WorldWideScience

Sample records for synthesized single-tailed lipid

  1. Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery

    Science.gov (United States)

    Yu, Wangyang; Liu, Chunxi; Ye, Jiesheng; Zou, Weiwei; Zhang, Na; Xu, Wenfang

    2009-05-01

    Cationic solid lipid nanoparticles (SLN) can bind DNA directly via ionic interaction and mediate in vitro gene transfection. However, toxicity is still an obstacle, which is strongly dependent on the cationic lipid used. In the present study, a novel single-tailed cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was synthesized and used as a modifier to prepare stable SLN-DNA complexes by a nanoprecipitation method. The commonly used cationic lipid cetyltrimethylammonium bromide (CTAB) modified SLN-DNA formulation served as a contrast. These two formulations were characterized and compared in terms of morphology, particle size, surface charge, DNA binding capacity, release profile, cytotoxicity, and transfection efficiency. The LHLN SLN-DNA complexes had a similar spherical morphology, a relatively narrow particle size distribution and a more remarkable DNA loading capability compared to the CTAB ones. Most importantly, LHLN modified SLN had a higher gene transfection efficiency than the naked DNA and CTAB ones, which was approximately equal to that of Lipofectamine-DNA complexes, and a lower cytotoxicity compared with CTAB-SLN and Lipofectamine 2000. Thus, the novel cationic SLN can achieve efficient transfection of plasmid DNA, and to some extent reduce the cytotoxicity, which might overcome some drawbacks of the conventional cationic nanocarriers in vivo and may become a promising non-viral gene therapy vector.

  2. Novel cationic SLN containing a synthesized single-tailed lipid as a modifier for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Yu Wangyang; Liu Chunxi; Ye Jiesheng; Zou Weiwei; Zhang Na; Xu Wenfang [School of Pharmaceutical Sciences, Shandong University, 44 Wenhua Xi Road, Ji' nan (China)], E-mail: zhangnancy9@sdu.edu.cn

    2009-05-27

    Cationic solid lipid nanoparticles (SLN) can bind DNA directly via ionic interaction and mediate in vitro gene transfection. However, toxicity is still an obstacle, which is strongly dependent on the cationic lipid used. In the present study, a novel single-tailed cationic lipid, 6-lauroxyhexyl lysinate (LHLN), was synthesized and used as a modifier to prepare stable SLN-DNA complexes by a nanoprecipitation method. The commonly used cationic lipid cetyltrimethylammonium bromide (CTAB) modified SLN-DNA formulation served as a contrast. These two formulations were characterized and compared in terms of morphology, particle size, surface charge, DNA binding capacity, release profile, cytotoxicity, and transfection efficiency. The LHLN SLN-DNA complexes had a similar spherical morphology, a relatively narrow particle size distribution and a more remarkable DNA loading capability compared to the CTAB ones. Most importantly, LHLN modified SLN had a higher gene transfection efficiency than the naked DNA and CTAB ones, which was approximately equal to that of Lipofectamine-DNA complexes, and a lower cytotoxicity compared with CTAB-SLN and Lipofectamine 2000. Thus, the novel cationic SLN can achieve efficient transfection of plasmid DNA, and to some extent reduce the cytotoxicity, which might overcome some drawbacks of the conventional cationic nanocarriers in vivo and may become a promising non-viral gene therapy vector.

  3. Single-Tailed Lipidoids Enhance the Transfection Activity of Their Double-Tailed Counterparts.

    Science.gov (United States)

    Wu, Yihang; Li, Linxian; Chen, Qing; Su, Yi; Levkin, Pavel A; Davidson, Gary

    2016-01-11

    Cationic lipid-like molecules (lipidoids) are widely used for in vitro and in vivo gene delivery. Nearly all lipidoids developed to date employ double-tail or multiple-tail structures for transfection. Single-tail lipidoids are seldom considered for transfection as they have low efficiency in gene delivery. So far, there is no detailed study on the contribution to transfection efficiency of single-tail lipidoids when combined with standard double-tail lipidoids. Here, we use combinatorial chemistry to synthesize 17 double-tail and 17 single-tail lipidoids using thiol-yne and thiol-ene click chemistry, respectively. HEK 293T cells were used to analyze transfection efficiency by fluorescence microscopy and calculated based on the percentage of cells transfected. The size and zeta potential of liposomes and lipoplexes were characterized by dynamic light scattering (DLS). Intracellular DNA delivery and trafficking was further examined using confocal microscopy. Our study shows that combining single with double-tail lipidoids increases uptake of lipoplexes, as well as cellular transfection efficiency.

  4. Nutritional evaluation of structured lipid containing omega 6 fatty acid synthesized from coconut oil in rats.

    Science.gov (United States)

    Rao, Reena; Lokesh, Belur R

    2003-06-01

    Coconut oil is rich in medium chain fatty acids, but deficient in polyunsaturated fatty acids (PUFA). Structured lipids (SL) enriched with omega 6 PUFA were synthesized from coconut oil triglycerides by employing enzymatic acidolysis with free fatty acids obtained from safflower oil. Rats were fed a diet containing coconut oil, coconut oil-safflower oil blend (1:0.7 w/ w) or structured lipid at 10% levels for a period of 60 days. The SL lowered serum cholesterol levels by 10.3 and 10.5% respectively in comparison with those fed coconut oil and blended oil. Similarly the liver cholesterol levels were also decreased by 35.9 and 26.6% respectively in animals fed structured lipids when compared to those fed on coconut oil or the blended oil. Most of the decrease observed in serum cholesterol levels of animals fed structured lipids was found in LDL fraction. The triglyceride levels in serum showed a decrease by 17.5 and 17.4% while in the liver it was reduced by 45.8 and 23.5% in the structured lipids fed animals as compared to those fed coconut oil or blended oil respectively. Differential scanning calorimetric studies indicated that structured lipids had lower melting points and solid fat content when compared to coconut oil or blended oils. These studies indicated that enrichment of coconut oil triglycerides with omega 6 fatty acids lowers its solid fat content. The omega 6 PUFA enriched structured lipids also exhibited hypolipidemic activity.

  5. Enzymatically synthesized glycogen reduces lipid accumulation in diet-induced obese rats.

    Science.gov (United States)

    Furuyashiki, Takashi; Ogawa, Rui; Nakayama, Yoko; Honda, Kazuhisa; Kamisoyama, Hiroshi; Takata, Hiroki; Yasuda, Michiko; Kuriki, Takashi; Ashida, Hitoshi

    2013-09-01

    Based on a recent study indicating that enzymatically synthesized glycogen (ESG) possesses a dietary, fiber-like action, we hypothesized that ESG can reduce the risk of obesity. In this study, the antiobesity effects of ESG were investigated in a model of diet-induced obesity. Male Sprague-Dawley rats were divided into 4 groups and fed a normal or high-fat diet, with or without 20% ESG, for 4 weeks. Body weight, food intake, lipid deposition in the white adipose tissues and liver, fecal lipid excretion, and plasma lipid profiles were measured. At week 3, the body fat mass was measured using an x-ray computed tomography system, which showed that ESG significantly suppressed the high-fat diet-induced lipid accumulation. Similar results were observed in the weight of the adipose tissue after the experiment. Moreover, ESG significantly suppressed the lipid accumulation in the liver but increased fecal lipid excretion. The plasma concentrations of triacylglycerol and nonesterified fatty acid were lowered after a high-fat diet, whereas the total bile acid concentration was increased by ESG. However, the hepatic messenger RNA (mRNA) levels of enzymes related to lipid metabolism were not affected by ESG. Conversely, the mRNA levels of long-chain acyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase were up-regulated by ESG in the muscle. These results suggest that the combined effects of increased fecal lipid excretion, increased mRNA levels of enzymes that oxidize fatty acids in the muscle, and increased total bile acid concentration in the plasma mediate the inhibitory effect of ESG on lipid accumulation. © 2013.

  6. Pertinent plasma indicators of the ability of chickens to synthesize and store lipids.

    Science.gov (United States)

    Baéza, E; Jégou, M; Gondret, F; Lalande-Martin, J; Tea, I; Le Bihan-Duval, E; Berri, C; Collin, A; Métayer-Coustard, S; Louveau, I; Lagarrigue, S; Duclos, M J

    2015-01-01

    Excessive deposition of body fat is detrimental to production efficiency. The aim of this study was to provide plasma indicators of chickens' ability to store fat. From 3 to 9 wk of age, chickens from 2 experimental lines exhibiting a 2.5-fold difference in abdominal fat content and fed experimental diets with contrasted feed energy sources were compared. The diets contained 80 vs. 20 g of lipids and 379 vs. 514 g of starch per kg of feed, respectively, but had the same ME and total protein contents. Cellulose was used to dilute energy in the high-fat diet. At 9 wk of age, the body composition was analyzed and blood samples were collected. A metabolome-wide approach based on proton nuclear magnetic resonance spectroscopy was associated with conventional measurements of plasma parameters. A metabolomics approach showed that betaine, glutamine, and histidine were the most discriminating metabolites between groups. Betaine, uric acid, triglycerides, and phospholipids were positively correlated (r > 0.3; P < 0.05) and glutamine, histidine, triiodothyronine, homocysteine, and β-hydroxybutyrate were negatively correlated (r < -0.3; P < 0.05) with relative weight of abdominal fat and/or fat situated at the top of external face of the thigh. The combination of plasma free fatty acids, total cholesterol, phospholipid, β-hydroxybutyrate, glutamine, and methionine levels accounted for 74% of the variability of the relative weight of abdominal fat. On the other hand, the combination of plasma triglyceride and homocysteine levels accounted for 37% of the variability of fat situated at the top of external face of the thigh. The variations in plasma levels of betaine, homocysteine, uric acid, glutamine, and histidine suggest the implication of methyl donors in the control of hepatic lipid synthesis and illustrate the interplay between AA, glucose, and lipid metabolisms in growing chickens.

  7. The mouse liver displays daily rhythms in the metabolism of phospholipids and in the activity of lipid synthesizing enzymes.

    Science.gov (United States)

    Gorné, Lucas D; Acosta-Rodríguez, Victoria A; Pasquaré, Susana J; Salvador, Gabriela A; Giusto, Norma M; Guido, Mario Eduardo

    2015-02-01

    The circadian system involves central and peripheral oscillators regulating temporally biochemical processes including lipid metabolism; their disruption leads to severe metabolic diseases (obesity, diabetes, etc). Here, we investigated the temporal regulation of glycerophospholipid (GPL) synthesis in mouse liver, a well-known peripheral oscillator. Mice were synchronized to a 12:12 h light-dark (LD) cycle and then released to constant darkness with food ad libitum. Livers collected at different times exhibited a daily rhythmicity in some individual GPL content with highest levels during the subjective day. The activity of GPL-synthesizing/remodeling enzymes: phosphatidate phosphohydrolase 1 (PAP-1/lipin) and lysophospholipid acyltransferases (LPLATs) also displayed significant variations, with higher levels during the subjective day and at dusk. We evaluated the temporal regulation of expression and activity of phosphatidylcholine (PC) synthesizing enzymes. PC is mainly synthesized through the Kennedy pathway with Choline Kinase (ChoK) as a key regulatory enzyme or through the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway. The PC/PE content ratio exhibited a daily variation with lowest levels at night, while ChoKα and PEMT mRNA expression displayed maximal levels at nocturnal phases. Our results demonstrate that mouse liver GPL metabolism oscillates rhythmically with a precise temporal control in the expression and/or activity of specific enzymes.

  8. Cross-Linking Mast Cell Specific Gangliosides Stimulates the Release of Newly Formed Lipid Mediators and Newly Synthesized Cytokines

    Directory of Open Access Journals (Sweden)

    Edismauro Garcia Freitas Filho

    2016-01-01

    Full Text Available Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides with mAbAA4 released the newly formed lipid mediators, prostaglandins D2 and E2, without release of leukotrienes B4 and C4. The effect of cross-linking these gangliosides on the activation of enzymes in the arachidonate cascade was then investigated. Ganglioside cross-linking resulted in phosphorylation of cytosolic phospholipase A2 and increased expression of cyclooxygenase-2. Translocation of 5-lipoxygenase from the cytosol to the nucleus was not induced by ganglioside cross-linking. Cross-linking of GD1b derived gangliosides also resulted in the release of the newly synthesized mediators, interleukin-4, interleukin-6, and TNF-α. The effect of cross-linking the gangliosides on the MAP kinase pathway was then investigated. Cross-linking the gangliosides induced the phosphorylation of ERK1/2, JNK1/2, and p38 as well as activating both NFκB and NFAT in a Syk-dependent manner. Therefore, cross-linking the mast cell specific GD1b derived gangliosides results in the activation of signaling pathways that culminate with the release of newly formed and newly synthesized mediators.

  9. Hepatic stellate cells retain the capacity to synthesize retinyl esters and to store neutral lipids in small lipid droplets in the absence of LRAT

    NARCIS (Netherlands)

    Ajat, Mokrish; Molenaar, Martijn; Brouwers, Jos F H M; Vaandrager, Arie B.; Houweling, Martin; Helms, J. Bernd

    2017-01-01

    Hepatic stellate cells (HSCs) play an important role in liver physiology and under healthy conditions they have a quiescent and lipid-storing phenotype. Upon liver injury, HSCs are activated and rapidly lose their retinyl ester-containing lipid droplets. To investigate the role of lecithin:retinol

  10. A Nonconventional Model of Protocell-like Vesicles: Anionic Clay Surface-Mediated Formation from a Single-Tailed Amphiphile.

    Science.gov (United States)

    Du, Na; Song, Ruiying; Li, Haiping; Song, Shue; Zhang, Renjie; Hou, Wanguo

    2015-11-24

    We report a novel model system of precursor cellular membranes, self-assembled from micellar solution of a common anionic single-tailed amphiphile (STA), including sodium dodecyl sulfate (SDS) and sodium dodecylbenzenesulfonate (SDBS). The self-assembly process was mediated with solid surfaces of Mg2Al-CO3 hydrotalcite-like compound (HTlc), an anionic clay, in the absence of cosurfactants or any additives. The resultant STA vesicles were characterized using negative-staining and cryogenic transmission electron microscopies, as well as dynamic light scattering and steady state fluorescence techniques. Interestingly, the obtained STA vesicles displayed good stability even after the removal of the anionic clay surface (ACS), and a self-reproduction phenomenon was observed for the "preformed" STA vesicles when mixing with corresponding STA micellar solutions. More importantly, the micelle-to-vesicle transition for SDS could be still arisen in high-salinity artificial seawater under the ACS mediation. Instead of conventional fatty acid scenario, our finding provides another novel possible model for protocell-like vesicles, which are easily formed under the plausible prebiotic conditions.

  11. Mechanically stable solvent-free lipid bilayers in nano- and micro-tapered apertures for reconstitution of cell-free synthesized hERG channels.

    Science.gov (United States)

    Tadaki, Daisuke; Yamaura, Daichi; Araki, Shun; Yoshida, Miyu; Arata, Kohei; Ohori, Takeshi; Ishibashi, Ken-Ichi; Kato, Miki; Ma, Teng; Miyata, Ryusuke; Tozawa, Yuzuru; Yamamoto, Hideaki; Niwano, Michio; Hirano-Iwata, Ayumi

    2017-12-18

    The self-assembled bilayer lipid membrane (BLM) is the basic component of the cell membrane. The reconstitution of ion channel proteins in artificially formed BLMs represents a well-defined system for the functional analysis of ion channels and screening the effects of drugs that act on them. However, because BLMs are unstable, this limits the experimental throughput of BLM reconstitution systems. Here we report on the formation of mechanically stable solvent-free BLMs in microfabricated apertures with defined nano- and micro-tapered edge structures. The role of such nano- and micro-tapered structures on the stability of the BLMs was also investigated. Finally, this BLM system was combined with a cell-free synthesized human ether-a-go-go-related gene channel, a cardiac potassium channel whose relation to arrhythmic side effects following drug treatment is well recognized. Such stable BLMs as these, when combined with a cell-free system, represent a potential platform for screening the effects of drugs that act on various ion-channel genotypes.

  12. Isolation of a cDNA clone for spinach lipid transfer protein and evidence that the protein is synthesized by the secretory pathway

    Energy Technology Data Exchange (ETDEWEB)

    Bernhard, W.R.; Thoma, S.; Botella, J.; Somerville, C.R. (Michigan State Univ., East Lansing (United States))

    1991-01-01

    A cDNA clone encoding a nonspecific lipid transfer protein from spinach (Spinacia oleracea) was isolated by probing a library with synthetic oligonucleotides based on the amino acid sequence of the protein. Determination of the DNA sequence indicated a 354-nucleotide open reading frame which encodes a 118-amino acid residue polypeptide. The first 26 amino acids of the open reading frame, which are not present in the mature protein, have all the characteristics of a signal sequence which is normally associated with the synthesis of membrane proteins or secreted proteins. In vitro transcription of the cDNA and translation in the presence of canine pancreatic microsomes or microsomes from cultured maize endosperm cells indicated that proteolytic processing of the preprotein to the mature form was associated with cotranslational insertion into the microsomal membranes. Because there is no known mechanism by which the polypeptide could be transferred from the microsomal membranes to the cytoplasm, the proposed role of this protein in catalyzing lipid transfer between intracellular membranes is in doubt. Although the lipid transfer protein is one of the most abundant proteins in leaf cells, the results of genomic Southern analysis were consistent with the presence of only one gene. Analysis of the level of mRNA by Northern blotting indicated that the transcript was several-fold more abundant than an actin transcript in leaf and petiole tissue, but was present in roots at less than 1% of the level in petioles.

  13. Vesicle formation by L-cysteine-derived unconventional single-tailed amphiphiles in water: a fluorescence, microscopy, and calorimetric investigation.

    Science.gov (United States)

    Ghosh, Rita; Dey, Joykrishna

    2014-11-18

    Two new L-cysteine-derived zwitterionic amphiphiles with poly(ethylene glycol) methyl ether (mPEG) tail of different chain lengths were synthesized and their surface activity and self-assembly properties were investigated. In aqueous phosphate buffered solution of pH 7.0, the amphiphiles were observed to form stable unilamellar vesicles, the bilayer membrane of which is constituted by the mPEG chains. The vesicle phase was characterized by a number of methods including fluorescence spectroscopy, dynamic light scattering, and transmission electron microscopy. The thermodynamics of self-assembly was also studied by isothermal titration calorimetry through measurements of the standard Gibbs free energy change (ΔG°m), standard enthalpy change (ΔH°m) and standard entropy change (ΔS°m) of micellization. The self-assembly process was found to be entropy-driven, which implies that the mPEG chain behaves like a hydrocarbon tail of conventional surfactants. The effects of pH, temperature, salt, and aging time on the bilayer stability were also investigated. Encapsulation and pH-triggered release of model hydrophobic and hydrophilic drugs is demonstrated.

  14. Membrane curvature based lipid sorting using a nanoparticle patterned substrate.

    Science.gov (United States)

    Black, Joshua C; Cheney, Philip P; Campbell, Travis; Knowles, Michelle K

    2014-03-28

    Cellular membranes contain a variety of shapes that likely act as motifs for sorting lipids and proteins. To understand the sorting that takes place within cells, a continuous, fluid bilayer with regions of membrane curvature was designed and characterized using confocal fluorescence and total internal reflection fluorescence microscopy techniques. A supported lipid bilayer was formed over fluorescently labelled nanoparticles deposited on a glass surface. The lipid composition and membrane shape are separately controlled and the nanoparticle dimensions (d = 40-200 nm) determine the extent of curvature. The bulk membrane is fluid as demonstrated by fluorescence recovery after photobleaching (FRAP) using dye labelled lipids. In bilayers that contain fluorescently labelled, single-tailed lipids, accumulation is observed at regions of curvature, yet the molecules retain fluidity. Using single particle imaging methods, lipids are observed to visit regions of curvature and exchange with the surrounding flat membrane. The nanoparticle patterned substrate described here allows for quantitative measurement of the transient interactions between fluorescently labelled biomolecules and regions of membrane curvature.

  15. Lipid somersaults

    DEFF Research Database (Denmark)

    Günther-Pomorski, Thomas; Menon, Anant K.

    2016-01-01

    Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support diverse...... aspects of cellular life. Here we discuss the mechanisms by which rapid flip-flop occurs, and what role lipid flipping plays in membrane homeostasis and cell growth. We focus on conceptual aspects, highlighting mechanistic insights from biochemical and in silico experiments, and the recent, ground...

  16. Lipid-carbon nanotube self-assembly in aqueous solution.

    Science.gov (United States)

    Qiao, Rui; Ke, Pu Chun

    2006-10-25

    One major drawback associated with single-walled carbon nanotubes (SWNTs) in the liquid phase is their hydrophobicity-induced aggregation, which prevents utilization of the unique physical and chemical properties of single SWNTs. Recently it has been found that lysophospholipids, or single-tailed phospholipids, can readily form supramolecular complexes with SWNTs and the resultant SWNT solubility is superior to that provided by nucleic acids, proteins, and surfactants such as sodium dodecyl sulfate. Using transmission electron microscopy, lysophospholipids were observed forming striations on SWNTs in a vacuum. Although the morphology of the striations seemingly favors the hemimicellular model, serious doubts remain about the arrangement of individual lipids within the striations. Here we present an in silico study of the binding of zwitterionic lysophosphatidylcholine to an SWNT. We present compelling evidence that the binding of lipid surfactants to cylindrical nanostructures in the liquid phase does not obey any of the three popular models in the literature. Understanding the binding of lipid amphiphiles to SWNTs facilitates the bottom-up design of novel nanostructures for supramolecular chemistry and nanotechnology and fuels new field studies of nanotoxicity and nanomedicine.

  17. Synthesized Digital Mammography Imaging.

    Science.gov (United States)

    Freer, Phoebe E; Winkler, Nicole

    2017-05-01

    Synthesized mammography (SM) is a new imaging technique similar to digital mammography constructed from an acquired digital breast tomosynthesis (DBT) examination. SM allows for widespread screening using DBT, maintaining the benefits of DBT while decreasing the radiation of DBT by nearly half. This article reviews studies evaluating SM, most of which suggest that SM may be appropriate to use clinically to replace an actual acquired conventional 2-dimensional full-field digital mammogram (FFDM) when using DBT for breast cancer screening. These results should be interpreted with caution because there are inherent differences between SM and FFDM image quality and lesion visibility and larger, more robust studies still need to be performed. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Unique roles for lipids in Schistosoma mansoni.

    Science.gov (United States)

    Furlong, S T

    1991-02-01

    The dynamic interplay among lipids has been exploited by S. mansoni to evolve some unique processes that are vital for its long-term survival within the mammalian host. Lipids are required by the parasite not only to maintain its surface integrity and structural requirements but also for egg production and cell-cell signalling. However, S. mansoni is incapable of synthesizing essential lipids and must obtain these from its host. In this review, Stephen Furlong describes the roles and routes of acquisition o f lipids by this parasite.

  19. Doclet To Synthesize UML

    Science.gov (United States)

    Barry, Matthew R.; Osborne, Richard N.

    2005-01-01

    The RoseDoclet computer program extends the capability of Java doclet software to automatically synthesize Unified Modeling Language (UML) content from Java language source code. [Doclets are Java-language programs that use the doclet application programming interface (API) to specify the content and format of the output of Javadoc. Javadoc is a program, originally designed to generate API documentation from Java source code, now also useful as an extensible engine for processing Java source code.] RoseDoclet takes advantage of Javadoc comments and tags already in the source code to produce a UML model of that code. RoseDoclet applies the doclet API to create a doclet passed to Javadoc. The Javadoc engine applies the doclet to the source code, emitting the output format specified by the doclet. RoseDoclet emits a Rose model file and populates it with fully documented packages, classes, methods, variables, and class diagrams identified in the source code. The way in which UML models are generated can be controlled by use of new Javadoc comment tags that RoseDoclet provides. The advantage of using RoseDoclet is that Javadoc documentation becomes leveraged for two purposes: documenting the as-built API and keeping the design documentation up to date.

  20. Synthesis of novel cationic lipids with fully or partially non-scissile ...

    Indian Academy of Sciences (India)

    Abstract. Five novel cationic lipids with fully or partially non-scissile linkage regions between the pseudoglyceryl backbone and the hydrocarbon chains have been synthesized. The membrane-forming properties of these new lipids are briefly presented.

  1. Electronic conductivity of mechanochemically synthesized ...

    Indian Academy of Sciences (India)

    Vol. 67, No. 2. — journal of. August 2006 physics pp. 331–340. Electronic conductivity of mechanochemically synthesized nanocrystalline Ag1−xCuxI system using DC polarization technique∗ .... 0.15, 0.25 were synthesized by mechanical grinding in a 6 agate mortar and pestle for 5 h at room temperature in an ...

  2. Biologic Activity of Porphyromonas endodontalis complex lipids

    Science.gov (United States)

    Mirucki, Christopher S.; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E.; Clark, Robert B.; Nichols, Frank C.

    2014-01-01

    Introduction Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a Gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis, and evaluate their capacity to promote pro-inflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Methods Constituent lipids of both organisms were fractionated by HPLC and were structurally characterized using electrospray-mass spectrometry (ESI-MS) or ESI-MS/MS. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. Results P. endodontalis total lipids were shown to promote TNF-α secretion from RAW 264.7 cells and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells but osteoblast differentiation in culture was inhibited and appeared to be dependent on TLR2 expression. Conclusions These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. PMID:25146013

  3. Supported lipid bilayers as templates to design manganese oxide ...

    Indian Academy of Sciences (India)

    dioleoyl phosphatidylcholine (DOPC) have been used as templates to synthesize these nanoparticles in a water- based medium at room ... Keywords. Manganese oxide; supported lipid bilayers; nanoparticles; organized assemblies. 1. Introduction .... before coating with two layers of the lipid DOMA,. DOMA+DPPC or ...

  4. RAMESES publication standards: realist syntheses

    Directory of Open Access Journals (Sweden)

    Wong Geoff

    2013-01-01

    Full Text Available Abstract Background There is growing interest in realist synthesis as an alternative systematic review method. This approach offers the potential to expand the knowledge base in policy-relevant areas - for example, by explaining the success, failure or mixed fortunes of complex interventions. No previous publication standards exist for reporting realist syntheses. This standard was developed as part of the RAMESES (Realist And MEta-narrative Evidence Syntheses: Evolving Standards project. The project's aim is to produce preliminary publication standards for realist systematic reviews. Methods We (a collated and summarized existing literature on the principles of good practice in realist syntheses; (b considered the extent to which these principles had been followed by published syntheses, thereby identifying how rigor may be lost and how existing methods could be improved; (c used a three-round online Delphi method with an interdisciplinary panel of national and international experts in evidence synthesis, realist research, policy and/or publishing to produce and iteratively refine a draft set of methodological steps and publication standards; (d provided real-time support to ongoing realist syntheses and the open-access RAMESES online discussion list so as to capture problems and questions as they arose; and (e synthesized expert input, evidence syntheses and real-time problem analysis into a definitive set of standards. Results We identified 35 published realist syntheses, provided real-time support to 9 on-going syntheses and captured questions raised in the RAMESES discussion list. Through analysis and discussion within the project team, we summarized the published literature and common questions and challenges into briefing materials for the Delphi panel, comprising 37 members. Within three rounds this panel had reached consensus on 19 key publication standards, with an overall response rate of 91%. Conclusion This project used multiple

  5. Inclusion of photosensitive molecules into host lipid membranes

    DEFF Research Database (Denmark)

    Jørgensen, Lars; Zargarani, Dordaneh; Elsen, Annika

    of a newly synthesized lipid consisting of a photo switchable molecule that was linked to a cholesterol base. An azobenzene derivative with cholesterol and ethylenediamine (AzCh) was synthesized according to established procedures , , with some slight modifications. The photosensitive AzCh switches its...

  6. Chemically Stable Lipids for Membrane Protein Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Ishchenko, Andrii; Peng, Lingling; Zinovev, Egor; Vlasov, Alexey; Lee, Sung Chang; Kuklin, Alexander; Mishin, Alexey; Borshchevskiy, Valentin; Zhang, Qinghai; Cherezov, Vadim (MIPT); (USC); (Scripps)

    2017-05-01

    The lipidic cubic phase (LCP) has been widely recognized as a promising membrane-mimicking matrix for biophysical studies of membrane proteins and their crystallization in a lipidic environment. Application of this material to a wide variety of membrane proteins, however, is hindered due to a limited number of available host lipids, mostly monoacylglycerols (MAGs). Here, we designed, synthesized, and characterized a series of chemically stable lipids resistant to hydrolysis, with properties complementary to the widely used MAGs. In order to assess their potential to serve as host lipids for crystallization, we characterized the phase properties and lattice parameters of mesophases made of two most promising lipids at a variety of different conditions by polarized light microscopy and small-angle X-ray scattering. Both lipids showed remarkable chemical stability and an extended LCP region in the phase diagram covering a wide range of temperatures down to 4 °C. One of these lipids has been used for crystallization and structure determination of a prototypical membrane protein bacteriorhodopsin at 4 and 20 °C.

  7. Frequency synthesizers concept to product

    CERN Document Server

    Chenakin, Alexander

    2011-01-01

    A frequency synthesizer is an electronic system for generating any of a range of frequencies from a single fixed oscillator. They are found in modern devices like radio receivers, mobile phones, and GPS systems. This comprehensive resource offers RF and microwave engineers a thorough overview of both well-established and recently developed frequency synthesizer design techniques. Professionals find expert guidance on all design aspects, including main architectures, key building blocks, and practical circuit implementation. Engineers learn the development process and gain a solid understanding

  8. Lipid Metabolism Disorders

    Science.gov (United States)

    ... metabolic disorder, something goes wrong with this process. Lipid metabolism disorders, such as Gaucher disease and Tay-Sachs disease, involve lipids. Lipids are fats or fat-like substances. They ...

  9. LIPID MAPS online tools for lipid research

    OpenAIRE

    Fahy, Eoin; Sud, Manish; Cotter, Dawn; Subramaniam, Shankar

    2007-01-01

    The LIPID MAPS consortium has developed a number of online tools for performing tasks such as drawing lipid structures and predicting possible structures from mass spectrometry (MS) data. A simple online interface has been developed to enable an end-user to rapidly generate a variety of lipid chemical structures, along with corresponding systematic names and ontological information. The structure-drawing tools are available for six categories of lipids: (i) fatty acyls, (ii) glycerolipids, (i...

  10. Laboratory Syntheses of Insect Pheromones.

    Science.gov (United States)

    Cormier, Russell A.; Hoban, James N.

    1984-01-01

    Provides background information and procedures for the multi-step synthesis of tiger moth and boll weevil pheromones (sex attractants). These syntheses require several laboratory periods. The tiger moth pheromone synthesis is suitable for introductory organic chemistry while the boll weevil pheromone is recommended for an advanced laboratory…

  11. Information Retrieval for Ecological Syntheses

    Science.gov (United States)

    Bayliss, Helen R.; Beyer, Fiona R.

    2015-01-01

    Research syntheses are increasingly being conducted within the fields of ecology and environmental management. Information retrieval is crucial in any synthesis in identifying data for inclusion whilst potentially reducing biases in the dataset gathered, yet the nature of ecological information provides several challenges when compared with…

  12. Method of synthesizing pyrite nanocrystals

    Science.gov (United States)

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  13. Bioinspired total syntheses of terpenoids.

    Science.gov (United States)

    Hugelshofer, Cedric L; Magauer, Thomas

    2016-12-20

    Nature's highly efficient routes for constructing natural products have inspired chemists to mimic these processes in a laboratory setting. This Perspective presents some recent examples of conceptually different bioinspired total syntheses of complex terpenoids and thereby aims to highlight the vast benefits offered by bioinspired strategies.

  14. X-Band PLL Synthesizer

    Directory of Open Access Journals (Sweden)

    P. Kutin

    2006-04-01

    Full Text Available This paper deals with design and realization of a PLL synthesizer for the microwave X−band. The synthesizer is intended for use as a local oscillator in a K−band downconverter. The design goal was to achieve very low phase noise and spurious free signal with a sufficient power level. For that purpose a low phase noise MMIC VCO was used in phase locked loop. The PLL works at half the output frequency, therefore there is a frequency doubler at the output of the PLL. The output signal from the frequency doubler is filtered by a band-pass filter and finally amplified by a single stage amplifier.

  15. Effiziente chemoenzymatische Synthese von dhydroartemisinaldehyd

    OpenAIRE

    Demiray, Melodi; Tang, Xiaoping; Wirth, Thomas; Faraldos, Juan A.; Allemann, Rudolf K.

    2017-01-01

    Artemisinin aus der Pflanze Artemisia annua ist das wirkungsvollste Arzneimittel zur Behandlung von Malaria. Die Sesquiterpen-Cyclase Amorphadien-Synthase, ein Cytochrom-abhängiges CYP450 und eine Aldehyd-Reduktase wandeln in der Pflanze Farnesyl-Diphosphat (FDP) in Dihydroartemisinaldehyd (DHAAl) um, welches ein Schlüsselzwischenprodukt in der Biosynthese von Artemisinin und eine halbsynthetische Vorstufe in der chemischen Synthese des Arzneimittels ist. Hier berichten wir über einen chemoen...

  16. Solid phase syntheses of oligoureas

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, K.; Linthicum, D.S.; Russell, D.H.; Shin, H.; Shitangkoon, A.; Totani, R.; Zhang, A.J.; Ibarzo, J. [Texas A& M Univ., College Station, TX (United States)

    1997-02-19

    Isocyanates 7 were formed from monoprotected diamines 3 or 6, which in turn can be easily prepared from commercially available N-BOC- or N-FMOC-protected amino acid derivatives. Isocyanates 7, formed in situ, could be coupled directly to a solid support functionalized with amine groups or to amino acids anchored on resins using CH{sub 2}Cl{sub 2} as solvent and an 11 h coupling time at 25 {degree}C. Such couplings afforded peptidomimetics with an N-phthaloyl group at the N-terminus. The optimal conditions identified for removal of the N-phthaloyl group were to use 60% hydrazine in DMF for 1-3 h. Several sequences of amino acids coupled to ureas (`peptidic ureas`) and of sequential urea units (`oligoureas`) were prepared via solid phase syntheses and isolated by HPLC. Partition coefficients were measured for two of these peptidomimetics, and their water solubilities were found to be similar to the corresponding peptides. A small library of 160 analogues of the YGGFL-amide sequence was prepared via Houghten`s tea bag methodology. This library was tested for binding to the anti-{beta}-endorphin monoclonal antibody. Overall, this paper describes methodology for solid phase syntheses of oligourea derivatives with side chains corresponding to some of the protein amino acids. The chemistry involved is ideal for high-throughput syntheses and screening operations. 51 refs., 3 figs., 2 tabs.

