAX, TEM and Raman spectroscopy and reveal good phase stability and distinct morphology. This study extends the method applicability onto rutile majoritarian TiO2 synthesis and generation of thermally stable anatase titania, a well-known catalyst.

  2. Template-based fabrication of nanowire-nanotube hybrid arrays

    International Nuclear Information System (INIS)

    Ye Zuxin; Liu Haidong; Schultz, Isabel; Wu Wenhao; Naugle, D G; Lyuksyutov, I

    2008-01-01

    The fabrication and structure characterization of ordered nanowire-nanotube hybrid arrays embedded in porous anodic aluminum oxide (AAO) membranes are reported. Arrays of TiO 2 nanotubes were first deposited into the pores of AAO membranes by a sol-gel technique. Co nanowires were then electrochemically deposited into the TiO 2 nanotubes to form the nanowire-nanotube hybrid arrays. Scanning electron microscopy and transmission electron microscopy measurements showed a high nanowire filling factor and a clean interface between the Co nanowire and the TiO 2 nanotube. Application of these hybrids to the fabrication of ordered nanowire arrays with highly controllable geometric parameters is discussed

  3. TiO2 film decorated with highly dispersed polyoxometalate nanoparticles synthesized by micelle directed method for the efficiency enhancement of dye-sensitized solar cells

    Science.gov (United States)

    He, Lifei; Chen, Li; Zhao, Yue; Chen, Weilin; Shan, Chunhui; Su, Zhongmin; Wang, Enbo

    2016-10-01

    In this work, two kinds of polyoxometalate (POM) nanoparticles with controlled shapes and structures were synthesized by micelle directed method and then composited with TiO2 via calcination to remove the surfactants owing to the excellent electronic storage and transmission ability of POM, finally obtaining two kinds of TiO2 composites with highly dispersed and small-sized POM nanoparticles (∼1 nm). The TiO2 composites were then induced into the photoanodes of dye-sensitized (N719) solar cells (DSSCs). The separation of electron-holes becomes more favorable due to the nanostructure and high dispersion of POM which provide more active sites than pure POM tending to agglomeration. The TiO2 composite photoanodes finally yielded the power conversion efficiency (PCE) of 8.4% and 8.2%, respectively, which were 42% and 39% higher than the pristine TiO2 based anodes. In addition, the mechanisms of POM in DSSC are proposed.

  4. Synthesis of Nd3+doped TiO2 nanoparticles and Its Optical Behaviour

    Directory of Open Access Journals (Sweden)

    Ezhil Arasi S.

    2017-04-01

    Full Text Available Pure and Rare earth ion doped TiO2 nanoparticles were synthesized by Sol-gel method. The synthesized TiO2 nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, UV–Vis spectroscopy and photoluminescence emission spectra. From the UV-visible measurement, the absorption edge of Nd3+-TiO2 was shifted to a higher wavelength side with decreasing band gap. Photoluminescence emission studies reveal the energy transfer mechanism of Nd3+ doped TiO2 nanoparticles explain.

  5. Photocatalytic behaviors and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying

    International Nuclear Information System (INIS)

    Kim, Dong Hyun; Hong, Hyun Seon; Kim, Sun Jae; Song, Jae Sung; Lee, Kyung Sub

    2004-01-01

    Nanocrystalline Fe-doped TiO 2 powders were synthesized by mechanical alloying (MA) with varying Fe contents from 0 up to 4.8 wt.% to shift the absorption threshold into the visible light region. The photocatalytic feasibility of the Fe-doped TiO 2 powder was evaluated by quantifying the visible light absorption capacity using ultraviolet and visible (UV-Vis) spectroscopy and photoluminescence spectroscopy. Effects of Fe additions on the crystal structures and the morphologies of the Fe-doped powders were also investigated as a function of the doping content using transmission electron microscopy-electron diffraction pattern (TEM-EDP), X-ray diffraction (XRD) and energy dispersive X-ray (EDAX) and X-ray photoelectron spectroscopy (XPS). The UV-Vis study showed that the UV absorption for the Fe-doped powder moved to a longer wavelength (red shift) and the photoefficiency was enhanced. Based on the analysis of the photoluminescence spectra, the red shift was believed to be induced by localizing the dopant level near the valence band of TiO 2 . The UV-Vis absorption depended on the Fe concentration. TEM-EDP and XRD investigations showed that the Fe-doped powder had a rutile phase in which the added Fe atoms were dissolved. The rutile phase was composed of spherical particles and chestnut bur shaped particles, resulting in a larger surface area than the spherical P-25 powder

  6. Facile synthesis of a conjugation-grafted-TiO2 nanohybrid with enhanced visible-light photocatalytic properties from nanotube titanic acid precursors

    Science.gov (United States)

    Guo, Yanru; Zhang, Min; Zhang, Zhihua; Li, Qiuye; Yang, Jianjun

    2016-08-01

    A conjugation-grafted-TiO2 nanohybrid was synthesized by chemically grafting conjugated structures on the surface of nanotube titanic acid (NTA) precursor-based TiO2 through the controlled thermal degradation of a coacervated polymer layer of polyvinyl alcohol (PVA). The interfacial interactions between the NTA precursor-based TiO2 and conjugated structures were characterized using Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Moreover, the effects of the NTA's pretreatment temperature and the weight ratio of NTA to PVA on the photocatalytic degradation of methyl orange were also investigated. A higher NTA pretreatment temperature and a lower NTA to PVA weight ratio were found to enhance photogenerated electron-hole separation efficiency and photocatalytic activity. Moreover, the conjugation-grafted-TiO2 nanohybrid synthesized from the NTA precursor displayed a much higher visible-light photocatalytic activity than that of the sample obtained from the P25 precursor. The origin of the enhanced photocatalytic activity under visible-light irradiation is also discussed in detail.

  7. A thick hierarchical rutile TiO2 nanomaterial with multilayered structure

    International Nuclear Information System (INIS)

    Zhu, Shengli; Xie, Guoqiang; Yang, Xianjin; Cui, Zhenduo

    2013-01-01

    Highlights: ► We synthesized a new rutile TiO 2 nanomaterial with a hierarchical nanostructure. ► The nano architecture structure consist of nanorods and nanoflower arrays. ► The rutile TiO 2 nanomaterial is thick in size (several 10 μm). ► The TiO 2 nanomaterials present a multilayer structure. - Abstract: In the present paper, we synthesized a new type of rutile TiO 2 nanomaterial with a hierarchical nanostructure using a novel method, which combined dealloying process with chemical synthesis. The structure characters were examined using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The rutile TiO 2 nanomaterial is thick in size (several 10 μm). The hierarchical structure of the rutile TiO 2 nanomaterial consists of large quantities nanorods and nanoflower arrays. The nanoflowers consist of serveral nanopetals with diameter of 100–200 nm. The cross section of TiO 2 nanomaterials presents a multilayer structure with the layer thickness of about 3–5 μm. The rutile TiO 2 nanomaterial has high specific surface area. The formation mechanism of the rutile TiO 2 nanomaterial was discussed according to the experimental results. The rutile TiO 2 nanomaterial has potential applications in catalysis, photocatalysis and solar cells

  8. Analysis of X-ray diffraction of the titanium dioxide (TiO_2) synthesized by the Pechini Method for application in heterogeneous photocatalysis processes

    International Nuclear Information System (INIS)

    Oliveira, P.L.; Araujo, D.S.; Costa, A.C.F.M.; Oliveira, L.S.C.

    2016-01-01

    Titanium dioxide (TiO_2) is a polymorph commonly applied to heterogeneous photocatalysis processes for being relatively inexpensive and photo - stable. It is usually found in three different crystalline phases (anatase, rutile and brookite), which directly interfere in their photocatalytic efficiency. Therefore, this study aimed to investigate the obtainment of TiO_2 by Pechini method in different conditions for application in the heterogeneous photocatalysis process. For this purpose, it was evaluated by analysis of X-ray diffraction (XRD ) the behavior of TiO_2 materials synthesized in proportions of 2:1 and 3:1 (titanium isopropoxide/citric acid), pyrolyzed at 300°C/3h and 400°C /h and calcined at 400°C and 500°C/1h. The results revealed that the TiO_2 samples produced in the ratio of 2:1 and 3:1 isopropoxide/citric acid and calcined at 500°C/h presented the best results. (author)

  9. Synthesis and characterization of polythiophene-modified TiO2 ...

    Indian Academy of Sciences (India)

    prospects and has attracted much attention for its many advantages such as ... the ground state of the polymer located in the semiconduc- tor energy gap into an .... in figure 1(c) that the polythiophene modified TiO2 nanotube arrays still keep ...

  10. Photo-Catalytic Properties of TiO2 Supported on MWCNTs, SBA-15 and Silica-Coated MWCNTs Nanocomposites.

    Science.gov (United States)

    Ramoraswi, Nteseng O; Ndungu, Patrick G

    2015-12-01

    Mesoporous silica, specifically SBA-15, acid-treated multi-walled carbon nanotubes and a hybrid nanocomposite of SBA-15 coated onto the sidewalls acid-treated multi-walled carbon nanotubes (CNTs) were prepared and used as supports for anatase TiO2. Sol-gel methods were adapted for the synthesis of selected supports and for coating the materials with selected wt% loading of titania. Physical and chemical properties of the supports and catalyst composite materials were investigated by powder X-ray diffraction (XRD), Raman spectroscopy, thermogravimetric analysis, scanning electron microscope (SEM), high-resolution transmission electron microscope (HRTEM), UV-vis diffuse reflectance spectroscopy and fluorescence spectroscopy. The photo-activity of the catalyst composites were evaluated on the decolorisation of methylene blue as a model pollutant. Coating CNTs with SBA-15 improved the thermal stability and textural properties of the nanotubes. All supported titania composites had high surface areas (207-301 m(2)/g), altered band gap energies and reduced TiO2 crystallite sizes. The TiO2/SBA-CNT composite showed enhanced photo-catalytic properties and activity than the TiO2/SBA-15 and TiO2/CNT composites. In addition, an interesting observation was noted with the TiO2/SBA-15 nanocomposites, which had a significantly greater photo-catalytic activity than the TiO2/CNT nanocomposites in spite of the high electron-hole recombination phenomena observed with the photoluminescence results. Discussions in terms of morphological, textural and physical-chemical aspects to account for the result are presented.

  11. Synthesis, structure and photocatalytic activity of nano TiO2 and ...

    Indian Academy of Sciences (India)

    salicylic acid over combustion-synthesized nano TiO2 under UV and solar exposure has been carried out. Under identical conditions of UV exposure, the initial degra- dation rate of phenol with combustion-synthesized TiO2 is two times higher than the initial degradation rate of phenol with Degussa P25, the commercial ...

  12. Bifacial dye-sensitized solar cells based on vertically oriented TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Liu Zhaoyue; Misra, Mano

    2010-01-01

    In this work we describe a novel bifacial design concept for dye-sensitized solar cells (DSCs). Bifacial DSCs are fabricated with ruthenium complex chemisorbed double-sided TiO 2 nanotube arrays on a Ti metal substrate, in combination with two electron-collecting counter electrodes. Our investigation shows that the present bifacial DSCs have similar conversion efficiencies when illuminated from either their front or rear side, and a summated output power when illuminated on both sides. Furthermore, this type of bifacial DSC is also able to summate the output power of each side when working at an 'unsymmetrical' mode, in which much different output powers are generated by the front and rear sides. Therefore, this bifacial design concept exhibits a promising potential to reduce the cost of solar electricity when DSCs are operated at a location where a high albedo radiation is available.

  13. Double Walled Carbon Nanotube/TiO2 Nanocomposites for Photocatalytic Dye Degradation

    Directory of Open Access Journals (Sweden)

    Alex T. Kuvarega

    2016-01-01

    Full Text Available Double walled carbon nanotube (DWCNT/N,Pd codoped TiO2 nanocomposites were prepared by a modified sol-gel method and characterised using FTIR, Raman spectroscopy, TGA, DRUV-Vis, XRD, SEM, and TEM analyses. TEM images showed unique pearl-bead-necklace structured morphologies at higher DWCNT ratios. The nanocomposite materials showed characteristic anatase TiO2 Raman bands in addition to the carbon nanotube D and G bands. Red shifts in the UV-Vis absorption edge were observed at low DWCNT percentages. The photocatalytic activity of DWCNT/N,Pd TiO2 nanocomposite was evaluated by the photocatalytic degradation of eosin yellow under simulated solar light irradiation and the 2% DWCNT/N,Pd TiO2 nanocomposite showed the highest photoactivity while the 20% DWCNT/N,Pd TiO2 hybrid was the least efficient. The photocatalytic enhancement was attributed to the synergistic effects of the supporting and electron channeling role of the DWCNTs as well as the electron trapping effects of the platinum group metal. These phenomena favour the separation of the photogenerated electron-hole pairs, reducing their recombination rate, which consequently lead to significantly enhanced photoactivity.

  14. Enhanced visible-light activity of titania via confinement inside carbon nanotubes

    KAUST Repository

    Chen, Wei

    2011-09-28

    Titania confined inside carbon nanotubes (CNTs) was synthesized using a restrained hydrolysis method. Raman spectra and magnetic measurements using a SQUID magnetometer suggested the formation of remarkable oxygen vacancies over the encapsulated TiO 2 in comparison with nanoparticles dispersed on the outer surface of CNTs, extending the photoresponse of TiO 2 from the UV to the visible-light region. The CNT-confined TiO 2 exhibited improved visible-light activity in the degradation of methylene blue (MB) relative to the outside titania and commercial P25, which is attributed to the modification of the electronic structure of TiO 2 induced by the unique confinement inside CNTs. These results provide further insight into the effect of confinement within CNTs, and the composites are expected to be promising for applications in visible-light photocatalysis. © 2011 American Chemical Society.

  15. Formation of chelating agent driven anodized TiO2 nanotubular membrane and its photovoltaic application

    Science.gov (United States)

    Banerjee, Subarna; Misra, Mano; Mohapatra, Susanta K.; Howard, Cameron; Mohapatra, Srikanta K.; Kamilla, Sushanta K.

    2010-04-01

    Titania (TiO2) nanotubular arrays provide an exciting material for dye sensitizing solar cells (DSSC) because of their large surface area, lower recombination losses, and fast charge transport properties along the nanotubes. In this paper, design of a next generation DSSC using a TiO2 nanotubular membrane is discussed. A single step, green process is developed to produce stable large area, free-standing TiO2 nanotubular films (in a short time, 30-60 min) by anodizing Ti using an organic electrolyte, containing disodium salt of ethylene diaminetetraacetic acid (Na2[H2EDTA]) as complexing agent, and subsequent drying. Transparent, crack-free TiO2 films, 20-41 µm thick containing ordered hexagonal TiO2 nanotubes are achieved by this process. Films having a geometrical area up to 16.5 cm2 with pore openings of 182 nm have been obtained. These films have been etched to form membranes which provide an exciting prospect for front side illuminated DSSC with good mass and photon transport properties as well as wettability. A photovoltaic efficiency of 2.7% is achieved using a front side illuminated DSSC compared to 1.77% using back side illumination.

  16. Formation of chelating agent driven anodized TiO(2) nanotubular membrane and its photovoltaic application.

    Science.gov (United States)

    Banerjee, Subarna; Misra, Mano; Mohapatra, Susanta K; Howard, Cameron; Mohapatra, Srikanta K; Kamilla, Sushanta K

    2010-04-09

    Titania (TiO(2)) nanotubular arrays provide an exciting material for dye sensitizing solar cells (DSSC) because of their large surface area, lower recombination losses, and fast charge transport properties along the nanotubes. In this paper, design of a next generation DSSC using a TiO(2) nanotubular membrane is discussed. A single step, green process is developed to produce stable large area, free-standing TiO(2) nanotubular films (in a short time, 30-60 min) by anodizing Ti using an organic electrolyte, containing disodium salt of ethylene diaminetetraacetic acid (Na(2)[H(2)EDTA]) as complexing agent, and subsequent drying. Transparent, crack-free TiO(2) films, 20-41 microm thick containing ordered hexagonal TiO(2) nanotubes are achieved by this process. Films having a geometrical area up to 16.5 cm(2) with pore openings of 182 nm have been obtained. These films have been etched to form membranes which provide an exciting prospect for front side illuminated DSSC with good mass and photon transport properties as well as wettability. A photovoltaic efficiency of 2.7% is achieved using a front side illuminated DSSC compared to 1.77% using back side illumination.

  17. Formation of chelating agent driven anodized TiO2 nanotubular membrane and its photovoltaic application

    International Nuclear Information System (INIS)

    Banerjee, Subarna; Misra, Mano; Mohapatra, Susanta K; Howard, Cameron; Mohapatra, Srikanta K; Kamilla, Sushanta K

    2010-01-01

    Titania (TiO 2 ) nanotubular arrays provide an exciting material for dye sensitizing solar cells (DSSC) because of their large surface area, lower recombination losses, and fast charge transport properties along the nanotubes. In this paper, design of a next generation DSSC using a TiO 2 nanotubular membrane is discussed. A single step, green process is developed to produce stable large area, free-standing TiO 2 nanotubular films (in a short time, 30-60 min) by anodizing Ti using an organic electrolyte, containing disodium salt of ethylene diaminetetraacetic acid (Na 2 [H 2 EDTA]) as complexing agent, and subsequent drying. Transparent, crack-free TiO 2 films, 20-41 μm thick containing ordered hexagonal TiO 2 nanotubes are achieved by this process. Films having a geometrical area up to 16.5 cm 2 with pore openings of 182 nm have been obtained. These films have been etched to form membranes which provide an exciting prospect for front side illuminated DSSC with good mass and photon transport properties as well as wettability. A photovoltaic efficiency of 2.7% is achieved using a front side illuminated DSSC compared to 1.77% using back side illumination.

  18. TiO2 nanotubes with different spacing, Fe2O3 decoration and their evaluation for Li-ion battery application

    Science.gov (United States)

    Ozkan, Selda; Cha, Gihoon; Mazare, Anca; Schmuki, Patrik

    2018-05-01

    In the present work, we report on the use of organized TiO2 nanotube (NT) layers with a regular intertube spacing for the growth of highly defined α-Fe2O3 nano-needles in the interspace. These α-Fe2O3 decorated TiO2 NTs are then explored for Li-ion battery applications and compared to classic close-packed (CP) NTs that are decorated with various amounts of nanoscale α-Fe2O3. We show that NTs with tube-to-tube spacing allow uniform decoration of individual NTs with regular arrangements of hematite nano-needles. The tube spacing also facilitates the electrolyte penetration as well as yielding better ion diffusion. While bare CP NTs show a higher capacitance of 71 μAh cm-2 compared to bare spaced NTs with a capacitance of 54 μAh cm-2, the hierarchical decoration with secondary metal oxide, α-Fe2O3, remarkably enhances the Li-ion battery performance. Namely, spaced NTs with α-Fe2O3 decoration have an areal capacitance of 477 μAh cm-2, i.e. they have nearly ˜8 times higher capacitance. However, the areal capacitance of CP NTs with α-Fe2O3 decoration saturates at 208 μAh cm-2, i.e. is limited to ˜3 times increase.

  19. Selective Oxidation Using Flame Aerosol Synthesized Iron and Vanadium-Doped Nano-TiO2

    Directory of Open Access Journals (Sweden)

    Zhong-Min Wang

    2011-01-01

    Full Text Available Selective photocatalytic oxidation of 1-phenyl ethanol to acetophenone using titanium dioxide (TiO2 raw and doped with Fe or V, prepared by flame aerosol deposition method, was investigated. The effects of metal doping on crystal phase and morphology of the synthesized nanostructured TiO2 were analyzed using XRD, TEM, Raman spectroscopy, and BET nitrogen adsorbed surface area measurement. The increase in the concentration of V and Fe reduced the crystalline structure and the anatase-to-rutile ratios of the synthesized TiO2. Synthesized TiO2 became fine amorphous powder as the Fe and V concentrations were increased to 3 and 5%, respectively. Doping V and Fe to TiO2 synthesized by the flame aerosol increased photocatalytic activity by 6 folds and 2.5 folds, respectively, compared to that of pure TiO2. It was found that an optimal doping concentration for Fe and V were 0.5% and 3%, respectively. The type and concentration of the metal dopants and the method used to add the dopant to the TiO2 are critical parameters for enhancing the activity of the resulting photocatalyst. The effects of solvents on the photocatalytic reaction were also investigated by using both water and acetonitrile as the reaction medium.

  20. Hybrid micro/nano-topography of a TiO2 nanotube-coated commercial zirconia femoral knee implant promotes bone cell adhesion in vitro.

    Science.gov (United States)

    Frandsen, Christine J; Noh, Kunbae; Brammer, Karla S; Johnston, Gary; Jin, Sungho

    2013-07-01

    Various approaches have been studied to engineer the implant surface to enhance bone in-growth properties, particularly using micro- and nano-topography. In this study, the behavior of osteoblast (bone) cells was analyzed in response to a titanium oxide (TiO2) nanotube-coated commercial zirconia femoral knee implant consisting of a combined surface structure of a micro-roughened surface with the nanotube coating. The osteoblast cells demonstrated high degrees of adhesion and integration into the surface of the nanotube-coated implant material, indicating preferential cell behavior on this surface when compared to the bare implant. The results of this brief study provide sufficient evidence to encourage future studies. The development of such hierarchical micro- and nano-topographical features, as demonstrated in this work, can provide insightful designs for advanced bone-inducing material coatings on ceramic orthopedic implant surfaces. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Protein Corona Prevents TiO2 Phototoxicity.

    Directory of Open Access Journals (Sweden)

    Maja Garvas

    Full Text Available TiO2 nanoparticles have generally low toxicity in the in vitro systems although some toxicity is expected to originate in the TiO2-associated photo-generated radical production, which can however be modulated by the radical trapping ability of the serum proteins. To explore the role of serum proteins in the phototoxicity of the TiO2 nanoparticles we measure viability of the exposed cells depending on the nanoparticle and serum protein concentrations.Fluorescence and spin trapping EPR spectroscopy reveal that the ratio between the nanoparticle and protein concentrations determines the amount of the nanoparticles' surface which is not covered by the serum proteins and is proportional to the amount of photo-induced radicals. Phototoxicity thus becomes substantial only at the protein concentration being too low to completely coat the nanotubes' surface.These results imply that TiO2 nanoparticles should be applied with ligands such as proteins when phototoxic effects are not desired - for example in cosmetics industry. On the other hand, the nanoparticles should be used in serum free medium or any other ligand free medium, when phototoxic effects are desired - as for efficient photodynamic cancer therapy.

  2. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light.

    Science.gov (United States)

    Ananpattarachai, Jirapat; Seraphin, Supapan; Kajitvichyanukul, Puangrat

    2016-02-01

    This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH(•)), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol-gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy were used to analyze the titania. The rate of formation of OH(•) for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH(•) and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH(•) unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

  3. High activity of novel Pd/TiO2 nanotube catalysts for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Wang Mei; Guo Daojun; Li Hulin

    2005-01-01

    Electro-oxidation of methanol in sulfuric acid solution was studied using palladium well-dispersed on titanium nanotubes, in relation to methanol oxidation processes in the direct oxidation methanol fuel cell. Pd dispersed on titania nanotubes, which leads to high surface area substrates, showed excellent catalytic activities compared to those of pure Pd and Pd-TiO 2 nanoparticles. TEM results show a narrow distribution of TiO 2 nanoparticles whose particle size is about 10nm, and uniform nano-sized TiO 2 nanotubes with 10nm in diameters are seen from HRTEM . A homogeneous structure in the composite nanomaterials is indicated by XRD analysis. The composite electrode activities were measured by cyclic voltammetry (CV) and at 25 deg. C it was found that 3wt% Pd in titania nanotubes had the best activity for methanol oxidation

  4. Synthesis of optimized indium phosphide/zinc sulfide core/shell nanocrystals and titanium dioxide nanotubes for quantum dot sensitized solar cells

    Science.gov (United States)

    Lee, Seungyong

    Synthesis of InP/ZnS core/shell nanocrystals and TiO 2 nanotubes and the optimization study to couple them together were explored for quantum dot sensitized solar cells. Its intrinsic nontoxicity makes the direct band gap InP/ZnS core/shell be one of the most promising semiconductor nanocrystals for optoelectric applications, with the advantage of tuning the optical absorption range in the desired solar spectrum region. Highly luminescent and monodisperse InP/ZnS nanocrystals were synthesized in a non-coordinating solvent. By varying the synthesis scheme, different size InP/ZnS nanocrystals with emission peaks ranging from 520 nm to 620 nm were grown. For the purpose of ensuring air stability, a ZnS shell was grown. The ZnS shell improves the chemical stability in terms of oxidation prevention. Transmission electron microscopy (TEM) image shows that the nanocrystals are highly crystalline and monodisperse. Free-standing TiO2 nanotubes were produced by an anodization method using ammonium fluoride. The free-standing nanotubes were formed under the condition that the chemical dissolution speed associated with fluoride concentration was faster than the speed of Ti oxidation. Highly ordered free-standing anatase form TiO2 nanotubes, which are transformed by annealing at the optimized temperature, are expected to be ideal for coupling with the prepared InP/ZnS nanocrystals. Electrophoretic deposition was carried out to couple the InP/ZnS nanocrystals with the TiO2 nanotubes. Under the adjusted applied voltage condition, the current during the electrophoretic deposition decreased continuously with time. The amount of the deposited nanocrystals was estimated by calculation and the evenly deposited nanocrystals on the TiO2 nanotubes were observed by TEM.

  5. Three-dimensional observation of TiO2 nanostructures by electron tomography

    KAUST Repository

    Suh, Young Joon; Lu, Ning; Park, Seong Yong; Lee, Tae Hun; Lee, Sang Hoon; Cha, Dong Kyu; Lee, Min Gun; Huang, Jie; Kim, Sung Soo; Sohn, Byeong Hyeok; Kim, Geung Ho; Ko, Min Jae; Kim, Jiyoung; Kim, Moon J.

    2013-01-01

    Three-dimensional nanostructures of TiO2 related materials including nanotubes, electron acceptor materials in hybrid polymer solar cells, and working electrodes of dye sensitized solar cells (DSSCs) were visualized by electron tomography as well

  6. Computational Fluid Dynamics (CFD Analysis of Phthalic Anhydride’s Yield Using Lab Synthesized and Commercially Available (V2O5/TiO2 Catalyst

    Directory of Open Access Journals (Sweden)

    A. Sarosh

    2018-04-01

    Full Text Available V2O5/TiO2 is an important catalyst used in many industrial reactions like selective oxidation of o-xylene to phthalic anhydride, selective catalytic reduction of NOx, selective oxidation of alkanes, etc. The partial oxidation of o-xylene to synthesize phthalic anhydride is an exothermic reaction and leaves hot spots on the catalyst’s surface. The yield of phthalic anhydride strongly depends on the activity and stability of the catalyst. In this work, a computational fluid dynamics (CFD analysis has been conducted to compare the yield of lab prepared catalyst with the commercially used catalyst. This work is first attempt to simulate V2O5/TiO2 catalyst for cracking heavy hydrocarbons in the petrochemical industry using k- ε turbulence and species transport models in CFD. The results obtained are in the form of scaled residuals, area-weighted average, and contours of pressure and temperature. Simulation results of lab synthesized and commercially used catalysts, applying finite volume method (FVM are compared, which emphasize the scope of CFD modeling in the catalytic cracking process of petrochemical industry.

  7. A Green Synthesis of Xanthenone Derivatives in Aqueous Media Using TiO2-CNTs Nanocomposite as an Eco-Friendly and Re-Usable Catalyst.

    Science.gov (United States)

    Samani, Amir; Abdolmohammadi, Shahrzad; Otaredi-Kashani, Asieh

    2018-01-01

    The xanthene (dibenzopyran) framework constitutes the core structure of many biologically active compounds, that they have been of interest because of their pharmacological activities like antiviral, antibacterial, anti-inflammatory, and CCR1 antagonist. As heterogeneous catalysts offer several advantages over homogeneous catalysts, the performance of reactions on the surface of nanosized heterogeneous salts has received a great deal of interest in recent years. In the area of nanosized heterogeneous catalysts there is a noticeable range of reactions that are catalyzed efficiently by TiO2 NPs. Moreover, carbon nanotubes (CNTs) as a support can be used to obtain nanoparticles with modified morphology, structural, chemical, electrical, and optical properties. The catalytic activity of titanium dioxide supported on carbon nanotubes has been greatly improved. The present methodology focus on the synthesis of 7,7-dimethyl-10-aryl- 6,7,8,10-tetrahydro-9H-[1,3]dioxolo[4,5-b]xanthen-9-ones, through a condensation reaction of dimedone, aromatic aldehydes and 3,4-methylenedioxyphenol, using a catalytic amount of TiO2- CNTs nanocomposite (15 mol%) at 80 ˚C in aqueous media, within 60-90 min. The TiO2-CNTs nanocomposite was also prepared by a known simple sonochemical method. A series of 7,7-dimethyl-10-aryl-6,7,8,10-tetrahydro-9H-[1,3]dioxolo[4,5-b]xanthen-9-ones were successfully synthesized in high yields (92-98%). All synthesized compounds were well characterized by their satisfactory elemental analyses, IR, 1H and 13C NMR spectroscopy. The synthesized catalyst was fully characterized by SEM, TEM, XRD, and EDX techniques. In summary, this investigation constitutes a novel and efficient route for the synthesis of 7,7-dimethyl-10-aryl-6,7,8,10-tetrahydro-9H-[1,3]dioxolo[4,5-b]xanthen-9-ones in high yields, by a three-component reaction of dimedone, aromatic aldehydes and 3,4-methylenedioxyphenol in water and in the presence of the TiO2-CNTs nanocomposite as a green

  8. Glycine assisted synthesis of flower-like TiO2 hierarchical spheres and its application in photocatalysis

    International Nuclear Information System (INIS)

    Tao, Yu-gui; Xu, Yan-qiu; Pan, Jun; Gu, Hao; Qin, Chang-yun; Zhou, Peng

    2012-01-01

    Graphical abstract: Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. The obtained TiO 2 sample showed good photocatalytic activity of decomposition of methyl orange under sunlight. Highlights: ► Flower-like TiO 2 hierarchical spheres were synthesized by glycine assistant. ► Reaction time, temperature, solution pH and glycine dosage were studied. ► The formation of the flower-like TiO 2 spheres is an Ostwald ripening process. ► Flower-like TiO 2 showed high photocatalytic activity under sunlight. - Abstract: Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2 O 2 ). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2 .

  9. A photoelectrochemical study of CdS modified TiO2 nanotube arrays as photoanodes for cathodic protection of stainless steel

    International Nuclear Information System (INIS)

    L, Jing; Lin Changjian; Li Juntao; Lin Zequan

    2011-01-01

    An electrodeposited CdS nanoparticles-modified highly-ordered TiO 2 nanotube arrays (CdS-TNs) photoelectrode and its performance of photocathodic protection are reported. The self-organized TiO 2 nanotube arrays are fabricated by electrochemical anodization in an organic-inorganic mixed electrolyte and sensitized with CdS nanoparticles by electrodeposition via a single-step direct current. The morphology, crystalline phase, and composition of the CdS-TNs films were characterized systematically by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible (UV-Vis) spectroscopy, respectively. The photoelectrochemical performances of the CdS-TNs film under illumination and dark conditions in 0.5 M NaCl solution were evaluated through the electrochemical measurements. It is indicated that the TNs incorporated by CdS effectively harvest solar light in the UV as well as the visible light (up to 480 nm) region. It is supposed that the high photoelectro-response activity of the CdS-TNs is attributed to the increased efficiency of charge separation and transport of electrons. The electrode potentials of 304 stainless steel coupled with the CdS-TNs is found to be negatively shifted for about 246 mV and 215 mV under UV and white light irradiation, respectively, which can be remained for 24 h even in darkness. It is implied that the CdS-TNs are able to effectively function a photogenerated cathodic protection for metals both under the UV and visible light illumination.

  10. Single-walled carbon nanotube-facilitated dispersion of particulate TiO2 on ZrO2 ceramic membrane filters.

    Science.gov (United States)

    Yao, Yuan; Li, Gonghu; Gray, Kimberly A; Lueptow, Richard M

    2008-07-15

    We report that SWCNTs substantially improve the uniformity and coverage of TiO2 coatings on porous ZrO2 ceramic membrane filters. The ZrO2 filters were dip coated with 100 nm anatase TiO2, TiO2/SWCNT composites, a TiO2+SWCNT mixture, and a TiO2/MWCNT composite at pH 3, 5, and 8. Whereas the TiO2+SWCNT mixture and the TiO2/MWCNT composite promote better coverage and less clumping than TiO2 alone, the TiO2/SWCNT composite forms a complete uniform coating without cracking at pH 5 ( approximately 100% coverage). A combination of chemical and electrostatic effects between TiO2 and SWCNTs forming the composite as well as between the composite and the ZrO2 surface explains these observations.