  17. Lipid Signaling in Tumorigenesis

    OpenAIRE

    Liu, Renyan; Huang, Ying

    2014-01-01

    Lipids are important cellular building blocks and components of signaling cascades. Deregulation of lipid metabolism or signaling is frequently linked to a variety of human diseases such as diabetes, cardiovascular diseases, and cancer. It is widely believed that lipid molecules or their metabolic products are involved in tumorigenic inflammation and thus, lipids are implicated as significant contributors or even primary triggers of tumorigenesis. Lipids are believed to directly or indirectly...

  18. Method of synthesizing tungsten nanoparticles

    Science.gov (United States)

    Thoma, Steven G; Anderson, Travis M

    2013-02-12

    A method to synthesize tungsten nanoparticles has been developed that enables synthesis of nanometer-scale, monodisperse particles that can be stabilized only by tetrahydrofuran. The method can be used at room temperature, is scalable, and the product concentrated by standard means. Since no additives or stabilizing surfactants are required, this method is particularly well suited for producing tungsten nanoparticles for dispersion in polymers. If complete dispersion is achieved due to the size of the nanoparticles, then the optical properties of the polymer can be largely maintained.

  19. Physiologically driven avian vocal synthesizer

    Science.gov (United States)

    Sitt, Jacobo D.; Arneodo, Ezequiel M.; Goller, Franz; Mindlin, Gabriel B.

    2010-03-01

    In this work, we build an electronic syrinx, i.e., a programmable electronic device capable of integrating biomechanical model equations for the avian vocal organ in order to synthesize song. This vocal prosthesis is controlled by the bird’s neural instructions to respiratory and the syringeal motor systems, thus opening great potential for studying motor control and its modification by sensory feedback mechanisms. Furthermore, a well-functioning subject-controlled vocal prosthesis can lay the foundation for similar devices in humans and thus provide directly health-related data and procedures.

  20. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  1. Lipids, lysosomes, and autophagy.

    Science.gov (United States)

    Jaishy, Bharat; Abel, E Dale

    2016-09-01

    Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. Copyright © 2016 by the American Society for Biochemistry and Molecular Biology, Inc.

  2. Parenteral Nutrition and Lipids.

    Science.gov (United States)

    Raman, Maitreyi; Almutairdi, Abdulelah; Mulesa, Leanne; Alberda, Cathy; Beattie, Colleen; Gramlich, Leah

    2017-04-14

    Lipids have multiple physiological roles that are biologically vital. Soybean oil lipid emulsions have been the mainstay of parenteral nutrition lipid formulations for decades in North America. Utilizing intravenous lipid emulsions in parenteral nutrition has minimized the dependence on dextrose as a major source of nonprotein calories and prevents the clinical consequences of essential fatty acid deficiency. Emerging literature has indicated that there are benefits to utilizing alternative lipids such as olive/soy-based formulations, and combination lipids such as soy/MCT/olive/fish oil, compared with soybean based lipids, as they have less inflammatory properties, are immune modulating, have higher antioxidant content, decrease risk of cholestasis, and improve clinical outcomes in certain subgroups of patients. The objective of this article is to review the history of IVLE, their composition, the different generations of widely available IVLE, the variables to consider when selecting lipids, and the complications of IVLE and how to minimize them.

  3. Comparison on Bactericidal and Cytotoxic Effect of Silver Nanoparticles Synthesized by Different Methods

    Science.gov (United States)

    Mala, R.; Celsia, A. S. Ruby; Malathi Devi, S.; Geerthika, S.

    2017-08-01

    Biologically synthesized silver nanoparticle are biocompatible for medical applications. The present work is aimed to synthesize silver nanoparticle using the fruit pulp of Tamarindusindica and to evaluate its antibacterial and anticancer activity against lung cancercell lines. Antibacterial activity was assessed by well diffusion method. Cytotoxicity was evaluated using MTT assay. GC-MS of fruit pulp extract showed the presence of levoglucosenone, n-hexadecanoic acid, 9,12-octadecadienoic acid etc. Antioxidant activity of the fruit pulp was determined by DPPH assay, hydrogen peroxide scavenging assay and lipid peroxidation. The size of biologically synthesized silver nanoparticle varied from 50 nm to 76 nm. It was 59 nm to 98 nm for chemically synthesized silver nanoparticle. Biologically synthesized silver nanoparticle showed 26 mm inhibition zone against E. coli and chemically synthesized silver nanoparticle showed 20 mm. Antioxidant activity of fruit extract by DPPH showed 84 % reduction. The IC 50 of biologically synthesized silver nanoparticle against lung cancer cell lines was 48 µg/ml. It was 95 µg/ml for chemically synthesized silver nanoparticle. The increased activity of biologically synthesized silver nanoparticle was due to its smaller size, stability and the bioactive compounds capping the silver nanoparticle extracted from the fruit extract.

  4. Molecular Syntheses of Extended Materials

    Science.gov (United States)

    Paley, Daniel W.

    Bottom-up molecular synthesis is a route to chemically and crystallographically uniform polymers and solid-state materials. Through the use of molecular precursors, we gain atomic-level control of functionality and fine-tuning of the collective properties of materials. This dissertation presents two studies that demonstrate this approach. Ring-opening alkyne metathesis polymerization is a possible approach to monodisperse conjugated polymers, but its applications have been limited by difficult syntheses and high air sensitivity of known organometallic ROAMP initiators. We designed a dimeric, air-stable molybdenum alkylidyne with a tris(phenolate) supporting ligand. The precatalyst is activated by addition of methanol and polymerizes cyclooctynes with excellent chemical selectivity and functional group tolerance. The Nuckolls and Roy groups have introduced a new family of solid-state compounds synthesized from cobalt chalcogenide clusters Co6Q 8(PR3)6 and fullerenes. The first examples of these materials crystallized in superatom lattices with the symmetry of simple inorganic solids CdI2 (P-3m1) and NaCl (Fm-3m). This dissertation reveals that further members of the family feature extraordinary diversity of structure, including a pseudo-trigonal array of fulleride dimers in [Co 6Te8(PEt3)6]2[C140 ][C70]2 and a heterolayered van der Waals cocrystal [Co6Se8(PEt2phen)6][C 60]5. In addition to these unusual crystal structures, this dissertation presents a method for assigning redox states from crystallographic data in Co6Q8 clusters. Finally, a detailed guide to the collection and solution of single-crystal X-ray data is presented. The guide is intended for independent study by new crystallographers.

  5. Perception of Paralinguistic Traits in Synthesized Voices

    DEFF Research Database (Denmark)

    Baird, Alice Emily; Hasse Jørgensen, Stina; Parada-Cabaleiro, Emilia

    the paralinguistic traits of the synthesized voice. Using a corpus of 13 synthesized voices, constructed from acoustic concatenative speech synthesis, we assessed the response of 23 listeners from differing cultural backgrounds. Evaluating if the perception shifts from the known ground–truths, we asked listeners...... exploration into a more participatory and inclusive synthesized vocal identity....

  6. Lipid exchange by ultracentrifugation

    DEFF Research Database (Denmark)

    Drachmann, Nikolaj Düring; Olesen, Claus

    2014-01-01

    Lipids play an important role in maintaining P-type ATPase structure and function, and often they are crucial for ATPase activity. When the P-type ATPases are in the membrane, they are surrounded by a mix of different lipids species with varying aliphatic chain lengths and saturation......, and the complex interplay between the lipids and the P-type ATPases are still not well understood. We here describe a robust method to exchange the majority of the lipids surrounding the ATPase after solubilisation and/or purification with a target lipid of interest. The method is based on an ultracentrifugation...... step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization...

  7. Nutrients and neurodevelopment: lipids.

    Science.gov (United States)

    González, Horacio F; Visentin, Silvana

    2016-10-01

    Nutrients, lipids in particular, make up the central nervous system structure and play major functional roles: they stimulate development, migration, and nerve cell differentiation. They are part of gray matter, white matter, nerve nuclei, and synaptogenesis. Breast milk contains lipids which are crucial for infant brain development. The lipid profile of breast milk was used as a guideline for the development of breast milk substitutes. However, to date, no substitute has matched it. Complementary feeding should include docosahexaenoic acid, arachidonic acid, other polyunsaturated fatty acids, saturated fatty acids, and complex lipids found in milk fat. The lipid composition of breast milk depends on maternal intake and nutritional status during pregnancy and breast-feeding. It has a great impact on development. Our goal is to review scientific literature regarding the role of lipids on infant brain development and the importance of breast milk lipid composition, maternal diet, and complementary feeding. Sociedad Argentina de Pediatría.

  8. Lipid Transport between the Endoplasmic Reticulum and Mitochondria

    Science.gov (United States)

    Flis, Vid V.

    2013-01-01

    Mitochondria are partially autonomous organelles that depend on the import of certain proteins and lipids to maintain cell survival and membrane formation. Although phosphatidylglycerol, cardiolipin, and phosphatidylethanolamine are synthesized by mitochondrial enzymes, phosphatidylcholine, phosphatidylinositol, phosphatidylserine, and sterols need to be imported from other organelles. The origin of most lipids imported into mitochondria is the endoplasmic reticulum, which requires interaction of these two subcellular compartments. Recently, protein complexes that are involved in membrane contact between endoplasmic reticulum and mitochondria were identified, but their role in lipid transport is still unclear. In the present review, we describe components involved in lipid translocation between the endoplasmic reticulum and mitochondria and discuss functional as well as regulatory aspects that are important for lipid homeostasis. PMID:23732475

  9. Lipid binding proteins from parasitic platyhelminthes

    Science.gov (United States)

    Alvite, Gabriela; Esteves, Adriana

    2012-01-01

    Two main families of lipid binding proteins have been identified in parasitic Platyhelminthes: hydrophobic ligand binding proteins (HLBPs) and fatty acid binding proteins (FABPs). Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesize their own lipids, these lipid-binding proteins are important molecules in these organisms. HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates. Despite that the knowledge of their function is scarce, the differences in their molecular organization, ligand preferences, intra/extracellular localization, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment. PMID:22988444

  10. Enzymatic synthesis of structured lipids.

    Science.gov (United States)

    Iwasaki, Yugo; Yamane, Tsuneo

    2004-01-01

    Structured lipids (SLs) are defined as lipids that are modified chemically or enzymatically in order to change their structure. This review deals with structured triacylglycerols (STGs) and structured phospholipids (SPLs). The most typical STGs are MLM-type STGs, having medium chain fatty acids (FAs) at the 1- and 3-positions and a long chain fatty acid at the 2- position. MLM-type STGs are synthesized by: 1) 1,3-position-specific lipase-catalyzed acyl exchange of TG with FA or with FA ethylester (FAEt); 2) 1,3-position-specific lipase-catalyzed acylation of glycerol with FA, giving symmetric 1,3-diacyl-sn-glycerol, followed by chemical acylation at the sn-2 position, and; 3) 1,3-position-specific lipase-catalyzed deacylation of TG, giving 2-monoacylglycerol, followed by reacylation at the 1- and 3-positions with FA or with (FAEt). Enzymatic preparation of SPLs requires: 1) acyl group modification, and 2) head group modification of phospholipids. Acyl group modification is performed using lipases or phospholipase A2-mediated transesterification or ester synthesis to introduce arbitrary fatty acid to phospholipids. Head group modification is carried out by phospholipase D-catalyzed transphosphatidylation. A wide range of compounds can be introduced into the polar head of phospholipids, making it possible to prepare various SPLs.

  11. Concurrence in the ability for lipid synthesis between life stages in insects

    NARCIS (Netherlands)

    Visser, Bertanne; Willett, Denis S.; Harvey, Jeffrey A.; Alborn, Hans T.

    2017-01-01

    The ability to synthesize lipids is critical for an organism’s fitness; hence, metabolic pathways, underlying lipid synthesis, tend to be highly conserved. Surprisingly, the majority of parasitoids deviate from this general metabolic model by lacking the ability to convert sugars and other

  12. Design, Synthesis, and Characterization of Novel Zwitterionic Lipids for Drug and siRNA Delivery Applications

    Science.gov (United States)

    Walsh, Colin L.

    Lipid-based nanoparticles have long been used to deliver biologically active molecules such as drugs, proteins, peptides, DNA, and siRNA in vivo. Liposomes and lipoplexes alter the biodistribution, pharmacokinetics, and cellular uptake of their encapsulated or associated cargo. This can increase drug efficacy while reducing toxicity, resulting in an increased therapeutic index and better clinical outcomes. Unlike small molecule drugs, which passively diffuse through lipid membranes, nucleic acids and proteins require an active, carrier mediated escape mechanism to reach their site of action. As such, the therapeutic application and drug properties dictate the required biophysical characteristics of the lipid nanoparticle. These carrier properties depend on the structure and biophysical characteristics of the lipids and other components used to formulate them. This dissertation presents a series of studies related to the development of novel synthetic lipids for use in drug delivery systems. First, we developed a novel class of zwitterionic lipids with head groups containing a cationic amine and anionic carboxylate and ester-linked oleic acid tails. These lipids exhibit structure-dependent, pH-responsive biophysical properties, and may be useful components for next-generation drug delivery systems. Second, we extended the idea of amine/carboxylate containing zwitterionic head groups and synthesized a series of acetate terminated diacyl lipids containing a quaternary amine. These lipids have an inverted headgroup orientation compared to naturally occurring zwitterionic lipids, and show interesting salt-dependent biophysical properties. Third, we synthesized and characterized a focused library of ionizable lysine-based lipids, which contain a lysine head group linked to a long-chain dialkylamine. A focused library was synthesized to determine the impact of hydrophobic fluidity, lipid net charge, and lipid pKa on the biophysical and siRNA transfection characteristics

  13. Polyene-lipids: a new tool to image lipids

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Ejsing, Christer S.; Ekroos, Kim

    2005-01-01

    Microscopy of lipids in living cells is currently hampered by a lack of adequate fluorescent tags. The most frequently used tags, NBD and BODIPY, strongly influence the properties of lipids, yielding analogs with quite different characteristics. Here, we introduce polyene-lipids containing five...... conjugated double bonds as a new type of lipid tag. Polyene-lipids exhibit a unique structural similarity to natural lipids, which results in minimal effects on the lipid properties. Analyzing membrane phase partitioning, an important biophysical and biological property of lipids, we demonstrated...... the superiority of polyene-lipids to both NBD- and BODIPY-tagged lipids. Cells readily take up various polyene-lipid precursors and generate the expected end products with no apparent disturbance by the tag. Applying two-photon excitation microscopy, we imaged the distribution of polyene-lipids in living...

  14. Syntheses of copper complexes of nicotinohydroxamic and ...

    African Journals Online (AJOL)

    Syntheses of copper complexes of nicotinohydroxamic and isonicotinohydroxamic acids. A.O Aliyu, A.P Egwaikhide, C.E Gimba. Abstract. Nicotinohydroxamic acid (NHA) and isonicotinohydroxamic acid (INHA) were synthesized, characterized by electronic and spectral studies,magnetic measurements and their pKa ...

  15. Composites comprising biologically-synthesized nanomaterials

    Science.gov (United States)

    Curran, Seamus; Dias, Sampath; Blau, Werner; Wang, Jun; Oremland, Ronald S; Baesman, Shaun

    2013-04-30

    The present disclosure describes composite materials containing a polymer material and a nanoscale material dispersed in the polymer material. The nanoscale materials may be biologically synthesized, such as tellurium nanorods synthesized by Bacillus selenitireducens. Composite materials of the present disclosure may have optical limiting properties and find use in optical limiting devices.

  16. A Synthesized (Biosocial) Theory of Rape.

    Science.gov (United States)

    Ellis, Lee

    1991-01-01

    Integrates features of contemporary theories of rape (feminist theory, social learning theory, evolutionary theory) with information on neurohormonal variables to formulate synthesized theory of rape. Synthesized theory of rape, consisting of four propositions, proposes that people are not all equally prone toward rape and that men are much more…

  17. Lipid bilayers and interfaces

    NARCIS (Netherlands)

    Kik, R.A.

    2007-01-01

    In biological systems lipid bilayers are subject to many different interactions with other entities. These can range from proteins that are attached to the hydrophilic region of the bilayer or transmembrane proteins that interact with the hydrophobic region of the lipid bilayer. Interaction between

  18. The evolution of lipids

    Science.gov (United States)

    Itoh, Y. H.; Sugai, A.; Uda, I.; Itoh, T.

    2001-01-01

    Living organisms on the Earth which are divided into three major domains - Archaea, Bacteria, and Eucarya, probably came from a common ancestral cell. Because there are many thermophilic microorganisms near the root of the universal phylogenetic tree, the common ancestral cell should be considered to be a thermophilic microorganism. The existence of a cell is necessary for the living organisms; the cell membrane is the essential structural component of a cell, so its amphiphilic property is vital for the molecule of lipids for cell membranes. Tetraether type glycerophospholipids with C 40 isoprenoid chains are major membrane lipids widely distributed in archaeal cells. Cyclization number of C 40 isoprenoid chains in thermophilic archaea influences the fluidity of lipids whereas the number of carbons and degree of unsaturation in fatty acids do so in bacteria and eucarya. In addition to the cyclization of the tetraether lipids, covalent bonding of two C 40 isoprenoid chains was found in hyperthermophiles. These characteristic structures of the lipids seem to contribute to their fundamental physiological roles in hyperthermophiles. Stereochemical differences between G-1-P archaeal lipids and G-3-P bacterial and eucaryal lipids might have occured by the function of some proteins long after the first cell was developed by the reactions of small organic molecules. We propose that the structure of lipids of the common ancestral cell may have been similar to those of hyperthermophilic archaea.

  19. Lipid Structure in Triolein Lipid Droplets

    DEFF Research Database (Denmark)

    Chaban, Vitaly V; Khandelia, Himanshu

    2014-01-01

    Lipid droplets (LDs) are primary repositories of esterified fatty acids and sterols in animal cells. These organelles originate on the lumenal or cytoplasmic side of endoplasmic reticulum (ER) membrane and are released to the cytosol. In contrast to other intracellular organelles, LDs are compose...

  20. Lipid Production from Nannochloropsis.

    Science.gov (United States)

    Ma, Xiao-Nian; Chen, Tian-Peng; Yang, Bo; Liu, Jin; Chen, Feng

    2016-03-25

    Microalgae are sunlight-driven green cell factories for the production of potential bioactive products and biofuels. Nannochloropsis represents a genus of marine microalgae with high photosynthetic efficiency and can convert carbon dioxide to storage lipids mainly in the form of triacylglycerols and to the ω-3 long-chain polyunsaturated fatty acid eicosapentaenoic acid (EPA). Recently, Nannochloropsis has received ever-increasing interests of both research and public communities. This review aims to provide an overview of biology and biotechnological potential of Nannochloropsis, with the emphasis on lipid production. The path forward for the further exploration of Nannochloropsis for lipid production with respect to both challenges and opportunities is also discussed.

  1. Lake Superior lipids

    Science.gov (United States)

    Fish chemistry data (d13C, d15N, C:N, lipid content) published in Rapid Commun. Mass Spectrom. 2015, 29, 2069??2077 DOI: 10.1002/rcm.7367This dataset is associated with the following publication:Hoffman , J., M. Sierszen , and A. Cotter. Fish tissue lipid-C:N relationships for correcting ä13C values and estimating lipid content in aquatic food web studies. Rapid Communications in Mass Spectrometry. Wiley InterScience, Silver Spring, MD, USA, 29(21): 2069–2077, (2015).

  2. Perspectives on marine zooplankton lipids

    DEFF Research Database (Denmark)

    Kattner, G.; Hagen, W.; Lee, R.F.

    2007-01-01

    We developed new perspectives to identify important questions and to propose approaches for future research on marine food web lipids. They were related to (i) structure and function of lipids, (ii) lipid changes during critical life phases, (iii) trophic marker lipids, and (iv) potential impact...... of climate change. The first addresses the role of lipids in membranes, storage lipids, and buoyancy with the following key question: How are the properties of membranes and deposits affected by the various types of lipids? The second deals with the importance of various types of lipids during reproduction......, development, and resting phases and addresses the role of the different storage lipids during growth and dormancy. The third relates to trophic marker lipids, which are an important tool to follow lipid and energy transfer through the food web. The central question is how can fatty acids be used to identify...

  3. Mesoporous Vanadium Nitride Synthesized by Chemical Routes

    National Research Council Canada - National Science Library

    Mishra, Pragnya P; Theerthagiri, J; Panda, Rabi N

    2014-01-01

    Nanocrystalline vanadium nitride (VN) materials are synthesized by two different routes, namely, the urea route and the ammonia route, using various V2O5 precursors obtained by citric acid–based sol–gel method...

  4. Synthesizing a color algorithm from examples.

    Science.gov (United States)

    Hurlbert, A C; Poggio, T A

    1988-01-29

    A lightness algorithm that separates surface reflectance from illumination in a Mondrian world is synthesized automatically from a set of examples, which consist of pairs of input (intensity signal) and desired output (surface reflectance) images. The algorithm, which resembles a new lightness algorithm recently proposed by Land, is approximately equivalent to filtering the image through a center-surround receptive field in individual chromatic channels. The synthesizing technique, optimal linear estimation, requires only one assumption, that the operator that transforms input into output is linear. This assumption is true for a certain class of early vision algorithms that may therefore be synthesized in a similar way from examples. Other methods of synthesizing algorithms from examples, or "learning," such as back-propagation, do not yield a significantly better lightness algorithm.

  5. Syntheses, molecular and crystalline architectures, and ...

    Indian Academy of Sciences (India)

    Syntheses, molecular and crystalline architectures, and luminescence behaviour of terephthalate bridged heptacoordinated dinuclear lead(II) complexes containing a pentadentate N-donor Schiff base. SUBHASIS ROYa, SOMNATH CHOUBEYa, SUMITAVA KHANa, KISHALAY BHARa,. PARTHA MITRAb and BARINDRA ...

  6. A universal isocyanide for diverse heterocycle syntheses

    NARCIS (Netherlands)

    Patil, Pravin; Dömling, Alexander; Khoury, Kareem; Herdtweck, Eberhardt

    2014-01-01

    Novel scaffolds are of uttermost importance for the discovery of functional material. Three different heterocyclic scaffolds easily accessible from isocyanoacetaldehyde dimethylacetal 1 by multicomponent reaction (MCR) are described. They can be efficiently synthesized by a Ugi tetrazole

  7. Raman assisted lightwave synthesized frequency sweeper

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Rottwitt, Karsten

    2010-01-01

    We present a Lightwave Synthesized Frequency Sweeper comprising a Raman amplifier for loss compensation. The generated pulse train contains 123 pulses and has a flat signal level as well as a low noise level.......We present a Lightwave Synthesized Frequency Sweeper comprising a Raman amplifier for loss compensation. The generated pulse train contains 123 pulses and has a flat signal level as well as a low noise level....

  8. Metabolism. Part III: Lipids.

    Science.gov (United States)

    Bodner, George M.

    1986-01-01

    Describes the metabolic processes of complex lipids, including saponification, activation and transport, and the beta-oxidation spiral. Discusses fatty acid degradation in regard to biochemical energy and ketone bodies. (TW)

  9. Doxorubicin Lipid Complex Injection

    Science.gov (United States)

    ... lipid complex is also in combination with another chemotherapy drug to treat multiple myeloma (a type of cancer of the bone marrow) that has not improved or that has worsened after treatment with other ...

  10. The flagellar membrane of Ochromonas danica. Lipid composition.

    Science.gov (United States)

    Chen, L L; Pousada, M; Haines, T H

    1976-03-25

    The lipids of the whole flagella and the flagella membrane of the phytoflagellate Ochromonas danica were isolated and compared with those of the whole cell. The polar lipids were separated by two-dimensional thin layer chromatography. One-dimensional thin layer chromatography was used for the separation of the nonpolar lipids. In all respects the lipids of the whole flagella were identical with those of the flagellar membrane. These methods established the presence in flagellar membrane of the polychlorosulfolipids of O. danica as more than 90 molar per cent of the total polar lipids. These sulfolipids had been previously characterized as 1,14-docosanediol-1, 14-disulfate and 1,15-tetracosanediol-1,15-disulfate, containing zero to six chloro groups substituting for hydrogen on the chain. Seven unknown polar lipids were found. Both phosphorus analysis on each lipid and the molybdenum spray reagent for phospholipids on the chromatogram showed that there is no phospholipid present in O. danica flagellar membrane. Positive reactions to the diphenylamine spray reagent suggest that up to four of the unknown polar lipids are glycolipids. Of these, three reacted positively with ninhydrin. All of the unknown lipids reacted with the acidified 2,4-dinitrophenylhydrazine spray reagent suggesting the presence of aldehyde, ketone, glycoside, or plasmalogen. One unknown substance appeared near the origin of thin layer chromatograms. It showed a positive reaction with Dragendorff reagent, suggesting the presence of a quaternary amine group. This substance is presumed to be nonlipid, since it is not synthesized from [1-14C]acetate under the growth conditions used, as revealed by autoradiograms of thin layer chromatograms. It contained 35% hexose or hexosamine. It is devoid of phosphorus (0.7%) and is less than 4% protein (or phenolic groups or peptide), as judged by the Lowry assay using bovine serum albumin as a standard. Analysis of the nonpolar lipids of the flagellar membrane

  11. Functional self-assembled lipidic systems derived from renewable resources.

    Science.gov (United States)

    Silverman, Julian R; Samateh, Malick; John, George

    2016-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure-function relationship and functional smart materials that research may remain safe, economic, and efficient.

  12. Exploring lipids with nonlinear optical microscopy in multiple biological systems

    Science.gov (United States)

    Alfonso-Garcia, Alba

    spontaneous Raman spectroscopy. We used synthesized highly-deuterated cholesterol to track its compartmentalization in adrenal cells, revealing heterogeneous lipid droplet content. These examples illustrate the potential of label-free nonlinear optical microscopy for unveiling complex physiological processes by direct visualization of lipids. Detailed image analysis and combined microscopy modalities will continue to reveal and quantify fundamental biology that will support the advance of biomedicine.

  13. Thyroid and lipid metabolism.

    Science.gov (United States)

    Pucci, E; Chiovato, L; Pinchera, A

    2000-06-01

    Thyroid hormones influence all major metabolic pathways. Their most obvious and well-known action is an increase in basal energy expenditure obtained acting on protein, carbohydrate and lipid metabolism. With specific regard to lipid metabolism, thyroid hormones affect synthesis, mobilization and degradation of lipids, although degradation is influenced more than synthesis. The main and best-known effects on lipid metabolism include: (a) enhanced utilization of lipid substrates; (b) increase in the synthesis and mobilization of triglycerides stored in adipose tissue; (c) increase in the concentration of non-esterified fatty acids (NEFA); and (d) increase of lipoprotein-lipase activity. While severe hypothyroidism is usually associated with an increased serum concentration of total cholesterol and atherogenic lipoproteins, the occurrence of acute myocardial infarction (AMI) in hypothyroid patients is not frequent. However, hypothyroid patients appear to have an increased incidence of residual myocardial ischemia following AMI. Even in subclinical hypothyroidism, which is characterized by raised serum TSH levels with normal serum thyroid hormone concentrations, mild hyperlipidemia is present and may contribute to an increased risk of atherogenesis. Prudent substitution therapy with L-thyroxine is indicated in patients with both overt and subclinical hypothyroidism, with or without angina, to counteract the cardiovascular risk resulting from hyper-dyslipidemia.

  14. An automated Teflon microfluidic peptide synthesizer.

    Science.gov (United States)

    Zheng, Hui; Wang, Weizhi; Li, Xiaojun; Wang, Zihua; Hood, Leroy; Lausted, Christopher; Hu, Zhiyuan

    2013-09-07

    We present a microfluidic synthesizer made entirely of Teflon material for solid phase peptide synthesis (SPPS). Solvent-resistant perfluoroalkoxy (PFA) was used to construct chip-sized devices featuring multiple tri-layer pneumatic microvalves. Using these devices, model peptides were automatically synthesized and cleaved in situ in a continuous-flow manner. The total coupling and cleavage time was significantly reduced compared to conventional bulk reactors. The synthesis of a decapeptide, for instance, took less than 6 h using our device while it usually takes more than three days using conventional reactors.

  15. Lipid Ion Channels

    CERN Document Server

    Heimburg, Thomas

    2010-01-01

    The interpretation electrical phenomena in biomembranes is usually based on the assumption that the experimentally found discrete ion conduction events are due to a particular class of proteins called ion channels while the lipid membrane is considered being an inert electrical insulator. The particular protein structure is thought to be related to ion specificity, specific recognition of drugs by receptors and to macroscopic phenomena as nerve pulse propagation. However, lipid membranes in their chain melting regime are known to be highly permeable to ions, water and small molecules, and are therefore not always inert. In voltage-clamp experiments one finds quantized conduction events through protein-free membranes in their melting regime similar to or even undistinguishable from those attributed to proteins. This constitutes a conceptual problem for the interpretation of electrophysiological data obtained from biological membrane preparations. Here, we review the experimental evidence for lipid ion channels...

  16. Heart, lipids and hormones

    Directory of Open Access Journals (Sweden)

    Peter Wolf

    2017-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.

  17. Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study.

    Science.gov (United States)

    Li, Shixin; Luo, Zhen; Xu, Yan; Ren, Hao; Deng, Li; Zhang, Xianren; Huang, Fang; Yue, Tongtao

    2017-10-01

    Lipid nanodisc, a model membrane platform originally synthesized for study of membrane proteins, has recently been used as the carrier to deliver amphiphilic drugs into target tumor cells. However, the central question of how cells interact with such emerging nanomaterials remains unclear and deserves our research for both improving the delivery efficiency and reducing the side effect. In this work, a binary lipid nanodisc is designed as the minimum model to investigate its interactions with plasma membranes by using the dissipative particle dynamics method. Three typical interaction pathways, including the membrane attachment with lipid domain exchange of nanodiscs, the partial membrane wrapping with nanodisc vesiculation, and the receptor-mediated endocytosis, are discovered. For the first pathway, the boundary normal lipids acting as ligands diffuse along the nanodisc rim to gather at the membrane interface, repelling the central bola lipids to reach a stable membrane attachment. If bola lipids are positioned at the periphery and act as ligands, they diffuse to form a large aggregate being wrapped by the membrane, leaving the normal lipids exposed on the membrane exterior by assembling into a vesicle. Finally, by setting both central normal lipids and boundary bola lipids as ligands, the receptor-mediated endocytosis occurs via both deformation and self-rotation of the nanodiscs. All above pathways for soft lipid nanodiscs are quite different from those for rigid nanoparticles, which may provide useful guidelines for design of soft lipid nanodiscs in widespread biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Lipid intolerance in smokers.

    Science.gov (United States)

    Axelsen, M; Eliasson, B; Joheim, E; Lenner, R A; Taskinen, M R; Smith, U

    1995-05-01

    Smokers have recently been shown to be insulin resistant and to exhibit several characteristics of the insulin resistance syndrome (IRS). In this study, we assessed fasting and postprandial lipid levels in healthy, normolipidaemic, chronic smokers and a matched group of non-smoking individuals. A standardized mixed meal (containing 3.78 MJ and 51 g of fat) was given in the morning after an overnight fast. The smokers were either abstinent from tobacco for 48 h or were allowed to smoke freely, including being allowed to smoke six cigarettes during the study. Twenty-two middle-aged, healthy male subjects, nine habitual smokers and 13 non-smoking control subjects, were recruited to the study. The smokers had all been smoking at least 10 cigarettes per day for at least 10 years. The smokers exhibited a lipid intolerance in that their postprandial increase in triglyceride levels was more than 50% higher than in the non-smokers' group. This lipid intolerance could not be discerned in the postabsorptive state because the fasting triglyceride levels were the same in both groups, while the smokers had significantly lower high-density lipoprotein (HDL) cholesterol. The peak postprandial triglyceride level correlated closely and negatively with fasting HDL cholesterol, indicating an impaired lipolytic removal capacity in smokers. Healthy, normotriglyceridaemic smokers exhibit an abnormal postprandial lipid metabolism consistent with lipid intolerance. It is suggested that postprandial hyperlipidaemia is a characteristic trait of the insulin resistance syndrome and that the defect in lipid removal is related to the low HDL cholesterol in this syndrome. The insulin resistance syndrome is likely to be an important reason for the increased propensity for cardiovascular disease in smokers.

  19. Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking.

    Science.gov (United States)

    Hang, Howard C; Wilson, John P; Charron, Guillaume

    2011-09-20

    Protein lipidation and lipid trafficking control many key biological functions in all kingdoms of life. The discovery of diverse lipid species and their covalent attachment to many proteins has revealed a complex and regulated network of membranes and lipidated proteins that are central to fundamental aspects of physiology and human disease. Given the complexity of lipid trafficking and the protein targeting mechanisms involved with membrane lipids, precise and sensitive methods are needed to monitor and identify these hydrophobic molecules in bacteria, yeast, and higher eukaryotes. Although many analytical methods have been developed for characterizing membrane lipids and covalently modified proteins, traditional reagents and approaches have limited sensitivity, do not faithfully report on the lipids of interest, or are not readily accessible. The invention of bioorthogonal ligation reactions, such as the Staudinger ligation and azide-alkyne cycloadditions, has provided new tools to address these limitations, and their use has begun to yield fresh insight into the biology of protein lipidation and lipid trafficking. In this Account, we discuss how these new bioorthogonal ligation reactions and lipid chemical reporters afford new opportunities for exploring the biology of lipid-modified proteins and lipid trafficking. Lipid chemical reporters from our laboratory and several other research groups have enabled improved detection and large-scale proteomic analysis of fatty-acylated and prenylated proteins. For example, fatty acid and isoprenoid chemical reporters in conjunction with bioorthogonal ligation methods have circumvented the limited sensitivity and hazards of radioactive analogues, allowing rapid and robust fluorescent detection of lipidated proteins in all organisms tested. These chemical tools have revealed alterations in protein lipidation in different cellular states and are beginning to provide unique insights in mechanisms of regulation. Notably, the

  20. Early steps of biosynthesis of ether lipids in archaebacteria; Eteru shishitsu seigosei no shoki dankai

    Energy Technology Data Exchange (ETDEWEB)

    Nishino, T. [Tohoku Univ., Sendai (Japan). Faculty of Engineering

    1997-05-20

    Membrane lipids in archaebacteria are different from those of eubacteria and eukaryote which are fatty acid esters of glycerol. Archaebacterial lipids are mainly ether-linked lipids composed of glycerol linked to two molecules of isoprenoid phytanyl groups or of ether-linked glycerol with phytanyl group. This structural feature is one of the origins of survival and growth of archaebacteria in extreme conditions of high temperature, strong acid or alkali. It is considered that geranylgeranyl phosphate (GGPP) is synthesized and attached to glycerol phosphate, followed by reduction of the double bond in the geranylgeranyl moieties to form the diether lipids while the head-to-heat condensation of the phytanyl groups produces the tetraether lipids. Aiming to elucidate the lipid biosynthesis mechanism in a hyperthermophilic archaebacterium, Sulfolobus acidocaldarius, the gene of GGPP synthase was cloned with the aid of carotenoid synthesis in phytopathogenic Erwinia uredovora and its sequence was studied. 29 refs., 9 figs.