  11. Synthesis, Characterization and Properties of CeO2-doped TiO2 Composite Nanocrystals

    Directory of Open Access Journals (Sweden)

    Oman ZUAS

    2013-12-01

    Full Text Available Pure TiO2 and CeO2-doped TiO2 (3 % CeO2-97 %TiO2 composite nanocrystals were synthesized via co-precipitation method and characterized using TGA, XRD, FTIR, DR-UV-vis and TEM. The XRD data revealed that the phase structure of the synthesized samples was mainly in pure anatase having crystallite size in the range of 7 nm – 11 nm. Spherical shapes with moderate aggregation of the crystal particles were observed under the TEM observation. The presence of the CeO2 at TiO2 site has not only affected morphologically but also induced the electronic property of the TiO2 by lowering the band gap energy from 3.29 eV (Eg-Ti to 3.15 eV (Eg-CeTi. Performance evaluation of the synthesized samples showed that both samples have a strong adsorption capacity toward Congo red (CR dye in aqueous solution at room temperature experiment, where  the capacity of the CeTi was higher than the Ti sample. Based on DR-UV data, the synthesized samples obtained in this study may also become promising catalysts for photo-assisted removal of synthetic dye in aqueous solution. DOI: http://dx.doi.org/10.5755/j01.ms.19.4.2732

  12. Complex impedance study on nano-CeO2 coating TiO2

    International Nuclear Information System (INIS)

    Zhang Mei; Wang Honglian; Wang Xidong; Li Wenchao

    2006-01-01

    Titanium dioxide (TiO 2 ) nanoparticles and cerium dioxide (CeO 2 ) nanoparticles coated titanium dioxide (TiO 2 ) nanoparticles (CeO 2 -TiO 2 nanoparticles) have been successfully synthesized by sol-gel method. The complex impedance of the materials was investigated. The grain resistance, boundary resistance and activation energy of the nanoparticles were calculated according to Arrhenius equation. According to calculating results, the active capacity of pure TiO 2 nanoparticles has been improved because of nano-CeO 2 coating. An optimal CeO 2 content of 4.9 mol% was achieved. The high resolution electron microscopy images of CeO 2 -TiO 2 nanoparticles showed that TiO 2 nanoparticles, as a core, were covered by CeO 2 nanoparticles. The average size of CeO 2 coating TiO 2 nanoparticles was about 70 nm. Scanning electron microscopy observation indicted that CeO 2 nanoparticle coating improved the separation, insulation, and stability the CeO 2 -TiO 2 nanoparticles, which was benefit to the activity of materials

  13. Novel Nanotechnology of TiO2 Improves Physical-Chemical and Biological Properties of Glass Ionomer Cement

    Directory of Open Access Journals (Sweden)

    Daniela Dellosso Cibim

    2017-01-01

    Full Text Available The aim of this study was to assess the performance of glass ionomer cement (GIC added with TiO2 nanotubes. TiO2 nanotubes [3%, 5%, and 7% (w/w] were incorporated into GIC’s (Ketac Molar EasyMix™ powder component, whereas unblended powder was used as control. Physical-chemical-biological analysis included energy dispersive spectroscopy (EDS, surface roughness (SR, Knoop hardness (SH, fluoride-releasing analysis, cytotoxicity, cell morphology, and extracellular matrix (ECM composition. Parametric or nonparametric ANOVA were used for statistical comparisons (α≤0.05. Data analysis revealed that EDS only detected Ti at the 5% and 7% groups and that GIC’s physical-chemical properties were significantly improved by the addition of 5% TiO2 as compared to 3% and GIC alone. Furthermore, regardless of TiO2 concentration, no significant effect was found on SR, whereas GIC-containing 7% TiO2 presented decreased SH values. Fluoride release lasted longer for the 5% and 7% TiO2 groups, and cell morphology/spreading and ECM composition were found to be positively affected by TiO2 at 5%. In conclusion, in the current study, nanotechnology incorporated in GIC affected ECM composition and was important for the superior microhardness and fluoride release, suggesting its potential for higher stress-bearing site restorations.

  14. Photocatalysis-assisted water filtration: Using TiO2-coated vertically aligned multi-walled carbon nanotube array for removal of Escherichia coli O157:H7

    International Nuclear Information System (INIS)

    Oza, Goldie; Pandey, Sunil; Gupta, Arvind; Shinde, Sachin; Mewada, Ashmi; Jagadale, Pravin; Sharon, Maheshwar; Sharon, Madhuri

    2013-01-01

    A porous ceramic was coated with vertically aligned multi-walled carbon nanotubes (MWCNTs) by spray pyrolysis. Titanium dioxide (TiO 2 ) nanoparticles were then coated onto this densely aligned MWCNT. The presence of TiO 2 /MWCNT interfacial arrays was confirmed by X-ray diffraction (XRD), scanning electron microscope–energy dispersive analysis of X-ray (SEM–EDAX) and transmission electron microscope (TEM). This is a novel report in which water loaded with a most dreadful enterohemorrhagic pathogenic strain of Escherichia coli O157:H7 was filtered through TiO 2 /MWCNT coated porous ceramic filter and then analysed. Bacterial removal performance was found to be significantly lower in control i.e. plain porous ceramic (P < 0.05) as compared to TiO 2 /MWCNT coated ceramic. The photocatalytic killing rate constant for TiO 2 -ceramic and MWCNT/TiO 2 -ceramic under fluorescent light was found be 1.45 × 10 −2 min −1 and 2.23 × 10 −2 min −1 respectively. Further, when I–V characteristics were performed for TiO 2 /MWCNT composite, it was corroborated that the current under light irradiation is comparatively higher than that in dark, thus proving it to be photocatalytically efficient system. The enhanced photocatalysis may be a contribution of increased surface area and charge transfer rate as a consequence of aligned MWCNT network. - Highlights: • Coating of vertically aligned MWCNT on ceramic candle filter • Surface orchestration of TiO 2 on MWCNT arrays • I–V characteristic studies are performed under dark and illumination. • Photocatalytic efficiency of TiO 2 /MWCNT arrays is determined using E. coli O157:H7. • Proposed a mechanism of bacterial killing due to free radical formation

  15. Characterization of TiO2–MnO2 composite electrodes synthesized using spark plasma sintering technique

    CSIR Research Space (South Africa)

    Tshephe, TS

    2015-03-01

    Full Text Available and electrochemical stability of the resulting materials were investigated. Relative densities of 99.33% and 98.49% were obtained for 90TiO2–10MnO2 and 80TiO2–10MnO2 when ball was incorporated. The 90TiO2–10MnO2 powder mixed with balls had its Vickers hardness value...

  16. Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen

    International Nuclear Information System (INIS)

    Tao, Hong; Liang, Xiao; Zhang, Qian; Chang, Chang-Tang

    2015-01-01

    Highlights: • TiO 2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a simple hydrothermal method. • And its application to removal acetaminophen, degradation efficiency is more than 96%. • The photocatalytic degradation results indicated that the sample with 5% GO in GR-TNT nanocomposites for 3 h had the highest degradation rate. • The degradation intermediates of acetaminophen by the composites were invested by GC-MS and the possible pathways were invested. - Abstract: Acetaminophen is commonly used as an antipyretic or analgesics agent and poses threat to human health. In this research, TiO 2 and graphite oxide were used as precursors of titanium dioxide nanotubes and graphene respectively. Titanium dioxide nanotube and graphene (GR-TNT) nanocomposites were synthesized through a hydrothermal method. FT-IR, UV-Vis, XRD, and TGA were used to characterize the catalysts. The acetaminophen degradation rate can reach up to 96% under UV light irradiation for 3 h and with the 5% GR-TNT dosage of 0.1 g L −1 . Further experiments were done to probe the mechanism of the photocatalytic reaction catalyzed by the GR-TNT composite. EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the holes are the main oxidation species in the photocatalytic process. This study provides a new prospect for acetaminophen degradation by using high efficiency catalysts

  17. Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine-free route and topotactic transformation.

    Science.gov (United States)

    Wang, Changhua; Zhang, Xintong; Liu, Yichun

    2014-05-21

    In this work, we report a novel approach to fabricate hierarchical TiO2 microspheres (HTMS) assembled by ultrathin nanoribbons where an anatase/TiO2(B) heterojunction and high energy facet coexist. The as-adopted approach involves (1) nonaqueous solvothermal treatment of a mixture of tetrabutyl titanate and acetic acid and (2) topotactical transformation into HTMS via thermal annealing. By this approach, the TiO2(B) phase usually synthesized from an alkaline treatment route could be initially formed. Subsequently, phase transition from TiO2(B) to anatase TiO2 occurs upon thermal treatment. It is demonstrated that such phase transition is accompanied by crystallographic orientation along the c-axis of anatase and TiO2(B) crystals, resulting in not only a coherent interface between two phases but also oriented attachment of anatase mesocrystals along the [001] direction, and finally high-energy (001) facet exposure. Interestingly, this work provides an alternative fluorine-free route for the synthesis of TiO2 crystals with high-energy (001) facet exposure. The structural analysis reveals that lattice-match induced topotactic transformation from TiO2(B) to anatase is the sole reason for the (001) facet exposure of anatase TiO2. The photocatalytic test for acetaldehyde decomposition shows that HTMS with anatase/TiO2(B) heterojunction and high-energy (001) facet exhibits superior photocatalytic efficiency compared with the relevant commercial product P25, which can be ascribed to the synergistic effect of large surface area, anatase/TiO2(B) heterojunction as well as high-energy facet exposure.

  18. Coexistence of an anatase/TiO2(B) heterojunction and an exposed (001) facet in TiO2 nanoribbon photocatalysts synthesized via a fluorine-free route and topotactic transformation

    Science.gov (United States)

    Wang, Changhua; Zhang, Xintong; Liu, Yichun

    2014-04-01

    In this work, we report a novel approach to fabricate hierarchical TiO2 microspheres (HTMS) assembled by ultrathin nanoribbons where an anatase/TiO2(B) heterojunction and high energy facet coexist. The as-adopted approach involves (1) nonaqueous solvothermal treatment of a mixture of tetrabutyl titanate and acetic acid and (2) topotactical transformation into HTMS via thermal annealing. By this approach, the TiO2(B) phase usually synthesized from an alkaline treatment route could be initially formed. Subsequently, phase transition from TiO2(B) to anatase TiO2 occurs upon thermal treatment. It is demonstrated that such phase transition is accompanied by crystallographic orientation along the c-axis of anatase and TiO2(B) crystals, resulting in not only a coherent interface between two phases but also oriented attachment of anatase mesocrystals along the [001] direction, and finally high-energy (001) facet exposure. Interestingly, this work provides an alternative fluorine-free route for the synthesis of TiO2 crystals with high-energy (001) facet exposure. The structural analysis reveals that lattice-match induced topotactic transformation from TiO2(B) to anatase is the sole reason for the (001) facet exposure of anatase TiO2. The photocatalytic test for acetaldehyde decomposition shows that HTMS with anatase/TiO2(B) heterojunction and high-energy (001) facet exhibits superior photocatalytic efficiency compared with the relevant commercial product P25, which can be ascribed to the synergistic effect of large surface area, anatase/TiO2(B) heterojunction as well as high-energy facet exposure.

  19. Ecotoxicity of TiO2 to Daphnia similis under irradiation

    International Nuclear Information System (INIS)

    Marcone, Glauciene P.S.; Oliveira, Ádria C.; Almeida, Gilberto; Umbuzeiro, Gisela A.; Jardim, Wilson F.

    2012-01-01

    Graphical abstract: EC50 (mg L −1 ) values to TiO 2 samples obtained in toxicity tests with Daphnia similis under different conditions of illumination (UV A and visible radiation) and in the dark (as standard protocols). P25: commercial sample containing 30% rutile and 70% anatase; M-S: synthesized sample containing 30% rutile and 70% anatase; Anatase-S: synthesized sample containing 100% anatase; Rutile-S: synthesized sample containing 100% rutile and P25*: commercial sample containing 100% rutile. Highlights: ► Some key physicochemical parameters of nano TiO 2 explain the toxicity observed. ► Under UV A radiation, TiO 2 becomes more toxic to D. similis. ► Toxicity tests of photoactive nano materials require photons as control parameter. - Abstract: Currently, there are a large number of products (sunscreen, pigments, cosmetics, plastics, toothpastes and photocatalysts) that use TiO 2 nanoparticles. Due to this large production, these nanoparticles can be released into the aquatic, terrestrial and aerial environments at relative high concentration. TiO 2 in natural water has the capacity to harm aquatic organisms such as the Daphnia (Cladocera) species, mainly because the photocatalytic properties of this semiconductor. However, very few toxicity tests of TiO 2 nanoparticles have been conducted under irradiation. The aim of this study was to evaluate anatase and rutile TiO 2 toxicity to Daphnia similis exploring their photocatalytic properties by incorporating UV A and visible radiation as a parameter in the assays. Anatase and rutile TiO 2 samples at the highest concentration tested (100 mg L −1 ) were not toxic to D. similis, neither in the dark nor under visible light conditions. The anatase form and a mixture of anatase and rutile, when illuminated by a UV A black light with a peak emission wavelength of 360 nm, presented photo-dependent EC50 values of 56.9–7.8 mg L −1 , which indicates a toxicity mechanism caused by ROS (reactive oxygen species

  20. Stability and Electronic Properties of TiO2 Nanostructures With and Without B and N Doping

    DEFF Research Database (Denmark)

    Mowbray, Duncan; Martinez, Jose Ignacio; García Lastra, Juan Maria

    2009-01-01

    We address one of the main challenges to TiO2 photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2’s electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers, and 3D surface and bulk phases using differe...

  1. Thermo-stable carbon nanotube-TiO_2 nanocompsite as electron highways in dye-sensitized solar cell produced by bio-nano-process

    International Nuclear Information System (INIS)

    Inoue, Ippei; Yasueda, Hisashi; Yamauchi, Hirofumi; Okamoto, Naofumi; Toyoda, Kenichi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Yamashita, Ichiro

    2015-01-01

    We produced a thermostable TiO_2-(anatase)-coated multi-walled-carbon-nanotube (MWNT) nanocomposite for use in dye-sensitized solar cells (DSSCs) using biological supuramolecules as catalysts. We synthesized two different sizes of iron oxide nanoparticles (NPs) and arrayed the NPs on a silicon substrate utilizing two kinds of genetically modified cage-shaped proteins with silicon-binding peptide aptamers on their outer surfaces. Chemical vapor deposition (CVD) with the vapor–liquid-solid phase (VLS) method was applied to the substrate, and thermostable MWNTs with a diameter of 6 ± 1 nm were produced. Using a genetically modified cage-shaped protein with carbon-nanomaterials binding and Ti-mineralizing peptides as a catalyst, we were able to mineralize a titanium compound around the surface of the MWNT. The products were sintered, and thin TiO_2-layer-coated MWNTs nanocomoposites were successfully produced. Addition of a 0.2 wt% TiO_2-coated MWNT nanocomposite to a DSSC photoelectrode improved current density by 11% and decreased electric resistance by 20% compared to MWNT-free reference DSSCs. These results indicate that a nanoscale TiO_2-layer-coated thermostable MWNT structure produced by our mutant proteins works as a superior electron transfer highway within TiO_2 photoelectrodes. (paper)

  2. A new approach of tailoring wetting properties of TiO2 nanotubular surfaces

    KAUST Repository

    Isimjan, Tayirjan T.; Yan, Zhu; Yang, D. Q.; Rohani, Sohrab M F; Ray, Ajay

    2012-01-01

    TiO2 nanotube layers were grown on a Ti surface by electrochemical anodization. As prepared, these layers showed a superhydrophilic wetting behavior. Modified with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES), the layers showed a

  3. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai

    2013-01-09

    A visible light responsive plasmonic photocatalytic composite material is designed by rationally selecting Au nanocrystals and assembling them with the TiO2-based photonic crystal substrate. The selection of the Au nanocrystals is so that their surface plasmonic resonance (SPR) wavelength matches the photonic band gap of the photonic crystal and thus that the SPR of the Au receives remarkable assistance from the photonic crystal substrate. The design of the composite material is expected to significantly increase the Au SPR intensity and consequently boost the hot electron injection from the Au nanocrystals into the conduction band of TiO2, leading to a considerably enhanced water splitting performance of the material under visible light. A proof-of-concept example is provided by assembling 20 nm Au nanocrystals, with a SPR peak at 556 nm, onto the photonic crystal which is seamlessly connected on TiO2 nanotube array. Under visible light illumination (>420 nm), the designed material produced a photocurrent density of ∼150 μA cm-2, which is the highest value ever reported in any plasmonic Au/TiO2 system under visible light irradiation due to the photonic crystal-assisted SPR. This work contributes to the rational design of the visible light responsive plasmonic photocatalytic composite material based on wide band gap metal oxides for photoelectrochemical applications. © 2012 American Chemical Society.

  4. Lithiation Confined in One Dimensional Nanospace of TiO2 (Anatase) Nanotube to Enhance the Lithium Storage Property of CuO Nanowires.

    Science.gov (United States)

    Li, Ang; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng; Ma, Zhaokun

    2015-10-14

    We have fabricated CuO@TiO2 nanocable arrays by a facile method involving in situ thermal oxidation of Cu foil and coating of tetrabutyl titanate solution. The structure of the nanocables has been investigated by various techniques to comfirm that the cores are mainly crystalline monoclinic CuO, and the shells are crystalline tetragonal anatase TiO2. When used as an anode material for lithium-ion batteries, the nanoconfinement effect plays an important role in improving the lithium-ion storage preformance: the lithiation will be confined in one-dimensional space of TiO2 nanotubes to limit the pulverization of CuO, and the phase interface will cause an interfacial adsorption to enrich more lithium ions at some level. Benefiting from the nanoconfinement effect and interfacial adsorption, the reversible capacity does not fade, but rather increases gradually to 725 mAh g(-1) after 400 cycles at a current density of 60 mA g(-1), superior to the theoretical capacity of CuO.

  5. Air-gating and chemical-gating in transistors and sensing devices made from hollow TiO2 semiconductor nanotubes

    Science.gov (United States)

    Alivov, Yahya; Funke, Hans; Nagpal, Prashant

    2015-07-01

    Rapid miniaturization of electronic devices down to the nanoscale, according to Moore’s law, has led to some undesirable effects like high leakage current in transistors, which can offset additional benefits from scaling down. Development of three-dimensional transistors, by spatial extension in the third dimension, has allowed higher contact area with a gate electrode and better control over conductivity in the semiconductor channel. However, these devices do not utilize the large surface area and interfaces for new electronic functionality. Here, we demonstrate air gating and chemical gating in hollow semiconductor nanotube devices and highlight the potential for development of novel transistors that can be modulated using channel bias, gate voltage, chemical composition, and concentration. Using chemical gating, we reversibly altered the conductivity of nanoscaled semiconductor nanotubes (10-500 nm TiO2 nanotubes) by six orders of magnitude, with a tunable rectification factor (ON/OFF ratio) ranging from 1-106. While demonstrated air- and chemical-gating speeds were slow here (˜seconds) due to the mechanical-evacuation rate and size of our chamber, the small nanoscale volume of these hollow semiconductors can enable much higher switching speeds, limited by the rate of adsorption/desorption of molecules at semiconductor interfaces. These chemical-gating effects are completely reversible, additive between different chemical compositions, and can enable semiconductor nanoelectronic devices for ‘chemical transistors’, ‘chemical diodes’, and very high-efficiency sensing applications.

  6. Single-step preparation of TiO2/MWCNT Nanohybrid materials by laser pyrolysis and application to efficient photovoltaic energy conversion.

    Science.gov (United States)

    Wang, Jin; Lin, Yaochen; Pinault, Mathieu; Filoramo, Arianna; Fabert, Marc; Ratier, Bernard; Bouclé, Johann; Herlin-Boime, Nathalie

    2015-01-14

    This paper presents the continuous-flowand single-step synthesis of a TiO2/MWCNT (multiwall carbon nanotubes) nanohybrid material. The synthesis method allows achieving high coverage and intimate interface between the TiO2particles and MWCNTs, together with a highly homogeneous distribution of nanotubes within the oxide. Such materials used as active layer in theporous photoelectrode of solid-state dye-sensitized solar cells leads to a substantial performance improvement (20%) as compared to reference devices.

  7. Rational design of anatase TiO2 architecture with hierarchical nanotubes and hollow microspheres for high-performance dye-sensitized solar cells

    Science.gov (United States)

    Gu, Jiuwang; Khan, Javid; Chai, Zhisheng; Yuan, Yufei; Yu, Xiang; Liu, Pengyi; Wu, Mingmei; Mai, Wenjie

    2016-01-01

    Large surface area, sufficient light-harvesting and superior electron transport property are the major factors for an ideal photoanode of dye-sensitized solar cells (DSSCs), which requires rational design of the nanoarchitectures and smart integration of state-of-the-art technologies. In this work, a 3D anatase TiO2 architecture consisting of vertically aligned 1D hierarchical TiO2 nanotubes (NTs) with ultra-dense branches (HTNTs, bottom layer) and 0D hollow TiO2 microspheres with rough surface (HTS, top layer) is first successfully constructed on transparent conductive fluorine-doped tin oxide glass through a series of facile processes. When used as photoanodes, the DSSCs achieve a very large short-current density of 19.46 mA cm-2 and a high overall power conversion efficiency of 8.38%. The remarkable photovoltaic performance is predominantly ascribed to the enhanced charge transport capacity of the NTs (function as the electron highway), the large surface area of the branches (act as the electron branch lines), the pronounced light harvesting efficiency of the HTS (serve as the light scattering centers), and the engineered intimate interfaces between all of them (minimize the recombination effect). Our work demonstrates a possibility of fabricating superior photoanodes for high-performance DSSCs by rational design of nanoarchitectures and smart integration of multi-functional components.

  8. Hydrothermal synthesis of TiO2 Nanotubes: Microwave heating versus conventional heating

    CSIR Research Space (South Africa)

    Sikhwivhilu, LM

    2010-01-01

    Full Text Available The influence of the method of synthesis in the properties of the tubular structures derived from TiO2 was investigated using XRD, SEM and BET analysis. The use of microwave irradiation resulted in the formation of TiO2 tubes comprising anatase...

  9. Sensing and electrical properties of TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Usman, M.

    2011-01-01

    The purpose of this work was to synthesize TiO 2 nanoparticles using Coprecipitation method. 2 different samples were synthesized, one with a modifier and other without using a modifier. After synthesis, newly formed nanoparticles were characterized b different techniques to find various properties of these nanoparticles. Scanning electron Microscopy (SEM) was used to study structure and morphology of Cu nanoparticles and for compositional analysis Energy dispersive spectroscopy (EDS) was used. X-Ray Diffraction (XRD) Studies were also carried out to find phase an average particle Size. To find the band gap of our nanoparticles, UV-Visible Spectroscopy was also done. Non-Modified nanoparticles were as small as 12nm reported by SEM images which were synthesized using a modifier were as small as 10nm. Modified TiO 2 nanoparticles were used in humidity sensing devices and it properties as a humidity sensor were examined by doing Impedance spectroscopy, D measurements and Dielectric measurements. Our TiO 2 humidity sensor showed sensitivity for humidity at low and mid-range frequencies while its response time was 4 seconds when we changed RH% to 90 from 40% and measured the impedance. (author)

  10. Anti-fish bacterial pathogen effect of visible light responsive Fe3O4@TiO2 nanoparticles immobilized on glass using TiO2 sol–gel

    International Nuclear Information System (INIS)

    Yeh, N.; Lee, Y.C.; Chang, C.Y.; Cheng, T.C.

    2013-01-01

    This paper demonstrates a fish pathogen reduction procedure that uses TiO 2 sol–gel coating Fe 3 O 4 @TiO 2 powder on glass substrate. Such procedure can effectively relieve two constraints that haunt TiO 2 sterilization applications: 1) the need for UV for overcoming the wide band gap of pure TiO 2 and 2) the difficulty of its recovering from water for reuse. In the process, visible light responsive Fe 3 O 4 /TiO 2 nanoparticles are synthesized and immobilized on glass using TiO 2 sol–gel as the binder for fish bacterial pathogen disinfection test. After 3 h of visible light irradiation, the immobilized Fe 3 O 4 @TiO 2 's inhibition efficiencies for fish bacterial pathogen are, respectively, 50% for Edwardsiella tarda (BCRC 10670) and 23% for Aeromonas hydrophila (BCRC 13018)

  11. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors

    Science.gov (United States)

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-01

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm-2 (~548 F g-1) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  12. VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors.

    Science.gov (United States)

    Hu, Chenchen; Xu, Henghui; Liu, Xiaoxiao; Zou, Feng; Qie, Long; Huang, Yunhui; Hu, Xianluo

    2015-11-04

    VO2/TiO2 nanosponges with easily tailored nanoarchitectures and composition were synthesized by electrostatic spray deposition as binder-free electrodes for supercapacitors. Benefiting from the unique interconnected pore network of the VO2/TiO2 electrodes and the synergistic effect of high-capacity VO2 and stable TiO2, the as-formed binder-free VO2/TiO2 electrode exhibits a high capacity of 86.2 mF cm(-2) (~548 F g(-1)) and satisfactory cyclability with 84.3% retention after 1000 cycles. This work offers an effective and facile strategy for fabricating additive-free composites as high-performance electrodes for supercapacitors.

  13. Efficient photodecomposition of herbicide imazapyr over mesoporous Ga2O3-TiO2 nanocomposites.

    Science.gov (United States)

    Ismail, Adel A; Abdelfattah, Ibrahim; Faisal, M; Helal, Ahmed

    2018-01-15

    The unabated release of herbicide imazapyr into the soil and groundwater led to crop destruction and several pollution-related concerns. In this contribution, heterogeneous photocatalytic technique was employed utilizing mesoporous Ga 2 O 3 -TiO 2 nanocomposites for degrading imazapyr herbicide as a model pollutant molecule. Mesoporous Ga 2 O 3 -TiO 2 nanocomposites with varied Ga 2 O 3 contents (0-5wt%) were synthesized through sol-gel process. XRD and Raman spectra exhibited extremely crystalline anatase TiO 2 phase at low Ga 2 O 3 content which gradually reduced with the increase of Ga 2 O 3 content. TEM images display uniform TiO 2 particles (10±2nm) with mesoporous structure. The mesoporous TiO 2 exhibits large surface areas of 167m 2 g -1 , diminished to 108m 2 g -1 upon 5% Ga 2 O 3 incorporation, with tunable mesopore diameter in the range of 3-9nm. The photocatalytic efficiency of synthesized Ga 2 O 3 -TiO 2 nanocomposites was assessed by degrading imazapyr herbicide and comparing with commercial photocatalyst UV-100 and mesoporous Ga 2 O 3 under UV illumination. 0.1% Ga 2 O 3 -TiO 2 nanocomposite is considered the optimum photocatalyst, which degrades 98% of imazapyr herbicide within 180min. Also, the photodegradation rate of imazapyr using 0.1% Ga 2 O 3 -TiO 2 nanocomposite is nearly 10 and 3-fold higher than that of mesoporous Ga 2 O 3 and UV-100, respectively. The high photonic efficiency and long-term stability of the mesoporous Ga 2 O 3 -TiO 2 nanocomposites are ascribed to its stronger oxidative capability in comparison with either mesoporous TiO 2 , Ga 2 O 3 or commercial UV-100. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Synthesis and photocatalytic activity of anatase TiO2 nanoparticles for degradation of methyl orange

    Science.gov (United States)

    Singh, Manmeet; Duklan, Neha; Singh, Pritpal; Sharma, Jeewan

    2018-05-01

    In present study, TiO2 nanoparticles, in anatase form, were successfully synthesized using TiCl4 as precursor. These nanoparticles were synthesized by sol-gel method at room temperature (298 K). As prepared samples were characterized for phase structure, optical absorption and surface properties using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Visible spectroscopy. The synthesized TiO2 nanoparticles sample was compared with one of the most efficient commercial photocatalyst Degussa TiO2 also known as P(25). The effect of phase composition of anatase TiO2 nanoparticles, as compared to P(25), on photocatalytic decomposition of organic dye, methyl orange (MO) was studies under UV light illumination. An enhanced degradation of hazardous dye was observed in the presence of anatase TiO2 nanoparticles as compared to P(25) due to slow recombination rate. Other possible reasons for this enhancement have also been discussed.

  15. Dye-sensitized solar cells employing doubly or singly open-ended TiO2 nanotube arrays: structural geometry and charge transport.

    Science.gov (United States)

    Choi, Jongmin; Song, Seulki; Kang, Gyeongho; Park, Taiho

    2014-09-10

    We systematically investigated the charge transport properties of doubly or singly open-ended TiO2 nanotube arrays (DNT and SNT, respectively) for their utility as electrodes in dye-sensitized solar cells (DSCs). The SNT or DNT arrays were transferred in a bottom-up (B-up) or top-up (T-up) configuration onto a fluorine-doped tin oxide (FTO) substrate onto which had been deposited a 2 μm thick TiO2 nanoparticle (NP) interlayer. This process yielded four types of DSCs prepared with SNTs (B-up or T-up) or DNT (B-up or T-up). The photovoltaic performances of these DSCs were analyzed by measuring the dependence of the charge transport on the DSC geometry. High resolution scanning electron microscopy techniques were used to characterize the electrode cross sections, and electrochemical impedance spectroscopy was used to characterize the electrical connection at the interface between the NT array and the TiO2 NP interlayer. We examined the effects of decorating the DNT or SNT arrays with small NPs (sNP@DNT and sNP@SNT, respectively) in an effort to increase the extent of dye loading. The DNT arrays decorated with small NPs performed better than the decorated SNT arrays, most likely because the Ti(OH)4 precursor solution flowed freely into the array through the open ends of the NTs in the DNT case but not in the SNT case. The sNP@DNT-based DSC exhibited a better PCE (10%) compared to the sNP@SNT-based DSCs (6.8%) because the electrolyte solution flow was not restricted, direct electron transport though the NT arrays was possible, the electrical connection at the interface between the NT array and the TiO2 NP interlayer was good, and the array provided efficient light harvesting.

  16. Solid-state synthesis of Li_4Ti_5O_1_2 whiskers from TiO_2-B

    International Nuclear Information System (INIS)

    Yao, Wenjun; Zhuang, Wei; Ji, Xiaoyan; Chen, Jingjing; Lu, Xiaohua; Wang, Changsong

    2016-01-01

    Highlights: • The Li_4Ti_5O_1_2 whiskers were synthesized from TiO_2-B whiskers via a solid state reaction. • The TiO_2-B crystal structure for lithium diffusion is easier than anatase. • The separated diffusion and reaction process is crucial for the solid-state syntheses of Li_4Ti_5O_1_2 whiskers. - Abstract: In this work, Li_4Ti_5O_1_2 (LTO) was synthesized from the precursors of TiO_2-B and anatase whiskers, respectively. The synthesized LTO whiskers from TiO_2-B whiskers via a solid state reaction at 650 °C have a high degree of crystallinity with an average diameter of 300 nm. However, when anatase whiskers were used as the precursor, only particle morphology LTO was produced at 750 °C. The further analysis of the precursors, the intermediate products and the final products reveal that the crystal structure of the anatase hinders the diffusion of lithium, leading to a typical reaction–diffusion process. Under this condition, only particle morphology LTO can be produced. However, the crystal structure of the TiO_2-B is easy for lithium diffusion and the process is performed in two separated steps (i.e., diffusion and reaction), which makes it possible to decrease the solid-state reaction temperature down to 650 °C and then maintain the morphologies of whiskers.

  17. XRD analysis of undoped and Fe doped TiO2 nanoparticles by Williamson Hall method

    International Nuclear Information System (INIS)

    Bharti, Bandna; Barman, P. B.; Kumar, Rajesh

    2015-01-01

    Undoped and Fe doped titanium dioxide (TiO 2 ) nanoparticles were synthesized by sol-gel method at room temperature. The synthesized samples were annealed at 500°C. For structural analysis, the prepared samples were characterized by X-ray diffraction (XRD). The crystallite size of TiO 2 and Fe doped TiO 2 nanoparticles were calculated by Scherer’s formula, and was found to be 15 nm and 11 nm, respectively. Reduction in crystallite size of TiO 2 with Fe doping was observed. The anatase phase of Fe-doped TiO 2 nanoparticles was also confirmed by X-ray diffraction. By using Williamson-Hall method, lattice strain and crystallite size were also calculated. Williamson–Hall plot indicates the presence of compressive strain for TiO 2 and tensile strain for Fe-TiO 2 nanoparticles annealed at 500°C

  18. Faceted MoS2 nanotubes and nanoflowers

    International Nuclear Information System (INIS)

    Deepak, Francis Leonard; Mayoral, Alvaro; Yacaman, Miguel Jose

    2009-01-01

    A simple synthesis of novel faceted MoS 2 nanotubes (NTs) and nanoflowers (NFs) starting from molybdenum oxide and thiourea as the sulphur source is reported. The MoS 2 nanotubes with the faceted morphology have not been observed before. Further the as-synthesized MoS 2 nanotubes have high internal surface area. The nanostructures have been characterized by a variety of electron microscopy techniques. It is expected that these MoS 2 nanostrutures will find important applications in energy storage, catalysis and field emission.

  19. Method of synthesizing small-diameter carbon nanotubes with electron field emission properties

    Science.gov (United States)

    Liu, Jie (Inventor); Du, Chunsheng (Inventor); Qian, Cheng (Inventor); Gao, Bo (Inventor); Qiu, Qi (Inventor); Zhou, Otto Z. (Inventor)

    2009-01-01

    Carbon nanotube material having an outer diameter less than 10 nm and a number of walls less than ten are disclosed. Also disclosed are an electron field emission device including a substrate, an optionally layer of adhesion-promoting layer, and a layer of electron field emission material. The electron field emission material includes a carbon nanotube having a number of concentric graphene shells per tube of from two to ten, an outer diameter from 2 to 8 nm, and a nanotube length greater than 0.1 microns. One method to fabricate carbon nanotubes includes the steps of (a) producing a catalyst containing Fe and Mo supported on MgO powder, (b) using a mixture of hydrogen and carbon containing gas as precursors, and (c) heating the catalyst to a temperature above 950.degree. C. to produce a carbon nanotube. Another method of fabricating an electron field emission cathode includes the steps of (a) synthesizing electron field emission materials containing carbon nanotubes with a number of concentric graphene shells per tube from two to ten, an outer diameter of from 2 to 8 nm, and a length greater than 0.1 microns, (b) dispersing the electron field emission material in a suitable solvent, (c) depositing the electron field emission materials onto a substrate, and (d) annealing the substrate.

  20. Facile synthesis of porous TiO_2 photocatalysts using waste sludge as the template

    International Nuclear Information System (INIS)

    Wang, Xiaopeng; Huang, Shouqiang; Zhu, Nanwen; Lou, Ziyang; Yuan, Haiping

    2015-01-01

    Graphical abstract: Waste sludge is introduced to synthesize the waste sludge templated TiO_2 photocatalyst with porous structure, which possesses better photocatalytic activity compared to pure TiO_2. - Highlights: • Waste sludge is introduced to synthesize the TiO_2 photocatalyst. • Waste sludge templated TiO_2 sample possesses porous structure. • Waste sludge templated TiO_2 sample exhibits high photocatalytic activity. - Abstract: A resource utilization method of waste sludge is present by the synthesis of waste sludge templated TiO_2 photocatalysts. The organic materials in waste sludge are used as the pore-forming agents, and the transition metals included in the remaining waste sludge through calcination (WSC) can serve as the dopants for the WSC-TiO_2 (WSCT) photocatalyst. The visible and UV–visible light driven photocatalytic activities of WSCT are much better compared to those of pure TiO_2 and WSC, and it is originated from the higher light absorption property and the efficient electron–hole pair separation provided by waste sludge.

  1. SiO2@TiO2 Coating: Synthesis, Physical Characterization and Photocatalytic Evaluation

    Directory of Open Access Journals (Sweden)

    A. Rosales

    2018-03-01

    Full Text Available Use of silicon dioxide (SiO2 and titanium dioxide (TiO2 have been widely investigated individually in coatings technology, but their combined properties promote compatibility for different innovative applications. For example, the photocatalytic properties of TiO2 coatings, when exposed to UV light, have interesting environmental applications, such as air purification, self-cleaning and antibacterial properties. However, as reported in different pilot projects, serious durability problems, associated with the adhesion between the substrate and TiO2, have been evidenced. Thus, the aim of this work is to synthesize SiO2 together with TiO2 to increase the durability of the photocatalytic coating without affecting its photocatalytic potential. Therefore, synthesis using sonochemistry, synthesis without sonochemistry, physical characterization, photocatalytic evaluation, and durability of the SiO2, SiO2@TiO2 and TiO2 coatings are presented. Results indicate that using SiO2 improved the durability of the TiO2 coating without affecting its photocatalytic properties. Thus, this novel SiO2@TiO2 coating shows potential for developing long-lasting, self-cleaning and air-purifying construction materials.

  2. Y2O3:Yb/Er nanotubes: Layer-by-layer assembly on carbon-nanotube templates and their upconversion luminescence properties

    International Nuclear Information System (INIS)

    Huang, Weishi; Shen, Jianfeng; Wan, Lei; Chang, Yu; Ye, Mingxin

    2012-01-01

    Graphical abstract: Well-shaped Y 2 O 3 :Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer assembly on carbon nanotubes templates followed by a subsequent heat treatment process. The as-prepared Y 2 O 3 :Yb/Er nanotubes show a strong red emission corresponding to the 4 F 9/2 – 4 I 15/2 transition of the Er 3+ ions under excitation at 980 nm. Display Omitted Highlights: ► Well-shaped Y 2 O 3 :Yb/Er nanotubes have been successfully synthesized. ► CNTs were used as templates for Y 2 O 3 :Yb/Er nanotubes. ► LBL assembly and calcination were used for preparation of Y 2 O 3 :Yb/Er nanotubes. ► The as-prepared Y 2 O 3 :Yb/Er nanotubes show a strong red emission. -- Abstract: Well-shaped Y 2 O 3 :Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer (LBL) assembly on carbon nanotubes (CNTs) templates followed by a subsequent heat treatment process. The crystal structure, element analysis, morphology and upconversion luminescence properties were characterized. XRD results demonstrate that the diffraction peaks of the samples calcinated at 800 °C or above can be indexed to the pure cubic phase of Y 2 O 3 . SEM images indicate that a large quantity of uniform and rough nanotubes with diameters of about 30–60 nm can be observed. The as-prepared Y 2 O 3 :Yb/Er nanotubes show a strong red emission corresponding to the 4 F 9/2 – 4 I 15/2 transition of the Er 3+ ions under excitation at 980 nm, which have potential applications in such fields as nanoscale devices, molecular catalysts, nanobiotechnology, photonics and optoelectronics.

  3. Degradation of the ammonia wastewater in aqueous medium with ozone in combination with mesoporous TiO2 catalytic

    Science.gov (United States)

    Liu, Zhiwu; Qiu, Jianping; Zheng, Chaocan; Li, Liqing

    2017-03-01

    TiO2 mesoporous nanomaterials are now widely used in catalytic ozone technology. In this paper, the market P25 as precursor hydrothermal method to prepare TiO2 mesoporous materials, ozone catalyst material characterization by transmission electron microscopy, surface area analyzers, and X-ray diffraction technique and found that nanotubes, nanosheets, nanorods through characterization results, nano-particles of different morphology and anatase and rutile proportion of the ozone catalytic material can be controlled by the calcination temperature and the temperature of hot water to give, and with the hot water temperature and calcination temperature, the catalyst becomes small aperture size larger catalyst crystalline phase from anatase to rutile gradually shift. Catalytic materials have been prepared by the Joint ozone degradation of ammonia wastewater to evaluate mesoporous TiO2 nanomaterials ozone catalytic performance, the results showed that: ammonia wastewater removal efficiency of various catalytic materials relatively separate ozone and markets P25 effects are significantly improved, and TiO2 nanotubes cooperate with ozone degradation ammonia wastewater highest efficiency, in addition, rutile TiO2 catalysts, the more the better the performance of their ozone catalysis.

  4. Synthesis, characterization and photocatalytic activity of Fe2O3-TiO2 nanoparticles and nanocomposites

    Directory of Open Access Journals (Sweden)

    M. Ahmadi Golsefidi

    2016-01-01

    Full Text Available In this pepper Fe2O3 nanoparticles were synthesized via a fast microwave method. Then Fe2O3-TiO2 nanocomposites were synthesized by a sonochemical-assisted method. The prepared products were characterized by X-ray diffraction pattern, scanning electron microscopy and Fourier transform infrared spectroscopy. The photocatalytic behaviour of Fe2O3-TiO2 nanocomposites was evaluated using the degradation of Rhodamine B under ultra violet irradiation. The results show that nanocomposites have applicable magnetic and photocatalytic performance.

  5. A strategy to reduce the angular dependence of a dye-sensitized solar cell by coupling to a TiO2 nanotube photonic crystal

    Science.gov (United States)

    Guo, Min; Xie, Keyu; Liu, Xiaolin; Wang, Yu; Zhou, Limin; Huang, Haitao

    2014-10-01

    Almost all types of solar cells suffer from a decreased power output when the incident light is tilted away from normal since the incident intensity generally follows a cosine law of the incident angle. Making use of the blue shift nature of the Bragg position of a TiO2 nanotube photonic crystal (NT PC) under oblique incidence, we demonstrate experimentally that the use of the NT PC can partially compensate the cosine power loss of a dye-sensitized solar cell (DSSC). The strategy used here is to purposely choose the Bragg position of the NT PC to be at the longer wavelength side of the dye absorption peak. When the incident light is tilted, the blue shift of the Bragg position results in more overlap with the dye absorption peak, generating a higher efficiency that partially compensates the reduced photon flux due to light inclination. Moreover, the unique structure of the vertically aligned TiO2 nanotubes contributes an additional scattering effect when the incident light is tilted. As a result, the power output of a DSSC coupled with the NT PC layer shows a much flatter angular dependence than a DSSC without the NT PC. At all the incident angles, the DSSC coupled with the NT PC layer also shows a higher power conversion efficiency than the one without. The concept of using NT PC to mitigate the angular dependence of DSSCs can be easily extended to many other optoelectronic devices that are irradiance sensitive.Almost all types of solar cells suffer from a decreased power output when the incident light is tilted away from normal since the incident intensity generally follows a cosine law of the incident angle. Making use of the blue shift nature of the Bragg position of a TiO2 nanotube photonic crystal (NT PC) under oblique incidence, we demonstrate experimentally that the use of the NT PC can partially compensate the cosine power loss of a dye-sensitized solar cell (DSSC). The strategy used here is to purposely choose the Bragg position of the NT PC to be at the

  6. Electrical conductivity characteristic of TiO2 nanowires from hydrothermal method

    International Nuclear Information System (INIS)

    Othman, Mohd Azlishah; Amat, Noor Faridah; Ahmad, Badrul Hisham; Rajan, Jose

    2014-01-01

    One dimensional nanostructures of titanium dioxide (TiO 2 ) were synthesized via hydrothermal method by mixing TiO 2 as precursor in aqueous solution of NaOH as solvent. Then, heat and washing treatment was applied. Thus obtained wires had diameter ∼15 nm. TiO 2 nanowires will be used as a network in solar cell such dye-sensitized solar cell in order to improve the performance of electron movement in the device. To improve the performance of electron movement, the characteristics of TiO 2 nanowires have been analyses using field emission scanning electron microscopy (FESEM) analysis, x-ray diffractometer (XRD) analysis and brunauer emmett teller (BET) analysis. Finally, electrical conductivity of TiO 2 nanowires was determined by measuring the resistance of the TiO 2 nanowires paste on microscope glass.

  7. Fullerene C70 decorated TiO2 nanowires for visible-light-responsive photocatalyst

    International Nuclear Information System (INIS)

    Cho, Er-Chieh; Ciou, Jing-Hao; Zheng, Jia-Huei; Pan, Job; Hsiao, Yu-Sheng; Lee, Kuen-Chan; Huang, Jen-Hsien

    2015-01-01

    Graphical abstract: - Highlights: • TiO 2 nanowire decorated with C 60 and C 70 derivatives has been synthesized. • The fullerenes impede the charge recombination due to its high electron affinity. • The fullerenes expand the utilization of solar light from UV to visible light. • The modified-TiO 2 has great biocompatibility. - Abstract: In this study, we have synthesized C 60 and C 70 -modified TiO 2 nanowire (NW) through interfacial chemical bonding. The results indicate that the fullerenes (C 60 and C 70 derivatives) can act as sinks for photogenerated electrons in TiO 2 , while the fullerene/TiO 2 is illuminated under ultraviolet (UV) light. Therefore, in comparison to the pure TiO 2 NWs, the modified TiO 2 NWs display a higher photocatalytic activity under UV irradiation. Moreover, the fullerenes also can function as a sensitizer to TiO 2 which expand the utilization of solar light from UV to visible light. The results reveal that the C 70 /TiO 2 NWs show a significant photocatalytic activity for degradation of methylene blue (MB) in visible light region. To better understand the mechanism responsible for the effect of fullerenes on the photocatalytic properties of TiO 2 , the electron only devices and photoelectrochemical cells based on fullerenes/TiO 2 are also fabricated and evaluated.

  8. Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators

    KAUST Repository

    Stassi, Stefano

    2017-12-29

    Herein a complete characterization of single TiO2 nanotube resonator was reported for the first time. The modal vibration response analysis allows a non-invasive indirect evaluation of the mechanical properties of the TiO2 nanotube. The effect of post-grown thermal treatments on nanotube mechanical properties was investigated and carefully correlated to the chemico-physical parameters evolution. The Young\\'s modulus of TiO2 nanotube linearly rises from 57 GPa up to 105 GPa for annealing at 600°C depending on the compositional and crystallographic evolution of the nanostructure. Considering the growing interest in single nanostructure devices, the reported findings allow a deeper understanding of the properties of individual titanium dioxide nanotubes extrapolated from their standard arrayed architecture.

  9. Surfactant Assisted Stabilization of Carbon Nanotubes Synthesized by a Spray Pyrolysis Method

    Directory of Open Access Journals (Sweden)

    D. Mendoza-Cachú

    2017-01-01

    Full Text Available Surface modification of carbon nanotubes has been an interesting issue from a composites materials point of view. A nanotubes agglomeration has to be avoided to achieve a homogeneous dispersion in a composite matrix. In this research, we report on the synthesis of carbon nanotubes using a variant of the chemical vapor deposition technique known as spray pyrolysis method. X-ray diffraction (XRD, transmission electron microscopy (TEM, and scanning electron microscopy (SEM studies showed that the synthesized products had an aligned structure with low purity degree, high content of catalyst particles, and a smaller amount of amorphous carbon. A secondary method was applied, which involves an acidic treatment that dissolves contaminant particles to enhance the purity of the nanotubes. Microstructural analysis, which includes XRD and SEM, indicates an effective reduction of impurities. Dispersion of the nanotubes was assessed using different surfactants, such as sodium dodecyl-sulfate (SDS and ethylenediaminetetraacetic acid (EDTA. Finally, Raman spectroscopy, UV-Vis, and SEM techniques confirm that better results were obtained with EDTA. For EDTA and SDS surfactants, low concentrations of 0.3 mg/mL and 0.2 mg/mL were most efficient, respectively.

  10. Improving photoelectrochemical performance on quantum dots co-sensitized TiO_2 nanotube arrays using ZnO energy barrier by atomic layer deposition

    International Nuclear Information System (INIS)

    Zeng, Min; Zeng, Xi; Peng, Xiange; Zhu, Zhuo; Liao, Jianjun; Liu, Kai; Wang, Guizhen; Lin, Shiwei

    2016-01-01

    Graphical abstract: - Highlights: • The length of TNTAs has a balance between the charge recombination and the QDs loading. • The introduction of ZnO interlayer by ALD could improve the QDs absorption. • The optimal thickness of ZnO interlayer is 1.5 nm prepared by 10 cycles ALD. - Abstract: PbS and CdS quantum dots (QDs) have been deposited onto TiO_2 nanotube arrays (TNTAs) in turn via a sonication-assisted successive ionic layer adsorption and reaction method. This method could uniformly decorate TNTAs with QDs, avoiding QDs aggregation at the mouth of TiO_2 nanotube. The loading amounts of QDs on TNTAs could be controlled by adjusting the TNTAs length. Under one sun illumination, the QDs co-sensitized TNTAs (TNTAs/QDs) with the length of about 2.4 μm displayed the highest photocurrent of 4.32 mA cm"−"2, which is 27 times higher than that of the bare TNTAs. Introduction of a thin ZnO energy barrier by atomic layer deposition (ALD) between the TNTAs and QDs can further improve the photocurrent of TNTAs/QDs. And the TNTAs/QDs with 10 ALD cycles of ZnO interlayer exhibits the highest photocurrent of 5.24 mA cm"−"2 and best photoconversion efficiency of 4.9%, a more than 20% enhancement over the bare TNTAs/QDs. Such enhanced photoelectrochemical performance may be ascribed to the increased amounts of QDs on the TNTAs due to the introduction of ZnO interlayer. The benefits of ALD layers play a crucial role in development and optimization of high-performance photoelectrodes in the near future.

  11. Sonochemical synthesis and characterization of Pt/CNT, Pt/TiO2, and Pt/CNT/TiO2 electrocatalysts for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Bedolla-Valdez, Z.I.; Verde-Gómez, Y.; Valenzuela-Muñiz, A.M.; Gochi-Ponce, Y.; Oropeza-Guzmán, M.T.; Berhault, Gilles; Alonso-Núñez, G.

    2015-01-01

    Highlights: • Pt/CNT/TiO 2 electrocatalyst was successfully prepared by the sonochemical method. • The electrocatalyst Pt/CNT/TiO 2 was synthesized without heat treatments, additives or surfactants. • The TiO 2 -Pt interaction improves the CO-tolerance of Pt/CNT/TiO 2 , as well as the electrocatalyst stability. • Low amount of multi-walled carbon nanotubes increases the current density of Pt/CNT/TiO 2 significantly compared to Pt/TiO 2 . - Abstract: Pt electrocatalyst supported on composite formed of multi-walled carbon nanotubes and titanium oxide (CNT/TiO 2 ) was successfully synthesized by a sonochemical method without heat treatments, surfactants or additives. This electrocatalyst could be used for direct methanol fuel cells (DMFC) applications. For comparison, Pt/CNT and Pt/TiO 2 electrocatalysts were prepared as reference samples. Structural properties and morphology of the synthesized materials were examined by X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and their specific surface areas were determined by the Brunauer-Emmett-Teller method. The Pt and acid-treated CNT contents were analyzed by inductively coupled plasma atomic emission spectroscopy and thermogravimetric analysis, respectively. The electrochemical properties of the synthesized electrocatalysts were evaluated by cyclic voltammetry (CV) and chronoamperometry in a three-electrode cell at room temperature. The evaluation performed using electrochemical techniques suggests that TiO 2 promotes the CO-tolerance due to TiO 2 -Pt interaction. The CV tests demonstrated that 6 wt.% of acid-treated CNT increases significantly the current density when Pt selectively interacts with TiO 2 .

  12. Development of high efficient visible light-driven N, S-codoped TiO2 nanowires photocatalysts

    International Nuclear Information System (INIS)

    Zhang, Yanlin; Liu, Peihong; Wu, Honghai

    2015-01-01

    Highlights: • A facile hydrothermal route to synthesize N, S-codoped TiO 2 nanowires. • The codoped TiO 2 nanowires have TiO 2 (B) and anatase phase. • The significant shift of the optical absorption edge toward the visible region. • The photocatalyst showed high photocatalytic activity for atrazine. - Abstract: One-dimensional (1D) nanowire material (especially nonmetal doped 1D nanowires) synthesized by a facile way is of great significance and greatly desired as it has higher charge carrier mobility and lower carrier recombination rate. N, S-codoped TiO 2 nanowires were synthesized using titanium sulfate as a precursor and isopropanol as a protective capping agent by a hydrothermal route. The obtained doped nanowires were characterized by XRD, SEM, HRTEM, SAED, XPS, BET and UV–vis absorption spectrum. The incorporation of N and S into TiO 2 NWs can lead to the expansion of its lattice and remarkably lower its electron-transfer resistance. Photocatalytic activity measurement showed that the N, S-codoped TiO 2 nanowires with high quantum efficiency revealed the best photocatalytic performance for atrazine degradation under visible light irradiation compared to N, S-codoped TiO 2 nanoparticles and S-doped TiO 2 nanowires, which was attributed to (i) the synergistic effect of N and S doping in narrowing the band gap, separating electron–hole pairs and increasing the photoinduced electrons, and (ii) extending the anatase-to-rutile transformation temperature above 600 °C

  13. Characteristics and properties of a novel in situ method of synthesizing mesoporous TiO2 nanopowders by a simple coprecipitation process without adding surfactant

    International Nuclear Information System (INIS)

    Yeh, Shang-Wei; Ko, Horng-Huey; Chiang, Hsiu-Mei; Chen, Yen-Ling; Lee, Jian-Hong; Wen, Chiu-Ming; Wang, Moo-Chin

    2014-01-01

    Highlights: • The TiO 2 precursor powder contained anatase and 19.5% NH 4 Cl. • Mesoporous anatase TiO 2 nanopowders were successfully synthesized. • Uncalcined precursor powder contained the phases of type I NH 4 Cl and anatase TiO 2 . • Anatase size increases from 3.3 to 14.3 nm when calcined at 473–773 K for 2 h. • The average pore size between 3.80 and 14.0 nm when calcined between 473 and 773 K. - Abstract: In situ synthesis of mesoporous TiO 2 nanopowders using titanium tetrachloride (TiCl 4 ) and NH 4 OH as initial materials has been successfully fabricated by a coprecipitation process without the addition of surfactant. Characteristics and properties of the mesoporous TiO 2 nanopowders were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Barrent–Joyner–Halenda (BJH) analyses, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and high resolution TEM (HRTEM). The results of TG and XRD showed that the NH 4 Cl decomposed between 513 and 673 K. XRD results showed that the anatase TiO 2 only contained a single phase when the calcination temperature of the precursor powder was less than 673 K. Whereas phases of anatase and rutile TiO 2 coexist after calcining at 773 K for 2 h. The crystalline size of the anatase and rutile TiO 2 was 14.3 and 26.6 nm, respectively, when the precursor powder was calcined at 773 K for 2 h. The BET and BJH results showed a significant increase in surface area and pore volumes when the NH 4 Cl was completely decomposed. The maximum values of BET specific surface area and volume were 172.8 m 2 /g and 0.392 cm 3 /g, respectively. The average pore sizes when calcination was at 473 and 773 K for 2 h were 3.8 and 14.0 nm, respectively

  14. Free-standing Hierarchical Porous Assemblies of Commercial TiO_2 Nanocrystals and Multi-walled Carbon Nanotubes as High-performance Anode Materials for Sodium Ion Batteries

    International Nuclear Information System (INIS)

    Liu, Xiong; Xu, Guobao; Xiao, Huaping; Wei, Xiaolin; Yang, Liwen

    2017-01-01

    Highlights: • Utilization of commercial nanomaterials to freestanding sodium electrode is demonstrated. • Free-standing electrodes composed of TiO_2 and MWCNTs are hierarchically porous. • Hierarchical porous architecture benefits charge transport and interfacial Na"+ adsorption. • Free-standing hierarchical porous electrodes exhibit superior Na storage performance. - Abstract: Freestanding hierarchical porous assemblies of commercial TiO_2 nanocrystals and multi-wall carbon nanotubes (MWCNTs) as electrode materials for sodium ion batteries (SIBs) are prepared via modified vacuum filtration, free-drying and annealing. Microstructure characterizations reveal that TiO_2 nanocrystals are confined in hierarchically porous, highly electrically conductive and mechanically robust MWCNTs networks with cross-linking of thermally-treated bovine serum albumin. The hierarchical porous architecture not only enables rapid charge transportation and sufficient interaction between electrode and electrolyte, but also guarantees abundant interfacial sites for Na"+ adsorption, which benefits substantial contribution from pseudocapacitive Na storage. When it is used directly as an anode for sodium-ion batteries, the prepared electrode delivers high specific capacity of 100 mA h g"−"1 at a current density of 3000 mA g"−"1, and 150 mA h g"−"1 after 500 cycles at a current density of 500 mA g"−"1. The low-cost TiO_2-based freestanding anode has large potential application in high-performance SIBs for portable, flexible and wearable electronics.

  15. TiO2-coated Hollow Glass Microspheres with Superhydrophobic and High IR-reflective Properties Synthesized by a Soft-chemistry Method.

    Science.gov (United States)

    Wong, Yinting; Zhong, Dan; Song, Aotian; Hu, Yan

    2017-04-26

    This manuscript proposes a soft-chemistry method to develop superhydrophobic and highly IR-reflective hollow glass microspheres (HGM). The anatase TiO2 and a superhydrophobic agent were coated on the HGM surface in one step. TBT and PFOTES were selected as the Ti source and the superhydrophobic agent, respectively. They were both coated on the HGM, and after the hydrothermal process, the TBT turned to anatase TiO2. In this way, a PFOTES/TiO2-coated HGM (MCHGM) was prepared. For comparison, PFOTES single-coated HGM (F-SCHGM) and TiO2 single-coated HGM (Ti-SCHGM) were synthesized as well. The PFOTES and TiO2 coatings on the HGM surface were demonstrated through X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive detector (EDS) characterizations. The MCHGM showed a higher contact angle (153°) but a lower sliding angle (16°) than F-SCHGM, with a contact angle of 141.2° and a sliding angle of 67°. In addition, both Ti-SCHGM and MCHGM displayed similar IR reflectivity values, which were about 5.8% higher than the original HGM and F-SCHGM. Also, the PFOTES coating barely changed the thermal conductivity. Therefore, F-SCHGM, with a thermal conductivity of 0.0479 W/(m·K), was quite like the original HGM, which was 0.0475 W/(m·K). MCHGM and Ti-SCHGM were also similar. Their thermal conductivity values were 0.0543 W/(m·K) and 0.0543 W/(m·K), respectively. The TiO2 coating slightly increased the thermal conductivity, but with the increase in reflectivity, the overall heat-insulation property was enhanced. Finally, since the IR-reflecting property is provided by the HGM coating, if the coating is fouled, the reflectivity decreases. Therefore, with the superhydrophobic coating, the surface is protected from fouling, and its lifetime is also prolonged.

  16. Interfacial Engineered Polyaniline/Sulfur-doped TiO2 Nanotube Arrays for Ultralong Cycle Lifetime Fiber-Shaped, Solid-State Supercapacitors.

    Science.gov (United States)

    Li, Chun; Wang, Zhuanpei; Li, Shengwen; Cheng, Jianli; Zhang, Yanning; Zhou, Jingwen; Yang, Dan; Tong, Dong-Ge; Wang, Bin

    2018-05-04

    Fiber-shaped supercapacitors (FSCs) have great potential in wearable electronics applications. However, the limited specific surface area and inadequate structural stability caused by the weak interfacial interactions of the electrodes result in relatively low specific capacitance and unsatisfactory cycle lifetime. Herein, solid-state FSCs with high energy density and ultralong cycle lifetime based on polyaniline (PANI)/sulfur-doped TiO2 nanotubes array (PANI/S-TiO2) are fabricated by interfacial engineering. The experimental results and ab initio calculations reveal that S doping can effectively promote the conductivity of titania nanotubes and increase the binding energy of PANI anchored on the electrode surface, leading to much stronger binding of PANI on the surface of the electrode and excellent electrode structure stability. As a result, the FSCs using the PANI/S-TiO2 electrodes deliver a high specific capacitance of 91.9 mF cm-2, a capacitance retention of 93.78% after 12,000 charge/discharge cycles, and an areal energy density of 3.2 µWh cm-2, respectively. Meanwhile, the all-solid-state FSC device retains its excellent flexibility and stable electrochemical capacitance even after bending 150 cycles. The enhanced performances of FSCs could be attributed to the large surface area, short ion diffusion path, high electrical conductivity and engineered interfacial interaction of the rationally designed electrodes.

  17. Evolution of nanomechanical properties and crystallinity of individual titanium dioxide nanotube resonators

    KAUST Repository

    Stassi, Stefano; Lamberti, Andrea; Roppolo, Ignazio; Casu, Alberto; Bianco, Stefano; Scaiola, Davide; Falqui, Andrea; Pirri, Candido Fabrizio; Ricciardi, Carlo

    2017-01-01

    Herein a complete characterization of single TiO2 nanotube resonator was reported for the first time. The modal vibration response analysis allows a non-invasive indirect evaluation of the mechanical properties of the TiO2 nanotube. The effect

  18. TiO2/Bi2(BDC)3/BiOCl nanoparticles decorated ultrathin nanosheets with excellent photocatalytic reaction activity and selectivity

    International Nuclear Information System (INIS)

    Zhou, Shu-Mei; Ma, De-Kun; Cai, Ping; Chen, Wei; Huang, Shao-Ming

    2014-01-01

    Graphical abstract: TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets showed excellent photocatalytic reaction activity and selectivity. - Highlights: • TiO 2 /Bi 2 (BDC) 3 /BiOCl nanoparticles decorated ultrathin nanosheets were synthesized through a facile hydrothermal process. • The products showed excellent photocatalytic activities for the degradation of various dyes. • The photocatalytic activities of the composite materials could be easily adjusted through tuning the content of TiO 2 . • TiO 2 /Bi 2 (BDC) 3 /BiOCl displayed obvious photocatalytic selectivity in mixed dyes systems of rhodamine B and eosin Y. - Abstract: Photocatalysts with excellent photocatalytic reaction activity and ideal selectivity are highly desirable for pollutants clearance and purification of targeted organics from a mixture. Continued efforts toward the goal, we here present a facile hydrothermal route to synthesize TiO 2 /Bi-benzenedicarboxylate/BiOCl nanoparticles decorated ultrathin nanosheets with a thickness less than 5 nm on a large scale. The as-synthesized products showed excellent photocatalytic activities for the degradation of various dyes such as rhodamine B, eosin Y and methylene blue in aqueous solution under visible light irradiation. The photocatalytic activities of TiO 2 /Bi-benzenedicarboxylate/BiOCl nanocomposites for the degradation of rhodamine B and eosin Y could be adjusted through tuning the content of TiO 2 . With increasing the amount of TiO 2 , the composites showed declining photocatalytic activities in decomposing of rhodamine B while on the contrary they displayed enhanced photocatalytic activities in decomposing of eosin Y. Interestingly, TiO 2 /Bi-benzenedicarboxylate/BiOCl composite nanosheets showed obvious photocatalytic selectivity in a mixed dyes system. The photocatalytic reaction and selectivity mechanisms of the nanocomposites for the degradation of the dyes were discussed on the basis of experimental results. The

  19. Synthesis and photocatalytic activity of mesoporous – (001) facets TiO_2 single crystals

    International Nuclear Information System (INIS)

    Dong, Yeshuo; Fei, Xuening; Zhou, Yongzhu

    2017-01-01

    Highlights: • The (001) facets of TiO_2 single crystals with mesoporous structure. • The (010) and (100) facets of TiO_2 single crystals were covered by the flower – shaped TiO_2 crystals. • This special structure could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. - Abstract: In this work, the mesoporous – (001) facets TiO_2 single crystals have been successfully synthesized through a two-step solvothermal route without any template. Their structure and morphology were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV–vis) diffuse reflectance spectroscopy and energy dispersive X-ray spectrometer (EDX). Based on the different characteristics and atomic arrangements on each facet of anatase TiO_2 single crystals, we synthesized these mesoporous – (001) facets TiO_2 single crystals by controlling the interaction characteristics of hydrofluoric acid (HF) and isopropanol (i-PrOH) on the crystal facets. It can been seen that the (001) facets of these as-synthesized TiO_2 single crystals have a clear mesoporous structure through the SEM images and BET methods. Moreover, the other four facets were covered by the flower – shaped TiO_2 crystals with the generation of the mesoporous – (001) facets. This special and interesting morphology could promote charge separation and provide more active sites, which will lead to a substantial increase in photocatalytic activity. Moreover, it is more intuitive to reflect that the different crystal facets possess the different properties due to their atomic arrangement. Besides, according to the different synthetic routes, we proposed and discussed a plausible synthesis mechanism of these mesoporous – (001) facets TiO_2 single crystals.

  20. As-grown vertically aligned amorphous TiO2 nanotube arrays as high-rate Li-based micro-battery anodes with improved long-term performance

    International Nuclear Information System (INIS)

    Lamberti, Andrea; Garino, Nadia; Sacco, Adriano; Bianco, Stefano; Chiodoni, Angelica; Gerbaldi, Claudio

    2015-01-01

    Highlights: • Amorphous TiO 2 nanotube (NT) arrays are fabricated by fast and facile anodic oxidation. • Near-theoretical initial specific capacity and remarkable rate capability. • Very long-term cycling stability (>2000 cycles) at a very high C-rate. • High surface area and improved interfacial characteristics for fast diffusion kinetics. • NTs show promising prospects in storage devices conceived for high power applications. - Abstract: Vertically oriented arrays of high surface area TiO 2 nanotubes (NTs) are fabricated by the fast and facile anodic oxidation of a titanium foil. The formation of well-defined one-dimensional nanotubular carpets is assessed by means of morphological Field Emission Scanning Electron Microscopy characterisation, while X-ray diffraction analysis and Transmission Electron Microscopy imaging confirm the amorphous nature of the samples. The electrochemical response evaluated in lab-scale lithium cells is highly satisfying with near-theoretical initial specific capacity and remarkable rate capability, noteworthy in the absence of binders and conductive agents, which would affect the overall energy density. A specific capacity exceeding 200 mAh g −1 is observed at very high 24 C and approx. 80 mAh g −1 are retained even at very high 96 C rate, thus accounting for the promising prospects in storage devices conceived for high power applications. Moreover, the NTs can perform with good cycling stability and capacity retention approaching 50% of the initial value after very long-term operation along with improved durability (> 2000 cycles)

  1. TiO2 beads and TiO2-chitosan beads for urease immobilization

    International Nuclear Information System (INIS)

    Ispirli Doğaç, Yasemin; Deveci, İlyas; Teke, Mustafa; Mercimek, Bedrettin

    2014-01-01

    The aim of the present study is to synthesize TiO 2 beads for urease immobilization. Two different strategies were used to immobilize the urease on TiO 2 beads. In the first method (A), urease enzyme was immobilized onto TiO 2 beads by adsorption and then crosslinking. In the second method (B), TiO 2 beads were coated with chitosan-urease mixture. To determine optimum conditions of immobilization, different parameters were investigated. The parameters of optimization were initial enzyme concentration (0.5; 1; 1.5; 2 mg/ml), alginate concentration (1; 2; 3%), glutaraldehyde concentration (1; 2; 3% v/v) and chitosan concentration (2; 3; 4 mg/ml). The optimum enzyme concentrations were determined as 1.5 mg/ml for A and 1.0 mg/ml for B. The other optimum conditions were found 2.0% (w/v) for alginate concentration (both A and B); 3.0 mg/ml for chitosan concentration (B) and 2.0% (v/v) for glutaraldehyde concentration (A). The optimum temperature (20-60 °C), optimum pH (3.0-10.0), kinetic parameters, thermal stability (4–70 °C), pH stability (4.0-9.0), operational stability (0-230 min) and reusability (20 times) were investigated for characterization. The optimum temperatures were 30 °C (A), 40 °C (B) and 35 °C (soluble). The temperature profiles of the immobilized ureases were spread over a large area. The optimum pH values for the soluble urease and immobilized urease prepared by using methods (A) and (B) were found to be 7.5, 7.0, 7.0, respectively. The thermal stabilities of immobilized enzyme sets were studied and they maintained 50% activity at 65 °C. However, at this temperature free urease protected only 15% activity. - Highlights: • TiO 2 and TiO 2 -chitosan beads for urease immobilization have been prepared and characterized. • The beads used in this work are good matrices for the immobilization of urease. • The immobilized urease was shown to have good properties and stabilities (pH and thermal stability, operational stability). • The 50

  2. Effect of sonochemical synthesized TiO2 nanoparticles and coagulation bath temperature on morphology, thermal stability and pure water flux of asymmetric cellulose acetate membranes prepared via phase inversion method

    Directory of Open Access Journals (Sweden)

    Abedini Reza

    2012-01-01

    Full Text Available In this study, asymmetric pure CA and CA/ TiO2 composite membranes were prepared via phase inversion by dispersing TiO2 nanopaticles in the CA casting solutions induced by immersion precipitation in water coagulation bath. TiO2 nanoparticles, which were synthesized by the sonochemical method, were added into the casting solution with different concentrations. Effects of TiO2 nanoparticles concentration (0 wt. %, 5wt.%, 10wt.%, 15wt.%, 20wt.% and 25wt.% and coagulation bath temperature (CBT= 25°C, 50°C and 75°C on morphology, thermal stability and pure water flux (PWF of the prepared membranes were studied and discussed. Increasing TiO2 concentration in the casting solution film along with higher CBT resulted in increasing the membrane thickness, water content (WC, membrane porosity and pure water flux (PWF, also these changes facilitate macrovoids formation. Thermal gravimetric analysis (TGA shows that thermal stability of the composite membranes were improved by the addition of TiO2 nanopaticles. Also TGA results indicated that increasing CBT in each TiO2 concentration leads to the decreasing of decomposition temperature (Td of hybrid membranes.