  1. Biosynthesis of silver nanoparticles synthesized by Aspergillus ...

    Indian Academy of Sciences (India)

    In the present study, biosynthesis of silver nanoparticles and its antioxidant, antimicrobial and cytotoxic activities were investigated. Silver nanoparticles were extracellularly synthesized using Aspergillus flavus and the formation of nanoparticles was observed after 72 h of incubation. The results recorded from colour ...

  2. TWO NEW 1D COORDINATION POLYMERS: SYNTHESES ...

    African Journals Online (AJOL)

    Preferred Customer

    for Nationalities, College of Chemistry and Chemical Engineering, Nanning, Guangxi 530006,. China ... The O–H···O and C–H···Cl hydrogen-bonding interactions play a significant role in promoting the diversity ... syntheses, structural characterization, and spectral analyses of two new coordination polymers based on three ...

  3. Biological activities of synthesized silver nanoparticles from ...

    Indian Academy of Sciences (India)

    The C. halicacabum leaf extract synthesized AgNPs efficiency were tested against different bacterial pathogens MTCC-426 Proteus vulgaris, MTCC-2453 Pseudomonas aeruginosa, MTCC-96 Staphylococcus aureus, MTCC-441 Bacillus subtilis andMTCC-735 Salmonella paratyphi, and fungal pathogens Alternaria solani ...

  4. Syntheses, molecular and crystalline architectures, and ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 125; Issue 4. Syntheses, molecular and ... Mitra2 Barindra Kumar Ghosh1. Department of Chemistry, The University of Burdwan, Burdwan 713 104, India; Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700 032, India ...

  5. Cytotoxicity of Nanoliposomal Cisplatin Coated with Synthesized ...

    African Journals Online (AJOL)

    Purpose: To evaluate the cytotoxicity of pegylated nanoliposomal cisplatin on human ovarian cancer cell line A2780CP. Methods: Synthesized methoxypolyethylene glycol (mPEG) propionaldehyde was characterized by 1Hnuclear magnetic resonance (1H-NMR) and Fourier transform infrared spectroscopy (FTIR) and used ...

  6. Ferromagnetic Behavior in Zinc Ferrite Nanoparticles Synthesized ...

    African Journals Online (AJOL)

    Zinc ferrite have been produced and used by humans since long time, however understanding of ZnFe2O4 as a nano structured materials is very useful in order to be used for technological applications. ZnFe2O4 structural, magnetic and electrical properties are different when synthesized using different techniques.

  7. Solvothermal syntheses, crystal structures, optical and thermal ...

    Indian Academy of Sciences (India)

    Keywords. Selenidogermanates; nickel; solvothermal syntheses; crystal structures; optical properties ... The different coordination environments of Ni²⁺ ions indicate the influence of the denticity of ethylene polyamines on the formation of selenidogermanates in the presence of transition metal ions. Thecompounds 1–3 ...

  8. Spectroscopy and laser characterization of synthesized ...

    Indian Academy of Sciences (India)

    2014-02-12

    Feb 12, 2014 ... spectrophotometric titration. Laser performances of the synthesized and commercial CB[7] sample as an additive were evaluated using Nd-YAG (532 nm) pumped Rhodamine B aqueous dye lasers and comparable results were obtained. Keywords. Macrocyclic host; cucurbit[7]uril; host–guest complex; ...

  9. How proteins move lipids and lipids move proteins

    NARCIS (Netherlands)

    Sprong, H.|info:eu-repo/dai/nl/222364815; van der Sluijs, P.; van Meer, G.|info:eu-repo/dai/nl/068570368

    2001-01-01

    Cells determine the bilayer characteristics of different membranes by tightly controlling their lipid composition. Local changes in the physical properties of bilayers, in turn, allow membrane deformation, and facilitate vesicle budding and fusion. Moreover, specific lipids at specific locations

  10. Lipids in Cryptomonas CR-1. I. Occurrence of Betaine Lipids

    OpenAIRE

    Naoki, Sato; Department of Botany, Faculty of Science, University of Tokyo

    1991-01-01

    Polar lipids of the cryptophyte Cryptomonas CR-1 were analyzed in detail. In addition to glycolipids and phospholipids, three Dragendorff-positive lipids were found. Two of these lipids were identified as diacylglyceryltrimethylhomoserine (DGTS) and diacylglycerylhydroxymethyltrimethyl-β-alanine (DGTA), a recently discovered isomer of DGTS, while the least abundant lipid remains to be identified. The presence of both DGTS and DGTA, which have been widely found in green algae and brown algae, ...

  11. A Bifunctional Glycosyltransferase from Agrobacterium tumefaciens Synthesizes Monoglucosyl and Glucuronosyl Diacylglycerol under Phosphate Deprivation*

    Science.gov (United States)

    Semeniuk, Adrian; Sohlenkamp, Christian; Duda, Katarzyna; Hölzl, Georg

    2014-01-01

    Glycolipids are mainly found in phototrophic organisms (like plants and cyanobacteria), in Gram-positive bacteria, and a few other bacterial phyla. Besides the function as bulk membrane lipids, they often play a role under phosphate deprivation as surrogates for phospholipids. The Gram-negative Agrobacterium tumefaciens accumulates four different glycolipids under phosphate deficiency, including digalactosyl diacylglycerol and glucosylgalactosyl diacylglycerol synthesized by a processive glycosyltransferase. The other two glycolipids have now been identified by mass spectrometry and nuclear magnetic resonance spectroscopy as monoglucosyl diacylglycerol and glucuronosyl diacylglycerol. These two lipids are synthesized by a single promiscuous glycosyltransferase encoded by the ORF atu2297, with UDP-glucose or UDP-glucuronic acid as sugar donors. The transfer of sugars differing in their chemistry is a novel feature not observed before for lipid glycosyltransferases. Furthermore, this enzyme is the first glucuronosyl diacylglycerol synthase isolated. Deletion mutants of Agrobacterium lacking monoglucosyl diacylglycerol and glucuronosyl diacylglycerol or all glycolipids are not impaired in growth or virulence during infection of tobacco leaf discs. Our data suggest that the four glycolipids and the nonphospholipid diacylglyceryl trimethylhomoserine can mutually replace each other during phosphate deprivation. This redundancy of different nonphospholipids may represent an adaptation mechanism to enhance the competitiveness in nature. PMID:24558041

  12. Lipids in cheese

    Science.gov (United States)

    Lipids are present in cheese at levels above 20 percent and are analyzed by several techniques. Scanning electron microscopy and confocal laser scanning microscopy are used to examine the microstructure, gas chromatography is employed to look at fatty acid composition, and differential scanning cal...

  13. Salivary lipids: A review.

    Science.gov (United States)

    Matczuk, Jan; Żendzian-Piotrowska, Małgorzata; Maciejczyk, Mateusz; Kurek, Krzysztof

    2017-09-01

    Saliva is produced by both large and small salivary glands and may be considered one of the most important factors influencing the behavior of oral cavity homeostasis. Secretion of saliva plays an important role in numerous significant biological processes. Saliva facilitates chewing and bolus formation as well as performs protective functions and determines the buffering and antibacterial prosperities of the oral environment. Salivary lipids appear to be a very important component of saliva, as their qualitative and quantitative composition can be changed in various pathological states and human diseases. It has been shown that disturbances in salivary lipid homeostasis are involved in periodontal diseases as well as various systemic disorders (e.g. cystic fibrosis, diabetes and Sjögren's syndrome). However, little is known about the role and composition of salivary lipids and their interaction with other important ingredients of human saliva, including proteins, glycoproteins and salivary mucins. The purpose of this review paper is to present the latest knowledge on salivary lipids in healthy conditions and in oral and systemic diseases.

  14. Cell-based lipid flippase assay employing fluorescent lipid derivatives

    DEFF Research Database (Denmark)

    Jensen, Maria Stumph; Costa, Sara; Günther-Pomorski, Thomas

    2016-01-01

    , studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates. Here, we describe an assay based on fluorescent lipid derivatives to monitor and characterize lipid...

  15. Metabolic fate of orally administered enzymatically synthesized glycogen in rats.

    Science.gov (United States)

    Furuyashiki, Takashi; Takata, Hiroki; Kojima, Iwao; Kuriki, Takashi; Fukuda, Itsuko; Ashida, Hitoshi

    2011-04-01

    We developed a new process for enzymatically synthesized glycogen (ESG), which is equivalent in physicochemical properties to natural-source glycogen (NSG) except its resistant property to degradation by α-amylase in vitro. In this study the metabolic fates of orally administered ESG in rats were investigated by a single oral administration test and a 2 week ingestion test. The glycemic index of ESG was 79. After the 2 week ingestion of ESG, the cecal content and production of short chain fatty acids were significantly increased, the pH value of cecal content was lowered, and the counts of Bifidobacterium and Lactobacillus in feces were significantly increased. Additionally, plasma levels of triacylglycerol and total cholesterol were significantly reduced by ESG. In contrast, NSG did not affect these parameters at all. The results collectively suggest that around 20% of orally administered ESG was transferred to the cecum in the form of polymer and assimilated into short chain fatty acids by microbiota and the polymer affected lipid metabolism.

  16. Evaluation of various solvent systems for lipid extraction from wet microalgal biomass and its effects on primary metabolites of lipid-extracted biomass.

    Science.gov (United States)

    Ansari, Faiz Ahmad; Gupta, Sanjay Kumar; Shriwastav, Amritanshu; Guldhe, Abhishek; Rawat, Ismail; Bux, Faizal

    2017-06-01

    Microalgae have tremendous potential to grow rapidly, synthesize, and accumulate lipids, proteins, and carbohydrates. The effects of solvent extraction of lipids on other metabolites such as proteins and carbohydrates in lipid-extracted algal (LEA) biomass are crucial aspects of algal biorefinery approach. An effective and economically feasible algae-based oil industry will depend on the selection of suitable solvent/s for lipid extraction, which has minimal effect on metabolites in lipid-extracted algae. In current study, six solvent systems were employed to extract lipids from dry and wet biomass of Scenedesmus obliquus. To explore the biorefinery concept, dichloromethane/methanol (2:1 v/v) was a suitable solvent for dry biomass; it gave 18.75% lipids (dry cell weight) in whole algal biomass, 32.79% proteins, and 24.73% carbohydrates in LEA biomass. In the case of wet biomass, in order to exploit all three metabolites, isopropanol/hexane (2:1 v/v) is an appropriate solvent system which gave 7.8% lipids (dry cell weight) in whole algal biomass, 20.97% proteins, and 22.87% carbohydrates in LEA biomass. Graphical abstract: Lipid extraction from wet microalgal biomass and biorefianry approach.

  17. Spastin binds to lipid droplets and affects lipid metabolism.

    Directory of Open Access Journals (Sweden)

    Chrisovalantis Papadopoulos

    2015-04-01

    Full Text Available Mutations in SPAST, encoding spastin, are the most common cause of autosomal dominant hereditary spastic paraplegia (HSP. HSP is characterized by weakness and spasticity of the lower limbs, owing to progressive retrograde degeneration of the long corticospinal axons. Spastin is a conserved microtubule (MT-severing protein, involved in processes requiring rearrangement of the cytoskeleton in concert to membrane remodeling, such as neurite branching, axonal growth, midbody abscission, and endosome tubulation. Two isoforms of spastin are synthesized from alternative initiation codons (M1 and M87. We now show that spastin-M1 can sort from the endoplasmic reticulum (ER to pre- and mature lipid droplets (LDs. A hydrophobic motif comprised of amino acids 57 through 86 of spastin was sufficient to direct a reporter protein to LDs, while mutation of arginine 65 to glycine abolished LD targeting. Increased levels of spastin-M1 expression reduced the number but increased the size of LDs. Expression of a mutant unable to bind and sever MTs caused clustering of LDs. Consistent with these findings, ubiquitous overexpression of Dspastin in Drosophila led to bigger and less numerous LDs in the fat bodies and increased triacylglycerol levels. In contrast, Dspastin overexpression increased LD number when expressed specifically in skeletal muscles or nerves. Downregulation of Dspastin and expression of a dominant-negative variant decreased LD number in Drosophila nerves, skeletal muscle and fat bodies, and reduced triacylglycerol levels in the larvae. Moreover, we found reduced amount of fat stores in intestinal cells of worms in which the spas-1 homologue was either depleted by RNA interference or deleted. Taken together, our data uncovers an evolutionarily conserved role of spastin as a positive regulator of LD metabolism and open up the possibility that dysfunction of LDs in axons may contribute to the pathogenesis of HSP.

  18. Optimal composition of intravenous lipids

    African Journals Online (AJOL)

    Optimal composition of intravenous lipids. The composition of an intravenous (IV) lipid emulsion is of great importance in parenteral nutrition (PN) therapy, as most of its effects depend on the kind of fatty acids included and their respective ratio to each other. Today´s lipid emulsions may include four classes of different fatty ...

  19. Enzymatic synthesizing of phytosterol oleic esters.

    Science.gov (United States)

    Pan, Xinxin; Chen, Biqiang; Wang, Juan; Zhang, Xinzhi; Zhul, Biyun; Tan, Tianwei

    2012-09-01

    A method of synthesizing the phytosterol esters from oleic acid and sterols was studied, using immobilized lipase Candida sp. 99-125 as catalyst. Molar ratio (oleic acid/phytosterols), temperature, reaction period, organic solvents, catalyst, and silica-gel drier were optimized, and the result showed that 93.4% of the sterols had been esterified under the optimal synthetic condition: the molar ratio of oleic acid/phytosterol is 1:1 in 10 mL iso-octane, immobilized lipase (w, 140% of the sterols), incubated in an orbital shaker (200 rpm) at a temperature of 45 °C for 24 h. The immobilized lipase could be reused for at least 13 times with limited loss of esterification activity. The conversion still maintained up to 86.6%. Hence, this developed process for synthesizing phytosterol esters could be considered as simple and low-energy consumption compared to existing chemical processes.

  20. Controllable Syntheses of MOF-Derived Materials.

    Science.gov (United States)

    Zou, Kang-Yu; Li, Zuo-Xi

    2017-12-12

    Metal-organic frameworks (MOFs), as an important kind of porous inorganic-organic hybrid materials with inherent outstanding physicochemistry characteristics, can be widely applied as versatile precursors for the facile preparation of functional MOF-derived materials. However, there are plenty of sophisticated factors during the synthetic process, which is far from reaching the goal of effectively controlling the nature of MOF-derived materials (such as the composition, morphology and surface area). Therefore, it is urgently necessary to develop regular protocols and concepts for controllable syntheses of MOF-derived materials. In this minireview, we mainly summarize and analyze complicated factors in the fabrication of MOF-derived materials according to recently reported literatures, and this provides a new insight into the rational design and syntheses of MOF-derived materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Gene Assembly from Chip-Synthesized Oligonucleotides

    Science.gov (United States)

    Eroshenko, Nikolai; Kosuri, Sriram; Marblestone, Adam H; Conway, Nicholas; Church, George M.

    2012-01-01

    De novo synthesis of long double-stranded DNA constructs has a myriad of applications in biology and biological engineering. However, its widespread adoption has been hindered by high costs. Cost can be significantly reduced by using oligonucleotides synthesized on high-density DNA chips. However, most methods for using off-chip DNA for gene synthesis have failed to scale due to the high error rates, low yields, and high chemical complexity of the chip-synthesized oligonucleotides. We have recently demonstrated that some commercial DNA chip manufacturers have improved error rates, and that the issues of chemical complexity and low yields can be solved by using barcoded primers to accurately and efficiently amplify subpools of oligonucleotides. This article includes protocols for computationally designing the DNA chip, amplifying the oligonucleotide subpools, and assembling 500-800 basepair (bp) constructs. PMID:25077042

  2. Syntheses and studies of organosilicon compounds

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Ren [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    The syntheses of polycarbosilanes and polysilanes as silicon carbide ceramic precursors have been active research areas in the Barton Research Group. In this thesis, the work is focused on the preparation of polycarbosilanes and polysilanes as stoichiometric silicon carbide precursor polymers. The syntheses of the precursor polymers are discussed and the conversions of these precursors to silicon carbide via pyrolysis are reported. The XRD pattern and elemental analyses of the resulting silicon carbide ceramics are presented. Silicon monoxide is an important intermediate in the production of silicon metal. The existence of silicon monoxide in gap phase has been widely accepted. In the second part of this thesis, the generation of gaseous silicon monoxide in four different reactors and the reactions of gaseous silicon monoxide towards organic compounds are discussed.

  3. Lipid domains in bicelles containing unsaturated lipids and cholesterol.

    Science.gov (United States)

    Cho, Hyo Soon; Dominick, Johnna L; Spence, Megan M

    2010-07-22

    We have created a stable bicelle system capable of forming micrometer-scale lipid domains that orient in a magnetic field, suitable for structural biology determination in solid-state NMR. The bicelles consisted of a mixture of cholesterol, saturated lipid (DMPC), and unsaturated lipid (POPC), a mixture commonly used to create domains in model membranes, along with a short chain lipid (DHPC) that allows formation of the bicelle phase. While maintaining a constant molar ratio of long to short chain lipids, q = ([POPC]+[DMPC])/[DHPC] = 3, we varied the concentrations of the unsaturated lipid, POPC, and cholesterol to observe the effects of the components on bicelle stability. Using (31)P solid-state NMR, we observed that unsaturated lipids (POPC) greatly destabilized the alignment of the membranes in the magnetic field, while cholesterol stabilized their alignment. By combining cholesterol and unsaturated lipids in the bicelles, we created membranes aligning uniformly in the magnetic field, despite very high concentrations of unsaturated lipids. These bicelles, with high concentrations of both cholesterol and unsaturated lipid, showed similar phase behavior to bicelles commonly used in structural biology, but aligned over a wider temperature range (291-314 K). Domains were observed by measuring time-dependent diffusion constants reflecting restricted diffusion of the lipids within micrometer-scale regions of the bicelles. Micron-scale domains have never been observed in POPC/DMPC/cholesterol vesicles, implying that bilayers in bicelles show different phase behavior than their counterparts in vesicles, and that bilayers in bicelles favor domain formation.

  4. Hormones regulating lipid metabolism and plasma lipids in childhood obesity.

    Science.gov (United States)

    Gil-Campos, M; Cañete, R; Gil, A

    2004-11-01

    To review the mechanisms by which leptin, insulin and adiponectin influence lipid metabolism and plasma lipids in obesity, as well as to describe the associations between these hormones in prepubertal children. Revision of relevant papers published in the last 5 y related to the interactions of leptin, insulin and adiponectin, with special emphasis on those reporting potential mechanisms by which these hormones regulate lipid metabolism and plasma lipids. We also provide original results concerning the relationships found between plasma lipids and leptin, and insulin and adiponectin in prepubertal obese children. Recent data in the literature shed new light to explain the effects of both leptin and adiponectin in the regulation of lipid metabolism in peripheral tissues. Activation of the AMP-dependent kinase pathway and subsequent increased fatty acid oxidation seems to be the main mechanism of action of these hormones in the regulation of lipid metabolism. In addition, we have found that insulin plasma levels are positively associated to leptin but negatively correlated with adiponectin in obese children. Adiponectin is negatively associated to plasma lipid markers of metabolic syndrome but positively related to HDL-cholesterol, whereas insulin and leptin show opposite patterns. These results support the effect of adiponectin in increasing insulin sensitivity and decreasing plasma triglycerides. Leptin, insulin and adiponectin are associated hormones that regulate lipid metabolism in childhood. Adiponectin appears to be the missing link to explain the alterations in lipid metabolism and plasma lipids seen in obesity.

  5. Biological activities of synthesized silver nanoparticles from ...

    Indian Academy of Sciences (India)

    ical scavenging activity was measured by the salicylic acid method [16]. The synthesized AgNPs solution at different concentrations (10 to 80 μg ml. −1. ) was dissolved in 1 ml of distilled water. One millilitre of AgNPs mixed with 1 ml of. 9 mM salicylic acid, 1 ml of 9 mM ferrous sulphate and 1ml of 9 mM hydrogen peroxide.

  6. Nanocrystalline diamond synthesized from C60

    Energy Technology Data Exchange (ETDEWEB)

    Dubrovinskaia, N.; Dubrovinsky, L.; Langehorst, F.; Jacobsen, S.; Liebske, C. (Bayreuth)

    2010-11-30

    A bulk sample of nanocrystalline cubic diamond with crystallite sizes of 5-12 nm was synthesized from fullerene C{sub 60} at 20(1) GPa and 2000 C using a multi-anvil apparatus. The new material is at least as hard as single crystal diamond. It was found that nanocrystalline diamond at high temperature and ambient pressure kinetically is more stable with respect to graphitization than usual diamonds.

  7. Cyclopropanation Strategies in Recent Total Syntheses.

    Science.gov (United States)

    Ebner, Christian; Carreira, Erick M

    2017-09-27

    Complex molecular architectures containing cyclopropanes present significant challenges for any synthetic chemist. This review aims to highlight the strategic considerations for introduction of the cyclopropane motif in a collection of recent total syntheses. At first, an overview of the most important and widely used cyclopropanation techniques is presented, followed by a discussion of elegant approaches and clever solutions that have been developed to enable the synthesis of various unique cyclopropane natural products or use of cyclopropanes as versatile strategic intermediates.

  8. Magnesioferrite synthesized from magnesian-magnetites

    Directory of Open Access Journals (Sweden)

    Marcelo Hidemassa Anami

    2014-02-01

    Full Text Available Magnesioferrite is an important mineral due to its use in different scientific fields and by the fact that the soil through the action of weathering, can be a source of nutrients essential for plant development by the fact that in the soil. Its use in pure form or associated with other minerals is only possible through the synthesis in laboratory conditions. This study aimed to synthesize magnesioferrite and hematite from magnesian-magnetite by a co-precipitation procedure. The methodology used is an adaptation of the method of synthesis of pure magnetite, partially replacing the soluble salts of iron with soluble magnesium salts in the proportion of 30.0 mol% of Fe for Mg. The characterization of the synthetic minerals used x-rays diffraction, total chemical analysis and mass specific magnetic susceptibility. The results showed that besides the magnesian-magnetite an unprecedented muskoxita was synthesized, which upon annealing was converted to magnesioferrite and hematite and in the proportion of 93.1% and 6.9% respectively. The isomorphous substitution of Fe for Mg enhanced the thermal stability of the ferrimagnetic mineral synthesized.

  9. Syntheses and studies of acetylenic polymers

    Energy Technology Data Exchange (ETDEWEB)

    Yiwei, Ding [Iowa State Univ., Ames, IA (United States)

    1994-03-03

    Based on new diiodo aryl compounds a series of novel soluble polymers, poly(2,5-dialkoxy-1,4-phenyleneethynylene)s (PPE polymers) were synthesized using palladium-catalysis. The molecular weights (MW) range from 8,000 to 40,000. Properties such as absorption, fluorescence, and conductivity were studied. A PPE polymer with butoxy side chain exhibits a weak electrical conductivity (σ = 10-3 S/cm) after doping with AsF5. Absorption spectra in THF solution at room temperature (RT) show a maximum at 440 nm. However, absorption spectra of PPE polymers in the film state at (RT) show a maximum at 480 nm. PPE polymer-based light emitting diode (LED) devices have been prepared; greenish light from these LED devices can be observed. Poly(ethynylene-p-arylene-ethynylene-silylene)s were synthesized through the same palladium-catalyzed polymerization; MWs are between 6,000 and 82,000. Absorption and fluorescence were studied. Some of these polymers exhibit thermotropic liquid crystalline properties. In addition, nonlinear optical properties were briefly examined. Poly(silylene-ethynylene) homopolymers as well as alternating copolymers were synthesized through a novel palladium-catalyzed polymerization; MWs range from 56 x 103 to 5.3 x 103. Thermal stability of these was also investigated; char yields range from 56 to 83%. One of these polymers exhibits thermotropic liquid crystalline properties.

  10. Shock Syntheses of Novel Nitrides and Biomolecules

    Science.gov (United States)

    Sekine, Toshimori

    2013-06-01

    High-pressure spinel nitride of Si3N4 was discovered more than 10 years ago. Since then there have been many studies on the spinel nitrides and related materials including oxynitrides. We have developed shock synthesis method to investigate their structural, mechanical, chemical, physical, and optical properties. At the same time we tried to synthesize carbon nitrides from the organic substances. And later we extended to shock synthesis of ammonia through the Haber-Bosch reaction under shock in order to apply geochemical subjects related to the origin of life. The simplest amino acid of glycine, as well as animes (up to propylamine) and carboxylic acids (up to pentanoic acid), has been synthesized successfully in aqueous solutions through meteoritic impact reactions. Recently we are trying to make more complex biomolecules for implications of biomolecule formation for the origin of life through meteorite impacts on early Earth's ocean. These results of shock syntheses may imply significant contributions to materials science and Earth and planetary sciences. This research is collaborated with National Institute for Materials Science and Tohoku University.

  11. Tear Film Lipids

    Science.gov (United States)

    Butovich, Igor A.

    2013-01-01

    Human meibomian gland secretions (MGS, or meibum) are formed from a complex mixture of lipids of different classes such as wax esters, cholesteryl esters, (O-acyl)-ω-hydroxy fatty acids (OAHFA) and their esters, acylglycerols, diacylated diols, free fatty acids, cholesterol, and a smaller amount of other polar and nonpolar lipids, whose chemical nature and the very presence in MGS have been a matter of intense debates. The purpose of this review is to discuss recent results that were obtained using different experimental techniques, estimate limitations of their usability, and discuss their biochemical, biophysical, and physiological implications. To create a lipid map of MGS and tears, the results obtained in the author’s laboratory were integrated with available information on chemical composition of MGS and tears. The most informative approaches that are available today to researchers, such as HPLC-MS, GC-MS, and proton NMR, are discussed in details. A map of the meibomian lipidome (as it is seen in reverse phase liquid chromatography/mass spectrometry experiments) is presented. Directions of future efforts in the area are outlined. PMID:23769846

  12. Biochemical Hydrogen Isotope Fractionation during Lipid Biosynthesis in Higher Plants

    Science.gov (United States)

    Kahmen, A.; Gamarra, B.; Cormier, M. A.

    2014-12-01

    Although hydrogen isotopes (δ2H) of leaf wax lipids are increasingly being applied as (paleo-) hydrological proxies, we still do not understand some of the basic processes that shape the δ2H values of these compounds. In general, it is believed that three variables shape the δ2H values of leaf wax lipids: source water δ2H values, evaporative deuterium (2H) enrichment of leaf water and the biosynthetic fractionation (ɛbio) during the synthesis of organic compounds. While the influences of source water δ2H values and leaf water evaporative 2H enrichment have been well documented, very little is known how ɛbio shapes the δ2H values of plant-derived lipids. I will present the results from recent experiments, where we show that the magnitude of ɛbio, and thus the δ2H value of plant-derived lipids, strongly depends on the carbon (C) metabolism of a plant. Specifically, I will show that plants that rely for their tissue formation on recently assimilated C have δ2H values in their n-alkanes that are up to 60‰ more negative than plants that depend for their tissue formation on stored carbohydrates. Our findings can be explained by the fact that NADPH is the primary source of hydrogen in plant lipids and that the δ2H value of NADPH differs whether NADPH was generated directly in the light reaction of photosynthesis or whether it was generated by processing stored carbohydrates. As such, the δ2H values of plant-derived lipids will directly depend on whether the tissue containing these lipids was synthesized using recent assimilates, e.g. in a C autonomous state or, if it was synthesized from stored or otherwise aquired C sources, e.g. in a not C autonomous state. Given the magnidude of this effect, our results have important implications for interpretation of plant-derived lipid δ2H values when used as (paleo-) hydrological proxies. In addition, our results suggest, that δ2H values of plant-derived lipids could be employed as a new tools to assess the C

  13. Analysis of neutral lipids from microalgae by HPLC-ELSD and APCI-MS/MS.

    Science.gov (United States)

    Donot, F; Cazals, G; Gunata, Z; Egron, D; Malinge, J; Strub, C; Fontana, A; Schorr-Galindo, S

    2013-12-30

    A method was developed to analyze neutral lipids through the use of three triglycerides, four free fatty acids, six di- and four mono-glycerides standards by high performance liquid chromatography (HPLC) normal phase coupled with either with evaporative light scattering detector (ELSD) or with mass spectrometry (MS) operating in atmospheric pressure chemical ionization (APCI) mode. The method was applied to the determination of the neutral lipid fraction from a Botryococcus braunii race A (B. braunii) culture. This method led us to identify neutral lipids synthesized by B. braunii in a single analysis within 45min through HPLC-APCI-MS/MS technique. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. The effect of green synthesized gold nanoparticles on rice germination and roots

    Science.gov (United States)

    Tsi Ndeh, Nji; Maensiri, Santi; Maensiri, Duangkamol

    2017-09-01

    In this paper, gold nanoparticles were synthesized by means of a green approach with Tiliacora triandra leaf extracts under different conditions. No additional reducing or capping agents were employed. The gold nanoparticles were characterized using UV-visible spectrophotometry, transmission electron microscope, x-ray diffraction and Fourier transform infrared spectroscopy. Gold nanoparticles synthesized at temperature of 80 °C were further used to treat rice (Oryza sativa) grains at different concentrations (0, 10, 100, 500, 1000, 2000 mg l-1) for one week. While germination percentages were high (95-98.38%), a slight decrease in root and shoot lengths relative to the control was observed. Phytotoxicity results indicated that the plant synthesized gold nanoparticles were of minimal toxicity to rice seedlings. Increases in cell death, hydrogen peroxide formation and lipid peroxidation in roots and shoots were noted. However, these increases were not statistically significant. The overall results confirmed that Tiliacora triandra synthesized gold nanoparticles are biocompatible and can be potentially used as nanocarriers in agriculture. Contribution at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  15. Lipids and lipid modifications in the regulation of membrane traffic.

    Science.gov (United States)

    Haucke, Volker; Di Paolo, Gilbert

    2007-08-01

    Lipids play a multitude of roles in intracellular protein transport and membrane traffic. While a large body of data implicates phosphoinositides in these processes, much less is known about other glycerophospholipids such as phosphatidic acid, diacylglycerol, and phosphatidylserine. Growing evidence suggests that these lipids may also play an important role, either by mediating protein recruitment to membranes or by directly affecting membrane dynamics. Although membrane lipids are believed to be organized in microdomains, recent advances in cellular imaging methods paired with sophisticated reporters and proteomic analysis have led to the formulation of alternative ideas regarding the characteristics and putative functions of lipid microdomains and their associated proteins. In fact, the traditional view that membrane proteins may freely diffuse in a large 'sea of lipids' may need to be revised. Lastly, modifications of proteins by lipids or related derivatives have surprisingly complex roles on regulated intracellular transport of a wide range of molecules.

  16. Mechanistic Study of the sPLA2 Mediated Hydrolysis of a Thio-ester Pro Anticancer Ether Lipid

    DEFF Research Database (Denmark)

    Linderoth, Lars; Fristrup, Peter; Hansen, Martin

    2009-01-01

    ether lipids, which become cytotoxic upon sPLA2-catalyzed hydrolysis has previously been established. To optimize the hydrolysis rate of the lipids and thereby optimizing the release profile of the drugs from the liposomes, we have synthesized a thio-ester pro anticancer ether lipid. Liposomes...... constituted of this lipid showed an altered rate of hydrolysis by sPLA2. We have tested the cytotoxicity of the thio-ester pro anticancer ether lipids toward cancer cells, and the results showed that the cytotoxicity is indeed maintained upon sPLA2 exposure. To further understand the origin for the observed...

  17. Lipoproteins in Drosophila melanogaster—Assembly, Function, and Influence on Tissue Lipid Composition

    Science.gov (United States)

    Palm, Wilhelm; Sampaio, Julio L.; Brankatschk, Marko; Carvalho, Maria; Mahmoud, Ali; Shevchenko, Andrej; Eaton, Suzanne

    2012-01-01

    Interorgan lipid transport occurs via lipoproteins, and altered lipoprotein levels correlate with metabolic disease. However, precisely how lipoproteins affect tissue lipid composition has not been comprehensively analyzed. Here, we identify the major lipoproteins of Drosophila melanogaster and use genetics and mass spectrometry to study their assembly, interorgan trafficking, and influence on tissue lipids. The apoB-family lipoprotein Lipophorin (Lpp) is the major hemolymph lipid carrier. It is produced as a phospholipid-rich particle by the fat body, and its secretion requires Microsomal Triglyceride Transfer Protein (MTP). Lpp acquires sterols and most diacylglycerol (DAG) at the gut via Lipid Transfer Particle (LTP), another fat body-derived apoB-family lipoprotein. The gut, like the fat body, is a lipogenic organ, incorporating both de novo–synthesized and dietary fatty acids into DAG for export. We identify distinct requirements for LTP and Lpp-dependent lipid mobilization in contributing to the neutral and polar lipid composition of the brain and wing imaginal disc. These studies define major routes of interorgan lipid transport in Drosophila and uncover surprising tissue-specific differences in lipoprotein lipid utilization. PMID:22844248

  18. Nuclear lipids: key signaling effectors in the nervous system and other tissues.

    Science.gov (United States)

    Ledeen, Robert W; Wu, Gusheng

    2004-01-01

    Lipids have long been recognized as quantitatively minor components of the nucleus, where they were initially thought to have little functional importance; but they now command growing interest, with recognition of their diverse signaling and modulating properties in that organelle. This applies to the lipid-poor compartments of the nucleoplasm as well as the relatively lipid-rich nuclear envelope. Phosphoglycerides and sphingomyelin, as the predominant lipids, have attracted the most interest among researchers, but some of the less-abundant lipids such as gangliosides, sphingosine, and sphingosine phosphate are now becoming recognized as functionally important nuclear constituents. Among recent advances in this emerging field are detailed findings on the metabolic enzymes that synthesize and catabolize nuclear lipids; the fact that these are localized primarily within the nucleus itself indicates considerable autonomy with respect to lipid metabolism. Current studies suggest several key processes involving RNA and DNA reactivity that are dependent on these lipid-initiated events. Neural cell nuclei have been the subject of such investigations, with results that closely parallel the more numerous studies on nuclei of extraneural cells. This review attempts to outline some of the major findings on nuclear lipids of diverse cell types; results with nonneural nuclei will hopefully provide useful guideposts to further studies of neural systems.