  3. Evaluation of micro-abrasion-corrosion on SiO2-TiO2-ZrO2 coatings synthesized by the sol-gel method

    Science.gov (United States)

    Bautista Ruiz, J.; Aperador, W.; Caballero Gómez, J.

    2016-02-01

    The medical science and the engineering, work to improve the materials used in the manufacture of joint implants, since they have a direct impact on the quality of people life. The surgical interventions are increasing worldwide with a high probability of a second or even a third intervention. Around these circumstances, it was evaluated the behaviour against microabrasion-corrosion phenomena on SiO2 TiO2 ZrO2 coatings, synthesized by the sol-gel method with concentration of the Si/Ti/Zr precursors: 10/70/20 and 10/20/70. The coatings were deposited on AISI 316 LVM stainless steel substrates. The morphological characterization of the wear was made by AFM techniques. It was observed that the coatings with higher levels of titanium have a good response to the phenomena of microabrasion-corrosion.

  4. Electrochemical synthesis of 1D core-shell Si/TiO2 nanotubes for lithium ion batteries

    Science.gov (United States)

    Kowalski, Damian; Mallet, Jeremy; Thomas, Shibin; Nemaga, Abirdu Woreka; Michel, Jean; Guery, Claude; Molinari, Michael; Morcrette, Mathieu

    2017-09-01

    Silicon negative electrode for lithium ion battery was designed in the form of self-organized 1D core-shell nanotubes to overcome shortcomings linked to silicon volume expansion upon lithiation/delithiation typically occurring with Si nanoparticles. The negative electrode was formed on TiO2 nanotubes in two step electrochemical synthesis by means of anodizing of titanium and electrodeposition of silicon using ionic liquid electrolytes. Remarkably, it was found that the silicon grows perpendicularly to the z-axis of nanotube and therefore its thickness can be precisely controlled by the charge passed in the electrochemical protocol. Deposited silicon creates a continuous Si network on TiO2 nanotubes without grain boundaries and particle-particle interfaces, defining its electrochemical characteristics under battery testing. In the core-shell system the titania nanotube play a role of volume expansion stabilizer framework holding the nanostructured silicon upon lithiation/delithiation. The nature of Si shell and presence of titania core determine stable performance as negative electrode tested in half cell of CR2032 coin cell battery.

  5. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method

    OpenAIRE

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-01-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor—Ag2S (0.9 eV) quantum dots (QDs)—in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNT...

  6. Enhanced photocatalytic, electrochemical and photoelectrochemical properties of TiO2 nanotubes arrays modified with Cu, AgCu and Bi nanoparticles obtained via radiolytic reduction

    International Nuclear Information System (INIS)

    Nischk, Michał; Mazierski, Paweł; Wei, Zhishun; Siuzdak, Katarzyna; Kouame, Natalie Amoin; Kowalska, Ewa; Remita, Hynd; Zaleska-Medynska, Adriana

    2016-01-01

    Highlights: • TiO 2 nanotubes were modified with Cu, AgCu, Bi nanoparticles via gamma radiolysis. • Excessive amount of deposited metal decreased photocatalytic activity. • AgCu-modified samples were more active than Cu-modified (with the same Cu content). • AgCu nanoparticles exist in a core (Ag) -shell (Cu) form. • Examined photocatalysts were resistant towards photocorrosion processes. - Abstract: TiO 2 nanotubes arrays (NTs), obtained via electrochemical anodization of Ti foil, were modified with monometallic (Cu, Bi) and bimetallic (AgCu) nanoparticles. Different amounts of metals’ precursors were deposited on the surface of NTs by the spin-coating technique, and the reduction of metals was performed via gamma radiolysis. Surface modification of titania was studied by EDS and XPS analysis. The results show that AgCu nanoparticles exist in a Ag core -Cu shell form. Photocatalytic activity was examined under UV irradiation and phenol was used as a model pollutant of water. Over 95% of phenol degradation was achieved after 60 min of irradiation for almost all examined samples, but only slight difference in degradation efficiency (about 3%) between modified and bare NTs was observed. However, the initial phenol degradation rate and TOC removal efficiency was significantly enhanced for the samples modified with 0.31 and 0.63 mol% of Bi as well as for all the samples modified with Cu and AgCu nanoparticles in comparison with bare titania nanotubes. The saturated photocurrent, under the influence of simulated solar light irradiation, for the most active Bi- and AgCu-modified samples, was over two times higher than for pristine NTs. All the examined materials were resistant towards photocorrosion processes that enables their application for long term processes induced by light.

  7. Decoration of TiO_2 nanotube arrays by graphitic-C_3N_4 quantum dots with improved photoelectrocatalytic performance

    International Nuclear Information System (INIS)

    Sun, Bo; Lu, Na; Su, Yan; Yu, Hongtao; Meng, Xiangyu; Gao, Zhanming

    2017-01-01

    Highlights: • TiO_2 nanotube arrays/graphitic-C_3N_4 quantum dots heterojunction was prepared via a facile dipping method. • The optimized dipping duration and concentration of heterojunction were investigated. • The prepared heterojunction extends optical absorption and reduces the recombination of charge carriers. • The photocurrent generated by the optimal g-C_3N_4 QDs/TNTAs photoanode is 4.3 times that of pristine TNTAs. • 98.6% of phenol is degraded in 120 min and the degradation rate is 4.9 times as great as that of pristine TNTAs. - Abstract: In this paper, we present a novel method to improve the photoelectrocatalytic (PEC) property of TiO_2 nanotube arrays (TNTAs) by way of decorating it with visible-light-respond graphitic-C_3N_4 quantum dots (g-C_3N_4 QDs). The g-C_3N_4 QDs/TNTAs heterojunction is successfully prepared using a facile dipping method. The optimal condition of preparing g-C_3N_4 QDs/TNTAs heterojunction is found as 60 min of dipping duration and 0.2 mg mL"−"1 of g-C_3N_4 QDs dipping solution. The fabricated g-C_3N_4 QDs/TNTAs heterojunction shows improved PEC activity comparing to TNTAs due to its better separation capability of photo-generated charges and wider optical absorption. And the photocurrent generated by the optimal g-C_3N_4 QDs/TNTAs photoanode is 4.3 times than that of pristine TNTAs. Besides, the g-C_3N_4 QDs/TNTAs heterojunction also exhibits superior PEC activities in degradation of phenol. 98.6% of phenol is successfully degraded in 120 min and the pseudo-first-order kinetic constant of phenol degradation is 4.9 times as great as that of pristine TNTAs. This work indicates that the g-C_3N_4 QDs/TNTAs heterojunction is expected to be a promising nanomaterial for pollutant degradation and further application in solar energy conversion.

  8. TiO2 synthesized by microwave assisted solvothermal method: Experimental and theoretical evaluation

    International Nuclear Information System (INIS)

    Moura, K.F.; Maul, J.; Albuquerque, A.R.; Casali, G.P.; Longo, E.; Keyson, D.; Souza, A.G.; Sambrano, J.R.; Santos, I.M.G.

    2014-01-01

    In this study, a microwave assisted solvothermal method was used to synthesize TiO 2 with anatase structure. The synthesis was done using Ti (IV) isopropoxide and ethanol without templates or alkalinizing agents. Changes in structural features were observed with increasing time of synthesis and evaluated using periodic quantum chemical calculations. The anatase phase was obtained after only 1 min of reaction besides a small amount of brookite phase. Experimental Raman spectra are in accordance with the theoretical one. Micrometric spheres constituted by nanometric particles were obtained for synthesis from 1 to 30 min, while spheres and sticks were observed after 60 min. - Graphical abstract: FE-SEM images of anatase obtained with different periods of synthesis associated with the order–disorder degree. Display Omitted - Highlights: • Anatase microspheres were obtained by the microwave assisted hydrothermal method. • Only ethanol and titanium isopropoxide were used as precursors during the synthesis. • Raman spectra and XRD patterns were compared with quantum chemical calculations. • Time of synthesis increased the short-range disorder in one direction and decreased in another

  9. Improvement of light harvesting and device performance of dye-sensitized solar cells using rod-like nanocrystal TiO2 overlay coating on TiO2 nanoparticle working electrode

    International Nuclear Information System (INIS)

    Liu, Xueyang; Fang, Jian; Gao, Mei; Wang, Hongxia; Yang, Weidong; Lin, Tong

    2015-01-01

    Novel TiO 2 single crystalline nanorods were synthesized by electrospinning and hydrothermal treatment. The role of the TiO 2 nanorods on TiO 2 nanoparticle electrode in improvement of light harvesting and photovoltaic properties of dye-sensitized solar cells (DSSCs) was examined. Although the TiO 2 nanorods had lower dye loading than TiO 2 nanoparticle, they showed higher light utilization behaviour. Electron transfer in TiO 2 nanorods received less resistance than that in TiO 2 nanoparticle aggregation. By just applying a thin layer of TiO 2 nanorods on TiO 2 nanoparticle working electrode, the DSSC device light harvesting ability and energy conversion efficiency were improved significantly. The thickness of the nanorod layer in the working electrode played an important role in determining the photovoltaic property of DSSCs. An energy conversion efficiency as high as 6.6% was found on a DSSC device with the working electrode consisting of a 12 μm think TiO 2 nanoparticle layer covered with 3 μm thick TiO 2 nanorods. The results obtained from this study may benefit further design of highly efficient DSSCs. - Highlights: • Single crystalline TiO 2 nanorods were prepared for DSSC application. • TiO 2 nanorods show effective light scattering performance. • TiO 2 nanorods have higher electron transfer efficiency than TiO 2 nanoparticles. • TiO 2 nanorods on TiO 2 nanoparticle electrode improve DSSC efficiency

  10. Photo catalytic reduction of benzophenone on TiO2: Effect of preparation method and reaction conditions

    International Nuclear Information System (INIS)

    Albiter E, E.; Valenzuela Z, M. A.; Alfaro H, S.; Flores V, S. O.; Rios B, O.; Gonzalez A, V. J.; Cordova R, I.

    2010-01-01

    The photo catalytic reduction of benzophenone was studied focussing on improving the yield to benzhydrol. TiO 2 was synthesized by means of a hydrothermal technique. TiO 2 (Degussa TiO 2 -P25) was used as a reference. Catalysts were characterized by X-ray diffraction and nitrogen physisorption. The photo catalytic reduction was carried out in a batch reactor at 25 C under nitrogen atmosphere, acetonitrile as solvent and isopropanol as electron donor. A 200 W Xe-Hg lamp (λ= 360 nm) was employed as irradiation source. The chemical composition of the reaction system was determined by HPLC. Structural and textural properties of the synthesized TiO 2 depended on the type of acid used during sol formation step. Using HCl, a higher specific surface area and narrower pore size distribution of TiO 2 was obtained in comparison with acetic acid. As expected, the photochemical reduction of benzophenone yielded benzopinacol as main product, whereas, benzhydrol is only produced in presence of TiO 2 (i.e. photo catalytic route). In general, the hydrothermally synthesized catalysts were less active and with a lower yield to benzhydrol. The optimal reaction conditions to highest values of benzhydrol yield (70-80%) were found at 2 g/L (catalyst loading) and 0.5 m M of initial concentration of benzophenone, using commercial TiO 2 -P25. (Author)

  11. Preparation and solar-light photocatalytic activity of TiO2 composites: TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite

    Science.gov (United States)

    Li, Y.; Li, S. G.; Wang, J.; Li, Y.; Ma, C. H.; Zhang, L.

    2014-12-01

    Three TiO2 loaded composites, TiO2/kaolin, TiO2/diatomite, and TiO2/zeolite, were prepared in order to improve the solar-light photocatalytic activity of TiO2. The results showed that the photocatalytic activity could obviously be enhanced by loading appropriate amount of inorganic mineral materials. Meanwhile, TiO2 content, heat-treatment temperature and heat-treatment time on the photocatalytic activity were reviewed. Otherwise, the effect of solar light irradiation time and dye concentration on the photocatalytic degradation of Acid Red B was investigated. Furthermore, the degradation mechanism and adsorption process were also discussed.

  12. Enhanced photocatalytic activity of nano titanium dioxide coated on ethanol-soluble carbon nanotubes

    International Nuclear Information System (INIS)

    Fu, Xiaofei; Yang, Hanpei; He, Kuanyan; Zhang, Yingchao; Wu, Junming

    2013-01-01

    Graphical abstract: Homogenous and dense spreading of TiO 2 on surface modified CNTs and improved photocatalytic performance of TiO 2 was achieved by coupling TiO 2 with ethanol-soluble CNTs. Display Omitted Highlights: ► Ethanol-soluble CNTs were acquired by surface modification. ► Enhanced photoactivity of TiO 2 coated on modified CNTs was obtained. ► Improved activity of TiO 2 is attributed to the intimate contact between TiO 2 and CNTs. ► Dense heterojunctions through Ti–O–CNTs at the interface is proposed. -- Abstract: Surface functionalized carbon nanotubes (CNTs) with ethanol solubility were synthesized and the CNTs–TiO 2 nanocomposites were prepared by coupling of TiO 2 with modified CNTs through a sol–gel method. The as-prepared CNTs and composites were characterized and the composite samples were evaluated for their photocatalytic activity toward the degradation of aqueous methyl orange. It is showed that the acid oxidation of CNTs leads to the embedding of oxygenated functional groups, and as a result, the acid-treated CNTs in turn may serve as chemical reactors for subsequent covalent grafting of octadecylamine. Improved photocatalytic performance of CNTs–TiO 2 composites was obtained, which is mainly attributed to the high dispersion of TiO 2 on ethanol-soluble CNTs and the intimate contact between TiO 2 and CNTs resulted from the dense heterojunctions through the Ti-O-C structure at the interface between TiO 2 and CNTs.

  13. A new route of synthesizing perovskite nanotubes by templating approach

    Science.gov (United States)

    Habiballah, Anisah Shafiqah; Osman, Nafisah; Jani, Abdul Mutalib Md

    2017-09-01

    A perovskite oxide for example Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF) has attracted growing attention due to its high catalytic activity and mixed ionic/electronic conductivity. Recent research of BSCF is more comprehensively based on a remarkable trajectory of innovation, in particular with regards to the synthesis of perovskite structures in one-dimensional (1-D) nanometric scales as they promote not only to increase an active electrode area for the oxygen reduction reaction, but also allow the tailoring of electrode's architecture. Nevertheless, achieving the desired 1-D structure by a conventional method such as hydrothermal, solvothermal, or sonochemical are far from satisfactory. Herein, the aim of this work is to synthesize the BSCF perovskite nanotubes via soft templating approach, particularly using anodic aluminium oxide (AAO) as a template, focusing on the morphology, composition and structural properties were demonstrated. After the AAO template was anodized at 80 V, the fabricated template was clamped between apair of spectroscopic cells containing BSCF sol and deionized water (with a hole of both sides) for 24 hours. After that, the sample was removed from the cells followed by heat treatment process. The FESEM images showed that BSCF nanotubes were successfully achieved, with the diameter of the nanotubes' approximately 80 nm. The EDX result also confirmed the nominal stoichiometry of Ba0.5Sr0.5Co0.8Fe0.2O3-δ. Meanwhile, the XRD pattern confirmed a single crystalline phase of BSCF nanotubes was successfully obtained and congruent to a cubic perovskite structure of BSCF. Possible formation mechanism,as well as the schematic illustration of BSCF nanotubes inside the template was also discussed in this paper.

  14. CeO2-TiO2 Photocatalyst: Ionic Liquid-Mediated Synthesis, Characterization, and Performance for Diisopropanolamine Visible Light Degradation

    Directory of Open Access Journals (Sweden)

    Jagath Retchahan Sivalingam

    2018-01-01

    Full Text Available CeO2-TiO2 photocatalyst with Ce:Ti molar ratio of 1:9 was synthesized via co-precipitation method in the presence of 1-ethyl-3-methyl imidazolium octylsulfate, [EMIM][OctSO4] (CeO2-TiO2-IL. The ionic liquid acts as a templating agent for particle growth. The CeO2-TiO2 and TiO2 photocatalysts were also synthesized without any ionic liquid for comparison. Calcination was conducted on the as-synthesized materials at 400˚C for 2 h. The photocatalysts were characterized using diffuse reflectance UV-Vis spectroscopy (DR-UV-Vis, field emission scanning electron microscopy (FESEM, X-ray powder diffraction (XRD, and surface area and pore size analyzer (SAP. The presence of CeO2 has changed the optical property of TiO2. It has extended the absorption edge of TiO2 from UV to visible region. The calculated band gap energy decreased from 2.82 eV (TiO2 to 2.30 eV (CeO2-TiO2-IL. The FESEM morphology showed that samples forms aggregates and the surface smoothens when ionic liquid was added. The average crystallite size of TiO2, CeO2-TiO2, and CeO2-TiO2-IL were 20.8 nm, 5.5 nm, and 4 nm. In terms of performance, photodegradation of 1000 ppm of diisopropanolamine (DIPA was conducted in the presence of hydrogen peroxide (H2O2 and visible light irradiation which was provided by a 500 W halogen lamp. The best performance was displayed by CeO2-TiO2-IL calcined at 400˚C. It was able to remove 82.0% DIPA and 54.8% COD after 6 h reaction.  Copyright © 2018 BCREC Group. All rights reserved Received: 26th July 2017; Revised: 22nd October 2017; Accepted: 29th October 2017; Available online: 22nd January 2018; Published regularly: 2nd April 2018 How to Cite: Sivalingam, J.R., Kait, C.F., Wilfred, C.D. (2018. CeO2-TiO2 Photocatalyst: Ionic Liquid-Mediated Synthesis, Characterization, and Performance for Diisopropanolamine Visible Light Degradation. Bulletin of Chemical Reaction Engineering & Catalysis, 13 (1: 170-178 (doi:10.9767/bcrec.13.1.1396.170-178

  15. Synthesis of mesoporous TiO2 in aqueous alcoholic medium and evaluation of its photocatalytic activity

    International Nuclear Information System (INIS)

    Kumaresan, L.; Prabhu, A.; Palanichamy, M.; Murugesan, V.

    2011-01-01

    Research highlights: → Mesoporous TiO 2 synthesized using P123 as soft template in sol-gel method. → Nanoparticle aggregates are better for photocatalytic activity than free nanoparticles. → Particle to particle transport of electrons in the conduction band of aggregates are important factor. - Abstract: Mesoporous TiO 2 was synthesized using triblock copolymer as the structure directing template in ethanol/water, isopropanol/water or 1-butanol/water medium by sol-gel method. The presence of intense peak at low angle in the XRD patterns confirmed the orderly arrangement of mesopores in the material. Among the three different alcohols, ethanol had influenced better in controlling the particle size than others. The enhanced specific surface area also revealed the formation of mesopores. Aggregates of particles were clearly seen in the TEM images and the size of the particles was approximately 10 nm. The photocatalytic activity of mesoporous TiO 2 was evaluated using aqueous alachlor as a model pollutant. The activity of mesoporous TiO 2 synthesized in ethanol/water mole ratio of 50 was higher than other mesoporous TiO 2 and commercial TiO 2 (Degussa P-25). The transport of excited electrons from one particle to its neighboring nanoparticles of mesoporous TiO 2 is suggested to be the cause for enhanced photocatalytic activity.

  16. Fabrication of Carbon Nanotube/SiO2and Carbon Nanotube/SiO2/Ag Nanoparticles Hybrids by Using Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Li Haiqing

    2009-01-01

    Full Text Available Abstract Based on plasma-treated single wall carbon nanotubes (SWCNTs, SWCNT/SiO2and thiol groups-functionalized SWCNT/SiO2hybrids have been fabricated through a sol–gel process. By means of thiol groups, Ag nanoparticles have been in situ synthesized and bonded onto the SiO2shell of SWCNT/SiO2in the absence of external reducing agent, resulting in the stable carbon nanotube/SiO2/Ag nanoparticles hybrids. This strategy provides a facile, low–cost, and green methodology for the creation of carbon nanotube/inorganic oxides-metal nanoparticles hybrids.

  17. Engineering the TiO2 -graphene interface to enhance photocatalytic H2 production.

    Science.gov (United States)

    Liu, Lichen; Liu, Zhe; Liu, Annai; Gu, Xianrui; Ge, Chengyan; Gao, Fei; Dong, Lin

    2014-02-01

    In this work, TiO2 -graphene nanocomposites are synthesized with tunable TiO2 crystal facets ({100}, {101}, and {001} facets) through an anion-assisted method. These three TiO2 -graphene nanocomposites have similar particle sizes and surface areas; the only difference between them is the crystal facet exposed in TiO2 nanocrystals. UV/Vis spectra show that band structures of TiO2 nanocrystals and TiO2 -graphene nanocomposites are dependent on the crystal facets. Time-resolved photoluminescence spectra suggest that the charge-transfer rate between {100} facets and graphene is approximately 1.4 times of that between {001} facets and graphene. Photoelectrochemical measurements also confirm that the charge-separation efficiency between TiO2 and graphene is greatly dependent on the crystal facets. X-ray photoelectron spectroscopy reveals that Ti-C bonds are formed between {100} facets and graphene, while {101} facets and {001} facets are connected with graphene mainly through Ti-O-C bonds. With Ti-C bonds between TiO2 and graphene, TiO2 -100-G shows the fastest charge-transfer rate, leading to higher activity in photocatalytic H2 production from methanol solution. TiO2 -101-G with more reductive electrons and medium interfacial charge-transfer rate also shows good H2 evolution rate. As a result of its disadvantageous electronic structure and interfacial connections, TiO2 -001-G shows the lowest H2 evolution rate. These results suggest that engineering the structures of the TiO2 -graphene interface can be an effective strategy to achieve excellent photocatalytic performances. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Effect of hydrogen on the growth and morphology of single wall carbon nanotubes synthesized on a Fe-Mo/MgO catalytic system

    Energy Technology Data Exchange (ETDEWEB)

    Biris, Alexandru R. [National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, RO-3400 (Romania)], E-mail: biris@oc1.itim-cj.ro; Li Zhongrui; Dervishi, Enkeleda [Applied Science Department, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Nanotechnology Center, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Lupu, Dan [National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, RO-3400 (Romania); Xu Yang; Saini, Viney [Applied Science Department, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Nanotechnology Center, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Watanabe, Fumiya [Nanotechnology Center, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Biris, Alexandru S. [Applied Science Department, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States); Nanotechnology Center, University of Arkansas at Little Rock, 2801 S. University Ave, Little Rock, AR 72204 (United States)], E-mail: asbiris@ualr.edu

    2008-04-21

    Single wall carbon nanotubes were synthesized from thermal pyrolysis of methane on a Fe-Mo/MgO catalyst by radio frequency catalytic chemical vapor deposition (RF-CVD) using argon as a carrier gas. Controlled amounts of hydrogen (H{sub 2}/CH{sub 4}=0-1 v/v) were introduced in separate experiments along with the carbon source. The properties and morphology of the synthesized single wall carbon nanotubes were monitored by transmission electron microscopy, Raman scattering, and thermogravimetric analysis. The nanotubes with the highest crystallinity were obtained with H{sub 2}/CH{sub 4}=0.6. By monitoring the Radial Breathing Modes present in the Raman spectra of the single-wall carbon nanotube samples, the variation of the structural and morphological properties of the carbon nanotubes with the flow level of hydrogen, reflect changes of the catalyst systems induced by the presence of hydrogen.

  19. Glycine assisted synthesis of flower-like TiO 2 hierarchical spheres and its application in photocatalysis

    KAUST Repository

    Tao, Yugui; Xu, Yanqiu; Pan, Jun; Gu, Hao; Qin, Changyun; Zhou, Peng

    2012-01-01

    Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2O 2). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2. © 2012 Elsevier B.V.

  20. Glycine assisted synthesis of flower-like TiO 2 hierarchical spheres and its application in photocatalysis

    KAUST Repository

    Tao, Yugui

    2012-11-01

    Flower-like anatase TiO 2 hierarchical spheres assembled by nanosheets were synthesized by glycine assistant via a simple hydrothermal approach and after-annealing process. These flower-like spheres are about 2 μm in diameter with sheet thickness about 20 nm. Results showed reaction time, temperature, solution pH and glycine dosage all played an important role in control of shape and size of the as-synthesized TiO 2 nanocrystals. The photocatalytic activity of this nano-TiO 2 was evaluated by the photocatalytic oxidation decomposition of methyl orange under sunlight illumination in the presence of hydrogen peroxide (H 2O 2). The photocatalytic activity of the obtained TiO 2 was higher than that of commercial TiO 2. © 2012 Elsevier B.V.

  1. Preparation of Li4Ti5O12 by solution ion-exchange of sodium titanate nanotube and evaluation of electrochemical performance

    International Nuclear Information System (INIS)

    Zhang, Jingwei; Zhang, Fenli; Li, Jiuhe; Cai, Wei; Zhang, Jiwei; Yu, Laigui; Jin, Zhensheng; Zhang, Zhijun

    2013-01-01

    Nano-sized spinel lithium titanate (Li 4 Ti 5 O 12 ) was synthesized using sodium titanate nanotube as precursor via a facile solution ion-exchange method in association with subsequent calcination treatment at relatively low temperature. The influences of precursors, ion-exchange condition, and calcination temperature on the microstructure and electrochemical performance of the products were studied. Results indicate that pure-phase Li 4 Ti 5 O 12 can be harvested from sodium titanate nanotube precursor through an ion-exchanging at room temperature and calcination at 500 °C. The products exhibit a better performance as Li-ion battery anode material than the counterparts prepared from protonic titanate nanotube (H-titanate) precursor. The reason may lie in that sodium titanate nanotube is easier than protonic titanate nanotube to synthesize lithium titanate without TiO 2 impurity, resulting in reduced electron transfer ability and Li-ion transport ability. The capacity of Li 4 Ti 5 O 12 prepared from sodium titanate nanotube is 146 mAh/g at 10 C, and it has only 0.7 % decay after 200 charge/discharge cycles

  2. Fabrication of CdS/H-TiO2 Nanotube Arrays and Their Application for the Degradation of Methyl Orange in Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Xiaosong Zhou

    2014-01-01

    Full Text Available The fabrication and characterization of heterogeneous structures based on CdS and self-doped TiO2 nanotube arrays (H-TNTs are reported for the first time. CdS was conformally deposited onto TiO2 nanotube arrays (TNTs using a simple method of electrochemical atomic layer deposition. The as-prepared samples were characterized by scanning electron microscopy (SEM, X-ray photoelectron spectroscopy (XPS, UV-Vis diffusion reflection spectroscopy (UV-Vis DRS, and photoluminescence spectroscopy (PL techniques. Compared with pure TNTs, CdS/H-TNTs exhibit enhanced photoelectrochemical properties and photocatalytic activity under visible light. Self-doping introduces oxygen vacancies and Ti3+ species, and the electrochemical deposition technique promotes the deposition of CdS onto TiO2 nanotube walls, forming a heterojunction compact structure and resulting in decrease in photocatalytic activity under visible light.

  3. Synthesis and Evaluation of Porous Semiconductor Hexaniobate Nanotubes for Photolysis of Organic Dyes in Wastewater

    Directory of Open Access Journals (Sweden)

    Maryam Zarei-Chaleshtori

    2014-10-01

    Full Text Available We present the chemical synthesis of hexaniobate nanotubes using two routes, (1 starting material K4Nb6O17 and (2 parent material of H4Nb6O17 via ion exchange. The as-synthesized materials were exfoliated by adjusting the pH to 9–10 using tetra-n-butylammonioum hydroxide (TBA+OH−, leading to a formation of hexaniobate nanotubes. In order to understand morphology a full characterization was conducted using SEM, HRTEM, BET and powder-XRD. The photocatalytic activity was evaluated using photolysis method using Bromocresol Green (BG and Methyl Orange (MO as model contaminants. Results indicate a nanotube porous oxide with large porous and surface area; the photocatalytic activity is about 95% efficient when comparing with commercial TiO2.

  4. Hydrothermal synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO2 nanopowders

    International Nuclear Information System (INIS)

    Pavasupree, Sorapong; Jitputti, Jaturong; Ngamsinlapasathian, Supachai; Yoshikawa, Susumu

    2008-01-01

    Mesoporous anatase TiO 2 nanopowder was synthesized by hydrothermal method at 130 deg. C for 12 h. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected-area electron diffraction (SAED), HRTEM, and Brunauer-Emmett-Teller (BET) surface area. The as-synthesized sample with narrow pore size distribution had average pore diameter about 3-4 nm. The specific BET surface area of the as-synthesized sample was about 193 m 2 /g. Mesoporous anatase TiO 2 nanopowders (prepared by this study) showed higher photocatalytic activity than the nanorods TiO 2 , nanofibers TiO 2 mesoporous TiO 2 , and commercial TiO 2 nanoparticles (P-25, JRC-01, and JRC-03). The solar energy conversion efficiency (η) of the cell using the mesoporous anatase TiO 2 was about 6.30% with the short-circuit current density (Jsc) of 13.28 mA/cm 2 , the open-circuit voltage (Voc) of 0.702 V and the fill factor (ff) of 0.676; while η of the cell using P-25 reached 5.82% with Jsc of 12.74 mA/cm 2 , Voc of 0.704 V and ff of 0.649

  5. Light-induced antifungal activity of TiO2 nanoparticles/ZnO nanowires

    International Nuclear Information System (INIS)

    Haghighi, N.; Abdi, Y.; Haghighi, F.

    2011-01-01

    Antifungal activity of TiO 2 /ZnO nanostructures under visible light irradiation was investigated. A simple chemical method was used to synthesize ZnO nanowires. Zinc acetate dihydrate, Polyvinyl Pyrrolidone and deionized water were used as precursor, capping and solvent, respectively. TiO 2 nanoparticles were deposited on ZnO nanowires using an atmospheric pressure chemical vapor deposition system. X-ray diffraction pattern of TiO 2 /ZnO nano-composite has represented the diffraction peaks relating to the crystal planes of the TiO 2 (anatase and rutile) and ZnO. TiO 2 /ZnO nanostructure antifungal effect on Candida albicans biofilms was studied and compared with the activity of TiO 2 nanoparticles and ZnO nanowires. The high efficiency photocatalytic activity of TiO 2 nanoparticles leads to increased antifungal activity of ZnO nanowires. Scanning electron microscope was utilized to study the morphology of the as prepared nanostructures and the degradation of the yeast.

  6. Carbon nanotube-TiO(2) hybrid films for detecting traces of O(2).

    Science.gov (United States)

    Llobet, E; Espinosa, E H; Sotter, E; Ionescu, R; Vilanova, X; Torres, J; Felten, A; Pireaux, J J; Ke, X; Van Tendeloo, G; Renaux, F; Paint, Y; Hecq, M; Bittencourt, C

    2008-09-17

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO(2) films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. ≤10 ppm) in a flow of CO(2), which is of interest for the beverage industry.

  7. Carbon nanotube-TiO2 hybrid films for detecting traces of O2

    International Nuclear Information System (INIS)

    Llobet, E; Espinosa, E H; Sotter, E; Ionescu, R; Vilanova, X; Torres, J; Felten, A; Pireaux, J J; Ke, X; Tendeloo, G Van; Renaux, F; Paint, Y; Hecq, M; Bittencourt, C

    2008-01-01

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO 2 films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. ≤10 ppm) in a flow of CO 2 , which is of interest for the beverage industry

  8. The Influence of TiO2 Nanoparticles on LaFeO3/TiO2 Nanocomposites for Reduction of Aqueous Organic Dyes

    International Nuclear Information System (INIS)

    Afifah, N.; Saleh, R.

    2016-01-01

    A series of Lanthanum ferrite (LaFeO3) nanoparticles over titanium dioxide (TiO2) were synthesized using sol-gel method at room temperature by varying the loading of LaFeO3 on TiO2. The magnetic properties of samples were measured using vibrating sample magnetometer and photosonocatalytic activity towards the degradation of methylene blue under light (UV or visible) and ultrasound irradiation was also evaluated. The morphology and structure of the samples were characterized by field emission scanning electron microscope, energy dispersive analysis and X-ray diffraction. Furthermore the optical properties were also characterized by UV-visible diffuse reflectance. The experimental results showed that the prepared perovskites had sphere-like shape and strong visible light absorption. LaFeO3 demonstrated ferromagnetic properties and the magnetization decreased with the incorporation of TiO2 in the samples. However, the incorporation of TiO2 increased the photosonocatalytic activity and extended the photoresponding to UV light. (paper)

  9. Dye-Sensitized Solar Cells with Anatase TiO2 Nanorods Prepared by Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Ming-Jer Jeng

    2013-01-01

    Full Text Available The hydrothermal method provides an effective reaction environment for the synthesis of nanocrystalline materials with high purity and well-controlled crystallinity. In this work, we started with various sizes of commercial TiO2 powders and used the hydrothermal method to prepare TiO2 thin films. We found that the synthesized TiO2 nanorods were thin and long when smaller TiO2 particles were used, while larger TiO2 particles produced thicker and shorter nanorods. We also found that TiO2 films prepared by TiO2 nanorods exhibited larger surface roughness than those prepared by the commercial TiO2 particles. It was found that a pure anatase phase of TiO2 nanorods can be obtained from the hydrothermal method. The dye-sensitized solar cells fabricated with TiO2 nanorods exhibited a higher solar efficiency than those fabricated with commercial TiO2 nanoparticles directly. Further, triple-layer structures of TiO2 thin films with different particle sizes were investigated to improve the solar efficiency.

  10. TiO2/EVOH based reactive interlayer in Surlyn for organic device encapsulation

    International Nuclear Information System (INIS)

    Kopanati, Gayathri N; Madras, Giridhar; Ramamurthy, Praveen C

    2016-01-01

    Barrier materials are important for improving the stability and lifetimes of organic electronic devices. A simple technique for improving the barrier properties of polymer films was considered in this work by using TiO 2 nanoparticles in the interlayer to be incorporated in the polymer film. TiO 2 was synthesized by the solution combustion technique, was further functionalized using stearic acid or octadecylamine to induce hydrophobicity and enhance processing of the composite interlayer. The grafting of these compounds on to TiO 2 was investigated using Fourier transform infrared spectroscopy, Raman spectroscopy, elemental analysis and thermo-gravimetric analysis. The functionalized and neat TiO 2 were blended with poly (vinyl alcohol-ethylene) (EVOH) and were melt compressed between Surlyn films. The resulting nanocomposite films were tested for their transparency and barrier properties using UV–visible spectroscopy and calcium degradation test, respectively. Further, the effectiveness of these barrier films in encapsulating organic devices was determined from accelerated aging tests. Therefore, the synthesized barrier films with neat and functionalized TiO 2 in the interlayers proved to be effective as moisture barrier composite films. (paper)

  11. LCAO calculations of SrTiO3 nanotubes

    International Nuclear Information System (INIS)

    Evarestov, Robert; Bandura, Andrei

    2011-01-01

    The large-scale first-principles simulation of the structure and stability of SrTiO 3 nanotubes is performed for the first time using the periodic PBE0 LCAO method. The initial structures of the nanotubes have been obtained by the rolling up of the stoichiometric SrTiO 3 slabs consisting of two or four alternating (001) SrO and TiO 2 atomic planes. Nanotubes (NTs) with chiralities (n,0) and (n,n) have been studied. Two different NTs were constructed for each chirality: (I) with SrO outer shell, and (II) with TiO 2 outer shell. Positions of all atoms have been optimized to obtain the most stable NT structure . In the majority of considered cases the inner or outer TiO 2 shells of NT undergo a considerable reconstruction due to shrinkage or stretching of interatomic distances in the initial cubic perovskite structure. There were found two types of surface reconstruction: (1) breaking of Ti-O bonds with creating of Ti = O titanyl groups in outer surface; (2) inner surface folding due to Ti-O-Ti bending. Based on strain energy calculations the largest stability was found for (n,0) NTs with TiO 2 outer shell.

  12. Y{sub 2}O{sub 3}:Yb/Er nanotubes: Layer-by-layer assembly on carbon-nanotube templates and their upconversion luminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Weishi; Shen, Jianfeng; Wan, Lei; Chang, Yu [Department of Materials Science, Fudan University, Shanghai 200433 (China); Ye, Mingxin, E-mail: mxye@fudan.edu.cn [Department of Materials Science, Fudan University, Shanghai 200433 (China); Center of Special Materials and Technology, Fudan University, Shanghai 200433 (China)

    2012-11-15

    Graphical abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer assembly on carbon nanotubes templates followed by a subsequent heat treatment process. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm. Display Omitted Highlights: ► Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized. ► CNTs were used as templates for Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► LBL assembly and calcination were used for preparation of Y{sub 2}O{sub 3}:Yb/Er nanotubes. ► The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission. -- Abstract: Well-shaped Y{sub 2}O{sub 3}:Yb/Er nanotubes have been successfully synthesized on a large scale via layer-by-layer (LBL) assembly on carbon nanotubes (CNTs) templates followed by a subsequent heat treatment process. The crystal structure, element analysis, morphology and upconversion luminescence properties were characterized. XRD results demonstrate that the diffraction peaks of the samples calcinated at 800 °C or above can be indexed to the pure cubic phase of Y{sub 2}O{sub 3}. SEM images indicate that a large quantity of uniform and rough nanotubes with diameters of about 30–60 nm can be observed. The as-prepared Y{sub 2}O{sub 3}:Yb/Er nanotubes show a strong red emission corresponding to the {sup 4}F{sub 9/2}–{sup 4}I{sub 15/2} transition of the Er{sup 3+} ions under excitation at 980 nm, which have potential applications in such fields as nanoscale devices, molecular catalysts, nanobiotechnology, photonics and optoelectronics.

  13. Synthesis of ascorbic acid enhanced TiO2 photocatalyst: its characterization and catalytic activity in CO2 photoreduction

    Directory of Open Access Journals (Sweden)

    Mohd Farid Bin Mohd Na'aim

    2018-04-01

    Full Text Available To date, the development of solar environmental remediation has shifted more emphasis on the green and simple synthesis of catalyst for CO2 photocatalysis process. Herein, TiO2 photocatalyst was successfully synthesized via hydrothermal method. The effects of the different molar ratio of ascorbic acid C6H8O6, (AA added during the preparation of TiO2 nanoparticles were comprehensively studied. The characterization of TiO2 nanocrystals was performed via XRD, XPS, DRUV-vis, and FTIR. The results show the AA loading into TiO2 nanoparticles significantly intensified the XRD spectra of anatase structure. In fact, this feature had signified a reactivity of the photocatalyst in the visible region. In an instance, BET surface area was also enhanced with the highest recorded value of 135.14 m2/g for 0.8AA. Meanwhile, the CO2 photoreduction over synthesized TiO2 had produced the highest amount of HCOOH at 39.3 μmol/g cat for 0.8AA within 6 hours of reaction time. Furthermore, the DRUV-vis analysis had illustrated better light absorption ability of 0.8AA. This profound finding is attributed to the correlation between large surface area, pure anatase phase, and high adsorbed water molecules. Therefore, this study had significantly demonstrated the potential of modified TiO2 with AA in CO2 photocatalysis area while simultaneously presents a green and simple method for TiO2 synthesis.

  14. TiO2-SnS2 nanocomposites: solar-active photocatalytic materials for water treatment.

    Science.gov (United States)

    Kovacic, Marin; Kusic, Hrvoje; Fanetti, Mattia; Stangar, Urska Lavrencic; Valant, Matjaz; Dionysiou, Dionysios D; Bozic, Ana Loncaric

    2017-08-01

    The study is aimed at evaluating TiO 2 -SnS 2 composites as effective solar-active photocatalysts for water treatment. Two strategies for the preparation of TiO 2 -SnS 2 composites were examined: (i) in-situ chemical synthesis followed by immobilization on glass plates and (ii) binding of two components (TiO 2 and SnS 2 ) within the immobilization step. The as-prepared TiO 2 -SnS 2 composites and their sole components (TiO 2 or SnS 2 ) were inspected for composition, crystallinity, and morphology using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDX) analyses. Diffuse reflectance spectroscopy (DRS) was used to determine band gaps of immobilized TiO 2 -SnS 2 and to establish the changes in comparison to respective sole components. The activity of immobilized TiO 2 -SnS 2 composites was tested for the removal of diclofenac (DCF) in aqueous solution under simulated solar irradiation and compared with that of single component photocatalysts. In situ chemical synthesis yielded materials of high crystallinity, while their morphology and composition strongly depended on synthesis conditions applied. TiO 2 -SnS 2 composites exhibited higher activity toward DCF removal and conversion in comparison to their sole components at acidic pH, while only in situ synthesized TiO 2 -SnS 2 composites showed higher activity at neutral pH.

  15. CdSxSe1−x alloyed quantum dots-sensitized solar cells based on different architectures of anodic oxidation TiO2 film

    International Nuclear Information System (INIS)

    Li, Zhen; Yu, Libo; Liu, Yingbo; Sun, Shuqing

    2014-01-01

    Nanostructured TiO 2 translucent films with different architectures including TiO 2 nanotube (NT), TiO 2 nanowire (NW), and TiO 2 nanowire/nanotube (NW/NT) have been produced by second electrochemical oxidization of TiO 2 NT with diameter around 90–110 nm via modulation of applied voltage. These TiO 2 architectures are sensitized with CdS x Se 1−x alloyed quantum dots (QDs) in sizes of around 3–5 nm aiming to tune the response of the photoelectrochemical properties in the visible region. One-step hydrothermal method facilitates the deposition of CdS x Se 1−x QDs onto TiO 2 films. These CdS x Se 1−x QDs exhibit a tunable range of light absorption with changing the feed molar ratio of S:Se in precursor solution, and inject electrons into TiO 2 films upon excitation with visible light, enabling their application as photosensitizers in sensitized solar cells. Power conversion efficiency (PCE) of 2.00, 1.72, and 1.06 % are achieved with CdS x Se 1−x (obtained with S:Se = 0:4) alloyed QDs sensitized solar cells based on TiO 2 NW/NT, TiO 2 NW, and TiO 2 NT architectures, respectively. The significant enhancement of power conversion efficiency obtained with the CdS x Se 1−x /TiO 2 NW/NT solar cell can be attributed to the extended absorption of light region tuned by CdS x Se 1−x alloyed QDs and enlarged deposition of QDs and efficient electrons transport provided by TiO 2 NW/NT architecture

  16. Electrochemical Capacitors Based on Aligned Carbon Nanotubes Directly Synthesized on Tantalum Substrates

    International Nuclear Information System (INIS)

    Kim, Byung Woo; Chung, Hae Geun; Kim, Woong; Min, Byoung Koun; Kim, Hong Gon

    2010-01-01

    We demonstrate that vertically aligned carbon nanotubes can be synthesized directly on tantalum substrate via waterassisted chemical vapor deposition and evaluate their properties as electrochemical capacitors. The mean diameter of the carbon nanotubes was 7.1 ± 1.5 nm, and 70% of them had double walls. The intensity ratio of G-band to D-band in Raman spectra was as high as 5, indicating good quality of the carbon nanotubes. Owing to the alignment and low equivalent series resistance, the carbon nanotube based supercapacitors showed good rate performance. Rectangular shape of cyclic voltammogram was maintained even at the scan rate of > 1 V/s in 1 M sulfuric acid aqueous solution. Specific capacitance was well-retained (∼94%) even when the discharging current density dramatically increased up to 145 A/g. Consequently, specific power as high as 60 kW/kg was obtained from as-grown carbon nanotubes in aqueous solution. Maximum specific energy of ∼20 Wh/kg was obtained when carbon nanotubes were electrochemically oxidized and operated in organic solution. Demonstration of direct synthesis of carbon nanotubes on tantalum current collectors and their applications as supercapacitors could be an invaluable basis for fabrication of high performance carbon nanotube supercapacitors

  17. Decolorization of dyeing wastewater in continuous photoreactors using tio2 coated glass tube media

    Directory of Open Access Journals (Sweden)

    Jutaporn Chanathaworn

    2014-02-01

    Full Text Available The present study deals with a decolorization development of malachite green (MG dyeing wastewater using TiO2 thin films coated glass tube media in photoreactor. The TiO2 photocatalyst was synthesized by three methods: TTIP sol-gel, TiO2 powder-modified sol, and TiO2 powder suspension coating on raschig ring glass tube media and was investigated crystallinity phase by SEM, XRD, and AFM. Degradation kinetics of the dyeing wastewater by photocatalytic was carried out under UV light irradiation. The Langmuir first-order model provided the best fit to the experimental data. The catalyst prepared by powder suspension technique and coated on glass tube had given the highest of decolorization kinetics and efficiency. Continuous photoreactor packed with the TiO2 coating media was designed and proven to be the high effectiveness for MG dyeing degradation and stable throughout the recyclability test. The light intensity, dye solution flow rate, and TiO2 loading were the most important parameters that response to decolorization efficiency. The optimum condition of photo decolorization of MG dye solution can be obtained from RSM model. Effectiveness of the synthesized TiO2 thin films using suspension technique and the continuous photoreactor design were obtained with a great potential to be proven for wastewater treatment at industrial scale.

  18. SYNTHESIS OF MAGNETIC NANOPARTICLES OF TiO2-NiFe2O4: CHARACTERIZATION AND PHOTOCATALYTIC ACTIVITY ON DEGRADATION OF RHODAMINE B

    Directory of Open Access Journals (Sweden)

    Rahmayeni Rahmayeni

    2012-12-01

    Full Text Available Magnetic nanoparticles of TiO2-(xNiFe2O4 with x = 0.01, 0.1, and 0.3have been synthesized by mixture of titanium isopropoxide (TIP and nitric metal as precursors. The particles were characterized by XRD, SEM-EDX, and VSM. XRD pattern show the peaks at 2q = 25.3°, 38.4° and 47.9° which are referred as anatase phase of TiO2. Meanwhile NiFe2O4 phase was observed clearly for x = 0.3. The present of NiFe2O4 can prevent the transformation of TiO2 from anatase to rutile when the calcination temperature increased. Microstructure analyses by SEM show the homogeneous form and size of particles. The magnetic properties analysis by VSM indicates that TiO2-NiFe2O4 is paramagnetic behavior. TiO2 doped NiFe2O4 has higher photocatalytic activity than TiO2 synthesized for degradation of Rhodamine B in aqueous solution under solar light irradiation.

  19. Direct access to highly crystalline mesoporous nano TiO2 using sterically bulky organic acid templates

    Science.gov (United States)

    Bakre, Pratibha V.; Tilve, S. G.

    2018-05-01

    Sterically bulky monocarboxylic acid templates pivalic acid and phenoxyacetic acid are reported for the first time as organic templates in the sol-gel synthesis of TiO2. Mesoporous nanoparticulates of pure anatase phase and of well defined size were synthesized. The characterization of the materials prepared was done by various methods such as XRD, SEM, TEM, FTIR, UV-DRS, BET, etc. The prepared TiO2 samples were evaluated for the day light photodegradation of methylene blue by comparing with Degussa P25 and templates free synthesized TiO2 and were found to be more efficient.

  20. Transparent conducting oxide nanotubes

    Science.gov (United States)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Nagpal, Prashant

    2014-09-01

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current-voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10-4 Ωcm at T = 300 K (compared to 6.5 × 10-1 Ωcm for nominally undoped nanotubes) to 2.2 × 10-4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm-1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples.

  1. Carbon and TiO_2 synergistic effect on methylene blue adsorption

    International Nuclear Information System (INIS)

    Simonetti, Evelyn Alves Nunes; Simone Cividanes, Luciana de; Campos, Tiago Moreira Bastos; Rossi Canuto de Menezes, Beatriz; Brito, Felipe Sales; Thim, Gilmar Patrocínio

    2016-01-01

    Due to its high efficiency, low cost and a simple operation, the adsorption process is an important and widely used technique for industrial wastewater treatment. Recent studies on the removal of artificial dyes by adsorption include a large number of adsorbents, such as: activated carbon, silicates, carbon nanotube, graphene, fibers, titanates and doped titanates. The carbon insertion in the TiO_2 structure promotes a synergistic effect on the adsorbent composite, improving the adsorption and the charge-transfer efficiency rates. However, there are few studies regarding the adsorption capacity of TiO_2/Carbon composites with the carbon concentration. This study evaluates the effect of carbon (resorcinol/formaldehyde) insertion on TiO_2 structure through the adsorption process. Adsorbents were prepared by varying the carbon weight percentages using the sol-gel method. The physicochemical properties of the catalysts prepared, such as crystallinity, particle size, surface morphology, specific surface area and pore volume were investigated. The kinetic study, adsorption isotherm, pH effect and thermodynamic study were examined in batch experiments using methylene blue as organic molecule. In addition, the effect of carbon phase on the adsorption capacity of TiO_2-carbon composite was deeply investigated. SEM micrographs showed that TiO_2 phase grows along the carbon phase and FT-IR results showed the presence of Ti−O−C chemical bonding. The experiments indicate that the carbon phase acted as a nucleation agent for the growth of TiO_2 during the sol-gel step, with a TiO_2 structure suitable for blue methylene adsorption, resulting in a material with large surface area and slit-like or wedge-shaped pores. Further experiments will show the best carbon concentration for methylene blue adsorption using a TiO_2 based material. - Highlights: • This article deals with the adsorption of methylene blue onto TiO_2-Carbon composite. • The sol-gel synthesis was efficient

  2. TiO2/PCL hybrid materials synthesized via sol–gel technique for biomedical applications

    International Nuclear Information System (INIS)

    Catauro, M.; Bollino, F.; Papale, F.; Marciano, S.; Pacifico, S.

    2015-01-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol–gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between Ti-OH groups in the sol–gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48 h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. - Highlights: • TiO 2 /PCL hybrids were obtained by the sol–gel process for biomedical applications. • Synthesized materials were found to be first-class hybrid nanocomposites. • Hybrids appear to be bioactive, a fundamental characteristic for osseointegration. • MTT and Trypan Blue viability test show that the materials are biocompatible. • The organic phase is able to modulate the biocompatibility of the materials

  3. Microwave-assisted self-doping of TiO2 photonic crystals for efficient photoelectrochemical water splitting

    KAUST Repository

    Zhang, Zhonghai

    2014-01-08

    In this article, we report that the combination of microwave heating and ethylene glycol, a mild reducing agent, can induce Ti3+ self-doping in TiO2. A hierarchical TiO2 nanotube array with the top layer serving as TiO2 photonic crystals (TiO2 NTPCs) was selected as the base photoelectrode. The self-doped TiO2 NTPCs demonstrated a 10-fold increase in visible-light photocurrent density compared to the nondoped one, and the optimized saturation photocurrent density under simulated AM 1.5G illumination was identified to be 2.5 mA cm-2 at 1.23 V versus reversible hydrogen electrode, which is comparable to the highest values ever reported for TiO2-based photoelectrodes. The significant enhancement of photoelectrochemical performance can be ascribed to the rational coupling of morphological and electronic features of the self-doped TiO 2 NTPCs: (1) the periodically morphological structure of the photonic crystal layer traps broadband visible light, (2) the electronic interband state induced from self-doping of Ti3+ can be excited in the visible-light region, and (3) the captured light by the photonic crystal layer is absorbed by the self-doped interbands. © 2013 American Chemical Society.

  4. Synthesis of hybrid cellulose nanocomposite bonded with dopamine SiO2/TiO2 and its antimicrobial activity

    Science.gov (United States)

    Ramesh, Sivalingam; Kim, Gwang-Hoon; Kim, Jaehwan; Kim, Joo-Hyung

    2015-04-01

    Organic-inorganic hybrid material based cellulose was synthesized by the sol-gel approach. The explosion of activity in this area in the past decade has made tremendous progress in industry or academic both fundamental understanding of sol-gel process and applications of new functionalized hybrid materials. In this present research work, we focused on cellulose-dopamine functionalized SiO2/TiO2 hybrid nanocomposite by sol-gel process. The cellulose-dopamine hybrid nanocomposite was synthesized via γ-aminopropyltriethoxysilane (γ-APTES) coupling agent by in-situ sol-gel process. The chemical structure of cellulose-amine functionalized dopamine bonding to cellulose structure with covalent cross linking hybrids was confirmed by FTIR spectral analysis. The morphological analysis of cellulose-dopamine nanoSiO2/TiO2 hybrid nanocomposite materials was characterized by XRD, SEM and TEM. From this different analysis results indicate that the optical transparency, thermal stability, control morphology of cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite. Furthermore cellulose-dopamine-SiO2/TiO2 hybrid nanocomposite was tested against pathogenic bacteria for antimicrobial activity.

  5. Anodic Materials for Lithium-ion Batteries: TiO2-rGO Composites for High Power Applications

    International Nuclear Information System (INIS)

    Minella, M.; Versaci, D.; Casino, S.; Di Lupo, F.; Minero, C.; Battiato, A.; Penazzi, N.; Bodoardo, S.

    2017-01-01

    Titanium dioxide/reduced graphene oxide (TiO 2 -rGO) composites were synthesized at different loadings of carbonaceous phase, characterized and used as anode materials in Lithium-ion cells, focusing not only on the high rate capability but also on the simplicity and low cost of the electrode production. It was therefore chosen to use commercial TiO 2 , GO was synthesized from graphite, adsorbed onto TiO 2 and reduced to rGO following a chemical, a photocatalytic and an in situ photocatalytic procedure. The synthesized materials were in-depth characterized with a multi-technique approach and the electrochemical performances were correlated i) to an effective reduction of the GO oxidized moieties and ii) to the maintenance of the 2D geometry of the final graphenic structure observed. TiO 2 -rGO obtained with the first two procedures showed good cycle stability, high capacity and impressive rate capability particularly at 10% GO loading. The photocatalytic reduction applied in situ on preassembled electrodes showed similarly good results reaching the goal of a further simplification of the anode production.

  6. Biomimetic three-dimensional nanocrystalline hydroxyapatite and magnetically synthesized single-walled carbon nanotube chitosan nanocomposite for bone regeneration

    Directory of Open Access Journals (Sweden)

    Im O

    2012-04-01

    Full Text Available Owen Im1, Jian Li2, Mian Wang2, Lijie Grace Zhang2,3, Michael Keidar2,31Department of Biomedical Engineering, Duke University, Durham, NC; 2Department of Mechanical and Aerospace Engineering, 3Institute for Biomedical Engineering and Institute for Nanotechnology, The George Washington University, Washington, DC, USABackground: Many shortcomings exist in the traditional methods of treating bone defects, such as donor tissue shortages for autografts and disease transmission for allografts. The objective of this study was to design a novel three-dimensional nanostructured bone substitute based on magnetically synthesized single-walled carbon nanotubes (SWCNT, biomimetic hydrothermally treated nanocrystalline hydroxyapatite, and a biocompatible hydrogel (chitosan. Both nanocrystalline hydroxyapatite and SWCNT have a biomimetic nanostructure, excellent osteoconductivity, and high potential to improve the load-bearing capacity of hydrogels.Methods: Specifically, three-dimensional porous chitosan scaffolds with different concentrations of nanocrystalline hydroxyapatite and SWCNT were created to support the growth of human osteoblasts (bone-forming cells using a lyophilization procedure. Two types of SWCNT were synthesized in an arc discharge with a magnetic field (B-SWCNT and without a magnetic field (N-SWCNT for improving bone regeneration.Results: Nanocomposites containing magnetically synthesized B-SWCNT had superior cytocompatibility properties when compared with nonmagnetically synthesized N-SWCNT. B-SWCNT have much smaller diameters and are twice as long as their nonmagnetically prepared counterparts, indicating that the dimensions of carbon nanotubes can have a substantial effect on osteoblast attachment.Conclusion: This study demonstrated that a chitosan nanocomposite with both B-SWCNT and 20% nanocrystalline hydroxyapatite could achieve a higher osteoblast density when compared with the other experimental groups, thus making this nanocomposite

  7. Synthesis of Co-Electrospun Lead Selenide Nanostructures within Anatase Titania Nanotubes for Advanced Photovoltaics

    Directory of Open Access Journals (Sweden)

    Evan K. Wujcik

    2015-06-01

    Full Text Available Inorganic nano-scale heterostructures have many advantages over hybrid organic-inorganic dye-sensitized solar cells (DSSC or Grätzel cells, including their resistance to photo-bleaching, thermal stability, large specific surface areas, and general robustness. This study presents a first-of-its-kind low-cost all-inorganic lead selenide-anatase titania (PbSe/TiO2 nanotube heterostructure material for photovoltaic applications. Herein, PbSe nanostructures have been co-electrospun within a hollow TiO2 nanotube with high connectivity for highly efficient charge carrier flow and electron-hole pair separation. This material has been characterized by transmission electron microscopy (TEM, electron diffraction, energy dispersive X-ray spectroscopy (EDX to show the morphology and material composition of the synthesized nanocomposite. Photovoltaic characterization has shown this newly synthesized proof-of-concept material can easily produce a photocurrent under solar illumination, and, with further refinement, could reveal a new direction in photovoltaic materials.

  8. Photodegradation of Reactive Golden Yellow R Dye Catalyzed by Effective Titania (TiO2)

    International Nuclear Information System (INIS)

    Bedurus, E.A.; Marinah Mohd Ariffin; Mohd Hasmizam Razali

    2015-01-01

    In the present research, Microwave Assisted Synthesis (MAS) method was applied to synthesize titania (TiO 2 ) at 150 degree Celsius in a range of 2-6 hours heating time. Each prepared TiO 2 were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and nitrogen gas (N 2 ) sorption analysis (Brunaeur-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) calculation) techniques. The TiO 2 prepared by MAS 150 degree Celsius (4 hours) has emerged with the highest photo catalytic activity. Within 4 hours, the TiO 2 managed to catalyze the degradation of Reactive Golden Yellow R dye up to 98.51 %. This is because of the TiO 2 possessed high crystallinity of anatase phase, small crystallite size and high pore volume compared to other prepared TiO 2 . (author)

  9. Probing Photocatalytic Characteristics of Sb-Doped TiO2 under Visible Light Irradiation

    Directory of Open Access Journals (Sweden)

    Lingjing Luo

    2014-01-01

    Full Text Available Sb-doped TiO2 nanoparticle with varied dopant concentrations was synthesized using titanium tetrachloride (TiCl4 and antimony chloride (SbCl3 as the precursors. The properties of Sb-doped TiO2 nanoparticles were characterized by X-ray diffraction (XRD, scanning electron microscope (SEM, fluorescence spectrophotometer, and Uv-vis spectrophotometer. The absorption edge of TiO2 nanoparticles could be extended to visible region after doping with antimony, in contrast to the UV absorption of pure TiO2. The results showed that the photocatalytic activity of Sb-doped TiO2 nanoparticles was much more active than pure TiO2. The 0.1% Sb-doped TiO2 nanoparticles demonstrated the best photocatalytic activity which was better than that of the Degussa P25 under visible light irradiation using terephthalic acid as fluorescent probe. The effects of Sb dopant on the photocatalytic activity and the involved mechanism were extensively investigated in this work as well.

  10. TiS2 and ZrS2 single- and double-wall nanotubes: first-principles study.

    Science.gov (United States)

    Bandura, Andrei V; Evarestov, Robert A

    2014-02-15

    Hybrid density functional theory has been applied for investigations of the electronic and atomic structure of bulk phases, nanolayers, and nanotubes based on titanium and zirconium disulfides. Calculations have been performed on the basis of the localized atomic functions by means of the CRYSTAL-2009 computer code. The full optimization of all atomic positions in the regarded systems has been made to study the atomic relaxation and to determine the most favorable structures. The different layered and isotropic bulk phases have been considered as the possible precursors of the nanotubes. Calculations on single-walled TiS2 and ZrS2 nanotubes confirmed that the nanotubes obtained by rolling up the hexagonal crystalline layers with octahedral 1T morphology are the most stable. The strain energy of TiS2 and ZrS2 nanotubes is small, does not depend on the tube chirality, and approximately obeys to D(-2) law (D is nanotube diameter) of the classical elasticity theory. It is greater than the strain energy of the similar TiO2 and ZrO2 nanotubes; however, the formation energy of the disulfide nanotubes is considerably less than the formation energy of the dioxide nanotubes. The distance and interaction energy between the single-wall components of the double-wall nanotubes is proved to be close to the distance and interaction energy between layers in the layered crystals. Analysis of the relaxed nanotube shape using radial coordinate of the metal atoms demonstrates a small but noticeable deviation from completely cylindrical cross-section of the external walls in the armchair-like double-wall nanotubes. Copyright © 2013 Wiley Periodicals, Inc.

  11. Electrochemical performance of Si-multiwall carbon nanotube nanocomposite anode synthesized by thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Na, Ye-Seul; Yoo, Hyeonseok; Kim, Tae-Hee; Choi, Jinsub; Lee, Wan In; Choi, Sooseok, E-mail: sooseok@jejunu.ac.kr; Park, Dong-Wha, E-mail: dwpark@inha.ac.kr

    2015-07-31

    Lithium-ion (Li-ion) batteries are widely used in electric devices and vehicles. Silicon is a promising material for the anode of Li-ion battery due to high theoretical specific capacity. However, it shows large volume changes during charge–discharge cycles leading to the pulverization of electrode. In order to improve such disadvantage, a multiwall carbon nanotube (MWCNT) has been used with silicon as composite material. In this work, Si-MWCNT nanocomposite was prepared in thermal plasma by attaching silicon nanoparticles to MWCNT column. Electrochemical tests for raw materials and synthesized nanocomposites were carried out. The discharge capacities of silicon, MWCNT, synthesized nanocomposites collected from a reaction tube, and a chamber were 4000, 310, 200, and 1447 mAh/g, respectively. - Highlights: • Si-Multiwall carbon nanotube nanocomposite was synthesized by thermal plasma. • The effect on the collection position of product after experiment was examined. • Cycle performance of electrodes was measured. • Product collected from chamber showed good electrochemical performance.

  12. Structural and morphological transformations of TiO2 nanotube arrays induced by excimer laser treatment

    International Nuclear Information System (INIS)

    Hsu, Ming-Yi; Thang, Nguyen Van; Wang Chih; Leu Jihperng

    2012-01-01

    The structural and morphological transformations of TiO 2 nanotube arrays (TNAs) treated by excimer laser annealing (ELA) were investigated as a function of the laser fluence using parallel and tilted modes. Results showed that the crystallinity of the ELA-treated TNAs reached only about 50% relative to that of TNAs treated by furnace anneal at 400 °C for 1 h. The phase transformation starts from the top surface of the TNAs with surface damage resulting from short penetration depth and limited one-dimensional heat transport from the surface to the bottom under extremely short pulse duration (25 ns) of the excimer laser. When a tilted mode was used, the crystallinity of TNAs treated by ELA at 85° was increased to 90% relative to that by the furnace anneal. This can be attributed to the increased area of the laser energy interaction zone and better heat conduction to both ends of the TNAs. - Highlights: ► We examined the morphology and microstructure of TNAs treated by ELA. ► Crystallinity of parallel ELA-treated TNAs reached ∼50% of furnace anneal. ► Tilted ELA at 85o enhanced the degree of crystallization in TNAs to 90%.

  13. Hierarchically multifunctional K-OMS-2/TiO2/Fe3O4 heterojunctions for the photocatalytic oxidation of humic acid under solar light irradiation.

    Science.gov (United States)

    Zhang, Tong; Yan, Xiaoli; Sun, Darren Delai

    2012-12-01

    A multifunctional heterojunctioned K-OMS-2/TiO(2)/Fe(3)O(4) (KTF) nanocomposite was successfully synthesized using a combination of hydrothermal and co-precipitation techniques. The resultant sample was characterized by XRD, FESEM, TEM, N(2) adsorption, XPS and VSM. Its photocatalytic activity was demonstrated in the photocatalytic degradation of humic acid (HA). Morphology characterization showed the hierarchical structure of the synthesized material, and XRD results revealed that both the rutile and anatase TiO(2) structures are present in the sample. The average pore diameters and BET surface area of the synthesized KTF heterojunctions were 40 nm and 134.42 m(2)/g, respectively. XPS spectra confirmed the presence of Fe(3)O(4) and TiO(2) in the synthesized material, and the valences of Mn were kept at +3 and +4 after the grafting of Fe(3)O(4) and TiO(2). The synthesized material showed good magnetic response and photocatalytic activity under simulated solar light irradiation, and 85.7% of HA was decomposed after 120 min in the presence of KTF nanocomposites. The reusability study suggested that the magnetic recovered material was stable enough for multiple recycling usages, verifying its potential application in water purification. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Fabrication and photoelectrochemical properties of ZnS/Au/TiO2 nanotube array films.

    Science.gov (United States)

    Zhu, Yan-Feng; Zhang, Juan; Xu, Lu; Guo, Ya; Wang, Xiao-Ping; Du, Rong-Gui; Lin, Chang-Jian

    2013-03-21

    A highly ordered TiO(2) nanotube array film was fabricated by an anodic oxidation method. The film was modified by Au nanoparticles (NPs) formed by a deposition-precipitation technique and was covered with a thin ZnS shell prepared by a successive ionic layer adsorption and reaction (SILAR) method. The photoelectrochemical properties of the prepared ZnS/Au/TiO(2) composite film were evaluated by incident photon-to-current conversion efficiency (IPCE), and photopotential and electrochemical impedance spectroscopy (EIS) measurements under white light illumination. The results indicated that the Au NPs could expand the light sensitivity range of the film and suppress the electron-hole recombination, and the ZnS shell could inhibit the leakage of photogenerated electrons from the surface of Au NPs to the ZnS/electrolyte interface. When the 403 stainless steel in a 0.5 M NaCl solution was coupled to the ZnS/Au/TiO(2) nanotube film photoanode under illumination, its potential decreased by 400 mV, showing that the composite film had a better photocathodic protection effect on the steel than that of a pure TiO(2) nanotube film.

  15. Epitaxial TiO 2/SnO 2 core-shell heterostructure by atomic layer deposition

    KAUST Repository

    Nie, Anmin; Liu, Jiabin; Li, Qianqian; Cheng, Yingchun; Dong, Cezhou; Zhou, Wu; Wang, Pengfei; Wang, Qingxiao; Yang, Yang; Zhu, Yihan; Zeng, Yuewu; Wang, Hongtao

    2012-01-01

    Taking TiO 2/SnO 2 core-shell nanowires (NWs) as a model system, we systematically investigate the structure and the morphological evolution of this heterostructure synthesized by atomic layer deposition/epitaxy (ALD/ALE). All characterizations

  16. TiO2-B Nanoribbons Anchored with NiO Nanosheets as Hybrid Anode Materials for Rechargeable Lithium ion Batteries

    DEFF Research Database (Denmark)

    Zhang, J. Y.; Shen, J.X.; Wang, T.L.

    2015-01-01

    A new type of TiO2-B nanoribbon anchored with NiO nanosheets (TiO2@NiO) is synthesized via a hydrothermal process and a subsequent homogeneous precipitation method. XRD analysis indicates that TiO2-B and cubic NiO phases exist in the composites. According to SEM images, the morphology of the TiO2...