  19. Biogenic synthesized nanoparticles and their applications

    Science.gov (United States)

    Singh, Abhijeet; Sharma, Madan Mohan

    2016-05-01

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO3 via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV-vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  20. Recent Advances in Chemoenzymatic Peptide Syntheses

    Directory of Open Access Journals (Sweden)

    Kenjiro Yazawa

    2014-09-01

    Full Text Available Chemoenzymatic peptide synthesis is the hydrolase-catalyzed stereoselective formation of peptide bonds. It is a clean and mild procedure, unlike conventional chemical synthesis, which involves complicated and laborious protection-deprotection procedures and harsh reaction conditions. The chemoenzymatic approach has been utilized for several decades because determining the optimal conditions for conventional synthesis is often time-consuming. The synthesis of poly- and oligopeptides comprising various amino acids longer than a dipeptide continues to pose a challenge owing to the lack of knowledge about enzymatic mechanisms and owing to difficulty in optimizing the pH, temperature, and other reaction conditions. These drawbacks limit the applications of the chemoenzymatic approach. Recently, a variety of enzymes and substrates produced using recombinant techniques, substrate mimetics, and optimal reaction conditions (e.g., frozen aqueous media and ionic liquids have broadened the scope of chemoenzymatic peptide syntheses. In this review, we highlight the recent advances in the chemoenzymatic syntheses of various peptides and their use in developing new materials and biomedical applications.

  1. Biogenic synthesized nanoparticles and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Abhijeet, E-mail: abhijeet.singh@jaipur.manipal.edu; Sharma, Madan Mohan [Manipal University Jaipur (India)

    2016-05-06

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO{sub 3} via a green synthesis process using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV–vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.

  2. Lipid peroxidation in cell death.

    Science.gov (United States)

    Gaschler, Michael M; Stockwell, Brent R

    2017-01-15

    Disruption of redox homeostasis is a key phenotype of many pathological conditions. Though multiple oxidizing compounds such as hydrogen peroxide are widely recognized as mediators and inducers of oxidative stress, increasingly, attention is focused on the role of lipid hydroperoxides as critical mediators of death and disease. As the main component of cellular membranes, lipids have an indispensible role in maintaining the structural integrity of cells. Excessive oxidation of lipids alters the physical properties of cellular membranes and can cause covalent modification of proteins and nucleic acids. This review discusses the synthesis, toxicity, degradation, and detection of lipid peroxides in biological systems. Additionally, the role of lipid peroxidation is highlighted in cell death and disease, and strategies to control the accumulation of lipid peroxides are discussed. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  3. Chlorosome lipids from Chlorobium tepidum

    DEFF Research Database (Denmark)

    Sørensen, Peder Grove; Cox, Raymond Pickett; Miller, Mette

    2008-01-01

    We have extracted polar lipids and waxes from isolated chlorosomes from the green sulfur bacterium Chlorobium tepidum and determined the fatty acid composition of each lipid class. Polar lipids amounted to 4.8 mol per 100 mol bacteriochlorophyll in the chlorosomes, while non-polar lipids (waxes......) were present at a ratio of 5.9 mol per 100 mol bacteriochlorophyll. Glycolipids constitute 60 % of the polar lipids while phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, and an aminoglycosphingolipid make up respectively 15, 3, 8 and 12 %. A novel glycolipid was identified...... as a rhamnose derivative of monogalactosyldiacylglycerol, while the other major glycolipid was monogalactosyldiacylglycerol. Tetradecanoic acid was the major fatty acid in the aminoglycosphingolipid, while the other polar lipids contained predominantly hexandecanoic acid. The chlorosome waxes are esters...

  4. Enzymatic synthesis of designer lipids

    Directory of Open Access Journals (Sweden)

    Devi B.L.A. Prabhavathi

    2008-05-01

    Full Text Available Even though natural oils and fats play an important role in human nutrition, its excessive intake became major cause for so many health related problems and hence designer lipids came into focus. Designed or structured lipids are nothing but tailor-made oils and fats with improved physical and organoleptic properties to enhance the role of fats and oils in food, nutrition, and health applications. These designer lipids can be produced by chemical- or enzymatic (interesterification reactions and genetic engineering of oilseed crops. This review gives a general idea about the enzymatic modifications of natural lipids and their derivatives for the preparation of designer lipids. The commercialization outlook, food, nutritional and pharmaceutical applications of designer lipids are also briefly discussed.

  5. Lipids and membrane lateral organization.

    Science.gov (United States)

    Sonnino, Sandro; Prinetti, Alessandro

    2010-01-01

    Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creation of these levels of order. In the late 1980s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically) popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts). Today, a PubMed search using the key word "lipid rafts" returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, "ceramide" returned 6187 hits with 799 reviews), and a tremendous number of different cellular functions have been described as "lipid raft-dependent." However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells has been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasizes multiple roles for membrane lipids in determining membrane order, that encompass their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.

  6. Lipids and membrane lateral organization

    Directory of Open Access Journals (Sweden)

    Sandro eSonnino

    2010-11-01

    Full Text Available Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creations of these levels of order. In the late 80’s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts. Today, a PubMed search using the key word lipid rafts returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, ceramide returned 6187 hits with 799 reviews, and a tremendous number of different cellular functions have been described as lipid raft-dependent. However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells have been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasize multiple roles for membrane lipids in determining membrane order, that encompasses their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.

  7. Enzymatic synthesis of designer lipids

    OpenAIRE

    Devi B.L.A. Prabhavathi; Zhang Hong; Damstrup Marianne L.; Guo Zheng; Zhang Long; Lue Bena-Marie; Xu Xuebing

    2008-01-01

    Even though natural oils and fats play an important role in human nutrition, its excessive intake became major cause for so many health related problems and hence designer lipids came into focus. Designed or structured lipids are nothing but tailor-made oils and fats with improved physical and organoleptic properties to enhance the role of fats and oils in food, nutrition, and health applications. These designer lipids can be produced by chemical- or enzymatic (inter)esterification reactions ...

  8. Studies on lipid artificial tears

    OpenAIRE

    Torrent Burgués, Juan

    2017-01-01

    Report-review sobre llàgrima artificial, llàgrima lipídica. The use of artificial tears is related with dry eye problems or ocular irritations. It exist different types of artificial tears. One type of them is the lipid artificial tears which tray to repair or improve the lipid layer present in the outermostpart of the tear film. Several lipid artificial tears are present in the market and commercialised by several companies. In the composition of some of these lipid tears occurs as a prin...

  9. New worldwide lipid guidelines.

    Science.gov (United States)

    Saraf, Smriti; Ray, Kausik K

    2015-07-01

    Atherosclerotic cardiovascular disease (ASCVD) remains the leading cause of morbidity and mortality in most countries. Modification of common risk factors such as dyslipidaemia can result in significant reduction of ASCVD incidence in the population and improve clinical outcomes. The purpose of this review is to discuss and compare the latest worldwide lipid guidelines, and to demonstrate the variation in practice in different parts of the world. The lipid guidelines have recently been updated in different countries. The National Institute for Health and Care Excellence (NICE) guidelines in the United Kingdom were issued in July 2014, are risk based and are broadly similar to the American College of Cardiology/American Heart Association task force guidelines that were published in November 2013. Both these guidelines are in variance with both the Canadian Guidelines and the European Society of Cardiology/European Atherosclerosis Society guidelines 2011, which are target based and have different risk scoring systems, which results in significant variation in practice and increased healthcare costs in certain countries. The difference in guidelines in different countries makes it difficult for the clinician to standardize the treatment provided to individuals. The variance in risk scoring systems makes it difficult to compare risk prediction tools across countries and hence the optimum treatment available for a given population. Standardization of guidelines based on randomized controlled trial data and validation and calibration of various risk scoring systems could help improve clinical outcomes in this high-risk group of individuals at risk of ASCVD within individual countries.

  10. Mass Production and Size Control of Lipid-Polymer Hybrid Nanoparticles through Controlled Microvortices

    NARCIS (Netherlands)

    Kim, Yongtae; Lee Chung, Bomy; Ma, Mingming; Mulder, Willem J. M.; Fayad, Zahi A.; Farokhzad, Omid C.; Langer, Robert

    2012-01-01

    Lipid-polymer hybrid (LPH) nanoparticles can deliver a wide range of therapeutic compounds in a controlled manner. LPH nanoparticle syntheses using microfluidics improve the mixing process but are restricted by a low throughput. In this study, we present a pattern-tunable microvortex platform that

  11. Intact polar lipids of ammonia-oxidizing Archaea: structural diversity application in molecular ecology

    NARCIS (Netherlands)

    Pitcher, A.M.

    2011-01-01

    Non-extremophilic Crenarchaeota are ubiquitous, and comprise a major component of the microbial assemblages in many modern-day systems. Several studies have analyzed glycerol dialkyl glycerol tetraether (GDGT) membrane lipids synthesized by non-extremophilic Crenarchaeota to interpret the presence,

  12. Intact polar lipids of ammonia-oxidizing Archaea: Structural diversity anapplication inmolecular ecology

    NARCIS (Netherlands)

    Pitcher, A.

    2011-01-01

    Non-extremophilic Crenarchaeota are ubiquitous, and comprise a major component of the microbial assemblages in many modern-day systems. Several studies have analyzed glycerol dialkyl glycerol tetraether (GDGT) membrane lipids synthesized by Crenarchaeota to interpret the presence, distribution, and

  13. Simplification of Methods for PET Radiopharmaceutical Syntheses

    Energy Technology Data Exchange (ETDEWEB)

    Kilbourn, Michael, R.

    2011-12-27

    In an attempt to develop simplified methods for radiochemical synthesis of radiopharmaceuticals useful in Positron Emission Tomography (PET), current commercially available automated synthesis apparati were evaluated for use with solid phase synthesis, thin-film techniques, microwave-accelerated chemistry, and click chemistry approaches. Using combinations of these techniques, it was shown that these automated synthesis systems can be simply and effectively used to support the synthesis of a wide variety of carbon-11 and fluorine-18 labeled compounds, representing all of the major types of compounds synthesized and using all of the common radiochemical precursors available. These techniques are available for use to deliver clinically useful amounts of PET radiopharmaceuticals with chemical and radiochemical purities and high specific activities, suitable for human administration.

  14. Synthesizing Biomolecule-based Boolean Logic Gates

    Science.gov (United States)

    Miyamoto, Takafumi; Razavi, Shiva; DeRose, Robert; Inoue, Takanari

    2012-01-01

    One fascinating recent avenue of study in the field of synthetic biology is the creation of biomolecule-based computers. The main components of a computing device consist of an arithmetic logic unit, the control unit, memory, and the input and output devices. Boolean logic gates are at the core of the operational machinery of these parts, hence to make biocomputers a reality, biomolecular logic gates become a necessity. Indeed, with the advent of more sophisticated biological tools, both nucleic acid- and protein-based logic systems have been generated. These devices function in the context of either test tubes or living cells and yield highly specific outputs given a set of inputs. In this review, we discuss various types of biomolecular logic gates that have been synthesized, with particular emphasis on recent developments that promise increased complexity of logic gate circuitry, improved computational speed, and potential clinical applications. PMID:23526588

  15. Structure of the enzymatically synthesized fructan inulin

    Energy Technology Data Exchange (ETDEWEB)

    Heyer, A.G.; Schroeer, B. [Max-Planck-Institut fuer Molekulare Pflanzenphysiologie, Karl-Liebknecht-Str. 25, 14476 Golm (Germany); Radosta, S. [Fraunhofer-Institut fuer Angewandte Polymerforschung, Postfach 126, 14504 Teltow (Germany); Wolff, D.; Czapla, S.; Springer, J. [Technische Universitaet Berlin, FG Makromolekulare Chemie, Str. des 17. Juni 135, 10623 Berlin (Germany)

    1998-12-15

    Construction, purification and characterization of a fusion protein of maltose-binding protein of Escherichia coli and the fructosyltransferase of Streptococcus mutans is described. With the purified protein, in vitro synthesis of inulin was performed. The obtained polysaccharide was characterized by high-performance size-exclusion chromatography (HPSEC) and static light scattering (SLS) in dilute aqueous and dimethyl sulfoxide solution. For all samples very high molecular weights between 60x10{sup 6} and 90x10{sup 6} g/mol and a remarkable small polydispersity index of 1.1 have been determined. Small root-mean-square radii of gyration point to a compact conformation in dilute solution. No difference between native and enzymatically synthesized inulin was observed by X-ray powder diffraction and thermoanalysis of solid samples. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  16. National Gas Survey. Synthesized gaseous hydrocarbon fuels

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-06-01

    The supply-Technical Advisory Task Force-Synthesized Gaseous Hydrocarbon Fuels considered coal, hydrocarbon liquids, oil shales, tar sands, and bioconvertible materials as potential feedstocks for gaseous fuels. Current status of process technology for each feedstock was reviewed, economic evaluations including sensitivity analysis were made, and constraints for establishment of a synthesized gaseous hydrocarbon fuels industry considered. Process technology is presently available to manufacture gaseous hydrocarbon fuels from each of the feedstocks. In 1975 there were eleven liquid feedstock SNG plants in the United States having a capacity of 1.1 billion SCFD. There can be no contribution of SNG before 1982 from plants using feedstocks other than liquids because there are no plants in operation or under construction as of 1977. Costs for SNG are higher than current regulated prices for U.S. natural gas. Because of large reserves, coal is a prime feedstock candidate although there are major constraints in the area of coal leases, mining and water permits, and others. Commercial technology is available and several new gasification processes are under development. Oil shale is also a feedstock in large supply and commercial process technology is available. There are siting and permit constraints, and water availability may limit the ultimate size of an oil shale processing industry. Under projected conditions, bioconvertible materials are not expected to support the production of large quantities of pipeline quality gas during the next decade. Production of low or medium Btu gas from municipal solid wastes can be expected to be developed in urban areas in conjunction with savings in disposal costs. In the economic evaluations presented, the most significant factor for liquid feedstock plants is the anticipated cost of feedstock and fuel. The economic viability of plants using other feedstocks is primarily dependent upon capital requirements.

  17. Enantioselective catalytic syntheses of alpha-branched chiral amines

    DEFF Research Database (Denmark)

    Brase, S.; Baumann, T.; Dahmen, S.

    2007-01-01

    Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials.......Chiral amines play a pivotal role in fine chemical and natural product syntheses and the design of novel materials....

  18. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of ...

    African Journals Online (AJOL)

    Purpose: To prepare solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) of loratadine (LRT) for the treatment of allergic skin reactions. Methods: SLN and NLC were prepared by high pressure homogenization method. Their entrapment efficiency (EE) and loading capacity (LC) were determined.

  19. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of ...

    African Journals Online (AJOL)

    Solid Lipid Nanoparticles and Nanostructured Lipid. Carriers of Loratadine for Topical Application: Physicochemical Stability and Drug Penetration through. Rat Skin. Melike Üner1*, Ecem Fatma Karaman1 and Zeynep Aydoğmuş2. Istanbul University, Faculty of Pharmacy, 1Department of Pharmaceutical Technology, ...

  20. Unraveling lipid metabolism in lipid-dependent pathogenic Malassezia yeasts

    NARCIS (Netherlands)

    Celis Ramirez, A.M.

    2017-01-01

    Malassezia yeasts are lipid-dependent fungal species that are common members of the human and animal skin microbiota. The lipid-dependency is a crucial trait in the adaptation process to grow on the skin but also plays a role in their pathogenic life style. Malassezia species can cause several skin

  1. Study of antioxidant enzymes, lipid peroxidation, lipid profile and ...

    African Journals Online (AJOL)

    McRoy

    Study of antioxidant enzymes, lipid peroxidation, lipid profile and immunologic factor in coronary artery disease in East Azarbijan. Khaki-khatibi F1*, Yaghoubi A.R2, Rahbani N.M1. 1Department of Clinical Biochemistry, 2Cardiovascular Research Center, Faculty of Medicine, Tabriz. University of Medical Sciences. Tabriz ...

  2. Lipid mobility in supported lipid bilayers by single molecule tracking

    Science.gov (United States)

    Kohram, Maryam; Shi, Xiaojun; Smith, Adam

    2015-03-01

    Phospholipid bilayers are the main component of cell membranes and their interaction with biomolecules in their immediate environment is critical for cellular functions. These interactions include the binding of polycationic polymers to lipid bilayers which affects many cell membrane events. As an alternative method of studying live cell membranes, we assemble a supported lipid bilayer and investigate its binding with polycationic polymers in vitro by fluorescently labeling the molecules of the supported lipid bilayer and tracking their mobility. In this work, we use single molecule tracking total internal reflection fluorescence microscopy (TIRF) to study phosphatidylinositol phosphate (PIP) lipids with and without an adsorbed polycationic polymer, quaternized polyvinylpyridine (QPVP). Individual molecular trajectories are obtained from the experiment, and a Brownian diffusion model is used to determine diffusion coefficients through mean square displacements. Our results indicate a smaller diffusion coefficient for the supported lipid bilayers in the presence of QPVP in comparison to its absence, revealing that their binding causes a decrease in lateral mobility.

  3. Food processing and lipid oxidation.

    Science.gov (United States)

    German, J B

    1999-01-01

    Food lipids are principally triacylglycerides, phospholipids and sterols found naturally in most biological materials consumed as food and added as functional ingredients in many processed foods. As nutrients, lipids, especially triglycerides, are a concentrated caloric source, provide essential fatty acids and are a solvent and absorption vehicle for fat-soluble vitamins and other nutrients. The presence of fat significantly enhances the organoleptic perception of foods, which partly explains the strong preference and market advantage of fat-rich foods. As a class, lipids contribute many desirable qualities to foods, including attributes of texture, structure, mouthfeel, flavor and color. However, lipids are also one of the most chemically unstable food components and will readily undergo free-radical chain reactions that not only deteriorate the lipids but also: (a) produce oxidative fragments, some of which are volatile and are perceived as the off-flavors of rancidity, (b) degrade proteins, vitamins and pigments and (c) cross-link lipids and other macromolecules into non-nutritive polymers. Free-radical chain reactions are thermodynamically favorable, and as a result, evolutionary selection has strongly influenced the chemistry, metabolism and structure of biological cells to prevent these reactions kinetically. However, the loss of native structure and the death of cells can dramatically accelerate the deteriorative reactions of lipid oxidation. The effects of all processing steps, including raw product selection, harvesting, storage, refining, manufacturing and distribution, on the quality of lipids in the final commodity are considerable. Certain key variables now known to influence oxidative processes can be targeted to increase food lipid stability during and after processing. Retention of or addition of exogenous antioxidants is a well-known consideration, but the presence and activity of catalysts, the integrity of tissues and cells, the quantity of

  4. Analysis of lipid profile in lipid storage myopathy.

    Science.gov (United States)

    Aguennouz, M'hammed; Beccaria, Marco; Purcaro, Giorgia; Oteri, Marianna; Micalizzi, Giuseppe; Musumesci, Olimpia; Ciranni, Annmaria; Di Giorgio, Rosa Maria; Toscano, Antonio; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Lipid dysmetabolism disease is a condition in which lipids are stored abnormally in organs and tissues throughout the body, causing muscle weakness (myopathy). Usually, the diagnosis of this disease and its characterization goes through dosage of Acyl CoA in plasma accompanied with evidence of droplets of intra-fibrils lipids in the patient muscle biopsy. However, to understand the pathophysiological mechanisms of lipid storage diseases, it is useful to identify the nature of lipids deposited in muscle fiber. In this work fatty acids and triglycerides profile of lipid accumulated in the muscle of people suffering from myopathies syndromes was characterized. In particular, the analyses were carried out on the muscle biopsy of people afflicted by lipid storage myopathy, such as multiple acyl-coenzyme A dehydrogenase deficiency, and neutral lipid storage disease with myopathy, and by the intramitochondrial lipid storage dysfunctions, such as deficiencies of carnitine palmitoyltransferase II enzyme. A single step extraction and derivatization procedure was applied to analyze fatty acids from muscle tissues by gas chromatography with a flame ionization detector and with an electronic impact mass spectrometer. Triglycerides, extracted by using n-hexane, were analyzed by high performance liquid chromatography coupled to mass spectrometer equipped with an atmospheric pressure chemical ionization interface. The most representative fatty acids in all samples were: C16:0 in the 13-24% range, C18:1n9 in the 20-52% range, and C18:2n6 in the 10-25% range. These fatty acids were part of the most representative triglycerides in all samples. The data obtained was statistically elaborated performing a principal component analysis. A satisfactory discrimination was obtained among the different diseases. Using component 1 vs component 3 a 43.3% of total variance was explained. Such results suggest the important role that lipid profile characterization can have in supporting a correct

  5. Effect of zinc oxide nanoparticles synthesized by a precipitation ...

    Indian Academy of Sciences (India)

    ZnO nanoparticles were synthesized by a precipitation method in aqueous media from zinc nitrate hexahydrate and sodium hydroxide. The synthesized ZnO nanoparticles exhibited a crystalline structure with hexagonal structure of the wurtzite. The morphology of the synthesized ZnO nanoparticles presented a spherical ...

  6. Defining function of lipopolysaccharide O-antigen ligase WaaL using chemoenzymatically synthesized substrates.

    Science.gov (United States)

    Han, Weiqing; Wu, Baolin; Li, Lei; Zhao, Guohui; Woodward, Robert; Pettit, Nicholas; Cai, Li; Thon, Vireak; Wang, Peng G

    2012-02-17

    The WaaL-mediated ligation of O-antigen onto the core region of the lipid A-core block is an important step in the lipopolysaccharide (LPS) biosynthetic pathway. Although the LPS biosynthesis has been largely characterized, only a limited amount of in vitro biochemical evidence has been established for the ligation reaction. Such limitations have primarily resulted from the barriers in purifying WaaL homologues and obtaining chemically defined substrates. Accordingly, we describe herein a chemical biology approach that enabled the reconstitution of this ligation reaction. The O-antigen repeating unit (O-unit) of Escherichia coli O86 was first enzymatically assembled via sequential enzymatic glycosylation of a chemically synthesized GalNAc-pyrophosphate-undecaprenyl precursor. Subsequent expression of WaaL through use of a chaperone co-expression system then enabled the demonstration of the in vitro ligation between the synthesized donor (O-unit-pyrophosphate-undecaprenyl) and the isolated lipid A-core acceptor. The previously reported ATP and divalent metal cation dependence were not observed using this system. Further analyses of other donor substrates revealed that WaaL possesses a highly relaxed specificity toward both the lipid moiety and the glycan moiety of the donor. Lastly, three conserved amino acid residues identified by sequence alignment were found essential for the WaaL activity. Taken together, the present work represents an in vitro systematic investigation of the WaaL function using a chemical biology approach, providing a system that could facilitate the elucidation of the mechanism of WaaL-catalyzed ligation reaction.

  7. Defining Function of Lipopolysaccharide O-antigen Ligase WaaL Using Chemoenzymatically Synthesized Substrates*

    Science.gov (United States)

    Han, Weiqing; Wu, Baolin; Li, Lei; Zhao, Guohui; Woodward, Robert; Pettit, Nicholas; Cai, Li; Thon, Vireak; Wang, Peng G.

    2012-01-01

    The WaaL-mediated ligation of O-antigen onto the core region of the lipid A-core block is an important step in the lipopolysaccharide (LPS) biosynthetic pathway. Although the LPS biosynthesis has been largely characterized, only a limited amount of in vitro biochemical evidence has been established for the ligation reaction. Such limitations have primarily resulted from the barriers in purifying WaaL homologues and obtaining chemically defined substrates. Accordingly, we describe herein a chemical biology approach that enabled the reconstitution of this ligation reaction. The O-antigen repeating unit (O-unit) of Escherichia coli O86 was first enzymatically assembled via sequential enzymatic glycosylation of a chemically synthesized GalNAc-pyrophosphate-undecaprenyl precursor. Subsequent expression of WaaL through use of a chaperone co-expression system then enabled the demonstration of the in vitro ligation between the synthesized donor (O-unit-pyrophosphate-undecaprenyl) and the isolated lipid A-core acceptor. The previously reported ATP and divalent metal cation dependence were not observed using this system. Further analyses of other donor substrates revealed that WaaL possesses a highly relaxed specificity toward both the lipid moiety and the glycan moiety of the donor. Lastly, three conserved amino acid residues identified by sequence alignment were found essential for the WaaL activity. Taken together, the present work represents an in vitro systematic investigation of the WaaL function using a chemical biology approach, providing a system that could facilitate the elucidation of the mechanism of WaaL-catalyzed ligation reaction. PMID:22158874

  8. Lipid Mediators in Acne

    Directory of Open Access Journals (Sweden)

    Monica Ottaviani

    2010-01-01

    Full Text Available Multiple factors are involved in acne pathogenesis, and sebum secretion is one of the main ones. The role sebum plays in acne development has not been completely elucidated yet; however, increasing amounts of data seem to confirm the presence of alterations in sebum from acne patients. Altered ratio between saturated and unsaturated fatty acids has been indicated as an important feature to be considered in addition to the altered amount of specific fatty acids such as linoleic acid. Furthermore, particular attention has been focused on squalene peroxide that seems to be able to induce an inflammatory response beyond cytotoxicity and comedones formation. Moreover, recent data suggest that lipid mediators are able to interfere with sebocytes differentiation and sebogenesis through the activation of pathways related to peroxisome proliferators-activated receptors. Understanding the factors and mechanisms that regulate sebum production is needed in order to identify novel therapeutic strategies for acne treatment.

  9. Blood lipids and prostate cancer

    DEFF Research Database (Denmark)

    Bull, Caroline J; Bonilla, Carolina; Holly, Jeff M P

    2016-01-01

    Genetic risk scores were used as unconfounded instruments for specific lipid traits (Mendelian randomization) to assess whether circulating lipids causally influence prostate cancer risk. Data from 22,249 prostate cancer cases and 22,133 controls from 22 studies within the international PRACTICAL...

  10. Fasting and nonfasting lipid levels

    DEFF Research Database (Denmark)

    Langsted, Anne; Freiberg, Jacob J; Nordestgaard, Børge G

    2008-01-01

    Lipid profiles are usually measured after fasting. We tested the hypotheses that these levels change only minimally in response to normal food intake and that nonfasting levels predict cardiovascular events.......Lipid profiles are usually measured after fasting. We tested the hypotheses that these levels change only minimally in response to normal food intake and that nonfasting levels predict cardiovascular events....

  11. Lipids in liver transplant recipients

    Science.gov (United States)

    Hüsing, Anna; Kabar, Iyad; Schmidt, Hartmut H

    2016-01-01

    Hyperlipidemia is very common after liver transplantation and can be observed in up to 71% of patients. The etiology of lipid disorders in these patients is multifactorial, with different lipid profiles observed depending on the immunosuppressive agents administered and the presence of additional risk factors, such as obesity, diabetes mellitus and nutrition. Due to recent improvements in survival of liver transplant recipients, the prevention of cardiovascular events has become more important, especially as approximately 64% of liver transplant recipients present with an increased risk of cardiovascular events. Management of dyslipidemia and of other modifiable cardiovascular risk factors, such as hypertension, diabetes and smoking, has therefore become essential in these patients. Treatment of hyperlipidemia after liver transplantation consists of life style modification, modifying the dose or type of immunosuppressive agents and use of lipid lowering agents. At the start of administration of lipid lowering medications, it is important to monitor drug-drug interactions, especially between lipid lowering agents and immunosuppressive drugs. Furthermore, as combinations of various lipid lowering drugs can lead to severe side effects, such as myopathies and rhabdomyolysis, these combinations should therefore be avoided. To our knowledge, there are no current guidelines targeting the management of lipid metabolism disorders in liver transplant recipients. This paper therefore recommends an approach of managing lipid abnormalities occurring after liver transplantation. PMID:27022213

  12. The Flexibility of Ectopic Lipids.

    Science.gov (United States)

    Loher, Hannah; Kreis, Roland; Boesch, Chris; Christ, Emanuel

    2016-09-14

    In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL), skeletal (intramyocellular lipids; IMCL) or cardiac muscle cells (intracardiomyocellular lipids; ICCL). Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. ¹H-magnetic resonance spectroscopy (¹H-MRS) is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass), insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term) appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.

  13. Carbamate-linked cationic lipids with different hydrocarbon chains for gene delivery.

    Science.gov (United States)

    Shi, Jia; Yu, Shijun; Zhu, Jie; Zhi, Defu; Zhao, Yinan; Cui, Shaohui; Zhang, Shubiao

    2016-05-01

    A series of carbamate-linked cationic lipids containing saturated or unsaturated hydrocarbon chains and quaternary ammonium head were designed and synthesized. After recrystallization, carbamate-linked cationic lipids with high purity (over 95%) were obtained. The structures of these lipids were proved by IR spectrum, HR-ESI-MS, HPLC, (1)H NMR and (13)C NMR. The liposomes were prepared by using these cationic lipids and neutral lipid DOPE. Particle size and zeta-potential were studied to show that they were suitable for gene transfection. The DNA-bonding ability of C12:0, C14:0 and C18:1 cationic liposomes was much better than others. The results of transfection showed that hydrophobic chains of these lipids have great effects on their transfection activity. The lipids bearing C12:0, C14:0 saturated chains or C18:1 unsaturated chain showed relatively higher transfection efficiency and lower cytotoxicity. So these cationic lipids could be used as non-viral gene carriers for further studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Characteristics of fatty acid composition of lipids in higher plant vacuolar membranes.

    Science.gov (United States)

    Makarenko, S P; Konenkina, T A; Salyaev, R K

    2000-01-01

    The fatty acid composition of vacuolar membrane lipids from plant storage tissues and their genesis have been studied. A high content of unsaturated fatty acids (up to 77%) was observed in lipids of these membranes. Linoleic acid prevailed in vacuolar lipids of carrot and red beet (54.2 and 44.2%, respectively). Linolenic acid prevailed in vacuolar lipids of garden radish and turnip (39.7 and 33.9%, respectively). Regarding saturated fatty acids, vacuolar lipids of garden radish, carrot, and red beet contained predominantly palmitic acid (up to 20-24%). Unsaturated fatty acids, petroselinic (C18: 1omega12), cis-vaccenic (C18: 1omega7), hexatrien-7,-10,-13-oic (C16:3omega3) and others, were observed in vacuolar lipids of roots. These acids are usually synthesized in chloroplasts, and their presence in vacuolar lipids can be associated either with the transport of metabolites to the vacuole, or with endocytosis during vacuolar formation in the plant cell. The specific features of fatty acid composition of tonoplast lipids apparently are closely related to the tonoplast unique fluidity and mobility required for running osmotic processes in the cell and for forming transport protein assemblies.

  15. Intact membrane lipids of "Candidatus Nitrosopumilus maritimus," a cultivated representative of the cosmopolitan mesophilic group I Crenarchaeota.

    Science.gov (United States)

    Schouten, Stefan; Hopmans, Ellen C; Baas, Marianne; Boumann, Henry; Standfest, Sonja; Könneke, Martin; Stahl, David A; Sinninghe Damsté, Jaap S

    2008-04-01

    In this study we analyzed the membrane lipid composition of "Candidatus Nitrosopumilus maritimus," the only cultivated representative of the cosmopolitan group I crenarchaeota and the only mesophilic isolate of the phylum Crenarchaeota. The core lipids of "Ca. Nitrosopumilus maritimus" consisted of glycerol dialkyl glycerol tetraethers (GDGTs) with zero to four cyclopentyl moieties. Crenarchaeol, a unique GDGT containing a cyclohexyl moiety in addition to four cyclopentyl moieties, was the most abundant GDGT. This confirms unambiguously that crenarchaeol is synthesized by species belonging to the group I.1a crenarchaeota. Intact polar lipid analysis revealed that the GDGTs have hexose, dihexose, and/or phosphohexose head groups. Similar polar lipids were previously found in deeply buried sediments from the Peru margin, suggesting that they were in part synthesized by group I crenarchaeota.

  16. Ovarian Lipid Metabolism Modulates Circulating Lipids in Premenopausal Women.

    Science.gov (United States)

    Jensen, Jeffrey T; Addis, Ilana B; Hennebold, Jon D; Bogan, Randy L

    2017-09-01

    The premenopausal circulating lipid profile may be linked to the hormonal profile and ovarian lipid metabolism. Assess how estradiol, progesterone, and ovarian lipid metabolism contributes to the premenopausal lipid profile; and evaluate the acute effects of a common hormonal oral contraceptive (OC) on circulating lipids. Experimental crossover with repeated measures. Academic hospitals. Eight healthy, regularly menstruating women. Participants underwent periodic serum sampling during a normal menstrual cycle; a standard 21-day, monophasic combined hormonal OC cycle (30 µg of ethinyl estradiol and 150 µg of levonorgestrel per day); menopause simulated by leuprolide acetate (22.5-mg depot); and an artificial menstrual cycle achieved via transdermal estradiol (50 to 300 µg/d) and vaginal micronized progesterone (100 to 300 mg/d). Primary outcomes included evaluation of total cholesterol, high-density lipoprotein (HDL) cholesterol, low-density lipoprotein cholesterol, triglycerides, and the total cholesterol to HDL cholesterol ratio. To estimate the effect of estradiol, progesterone, and ovarian lipid metabolism, all specimens except those from the OC cycle were analyzed. Subgroup analysis was conducted on the follicular and luteal phases. In a separate analysis, the effect of the OC was evaluated relative to the normal menstrual cycle. Estradiol was significantly associated with increased levels of HDL cholesterol throughout the menstrual cycle and in the follicular phase. Ovarian effects were associated with reduced lipid levels, especially during the luteal phase. The OC was associated with an increased total cholesterol to HDL cholesterol ratio and triglycerides. Previously unappreciated factors including ovarian lipid metabolism may contribute to the premenopausal lipid profile.