  17. In situ glow discharge plasma electrolytic synthesis of reduced TiO2 for enhanced visible light photocatalysis

    Science.gov (United States)

    Feng, Guang; Wu, Botao; Qayyum Khan, Abdul; Zeng, Heping

    2018-05-01

    Reduced titanium dioxide (TiO2‑x) due to its extraordinary visible light absorption has been widely investigated in photodegradation and water splitting nowadays. However, conventional routes to synthesize reduced TiO2 usually demand multiple preparation steps, harsh controlled conditions or expensive facilities. Here we developed a single-step in situ approach to prepare the gray TiO2‑x nanoparticles (sub-10 nm) effectively by the glow discharge plasma electrolysis (GDPE) under atmospheric pressure. The co-existence of self-doped oxygen vacancies and Ti3+ in the generated TiO2‑x nanoparticles is demonstrated by electron paramagnetic resonance (EPR). The tunable ratio of bulk/surface defect can be realized by controlling the glow discharge power directly. It should be noticed that Ti3+ in the synthesized TiO2‑x are quite stable in ambient air. The UV–vis spectra of gray TiO2‑x show an enhanced visible light absorption, which leads to high visible-light photocatalytic activity. Moreover, the as-prepared TiO2‑x after 6 months storage still shows excellent stability during photocatalytic reactions. Owing to its simplicity and effectivity, this preparation method with GDPE should provide a large-scale production for TiO2‑x with high photoactivity.

  18. Phenol degradation by TiO2 photocatalysts combined with different pulsed discharge systems.

    Science.gov (United States)

    Zhang, Yi; Lu, Jiani; Wang, Xiaoping; Xin, Qing; Cong, Yanqing; Wang, Qi; Li, Chunjuan

    2013-11-01

    Films of TiO2 nanotubes distributed over the inner surface of a discharge reactor cylinder (CTD) or adhered to a stainless steel electrode surface (PTD) in a discharge reactor were compared with a single-discharge (SD) system to investigate their efficiencies in phenol degradation. Morphology studies indicated that the TiO2 film was destroyed in the PTD system, but that there was no change in the CTD system after discharge. X-ray diffraction results revealed that the anatase phase of the original sample was preserved in the CTD system, but that an anatase-to-rutile phase transformation occurred in the PTD system after discharge. The highest efficiencies of phenol degradation and total organic carbon (TOC) mineralization were observed in the CTD system, and there was no decrease in phenol degradation efficiency upon reuse of a TiO2 film, indicating high catalysis activity and stability of the TiO2 photocatalysts in the combined treatment. TiO2 photocatalysts favored the formation of hydrogen peroxide and disfavored the formation of ozone. A greater degree of oxidation of intermediates and higher energy efficiency in phenol oxidation were observed with the TiO2-plasma systems, especially in the CTD system, compared to those with the SD system. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Ag2S/CdS/TiO2 Nanotube Array Films with High Photocurrent Density by Spotting Sample Method.

    Science.gov (United States)

    Sun, Hong; Zhao, Peini; Zhang, Fanjun; Liu, Yuliang; Hao, Jingcheng

    2015-12-01

    Ag2S/CdS/TiO2 hybrid nanotube array films (Ag2S/CdS/TNTs) were prepared by selectively depositing a narrow-gap semiconductor-Ag2S (0.9 eV) quantum dots (QDs)-in the local domain of the CdS/TiO2 nanotube array films by spotting sample method (SSM). The improvement of sunlight absorption ability and photocurrent density of titanium dioxide (TiO2) nanotube array films (TNTs) which were obtained by anodic oxidation method was realized because of modifying semiconductor QDs. The CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs fabricated by uniformly depositing the QDs into the TNTs via the successive ionic layer adsorption and reaction (SILAR) method were synthesized, respectively. The X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrum (XPS) results demonstrated that the Ag2S/CdS/TNTs prepared by SSM and other films were successfully prepared. In comparison with the four films of TNTs, CdS/TNTs, Ag2S/TNTs, and Ag2S/CdS/TNTs by SILAR, the Ag2S/CdS/TNTs prepared by SSM showed much better absorption capability and the highest photocurrent density in UV-vis range (320~800 nm). The cycles of local deposition have great influence on their photoelectric properties. The photocurrent density of Ag2S/CdS/TNTs by SSM with optimum deposition cycles of 6 was about 37 times that of TNTs without modification, demonstrating their great prospective applications in solar energy utilization fields.

  20. TiO2/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity

    International Nuclear Information System (INIS)

    Tian Lihong; Ye Liqun; Deng Kejian; Zan Ling

    2011-01-01

    MWCNT/TiO 2 hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO 2 nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO 2 was 20%, MWCNT/TiO 2 hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO 2 nanostructures at 400 deg. C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO 2 and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue. - Graphical abstract: MWCNT/TiO 2 nanostructures have been prepared by solvothermal method, which exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. The carbonaceous Ti-C bonds on the interface between TiO 2 and MWCNTs enhanced the photoabsorbance of the hybrid materials in the visible light region. Highlights: → Anatase TiO 2 nanoparticles were anchored on CNTs surface uniformly via solvothermal method → The morphology facilitated the electron transfer between CNTs and TiO 2 → Ti-C bonds extended the absorption of MWCNT/TiO 2 to the whole visible light region. → The hybrid nanostructures showed enhanced visible-light induced photocatalytic activity.

  1. M-Polynomials and Topological Indices of Titania Nanotubes

    Directory of Open Access Journals (Sweden)

    Mobeen Munir

    2016-10-01

    Full Text Available Titania is one of the most comprehensively studied nanostructures due to their widespread applications in the production of catalytic, gas sensing, and corrosion-resistant materials. M-polynomial of nanotubes has been vastly investigated, as it produces many degree-based topological indices, which are numerical parameters capturing structural and chemical properties. These indices are used in the development of quantitative structure-activity relationships (QSARs in which the biological activity and other properties of molecules, such as boiling point, stability, strain energy, etc., are correlated with their structure. In this report, we provide M-polynomials of single-walled titania (SW TiO2 nanotubes and recover important topological degree-based indices to theoretically judge these nanotubes. We also plot surfaces associated to single-walled titania (SW TiO2 nanotubes.

  2. Simply synthesized TiO2 nanorods as an effective scattering layer for quantum dot sensitized solar cells

    International Nuclear Information System (INIS)

    Samadpour, Mahmoud; Zad, Azam Iraji; Molaei, Mehdi

    2014-01-01

    TiO 2 nanorod layers are synthesized by simple chemical oxidation of Ti substrates. Diffuse reflectance spectroscopy measurements show effective light scattering properties originating from nanorods with length scales on the order of one micron. The films are sensitized with CdSe quantum dots (QDs) by successive ionic layer adsorption and reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). Incorporating nanorods in photoanode structures provided 4- to 8-fold enhancement in light scattering, which leads to a high power conversion efficiency, 3.03% (V oc = 497 mV, J sc = 11.32 mA/cm 2 , FF = 0.54), in optimized structures. High efficiency can be obtained just by tuning the photoanode structure without further treatments, which will make this system a promising nanostructure for efficient quantum dot sensitized solar cells. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Characterization and improved solar light activity of vanadium doped TiO2/diatomite hybrid catalysts

    International Nuclear Information System (INIS)

    Wang, Bin; Zhang, Guangxin; Leng, Xue; Sun, Zhiming; Zheng, Shuilin

    2015-01-01

    Highlights: • V-doped TiO 2 /diatomite composite photocatalyst was synthesized. • The physiochemical property and solar light photoactivity were characterized. • The presence and influence of V ions in TiO 2 matrix was systematically analyzed. • The photocatalysis for Rhodamine B were studied under solar light illumination. - Abstract: V-doped TiO 2 /diatomite composite photocatalysts with different vanadium concentrations were synthesized by a modified sol–gel method. The diatomite was responsible for the well dispersion of TiO 2 nanoparticles on the matrix and consequently inhibited the agglomeration. V-TiO 2 /diatomite hybrids showed red shift in TiO 2 absorption edge with enhanced absorption intensity. Most importantly, the dopant energy levels were formed in the TiO 2 bandgap due to V 4+ ions substituted to Ti 4+ sites. The 0.5% V-TiO 2 /diatomite photocatalyst displayed narrower bandgap (2.95 eV) compared to undoped sample (3.13 eV) and other doped samples (3.05 eV) with higher doping concentration. The photocatalytic activities of V doped TiO 2 /diatomite samples for the degradation of Rhodamine B under stimulated solar light illumination were significantly improved compared with the undoped sample. In our case, V 4+ ions incorporated in TiO 2 lattice were responsible for increased visible-light absorption and electron transfer to oxygen molecules adsorbed on the surface of TiO 2 to produce superoxide radicals ·O 2 – , while V 5+ species presented on the surface of TiO 2 particles in the form of V 2 O 5 contributed to e – –h + separation. In addition, due to the combination of diatomite as support, this hybrid photocatalyst could be separated from solution quickly by natural settlement and exhibited good reusability

  4. Fabrication and photocatalytic activity of high-efficiency visible-light-responsive photocatalyst ZnTe/TiO2 nanotube arrays

    International Nuclear Information System (INIS)

    Liu Yutang; Zhang Xilin; Liu Ronghua; Yang Renbin; Liu Chengbin; Cai Qingyun

    2011-01-01

    A new ZnTe modified TiO 2 nanotube (NT) array catalyst was prepared by pulse potential electrodeposition of ZnTe nanoparticles (NPs) onto TiO 2 NT arrays, and its application for photocatalytic degradation of anthracene-9-carboxylic acid (9-AnCOOH) was investigated. The even distribution of ZnTe NPs was well-proportionately grown on the top surface of the TiO 2 NT while without clogging the tube entrances. Compared with the unmodified TiO 2 NT, the ZnTe modified TiO 2 NT (ZnTe/TiO 2 NT) showed significantly enhanced photocatalytic activity towards 9-AnCOOH under simulated solar light. After 70 min of irradiation, 9-AnCOOH was degraded with the removal ratio of 45% on the bare TiO 2 NT, much lower than 80%, 90%, and 100% on the ZnTe/TiO 2 NT with the ZnTe NPs prepared under the pulsed 'on' potentials of -0.8, -1.0, and -2.0 V, respectively. The increased photodegradation efficiency mainly results from the improved photocurrent density as results of enhanced visible-light absorption and decreased hole-electron recombination due to the presence of narrow-band-gap p-type semiconductor ZnTe. -- Graphical abstract: Surface-view SEM images of ZnTe/TiO 2 NT prepared under -2.0 V, and the inset is the corresponding enlarged drawings. Display Omitted Research highlights: → A new method to deposit chalcogenides of transition metals on the TiO 2 nanotubes. → The even distribution of ZnTe nanoparticles was well-proportionedly grown onto TiO 2 NT arrays. → ZnTe/TiO 2 NT showed remarkably increased photocurrent density. → ZnTe/TiO 2 NT showed good photocatalytic performance. → The prepared new catalyst has a promising application in practical systems.

  5. Rapid Formation of 1D Titanate Nanotubes Using Alkaline Hydrothermal Treatment and Its Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2015-01-01

    Full Text Available One-dimensional (1D titanate nanotubes (TNT were successfully synthesized using alkaline hydrothermal treatment of commercial TiO2 nanopowders in a Teflon lined stainless steel autoclave at 150°C. The minimum time required for the formation of the titanate nanotubes was 9 h significantly. After the hydrothermal processing, the layered titanate was washed with acid and water in order to control the amount of Na+ ions remaining in the sample solutions. In this study, the effect of different reaction durations in a range of 3 h to 24 h on the formation of nanotubes was carried out. As the reaction duration is extended, the changes in structure from particle to tubular shapes of alkaline treated TiO2 were obtained via scanning electron microscope (SEM. Also, the significant impact on the phase transformation and crystal structure of TNT was characterized through XRD and Raman analysis. Indeed, the photocatalytic activity of TNT was investigated through the degradation of methyl orange aqueous solution under the ultraviolet light irradiation. As a result, TNT with reaction duration at 6 h has a better photocatalytic performance than other samples which was correlated to the higher crystallinity of the samples as shown in XRD patterns.

  6. Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

    International Nuclear Information System (INIS)

    Khan, Gulzar; Kim, Young Kwang; Choi, Sung Kyu; Han, Dong Suk; Abdelwahab, Ahmed; Park, Hyunwoong

    2013-01-01

    TiO 2 composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of H 2 production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher H 2 production as compared to bare TiO 2 . Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of TiO 2 are discussed in terms of physicochemical properties of carbon materials, coupling states of TiO 2 /carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors

  7. Utilization of bio-degradable fermented tapioca to synthesized low toxicity of carbon nanotubes for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Nurulhuda, I., E-mail: nurulnye@gmail.com [NANO-SciTech Centre, Institute of Science, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Poh, R. [Department of Molecular Medicine, University of Malaya, 50603 Kuala Lumpur (Malaysia); Mazatulikhma, M. Z. [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Rusop, M., E-mail: nanouitm@gmail.com [NANO-Electronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Salman, A. H. A.; Haseeb, A. K.

    2016-07-06

    Carbon nanotubes (CNT) have potential biomedical applications, and investigations are shifting towards the production of such nanotubes using renewable natural sources. CNTs were synthesized at various temperatures of 700, 750, 800, 850 and 900 °C, respectively, using a local fermented food known as “tapai ubi” or fermented tapioca as a precursor. The liquid part of this fermented food was heated separately at 80°C and channeled directly into the furnace system that employs the thermal chemical vapor deposition (CVD) method. Ferrocene, which was the catalyst was placed in furnace 1 in the thermal CVD process. The resulting CNTs produced from the process were studied using field emission scanning electron microscopy (FESEM) and Raman spectroscopy. The FESEM images showed the growth morphology of the CNTs at the different temperatures employed. It was observed that the higher the synthesis temperature up to a point, the diameter of CNTs produced, after which the diameter increased. CNTs with helical structures were observed at 700 °C with a diameter range of 111 - 143 nm. A more straightened structure was observed at 750 °C with a diameter range of 59 - 121 nm. From 800 °C onwards, the diameters of the CNTs were less than 60 nm. Raman analysis revealed the present of D, G and G’ peak were observed at 1227-1358, 1565-1582, and 2678-2695 cm{sup −1}, respectively. The highest degree of crystallity of the carbon nanotubes synthesized were obtained at 800 °C. The radial breathing mode (RBM) were in range between 212-220 and 279-292 cm{sup −1}. Carbon nanotubes also being functionalized with Polyethylene bis(amine) Mw2000 (PEG 2000-NH2) and showed highly cells viability compared to non-functionalized CNT. The nanotubes synthesized will be applied as drug delivery in future study.

  8. Utilization of bio-degradable fermented tapioca to synthesized low toxicity of carbon nanotubes for drug delivery applications

    International Nuclear Information System (INIS)

    Nurulhuda, I.; Poh, R.; Mazatulikhma, M. Z.; Rusop, M.; Salman, A. H. A.; Haseeb, A. K.

    2016-01-01

    Carbon nanotubes (CNT) have potential biomedical applications, and investigations are shifting towards the production of such nanotubes using renewable natural sources. CNTs were synthesized at various temperatures of 700, 750, 800, 850 and 900 °C, respectively, using a local fermented food known as “tapai ubi” or fermented tapioca as a precursor. The liquid part of this fermented food was heated separately at 80°C and channeled directly into the furnace system that employs the thermal chemical vapor deposition (CVD) method. Ferrocene, which was the catalyst was placed in furnace 1 in the thermal CVD process. The resulting CNTs produced from the process were studied using field emission scanning electron microscopy (FESEM) and Raman spectroscopy. The FESEM images showed the growth morphology of the CNTs at the different temperatures employed. It was observed that the higher the synthesis temperature up to a point, the diameter of CNTs produced, after which the diameter increased. CNTs with helical structures were observed at 700 °C with a diameter range of 111 - 143 nm. A more straightened structure was observed at 750 °C with a diameter range of 59 - 121 nm. From 800 °C onwards, the diameters of the CNTs were less than 60 nm. Raman analysis revealed the present of D, G and G’ peak were observed at 1227-1358, 1565-1582, and 2678-2695 cm −1 , respectively. The highest degree of crystallity of the carbon nanotubes synthesized were obtained at 800 °C. The radial breathing mode (RBM) were in range between 212-220 and 279-292 cm −1 . Carbon nanotubes also being functionalized with Polyethylene bis(amine) Mw2000 (PEG 2000-NH2) and showed highly cells viability compared to non-functionalized CNT. The nanotubes synthesized will be applied as drug delivery in future study.

  9. A Comparative Study of Carbon Nanotubes Synthesized from Co/Zn/Al and Fe/Ni/Al Catalyst

    Directory of Open Access Journals (Sweden)

    Ezekiel Dixon Dikio

    2011-01-01

    Full Text Available The catalyst systems Fe/Ni/Al and Co/Zn/Al were synthesized and used in the synthesis of carbon nanotubes. The carbon nanotubes produced were characterized by Field Emission Scanning Electron Microscope (FE-SEM, Energy Dispersive x-ray Spectroscopy (EDS, Raman spectroscopy, Thermogravimetric Analysis (TGA and Transmission Electron Microscope (TEM. A comparison of the morphological profile of the carbon nanotubes produced from these catalysts indicates the catalyst system Fe/Ni/Al to have produced higher quality carbon nanotubes than the catalyst system Co/Zn/Al.

  10. Photocatalysis of sub-ppm limonene over multiwalled carbon nanotubes/titania composite nanofiber under visible-light irradiation

    International Nuclear Information System (INIS)

    Jo, Wan-Kuen; Kang, Hyun-Jung

    2015-01-01

    Highlights: • A multiwalled carbon nanotube/titania composite nanofiber (MTCN) was synthesized. • Photocatalytic function of visible-activated MTCN was examined using tubular reactor. • MTCNs could be effectively used for the purification of sub-ppm gas-phase limonene. • The experimental results agreed well with Langmuir–Hinshelwood model. • Certain gas-phase intermediates were determined, but not for adsorbed intermediates. - Abstract: This study was conducted under visible-light exposure to investigate the photocatalytic characteristics of a multiwalled carbon nanotube/titania (TiO 2 ) composite nanofiber (MTCN) using a continuous-flow tubular reactor. The MTCN was prepared by a sol–gel process, followed by an electrospinning technique. The photocatalytic decomposition efficiency for limonene on the MTCN was higher than those obtained from reference TiO 2 nanofibers or P25 TiO 2 , and the experimental results agreed well with the Langmuir–Hinshelwood model. The CO concentrations generated during the photocatalysis did not reach levels toxic to humans. The mineralization efficiency for limonene on the MTCN was also higher than that for P25 TiO 2 . Moreover, the mineralization efficiency obtained using the MTCN increased steeply from 8.3 to 91.1% as the residence time increased from 7.8 to 78.0 s, compared to the increase in the decomposition efficiencies for limonene from 90.1 to 99.9%. Three gas-phase intermediates (methacrolein, acetic acid, and limonene oxide) were quantitatively determined for the photocatalysis for limonene over the MTCN, whereas only two intermediates (acetic acid and limonene oxide) were quantitatively determined over P25 TiO 2 . Other provisional gas-phase intermediates included cyclopropyl methyl ketone and 2-ethylbutanal

  11. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals.

    Science.gov (United States)

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-13

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs.

  12. Photocatalytic properties of P25-doped TiO2 composite film synthesized via sol-gel method on cement substrate.

    Science.gov (United States)

    Guo, Xiang; Rao, Lei; Wang, Peifang; Wang, Chao; Ao, Yanhui; Jiang, Tao; Wang, Wanzhong

    2018-04-01

    TiO 2 films have received increasing attention for the removal of organic pollutants via photocatalysis. To develop a simple and effective method for improving the photodegradation efficiency of pollutants in surface water, we herein examined the preparation of a P25-TiO 2 composite film on a cement substrate via a sol-gel method. In this case, Rhodamine B (RhB) was employed as the target organic pollutant. The self-generated TiO 2 film and the P25-TiO 2 composite film were characterized by X-ray diffraction (XRD), N 2 adsorption/desorption measurements, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS). The photodegradation efficiencies of the two films were studied by RhB removal in water under UV (ultraviolet) irradiation. Over 4day exposure, the P25-TiO 2 composite film exhibited higher photocatalytic performance than the self-generated TiO 2 film. The photodegradation rate indicated that the efficiency of the P25-TiO 2 composite film was enhanced by the addition of the rutile phase Degussa P25 powder. As such, cooperation between the anatase TiO 2 and rutile P25 nanoparticles was beneficial for separation of the photo-induced electrons and holes. In addition, the influence of P25 doping on the P25-TiO 2 composite films was evaluated. We found that up to a certain saturation point, increased doping enhanced the photodegradation ability of the composite film. Thus, we herein demonstrated that the doping of P25 powders is a simple but effective strategy to prepare a P25-TiO 2 composite film on a cement substrate, and the resulting film exhibits excellent removal efficiency in the degradation of organic pollutants. Copyright © 2017. Published by Elsevier B.V.

  13. Fabrication and characterization of uniform TiO2 nanotube arrays by ...

    Indian Academy of Sciences (India)

    Titanium dioxide (TiO2) has been widely investigated as a key material for ... photonic crystals, catalysis, photocatalysis (Livraghi et al. 2005) and ... As a catalyst and/or catalyst support, .... of XRD analysis is supported by the Raman spectra of.

  14. Optical and electrical characterizations of nanocomposite film of titania adsorbed onto oxidized multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Feng Wei; Feng Yiyu; Wu Zigang; Fujii, Akihiko; Ozaki, Masanori; Yoshino, Katsumi

    2005-01-01

    Composite film containing titania electrostatically linked to oxidized multiwalled carbon nanotubes (TiO 2 -s-MWNTs) was prepared from a suspension of TiO 2 nanoparticles in soluble carbon nanotubes. The structure of the film was analysed principally by Fourier transform infrared spectroscopy, scanning electron micrography and x-ray diffraction. The optical and electrical characterizations of the film were investigated by UV-vis spectrum, photoluminescence and photoconductivity. The enhancement of photocurrent in the TiO 2 -s-MWNT film is discussed by taking the photoinduced charge transfer between the MWNT and TiO 2 into consideration

  15. Photocatalytic application of TiO2/SiO2-based magnetic nanocomposite (Fe3O4@SiO2/TiO2 for reusing of textile wastewater

    Directory of Open Access Journals (Sweden)

    Laleh Enayati Ahangar

    2016-01-01

    Full Text Available In this research we have developed a treatment method for textile wastewater by TiO2/SiO2-based magnetic nanocomposite. Textile wastewater includes a large variety of dyes and chemicals and needs treatments. This manuscript presents a facile method for removing dyes from the textile wastewater by using TiO2/SiO2-based nanocomposite (Fe3O4@SiO2/TiO2 under UV irradiation. This magnetic nanocomposite, as photocatalytically active composite, is synthesized via solution method in mild conditions. A large range of cationic, anionic and neutral dyes including: methyl orange, methylene blue, neutral red, bromocresol green and methyl red are used for treatment investigations. Neutral red and bromocresol green have good results in reusing treatment. The high surface area of nanocomposites improve the kinetic of wastewater treatment. In this method, by using the magnetic properties of Fe3O4 nanoparticles, TiO2-based photocatalyst could be separated and reused for 3 times. The efficiency of this method is respectively 100% and 65% for low concentration (10 ppm and high concentration (50 ppm of neutral red and bromocrosol green after 3 h treatment. The efficiency of treatment using the second used nanocomposite was 90% for 10 ppm of the same dyes.

  16. Synthesis of Ag-loaded SrTiO_3/TiO_2 heterostructure nanotube arrays for enhanced photocatalytic performances

    International Nuclear Information System (INIS)

    Hu, Zijun; Chen, Da; Zhan, Xiaqiang; Wang, Fang; Qin, Laishun; Huang, Yuexiang

    2017-01-01

    In this work, the effect of loading Ag nanoparticles on the photocatalytic activity of SrTiO_3/TiO_2 nanotube arrays (TNTAs) was investigated. TNTAs were partially transformed to SrTiO_3 through a hydrothermal treatment, which could preserve the tubular structure of TNTAs, and then, Ag nanoparticles were well deposited on the surface of SrTiO_3/TNTAs heterostructure by a chemical reduction process. Compared to the TNTAs sample, the Ag-loaded SrTiO_3/TNTAs sample showed significantly enhanced photocatalytic activities for photodegradation of rhodamine B. The enhanced photocatalytic activity of Ag-loaded SrTiO_3/TNTAs could be attributed to the increased optical absorption as well as the efficient charge transfer and separation of photogenerated electron-hole pairs induced by the SrTiO_3/TNTAs heterojunction and the Schottky barrier between metallic Ag and SrTiO_3/TNTAs. On the basis of the trapping experiments, the possible photocatalytic mechanism was also discussed. (orig.)

  17. Evidence of iridescence in TiO2 nanostructures. A probably photonic effect

    Science.gov (United States)

    Rey-Gonzalez, Rafael; Quiroz, Heiddy P.; Barrera-Patiño, Claudia; Dussan, Anderson; Grupo de Optica e Informacion Cuantica Collaboration; Grupo de Materiales Nanoestructutrados y sus Aplicaciones Collaboration

    In this work, we present a study of optical properties of titanium dioxide nanotubes (TiO2). Nanotubes were obtained by electrochemical anodization method, using ethylene glycol solutions containing different amounts of water and fluoride. A complex structure is observed between nanotubes and Ti foils on surface when nanotubes are released from the sheet. These forms can be associated with replicas or marks in surface of the Ti foil. The optical response of replicas is studied by Uv-Vis spectrophotometry using white light and varying the angle of the incident light. Absorbance measurements reveal that these replicas exhibit a shift towards lower values of lambda when the angle of the incident light increases of 200 to 600. These changes may be associated with iridescent effects in this material. The concavity of the replicas in association with air could be generating photonic-like effects. Using a 2D model of replicas - air system, the photonic band structures are found through a plane wave approach. Correlations between photonic properties and iridescent effects are explored. Grupo de Optica e Informacion Cuantica.

  18. Single Step Formation of C-TiO2 Nanotubes: Influence of Applied Voltage and Their Photocatalytic Activity under Solar Illumination

    Directory of Open Access Journals (Sweden)

    Chin Wei Lai

    2013-01-01

    Full Text Available Self-aligned and high-uniformity carbon (C- titania (TiO2 nanotube arrays were successfully formed via single step anodization of titanium (Ti foil at 30 V for 1 h in a bath composed of ethylene glycol (EG, ammonium fluoride (NH4F, and hydrogen peroxide (H2O2. It was well established that applied voltage played an important role in controlling field-assisted oxidation and field-assisted dissolution during electrochemical anodization process. Therefore, the influences of applied voltage on the formation of C-TiO2 nanotube arrays were discussed. It was found that a minimal applied voltage of 30 V was required to form the self-aligned and high-uniformity C-TiO2 nanotube arrays with diameter of ~75 nm and length of ~2 μm. The samples synthesized using different applied voltages were then subjected to heat treatment for the conversion of amorphous phase to crystalline phase. The photocatalytic activity evaluation of C-TiO2 samples was made under degradation of organic dye (methyl orange (MO solution. The results revealed that controlled nanoarchitecture C-TiO2 photocatalyst led to a significant enhancement in photocatalytic activity due to the creation of more specific active surface areas for incident photons absorption from the solar illumination.

  19. TiO2/Pt/TiO2 Sandwich Nanostructures: Towards Alcohol Sensing and UV Irradiation-Assisted Recovery

    Directory of Open Access Journals (Sweden)

    Rungroj Maolanon

    2017-01-01

    Full Text Available The TiO2/Pt/TiO2 sandwich nanostructures were synthesized by RF magnetron sputtering and demonstrated as an alcohol sensor at room-temperature operation with a fast recovery by UV irradiation. The TiO2/Pt/TiO2 layers on SiO2/Si substrate were confirmed by Auger electron spectroscopy with the interdiffusion of each layer. The TiO2/Pt/TiO2 layers on printed circuit board show the superior sensor response to alcohol in terms of the sensitivity and stability compared to the nonsandwich structure, that is, the only Pt layer or the TiO2/Pt structures. Moreover, the recovery time of the TiO2/Pt/TiO2 was improved by UV irradiation-assisted recovery. The optimum TiO2/Pt/TiO2 with thicknesses of the undermost TiO2 layer, a Pt layer, and the topmost TiO2 layer being 50 nm, 6 nm, and 5 nm, respectively, showed the highest response to ethanol down to 10 ppm. Additionally, TiO2/Pt/TiO2 shows an excellent sensing stability and exhibits different sensing selectivity among ethanol, methanol, and 2-propanol. The sensing mechanism could be attributed to the change of Pt work function during vapor adsorption. The TiO2 layer plays an important role in UV-assisted recovery by photocatalytic activity and the topmost TiO2 acts as protective layer for Pt.

  20. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode

    Directory of Open Access Journals (Sweden)

    Jiaoping Cai

    2015-02-01

    Full Text Available A new titanium dioxide (TiO2 slurry formulation is herein reported for the fabrication of TiO2 photoanode for use in dye-sensitized solar cells (DSSCs. The prepared TiO2 photoanode featured a highly uniform mesoporous structure with well-dispersed TiO2 nanoparticles. The energy conversion efficiency of the resulting TiO2 slurry-based DSSC was ∼63% higher than that achieved by a DSSC prepared using a commercial TiO2 slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs into the TiO2 slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on the performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO2 photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ∼0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO2 slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.

  1. Enhanced conversion efficiency of dye-sensitized solar cells using a CNT-incorporated TiO2 slurry-based photoanode

    Science.gov (United States)

    Cai, Jiaoping; Chen, Zexiang; Li, Jun; Wang, Yan; Xiang, Dong; Zhang, Jijun; Li, Hai

    2015-02-01

    A new titanium dioxide (TiO2) slurry formulation is herein reported for the fabrication of TiO2 photoanode for use in dye-sensitized solar cells (DSSCs). The prepared TiO2 photoanode featured a highly uniform mesoporous structure with well-dispersed TiO2 nanoparticles. The energy conversion efficiency of the resulting TiO2 slurry-based DSSC was ˜63% higher than that achieved by a DSSC prepared using a commercial TiO2 slurry. Subsequently, the incorporation of acid-treated multi-walled carbon nanotubes (CNTs) into the TiO2 slurry was examined. More specifically, the effect of varying the concentration of the CNTs in this slurry on the performance of the resulting DSSCs was studied. The chemical state of the CNTs-incorporated TiO2 photoanode was investigated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A high energy conversion efficiency of 6.23% was obtained at an optimum CNT concentration of ˜0.06 wt.%. The obtained efficiency corresponds to a 63% enhancement when compared with that obtained from a DSSC based on a commercial TiO2 slurry. The higher efficiency was attributed to the improvement in the collection and transport of excited electrons in the presence of the CNTs.

  2. Studies on Nano-Engineered TiO2 Photo Catalyst for Effective Degradation of Dye

    Science.gov (United States)

    Sowmya, S. R.; Madhu, G. M.; Hashir, Mohammed

    2018-02-01

    All Heterogeneous photo catalysis employing efficient photo-catalyst is the advanced dye degradation technology for the purification of textile effluent. The present work focuses on Congo red dye degradation employing synthesized Ag doped TiO2 nanoparticles as photocatalyst which is characterized using SEM, XRD and FTIR. Studies are conducted to study the effect of various parameters such as initial dye concentration, catalyst loading and pH of solution. Ag Doped TiO2 photocatalyst improve the efficacy of TiO2 by reducing high band gap and electron hole recombination of TiO2. The reaction kinetics is analyzed and the process is found to follow pseudo first order kinetics.

  3. CdS-sensitized TiO2 nanocorals: hydrothermal synthesis, characterization, application.

    Science.gov (United States)

    Mali, S S; Desai, S K; Dalavi, D S; Betty, C A; Bhosale, P N; Patil, P S

    2011-10-01

    Cadmium sulfide (CdS) nanoparticle-sensitized titanium oxide nanocorals (TNC) were synthesized using a two-step deposition process. The TiO(2) nanocorals were grown on the conducting glass substrates (FTO) using A hydrothermal process and CdS nanoparticles were loaded on TNC using successive ionic layer adsorption and reaction (SILAR) method. The TiO(2), CdS and TiO(2)-CdS samples were characterized by optical absorption, X-ray diffraction (XRD), FT-Raman, FT-IR, scanning electron microscopy (SEM) and contact angle. Further, their photoelectrochemical (PEC) performance was tested in NaOH, Na(2)S-NaOH-S and Na(2)S electrolytes, respectively. When CdS nanoparticles are coated on TNCs, the optical absorption is found to be enhanced and band edge is red-shifted towards visible region. The TiO(2)-CdS sample exhibits improved photoelectrochemical (PEC) performance with maximum short circuit current of (J(sc)) 1.04 mA cm(-2). After applying these TiO(2)-CdS electrodes in photovoltaic cells, the photocurrent was found to be enhanced by 2.7 and 32.5 times, as compared with those of bare CdS and TiO(2) nanocorals films electrodes respectively. Also, the power conversion efficiency of TiO(2)-CdS electrodes is 0.72%, which is enhanced by about 16 and 29 times for TiO(2), CdS samples. This journal is © The Royal Society of Chemistry and Owner Societies 2011

  4. Pd-MnO2 nanoparticles/TiO2 nanotube arrays (NTAs) photo-electrodes photo-catalytic properties and their ability of degrading Rhodamine B under visible light.

    Science.gov (United States)

    Thabit, Mohamed; Liu, Huiling; Zhang, Jian; Wang, Bing

    2017-10-01

    Pd-MnO 2 /TiO 2 nanotube arrays (NTAs) photo-electrodes were successfully fabricated via anodization and electro deposition subsequently; the obtained Pd-MnO 2 /TiO 2 NTAs photo electrodes were analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and characterized accordingly. Moreover, the light harvesting and absorption properties were investigated via ultraviolet-visible diffuse reflectance spectrum (DRS); photo degradation efficiency was investigated via analyzing the photo catalytic degradation of Rhodamine B under visible illumination (xenon light). The performed analyses illustrated that Pd-MnO 2 codoped particles were successfully deposited onto the surface of the TiO 2 nanotube arrays; DRS results showed significant improvement in visible light absorption which was between 400 and 700nm. Finally, the photo catalytic degradation efficiency results of the designated organic pollutant (Rhodamine B) illustrated a superior photocatalytic (PC) efficiency of approximately 95% compared to the bare TiO 2 NTAs, which only exhibited a photo catalytic degradation efficiency of approximately 61%, thus it indicated the significant enhancement of the light absorption properties of fabricated photo electrodes and their yield of OH radicals. Copyright © 2017. Published by Elsevier B.V.

  5. TiO2-NT electrodes modified with Ag and diamond like carbon (DLC) for hydrogen production by alkaline water electrolysis

    Science.gov (United States)

    Baran, Evrim; Baz, Zeynep; Esen, Ramazan; Yazici Devrim, Birgül

    2017-10-01

    In present work, the two-step anodization technique was applied for synthesis of TiO2 nanotube (NT). Silver and diamond like carbon (DLC) were coated on the surface of as prepared TiO2-NT using chemical reduction method and MW ECR plasma system. The morphology, composition and structure of the electrodes were examined by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results showed that Ag nanoparticles, having size in the range of 48-115 nm, are evenly distributed on the top, inside and outside surface of TiO2-NT and when DLC was coated on the surface of TiO2-NT and TiO2-NT-Ag, the top of nanotubes were partially open and the pore diameter of hexagonal structure decreased from 165 nm to of 38-80 nm. On the other hand, the microhardness test and contact angle measurements revealed that additions of Ag and diamond like carbon have a positive effect on the mechanical properties of TiO2-NT film. The electrocatalytic properties of the electrodes towards the hydrogen evolution reaction (HER) were investigated by the electrochemical measurements recorded in 1 M KOH solution. In addition, long-term durability of electrodes towards HER and the energy consumption of alkaline electrolysis were investigated. The energy requirement showed that while the deposition of silver provides approximately 14.95% savings of the energy consumption, the DLC coating causes increase in energy consumption.

  6. Development of high efficient visible light-driven N, S-codoped TiO2 nanowires photocatalysts

    Science.gov (United States)

    Zhang, Yanlin; Liu, Peihong; Wu, Honghai

    2015-02-01

    One-dimensional (1D) nanowire material (especially nonmetal doped 1D nanowires) synthesized by a facile way is of great significance and greatly desired as it has higher charge carrier mobility and lower carrier recombination rate. N, S-codoped TiO2 nanowires were synthesized using titanium sulfate as a precursor and isopropanol as a protective capping agent by a hydrothermal route. The obtained doped nanowires were characterized by XRD, SEM, HRTEM, SAED, XPS, BET and UV-vis absorption spectrum. The incorporation of N and S into TiO2 NWs can lead to the expansion of its lattice and remarkably lower its electron-transfer resistance. Photocatalytic activity measurement showed that the N, S-codoped TiO2 nanowires with high quantum efficiency revealed the best photocatalytic performance for atrazine degradation under visible light irradiation compared to N, S-codoped TiO2 nanoparticles and S-doped TiO2 nanowires, which was attributed to (i) the synergistic effect of N and S doping in narrowing the band gap, separating electron-hole pairs and increasing the photoinduced electrons, and (ii) extending the anatase-to-rutile transformation temperature above 600 °C.

  7. Quantum dot sensitized solar cell based on TiO2/CdS/Ag2S heterostructure

    Science.gov (United States)

    Pawar, Sachin A.; Patil, Dipali S.; Kim, Jin Hyeok; Patil, Pramod S.; Shin, Jae Cheol

    2017-04-01

    Quantum dot sensitized solar cell (QDSSC) is fabricated based on a stepwise band structure of TiO2/CdS/Ag2S to improve the photoconversion efficiency of TiO2/CdS system by incorporating a low band gap Ag2S QDs. Vertically aligned TiO2 nanorods assembly is prepared by a simple hydrothermal technique. The formation of CdS and Ag2S QDs over TiO2 nanorods assembly as a photoanode is carried out by successive ionic layer adsorption and reaction (SILAR) technique. The synthesized electrode materials are characterized by XRD, XPS, field emission scanning electron microscopy (FE-SEM), Optical, solar cell and electrochemical performances. The results designate that the QDs of CdS and Ag2S have efficiently covered exterior surfaces of TiO2 nanorods assembly. A cautious evaluation between TiO2/CdS and TiO2/CdS/Ag2S sensitized cells tells that CdS and Ag2S synergetically helps to enhance the light harvesting ability. Under AM 1.5G illumination, the photoanodes show an improved power conversion efficiency of 1.87%, in an aqueous polysulfide electrolyte with short-circuit photocurrent density of 7.03 mA cm-2 which is four fold higher than that of a TiO2/CdS system.

  8. A pM leveled photoelectrochemical sensor for microcystin-LR based on surface molecularly imprinted TiO2@CNTs nanostructure.

    Science.gov (United States)

    Liu, Meichuan; Ding, Xue; Yang, Qiwei; Wang, Yu; Zhao, Guohua; Yang, Nianjun

    2017-06-05

    A simple and highly sensitive photoelectrochemical (PEC) sensor towards Microcystin-LR (MC-LR), a kind of typical cyanobacterial toxin in water samples, was developed on a surface molecular imprinted TiO 2 coated multiwalled carbon nanotubes (MI-TiO 2 @CNTs) hybrid nanostructure. It was synthesized using a feasible two-step sol-gel method combining with in situ surface molecular imprinting technique (MIT). With a controllable core-shell tube casing structure, the resultant MI-TiO 2 @CNTs are enhanced greatly in visible-light driven response capacity. In comparison with the traditional TiO 2 (P25) and non-imprinted (NI-)TiO 2 @CNTs, the MI-TiO 2 @CNTs based PEC sensor showed a much higher photoelectric oxidation capacity towards MC-LR. Using this sensor, the determination of MC-LR was doable in a wide linear range from 1.0pM to 3.0nM with a high photocurrent response sensitivity. An outstanding selectivity towards MC-LR was further achieved with this sensor, proven by simultaneously monitoring 100-fold potential co-existing interferences. The superiority of the obtained MC-LR sensor in sensitivity and selectivity is mainly attributed to the high specific surface area and excellent photoelectric activity of TiO 2 @CNTs heterojunction structure, as well as the abundant active recognition sites on its functionalized molecular imprinting surface. A promising PEC analysis platform with high sensitivity and selectivity for MC-LR has thus been provided. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Gentamicin-Eluting Titanium Dioxide Nanotubes Grown on the Ultrafine-Grained Titanium.

    Science.gov (United States)

    Nemati, Sima Hashemi; Hadjizadeh, Afra

    2017-08-01

    Titanium (Ti)-based materials is the most appropriate choices for the applications as orthopedic and dental implants. In this regard, ultrafine-grained (UFG) titanium with an enhanced mechanical properties and surface energy has attracted more attention. Titanium dioxide (TiO 2 ) nanotubes grown on the titanium could enhance bone bonding, cellular response and are good reservoirs for loading drugs and antibacterial agents. This article investigates gentamicin loading into and release from the TiO 2 nanotubes, grown on the UFG compared to coarse-grained (CG) titanium substrate surfaces. Equal Channel Angular Pressing (ECAP) was employed to produce the UFG structure titanium. TiO 2 nanotubes were grown by the anodizing technique on both UFG and CG titanium substrate surfaces. Scanning electron microscopy (SEM) imaging confirmed TiO 2 nanotube growth on the surface. The UV-vis spectroscopy analysis results show that the amount of gentamicin load-release in the anodized UFG titanium sample is higher than that of CG one which can be explained in terms of thicker TiO 2 nanotube arrays layer formed on UFG sample. Moreover, the anodized UFG titanium samples released the drug in a longer time than CG (1 day for the UFG titanium vs. 3 h for the CG one). Regarding wettability analysis, anodized UFG titanium sample showed more enhanced hydrophilicity than CG counterpart. Therefore, the significantly smaller grain size of pure titanium provided by the ECAP technique coupled with appropriate subsequent anodization treatment not only offers a good combination of biocompatibility and adequate mechanical properties but also it provides a delayed release condition for gentamicin.

  10. Effects of Homogenization Scheme of TiO2 Screen-Printing Paste for Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Seigo Ito

    2012-01-01

    Full Text Available TiO2 porous electrodes have been fabricated for photoelectrodes in dye-sensitized solar cells (DSCs using TiO2 screen-printing paste from nanocrystalline TiO2 powder dried from the synthesized sol. We prepared the TiO2 screen-printing paste by two different methods to disperse the nanocrystalline TiO2 powder: a “ball-milling route” and a “mortal-grinding route.” The TiO2 ball-milling (TiO2-BM route gave monodisperse TiO2 nanoparticles, resulting in high photocurrent density (14.2 mA cm−2 and high photoconversion efficiency (8.27%. On the other hand, the TiO2 mortal-grinding (TiO2-MG route gave large aggregate of TiO2 nanoparticles, resulting in low photocurrent density (11.5 mA cm−2 and low photoconversion efficiency (6.43%. To analyze the photovoltaic characteristics, we measured the incident photon-to-current efficiency, light absorption spectroscopy, and electrical impedance spectroscopy of DSCs.

  11. Highly stable colloidal TiO2 nanocrystals with strong violet-blue emission

    International Nuclear Information System (INIS)

    Ghamsari, Morteza Sasani; Gaeeni, Mohammad Reza; Han, Wooje; Park, Hyung-Ho

    2016-01-01

    Improved sol–gel method has been applied to prepare highly stable colloidal TiO 2 nanocrystals. The synthesized titania nanocrystals exhibit strong emission in the violet-blue wavelength region. Very long evolution time was obtained by preventing the sol to gel conversion with reflux process. FTIR, XRD, UV–vis absorption, photoluminescence and high resolution transmission electron microscope (HRTEM) were used to study the optical properties, crystalline phase, morphology, shape and size of prepared TiO 2 colloidal nanocrystals. HRTEM showed that the diameter of TiO 2 colloidal nanocrystals is about 5 nm. Although the PL spectra show similar spectral features upon excitation wavelengths at 280, 300 and 350 nm, but their emission intensities are significantly different from each other. Photoluminescence quantum yield for TiO 2 colloidal nanocrystals is estimated to be 49% with 280 nm excitation wavelength which is in agreement and better than reported before. Obtained results confirm that the prepared colloidal TiO 2 sample has enough potential for optoelectronics applications.

  12. Bioactivity studies on TiO2-bearing Na2O–CaO–SiO2–B2O3 glasses

    International Nuclear Information System (INIS)

    Jagan Mohini, G.; Sahaya Baskaran, G.; Ravi Kumar, V.; Piasecki, M.; Veeraiah, N.

    2015-01-01

    Soda lime silica borate glasses mixed with different concentrations of TiO 2 are synthesized by the melt-quenching technique. As a part of study on bioactivity of these glasses, the samples were immersed in simulated body fluid (SBF) solution for prolonged times (~ 21 days) during which weight loss along with pH measurements is carried out at specific intervals of time. The XRD and SEM analyses of post-immersed samples confirm the formation of crystalline hydroxyapatite layer (HA) on the surface of the samples. To assess the role of TiO 2 on the formation of HA layer and degradability of the samples the spectroscopic studies viz. optical absorption and IR spectral studies on post- and pre-immersed samples have been carried out. The analysis of the results of degradability together with spectroscopic studies as a function of TiO 2 concentration indicated that about 6.0 mol% of TiO 2 is the optimal concentration for achieving better bioactivity of these glasses. The presence of the maximal concentration octahedral titanium ions in this glass that facilitates the formation of HA layer is found to be the reason for such a higher bioactivity. - Highlights: • Soda lime silica borate glasses mixed with TiO 2 are synthesized. • Bioactivity of the glasses is studied by immersing them in SBF solution. • XRD and SEM studies indicated the formation of hydroxyapatite layer on the surface. • Quantum of degradability is the highest in the glasses mixed with 6.0 mol% of TiO 2. • The results are analyzed using IR and optical absorption studies

  13. H-TiO2/C/MnO2 nanocomposite materials for high-performance supercapacitors

    Science.gov (United States)

    Di, Jing; Fu, Xincui; Zheng, Huajun; Jia, Yi

    2015-06-01

    Functionalized TiO2 nanotube arrays with decoration of MnO2 nanoparticles (denoted as H-TiO2/C/MnO2) have been synthesized in the application of electrochemical capacitors. To improve both areal and gravimetric capacitance, hydrogen treatment and carbon coating process were conducted on TiO2 nanotube arrays. By scanning electron microscopy and X-ray photoelectron spectroscopy, it is confirmed that the nanostructure is formed by the uniform incorporation of MnO2 nanoparticles growing round the surface of the TiO2 nanotube arrays. Impedance analysis proves that the enhanced capacitive is due to the decrease of charge transfer resistance and diffusion resistance. Electrochemical measurements performed on this H-TiO2/C/MnO2 nanocomposite when used as an electrode material for an electrochemical pseudocapacitor presents quasi-rectangular shaped cyclic voltammetry curves up to 100 mV/s, with a large specific capacitance (SC) of 299.8 F g-1 at the current density of 0.5 A g-1 in 1 M Na2SO4 electrolyte. More importantly, the electrode also exhibits long-term cycling stability, only 13 % of SC loss after 2000 continuous charge-discharge cycles. Based on the concept of integrating active materials on highly ordered nanostructure framework, this method can be widely applied to the synthesis of high-performance electrode materials for energy storage.

  14. TiO2 Nanotubes Supported NiW Hydrodesulphurization Catalysts: Characterization and Activity

    Czech Academy of Sciences Publication Activity Database

    Palcheva, R.; Dimitrov, L.; Tyuliev, G.; Spojakina, A.; Jirátová, Květa

    2013-01-01

    Roč. 265, JAN 15 (2013), s. 309-313 ISSN 0169-4332 Institutional support: RVO:67985858 Keywords : nano-structured TiO2 * NiW catalysts * XPS Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.538, year: 2013

  15. Atomic Layer Deposition of Pd Nanoparticles on TiO₂ Nanotubes for Ethanol Electrooxidation: Synthesis and Electrochemical Properties.

    Science.gov (United States)

    Assaud, Loïc; Brazeau, Nicolas; Barr, Maïssa K S; Hanbücken, Margrit; Ntais, Spyridon; Baranova, Elena A; Santinacci, Lionel

    2015-11-11

    Palladium nanoparticles are grown on TiO2 nanotubes by atomic layer deposition (ALD), and the resulting three-dimensional nanostructured catalysts are studied for ethanol electrooxidation in alkaline media. The morphology, the crystal structure, and the chemical composition of the Pd particles are fully characterized using scanning and transmission electron microscopies, X-ray diffraction, and X-ray photoelectron spectroscopy. The characterization revealed that the deposition proceeds onto the entire surface of the TiO2 nanotubes leading to the formation of well-defined and highly dispersed Pd nanoparticles. The electrooxidation of ethanol on Pd clusters deposited on TiO2 nanotubes shows not only a direct correlation between the catalytic activity and the particle size but also a steep increase of the response due to the enhancement of the metal-support interaction when the crystal structure of the TiO2 nanotubes is modified by annealing at 450 °C in air.

  16. Structural phase analysis and photoluminescence properties of Mg-doped TiO2 nanoparticles

    Science.gov (United States)

    Ali, T.; Ashraf, M. Anas; Ali, S. Asad; Ahmed, Ateeq; Tripathi, P.

    2018-05-01

    In this paper, we report the synthesis, characterization and photoluminescence properties of Mg-doped TiO2 nanoparticles (NPs). The samples were synthesized by sol-gel method and characterized using the standard analytical techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectroscopy (EDX), UV-visible and photoluminescence spectroscopy. The powder XRD spectra revealed that the synthesized samples are pure and crystalline in nature and showing tetragonal anatase phase of TiO2 NPs. UV-visible spectrum illustrates that an absorption edge shifts toward the visible region. This study may provide a new insight for making the nanomaterials which can be used in photocatalytic applications.

  17. The Influence of NiO Addition in TiO2 Structure and Its Photoactivity

    Science.gov (United States)

    Wahyuningsih, S.; Ramelan, A. H.; Purwanti, P. D.; Munawaroh, H.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The synthesis of TiO2 together with the TiO2-NiO composite using various annealing temperatures has been studied. The synthesis of TiO2 was performed by sol gel method using Titanium Tetra Isopropoxide (TTIP) precursor, whereas the synthesis of TiO2-NiO composite was done by wet impregnation method using NiNO3.6H2O precursor. This study aims to determine the influence of NiO addition in its structure and photoactivity. The diffraction of synthesized TiO2 at 400 °C temperature shows anatase TiO2 peak at 2θ = 25.35 °. The addition of NiO dopant to the synthesis of TiO2 process is carried out by annealing at 300 °C, 400 °C, 500 °C, 600 °C, and 700 °C, respectively. The TiO2-NiO composite has been prepared and shows the diffraction peak of NiO at 2θ=43° about 33.08 to 36.68%. The optimum result of Rhodamine B photodegradation with TiO2 was 43.15%, while the optimum result of Rhodamine B degradation with TiO2-NiO composite was 92.85%.

  18. Photocatalytic Decolorization Study of Methyl Orange by TiO2–Chitosan Nanocomposites

    Directory of Open Access Journals (Sweden)

    Imelda Fajriati

    2014-10-01

    Full Text Available The photocatalytic decolorization of methyl orange (MO by TiO2-chitosan nanocomposite has been studied. This study was started by synthesizing TiO2-chitosan nanocomposites using sol-gel method with various concentrations of Titanium(IV isopropoxide (TTIP as the TiO2 precursor. The structure, surface morphology, thermal and optical property of TiO2-chitosan nanocomposite were characterized by X-ray diffraction (XRD, fourier transform infra red (FTIR spectroscopy, scanning electron microscopy (SEM, thermogravimetric analysis (TGA, and diffuse reflectance ultra violet (DRUV spectroscopy. The photocatalytic activity of TiO2-chitosan nanocomposite was evaluated by photocatalytic decolorization of methyl orange as a model pollutant. The results indicate that the particle size of TiO2 increases with increasing ofthe concentration of TTIP, in which TiO2 with smallest particle size exhibit the highest photocatalytic activity. The highest photocatalytic decolorization was obtained at 5 h of contact time, initial concentration of MO at 20 ppm and at solution pH of 4. Using these conditions, over 90% of MO was able to be decolorized using 0.02 g of TiO2-chitosan nanocomposite under UV light irradiation. The TiO2-chitosan nanocomposite could be reused, which meant that the TiO2-chitosan nanocomposites can be developed as an effective and economical photocatalyst to decolorize or treat dye in wastewater.

  19. The Effect of Calcination Temperature on the Performance of TiO2 Aggregates-based Dye Solar Cells (DSCs)

    International Nuclear Information System (INIS)

    Siti Nur Azella Zaine; Norani Muti Mohamed; Mohamad Azmi Bustam

    2011-01-01

    In this paper, the effect of calcination temperature on the physicochemical properties of synthesized TiO 2 aggregates and their influence on overall light conversion efficiency of dye solar cell (DSc) were investigated. Samples of TiO 2 aggregates (mean size of 0.45 μm) composing of nano crystallites (10-40 nm) were synthesized through hydrolysis of dilute titanium alkoxide in ethanol. Phase and microstructure of the TiO 2 obtained have been characterized using FESEM, XRD and UV-Vis spectroscopy. I-V characterization shows that TiO 2 aggregates based DSC demonstrated better performance compared to nanoparticles (P-25)-based DSC. The optimum calcination temperature was found to be about 500 degree Celsius with efficiency of 4.456 %, which is 30 % increment compared to P-25-based DSC under the same condition. (author)

  20. Facile preparation of a TiO2 quantum dot/graphitic carbon nitride heterojunction with highly efficient photocatalytic activity

    Science.gov (United States)

    Wang, Xing; Jiang, Subin; Huo, Xuejian; Xia, Rui; Muhire, Elisée; Gao, Meizhen

    2018-05-01

    In this article, mechanical grinding, an effortless and super-effective synthetic strategy, is used to successfully synthesize a TiO2 quantum dot (TiO2QD)/graphitic carbon nitride (g-C3N4) heterostructure. X-ray photoelectron spectroscopy results together with transmission electron microscopy reveal the formation of the TiO2QD/g-C3N4 heterostructure with strong interfacial interaction. Because of the advantages of this characteristic, the prepared heterostructure exhibits excellent properties for photocatalytic wastewater treatment. Notably, the optimum photocatalytic activity of the TiO2QD/g-C3N4 heterostructure is nearly 3.4 times higher than that of the g-C3N4 nanosheets used for the photodegradation of rhodamine B pollutant. In addition, the stability and possible degradation mechanism of the TiO2QD/g-C3N4 heterojunction are studied in detail. This method may stimulate an effective approach to synthesizing QD-sensitized semiconductor materials and facilitate their application in environmental protection.

  1. Effect of zinc doping on the bandgap and photoluminescence of Zn2+-doped TiO2 nanowires

    Science.gov (United States)

    Loan, Trinh Thi; Huong, Vu Hoang; Tham, Vu Thi; Long, Nguyen Ngoc

    2018-03-01

    This study was focused on the effect of Zn2+ dopant concentration on the absorption edge and photoluminescence of anatase TiO2 nanowires synthesized by hydrothermal technique. For the undoped anatase TiO2 nanowires, the indirect band gap of 3.26 eV and the direct band gap of 3.58 eV are assigned to the indirect Γ3 → X1b and direct X2b → X1b transitions, respectively. The Zn2+-doping makes the absorption edge of TiO2:Zn2+ nanowires shift towards the lower energy side (red shift). On the other hand, the replacing Ti4+ ions with Zn2+ ions creates oxygen vacancies (VO) and shallow defects associated with VO. Just these defects are responsible for the enhanced luminescence of Zn2+-doped TiO2 nanowires.

  2. Synthesis of TiO2 nanorod-decorated graphene sheets and their highly efficient photocatalytic activities under visible-light irradiation

    International Nuclear Information System (INIS)

    Lee, Eunwoo; Hong, Jin-Yong; Kang, Haeyoung; Jang, Jyongsik

    2012-01-01

    Highlights: ► TiO 2 nanorods were successfully decorated on the surface of graphene sheets. ► Population of TiO 2 nanorods can be controlled by changing experimental conditions. ► TiO 2 nanorod-decorated graphene sheets have an expanded light absorption range. ► TiO 2 nanorod-decorated graphene sheets showed unprecedented photocatalytic activity. - Abstract: The titanium dioxide (TiO 2 ) nanorod-decorated graphene sheets photocatalysts with different TiO 2 nanorods population have been synthesized by a simple non-hydrolytic sol–gel approach. Electron microscopy and X-ray diffraction analysis indicated that the TiO 2 nanorods are well-dispersed and successfully anchored on the graphene sheet surface through the formation of covalent bonds between Ti and C atoms. The photocatalytic activities are evaluated in terms of the efficiencies of photodecomposition and adsorption of methylene blue (MB) in aqueous solution under visible-light irradiation. The as-synthesized TiO 2 nanorod-decorated graphene sheets showed unprecedented photodecomposition efficiency compared to the pristine TiO 2 nanorods and the commercial TiO 2 (P-25, Degussa) under visible-light. It is believed that this predominant photocatalytic activity is due to the synergistic contribution of both a retarded charge recombination rate caused by a high electronic mobility of graphene and an increased surface area originated from nanometer-sized TiO 2 nanorods. Furthermore, photoelectrochemical study is performed to give deep insights into the primary roles of graphene that determines the photocatalytic activity.

  3. Fabrication and characterization of mesoporous TiO2/polypyrrole-based nanocomposite for electrorheological fluid

    International Nuclear Information System (INIS)

    Wei Chuan; Zhu Yihua; Jin Yi; Yang Xiaoling; Li Chunzhong

    2008-01-01

    Mesoporous TiO 2 /polypyrrole (PPy)-based nanocomposite for electrorheological fluid was synthesized through one-pot method. By exploiting the combination conductivity of PPy and high dielectric constant of TiO 2 , the ER fluid exhibited an enhanced effect. The shear stress was 3.3 times as high as that of mesoporous TiO 2 . Powder X-ray diffraction (XRD), TEM and Fourier transform infrared (FT-IR) spectroscopy were employed to characterize the as-made samples. Using a modified rotational viscometer, the electrorheological effect was measured. Dielectric spectra were also given to explain the mechanism

  4. Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition

    Science.gov (United States)

    Maijenburg, A. Wouter; Rodijk, Eddy J.B.; Maas, Michiel G.; ten Elshof, Johan E.

    2014-01-01

    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 µm were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution. PMID:24837535

  5. The Effects of Leaching Process to the TiO2 Synthesis from Bangka Ilmenite

    Science.gov (United States)

    Wahyuningsih, S.; Ramelan, A. H.; Pramono, E.; Argawan, P.; Djatisulistya, A.; Firdiyono, F.; Sulistiyono, E.; Sari, P. P.

    2018-03-01

    Ilmenite mineral is a naturally occurring iron titanate (FeTiO3) and is abundant in nature. The separation of components into TiO2 and Fe2O3 must be expand. The purpose of this research is to synthesis TiO2 nanoparticles from the filtrate of Bangka ilmenite leaching process. Leaching of ilmenite was done with H2SO4 and HCl at various concentrations. The formation of TiO2 crystal determined by hydrolysis conditions and condensation reaction. TiO2 synthesized from the filtrate of sulfuric acid leaching that produced from TiO2 anatase phase when hydrolyzed in an aquaregia solvent and low concentrations of HCl (0.1M). Hydrolysis conditions at higher concentrations of HCl (1M) was produced TiO2 anatase-rutile phase. The synthesis of TiO2 from the filtrate of hydrochloric acid leaching was produced anatase phase. While the condition under the alcoholic solvent (2-propanol: H2O (v/v) = 9: 1) anatase phase crystallites grow in the temperature range up to 550 °C, above this temperature, TiO2 transform into rutile phase.

  6. Low-temperature preparation and microwave photocatalytic activity study of TiO2-mounted activated carbon

    International Nuclear Information System (INIS)

    Liu Yazi; Yang Shaogui; Hong Jun; Sun Cheng

    2007-01-01

    TiO 2 thin films were deposited on granular activated carbon by a dip-coating method at low temperature (373 K), using microwave radiation to enhance the crystallization of titania nanoparticles. Uniform and continuous anatase titania films were deposited on the surface of activated carbon. BET surface area of TiO 2 -mounted activated carbon (TiO 2 /AC) decreased a little in comparison with activated carbon. TiO 2 /AC possessed strong optical absorption capacity with a band gap absorption edge around 360 nm. The photocatalytic activity did not increase when the as-synthesized TiO 2 /AC was thermally treated, but was much higher than commercial P-25 in degradation of phenol by irradiation of electrodeless discharge lamps (EDLs)

  7. Deposition of copper indium sulfide on TiO2 nanotube arrays and its application for photocatalytic decomposition of gaseous IPA

    Directory of Open Access Journals (Sweden)

    Young Ku

    2016-09-01

    Full Text Available TiO2 nanotube arrays (TNTs were modified with copper indium sulfide (Cu/In/S by successive ionic layer adsorption and reaction (SILAR method. The field-emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis demonstrated the presence of copper indium sulfide nanoparticles on the surface of the modified TNTs. The Cu/In/S-modified TNTs exhibited higher photocurrent density and photocatalytic activity than plain TNTs. The concentration of sulfur precursor was found to be an important factor on the composition of modified Cu/In/S films by SILAR. Some composition deviations were observed on the stoichiometry of the Cu/In/S-modified TNTs, which evidently affected the electrochemical characteristics of the modified TNTs. Experiments using the modified TNTs of composition close to the stoichiometric ratio of CuInS2 usually delivered higher photocatalytic decomposition of gaseous isopropyl alcohol in air streams and exhibited better stability during operation.

  8. Self-Assembly of TiO2/CdS Mesoporous Microspheres with Enhanced Photocatalytic Activity via Hydrothermal Method

    Directory of Open Access Journals (Sweden)

    Sujing Yu

    2014-01-01

    Full Text Available Self assembly of TiO2/CdS mesoporous microspheres was synthesized via hydrothermal method. The samples were characterized by X-ray powder diffraction (XRD, ultraviolet-visible diffuse reflectance spectroscopy (DRS, transmission electron microscopy (TEM, energy-dispersive spectroscopy analysis (EDS, high-resolution transmission electron microscopy (HRTEM, Brunauer-Emmett-Teller (BET, X-ray photoelectron spectroscopy (XPS, and photoluminescence spectra (PL. The as-synthesized TiO2/CdS mesoporous microspheres showed superior photocatalytic activity for the degradation of RhB under either visible light or simulated sunlight irradiation; the 10 wt% TiO2/CdS sample showed the best performance. Moreover, this catalyst showed improved stability, and the activity did not decrease significantly after four recycles. The heterojunction between TiO2 and CdS may be favorable for the transport of photoinduced electrons from CdS to TiO2. In addition, the mesoporous structure could increase the utilization of light energy and facilitate the diffusion of reactants and products during the photocatalytic reaction.

  9. Dependence of Photocatalytic Activity of TiO2-SiO2 Nanopowders

    Directory of Open Access Journals (Sweden)

    M. Riazian

    2014-10-01

    Full Text Available Structural properties and chemical composition change the photocatalytic activity in TiO2-SiO2 nanopowder composite. The SiO2-TiO2 nanostructure is synthesized based on sol–gel method. The nanoparticles are characterized by x-ray fluorescents (XRF, x- ray diffraction (XRD, tunneling electron microscopy (TEM, field emission scanning electron microscopy (FE-SEM, UV-vis. Spectrophotometer and furrier transmission create infrared absorption (FTIR techniques. The rate constant k for the degradation of methylen blue in its aqueous solution under UV irradiation is determined as a measure of photocatalytic activity. Dependence between photocatalytic activity and SiO2 content in the composite is determined. Rate constant k is found dependent on the content of SiO2 in the composite that calcined at 900 oC. The addition of low composition SiO2 to the TiO2 matrix (lower than 45% enhances the photocatalytic activity due to thermal stability and increasing in the surface area. The effects of chemical compositions on the surface topography and the crystallization of phases are studied.

  10. An insight into the mechanism of charge transfer properties of hybrid organic (MEH-PPV): Inorganic (TiO2) nanocomposites

    International Nuclear Information System (INIS)

    Mittal, Tanu; Tiwari, Sangeeta; Mehta, Aarti; Sharma, Shailesh N.

    2016-01-01

    Now a days, inorganic nanoparticles are gaining importance and are potential candidate in different organic electronic device application like (LEDs, PVs) due to their novel properties and confinement in Nano-dimensions. [1, 2] In the present work, we have compared the properties of titanium di oxide (TiO 2 ) nanoparticles (NPs) synthesized by using two different chemical routes aqueous and ethanol respectively. These synthesized TiO 2 nanoparticles have been characterized by X-ray diffraction spectroscopy (XRD) for phase confirmation. It was observed that synthesized nanoparticles are in anatase phase for both preparation routes. Morphological information was collected by scanning electron microscopy (SEM) which confirms that particles are almost spherical in shape and distributed uniformly which is further ensured by transmission electron microscopy (TEM). Dynamic light scattering (DLS) technique was also used for further confirmation of size distribution of as-synthesized nanoparticles. Optical properties were also investigated by photoluminescence and UV-Vis spectroscopy and calculated bandgap was found to be in the range of 3.3-3.5eV for TiO 2 (aq/eth) nanoparticles. The increase in bandgap values with respect to bulk (3.2 eV) confirms that as- synthesized nanoparticles are confined in nanodimensions. As synthesized nanoparticles were interacted with MEHPPV polymer (donor) matrix to make their respective MEHPPV: TiO 2 nanocomposites and to confirm the charge transfer mechanism from polymer to nanoparticles. It can be observed from photoluminescence (PL) quenching experiments that continuous quenching obtained for respective nanocomposites confirms better charge transfer from polymer to inorganic TiO 2 nanoparticles respectively. Because of, better quenching and simultaneously enhanced charge transfer of respective nanocomposites, ensures that these nanocomposites are greatly applicable for photovoltaics (PVs) especially in Hybrid Solar cells (HSCs).

  11. Photooxidative desulfurization for diesel using Fe / N - TiO2 photocatalyst

    Science.gov (United States)

    Khan, Muhammad Saqib; Kait, Chong Fai; Mutalib, Mohd Ibrahim Abdul

    2014-10-01

    A series of N - TiO2 with different mol% N was synthesized via sol-gel method and characterized using thermal gravimetric analyzer and raman spectroscopy. 0.2 wt% Fe was incorporated onto the calcined (200°C) N - TiO2 followed by calcination at 200°C, 250°C and 300°C. Photooxidative desulfurization was conducted in the presence of 0.2wt% Fe / N - TiO2 with different mol% N with and without oxidant (H2O2). Oxidative desulfurization was only achieved when H2O2 was used while without H2O2 no major effect on the sulfur removal. 0.2Fe -30N - H2O2 photocatalysts showed best performance at all calcination temperatures as compared to other mol% N - H2O2 photocatalysts. 16.45% sulfur removal was achieved using photocatalysts calcined at 300 °C.

  12. Hydrothermal fabrication of Ni{sub 3}S{sub 2}/TiO{sub 2} nanotube composite films on Ni anode and application in photoassisted water electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    He, Hongbo; Chen, Aiping, E-mail: apchen@ecust.edu.cn; Lv, Hui; Dong, Haijun; Chang, Ming; Li, Chunzhong

    2013-10-15

    Highlights: •Ni{sub 3}S{sub 2}/TiO{sub 2} nanotube photocatalysts were synthesized on Ni by hydrothermal method. •Structure of Ni{sub 3}S{sub 2} wrapped by TiO{sub 2} nanotubes improves remarkably stability of Ni{sub 3}S{sub 2}. •Ni{sub 3}S{sub 2}/TiO{sub 2} film on Ni has better H{sub 2} production performance than TiO{sub 2}-modified anode. -- Abstract: Nanostructured films of rhombohedral Ni{sub 3}S{sub 2} were hydrothermally synthesized on Ni and TiO{sub 2} nanotube layer, as substrates. A possible mechanism is proposed to explain the formation of rhombohedral Ni{sub 3}S{sub 2} nanostructures. The results of UV–vis spectrophotometric studies indicate that optical absorption spectrum of Ni{sub 3}S{sub 2}/TiO{sub 2} nanotube composites could be extended to the visible region. As-synthesized Ni{sub 3}S{sub 2}/TiO{sub 2} nanotube composite films on Ni substrate had better (by about 40%) hydrogen production performance under the visible light irradiation, in comparison with the Ni anode modified by TiO{sub 2} nanotubes.