  17. Stabilization and augmentation of circulating AIM in mice by synthesized IgM-Fc.

    Directory of Open Access Journals (Sweden)

    Toshihiro Kai

    Full Text Available Owing to rapid and drastic changes in lifestyle and eating habits in modern society, obesity and obesity-associated diseases are among the most important public health problems. Hence, the development of therapeutic approaches to regulate obesity is strongly desired. In view of previous work showing that apoptosis inhibitor of macrophage (AIM blocks lipid storage in adipocytes, thereby preventing obesity caused by a high-fat diet, we here explored a strategy to augment circulating AIM levels. We synthesized the Fc portion of the soluble human immunoglobulin (IgM heavy chain and found that it formed a pentamer containing IgJ as natural IgM does, and effectively associated with AIM in vitro. When we injected the synthesized Fc intravenously into mice lacking circulating IgM, it associated with endogenous mouse AIM, protecting AIM from renal excretion and preserving the circulating AIM levels. As the synthesized Fc lacked the antigen-recognizing variable region, it provoked no undesired immune response. In addition, a challenge with the Fc-human AIM complex in wild-type mice, which exhibited normal levels of circulating IgM and AIM, successfully maintained the levels of the human AIM in mouse blood. We also observed that the human AIM was effectively incorporated into adipocytes in visceral fat tissue, suggesting its functionality against obesity. Thus, our findings reveal potent strategies to safely increase AIM levels, which could form the basis for developing novel therapies for obesity.

  18. Legionella bozemanae synthesizes phosphatidylcholine from exogenous choline.

    Science.gov (United States)

    Palusinska-Szysz, Marta; Janczarek, Monika; Kalitynski, Rafal; Dawidowicz, Andrzej L; Russa, Ryszard

    2011-02-20

    The phospholipid class and fatty acid composition of Legionella bozemanae were determined using thin-layer chromatography, gas-liquid chromatography, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. Phosphatidylcholine, phosphatidylethanolamine, and diphosphatidylglycerol were the predominant phospholipids, while phosphatidyl-N-monomethylethanolamine, phosphatidylglycerol, and phosphatidyl-N,N-dimethylethanolamine were present at low concentrations. With the use of the LC/MS technique, PC16:0/15:0, PC17:/15:0, and PE16:1/15:0 were shown to be the dominant phospholipid constituents, which may be taxonomically significant. Two independent phosphatidylcholine synthesis pathways (the three-step methylation and the one-step CDP-choline pathway) were present and functional in L. bozemanae. In the genome of L. bozemanae, genes encoding two potential phosphatidylcholine forming enzymes, phospholipid N-methyl transferase (PmtA) and phosphatidylcholine synthase (Pcs), homologous to L. longbeachae, L. drancourtii, and L. pneumophila pmtA and pcs genes were identified. Genes pmtA and pcs from L. bozemanae were sequenced and analyzed on nucleotide and amino acid levels. Bacteria grown on an artificial medium with labelled choline synthesized phosphatidylcholine predominantly via the phosphatidylcholine synthase pathway, which indicates that L. bozemanae phosphatidylcholine, similarly as in other bacteria associated with eukaryotes, is an important determinant of host-microbe interactions. Copyright © 2010 Elsevier GmbH. All rights reserved.

  19. Syntheses of surfactants from oleochemical epoxides

    Directory of Open Access Journals (Sweden)

    Warwel Siegfried

    2001-01-01

    Full Text Available Sugar-based surfactants were obtained in good yields (up to 100% under mild conditions (70°C, methanol or mixtures of methanol and water by ring-opening of terminal epoxides with aminopolyols, derived from glucose. Reaction of N-methyl glucamine with epoxides from even-numbered C4-C18 alpha-olefins or from terminal unsaturated fatty acid methyl esters leads to linear products, while corresponding reactions with N-dodecyl glucamine or glucamine yield surfactants with different Y-structures. Products obtained by conversion of omega-epoxy fatty acid methyl esters were saponificated with NaOH or hydrolyzed enzymatically to sodium salts or free acids respectively, which are amphoteric surfactants. Studies of the surfactants at different pH-values demonstrate different surface active properties in aqueous solutions. Critical micelle concentrations (c.m.c. in a range between 2 and 500mg/l and surface tensions of 25-40mN/m were measured for several of the synthesized sugar-based surfactants. The ring-opening products are rather poor foamers, whereas some of the corresponding hydrobromides show good foaming properties.

  20. [Femicides in ethnic and racialized groups: syntheses].

    Science.gov (United States)

    Meneghel, Stela Nazareth; Lerma, Betty Ruth Lozano

    2017-01-01

    The text entitled "Femicides in ethnic and racialized groups: syntheses" presents some of the discussions that took place during a seminar on this topic in Buenaventura. Buenaventura is the main Colombian port on the Pacific, a region rich in minerals and a corridor for the movement of goods, which makes it a strategic territory and a center for disputes. At the seminar, the social and political determinants of femicide were discussed, understanding it as a tactic of waging war against women. The forum provided a space for academic discussion, but also for grievances over inter-personal violence, the manifestation of feelings and the elaboration of pain and grief through the medium of art. We believe that the dissemination of this experience to the Brazilian public, in a country with ethnic, social and racial vulnerability similar to that in Colombia, will be of value to social and health workers. The scope of this paper is therefore to provide the opinion of its authors on the determinants of femicides and on actions to tackle them, in addition to a synthesis of the discussions and debates that permeated the event.

  1. Oligodendrocyte precursor cells synthesize neuromodulatory factors.

    Directory of Open Access Journals (Sweden)

    Dominik Sakry

    Full Text Available NG2 protein-expressing oligodendrocyte progenitor cells (OPC are a persisting and major glial cell population in the adult mammalian brain. Direct synaptic innervation of OPC by neurons throughout the brain together with their ability to sense neuronal network activity raises the question of additional physiological roles of OPC, supplementary to generating myelinating oligodendrocytes. In this study we investigated whether OPC express neuromodulatory factors, typically synthesized by other CNS cell types. Our results show that OPC express two well-characterized neuromodulatory proteins: Prostaglandin D2 synthase (PTGDS and neuronal Pentraxin 2 (Nptx2/Narp. Expression levels of the enzyme PTGDS are influenced in cultured OPC by the NG2 intracellular region which can be released by cleavage and localizes to glial nuclei upon transfection. Furthermore PTGDS mRNA levels are reduced in OPC from NG2-KO mouse brain compared to WT cells after isolation by cell sorting and direct analysis. These results show that OPC can contribute to the expression of these proteins within the CNS and suggest PTGDS expression as a downstream target of NG2 signaling.

  2. Association of lipid metabolism with ovarian cancer

    OpenAIRE

    Tania, M.; Khan, M A; Y. Song

    2010-01-01

    Defects in lipid metabolism have been found to be linked to several diseases, among which atherosclerosis, hypertension, obesity, and diabetes are the most important. Although cancer is chiefly a genetic disease, dietary lipid intake and metabolism are related to some cancer risks, including the risk for ovarian cancer. Higher intake of dietary lipids, systemic lipid metabolism malfunction, and abnormal serum lipid levels are somehow related to ovarian cancer. Overexpression of some lipid met...

  3. Functional CD1a is stabilized by exogenous lipids.

    Science.gov (United States)

    Manolova, Vania; Kistowska, Magdalena; Paoletti, Samantha; Baltariu, Gabriel M; Bausinger, Huguette; Hanau, Daniel; Mori, Lucia; De Libero, Gennaro

    2006-05-01

    Self-glycosphingolipids bind to surface CD1 molecules and are readily displaced by other CD1 ligands. This capacity to exchange antigens at the cell surface is not common to other antigen-presenting molecules and its physiological importance is unclear. Here we show that a large pool of cell-surface CD1a, but not CD1b molecules, is stabilized by exogenous lipids present in serum. Under serum deprivation CD1a molecules are altered and functionally inactive, as they are unable to present lipid antigens to T cells. Glycosphingolipids and phospholipids bind to, and restore functionality to CD1a without the contribution of newly synthesized and recycling CD1a molecules. The dependence of CD1a stability on exogenous lipids is not related to its intracellular traffic and rather to its antigen-binding pockets. These results indicate a functional dichotomy between CD1a and CD1b molecules and provide new information on how the lipid antigenic repertoire is immunologically sampled.

  4. Freshwater diatoms as a source of lipids for biofuels.

    Science.gov (United States)

    Graham, James M; Graham, Linda E; Zulkifly, Shahrizim B; Pfleger, Brian F; Hoover, Spencer W; Yoshitani, Jun

    2012-03-01

    Until recently, biodiesel production has been derived from terrestrial plants such as soybean and canola, leading to competition between biodiesel production and agricultural production for source materials. Microalgae have the potential to synthesize 30 times more oil per hectare than terrestrial plants without competing for agricultural land. We examined four genera (Cyclotella, Aulacoseira, Fragilaria, Synedra) of common freshwater diatoms (Bacillariophyceae) for growth and lipid content in defined medium (sD11) that replicates hypereutrophic conditions in lakes and wastewater treatment plant effluents and optimized the medium for silicon content. Cyclotella and Aulacoseira produced the highest levels of total lipids, 60 and 43 μg total lipids/ml, respectively. Both diatoms are rich in fatty acids C14, C16, C16:1, C16:2,7,10, and C22:5n3. Of the diatoms examined, Cyclotella reached the highest population density (>2.5 × 10(6) cells/ml) in stationary phase when many of the cells appeared to be filled entirely with oil. Silicon enrichment studies indicated that for optimal utilization of phosphorus and nitrogen by diatoms growing in wastewater effluent, the amount of silicon present or added to the effluent should be 17.5 times the mass of phosphorus in the effluent. With high growth rates, high lipid contents, and rapid settling rates, Cyclotella and Aulacoseira are candidates for biodiesel production.

  5. Exogenous ether lipids predominantly target mitochondria

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Richter, Doris; Hannibal-Bach, Hans Kristian

    2012-01-01

    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high...... amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine...... in ether lipid metabolism and intracellular ether lipid trafficking....

  6. Lipid effects of endocrine medications.

    Science.gov (United States)

    Mihailescu, Dan V; Vora, Avni; Mazzone, Theodore

    2011-02-01

    Various alterations of lipid homeostasis have a significant role in the pathophysiology of the artherosclerotic process. The effects of usual lipid-lowering agents such as statins, fibrates, or niacin are well known, but other endocrine therapeutic agents could also affect the blood levels of various lipoproteins and, in turn, influence atheroma formation. In this review, we attempt to summarize the effect of several hormonal and non-hormonal endocrine agents on lipid metabolism, including insulin, thyroid hormone, sex hormones, glucocorticoids, growth hormone, and several anti-diabetic agents.

  7. Synthesis, self-assembly and lipoplex formulation of two novel cyclic phosphonate lipids

    Directory of Open Access Journals (Sweden)

    JenniferYeh

    2013-05-01

    Full Text Available Background: Synthetic cationic lipids hold much potential as gene packaging and delivery agents for the treatment of inherited and acquired life threatening diseases, such as cancer, AIDS, cardiovascular diseases, and certain autoimmune disorders. Methods: We report the synthesis, self-assembly as characterized by critical micelle concentrations and plasmid DNA gel retardation using two novel cyclic, phosphonate cationic lipids 2a and 2b, which were synthesized by derivatizing two diastereomeric macrocyclic phosphonates 1a and 1b with a 2-carbon hydroxylamine linker, N, N-dimethylethanolamine (3. Results: The production of cyclic phosphonate lipids 2a and 2b in 73% and 60% yields, respectively, was achieved using classical synthetic methods involving nucleophilic substitution at the phosphorus centre. Conclusions: The synthesis, aggregation and DNA binding properties of these novel cyclic phosphonate lipids suggest that they may have utility serving as gene packaging and delivery agents.

  8. Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock.

    Science.gov (United States)

    Wang, Juan; Gao, Qiuqiang; Zhang, Huizhan; Bao, Jie

    2016-10-01

    Oleaginous yeast Trichosporon cutaneum is robust to high levels of lignocellulose derived inhibitor compounds with considerable lipid accumulation capacity. The potential of lipid accumulation of T. cutaneum ACCC 20271 was investigated using corn stover hydrolysates with varying sugar and inhibitor concentrations. Biodiesel was synthesized using the extracted lipid and the product satisfied the ASTM standards. Among the typical inhibitors, T. cutaneum ACCC 20271 is relatively sensitive to furfural and 4-hydroxybenzaldehyde, but strongly tolerant to high titers of formic acid, acetic acid, levulinic acid, HMF, vanillin, and syringaldehyde. It is capable of complete degradation of formic acid, acetic acid, vanillin and 4-hydroxybenzaldehyde. Finally, the inhibitor degradation pathways of T. cutaneum ACCC 20271 were constructed based on the newly sequenced whole genome information and the experimental results. The study provided the first insight to the inhibitor degradation of T. cutaneum and demonstrated the potentials of lipid production from lignocellulose. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins

    Directory of Open Access Journals (Sweden)

    Pablo Esteban Morales

    2017-01-01

    Full Text Available Skeletal muscle is one of the main regulators of carbohydrate and lipid metabolism in our organism, and therefore, it is highly susceptible to changes in glucose and fatty acid (FA availability. Skeletal muscle is an extremely complex tissue: its metabolic capacity depends on the type of fibers it is made up of and the level of stimulation it undergoes, such as acute or chronic contraction. Obesity is often associated with increased FA levels, which leads to the accumulation of toxic lipid intermediates, oxidative stress, and autophagy in skeletal fibers. This lipotoxicity is one of the most common causes of insulin resistance (IR. In this scenario, the “isolation” of certain lipids in specific cell compartments, through the action of the specific lipid droplet, perilipin (PLIN family of proteins, is conceived as a lifeguard compensatory strategy. In this review, we summarize the cellular mechanism underlying lipid mobilization and metabolism inside skeletal muscle, focusing on the function of lipid droplets, the PLIN family of proteins, and how these entities are modified in exercise, obesity, and IR conditions.

  10. Polysarcosine-Based Lipids: From Lipopolypeptoid Micelles to Stealth-Like Lipids in Langmuir Blodgett Monolayers

    Directory of Open Access Journals (Sweden)

    Benjamin Weber

    2016-12-01

    Full Text Available Amphiphiles and, in particular, PEGylated lipids or alkyl ethers represent an important class of non-ionic surfactants and have become key ingredients for long-circulating (“stealth” liposomes. While poly-(ethylene glycol (PEG can be considered the gold standard for stealth-like materials, it is known to be neither a bio-based nor biodegradable material. In contrast to PEG, polysarcosine (PSar is based on the endogenous amino acid sarcosine (N-methylated glycine, but has also demonstrated stealth-like properties in vitro, as well as in vivo. In this respect, we report on the synthesis and characterization of polysarcosine based lipids with C14 and C18 hydrocarbon chains and their end group functionalization. Size exclusion chromatography (SEC and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS analysis reveals that lipopeptoids with a degree of polymerization between 10 and 100, dispersity indices around 1.1, and the absence of detectable side products are directly accessible by nucleophilic ring opening polymerization (ROP. The values for the critical micelle concentration for these lipopolymers are between 27 and 1181 mg/L for the ones with C18 hydrocarbon chain or even higher for the C14 counterparts. The lipopolypeptoid based micelles have hydrodynamic diameters between 10 and 25 nm, in which the size scales with the length of the PSar block. In addition, C18PSar50 can be incorporated in 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC monolayers up to a polymer content of 3%. Cyclic compression and expansion of the monolayer showed no significant loss of polymer, indicating a stable monolayer. Therefore, lipopolypeptoids can not only be synthesized under living conditions, but my also provide a platform to substitute PEG-based lipopolymers as excipients and/or in lipid formulations.

  11. Membrane lipid segregation in endocytosis

    Science.gov (United States)

    Nowak, Sarah A.; Chou, Tom

    2008-08-01

    We explore the equilibrium mechanics of a binary lipid membrane that wraps around a spherical or cylindrical particle. One of the lipid membrane components induces a positive spontaneous curvature, while the other induces a negative local curvature. Using a Hamiltonian approach, we derive the equations governing the membrane shape and lipid concentrations near the wrapped object. Asymptotic expressions and numerical solutions for membrane shapes are presented. We determine the regimes of bending rigidity, surface tension, intrinsic lipid curvature, and effective receptor binding energies that lead to efficient wrapping and endocytosis. Our model is directly applicable to the study of invagination of clathrin-coated pits and receptor-induced wrapping of colloids such as spherical virus particles.

  12. Texture of lipid bilayer domains

    DEFF Research Database (Denmark)

    Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov

    2009-01-01

    which correlates with the phase state of the membrane. This is quantified by the generalized polarization (GP) function, and we demonstrate that a GP analysis can be performed on supported membranes. The results show that although the gel domains have heterogeneous texture, the membrane phase state does......We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...... are well studied, the possibility of texture in gel domains has so far not been examined. When using polarized light for two-photon excitation of the fluorescent lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl...

  13. The lipids of Agaricus bisporus.

    Science.gov (United States)

    Byrne, P F; Brennan, P J

    1975-08-01

    A comparison of the lipid composition of the vegetative and reproductive stages of Agaricus bisporus revealed no major qualitative differences, although quantitative divergence exist. The glycolipids consisted of acylglucoses, acylmannitol, acyltrehalose and a glucosyloxyfatty acid. Two of the acylglucoses corresponded to a tetra-acylglucose and to either a di- or a triacylglucose. The phospholipids were distinctive in that phosphatidylcholine could not be detected. Phosphatidylethanolamine and phosphatidylserine were the major phosphoglycerides. Examination of the neutral lipids revealed the expected array of acylglycerols, free and esterified sterols, and free fatty acids. A substantial amount (26 to 33%) of the fatty acids of the neutral lipids from both sporophore and mycelium were apparently of chain length greater than C18. Linoleic acid was a minor component of the total neutral-lipid fatty acids but comprised about one-half of the total free fatty acids.

  14. Modification of Lime Mortars with Synthesized Aluminosilicates

    Science.gov (United States)

    Loganina, Valentina I.; Sadovnikova, Marija E.; Jezierski, Walery; Małaszkiewicz, Dorota

    2017-10-01

    The increasing attention for restoration of buildings of historical and architectural importance has increased the interest for lime-based binders, which could be applied for manufacturing repair mortars and plasters compatible with historical heritage. Different additives, admixtures or fibers may be incorporated to improve mechanical and thermal features of such materials. In this study synthesized aluminosilicates (SA) were applied as an additive for lime mortar. The technology of synthesis consisted in the deposition of aluminosilicates from a sodium liquid glass by the aluminum sulphate Al2(SO4)3. The goal of this investigation was developing a new method of aluminosilicates synthesis from a sodium liquid glass and using this new material as a component for a lime mortar. Aluminosilicates were precipitated from the solution of aluminum sulphate Al2(SO)3 and sodium silicate. SA were then used as an additive to calcareous compositions and their influence was tested. Mortars were prepared with commercial air lime and siliceous river sand. Air lime binder was replaced by 5 and 10 wt.% of SA. Calcareous composition specimens were formed at water/lime ratio 1.0. The following analyses were made: grain size distribution of SA, X-ray diffraction analysis (XRD), sorption properties, plastic strength and compressive strength of lime mortars. XRD pattern of the SA shows the presence of thenardite, gibbsite and amorphous phase represented by aggregate of nano-size cristobalite-like crystallites. Application of SA leads to increase of compressive strength after 90 days of hardening by 28% and 53% at SA content 5 and 10% respectively comparing to specimens without this additive. Contents of chemically bound lime in the reference specimens after 28 days of hardening in air-dry conditions was 46.5%, while in specimens modified with SA contained 50.0-55.3% of bound lime depending on filtrate pH. This testifies to high activity of calcareous composition. The new blended lime

  15. Gene therapy for lipid disorders

    OpenAIRE

    Rader Daniel J; Kawashiri Masa-aki

    2000-01-01

    Abstract Lipid disorders are associated with atherosclerotic vascular disease, and therapy is associated with a substantial reduction in cardiovascular events. Current approaches to the treatment of lipid disorders are ineffective in a substantial number of patients. New therapies for refractory hypercholesterolemia, severe hypertriglyceridemia, and low levels of high-density lipoprotein cholesterol are needed: somatic gene therapy is one viable approach. The molecular etiology and pathophysi...

  16. Serum lipids and diabetic retinopathy

    OpenAIRE

    Shoja; Mahdavi M; Manaviat MR

    2007-01-01

    Background: Diabetes Mellitus is the most common endocrinologic disease in human and retinopathy is one of the most common complications. Etiology of this complication is yet unknown but one of the factors that can be effective on its production or progression is serum lipid. We aim to study the relationship between different degrees of diabetic retinopathy and serum lipids levels. Methods: An observational cross-sectional study designed to study over 37 patients with diabetes mellitus type o...

  17. Lipids and Membrane Lateral Organization

    OpenAIRE

    Sonnino, Sandro; Prinetti, Alessandro

    2010-01-01

    Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creation of these levels of order. In the late 1980s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid...

  18. Absorption properties of micellar lipid metabolites into Caco2 cells.

    Science.gov (United States)

    Tsuzuki, Wakako

    2007-07-01

    To elucidate the absorption characteristics of dietary lipids in the human intestine, we investigated the cellular uptake of lipid metabolites using a differential monolayer of the Caco2 cells. As lipid metabolites, several free fatty acids and 2-monoacylglycerols, were formed a mixed micelle by bile salts and lysophospholipids and they were supplied to the Caco2 cells. To estimate the effect of the mixed micelles on the permeability of cells' membranes during incubation with the mixed micelles, the transepitherial electrical resistance (TEER) value was monitored, and no pronounced changes of TEER was detected. This suggested that mixed micelles did not affect their cellular properties of the barrier measured by TEER. The lipid metabolites transferred from the mixed micelle into the Caco2 cells were determined quantitatively by an enzymatic colorimetric method and were done by thin layer chromatography (TLC) for a species of acylglycerols. These highly sensitive methods enabled us to monitor the transepithelial transports of various kinds of non-isotope-labeled various lipid metabolites. Newly re-synthesized triacylglycerols were accumulated in Caco2 cells after 30 min incubation with the mixed micelles, and their amounts increased gradually for 4 h. The secretion of re-esterified triacylglycerols into a basolateral medium from the Caco2 cells began at 2 h after the mixed micelles were added to the apical medium. The intake of external lipid metabolites by the Caco2 cells were evaluated by an initial 2-h incubation with the mixed micelles. For example, 2-monomyristin and 2-monopalmitin were more rapidly transferred into the Caco2 cells from the mixed micelles than 2-monocaprin was. On the other hand, the absorption rates of capric acid, lauric acid and myristic acid by the cells were larger than those of stearic acid and oleic acid. It revealed that the side-chain structure of these lipid metabolites affected their absorption by the Caco2 cells. The results of this

  19. Synthesis and Biological Activity of Anticancer Ether Lipids That Are Specifically Released by Phospholipase A2 in Tumor Tissue

    DEFF Research Database (Denmark)

    Andresen, Thomas L.; Jensen, Simon Skøde; Madsen, Robert

    2005-01-01

    The clinical use of anticancer lipids is severely limited by their ability to cause lysis of red blood cells prohibiting intravenous injection. Novel delivery systems are therefore required in order to develop anticancer ether lipids (AELs) into clinically useful anticancer drugs. In a recent....... The synthesized AEL 1-6 were tested against three different cancer cell lines. It was found that the stereochemistry of the glycerol headgroup in AEL-2 and 3 has a dramatic effect on the cytotoxicity of the lipids. AEL 1-4 were furthermore evaluated for their ability to prevent phosphorylation of the apoptosis...

  20. Synthesizing Smart Polymeric and Composite Materials

    Science.gov (United States)

    Gong, Chaokun

    ,1-phenylene)bismaleimide (MDPB). It showed the same healing ability as 2MEP4F while all starting materials are cheaper and commercially available. To further improve the mechanical strength of the PFA-MDPB healable polymer, epoxy as a strengthening component was mixed with PFA-MDPB healable polymer. The PFA, MDPB and epoxy composite polymers were further reinforced by carbon fiber as done with 2MEP4F matrix and the final composites were proved to have higher short beam shear strength than 2MEP4F while exhibiting a similar healing efficiency. Healable polymer MDPB (a two maleimide groups monomer) -- FGEEDR (a four furan groups monomer) was also designed and synthesized for transparent healable polymer. The MDPB-FGEEDR healable polymer was composited with silver nanowires (AgNWs) to afford healable transparent composite conductor. Razer blade cuts in the composite conductor could heal upon heating to recover the mechanical strength and electrical conductivity of the composite. The healing could be repeated for multiple times on the same cut location. The healing process was as fast as 3 minutes for conductivity to recover 97% of the original value. For electroactive polymer polypyrrole, the fast volume change upon electrical field change due to electrochemical oxidization or reduction was studied for actuation targeting toward a robotic application. The flexibility of polypyrrole was improved via copolymerization with pyrrole derivatives. Actuator devices are fabricated that more suitable for implantable medical device application than pyrrole homopolymer. The change of dipole re-orientation and thus dielectric constant of ferroelectric polymers and ceramics upon electrical field may be exploited for electrocaloric effect (ECE) and solid state refrigeration. For ferroelectric ceramics, we synthesized a series of Ba1-xSrxTiO3 nanoparticles with diameter ranging from 8-12 nm and characterized their dielectric and ferroelectric properties through hysteresis measurement. It was

  1. Optimizing Cationic and Neutral Lipids for Efficient Gene Delivery at High Serum Content

    Science.gov (United States)

    Majzoub, Ramsey N.; Hwu, Yeu-kuang; Liang, Keng S.; Leal, Cecília; Safinya, Cyrus R.

    2014-01-01

    Background Cationic liposome (CL)-DNA complexes are promising gene delivery vectors with potential applications in gene therapy. A key challenge in creating CL-DNA complexes for applications is that their transfection efficiency (TE) is adversely affected by serum. In particular, little is known about the effects of high serum contents on TE even though this may provide design guidelines for applications in vivo. Methods We prepared CL-DNA complexes in which we varied the neutral lipid (DOPC, glycerol-monooleate (GMO), cholesterol), the headgroup charge and chemical structure of the cationic lipid, and the ratio of neutral to cationic lipid; we then measured the TE of these complexes as a function of serum content and assessed their cytotoxicity. We tested selected formulations in two human cancer cell lines (M21/melanoma and PC-3/prostate cancer). Results In the absence of serum, all CL-DNA complexes of custom-synthesized multivalent lipids show high TE. Certain combinations of multivalent lipids and neutral lipids, such as MVL5(5+)/GMO-DNA complexes or complexes based on the dendritic-headgroup lipid TMVLG3(8+) exhibited high TE both in the absence and presence of serum. Although their TE still dropped to a small extent in the presence of serum, it reached or surpassed that of benchmark commercial transfection reagents, in particular at high serum content. Conclusions Two-component vectors (one multivalent cationic lipid and one neutral lipid) can rival or surpass benchmark reagents at low and high serum contents (up to 50%, v/v). We suggest guidelines for optimizing the serum resistance of CL-DNA complexes based on a given cationic lipid. PMID:24753287

  2. Antibacterial activities and bonding of MMSA/TBB resin containing amphiphilic lipids.

    Science.gov (United States)

    Kazuno, Taichi; Fukushima, Tadao; Hayakawa, Tohru; Inoue, Yusuke; Ogura, Rieko; Kaminishi, Hidenori; Miyazaki, Koji

    2005-06-01

    The purpose of this study was to investigate the antibacterial activity of MMA/TBB resin containing newly developed amphiphilic lipids. The amphiphilic lipids, C10-L-Ala/pts and C12-L-Ala/pts, synthesized from the reaction of n-alkyl alcohol and L-alanine were dissolved in MMA at concentrations of 0.5, 1.0, 1.5, and 2.0 mol%. Resin mixtures of PMMA powder and each MMA liquid containing lipid and TBB were prepared for all tests. Both lipids gave antibacterial effect to MMA/ TBB resin. The addition of C12-L-Ala/pts to MMA resulted in a significantly higher antibacterial activity than the addition of C10-L-Ala/pts. In terms of bond strength, the bond strength of MMA/TBB resin to bovine dentin was significantly decreased by the addition of amphiphilic lipids. But for enamel, the bond strength of MMA/TBB resin with amphiphilic lipids was clinically acceptable for orthodontic brackets. In conclusion, amphiphilic lipids will be useful as a component of adhesive resin to give the latter an antibacterial effect.

  3. Life as a matter of fat : lipids in a membrane biophysics perspective

    CERN Document Server

    Mouritsen, Ole G

    2016-01-01

    The present book gives a multi-disciplinary perspective on the physics of life and the particular role played by lipids (fats) and the lipid-bilayer component of cell membranes. The emphasis is on the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Furthermore, it is shown how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies of proteins and lipid domains in the range of nanometers, to the size of whole cells. Applications of lipids in nanotechnology and biomedicine are also described.   The first edition of the present book was published in 2005 when lipidomics was still very much an emerging science and lipids about to be recognized as being...

  4. Synthesis, characterization and transfection activity of new saturated and unsaturated cationic lipids.

    Science.gov (United States)

    Arpicco, Silvia; Canevari, Silvana; Ceruti, Maurizio; Galmozzi, Enrico; Rocco, Flavio; Cattel, Luigi

    2004-11-01

    We synthesized new cationic lipids, analogue to N-[1-(2,3-dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA) and 1,2-dimyristyloxypropyl-3-dimethyl-hydroxyethylammonium bromide (DMRIE), in order to compare those containing a dodecyl chain with those having a relatively long chain with two or five double bonds, such as squalenyl and dihydrofarnesyl derivatives, or complex saturated structures, such as squalane derivatives. The fusogenic helper lipid dioleoylphosphatidylethanolamine (DOPE) was added to cationic lipids to form a stable complex. Liposomes composed of 50:50 w/w cationic lipid/DOPE were prepared and incubated with plasmidic DNA at various charge ratios and the diameter and zeta potential of the complexes were measured. The surface charge of the DNA/lipid complexes can be controlled by adjusting the cationic lipid/DNA ratio. Finally, we tested the in vitro transfection efficiency of the cationic lipid/DNA complexes using different cell lines. The transfection efficiency was highest for the dodecyloxy derivative containing a single hydroxyethyl group in the head, followed by the dodecyloxy and the farnesyloxy trimethylammonium derivatives. Instead the C27 squalenyl and C27 squalanyl derivatives resulted inactive.

  5. Rigid aromatic linking moiety in cationic lipids for enhanced gene transfection efficiency.

    Science.gov (United States)

    Wang, Bing; Zhao, Rui-Mo; Zhang, Ji; Liu, Yan-Hong; Huang, Zheng; Yu, Qing-Ying; Yu, Xiao-Qi

    2017-08-18

    Although numerous cationic lipids have been developed as non-viral gene vectors, the structure-activity relationship (SAR) of these materials remains unclear and needs further investigation. In this work, a series of lysine-derived cationic lipids containing linkages with different rigidity were designed and synthesized. SAR studies showed that lipids with rigid aromatic linkage could promote the formation of tight liposomes and enhance DNA condensation, which is essential for the gene delivery process. These lipids could give much higher transfection efficiency than those containing more flexible aliphatic linkage in various cell lines. Moreover, the rigid aromatic linkage also affords the material higher serum tolerance ability. Flow cytometry assay revealed that the target lipids have good cellular uptake, while confocal microscopy observation showed weaker endosome escape than Lipofectamine 2000. To solve such problem and further increase the transfection efficiency, some lysosomotropic reagents were used to improve the endosome escape of lipoplex. As expected, higher transfection efficiency than Lipofectamine 2000 could be obtained via this strategy. Cytotoxicity assay showed that these lipids have lower toxicity in various cell lines than Lipofectamine 2000, suggesting their potential for further application. This work demonstrates that a rigid aromatic linkage might distinctly improve the gene transfection abilities of cationic lipids and affords information to construct safe and efficient gene vector towards practical application. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Cationic lipids bearing succinic-based, acyclic and macrocyclic hydrophobic domains: Synthetic studies and in vitro gene transfer.

    Science.gov (United States)

    Jubeli, Emile; Maginty, Amanda B; Khalique, Nada Abdul; Raju, Liji; Nicholson, David G; Larsen, Helge; Pungente, Michael D; Goldring, William P D

    2017-01-05

    In this communication we describe the construction of four succinic-based cationic lipids, their formulation with plasmid DNA (pDNA), and an evaluation of their in vitro gene delivery into Chinese hamster ovarian (CHO-K1) cells. The cationic lipids employed in this work possess either a dimethylamine or trimethylamine headgroup, and a macrocyclic or an acyclic hydrophobic domain composed of, or derived from two 16-atom, succinic-based acyl chains. The synthesized lipids and a co-lipid of neutral charge, either cholesterol or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), were formulated in an overall 3:2 cationic-to-neutral lipid molar ratio, then complexed with plasmid DNA (pDNA). The relative transfection performance was evaluated via a comparison between matched versus mismatched formulations defined by the rigidity relationship between the lipids employed. Gel electrophoresis was used to characterize the binding of the lipid formulations with plasmid DNA and the relative degree of plasmid degradation using a DNase I degradation assay. Small angle X-ray diffraction (SAXD) was employed to characterize the packing morphology of the lipid-DNA complexes. In general, the succinic unit embedded within the hydrophobic domain of the cationic lipids was found to improve lipid hydration. The transfection assays revealed a general trend in which mismatched formulations that employed a rigid lipid combined with a non-rigid (or flexible) lipid, outperformed the matched formulations. The results from this work suggest that the design of the cationic lipid structure and the composition of the lipoplex formulation play key roles in governing the transfection performance of nonviral gene delivery agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Charge requirements of lipid II flippase activity in Escherichia coli.

    Science.gov (United States)

    Butler, Emily K; Tan, Wee Boon; Joseph, Hildy; Ruiz, Natividad

    2014-12-01

    Peptidoglycan (PG) is an extracytoplasmic glycopeptide matrix essential for the integrity of the envelope of most bacteria. The PG building block is a disaccharide-pentapeptide that is synthesized as a lipid-linked precursor called lipid II. The translocation of the amphipathic lipid II across the cytoplasmic membrane is required for subsequent incorporation of the disaccharide-pentapeptide into PG. In Escherichia coli, the essential inner membrane protein MurJ is the lipid II flippase. Previous studies showed that 8 charged residues in the central cavity region of MurJ are crucial for function. Here, we completed the functional analysis of all 57 charged residues in MurJ and demonstrated that the respective positive or negative charge of the 8 aforementioned residues is required for proper MurJ function. Loss of the negative charge in one of these residues, D39, causes a severe defect in MurJ biogenesis; by engineering an intragenic suppressor mutation that restores MurJ biogenesis, we found that this charge is also essential for MurJ function. Because of the low level of homology between MurJ and putative orthologs from Gram-positive bacteria, we explored the conservation of these 8 charged residues in YtgP, a homolog from Streptococcus pyogenes. We found that only 3 positive charges are similarly positioned and essential in YtgP; YtgP possesses additional charged residues within its predicted cavity that are essential for function and conserved among Gram-positive bacteria. From these data, we hypothesize that some charged residues in the cavity region of MurJ homologs are required for interaction with lipid II and/or energy coupling during transport. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Lipid nanoparticle interactions and assemblies

    Science.gov (United States)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  9. First insight into the lipid uptake, storage and mobilization in arachnids: role of midgut diverticula and lipoproteins.