  13. Photoelectrochemical property of CdS and PbS cosensitized on the TiO2 array by novel successive ionic layer adsorption and reaction method

    International Nuclear Information System (INIS)

    Lv, Pin; Fu, Wuyou; Mu, Yannan; Sun, Hairui; Su, Shi; Chen, Yanli; Yao, Huizhen; Ding, Dong; Liu, Tie; Wang, Jun; Yang, Haibin

    2015-01-01

    Highlights: • (CdS + PbS)/TiO 2 NTWs array was firstly synthesized by novel SILAR (N-SILAR) method. • N-SILAR method could shorten time, simplify procedure, lower cost. • (CdS + PbS)/TiO 2 NTWs contain both PbS/CdS/TiO 2 and CdS/PbS/TiO 2 composites structure. • (CdS + PbS)/TiO 2 NTWs can improve electron transport and reduce chemical erosion both. • The photocurrent of (CdS + PbS)/TiO 2 NTWs was 4.1 mA/cm 2 —8 times as high as TiO 2 . - Abstract: TiO 2 film materials have very wide applications in photovoltaic conversion techniques. And, TiO 2 nanotubes array film with nanowires directly formed on top (denoted as TiO 2 NTWs) was prepared by the anodization method. CdS and PbS quantum dots (QDs) were firstly cosensitized on the TiO 2 NTWs array (denoted as (CdS + PbS)/TiO 2 NTWs) by novel successive ionic layer adsorption and reaction (N-SILAR), which only needed a cation mixed solution containing Cd 2+ and Pb 2+ and an anionic solution containing S 2− . This N-SILAR method can not only effectively shorten the experimental time, simplify the experiment procedure and reduce the experiment cost, but also make the material of (CdS + PbS)/TiO 2 NTWs possess the advantages of improving electron transport and reducing chemical erosion. Moreover, the photocurrent of (CdS + PbS)/TiO 2 NTWs was 4.1 mA/cm 2 under an illumination of 100 mW/cm 2 . The most eye-popping part was that the result was 8 times higher than that of the bare TiO 2 NTWs array. The result of photoelectrochemical measurements indicated that this novel material had a potential application in photovoltaic devices

  14. One-Step Nonaqueous Synthesis of Pure Phase TiO2 Nanocrystals from TiCl4 in Butanol and Their Photocatalytic Properties

    Directory of Open Access Journals (Sweden)

    Tieping Cao

    2011-01-01

    Full Text Available Pure phase TiO2 nanomaterials were synthesized by an autoclaving treatment of TiCl4 with butanol as a single alcohol source. It was found that the control of molar ratio of TiCl4 to butanol played an important role in determining the TiO2 crystal phase and morphology. A high molar ratio of TiCl4 to butanol favored the formation of anatase nanoparticles, whereas rutile nanorods were selectively obtained at a low molar ratio of TiCl4 to butanol. Evaluation of the photocatalytic activity of the synthesized TiO2 was performed in terms of decomposition of organic dye rhodamine B under ultraviolet irradiation. It turned out that the as-synthesized TiO2 crystallites possessed higher photocatalytic activities toward bleaching rhodamine B than Degussa P25, benefiting from theirhigh surface area, small crystal size as well as high crystallinity.

  15. Deliberate Design of TiO2 Nanostructures towards Superior Photovoltaic Cells.

    Science.gov (United States)

    Sun, Ziqi; Liao, Ting; Sheng, Liyuan; Kou, Liangzhi; Kim, Jung Ho; Dou, Shi Xue

    2016-08-01

    TiO2 nanostructures are being sought after as flexibly utilizable building blocks for the fabrication of the mesoporous thin-film photoelectrodes that are the heart of the third-generation photovoltaic devices, such as dye-sensitized solar cells (DSSCs), quantum-dot-sensitized solar cells (QDSSCs), and the recently promoted perovskite-type solar cells. Here, we report deliberate tailoring of TiO2 nanostructures for superior photovoltaic cells. Morphology engineering of TiO2 nanostructures is realized by designing synthetic protocols in which the precursor hydrolysis, crystal growth, and oligomer self-organization are precisely controlled. TiO2 nanostructures in forms varying from isolated nanocubes, nanorods, and cross-linked nanorods to complex hierarchical structures and shape-defined mesoporous micro-/nanostructures were successfully synthesized. The photoanodes made from the shape-defined mesoporous TiO2 microspheres and nanospindles presented superior performances, owing to the well-defined overall shapes and the inner ordered nanochannels, which allow not only a high amount of dye uptake, but also improved visible-light absorption. This study provides a new way to seek an optimal synthetic protocol to meet the required functionality of the nanomaterials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electrochemical synthesis of nanosized TiO2 nanopowder involving choline chloride based ionic liquids

    International Nuclear Information System (INIS)

    Anicai, Liana; Petica, Aurora; Patroi, Delia; Marinescu, Virgil; Prioteasa, Paula; Costovici, Stefania

    2015-01-01

    Highlights: • TiO 2 nanopowder electrochemically prepared using choline chloride based ionic liquids. • The new proposed method allowed high anodic synthesis efficiencies of minimum 92%. • High surface area of the electrochemically synthesized titania nanopowders. • Enhanced photocatalytic activity. - Abstract: The paper presents some experimental results regarding the electrochemical synthesis of TiO 2 nanopowders through anodic dissolution of Ti metal in choline chloride based eutectic mixtures (DES). A detailed characterization of the obtained titania has been performed, using various techniques, including XRD, Raman spectroscopy, XPS, SEM associated with EDX analysis, BET and UV–vis diffuse reflectance spectra. The anodic behavior of Ti electrode in DES has been also investigated. The photoreactivity of the synthesized materials was evaluated for the degradation of Orange II dye under UV (λ = 365 nm) and visible light irradiation. An anodic synthesis efficiency of minimum 92% has been determined. The as-synthesized TiO 2 showed amorphous structure and a calcination post-treatment at temperatures between 400 and 600 °C yielded anatase. The anodically obtained nanocrystalline oxides have crystallite sizes of 8–18 nm, a high surface area and enhanced photocatalytic effect

  17. Core/Shell Structure of TiO2-Coated MWCNTs for Thermal Protection for High-Temperature Processing of Metal Matrix Composites

    Directory of Open Access Journals (Sweden)

    Laura Angélica Ardila Rodriguez

    2018-01-01

    Full Text Available The production of metal matrix composites with elevated mechanical properties depends largely on the reinforcing phase properties. Due to the poor oxidation resistance of multiwalled carbon nanotubes (MWCNTs as well as their high reactivity with molten metal, the processing conditions for the production of MWCNT-reinforced metal matrix composites may be an obstacle to their successful use as reinforcement. Coating MWCNTs with a ceramic material that acts as a thermal protection would be an alternative to improve oxidation stability. In this work, MWCNTs previously functionalized were coated with titanium dioxide (TiO2 layers of different thicknesses, producing a core-shell structure. Heat treatments at three different temperatures (500°C, 750°C, and 1000°C were performed on coated nanotubes in order to form a stable metal oxide structure. The MWCNT/TiO2 hybrids produced were evaluated in terms of thermal stability. Thermogravimetric analysis (TGA, X-ray diffraction (XRD, scanning electron microscopy (SEM, Fourier transform infrared spectroscopy (FTIR, Raman spectroscopy (RS, and X-ray photoelectron spectroscopy (XPS were performed in order to investigate TiO2-coated MWCNT structure and thermal stability under oxidative atmosphere. It was found that the thermal stability of the TiO2-coated MWCNTs was dependent of the TiO2 layer morphology that in turn depends on the heat treatment temperature.

  18. MoS2 embedded TiO2 nanoparticles for concurrent role of adsorption and photocatalysis

    Science.gov (United States)

    Pal, Arnab; Jana, Tushar K.; Chatterjee, Kuntal

    2018-04-01

    In this work, MoS2 embedded TiO2 nanoparticles, synthesized through hydrothermal process, was successfully employed to remove organic pollutant dye like methylene blue(MB) through adsorption and as well as through photocatalysis under visible light irradiation. The system was characterized by structural and morphological study. The adsorption and photocatalytic study of MB were evaluated with different concentrations of dye in aqueous solution. This work brings the MoS2-TiO2 nanostructure as excellent adsorbent as well as efficient photocatalyst materials which can be used for organic dye removal towards waste-water treatment.

  19. Highly Al-doped TiO2 nanoparticles produced by Ball Mill Method: structural and electronic characterization

    International Nuclear Information System (INIS)

    Santos, Desireé M. de los; Navas, Javier; Sánchez-Coronilla, Antonio; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2015-01-01

    Highlights: • Highly Al-doped TiO 2 nanoparticles were synthesized using a Ball Mill Method. • Al doping delayed anatase to rutile phase transformation. • Al doping allow controlling the structural and electronic properties of nanoparticles. - Abstract: This study presents an easy method for synthesizing highly doped TiO 2 nanoparticles. The Ball Mill method was used to synthesize pure and Al-doped titanium dioxide, with an atomic percentage up to 15.7 at.% Al/(Al + Ti). The samples were annealed at 773 K, 973 K and 1173 K, and characterized using ICP-AES, XRD, Raman spectroscopy, FT-IR, TG, STEM, XPS, and UV–vis spectroscopy. The effect of doping and the calcination temperature on the structure and properties of the nanoparticles were studied. The results show high levels of internal doping due to the substitution of Ti 4+ ions by Al 3+ in the TiO 2 lattice. Furthermore, anatase to rutile transformation occurs at higher temperatures when the percentage of doping increases. Therefore, Al doping allows us to control the structural and electronic properties of the nanoparticle synthesized. So, it is possible to obtain nanoparticles with anatase as predominant phase in a higher range of temperature

  20. Eosin-Y sensitized core-shell TiO2-ZnO nano-structured photoanodes for dye-sensitized solar cell applications.

    Science.gov (United States)

    Manikandan, V S; Palai, Akshaya K; Mohanty, Smita; Nayak, Sanjay K

    2018-06-01

    In the current investigation, TiO 2 and TiO 2 -ZnO (core-shell) spherical nanoparticles were synthesized by simple combined hydrolysis and refluxing method. A TiO 2 core nanomaterial on the shell material of ZnO was synthesized by utilizing variable ratios of ZnO. The structural characterization of TiO 2 -ZnO core/shell nanoparticles were done by XRD analysis. The spherical structured morphology of the TiO 2 -ZnO has been confirmed through field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) studies. The UV-visible spectra of TiO 2 -ZnO nanostructures were also compared with the pristine TiO 2 to investigate the shift of wavelength. The TiO 2 -ZnO core/shell nanoparticles at the interface efficiently collect the photogenarated electrons from ZnO and also ZnO act a barrier for reduced charge recombination of electrolyte and dye-nanoparticles interface. This combination improved the light absorption which induced the charge transfer ability and dye loading capacity of core-shell nanoparticles. An enhancement in the short circuit current (J sc ) from 1.67 mA/cm 2 to 2.1 mA/cm 2 has been observed for TiO 2 -ZnObased photoanode (with platinum free counter electrode), promises an improvement in the energy conversion efficiency by 57% in comparison with that of the DSSCs based on the pristine TiO 2 . Henceforth, TiO 2 -ZnO photoelectrode in ZnO will effectively act as barrier at the interface of TiO 2 -ZnO and TiO 2 , ensuring the potential for DSSC application. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Bactericidal effect of blue LED light irradiated TiO2/Fe3O4 particles on fish pathogen in seawater

    International Nuclear Information System (INIS)

    Cheng, T.C.; Yao, K.S.; Yeh, N.; Chang, C.I.; Hsu, H.C.; Gonzalez, F.; Chang, C.Y.

    2011-01-01

    This study uses blue LED light (λ max = 475 nm) activated TiO 2 /Fe 3 O 4 particles to evaluate the particles' photocatalytic activity efficiency and bactericidal effects in seawater of variable salinities. Different TiO 2 to Fe 3 O 4 mole ratios have been synthesized using sol-gel method. The synthesized particles contain mainly anatase TiO 2 , Fe 3 O 4 and FeTiO 3 . The study has identified TiO 2 /Fe 3 O 4 's bactericidal effect to marine fish pathogen (Photobacterium damselae subsp. piscicida BCRC17065) in seawater. The SEM photo reveals the surface destruction in bacteria incubated with blue LED irradiated TiO 2 /Fe 3 O 4 . The result of this study indicates that 1) TiO 2 /Fe 3 O 4 acquires photocatalytic activities in both the freshwater and the seawater via blue LED irradiation, 2) higher photocatalytic activities appear in solutions of higher TiO 2 /Fe 3 O 4 mole ratio, and 3) photocatalytic activity decreases as salinity increases. These results suggest that the energy saving blue LED light is a feasible light source to activate TiO 2 /Fe 3 O 4 photocatalytic activities in both freshwater and seawater.

  2. Effective Removal of Congo Red by Triarrhena Biochar Loading with TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Peng Yu

    2018-01-01

    Full Text Available A composite of pyrolytic Triarrhena biochar loading with TiO2 nanoparticles has been synthesized by the sol-gel method. The composite shows a well-developed hollow mesoporous and macropore structure as characterized by XRD, BET, and SEM. When used as an absorbent to remove Congo red from aqueous solution, it was found that as-prepared composite performed better absorption capacity than single biochar or TiO2. The results suggest that biochar loading with TiO2 could be promisingly implemented as an environmentally friendly and inexpensive adsorbent for Congo red removal from wastewater.

  3. Charge transport in anodic TiO.sub.2./sub. nanotubes studied by terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Krbal, M.; Kuchařík, Jiří; Sopha, H.; Němec, Hynek; Macák, J. M.

    2016-01-01

    Roč. 10, č. 9 (2016), s. 691-695 ISSN 1862-6254 R&D Projects: GA ČR GA13-12386S Institutional support: RVO:68378271 Keywords : terahertz spectroscopy * charge transport * TiO2 nanotubes Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.032, year: 2016

  4. Titanium-dioxide nanotube p-n homojunction diode

    Science.gov (United States)

    Alivov, Yahya; Ding, Yuchen; Singh, Vivek; Nagpal, Prashant

    2014-12-01

    Application of semiconductors in functional optoelectronic devices requires precise control over their doping and formation of junction between p- and n-doped semiconductors. While doped thin films have led to several semiconductor devices, need for high-surface area nanostructured devices for photovoltaic, photoelectrochemical, and photocatalytic applications has been hindered by lack of desired doping in nanostructures. Here, we show titanium-dioxide (TiO2) nanotubes doped with nitrogen (N) and niobium (Nb) as acceptors and donors, respectively, and formation of TiO2 nanotubes p-n homojunction. This TiO2:N/TiO2:Nb homojunction showed distinct diode-like behaviour with rectification ratio of 1115 at ±5 V and exhibited good photoresponse for ultraviolet light (λ = 365 nm) with sensitivity of 0.19 A/W at reverse bias of -5 V. These results can have important implications for development of nanostructured metal-oxide solar-cells, photodiodes, LED's, photocatalysts, and photoelectrochemical devices.

  5. Thermoluminescence response and glow curve structure of Sc2TiO5 ß-irradiated

    International Nuclear Information System (INIS)

    Muñoz, I.C.; Brown, F.; Durán-Muñoz, H.; Cruz-Zaragoza, E.; Durán-Torres, B.; Alvarez-Montaño, V.E.

    2014-01-01

    Discandium titanate (Sc 2 TiO 5 ) powder was synthesized in order to analyze its thermoluminescence (TL) response. The TL glow curve structure shows two peaks: at 453–433 K and at 590–553 K. The TL beta dose–response has a linear behavior over the dose range 50–500 Gy. The T stop preheat method shows five glow peaks that were taken into account to calculate the kinetic parameters using the CGCD procedure. TL results support the possible use of Sc 2 TiO 5 as a new phosphor in high ß-dose dosimetry. - Highlights: • Discandium titanate was synthesized, and its TL properties were analyzed. • The beta dose–response has a linear behavior on the dose range 50–500 Gy. • The kinetic parameters were obtained by the CGCD procedure. • Results support the possible use of Sc 2 TiO 5 as a new phosphor for ß-dose dosimetry

  6. Room-temperature synthesis of TiO 2 nanospheres and their solar driven photoelectrochemical hydrogen production

    KAUST Repository

    Avasare, Vidya

    2015-08-13

    Highly monodisperse and crystalline anatase phase TiO2 nanospheres have been synthesized at room temperature from organometallic precursor, titanocene dichloride and sodium azide. The photoelectrochemical (PEC) water splitting performance on the TiO2 nanospheres was studied under illumination of AM 1.5G. The optimized photocurrent density and photoconversion efficiency of TiO2 NSPs were observed ~0.95mAcm-2 at 1.23V and 0.69%, respectively. The transient photocurrent response measurements on the TiO2 NSPs during repeated ON/OFF visible light illumination cycles at 1.23V vs RHE show that both samples exhibited fast and reproducible photocurrent responses. The TiO2 NSPs show excellent catalytic stability, and significant dark current was not observed even at high potentials (2.0V vs RHE). © 2015 John Wiley & Sons, Ltd.

  7. The Influence of Cr3+ on TiO2 Crystal Growth and Photoactivity Properties

    Science.gov (United States)

    Wahyuningsih, S.; Hidayatika, W. N.; Sari, P. L.; Sari, P. P.; Hidayat, R.; Munawaroh, H.; Ramelan, A. H.

    2018-03-01

    The photocatalyst technology is an integrated combination of photochemical processes and catalysis in order to carry out a chemical transformation reaction. One of the semiconductor materials that have good photocatalytic activity is TiO2 anatase. This study aim to determine the effect of the Cr3+ addition on the growth of TiO2 rutile crystal and the increasing of TiO2 photoactivity. Diffractogram X-Ray of the samples showed that the synthesized TiO2 at 400 °C has been produced 100% TiO2 anatase. Synthesis of TiO2 doped Cr3+ composite was using wet impregnation method. The TiO2 doped Cr3+ composites have beed grown by annealed at a temperature of 300, 400, 500, 600 and 700 °C, respectively Annealing process have capabled to gain to the TiO2 doped Cr3+ nanocomposite. The result product annealed at 500 °C only appear anatase phase due to the Cr3+ addition influence that was able to suppress the growth of rutile. Identification of TiO2 doped Cr3+ composite using Fourier Transform Infra-Red (FT-IR) showed O-Cr vibration at 2283.72 cm-1. The TiO2 doped Cr3+ photoactivity was studied to degrade Rhodamin B. The best result on photodegradation of Rhodamin B was performed by using TiO2 doped Cr3+ composite which was annealed at 700 °C i.e. 74.71%.

  8. Hydrothermal synthesis of core–shell TiO_2 to enhance the photocatalytic hydrogen evolution

    International Nuclear Information System (INIS)

    Jiang, Jinghui; Zhou, Han; Zhang, Fan; Fan, Tongxiang; Zhang, Di

    2016-01-01

    Graphical abstract: Core–shell TiO_2 with interior cavity was synthesized by a hydrothermal approach to enhance the photocatalytic performance. - Highlights: • Core–shell TiO_2 with interior cavity can be synthesized by hydrothermal approach. • Multiple reflection of incident light in cavity can increase the absorption. • Rutile can optimize the bandgap and delay the charge recombination. - Abstract: A hydrothermal approach was designed to synthesize core–shell TiO_2 with interior cavity by making sodium dodecyl sulfonate (SDS) as the surfactant and the mixture of water and ethanol as the solvent. The control experiment of solvent reveals ethanol and water are responsible for the formation of sphere and interior cavity, respectively. Besides, SDS can assist the growth of core–shell structure, and the sizes of sphere and interior cavity can be tuned by regulating the reaction time or temperature. UV–vis absorption proves core–shell structure with interior cavity can increase the absorption of incident light to enhance the optical activity of final product. The calculated bandgap and photoluminescence (PL) analyses reveal the coexistence of rutile in final product can optimize the bandgap to 3.03 eV and delay the charge recombination. As a result, an effective photocatalytic hydrogen evolution under full spectrum irradiation can be harvested by the as-synthesized core–shell spheres to reach a quantum yield, approximately 9.57% at 340 nm wavelength.

  9. Three-dimensional assembly structure of anatase TiO2 hollow microspheres with enhanced photocatalytic performance

    Science.gov (United States)

    Tang, Yihao; Zhan, Shuai; Wang, Li; Zhang, Bin; Ding, Minghui

    The pure anatase TiO2 hollow microspheres are synthesized by a one-step template-free hydrothermal route. By defining temperature and time limits, we produce TiO2 hollow microspheres with a fluoride-mediated self-transformation. The surface morphology of TiO2 hollow microspheres was studied by SEM. The hollow microspheres have diameters of about 800 nm and are remarkably uniform. The UV-light photocatalytic activity and the stability/multifunction of TiO2 hollow microspheres structure were evaluated by photocatalytic degradation of methylene blue and photocatalytic hydrogen evolution. The excellent photocatalytic activity is attributed to large specific surface area, more active sites, unique hollow structures, and improved light scattering.

  10. Characterization of NaA Zeolite Oxygen Permeable Membrane on TiO2/α-Al2O3 Composite Support

    Directory of Open Access Journals (Sweden)

    Zhu Mengfu

    2016-01-01

    Full Text Available The NaA zeolite membrane was synthesized on the surface of TiO2/α-Al2O3 composite support with TiO2 as modifier of α-Al2O3 porous tubular ceramic membrane support by crystallization method. The structure characterization indicated that the TiO2 of the support surface could effectively improve the surface properties of the support. It didn’t affect the crystallization of NaA synthesis liquid and synthesis process of NaA zeolite membrane. There were no obvious defects between the crystal particles with size of approximate 6μm. The perfect and complete membrane with thickness of approximate 15μm combined closely with support to connection together by TiO2 modified. The oxygen permeability of the membrane on TiO2/α-Al2O3 composite support improves of 47% compared with that of α-Al2O3 support. So the process of TiO2 modifying the surface of α-Al2O3 support should increase the oxygen permeability of the NaA zeolite membrane.

  11. Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2-x Deposits

    Science.gov (United States)

    Lee, Hwasoo; Seshadri, Ramachandran Chidambaram; Pala, Zdenek; Sampath, Sanjay

    2018-06-01

    In this article, an attempt has been made to relate the thermoelectric properties of thermal spray deposits of sub-stoichiometric titania to process-induced phase and microstructural variances. The TiO2-x deposits were formed through the in situ reaction of the TiO1.9 or TiO1.7 feedstock within the high-temperature plasma flame and manipulated via varying the amounts of hydrogen fed into in the thermal plasma. Changes in the flow rates of H2 in the plasma plume greatly affected the in-flight particle behavior and composition of the deposits. For reference, a high-velocity oxy-fuel spray torch was also used to deposit the two varieties of feedstocks. Refinements to the representation of the in-flight particle characteristics derived via single particle and ensemble diagnostic methods are proposed using the group parameters (melting index and kinetic energy). The results show that depending on the value of the melting index, there is an inverse proportional relationship between electrical conductivity and Seebeck coefficient, whereas thermal conductivity has a directly proportional relationship with the electrical conductivity. Retention of the original phase and reduced decomposition is beneficial to retain the high Seebeck coefficient or the high electrical conductivity in the TiO2 system.

  12. Microwave-assisted synthesis and characterization of poly(acrylic)/SiO2-TiO2 core-shell nanoparticle hybrid thin films

    International Nuclear Information System (INIS)

    Chien, Wen-Chen; Yu, Yang-Yen; Chen, Po-Kan; Yu, Hui-Huan

    2011-01-01

    In this study, poly(acrylic)/SiO 2 -TiO 2 core-shell nanoparticle hybrid thin films were successfully synthesized by microwave-assisted polymerization. The coupling agent 3-(trimethoxysilyl) propyl methacrylate (MSMA) was hydrolyzed with colloidal SiO 2 -TiO 2 core-shell nanoparticles, and then polymerized with two acrylic monomers and initiator to form a precursor solution. The results of this study showed that the spin-coated hybrid films had relatively good surface planarity, high thermal stability, a tunable refractive index (1.525 2 -TiO 2 core-shell nanoparticle hybrid thin films, for potential use in optical applications.

  13. Enhancement of the photocatalytic activity of TiO2 nanoparticles by surface-capping DBS groups

    International Nuclear Information System (INIS)

    Wang Baiqi; Jing Liqiang; Qu Yichun; Li Shudan; Jiang Baojiang; Yang Libin; Xin Baifu; Fu Honggang

    2006-01-01

    TiO 2 nanoparticles capped with sodium dodecylbenzenesulfonate (DBS) are synthesized by a sol-hydrothermal process using tetrabutyl titanate and DBS as raw materials. The effects of surface-capping DBS on the surface photovoltage spectroscopy (SPS), photoluminescence (PL) and photocatalytic performance of TiO 2 nanoparticles are principally investigated together with their relationships. The results show that the surface of TiO 2 nanoparticles can be well capped by DBS groups while the pH value and added DBS amount are controlled at 5.0 and 2% of TiO 2 mass weight, respectively, and the linkage between DBS groups and TiO 2 surfaces is mainly by means of quasi-sulphonate bond. The intensities of SPS and PL spectra of TiO 2 obviously decrease after DBS-capping, while the activity can greatly increase during the photocatalytic degradation of Rhodamine B (RhB) solution, which are mainly attributed to the electron-withdrawing character of the DBS groups. Moreover, the enhancement of photocatalytic activity of DBS-capped TiO 2 is also related to the increase in the capability for adsorbing RhB

  14. Structural Modification of Sol-Gel Synthesized V2O5 and TiO2 Thin Films with/without Erbium Doping

    Directory of Open Access Journals (Sweden)

    Fatma Pınar Gökdemir

    2014-01-01

    Full Text Available Comparative work of with/without erbium- (Er- doped vanadium pentoxide (V2O5 and titanium dioxide (TiO2 thin films were carried out via sol-gel technique by dissolving erbium (III nitrate pentahydrate (Er(NO33·5H2O in vanadium (V oxoisopropoxide (OV[OCH(CH32]3 and titanium (IV isopropoxide (Ti[OCH(CH32]4. Effect of Er doping was traced by Fourier transform IR (FTIR, thermogravimetric/differential thermal (TG/DTA, and photoluminescence measurements. UV-Vis transmission/absorption measurement indicated a blue shift upon Er doping in V2O5 film due to the softening of V=O bond while appearance of typical absorption peaks in Er-doped TiO2 film. Granule size of the films increased (reduced upon Er substitution on host material compared to undoped V2O5 and TiO2 films, respectively.

  15. Synthesis and characterization of titania nanotubes by anodizing of titanium in fluoride containing electrolytes

    Science.gov (United States)

    Ahmad, Akhlaq; Haq, Ehsan Ul; Akhtar, Waseem; Arshad, Muhammad; Ahmad, Zubair

    2017-11-01

    Titania nanotubular structure was prepared by anodizing titanium metal in the fluoride containing electrolytes and studied for hydrogen reduction using photo electrochemical cell. Potentiodynamic scan was performed before actual anodizing to optimize the anodizing conditions. The morphology of the TiO2 nanotubes was investigated by SEM and the presence of TiO2 nanotubes was confirmed. Raman spectroscopy was done to confirm the different phases present. Hydrogen generation capability was revealed by electrochemical testing in three-electrode system in dark and in visible light at 200 W power using Gamry Potentiostat. The corrosion potential of TiO2 nanotubes produced was found to be more active side in potassium hydroxide solution under visible light than in the dark condition. Cathodic polarization behavior of specimens in the presence of light showed more activity towards hydrogen generation than in dark condition. In comparison, the hydrogen generation capability of specimen anodized in 2H15 electrolyte was higher than specimens anodized in other electrolytes. Electrochemical impedance spectroscopy was used to study the charge transfer resistance of the nanotubes produced. The results showed that TiO2 nanotubular structure is a promising material for photoelectrochemical cell. Low-charge transfer resistance also depicts that it can be efficiently used to harvest solar energy.

  16. Disinfection of titanium dioxide nanotubes using super-oxidized water decrease bacterial viability without disrupting osteoblast behavior

    International Nuclear Information System (INIS)

    Beltrán-Partida, Ernesto; Valdez-Salas, Benjamín; Escamilla, Alan; Curiel, Mario; Valdez-Salas, Ernesto; Nedev, Nicola; Bastidas, Jose M.

    2016-01-01

    Amorphous titanium dioxide (TiO_2) nanotubes (NTs) on Ti6Al4V alloy were synthesized by anodization using a commercially available super-oxidized water (SOW). The NT surfaces were sterilized by ultraviolet (UV) irradiation and disinfected using SOW. The adhesion and cellular morphology of pig periosteal osteoblast (PPO) cells and the behavior of Staphylococcus aureus (S. aureus) cultured on the sterilized and disinfected surfaces were investigated. A non-anodized Ti6Al4V disc sterilized by UV irradiation (without SOW) was used as control. The results of this study reveal that the adhesion, morphology and filopodia development of PPO cells in NTs are dramatically improved, suggesting that SOW cleaning may not disrupt the benefits obtained by NTs. Significantly decreased bacterial viability in NTs after cleaning with SOW and comparing with non-cleaned NTs was seen. The results suggest that UV and SOW could be a recommendable method for implant sterilization and disinfection without altering osteoblast behavior while decreasing bacterial viability. - Highlights: • The effect of super-oxidized water cleaning was studied on Ti6Al4V nanotubes. • Super oxidized-water cleaning caused a decline in S. aureus viability. • Osteoblast behavior was not disrupted after super-oxidized water disinfection. • Super-oxidized water is suggested as a cleaning protocol for TiO_2 nanotubes.

  17. Preparation and structure of TiO2 nanotubes

    Czech Academy of Sciences Publication Activity Database

    Pavlova, Ewa; Lapčíková, Monika; Šlouf, Miroslav; Kužel, R.

    2006-01-01

    Roč. 13, č. 3 (2006), s. 156-157 ISSN 1211-5894. [Czech and Slovak Crystallographic Colloquium. 22.06.2006-24.06.2006, Grenoble] R&D Projects: GA ČR GA203/04/0688 Keywords : nanotubes * X-ray diffraction * electron microscopy Subject RIV: CF - Physical ; Theoretical Chemistry http://www. xray .cz/ms/default.htm

  18. Nanostructured TiO2 microspheres for dye-sensitized solar cells employing a solid state polymer electrolyte

    International Nuclear Information System (INIS)

    Jung, Hun-Gi; Nagarajan, Srinivasan; Kang, Yong Soo; Sun, Yang-Kook

    2013-01-01

    Bimodal mesoporous, anatase TiO 2 microspheres with particle sizes ranging from 0.3 to 2 μm were synthesized using a facile solvothermal method. The photovoltaic performance of TiO 2 microspheres in dye-sensitized solar cells (DSSCs) using a solid state electrolyte was investigated. The solid state electrolyte DSSC device based on the TiO 2 microspheres exhibits an energy conversion efficiency of 4.2%, which is greater than that of commercial P25 TiO 2 (3.6%). The higher photocurrent density was primarily achieved as a result of the greater specific surface area and pore size, which resulted in an increase in the dye uptake of the TiO 2 microspheres and easy transport of solid electrolyte through mesopores. In addition, the greater electron lifetime and superior light scattering ability also enhanced the photovoltaic performance of the TiO 2 microsphere-based, solid state DSSCs

  19. A chemical route to room-temperature synthesis of nanocrystalline TiO2 thin films

    International Nuclear Information System (INIS)

    Pathan, Habib M.; Kim, Woo Young; Jung, Kwang-Deog; Joo, Oh-Shim

    2005-01-01

    A lot of methods are developed for the deposition of TiO 2 thin films; however, in each of these methods as-deposited films are amorphous and need further heat treatment at high temperature. In the present article, a chemical bath deposition (CBD) method was used for the preparation of TiO 2 thin films. We investigated nanocrystalline TiO 2 thin films using CBD at room temperature onto glass and ITO coated glass substrate. The films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) techniques. The chemically synthesized films were nanocrystalline and composed of crystal grains of 2-3 nm

  20. Scalable Synthesis of Triple-Core-Shell Nanostructures of TiO2 @MnO2 @C for High Performance Supercapacitors Using Structure-Guided Combustion Waves.

    Science.gov (United States)

    Shin, Dongjoon; Shin, Jungho; Yeo, Taehan; Hwang, Hayoung; Park, Seonghyun; Choi, Wonjoon

    2018-03-01

    Core-shell nanostructures of metal oxides and carbon-based materials have emerged as outstanding electrode materials for supercapacitors and batteries. However, their synthesis requires complex procedures that incur high costs and long processing times. Herein, a new route is proposed for synthesizing triple-core-shell nanoparticles of TiO 2 @MnO 2 @C using structure-guided combustion waves (SGCWs), which originate from incomplete combustion inside chemical-fuel-wrapped nanostructures, and their application in supercapacitor electrodes. SGCWs transform TiO 2 to TiO 2 @C and TiO 2 @MnO 2 to TiO 2 @MnO 2 @C via the incompletely combusted carbonaceous fuels under an open-air atmosphere, in seconds. The synthesized carbon layers act as templates for MnO 2 shells in TiO 2 @C and organic shells of TiO 2 @MnO 2 @C. The TiO 2 @MnO 2 @C-based electrodes exhibit a greater specific capacitance (488 F g -1 at 5 mV s -1 ) and capacitance retention (97.4% after 10 000 cycles at 1.0 V s -1 ), while the absence of MnO 2 and carbon shells reveals a severe degradation in the specific capacitance and capacitance retention. Because the core-TiO 2 nanoparticles and carbon shell prevent the deformation of the inner and outer sides of the MnO 2 shell, the nanostructures of the TiO 2 @MnO 2 @C are preserved despite the long-term cycling, giving the superior performance. This SGCW-driven fabrication enables the scalable synthesis of multiple-core-shell structures applicable to diverse electrochemical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.