    Science.gov (United States)

    Laino, Aldana; Cunningham, Mónica L; García, Fernando; Heras, Horacio

    2009-12-01

    The importance of midgut diverticula (M-diverticula) and hemolymph lipoproteins in the lipid homeostasis of Polybetes phythagoricus was studied. Radioactivity distribution in tissues and hemolymph was analyzed either after feeding or injecting [1-(14)C]-palmitate. In both experiments, radioactivity was mostly taken up by M-diverticula that synthesized diacylglycerols, triacylglycerols and phospholipids in a ratio close to its lipid class composition. M-diverticula total lipids represent 8.08% (by wt), mostly triacylglycerols (74%) and phosphatidylcholine (13%). Major fatty acids were (in decreasing order of abundance) 18:1n-9, 18:2n-6, 16:0, 16:1n-7, 18:0, 18:3n-3. Spider hemocyanin-containing lipoprotein (VHDL) transported 83% of the circulating label at short incubation times. After 24h, VHDL and HDL-1 (comparable to insect lipophorin) were found to be involved in the lipid uptake and release from M-diverticula, HDL-2 playing a negligible role. Lipoprotein's labelled lipid changed with time, phospholipids becoming the main circulating lipid after 24h. These results indicate that arachnid M-diverticula play a central role in lipid synthesis, storage and movilization, analogous to insect fat body or crustacean midgut gland. The relative contribution of HDL-1 and VHDL to lipid dynamics indicated that, unlike insects, spider VHDL significantly contributes to the lipid exchange between M-diverticula and hemolymph.

  10. Biogenic ZnO nanoparticles synthesized using L. aculeata leaf ...

    Indian Academy of Sciences (India)

    In this study, Zinc oxide (ZnO) nanoparticles were synthesized using aqueous extract of Lantana aculeata Linn. leaf and assessed their effects on antifungal activity against the plant fungal pathogens. Synthesized nanoparticles were confirmed by ultraviolet–visible spectroscopy, Fourier transform infrared spectrometer, ...

  11. Effect of aging on copper nanoparticles synthesized by pulsed laser ...

    Indian Academy of Sciences (India)

    Effect of aging on copper nanoparticles synthesized by pulsed laser ablation of copper plate in water was studied. By characterization studies of the aged nanoparticles, it is found that copper nanoparticles converted into Cu@Cu2O nanostructure. The synthesized nanomaterial is characterized with UV-Visible absorption, ...

  12. Comparative study of synthesized silver and gold nanoparticles ...

    Indian Academy of Sciences (India)

    Abstract. Nanotechnology is an emerging field in science and technology, which can be applied to synthesize new materials at the nanoscale level. The present investigation aimed at comparing the synthesis, characterization and in vitro anticancer efficacy of synthesized silver and gold nanoparticles using leaves extract of ...

  13. Impact of new synthesized analogues of dehydroacetic acid on ...

    African Journals Online (AJOL)

    Previous work indicated that some of the new synthesized analogues of dehydroacetic acid (DHA) were inhibitory to the growth of mycotoxin producing moulds and accumulation of aflatoxin B1 (AFB1) and ochratoxin A (OTA). The objective of this study was to determine the specific new synthesized chemical compounds ...

  14. Syntheses and absorption–structure relationships of some new ...

    Indian Academy of Sciences (India)

    New biheterocyclic compound was synthesized as starting material to prepare new photosensitizers mono-, tri-, substituted tri-, azadimethine and mixed cyanine dyes. Absorption-structure relationship of the synthesized cyanine dyes were determined by studying their electronic spectral behaviour in ethanol. The structure of ...

  15. Written Rhetorical Syntheses: Processes and Products. Technical Report No. 17.

    Science.gov (United States)

    Kantz, Margaret J.

    When students write syntheses in response to a rhetorical task, does the rhetorical nature of the task exert some special influence on the students' composing processes? How do these processes differ? Three case studies, quantitative analyses of papers written by seventeen undergraduates, and a tentative model of a synthesizing process address…

  16. Potentiometric study of polyaniline film synthesized with various ...

    Indian Academy of Sciences (India)

    The potentiometric study of polyaniline (PANI) film synthesized with dopants viz. polyvinyl sulfonic acid (PVS), -toluene sulfonic acid (TS), dodecyl benzene sulfonic acid (DBS) and composite-dopants viz. PVS–TS and PVS–DBS, has been carried out. The synthesized PANI films were characterized by electrochemical ...

  17. Comparative study of synthesized silver and gold nanoparticles ...

    Indian Academy of Sciences (India)

    Nanotechnology is an emerging field in science and technology, which can be applied to synthesize new materials at the nanoscale level. The present investigation aimed at comparing the synthesis, characterization andin vitro anticancer efficacy of synthesized silver and gold nanoparticles using leaves extract of Bauhinia ...

  18. Syntheses of (±-Romucosine and (±-Cathafiline

    Directory of Open Access Journals (Sweden)

    Surachai Nimgirawath

    2006-11-01

    Full Text Available The structures previously assigned to (--romucosine and (+-cathafiline, N-(methoxycarbonyl aporphine alkaloids from Rollina mucosa (Annonaceae and Cassytha filiformis (Lauraceae respectively, have been confirmed by total syntheses of the racemic substances. The key step of the syntheses involved formation of ring C of the aporphines by a radical-initiated cyclisation.

  19. Lipid functionalized biopolymers: A review.

    Science.gov (United States)

    Qurat-Ul-Ain; Zia, Khalid Mahmood; Zia, Fatima; Ali, Muhammad; Rehman, Saima; Zuber, Mohammad

    2016-12-01

    Lipids are the main source of energy and widely used for various applications. In this review, the modification of lipids by using them in combination with other biomaterials like natural and synthetic polymers is elaborated. These new blends have characteristic features of both polymers and are characterized by different techniques (NMR, DSC, TGA, IR and Raman spectroscopy etc.) to understand their structure, properties and functional behavior. Lipids are hydrophobic, have anti-oxidant and anti-bacterial properties and thus impart hydrophobicity and flexibility to the polymers. While the polymers, on the other hand, make the lipids tougher. Properties of few polymers such as starch, polyethylene protein and chitosan that have brittleness, low combustion rate and hydrophobicity, are improved by incorporation of lipids ultimately increased their flexibility, combustion rate and hydrophobicity respectively. This review article is also focused on emerging fields for the applications of these composite materials. The most notable application of composite materials are in the field of paint industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Development of low cost pulmonary surfactants composed of a mixture of lipids or lipids-peptides using higher aliphatic alcohol or soy lecithin.

    Science.gov (United States)

    Yukitake, Ko; Nakamura, Yoshihiro; Kawahara, Masato; Nakahara, Hiromichi; Shibata, Osamu; Lee, Sannamu

    2008-10-15

    The artificial pulmonary surfactant composition in the present study is characterized by a lipid mixture system composed of higher aliphatic alcohol, egg yolk phosphatidylcholine (egg PC), soy lecithin and higher aliphatic acid as the major components or a peptide-lipid mixture system composed of a combination of the lipid mixture system to which a peptide is added. Three peptides with amphiphilic surface-staying, membrane spanning, and both properties were designed and synthesized. The evaluation of pulmonary surfactant assay was performed by a hysteresis curve drawn upon the measurement for the surface tension-area curve with the Wilhelmy surface tensometer in vitro and the recovery of lung compliance for the pulmonary surfactant-deficient rat models in vivo. Lipid-mixture systems composed of octadecanol or soy lecithins containing no peptide were favorable hysteresis curves as compared with commercially available Surfacten, but were not prominent. The peptide-lipid mixture systems composed of a combination of the lipid mixture of alkyl alcohol or soy lecithin to which peptides designed were added were desirable hysteresis curves similar to Surfacten and amphiphilic Hel 13-5 peptide-lipids mixture systems were much more effective than the lipid mixture system. Particularly, the recovery of lung compliance treated with hydrogenated soy lecithin-fractionated soy lecithin PC70-palmitic acid-peptide Hel 13-5 (40:40:17.5:2.5, w/w) was comparable to that with Surfacten. Because the artificial pulmonary surfactant compositions of this study can be prepared at lower costs, they are useful for the treatment of respiratory distress syndrome and acute respiratory distress syndrome as well as for inflammatory pulmonary diseases, dyspnea caused by asthma, etc.

  1. The Bacillus subtilis Acyl Lipid Desaturase Is a Δ5 Desaturase

    Science.gov (United States)

    Altabe, Silvia G.; Aguilar, Pablo; Caballero, Gerardo M.; de Mendoza, Diego

    2003-01-01

    Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions Δ5, Δ7, and Δ9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the Δ5 position, regardless of the growth temperature and the length chain of the fatty acids. PMID:12730185

  2. Lipids, lipid droplets and lipoproteins in their cellular context; an ultrastructural approach

    NARCIS (Netherlands)

    Mesman, R.J.

    2013-01-01

    Lipids are essential for cellular life, functioning either organized as bilayer membranes to compartmentalize cellular processes, as signaling molecules or as metabolic energy storage. Our current knowledge on lipid organization and cellular lipid homeostasis is mainly based on biochemical data.

  3. Depth-related distribution of a key gene of the tetraether lipid biosynthetic pathway in marine Thaumarchaeota

    NARCIS (Netherlands)

    Villanueva, L.; Schouten, S.; Sinninghe Damsté, J.S.

    2015-01-01

    The distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGT) lipids synthesized by Thaumarchaeota has been shown to be temperature-dependent in world oceans. Depth-related differences in the ammonia monooxygenase (amoA) of Thaumarchaeota have led to the classification of ‘shallow’ and

  4. T cells specific for lipid antigens.

    Science.gov (United States)

    Mori, Lucia; De Libero, Gennaro

    2012-09-01

    Lipid-specific T cells are important participants in human immune responses. Recognition of lipid antigens contributes to host defense against pathogens that can cause debilitating diseases, including mycobacterial, viral, and parasitic infections. Lipid-specific T cells also play important roles in various autoimmune diseases, atherosclerosis, and in tumor surveillance. A better understanding of the mechanisms that regulate lipid-reactive T-cell functions will enable the development of novel therapies across a wide range of diseases. In recent years, our laboratory has investigated lipid antigen specificities, mechanisms of lipid antigen presentation, molecular interaction of lipid antigens with CD1 antigen-presenting molecules, and the pathogenic and regulatory functions of lipid-specific T cells in a variety of disease settings. In this review, we present recent data that illustrate the critical role played by lipid-specific immune responses in host protection, with a particular focus on human studies.

  5. Fuel from microalgae lipid products

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A.M.; Feinberg, D.A.

    1984-04-01

    The large-scale production of microalgae is a promising method of producing a renewable feedstock for a wide variety of fuel products currently refined from crude petroleum. These microalgae-derived products include lipid extraction products (triglycerides, fatty acids, and hydrocarbons) and catalytic conversion products (paraffins and olefins). Microalgal biomass productivity and lipid composition of current experimental systems are estimated at 66.0 metric tons per hectare year and 30% lipid content. Similar yields in a large-scale facility indicate that production costs are approximately six times higher than the average domestic price for crude, well-head petroleum. Based on achievable targets for productivity and production costs, the potential for microalgae as a fuel feedstock is presented in context with selected process refining routes and is compared with conventional and alternative feedstocks (e.g., oilseeds) with which microalgae must compete. 24 references, 9 figures, 4 tables.

  6. Alcohol Interactions with Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Tomáš Kondela

    2017-11-01

    Full Text Available We investigate the structural changes to lipid membrane that ensue from the addition of aliphatic alcohols with various alkyl tail lengths. Small angle neutron diffraction from flat lipid bilayers that are hydrated through water vapor has been employed to eliminate possible artefacts of the membrane curvature and the alcohol’s membrane-water partitioning. We have observed clear changes to membrane structure in both transversal and lateral directions. Most importantly, our results suggest the alteration of the membrane-water interface. The water encroachment has shifted in the way that alcohol loaded bilayers absorbed more water molecules when compared to the neat lipid bilayers. The experimental results have been corroborated by molecular dynamics simulations to reveal further details. Namely, the order parameter profiles have been fruitful in correlating the mechanical model of structural changes to the effect of anesthesia.

  7. Dietary lipid emulsions and endotoxemia

    Directory of Open Access Journals (Sweden)

    Michalski Marie-Caroline

    2016-05-01

    Full Text Available The low-grade inflammation observed in obesity is a risk factor for cardiovascular diseases and insulin resistance. Among factors triggering such inflammation, recent works revealed the role of bacterial lipopolysaccharides (LPS, so-called endotoxins. LPS are naturally present in the gut via the intestinal microbiota. Recent studies show that they can induce in plasma a metabolic endotoxemia after the consumption of unbalanced hyperlipidic meals. This article reviews recent knowledge gained on the role of intestinal lipid absorption and the composition of dietary lipids on: (i the induction of metabolic endotoxemia, (ii the types of plasma transporters of LPS and (iii associated low-grade inflammation. Notably, lipids are present in foods under various physicochemical structures and notably in emulsified form. Our recent works reveal that such structure and the type of emulsifier can modulate postprandial lipemia; recent results on the possible consequences on metabolic endotoxemia will be discussed.

  8. Plastids of Marine Phytoplankton Produce Bioactive Pigments and Lipids

    Directory of Open Access Journals (Sweden)

    Benoît Schoefs

    2013-09-01

    Full Text Available Phytoplankton is acknowledged to be a very diverse source of bioactive molecules. These compounds play physiological roles that allow cells to deal with changes of the environmental constrains. For example, the diversity of light harvesting pigments allows efficient photosynthesis at different depths in the seawater column. Identically, lipid composition of cell membranes can vary according to environmental factors. This, together with the heterogenous evolutionary origin of taxa, makes the chemical diversity of phytoplankton compounds much larger than in terrestrial plants. This contribution is dedicated to pigments and lipids synthesized within or from plastids/photosynthetic membranes. It starts with a short review of cyanobacteria and microalgae phylogeny. Then the bioactivity of pigments and lipids (anti-oxidant, anti-inflammatory, anti-mutagenic, anti-cancer, anti-obesity, anti-allergic activities, and cardio- neuro-, hepato- and photoprotective effects, alone or in combination, is detailed. To increase the cellular production of bioactive compounds, specific culture conditions may be applied (e.g., high light intensity, nitrogen starvation. Regardless of the progress made in blue biotechnologies, the production of bioactive compounds is still limited. However, some examples of large scale production are given, and perspectives are suggested in the final section.

  9. Newly synthesized benzanthrone derivatives as prospective fluorescent membrane probes

    Energy Technology Data Exchange (ETDEWEB)

    Zhytniakivska, Olga, E-mail: olya_zhitniakivska@yahoo.com [Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61077 (Ukraine); Trusova, Valeriya; Gorbenko, Galyna [Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University, 4 Svobody Square, Kharkiv 61077 (Ukraine); Kirilova, Elena; Kalnina, Inta; Kirilov, Georgiy [Department of Chemistry and Geography, Faculty of Natural Science and Mathematics, Daugavpils University, 13 Vienibas, Daugavpils LV5401 (Latvia); Kinnunen, Paavo [Department of Biomedical Engineering and Computational Science, School of Science and Technology, Aalto University, FI-00076 Espoo (Finland)

    2014-02-15

    Fluorescence spectral properties of a series of novel benzanthrone derivatives have been explored in lipid bilayers composed of zwitterionic lipid phosphatidylcholine (PC) and its mixtures with cholesterol (Chol) and anionic phospholipid cardiolipin (CL). Analysis of partition coefficients showed that all the examined compounds possess rather high lipid-associating ability, with the amidino derivatives exhibiting stronger membrane partitioning compared with the aminobenzanthrones. To understand how benzanthrone partition properties correlate with their structure, quantitative structure property relationship (QSPR) analysis was performed involving a range of quantum chemical molecular descriptors. -- Highlights: • Benzanthrone partitioning into lipid bilayer correlates with lipophilicity of the dyes. • Partition properties of benzanthrones depend on the dye dipole moment. • Amidino derivatives exhibit higher membrane affinity than aminobenzanthrones.

  10. Lipid Regulation of Acrosome Exocytosis.

    Science.gov (United States)

    Cohen, Roy; Mukai, Chinatsu; Travis, Alexander J

    2016-01-01

    Lipids are critical regulators of mammalian sperm function, first helping prevent premature acrosome exocytosis, then enabling sperm to become competent to fertilize at the right place/time through the process of capacitation, and ultimately triggering acrosome exocytosis. Yet because they do not fit neatly into the "DNA--RNA-protein" synthetic pathway, they are understudied and poorly understood. Here, we focus on three lipids or lipid classes-cholesterol, phospholipids, and the ganglioside G(M1)--in context of the modern paradigm of acrosome exocytosis. We describe how these various- species are precisely segregated into membrane macrodomains and microdomains, simultaneously preventing premature exocytosis while acting as foci for organizing regulatory and effector molecules that will enable exocytosis. Although the mechanisms responsible for these domains are poorly defined, there is substantial evidence for their composition and functions. We present diverse ways that lipids and lipid modifications regulate capacitation and acrosome exocytosis, describing in more detail how removal of cholesterol plays a master regulatory role in enabling exocytosis through at least two complementary pathways. First, cholesterol efflux leads to proteolytic activation of phospholipase B, which cleaves both phospholipid tails. The resultant changes in membrane curvature provide a mechanism for the point fusions now known to occur far before a sperm physically interacts with the zona pellucida. Cholesterol efflux also enables G(M1) to regulate the voltage-dependent cation channel, Ca(V)2.3, triggering focal calcium transients required for acrosome exocytosis in response to subsequent whole-cell calcium rises. We close with a model integrating functions for lipids in regulating acrosome exocytosis.

  11. Charge-reversal Lipids, Peptide-based Lipids, and Nucleoside-based Lipids for Gene Delivery

    Science.gov (United States)

    LaManna, Caroline M.; Lusic, Hrvoje; Camplo, Michel; McIntosh, Thomas J.; Barthélémy, Philippe; Grinstaff, Mark W.

    2013-01-01

    Conspectus Twenty years after gene therapy was introduced in the clinic, advances in the technique continue to garner headlines as successes pique the interest of clinicians, researchers, and the public. Gene therapy’s appeal stems from its potential to revolutionize modern medical therapeutics by offering solutions to a myriad of diseases by tailoring the treatment to a specific individual’s genetic code. Both viral and non-viral vectors have been used in the clinic, but the low transfection efficiencies when utilizing non-viral vectors have lead to an increased focus on engineering new gene delivery vectors. To address the challenges facing non-viral or synthetic vectors, specifically lipid-based carriers, we have focused on three main themes throughout our research: 1) that releasing the nucleic acid from the carrier will increase gene transfection; 2) that utilizing biologically inspired designs, such as DNA binding proteins, to create lipids with peptide-based headgroups will improve delivery; and 3) that mimicking the natural binding patterns observed within DNA, by using lipids having a nucleoside headgroup, will give unique supramolecular assembles with high transfection efficiency. The results presented in this Account demonstrate that cellular uptake and transfection efficacy can be improved by engineering the chemical components of the lipid vectors to enhance nucleic acid binding and release kinetics. Specifically, our research has shown that the incorporation of a charge-reversal moiety to initiate change of the lipid from positive to negative net charge during the transfection process improves transfection. In addition, by varying the composition of the spacer (rigid, flexible, short, long, and aromatic) between the cationic headgroup and the hydrophobic chains, lipids can be tailored to interact with different nucleic acids (DNA, RNA, siRNA) and accordingly affect delivery, uptake outcomes, and transfection efficiency. Introduction of a peptide

  12. Structure, biosynthesis, and function of bacterial capsular polysaccharides synthesized by ABC transporter-dependent pathways.

    Science.gov (United States)

    Willis, Lisa M; Whitfield, Chris

    2013-08-30

    Bacterial capsules are formed primarily from long-chain polysaccharides with repeat-unit structures. A given bacterial species can produce a range of capsular polysaccharides (CPSs) with different structures and these help distinguish isolates by serotyping, as is the case with Escherichia coli K antigens. Capsules are important virulence factors for many pathogens and this review focuses on CPSs synthesized via ATP-binding cassette (ABC) transporter-dependent processes in Gram-negative bacteria. Bacteria utilizing this pathway are often associated with urinary tract infections, septicemia, and meningitis, and E. coli and Neisseria meningitidis provide well-studied examples. CPSs from ABC transporter-dependent pathways are synthesized at the cytoplasmic face of the inner membrane through the concerted action of glycosyltransferases before being exported across the inner membrane and translocated to the cell surface. A hallmark of these CPSs is a conserved reducing terminal glycolipid composed of phosphatidylglycerol and a poly-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) linker. Recent discovery of the structure of this conserved lipid terminus provides new insights into the early steps in CPS biosynthesis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The Role of Tetraether Lipid Composition in the Adaptation of Thermophilic Archaea to Acidity

    Directory of Open Access Journals (Sweden)

    Eric eBoyd

    2013-04-01

    Full Text Available Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park (YNP, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings, the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly

  14. Gene Transfection in High Serum Levels: Case Studies with New Cholesterol Based Cationic Gemini Lipids

    Science.gov (United States)

    Misra, Santosh K.; Biswas, Joydeep; Kondaiah, Paturu; Bhattacharya, Santanu

    2013-01-01

    Background Six new cationic gemini lipids based on cholesterol possessing different positional combinations of hydroxyethyl (-CH2CH2OH) and oligo-oxyethylene -(CH2CH2O)n- moieties were synthesized. For comparison the corresponding monomeric lipid was also prepared. Each new cationic lipid was found to form stable, clear suspensions in aqueous media. Methodology/Principal Findings To understand the nature of the individual lipid aggregates, we have studied the aggregation properties using transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements and X-ray diffraction (XRD). We studied the lipid/DNA complex (lipoplex) formation and the release of the DNA from such lipoplexes using ethidium bromide. These gemini lipids in presence of a helper lipid, 1, 2-dioleoyl phophatidyl ethanol amine (DOPE) showed significant enhancements in the gene transfection compared to several commercially available transfection agents. Cholesterol based gemini having -CH2-CH2-OH groups at the head and one oxyethylene spacer was found to be the most effective lipid, which showed transfection activity even in presence of high serum levels (50%) greater than Effectene, one of the potent commercially available transfecting agents. Most of these geminis protected plasmid DNA remarkably against DNase I in serum, although the degree of stability was found to vary with their structural features. Conclusions/Significance -OH groups present on the cationic headgroups in combination with oxyethylene linkers on cholesterol based geminis, gave an optimized combination of new genera of gemini lipids possessing high transfection efficiency even in presence of very high percentage of serum. This property makes them preferential transfection reagents for possible in vivo studies. PMID:23861884

  15. Les lipides en alimentation animale

    OpenAIRE

    Lefebvre, Sébastien

    2017-01-01

    École thématique; Les lipides sont une famille hétérogène de nutriments. Ils sont une source non négligeable d'énergie et des précurseurs essentiels d'hormones et de molécules nécessaires à la bonne physiologie des animaux. Ce cours présente les propriétés nutritionelles des lipides et leur importance dans l'alimentation animale.

  16. Lipid Peroxidation and lipid Profile in Hypertensive Patients in ...

    African Journals Online (AJOL)

    Hypertension and dyslipidaemia are associated with oxidative stress and are major causes of cardiovascular disease amounting to 30% of global death rate. In the current work, malondialdehyde and lipid profile were estimated in sixty hypertensive patients attending outpatient clinic of the Usmanu Danfodiyo University ...

  17. Distribution of neutral lipids in the lipid droplet core

    DEFF Research Database (Denmark)

    Chaban, Vitaly V; Khandelia, Himanshu

    2014-01-01

    Cholesteryl esters (CEs) are a form of cholesterol (CHOL) storage in the living cells, as opposed to free CHOL. CEs are major constituents of low density lipoprotein particles. Therefore, CEs are implicated in provoking atherosclerosis. Arranged into cytoplasmic lipid droplets (LDs), CEs are stored...

  18. Blood lipid metabolites and meat lipid peroxidation responses of ...

    African Journals Online (AJOL)

    Esnart Mukumbo

    2017-06-19

    Jun 19, 2017 ... Condition of use: The user may copy, distribute, transmit and adapt the work, but must ... The effect of fat type in broiler diets on blood triacylglycerol and ..... probably had more pronounced effects on lipid contents in adipose tissue .... Types of dietary fat and risk of coronary heart disease: A critical review. J.

  19. Study of antioxidant enzymes, lipid peroxidation, lipid profile and ...

    African Journals Online (AJOL)

    Aim: In the present study, we assessed the association of MDA, antioxidant markers, high sensitive Creactive protein (hs-CRP) and lipid status parameters in the patients with coronary artery disease (CAD). Significant risk factors such as cigarette and diabetes were excluded from the study. Materials and Methods: Oxidative ...

  20. Perturbation Measurements on the Degree of Naturalness of Synthesized Vowels.

    Science.gov (United States)

    Yamasaki, Rosiane; Montagnoli, Arlindo; Murano, Emi Z; Gebrim, Eloisa; Hachiya, Adriana; Lopes da Silva, Jorge Vicente; Behlau, Mara; Tsuji, Domingos

    2017-05-01

    To determine the impact of jitter and shimmer on the degree of naturalness perception of synthesized vowels produced by acoustical simulation with glottal pulses (GP) and with solid model of the vocal tract (SMVT). Prospective study. Synthesized vowels were produced in three steps: 1. Eighty GP were developed (20 with jitter, 20 with shimmer, 20 with jitter+shimmer, 20 without perturbation); 2. A SMVT was produced based on magnetic resonance imaging (MRI) from a woman during phonation-/ε/ and using rapid prototyping technology; 3. Acoustic simulations were performed to obtain eighty synthesized vowels-/ε /. Two experiments were performed. First Experiment: three judges rated 120 vowels (20 humans+80 synthesized+20% repetition) as "human" or "synthesized". Second Experiment: twenty PowerPoint slide sequences were created. Each slide had 4 synthesized vowels produced with the four perturbation condition. Evaluators were asked to rate the vowels from the most natural to the most artificial. First Experiment: all the human vowels were classified as human; 27 out of eighty synthesized vowels were rated as human, 15 of those were produced with jitter+shimmer, 10 with jitter, 2 without perturbation and none with shimmer. Second Experiment: Vowels produced with jitter+shimmer were considered as the most natural. Vowels with shimmer and without perturbation were considered as the most artificial. The association of jitter and shimmer increased the degree of naturalness of synthesized vowels. Acoustic simulations performed with GP and using SMVT demonstrated a possible method to test the effect of the perturbation measurements on synthesized voices. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  1. How T lymphocytes recognize lipid antigens.

    Science.gov (United States)

    De Libero, Gennaro; Mori, Lucia

    2006-10-09

    Recognition of lipid antigens by T lymphocytes is well established. Lipids are recognized by T cells when presented in association with CD1 antigen-presenting molecules. Both microbial and self lipids stimulate specific T lymphocytes, thus participating in immune reactions during infections and autoimmune diseases. The immune system uses a variety of strategies to solubilise lipid antigens, to facilitate their internalization, processing, and loading on CD1 molecules. Recent studies in the field of lipid antigen presentation have revealed new mechanisms which allow the immune system to sense lipids as stimulatory antigens.

  2. Triglyceride Blisters in Lipid Bilayers: Implications for Lipid Droplet Biogenesis and the Mobile Lipid Signal in Cancer Cell Membranes

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Duelund, Lars; Pakkanen, Kirsi Inkeri

    2010-01-01

    Triglycerides have a limited solubility, around 3%, in phosphatidylcholine lipid bilayers. Using millisecond-scale course grained molecular dynamics simulations, we show that the model lipid bilayer can accommodate a higher concentration of triolein (TO) than earlier anticipated, by sequestering ...

  3. Engineering of layered, lipid-encapsulated drug nanoparticles through spray-drying.

    Science.gov (United States)

    Sapra, Mahak; Mayya, Y S; Venkataraman, Chandra

    2017-06-01

    Drug-containing nanoparticles have been synthesized through the spray-drying of submicron droplet aerosols by using matrix materials such as lipids and biopolymers. Understanding layer formation in composite nanoparticles is essential for the appropriate engineering of particle substructures. The present study developed a droplet-shrinkage model for predicting the solid-phase formation of two non-volatile solutes-stearic acid lipid and a set of drugs, by considering molecular volume and solubility. Nanoparticle formation was simulated to define the parameter space of material properties and process conditions for the formation of a layered structure with the preferential accumulation of the lipid in the outer layer. Moreover, lipid-drug demarcation diagrams representing a set of critical values of ratios of solute properties at which the two solutes precipitate simultaneously were developed. The model was validated through the preparation of stearic acid-isoniazid nanoparticles under controlled processing conditions. The developed model can guide the selection of solvents, lipids, and processing conditions such that drug loading and lipid encapsulation in composite nanoparticles are optimized. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Zn(II)-dipicolylamine-based metallo-lipids as novel non-viral gene vectors.

    Science.gov (United States)

    Su, Rong-Chuan; Liu, Qiang; Yi, Wen-Jing; Zhao, Zhi-Gang

    2017-08-01

    In this study, a series of Zn(II)-dipicolylamine (Zn-DPA) based cationic lipids bearing different hydrophobic tails (long chains, α-tocopherol, cholesterol or diosgenin) were synthesized. Structure-activity relationship (SAR) of these lipids was studied in detail by investigating the effects of several structural aspects including the type of hydrophobic tails, the chain length and saturation degree. In addition, several assays were used to study their interactions with plasmid DNA, and results reveal that these lipids could condense DNA into nanosized particles with appropriate size and zeta-potentials. MTT-based cell viability assays showed that lipoplexes 5 had low cytotoxicity. The in vitro gene transfection studies showed the hydrophobic tails clearly affected the TE, and hexadecanol-containing lipid 5b gives the best TE, which was 2.2 times higher than bPEI 25k in the presence of 10% serum. The results not only demonstrate that these lipids might be promising non-viral gene vectors, but also afford us clues for further optimization of lipidic gene delivery materials.

  5. Amphotericin B Lipid Complex Injection

    Science.gov (United States)

    ... medications, or any of the ingredients in amphotericin B lipid complex injection. Ask your pharmacist for a list of the ingredients.tell your doctor and pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking ...

  6. You Sank My Lipid Rafts!

    Science.gov (United States)

    Campbell, Tessa N.

    2009-01-01

    The plasma membrane is the membrane that serves as a boundary between the interior of a cell and its extracellular environment. Lipid rafts are microdomains within a cellular membrane that possess decreased fluidity due to the presence of cholesterol, glycolipids, and phospholipids containing longer fatty acids. These domains are involved in many…

  7. Computer Simulations of Lipid Nanoparticles

    Directory of Open Access Journals (Sweden)

    Xavier F. Fernandez-Luengo

    2017-12-01

    Full Text Available Lipid nanoparticles (LNP are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain forcefield, of self-assembled LNPs made by tripalmitin lipid in water. We also study the adsorption of Tween 20 surfactant as a protective layer on top of the LNP. We show that, at 310 K (the temperature of interest in biological applications, the structure of the lipid nanoparticles is similar to that of a liquid droplet, in which the lipids show no nanostructuration and have high mobility. We show that, for large enough nanoparticles, the hydrophilic headgroups develop an interior surface in the NP core that stores liquid water. The surfactant is shown to organize in an inhomogeneous way at the LNP surface, with patches with high surfactant concentrations and surface patches not covered by surfactant.

  8. Lipid membranes on nanostructured silicon.

    Energy Technology Data Exchange (ETDEWEB)

    Slade, Andrea Lynn; Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM); Ista, Linnea K. (University of New Mexico, Albuquerque, NM); O' Brien, Michael J. (University of New Mexico, Albuquerque, NM); Sasaki, Darryl Yoshio; Bisong, Paul (University of New Mexico, Albuquerque, NM); Zeineldin, Reema R. (University of New Mexico, Albuquerque, NM); Last, Julie A.; Brueck, Stephen R. J. (University of New Mexico, Albuquerque, NM)

    2004-12-01

    A unique composite nanoscale architecture that combines the self-organization and molecular dynamics of lipid membranes with a corrugated nanotextured silicon wafer was prepared and characterized with fluorescence microscopy and scanning probe microscopy. The goal of this project was to understand how such structures can be assembled for supported membrane research and how the interfacial interactions between the solid substrate and the soft, self-assembled material create unique physical and mechanical behavior through the confinement of phases in the membrane. The nanometer scale structure of the silicon wafer was produced through interference lithography followed by anisotropic wet etching. For the present study, a line pattern with 100 nm line widths, 200 nm depth and a pitch of 360 nm pitch was fabricated. Lipid membranes were successfully adsorbed on the structured silicon surface via membrane fusion techniques. The surface topology of the bilayer-Si structure was imaged using in situ tapping mode atomic force microscopy (AFM). The membrane was observed to drape over the silicon structure producing an undulated topology with amplitude of 40 nm that matched the 360 nm pitch of the silicon structure. Fluorescence recovery after photobleaching (FRAP) experiments found that on the microscale those same structures exhibit anisotropic lipid mobility that was coincident with the silicon substructure. The results showed that while the lipid membrane maintains much of its self-assembled structure in the composite architecture, the silicon substructure indeed influences the dynamics of the molecular motion within the membrane.

  9. Lipid profile in cerebrovascular accidents.

    Science.gov (United States)

    Togha, Mansoureh; Gheini, Mohamad Reza; Ahmadi, Babak; Khashaiar, Patricia; Razeghi, Soodeh

    2011-01-01

    Changes in the lipid profile have been suggested as a risk factor for developing ischemic stroke. Their role in intra-cerebral hemorrhage, however, is not clear. The present study was designed to evaluate the lipid profile levels of patients who had experienced an acute stroke during the first 24-hour and to compare these levels in different patients suffering from the stroke, either hemorrhagic or ischemic, and healthy individuals. In this cross-sectional study, 258 consecutive patients with acute stroke admitted to the neurology department of our center during September 2006 and September 2007 were studied. As for the control group, 187 apparently healthy subjects living in the same community and matched for age and sex were selected. Lipid profile was measured and compared between the three groups. In the patients' group, 65 suffered from hemorrhagic stroke (group 1) and the other 193 had ischemic stroke (group 2). Except for TG values, there was no significant difference among the ischemic and hemorrhagic lipid profile. Age, cholesterol, and LDL influenced the risk of developing an ischemic stroke; TG was not reported as a risk factor or a protective one. While the comparison of data retrieved from patients suffering from hemorrhagic strokes with the controls, revealed LDL as the risk factor contributing to the development of ICH whereas TG was reported as a protective factor. It could be concluded that LDL level can be considered as a risk factor for both ischemic and hemorrhagic cerebral events.

  10. Lipids of the Golgi membrane

    NARCIS (Netherlands)

    van Meer, G.

    1998-01-01

    The thin membrane of the endoplasmic reticulum matures into the thick plasma membrane in the Golgi apparatus. Along the way, the concentrations of cholesterol and sphingolipids increase. Here, Gerrit van Meer discusses how this phenomenon may reflect an intricate lipid-protein sorting machinery.

  11. Synthesizing genetic sequential logic circuit with clock pulse generator

    National Research Council Canada - National Science Library

    Chuang, Chia-Hua; Lin, Chun-Liang

    2014-01-01

    .... This paper presents a genetic sequential logic circuit with a clock pulse generator based on a synthesized genetic oscillator, which generates a consecutive clock signal whose frequency is an inverse...

  12. Protein immobilization onto electrochemically synthesized CoFe nanowires

    National Research Council Canada - National Science Library

    Torati, Sri Ramulu; Reddy, Venu; Yoon, Seok Soo; Kim, CheolGi

    2015-01-01

    CoFe nanowires have been synthesized by the electrodeposition technique into the pores of a polycarbonate membrane with a nominal pore diameter of 50 nm, and the composition of CoFe nanowires varying...

  13. GaN Nanowires Synthesized by Electroless Etching Method

    KAUST Repository

    Najar, Adel

    2012-01-01

    Ultra-long Gallium Nitride Nanowires is synthesized via metal-electroless etching method. The morphologies and optical properties of GaN NWs show a single crystal GaN with hexagonal Wurtzite structure and high luminescence properties.

  14. In vitro Activity and Safety Assessment of New Synthesized Thiazolo ...

    African Journals Online (AJOL)

    In vitro Activity and Safety Assessment of New Synthesized Thiazolo Pyrimidine Derivatives Augmented with Albendazole against Echinococcus Multilocularis Metacestodes in Balb/C Mice. SA Bahashwan, AE Alharbi, MA Ramadan, AA Fayed, AA Bahashwan ...

  15. Synthesized 2-Substituted-3-Phenylthiazolidine-4-ones as Potent ...

    African Journals Online (AJOL)

    carboxaldehydes to form thiazolidine-4-ones and determine the antioxidant and antidiabetic activity of the synthesized compounds. Methods: The Schiff bases were obtained upon reaction between the electrophillic carbon atom of ...

  16. A new antibiotic, fumaramidmycin. II. Isolation, structure and syntheses

    National Research Council Canada - National Science Library

    SUHARA, YASUJI; MARUYAMA, HIROMI B; KOTOH, YOSHIAKI; MIYASAKA, YUMIKO; YOKOSE, KAZUTERU; SHIRAI, HARUYOSHI; TAKANO, KOUICHI

    1975-01-01

    .... The structure was shown to be N-(phenylacetyl) fumaramide. Starting from fumaramic acid, fumaramidmycin has been synthesized in good yield, in which the key stage involves N-acylated imino ether formation followed by mild acid hydrolysis...

  17. Antioxidative metabolites synthesized by marine pigmented vibrio sp. and its protection on oxidative deterioration of membrane lipids

    Digital Repository Service at National Institute of Oceanography (India)

    Pawar, R.T.; Mohandass, C.; Dastager, S.G.; Kolekar, Y.M.; Malwankar, R.

    Bacterial strain Vibrio sp. (PIGB 184) isolated from water samples of the Arabian Sea and identified through 16S rRNA demonstrated the production of pigmentary antioxidants with higher ABTS activities 90.9±0.42 % in comparison with the standard...

  18. Intact Membrane Lipids of “Candidatus Nitrosopumilus maritimus,” a Cultivated Representative of the Cosmopolitan Mesophilic Group I Crenarchaeota▿

    Science.gov (United States)

    Schouten, Stefan; Hopmans, Ellen C.; Baas, Marianne; Boumann, Henry; Standfest, Sonja; Könneke, Martin; Stahl, David A.; Sinninghe Damsté, Jaap S.

    2008-01-01

    In this study we analyzed the membrane lipid composition of “Candidatus Nitrosopumilus maritimus,” the only cultivated representative of the cosmopolitan group I crenarchaeota and the only mesophilic isolate of the phylum Crenarchaeota. The core lipids of “Ca. Nitrosopumilus maritimus” consisted of glycerol dialkyl glycerol tetraethers (GDGTs) with zero to four cyclopentyl moieties. Crenarchaeol, a unique GDGT containing a cyclohexyl moiety in addition to four cyclopentyl moieties, was the most abundant GDGT. This confirms unambiguously that crenarchaeol is synthesized by species belonging to the group I.1a crenarchaeota. Intact polar lipid analysis revealed that the GDGTs have hexose, dihexose, and/or phosphohexose head groups. Similar polar lipids were previously found in deeply buried sediments from the Peru margin, suggesting that they were in part synthesized by group I crenarchaeota. PMID:18296531

  19. Lipids in critical care medicine.

    Science.gov (United States)

    Ott, Juliane; Hiesgen, Christopher; Mayer, Konstantin

    2011-11-01

    While enteral nutrition is the basis for the critically ill, parenteral nutrition is often used when a sufficient enteral nutrition is not or not fully achievable. Lipids are a mainstay of caloric supply in both cases as they combine the provision of building blocks for the membranes and are precursors for function molecules including lipid mediators bearing the ability to influence immunity. Pro-inflammatory lipid mediators as prostaglandins and leukotrienes are generated from arachidonic acid (AA), a key member of the n-6 polyunsaturated fatty acids (PUFA). In contrast, lipid mediators derived from the n-3 fatty acids eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) may exhibit less inflammatory properties compared to their AA-derived counterparts. Furthermore, intercellular mediators as resolvins and protectins are generated from n-3 fatty acids. They induce the resolution of inflammation, hence the name resolution phase interaction product-resolvin. Modulating the amount of PUFA and the n-6/n-3 ratio were investigated as means to change the inflammatory response and improve the outcome of patients. Experimental data showed that n-3 fatty acids may improve acute lung injury and sepsis in animal models. Studies in patients undergoing major surgery with application of n-3 fatty acids demonstrated beneficial effects in terms of reduction of length of stay and infectious complications. Clinical data hints that this concept may also improve outcome in critically ill patients. Additionally, experimental and clinical data suggest that a reduction in n-6 PUFA may change the immune response. In conclusion, modulating the amount of PUFA, the n-6/n-3 ratio and the composition of lipid emulsions may prove to be a useful means to improve the outcome of critically ill patients. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Mayenite Synthesized Using the Citrate Sol-Gel Method

    Energy Technology Data Exchange (ETDEWEB)

    Ude, Sabina N [ORNL; Rawn, Claudia J [ORNL; Meisner, Roberta A [University of Tennessee (UTK) and Oak Ridge National Laboratory (ORNL); Kirkham, Melanie J [ORNL; Jones, Gregory L. [University of Tennessee, Knoxville (UTK); Payzant, E Andrew [ORNL

    2014-01-01

    A citrate sol-gel method has been used to synthesize mayenite (Ca12Al14O33). X-ray powder diffraction data show that the samples synthesized using the citrate sol-gel method contained CaAl2O4 and CaCO3 along with mayenite when fired ex-situ in air at 800 C but were single phase when fired at 900 C and above. Using high temperature x-ray diffraction, data collected in-situ in air at temperatures of 600 C and below showed only amorphous content; however, data collected at higher temperatures indicated the first phase to crystallize is CaCO3. High temperature x-ray diffraction data collected in 4% H2/96% N2 does not show the presence of CaCO3, and Ca12Al14O33 starts to form around 850 C. In comparison, x-ray powder diffraction data collected ex-situ on samples synthesized using traditional solid-state synthesis shows that single phase was not reached until samples were fired at 1350 C. DTA/TGA data collected either in a nitrogen environment or air on samples synthesized using the citrate gel method suggest the complete decomposition of metastable phases and the formation of mayenite at 900 C, although the phase evolution is very different depending on the environment. Brunauer-Emmett-Teller (BET) measurements showed a slightly higher surface area of 7.4 0.1 m2/g in the citrate gel synthesized samples compared to solid-state synthesized sample with a surface area of 1.61 0.02 m2/g. SEM images show a larger particle size for samples synthesized using the solid-state method compared to those synthesized using the citrate gel method.

  1. Three novel oligosaccharides synthesized using Thermoanaerobacter brockii kojibiose phosphorylase

    OpenAIRE

    Nishimoto Tomoyuki; Benkeblia Noureddine; Onodera Shuichi; Fukushi Eri; Takahashi Natsuko; Kawabata Jun; Shiomi Norio

    2007-01-01

    Abstract Background Recently synthesized novel oligosaccharides have been produced primarily by hydrolases and glycosyltransferases, while phosphorylases have also been subject of few studies. Indeed, phosphorylases are expected to give good results via their reversible reaction. The purpose of this study was to synthesis other novel oligosaccharides using kojibiose phosphorylase. Results Three novel oligosaccharides were synthesized by glucosyltransfer from β-D-glucose 1-phosphate (β-D-G1P) ...

  2. Lipids and essential oils as antimicrobial agents

    National Research Council Canada - National Science Library

    Thormar, Halldor

    2011-01-01

    ... of Antimicrobial Lipids on Cell Membranes 20 1.7 Conclusions 21 Acknowledgements 21 References 22 2 Antibacterial Effects of Lipids: Historical Review (1881 to 1960) Halldor Thormar 2.1 Introduction 2....

  3. Recognition of lipid antigens by T cells.

    Science.gov (United States)

    De Libero, Gennaro; Mori, Lucia

    2005-06-01

    Recent studies have shown that the recognition of lipid antigens by the immune system is important for defence against infection and other diseases, and that lipid-specific responses occur at higher frequencies than previously suspected. Thanks to several recent advances in this field, we now have a better appreciation of the molecular and cellular requirements of T-cell stimulation by lipids. These findings have raised new questions about the mechanisms of lipid presentation, the priming and clonal expansion of lipid-specific T cells, and their differentiation into memory cells. A greater understanding of lipid-specific T cells and the molecular mechanisms of lipid immunogenicity should facilitate the development of lipid-based vaccines.

  4. Transport and sorting of membrane lipids

    NARCIS (Netherlands)

    van Meer, G.|info:eu-repo/dai/nl/068570368

    1993-01-01

    The lipid composition of cellular membranes may seem unnecessarily complex. However, the lipid composition of each membrane is carefully regulated by local metabolism and specificity in transport, marking the functional significance for the cell. Recent research has revealed unexpected discoveries

  5. Exogenous ether lipids predominantly target mitochondria.

    Directory of Open Access Journals (Sweden)

    Lars Kuerschner

    Full Text Available Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking.

  6. Synthesis and characterization of cationic lipid coated magnetic nanoparticles using multiple emulsions as microreactors

    Science.gov (United States)

    Akbaba, Hasan; Karagöz, Uğur; Selamet, Yusuf; Kantarcı, A. Gülten

    2017-03-01

    The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (Saturation magnetization value was measured as 15-17 emu g-1 for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting.

  7. Metabolic crosstalk between membrane and storage lipids facilitates heat stress management in Schizosaccharomyces pombe.

    Science.gov (United States)

    Péter, Mária; Glatz, Attila; Gudmann, Péter; Gombos, Imre; Török, Zsolt; Horváth, Ibolya; Vígh, László; Balogh, Gábor

    2017-01-01

    Cell membranes actively participate in stress sensing and signalling. Here we present the first in-depth lipidomic analysis to characterize alterations in the fission yeast Schizosaccharomyces pombe in response to mild heat stress (HS). The lipidome was assessed by a simple one-step methanolic extraction. Genetic manipulations that altered triglyceride (TG) content in the absence or presence of HS gave rise to distinct lipidomic fingerprints for S. pombe. Cells unable to produce TG demonstrated long-lasting growth arrest and enhanced signalling lipid generation. Our results reveal that metabolic crosstalk between membrane and storage lipids facilitates homeostatic maintenance of the membrane physical/chemical state that resists negative effects on cell growth and viability in response to HS. We propose a novel stress adaptation mechanism in which heat-induced TG synthesis contributes to membrane rigidization by accommodating unsaturated fatty acids of structural lipids, enabling their replacement by newly synthesized saturated fatty acids.

  8. Integrating lipid storage into general representations of fish energetics.

    Science.gov (United States)

    Martin, Benjamin T; Heintz, Ron; Danner, Eric M; Nisbet, Roger M

    2017-07-01

    Fish, even of the same species, can exhibit substantial variation in energy density (energy per unit wet weight). Most of this variation is due to differences in the amount of storage lipids. In addition to their importance as energy reserves for reproduction and for survival during unfavourable conditions, the accumulation of lipids represents a large energetic flux for many species, so figuring out how this energy flux is integrated with other major energy fluxes (growth, reproduction) is critical for any general theory of organismal energetics. Here, we synthesize data from a wide range of fish species and identify patterns of intraspecific variation in energy storage, and use these patterns to formulate a general model of energy allocation between growth, lipid storage and reproduction in fishes. From the compiled data we identified two patterns: (1) energy density increases with body size during the juvenile period, but is invariant with body size within the adult size range for most species, and (2) energy density changes across seasons, with depletion over winter, but increases fastest in periods of transition between favourable and unfavourable conditions for growth (i.e. fall). Based on these patterns we propose DEBlipid, a simple, general model of energy allocation that is closely related to a simplified version of Dynamic Energy Budget theory, DEBkiss. The crux of the model is that assimilated energy is partitioned, with κ fraction of energy allocated to pay maintenance costs first, and the surplus allocated to growth, and 1 - κ fraction of assimilated energy is allocated to accumulating storage lipids during the juvenile phase, and later to reproduction as adults. This mechanism, in addition to capturing the two patterns that motivated the model, was able to predict lipid dynamics in a novel context, the migration of anadromous fish from low-food freshwater to high-food marine environments. Furthermore, the model was used to explain intra and

  9. Synthesis and characterization of cationic lipid coated magnetic nanoparticles using multiple emulsions as microreactors

    Energy Technology Data Exchange (ETDEWEB)

    Akbaba, Hasan; Karagöz, Uğur [Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 35100 Izmir (Turkey); Selamet, Yusuf [Izmir Institute of Technology, Faculty of Science, Department of Physics, 35433 Izmir (Turkey); Kantarcı, A. Gülten, E-mail: gulten.kantarci@ege.edu.tr [Ege University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 35100 Izmir (Turkey)

    2017-03-15

    The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (<30 nm) for drug or nucleic acid delivery. Structure analysis showed that magnetic core material is in the form of magnetite. Saturation magnetization value was measured as 15–17 emu g{sup −1} for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting. - Highlights: • A novel iron oxide nanoparticle synthesis method with in-situ surface coating. • Combining advantages of microemulsions and multiple emulsion methods. • Multiple emulsions were used as microreactors for magnetic nanoparticle synthesis. • Superparamagnetic iron oxide particles synthesized in the core of cationic lipids. • Possible delivery systems for nucleic acids, oil soluble compounds or drugs.

  10. Proteomic Analysis of Lipid Droplets from Caco-2/TC7 Enterocytes Identifies Novel Modulators of Lipid Secretion

    Science.gov (United States)

    Beilstein, Frauke; Bouchoux, Julien; Rousset, Monique; Demignot, Sylvie

    2013-01-01

    In enterocytes, the dynamic accumulation and depletion of triacylglycerol (TAG) in lipid droplets (LD) during fat absorption suggests that cytosolic LD-associated TAG contribute to TAG-rich lipoprotein (TRL) production. To get insight into the mechanisms controlling the storage/secretion balance of TAG, we used as a tool hepatitis C virus core protein, which localizes onto LDs, and thus may modify their protein coat and decrease TRL secretion. We compared the proteome of LD fractions isolated from Caco-2/TC7 enterocytes expressing or not hepatitis C virus core protein by a differential proteomic approach (isobaric tag for relative and absolute quantitation (iTRAQ) labeling coupled with liquid chromatography and tandem mass spectrometry). We identified 42 proteins, 21 being involved in lipid metabolism. Perilipin-2/ADRP, which is suggested to stabilize long term-stored TAG, was enriched in LD fractions isolated from Caco-2/TC7 expressing core protein while perilipin-3/TIP47, which is involved in LD synthesis from newly synthesized TAG, was decreased. Endoplasmic reticulum-associated proteins were strongly decreased, suggesting reduced interactions between LD and endoplasmic reticulum, where TRL assembly occurs. For the first time, we show that 17β-hydroxysteroid dehydrogenase 2 (DHB2), which catalyzes the conversion of 17-keto to 17 β-hydroxysteroids and which was the most highly enriched protein in core expressing cells, is localized to LD and interferes with TAG secretion, probably through its capacity to inactivate testosterone. Overall, we identified potential new players of lipid droplet dynamics, which may be involved in the balance between lipid storage and secretion, and may be altered in enterocytes in pathological conditions such as insulin resistance, type II diabetes and obesity. PMID:23301014

  11. How Do Lipids Localize in Lewy Bodies?

    NARCIS (Netherlands)

    Chaudhary, Himanshu; Subramaniam, Vinod; Claessens, Mireille

    2014-01-01

    Lewy bodies are the pathological hallmark of Parkinson's disease (PD). While fibrillar α-synuclein (αS) is the main protein component of Lewy bodies, these structures also contain lipids. To elucidate the presence of lipids in Lewy bodies, we investigated the interaction of lipids with monomeric and

  12. Biocatalytic Route to Surface Active Lipid

    DEFF Research Database (Denmark)

    Cheong, Ling-Zhi; Xu, Xuebing

    Lipid can be structurally modified in order to attain improved functional properties. This work look into the possibilities of developing surface active lipids with improved functional properties through biocatalytic route. Biocatalytic route to surface active lipid are usually complex involving ...... distinct self assembling property and find useful application in surfactant industry....

  13. Myoglobin-induced lipid oxidation : A review

    DEFF Research Database (Denmark)

    Baron, Caroline; Andersen, H.J.

    2002-01-01

    An overview of myoglobin-initiated lipid oxidation in simple model systems, muscle, and muscle-based foods is presented. The potential role of myoglobin spin and redox states in initiating lipid oxidation is reviewed. Proposed mechanisms for myoglobin- initiated lipid oxidation in muscle tissue (p...

  14. Wheat leaf lipids during heat stress: II. Lipids experiencing coordinated metabolism are detected by analysis of lipid co-occurrence.

    Science.gov (United States)

    Narayanan, Sruthi; Prasad, P V Vara; Welti, Ruth

    2016-03-01

    Identifying lipids that experience coordinated metabolism during heat stress would provide information regarding lipid dynamics under stress conditions and assist in developing heat-tolerant wheat varieties. We hypothesized that co-occurring lipids, which are up-regulated or down-regulated together through time during heat stress, represent groups that can be explained by coordinated metabolism. Wheat plants (Triticum aestivum L.) were subjected to 12 days of high day and/or night temperature stress, followed by a 4-day recovery period. Leaves were sampled at four time points, and 165 lipids were measured by electrospray ionization-tandem mass spectrometry. Correlation analysis of lipid levels in 160 leaf samples from each of two wheat genotypes revealed 13 groups of lipids. Lipids within each group co-occurred through the high day and night temperature stress treatments. The lipid groups can be broadly classified as groups containing extraplastidic phospholipids, plastidic glycerolipids, oxidized glycerolipids, triacylglycerols, acylated sterol glycosides and sterol glycosides. Current knowledge of lipid metabolism suggests that the lipids in each group co-occur because they are regulated by the same enzyme(s). The results suggest that increases in activities of desaturating, oxidizing, glycosylating and acylating enzymes lead to simultaneous changes in levels of multiple lipid species during high day and night temperature stress in wheat. © 2015 John Wiley & Sons Ltd.

  15. Physicochemical characterization of carboxymethyl lipid A derivatives in relation to biological activity.

    Science.gov (United States)

    Seydel, Ulrich; Schromm, Andra B; Brade, Lore; Gronow, Sabine; Andrä, Jörg; Müller, Mareike; Koch, Michel H J; Fukase, Koichi; Kataoka, Mikayo; Hashimoto, Masaya; Kusumoto, Shoichi; Brandenburg, Klaus

    2005-01-01

    Lipopolysaccharide (LPS) from the outer membrane of Gram-negative bacteria belongs to the most potent activators of the mammalian immune system. Its lipid moiety, lipid A, the 'endotoxic principle' of LPS, carries two negatively charged phosphate groups and six acyl chain residues in a defined asymmetric distribution (corresponding to synthetic compound 506). Tetraacyl lipid A (precursor IVa or synthetic 406), which lacks the two hydroxylated acyl chains, is agonistically completely inactive, but is a strong antagonist to bioactive LPS when administered to the cells before LPS addition. The two negative charges of lipid A, represented by the two phosphate groups, are essential for agonistic as well as for antagonistic activity and no highly active lipid A are known with negative charges other than phosphate groups. We hypothesized that the phosphate groups could be substituted by other negatively charged groups without changing the endotoxic properties of lipid A. To test this hypothesis, we synthesized carboxymethyl (CM) derivatives of hexaacyl lipid A (CM-506 and Bis-CM-506) and of tetraacyl lipid A (Bis-CM-406) and correlated their physicochemical with their endotoxic properties. We found that, similarly to compounds 506 and 406, also for their carboxymethyl derivatives a particular molecular ('endotoxic') conformation and with that, a particular aggregate structure is a prerequisite for high cytokine-inducing capacity and antagonistic activity, respectively. In other parameters such as acyl chain melting behaviour, antibody binding, activity in the Limulus lysate assay, and partially the binding of 3-deoxy-D-manno-oct-2-ulosonic acid transferase, strong deviations from the properties of the phosphorylated compounds were observed. These data allow a better understanding of endotoxic activity and its structural prerequisites.

  16. Polydopamine-Supported Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Souryvanh Nirasay

    2012-12-01

    Full Text Available We report the formation of lipid membranes supported by a soft polymeric cushion of polydopamine. First, 20 nm thick polydopamine films were formed on mica substrates. Atomic force microscopy imaging indicated that these films were also soft with a surface roughness of 2 nm under hydrated conditions. A zwitterionic phospholipid bilayer was then deposited on the polydopamine cushion by fusion of dimyristoylphosphatidylcholine (DMPC and dioleoylphosphatidylcholine (DOPC vesicles. Polydopamine films preserved the lateral mobility of the phospholipids as shown by fluorescence microscopy recovery after photobleaching (FRAP experiments. Diffusion coefficients of ~5.9 and 7.2 µm2 s−1 were respectively determined for DMPC and DOPC at room temperature, values which are characteristic of lipids in a free standing bilayer system.

  17. Polydopamine-Supported Lipid Bilayers

    Science.gov (United States)

    Nirasay, Souryvanh; Badia, Antonella; Leclair, Grégoire; Claverie, Jerome P.; Marcotte, Isabelle

    2012-01-01

    We report the formation of lipid membranes supported by a soft polymeric cushion of polydopamine. First, 20 nm thick polydopamine films were formed on mica substrates. Atomic force microscopy imaging indicated that these films were also soft with a surface roughness of 2 nm under hydrated conditions. A zwitterionic phospholipid bilayer was then deposited on the polydopamine cushion by fusion of dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) vesicles. Polydopamine films preserved the lateral mobility of the phospholipids as shown by fluorescence microscopy recovery after photobleaching (FRAP) experiments. Diffusion coefficients of ~5.9 and 7.2 µm2 s−1 were respectively determined for DMPC and DOPC at room temperature, values which are characteristic of lipids in a free standing bilayer system.

  18. Lipids in monogastric animal meat

    OpenAIRE

    Mourot, Jacques; HERMIER, Dominique

    2001-01-01

    International audience; Meat from monogastric animals, essentially pigs and poultry, is from afar the most consumed of all meats. Meat products from every species have their own characteristics. For a long time, pig meat has been presented as a fatty meat because of the importance of subcutaneous adipose tissue. Actually, when the visible fat is separated, this meat is rather poor in lipids: pieces eaten as fresh meat and without transformation, such as roasts, contain less then 2% total lipi...

  19. Polydopamine-Supported Lipid Bilayers

    OpenAIRE

    Souryvanh Nirasay; Antonella Badia; Grégoire Leclair; Claverie, Jerome P.; Isabelle Marcotte

    2012-01-01

    We report the formation of lipid membranes supported by a soft polymeric cushion of polydopamine. First, 20 nm thick polydopamine films were formed on mica substrates. Atomic force microscopy imaging indicated that these films were also soft with a surface roughness of 2 nm under hydrated conditions. A zwitterionic phospholipid bilayer was then deposited on the polydopamine cushion by fusion of dimyristoylphosphatidylcholine (DMPC) and dioleoylphosphatidylcholine (DOPC) vesicles. Polydopamine...

  20. Anesthetics interacting with lipid rafts.

    Science.gov (United States)

    Bandeiras, Cátia; Serro, Ana Paula; Luzyanin, Konstantin; Fernandes, Anabela; Saramago, Benilde

    2013-01-23

    The exact mechanism by which anesthetics induce cell membrane-mediated modifications is still an open question. Although the fluidization effect of the anesthetic molecules on the cellular membrane is widely recognized, it is not known if anesthetics show any preference for specific membrane domains, namely the lipid rafts. The importance of these membrane micro-domains derives from the fact that they have been associated with cell signaling pathways, as well as with specific drug interactions. The objective of this work is to contribute for the elucidation of this question through the comparison of the anesthetic interactions with membranes of various lipid compositions. Liposomes prepared with an equimolar mixture of POPC, sphingomyelin and cholesterol, were chosen as models for lipid rafts. The interactions of these liposomes with two local anesthetics, tetracaine and lidocaine, and one general anesthetic, propofol, were studied. The effect of cholesterol was investigated by comparing anesthetic interactions with POPC/SM liposomes and POPC/SM/CHOL liposomes. The following experimental techniques were used: quartz crystal microbalance with dissipation, differential scanning calorimetry and phosphorus nuclear magnetic resonance. Although the liposomes investigated by the different techniques are not in the same conditions, it is possible to assemble the information obtained from all experimental techniques employed to reach a general conclusion. Tetracaine interacts more with raftlike domains, lidocaine induces stronger modifications on POPC/SM liposomes and the results for propofol are not fully conclusive but it seems to be the least prone to lipid interactions. The results were compared with those obtained with DMPC-containing liposomes, reported in a previous work. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Differential alteration of lipid antigen presentation to NKT cells due to imbalances in lipid metabolism.

    Science.gov (United States)

    Schümann, Jens; Facciotti, Federica; Panza, Luigi; Michieletti, Mario; Compostella, Federica; Collmann, Anthony; Mori, Lucia; De Libero, Gennaro

    2007-06-01

    Deficiencies in enzymes of the lysosomal glycosphingolipid degradation pathway or in lysosomal lipid transfer proteins cause an imbalance in lipid metabolism and induce accumulation of certain lipids. A possible impact of such an imbalance on the presentation of lipid antigens to lipid-reactive T cells has only been hypothesized but not extensively studied so far. Here we demonstrate that presentation of lipid antigens to, and development of, lipid-reactive CD1d-restricted NKT cells, are impaired in mice deficient in the lysosomal enzyme beta-galactosidase (betaGal) or the lysosomal lipid transfer protein Niemann-Pick C (NPC) 2. Importantly, the residual populations of NKT cells selected in betaGal-/- and NPC2-/- mice showed differential TCR and CD4 repertoire characteristics, suggesting that differential selecting CD1d:lipid antigen complexes are formed. Furthermore, we provide direct evidence that accumulation of lipids impairs lipid antigen presentation in both cases. However, the mechanisms by which imbalanced lipid metabolism affected lipid antigen presentation were different. Based on these results, the impact of lipid accumulation should be generally considered in the interpretation of immunological deficiencies found in mice suffering from lipid metabolic disorders.

  2. Lipids in monogastric animal meat.

    Science.gov (United States)

    Mourot, J; Hermier, D

    2001-01-01

    Meat from monogastric animals, essentially pigs and poultry, is from afar the most consumed of all meats. Meat products from every species have their own characteristics. For a long time, pig meat has been presented as a fatty meat because of the importance of subcutaneous adipose tissue. Actually, when the visible fat is separated, this meat is rather poor in lipids: pieces eaten as fresh meat and without transformation, such as roasts, contain less then 2% total lipids. Poultry meat has always had a reputation of leanness because of its low content in intramuscular lipids. In addition, adipose tissues, localised in the abdominal cavity, are easily separable. The progress in genetics and a better knowledge of dietary needs has allowed to improve growth performances, to increase muscle weight and, in the pig, to strongly decrease carcass adiposity. However, strong contradictions appear between transformers and nutritionists, especially concerning the pig: the former wish to have meat with adipose tissues containing a high percentage of saturated fatty acids and the latter wish meat with more unsaturated fatty acids. The consumer, however, regrets the pigs of yesteryear or the poultry bred on farmyard that had tastier meat. At the same time, however, they request meat with a low fat content, which is paradoxical.

  3. Interaction Forces between Lipid Rafts.

    Science.gov (United States)

    Kurniawan, James; Ventrici, João; Kittleson, Gregory; Kuhl, Tonya L

    2017-01-10

    Cellular membranes containing sphingolipids and cholesterol have been shown to self-organize into lipid rafts-specialized domains that host integral membrane proteins and modulate the bioactivity of cells. In this work, force-distance profiles between raft membranes in the liquid-ordered phase consisting of singly unsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), a complex mixture of brain sphingomyelin (BSM), and cholesterol were measured using the surface force apparatus (SFA). Two distinct force profiles were detected corresponding to uniform raft membranes and raft membranes with a higher level of topological membrane defects (heterogeneous) as corroborated by atomic force microscopy (AFM) scans. In all cases a weak, long-range electrostatic repulsion was observed with some variation in the surface charge density. The variation in electrostatic repulsion was attributed to charged lipid species primarily from the constituent lipids in the BSM mixture. The adhesion between the uniform raft membranes was comparable to our previous work with pure component, liquid-ordered POPC-DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine)-cholesterol membranes. Raft membranes with more topological defects adhered more strongly owing to hydrophobic attraction between exposed acyl chains. Even though the rafts were in the liquid-ordered phase and membrane defects were present in the contact region, the raft membranes were stable, and no structural rearrangement was observed throughout the measurements. Our findings demonstrate that liquid-ordered membranes are stable to mechanical loading and not particularly sensitive to compositional variation.

  4. Stratum Corneum Barrier Lipids in Cholesteatoma

    DEFF Research Database (Denmark)

    Svane-Knudsen, V; Halkier-Sørensen, L; Rasmussen, G

    2000-01-01

    Specimens from primary cholesteatomas were examined under the electron microscope using a lipid-retaining method that is best suited for intracellular lipids and a method that is best for intercellular lipids. In the stratum granulosum of the squamous epithelium, a large number of Odland bodies...... emerged. When the corneocyte reaches the transitional stage to the stratum corneum, the Odland bodies accumulate near the cell membrane and discharge their contents of lipid and enzymes. The lipids are reorganized into multiple long sheets of lamellar structures that embrace the keratinized corneocytes......, as seen in the formation and maintenance of the cutaneous permeability barrier. In this study we draw the attention to the facts that the cholesteatoma epithelium is capable of producing not only cholesterol, but also several lipids, and that the lipid molecules are organized in multilamellar structures...

  5. Presentation of lipid antigens to T cells.

    Science.gov (United States)

    Mori, Lucia; De Libero, Gennaro

    2008-04-15

    T cells specific for lipid antigens participate in regulation of the immune response during infections, tumor immunosurveillance, allergy and autoimmune diseases. T cells recognize lipid antigens as complexes formed with CD1 antigen-presenting molecules, thus resembling recognition of MHC-peptide complexes. The biophysical properties of lipids impose unique mechanisms for their delivery, internalization into antigen-presenting cells, membrane trafficking, processing, and loading of CD1 molecules. Each of these steps is controlled at molecular and celular levels and determines lipid immunogenicity. Lipid antigens may derive from microbes and from the cellular metabolism, thus allowing the immune system to survey a large repertoire of immunogenic molecules. Recognition of lipid antigens facilitates the detection of infectious agents and the initiation of responses involved in immunoregulation and autoimmunity. This review focuses on the presentation mechanisms and specific recognition of self and bacterial lipid antigens and discusses the important open issues.

  6. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yuanwen; Carvalho-de-Souza, João L.; Wong, Raymond C. S.; Luo, Zhiqiang; Isheim, Dieter; Zuo, Xiaobing; Nicholls, Alan W.; Jung, Il Woong; Yue, Jiping; Liu, Di-Jia; Wang, Yucai; De Andrade, Vincent; Xiao, Xianghui; Navrazhnykh, Luizetta; Weiss, Dara E.; Wu, Xiaoyang; Seidman, David N.; Bezanilla, Francisco; Tian, Bozhi

    2016-06-27

    Silicon-based materials have widespread application as biophysical tools and biomedical devices. Here we introduce a biocompatible and degradable mesostructured form of silicon with multi-scale structural and chemical heterogeneities. The material was synthesized using mesoporous silica as a template through a chemical vapour deposition process. It has an amorphous atomic structure, an ordered nanowire-based framework and random submicrometre voids, and shows an average Young’s modulus that is 2–3 orders of magnitude smaller than that of single-crystalline silicon. In addition, we used the heterogeneous silicon mesostructures to design a lipid-bilayer-supported bioelectric interface that is remotely controlled and temporally transient, and that permits non-genetic and subcellular optical modulation of the electrophysiology dynamics in single dorsal root ganglia neurons. Our findings suggest that the biomimetic expansion of silicon into heterogeneous and deformable forms can open up opportunities in extracellular biomaterial or bioelectric systems.

  7. Using SyGuS to Synthesize Reactive Motion Plans

    Directory of Open Access Journals (Sweden)

    Sarah Chasins

    2016-11-01

    Full Text Available We present an approach for synthesizing reactive robot motion plans, based on compilation to Syntax-Guided Synthesis (SyGuS specifications. Our method reduces the motion planning problem to the problem of synthesizing a function that can choose the next robot action in response to the current state of the system. This technique offers reactivity not by generating new motion plans throughout deployment, but by synthesizing a single program that causes the robot to reach its target from any system state that is consistent with the system model. This approach allows our tool to handle environments with adversarial obstacles. This work represents the first use of the SyGuS formalism to solve robot motion planning problems. We investigate whether using SyGuS for a bounded two-player reachability game is practical at this point in time.

  8. Bottom-Up Syntheses and Characterization of One Dimensional Nanomaterials

    Science.gov (United States)

    Yeh, Yao-Wen

    Nanomaterials, materials having at least one dimension below 100 nm, have been creating exciting opportunities for fundamental quantum confinement studies and applications in electronic devices and energy technologies. One obvious and important aspect of nanomaterials is their production. Although nanostructures can be obtained by top-down reductive e-beam lithography and focused ion beam processes, further development of these processes is needed before these techniques can become practical routes to large scale production. On the other hand, bottom-up syntheses, with advantages in material diversity, throughput, and the potential for large volume production, may provide an alternative strategy for creating nanostructures. In this work, we explore syntheses of one dimensional nanostructures based on hydrothermal and arc discharge methods. The first project presented in this thesis involves syntheses of technologically important nanomaterials and their potential application in energy harvesting. In particular, it was demonstrated that single crystal ferroelectric lead magnesium niobate lead titanate (PMN-PT) nanowires can be synthesized by a hydrothermal route. The chemical composition of the synthesized nanowires is near the rhombohedral-monoclinic boundary of PMN-PT, which leads to a high piezoelectric coefficient of 381 pm/V. Finally, the potential use of PMN-PT nanowires in energy harvesting applications was also demonstrated. The second part of this thesis involves the synthesis of carbon and boron nitride nanotubes by dc arc discharges. In particular, we investigated how local plasma related properties affected the synthesis of carbon nanostructures. Finally, we investigated the anodic nature of the arc and how a dc arc discharge can be applied to synthesize boron nitride nanotubes.

  9. Chemical phase analysis of seed mediated synthesized anisotropic silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Bharti, Amardeep, E-mail: abharti@pu.ac.in; Goyal, Navdeep [Department of Physics, Panjab University, Chandigarh, INDIA-160014 (India); Singh, Suman; Singla, M. L. [Agrionics, Central Scientific Instruments Organization, CSIR, Chandigarh, INDIA-160030 (India)

    2015-08-28

    Noble-metal nanoparticles are of great interest because of its broad applications almost in every stream (i.e. biology, chemistry and engineering) due to their unique size/shape dependant properties. In this paper, chemical phase of seed mediated synthesized anisotropic silver nanoparticle (AgNPs) has been investigated via fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). These nanaoparticles were synthesized by seed-growth method controlled by urea and dextrose results to highly stable 12-20 nm particle size revealed by zeta potential and transmission electron microscopy (TEM)

  10. Lysine-based amino-functionalized lipids for gene transfection: the protonation state in monolayers at the air-liquid interface.

    Science.gov (United States)

    Tassler, Stephanie; Wölk, Christian; Janich, Christopher; Dobner, Bodo; Brezesinski, Gerald

    2017-08-02

    Cationic lipids are considered as non-viral carriers for genetic material used in gene therapy. They have no carcinogenic potential and cause low immune response compared to existing viral systems. The protonation degree of these cationic lipids is a crucial parameter for the binding behavior of polynucleotides (e.g., DNA). Newly synthesized peptide-mimic lysine-based amino-functionalized lipids have been investigated in 2D models as monolayers at the air-liquid interface. Standard surface pressure - area isotherms have been measured to prove the layer stability. Total reflection X-ray fluorescence (TRXF) has been used as a surface sensitive analytical method to estimate the amount of counterions at the head groups. Using a standard sample as a reference, the protonation degree of these cationic lipids can be quantified on buffers with different pH values. It is found that the protonation degree depends linearly on the packing density of the lipid monolayer.

  11. Hydrogel Micro-/Nanosphere Coated by a Lipid Bilayer: Preparation and Microscopic Probing

    Directory of Open Access Journals (Sweden)

    Sarah Rahni

    2017-02-01

    Full Text Available The result of polymeric nanogels and lipid vesicles interaction—lipobeads—can be considered as multipurpose containers for future therapeutic applications, such as targeted anticancer chemotherapy with superior tumor response and minimum side effects. In this work, micrometer sized lipobeads were synthesized by two methods: (i mixing separately prepared microgels made of poly(N-isopropylacrylamide (PNIPA and phospholipid vesicles of micrometer or nanometer size and (ii polymerization within the lipid vesicles. For the first time, a high vacuum scanning electron microscopy was shown to be suitable for a quick validation of the structural organization of wet lipobeads and their constituents without special sample preparation. In particular, the structural difference of microgels prepared by thermal and UV-polymerization in different solvents was revealed and three types of giant liposomes were recognized under high vacuum in conjunction with their size, composition, and method of preparation. Importantly, the substructure of the hydrogel core and multi- and unilamellar constructions of the peripheral lipid part were explicitly distinguished on the SEM images of lipobeads, justifying the spontaneous formation of a lipid bilayer on the surface of microgels and evidencing an energetically favorable structural organization of the hydrogel/lipid bilayer assembly. This key property can facilitate lipobeads’ preparation and decrease technological expenses on their scaled production. The comparison of the SEM imaging with the scanning confocal and atomic force microscopies data are also presented in the discussion.

  12. Clathrin to Lipid Raft-Endocytosis via Controlled Surface Chemistry and Efficient Perinuclear Targeting of Nanoparticle.

    Science.gov (United States)

    Chakraborty, Atanu; Jana, Nikhil R

    2015-09-17

    Nanoparticle interacts with live cells depending on their surface chemistry, enters into cell via endocytosis, and is commonly trafficked to an endosome/lysozome that restricts subcellular targeting options. Here we show that nanoparticle surface chemistry can be tuned to alter their cell uptake mechanism and subcellular trafficking. Quantum dot based nanoprobes of 20-30 nm hydrodynamic diameters have been synthesized with tunable surface charge (between +15 mV to -25 mV) and lipophilicity to influence their cellular uptake processes and subcellular trafficking. It is observed that cationic nanoprobe electrostatically interacts with cell membrane and enters into cell via clathrin-mediated endocytosis. At lower surface charge (between +10 mV to -10 mV), the electrostatic interaction with cell membrane becomes weaker, and additional lipid raft endocytosis is initiated. If a lipophilic functional group is introduced on a weakly anionic nanoparticle surface, the uptake mechanism shifts to predominant lipid raft-mediated endocytosis. In particular, the zwitterionic-lipophilic nanoprobe has the unique advantage as it weakly interacts with anionic cell membrane, migrates toward lipid rafts for interaction through lipophilic functional group, and induces lipid raft-mediated endocytosis. While predominate or partial clathrin-mediated entry traffics most of the nanoprobes to lysozome, predominate lipid raft-mediated entry traffics them to perinuclear region, particularly to the Golgi apparatus. This finding would guide in designing appropriate nanoprobe for subcellular targeting and delivery.

  13. Tethered bimolecular lipid membranes - A novel model membrane platform

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, Wolfgang; Koeper, Ingo; Naumann, Renate; Sinner, Eva-Kathrin [Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany)

    2008-10-01

    This contribution summarizes some of our efforts in designing, synthesizing, assembling, and characterizing functional tethered bimolecular lipid membranes (tBLMs) as a novel platform for biophysical studies of and with artificial membranes or for sensor development employing, e.g., membrane integral receptor proteins. Chemical coupling schemes based on thiol groups for Au substrates or silanes used in the case of oxide surfaces allow for the covalent and, hence, chemically and mechanically robust attachment of anchor lipids to the solid support, stabilizing the proximal layer of a tethered membrane on the transducer surface. Surface plasmon optics, the quartz crystal microbalance, fluorescence- and IR spectroscopies, and electrochemical techniques are used to characterize the build-up of these complex supramolecular interfacial architectures. We demonstrate, in particular, that bilayers with a specific electrical resistance of better than 10 M{omega} cm{sup 2} can be achieved routinely with this approach. The functionalization of the lipid membranes by the incorporation of peptides is demonstrated for the carrier valinomycin which shows in our tBLMs the expected discrimination by four orders of magnitude between the translocation of K{sup +}- and Na{sup +}-ions across the hydrophobic barrier. For the synthetic channel-forming peptide M2 the high electrical resistance of the bilayer with the correspondingly low background current allows for the recording of even single channel current fluctuations. From the many membrane proteins that we reconstituted so far we describe results obtained with the redox-protein cytochrome c oxidase. Here, we also use a genetically modified mutant with a His-tag at either the C- or the N-terminus for the oriented attachment of the protein via the NTA/Ni{sup 2+} approach. With this strategy, we not only can control the density of the immobilized functional units, we introduce a completely new and alternative concept for the

  14. Specificity of Intramembrane Protein–Lipid Interactions

    Science.gov (United States)

    Contreras, Francesc-Xabier; Ernst, Andreas Max; Wieland, Felix; Brügger, Britta

    2011-01-01

    Our concept of biological membranes has markedly changed, from the fluid mosaic model to the current model that lipids and proteins have the ability to separate into microdomains, differing in their protein and lipid compositions. Since the breakthrough in crystallizing membrane proteins, the most powerful method to define lipid-binding sites on proteins has been X-ray and electron crystallography. More recently, chemical biology approaches have been developed to analyze protein–lipid interactions. Such methods have the advantage of providing highly specific cellular probes. With the advent of novel tools to study functions of individual lipid species in membranes together with structural analysis and simulations at the atomistic resolution, a growing number of specific protein–lipid complexes are defined and their functions explored. In the present article, we discuss the various modes of intramembrane protein–lipid interactions in cellular membranes, including examples for both annular and nonannular bound lipids. Furthermore, we will discuss possible functional roles of such specific protein–lipid interactions as well as roles of lipids as chaperones in protein folding and transport. PMID:21536707

  15. Phase diagrams and lipid domains in multicomponent lipid bilayer mixtures.

    Science.gov (United States)

    Feigenson, Gerald W

    2009-01-01

    Understanding the phase behavior of biological membranes is helped by the study of more simple systems. Model membranes that have as few as 3 components exhibit complex phase behavior that can be well described, providing insight for biological membranes. A number of different studies are in agreement on general findings for some compositional phase diagrams, in particular, those that model the outer leaflet of animal cell plasma membranes. These model mixtures include cholesterol, together with one high-melting lipid and one low-melting lipid. An interesting finding is of two categories of such 3-component mixtures, leading to what we term Type I and Type II compositional phase diagrams. The latter have phase regions of macroscopic coexisting domains of [Lalpha+Lbeta+Lo] and of [Lalpha+Lo], with domains resolved under the light microscope. Type I mixtures have the same phase coexistence regions, but the domains seem to be nanoscopic. Type I mixtures are likely to be better models for biological membranes.

  16. Antibacterial potential of silver nanoparticle synthesized by marine ...

    African Journals Online (AJOL)

    Multi resistance to antibiotics is a serious and disseminated clinical problem, common to several new compounds that block the resistance mechanism. The present study aimed at the comparative study of silver nanoparticles synthesized through actinomycetes and their antimicrobial metabolites with standard antibiotic.

  17. Design, syntheses, characterization and single crystal X-ray ...

    Indian Academy of Sciences (India)

    Administrator

    Design, syntheses, characterization and single crystal X-ray diffraction studies of multicomponent Zn-tetraphenylpor- phyrins: Novel building blocks for microporous crystalline solids. ATINDRA D SHUKLA 1, PARESH C DAVE 1, ERINGATHODI. SURESH 1, GOPAL PATHAK 2, AMITAVA DAS 1 and. PARTHASARATHI ...

  18. Characterization of chemically synthesized CdS nanoparticles

    Indian Academy of Sciences (India)

    Similar to the effects of charge carriers on optical properties, confinement of optical and acoustic phonons leads to interesting changes in the phonon spectra. In the present work, we have synthesized nanoparticles of CdS using chemical precipitation technique. The crystal structure and grain size of the particles are studied ...

  19. Function generator for synthesizing complex vibration mode patterns

    Science.gov (United States)

    Naumann, E. C.; Hagood, G. J., Jr. (Inventor)

    1973-01-01

    A simple highly flexible device for synthesizing complex vibration mode patterns is described. These mode patterns can be used to identify vibration mode data. This device sums selected sine and cosine functions and then plots the sum against a linear function.

  20. ARSENIC REMOVAL USING SOL-GEL SYNTHESIZED TITANIUM DIOXIDE NANOPARTICLES

    Science.gov (United States)

    In this study, the effectiveness of TiO2 nanoparticles in arsenic adsorption was examined. TiO2 particles (LS) were synthesized via sol-gel techniques and characterized for their crystallinity, surface area and pore volume. Batch adsorption studies were perf...

  1. Synthesizing Knowledge on Internet of Things (IoT)

    DEFF Research Database (Denmark)

    Liu, Fei; Tan, Chee-Wee; Lim, Eric T. K.

    2016-01-01

    Research on Internet of Things (IoT) has been booming for past couple of years due to technological advances and its potential for application. Nonetheless, the rapid growth of IoT articles as well as the heterogeneous nature of IoT pose challenges in synthesizing prior research on the phenomenon...

  2. Investigation of formation constant of complex of a new synthesized ...

    African Journals Online (AJOL)

    The complex formation between a newly synthesized tripodal ligand and the cation Cu2+ in water and surfactant media was studied spectrophotometrically using rank annihilation factor analysis (RAFA). According to molar ratio data the stoichiometry of complexation between the ligand and the cation Cu2+ was 1:1.

  3. Die Meta-Synthese zur Aggregation und Reflektion qualitativer Fallstudien

    DEFF Research Database (Denmark)

    Gretzinger, Susanne; Leick, Birgit

    2017-01-01

    Metasynthesis, the qualitative counterpart of metaanalysis (Hunt 1997), is defined as “an exploratory, inductive research design to synthesize primary qualitative case studies for the purpose of making contributions beyond those achieved in the original studies” (Hoon 2013: 523, see also Sandelow...

  4. development of a hydrothermal method to synthesize spherical znse ...

    African Journals Online (AJOL)

    Preferred Customer

    A hydrothermal method to synthesize spherical ZnSe nanoparticles. Bull. Chem. Soc. Ethiop. 2014, 28(1). 39 resulting in the equalization of scattering coefficients of the reference side and sample side. The integrating sphere method involves a barium sulfate-coated sphere that draws the scattered light, allowing all the light ...

  5. Electrodeposition route to synthesize cigs films – an economical way ...

    African Journals Online (AJOL)

    user

    al., 1992; Panthani et al., 2008), sputtering techniques, spin coating, selenization of Ga-rich electrodeposited precursors (Kang et al., 2009) and mist deposition. In all these attempts the aim was to synthesize the film and characterize for the application of solar cells. Electro-deposition is the route by which minimum particle ...

  6. Distinction between SnO2 nanoparticles synthesized using co ...

    Indian Academy of Sciences (India)

    Distinction between SnO2 nanoparticles synthesized using co-precipitation and solvothermal methods for the photovoltaic efficiency of dye-sensitized solar cells ... The energy conversion efficiency of the solvothermal SnO2 powders was considerably higher than that formed by co-precipitation powders; ∼ 3.20% ...

  7. Syntheses, structures and luminescence behaviour of some zinc(II ...

    Indian Academy of Sciences (India)

    Syntheses, structures and luminescence behaviour of some zinc(II) complexes containing acetate and tetradentate Schiff bases. ASHIS KUMAR MAJI, SUBHASIS ROY, SOMNATH CHOUBEY, RAJARSHI GHOSH∗ and. BARINDRA KUMAR GHOSH∗. Department of Chemistry, The University of Burdwan, Burdwan 713 104, ...

  8. Syntheses, characterization, and anti-cancer activities of pyridine ...

    Indian Academy of Sciences (India)

    Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups. AFSAR ALIa, DEEPAK BANSALa, NAGENDRA K KAUSHIKb, NEHA KAUSHIKb,. EUN HA CHOIb and RAJEEV GUPTAa,∗. aDepartment of Chemistry, University of Delhi, Delhi 110 ...

  9. Bioactive nanocrystalline wollastonite synthesized by sol–gel ...

    Indian Academy of Sciences (India)

    The sol–gel combustion method was employed to synthesize the nanocrystalline wollastonite by taking the raw eggshell powder as a calcium source and TEOS as a source of silicate. Glycine was used as a reductant or fuel and nitrate ions present in metal nitrate acts as an oxidizer. The phase purity of the wollastonite was ...

  10. Proteins synthesized in tobacco mosaic virus infected protoplasts

    NARCIS (Netherlands)

    Huber, R.

    1979-01-01

    The study described here concerns the proteins, synthesized as a result of tobacco mosaic virus (TMV) multiplication in tobacco protoplasts and in cowpea protoplasts. The identification of proteins involved in the TMV infection, for instance in the virus RNA replication, helps to elucidate

  11. The Determinants of Information Value: Synthesizing Some General Results

    OpenAIRE

    Ronald W. Hilton

    1981-01-01

    This paper identifies the determinants of information value and synthesizes some general results concerning their effects. While some attributes of an information system exhibit a consistent directional effect on information value, attributes of the decision setting and decision maker do not.

  12. Main Group Chemistry of 9-Hydroxophenalenone: Syntheses and ...

    Indian Academy of Sciences (India)

    dell

    Main Group Chemistry of 9-Hydroxophenalenone: Syntheses and Structural Characterization of the Alkaline ... Department of Chemical Sciences, Indian Institute of Science Education and Research-. Kolkata, Mohanpur-741252, India. ‡ ...... _diffrn_radiation_source 'fine-focus sealed tube'. _diffrn_radiation_monochromator ...

  13. Parametric Audio Based Decoder and Music Synthesizer for Mobile Applications

    NARCIS (Netherlands)

    Oomen, A.W.J.; Szczerba, M.Z.; Therssen, D.

    2011-01-01

    This paper reviews parametric audio coders and discusses novel technologies introduced in a low-complexity, low-power consumption audiodecoder and music synthesizer platform developed by the authors. Thedecoder uses parametric coding scheme based on the MPEG-4 Parametric Audio standard. In order to

  14. Antibacterial activity of silver nanoparticles synthesized from serine

    Energy Technology Data Exchange (ETDEWEB)

    Jayaprakash, N. [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); SRM Valliammai Engineering College, Department of Chemistry, Chennai 603 203 (India); Judith Vijaya, J., E-mail: jjvijayaloyola@yahoo.co.in [Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai 600 034 (India); John Kennedy, L. [Materials Division, School of Advanced Sciences, VIT University, Chennai Campus, Chennai 600 048 (India); Priadharsini, K.; Palani, P. [Department of Center for Advanced Study in Botany, University of Madras, Guindy Campus, Chennai 600 025 (India)

    2015-04-01

    Silver nanoparticles (Ag NPs) were synthesized by a simple microwave irradiation method using polyvinyl pyrrolidone (PVP) as a capping agent and serine as a reducing agent. UV–Visible spectra were used to confirm the formation of Ag NPs by observing the surface plasmon resonance (SPR) band at 443 nm. The emission spectrum of Ag NPs showed an emission band at 484 nm. In the presence of microwave radiation, serine acts as a reducing agent, which was confirmed by Fourier transformed infrared (FT-IR) spectrum. High-resolution transmission electron microscopy (HR-TEM) and high-resolution scanning electron microscopy (HR-SEM) were used to investigate the morphology of the synthesized sample. These images showed the sphere-like morphology. The elemental composition of the sample was determined by the energy dispersive X-ray analysis (EDX). Selected area electron diffraction (SAED) was used to find the crystalline nature of the Ag NPs. The electrochemical behavior of the synthesized Ag NPs was analyzed by the cyclic voltammetry (CV). Antibacterial experiments showed that the prepared Ag NPs showed relatively similar antibacterial activities, when compared with AgNO{sub 3} against Gram-positive and Gram-negative bacteria. - Highlights: • Microwave irradiation method is used to synthesize silver nanoparticles. • Highly stable silver nanoparticles are produced from serine. • A detailed study of antibacterial activities is discussed. • Formation mechanism of silver microspheres has been proposed.

  15. A new antibiotic, fumaramidmycin. II. Isolation, structure and syntheses.

    Science.gov (United States)

    Suhara, Y; Maruyama, H B; Koto, Y; Miyasaka, Y; Yokose, K

    1975-09-01

    A new antibiotic fumaramidmycin produced by Streptomyces kurssanovii NR-7GG1 was isolated as colorless crystals. The structure was shown to be N-(phenylacetyl) fumaramide. Starting from fumaramic acid, fumaramidmycin has been synthesized in good yield, in which the key stage involves N-acylated imino ether formation followed by mild acid hydrolysis. Five analogues of fumaramidmycin have also been prepared.

  16. Syntheses, structures and properties of two dinuclear mercury (II ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 126; Issue 3. Syntheses, structures and properties of two dinuclear mercury(II) iodide compounds containing tetradentate tripodal amine/pentadentate N-donor Schiff base: Control of molecular and crystalline architectures by varying ligand matrices. Subhasis Roy ...

  17. Highly Stable Foams from Block Oligomers Synthesized by Enzymatic Reactions

    NARCIS (Netherlands)

    Sagis, L.M.C.; Boeriu, C.G.; Frissen, A.E.; Schols, H.A.; Wierenga, P.A.

    2008-01-01

    We have synthesized a new amphiphilic block oligomer by the enzymatic linking of a fatty acid (lauric acid) to a fructan oligomer (inulin) and tested the functionality of this carbohydrate derivative in foam stabilization. The structure of the modified oligosaccharide was found to be

  18. Meta-Analysis: A Systematic Method for Synthesizing Counseling Research

    Science.gov (United States)

    Whiston, Susan C.; Li, Peiwei

    2011-01-01

    The authors provide a template for counseling researchers who are interested in quantitatively aggregating research findings. Meta-analytic studies can provide relevant information to the counseling field by systematically synthesizing studies performed by researchers from diverse fields. Methodologically sound meta-analyses require careful…

  19. Nanoparticles of complex metal oxides synthesized using the ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 65; Issue 5. Nanoparticles of complex metal oxides synthesized using the reverse-micellar and polymeric precursor routes ... In addition we also discuss the synthesis of some transition metal (Mn and Cu) oxalate nanorods using the reverse-micellar route.

  20. Synthesizing Friction In A Force-Reflecting Hand Controller

    Science.gov (United States)

    Kauffman, James

    1993-01-01

    Algorithm synthesizes frictionlike limited reaction force in force-reflecting hand controller. Synthetic friction enhances operator's feel and improves control characteristics in two ways: handle of controller retains setting when operator releases it, and in case of multiple-axis controller, synthetic frictional force helps to hold control setting on one axis when handle pushed to command movement along another axis.

  1. Traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids

    Science.gov (United States)

    Trachman, E. G.; Cheng, H. S.

    1973-01-01

    The paper describes the disk machine designed and constructed for the investigation of the traction in elastohydrodynamic line contacts for two synthesized hydrocarbon fluids. The results of this experimental study are presented and compared with the theoretical predictions of traction according to the thermal and non-Newtonian theory recently presented by the authors.

  2. Syntheses, structures and properties of two coordination polymers of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 12. Syntheses, structures and properties of two coordination polymers of Cadmium(II) pseudohalide containing an in situ generated bidentate Schiff base: Control of dimensionality by varying pseudohalides. REGULAR ARTICLE Volume 129 Issue 12 ...

  3. Syntheses, structures and properties of two coordination polymers of ...

    Indian Academy of Sciences (India)

    Dipu Sutradhar

    2017-11-10

    Nov 10, 2017 ... Syntheses, structures and properties of two coordination polymers of Cadmium(II) pseudohalide containing an in situ generated bidentate Schiff base: Control of dimensionality by varying pseudohalides. DIPU SUTRADHARa, HABIBAR CHOWDHURYb, SUSHOVAN KONERa,. NIMAI CHANDRA SAHAc,∗.

  4. The Challenge of Synthesizing Oligomers for Molecular Wires

    DEFF Research Database (Denmark)

    Søndergaard, Roar; Krebs, Frederik C

    2011-01-01

    molecules with a molecular length up to 9–10 nm which allow for the introduction of aromatic thioacetate functionality in fully conjugated oligomer systems. Oligomers containing 3–15 phenyl units were synthesized by step wise Horner-Wadsworth-Emmons (HWE) reactions of a bifunctional OPV-monomer, which...

  5. Cost effective and shape controlled approach to synthesize ...

    Indian Academy of Sciences (India)

    Cost effective and shape controlled approach to synthesize hierarchically assembled NiO nanoflakes for the removal of toxic heavy metal ions in aqueous solution. K Yogesh Kumar H B Muralidhara Y Arthoba Nayaka H Hanumanthappa M S Veena S R Kiran Kumar. Volume 38 Issue 1 February 2015 pp 271-282 ...

  6. Syntheses, characterization and crystal structures of potassium and ...

    Indian Academy of Sciences (India)

    Syntheses, characterization and crystal structures of potassium and barium complexes of a Schiff base ligand with different anions. Bhavesh Parmar Kamal Kumar Bisht Pratyush Maiti Parimal Paul Eringathodi Suresh. Special issue on Chemical Crystallography Volume 126 Issue 5 September 2014 pp 1373-1384 ...

  7. Syntheses, characterization and crystal structures of potassium and ...

    Indian Academy of Sciences (India)

    Syntheses, characterization and crystal structures of potassium and barium complexes of a Schiff base ligand with different anions. BHAVESH PARMARa, KAMAL KUMAR BISHTa,b, PRATYUSH MAITIc, PARIMAL PAULa,b, and ERINGATHODI SURESHa,b,∗. aAnalytical Discipline and Centralized Instrument Facility, ...

  8. Analysis of Lipid Experiments (ALEX)

    DEFF Research Database (Denmark)

    Husen, Peter; Tarasov, Kirill; Katafiasz, Maciej

    2013-01-01

    , and an auxiliary workflow using database exploration tools for integration of sample information, computation of lipid abundance and lipidome visualization. A key feature of the platform is the organization of lipidomics data in "database table format" which provides the user with an unsurpassed flexibility...... phosphatase PRG-1 (plasticity related gene-1). The presented framework is generic, extendable to processing and integration of other lipidomic data structures, can be interfaced with post-processing protocols supporting statistical testing and multivariate analysis, and can serve as an avenue...... for disseminating lipidomics data within the scientific community. The ALEX software is available at www.msLipidomics.info....

  9. Rape embryogenesis. V. Accumulation of lipid bodies

    Directory of Open Access Journals (Sweden)

    Teresa Tykarska

    2014-01-01

    Full Text Available In embryo of winter rape var. Górczański lipid bodies have been observed in the light microscope starting from two-celled proembryo. Their number and size increase in the course of embryogenesis, especially since greening of endosperm and embryo. Lipid bodies, either single or in clusters, are present in all embryo cells, the clusters occur in various parts of the cytoplasm. During embryo maturation lipid bodies move and locate in a number of layers by the cell wall. At the same time their appearance change. Typical storage lipids originate. Lipid bodies are unevenly distributed within the embryo: their number and size decrease along the embryo axis from its part below cotyledons towards root apex. Moreover, they are histologically diversified: the biggest are located in epidermis and cortex, whereas the smallest -in central cylinder. In columella there are fewest lipid bodies.

  10. Droplet Microfluidics for Artificial Lipid Bilayers

    Science.gov (United States)

    Punnamaraju, Srikoundinya; Steckl, Andrew

    2012-02-01

    Droplet interface bilayer is a versatile approach that allows formation of artificial lipid bilayer membrane at the interface of two lipid monolayer coated aqueous droplets in a lipid filled oil medium. Versatility exists in the form of voltage control of DIB area, ability of forming networks of DIBs, volume control of droplets and lipid-oil, and ease of reformation. Significant effect of voltage on the area and capacitance of DIB as well as DIB networks are characterized using simultaneous optical and electrical recordings. Mechanisms behind voltage-induced effects on DIBs are investigated. Photo induced effect on the DIB membrane porosity is obtained by incorporating UVC-sensitive photo-polymerizable lipids in DIB. Photo-induced effects can be extended for in-vitro studies of triggered release of encapsulated contents across membranes. A droplet based low voltage digital microfluidic platform is developed to automate DIB formation, which could potentially be used for forming arrays of lipid bilayer membranes.

  11. Thermotoga lettingae Can Salvage Cobinamide To Synthesize Vitamin B12

    Science.gov (United States)

    Butzin, Nicholas C.; Secinaro, Michael A.; Swithers, Kristen S.; Gogarten, J. Peter

    2013-01-01

    We recently reported that the Thermotogales acquired the ability to synthesize vitamin B12 by acquisition of genes from two distantly related lineages, Archaea and Firmicutes (K. S. Swithers et al., Genome Biol. Evol. 4:730–739, 2012). Ancestral state reconstruction suggested that the cobinamide salvage gene cluster was present in the Thermotogales' most recent common ancestor. We also predicted that Thermotoga lettingae could not synthesize B12 de novo but could use the cobinamide salvage pathway to synthesize B12. In this study, these hypotheses were tested, and we found that Tt. lettingae did not synthesize B12 de novo but salvaged cobinamide. The growth rate of Tt. lettingae increased with the addition of B12 or cobinamide to its medium. It synthesized B12 when the medium was supplemented with cobinamide, and no B12 was detected in cells grown on cobinamide-deficient medium. Upstream of the cobinamide salvage genes is a putative B12 riboswitch. In other organisms, B12 riboswitches allow for higher transcriptional activity in the absence of B12. When Tt. lettingae was grown with no B12, the salvage genes were upregulated compared to cells grown with B12 or cobinamide. Another gene cluster with a putative B12 riboswitch upstream is the btuFCD ABC transporter, and it showed a transcription pattern similar to that of the cobinamide salvage genes. The BtuF proteins from species that can and cannot salvage cobinamides were shown in vitro to bind both B12 and cobinamide. These results suggest that Thermotogales species can use the BtuFCD transporter to import both B12 and cobinamide, even if they cannot salvage cobinamide. PMID:24014541

  12. Lipid droplet functions beyond energy storage.

    Science.gov (United States)

    Welte, Michael A; Gould, Alex P

    2017-10-01

    Lipid droplets are cytoplasmic organelles that store neutral lipids and are critically important for energy metabolism. Their function in energy storage is firmly established and increasingly well characterized. However, emerging evidence indicates that lipid droplets also play important and diverse roles in the cellular handling of lipids and proteins that may not be directly related to energy homeostasis. Lipid handling roles of droplets include the storage of hydrophobic vitamin and signaling precursors, and the management of endoplasmic reticulum and oxidative stress. Roles of lipid droplets in protein handling encompass functions in the maturation, storage, and turnover of cellular and viral polypeptides. Other potential roles of lipid droplets may be connected with their intracellular motility and, in some cases, their nuclear localization. This diversity highlights that lipid droplets are very adaptable organelles, performing different functions in different biological contexts. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. How the immune system detects lipid antigens.

    Science.gov (United States)

    De Libero, Gennaro; Mori, Lucia

    2010-04-01

    T lymphocytes are the cells of the immune system that may recognize glycolipids as antigens. T cells recognize lipids associated with the non-polymorphic molecules of the CD1 family present on the membrane of antigen-presenting cells. CD1 molecules contain hydrophobic pockets, which bind a large variety of lipid molecules in various manners. Lipid antigenicity is determined by their mode of uptake, membrane trafficking properties, degradation within endosomal compartments and capacity to form stable complexes with CD1. Extracellular and intracellular lipid binding proteins participate in lipid handling and loading on CD1 molecules within antigen-presenting cells. Recent crystal structures have disclosed how the T cell receptor contacts CD1-lipid complexes, revealing the contribution of both CD1 and lipid residues in making functionally relevant contacts. Lipid-specific T cells are important in autoimmunity, cancer surveillance, protection during infections, and in immunoregulation. The immunogenicity of lipids is being exploited in novel approaches to immunotherapy, including inhibition of autoimmunity and anti-cancer and bacterial vaccines. Copyright 2009. Published by Elsevier Ltd.

  14. Lipid Metabolism, Apoptosis and Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Chunfa Huang

    2015-01-01

    Full Text Available Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy.

  15. Lipid peroxidation induced by phenylbutazone radicals.

    Science.gov (United States)

    Miura, Toshiaki; Muraoka, Sanae; Fujimoto, Yukio

    2002-04-19

    Lipid peroxidation was investigated to evaluate the deleterious effect on tissues by phenylbutazone (PB). PB induced lipid peroxidation of microsomes in the presence of horseradish peroxidase and hydrogen peroxide (HRP-H2O2). The lipid peroxidation was completely inhibited by catalase but not by superoxide dismutase. Mannitol and dimethylsulfoxide had no effect. These results indicated no paticipation of superoxide and hydroxyl radical in the lipid peroxidation. Reduced glutathione (GSH) efficiently inhibited the lipid peroxidation. PB radicals emitted electron spin resonance (ESR) signals during the reaction of PB with HRP-H2O2. Microsomes and arachidonic acid strongly diminished the ESR signals, indicating that PB radicals directly react with unsaturated lipids of microsomes to cause thiobarbituric acid reactive substances. GSH sharply diminished the ESR signals of PB radicals, suggesting that GSH scavenges PB radicals to inhibit lipid peroxidation. Also, 2-methyl-2-nitrosopropan strongly inhibited lipid peroxidation. R-Phycoerythrin, a peroxyl radical detector substance, was decomposed by PB with HRP-H2O2. These results suggest that lipid peroxidation of microsomes is induced by PB radicals or peroxyl radicals, or both.

  16. Lipid peroxides level in the Indonesian elderly

    Directory of Open Access Journals (Sweden)

    Purwantyastuti Purwantyastuti

    2005-06-01

    Full Text Available A cross-sectional study was done to see the possible association of plasma lipid peroxides in the elderly with age and other factors. Plasma lipid peroxides is a product of free radical reactions which according to the latest theory of aging is the cause of aging process. Lipid peroxides were also found high in coronary heart disease. Four hundred forty relatively healthy elderly, age 55-85 years, were randomly chosen from free living elderly under guidance of health care centers (PUSKESMAS in Jakarta. Anamnesis and physical examination were done in the morning in the health centers. Blood samples were taken in fasting conditions, plasma lipids and lipid peroxides were measured according to standard methods. There was an age difference of lipid peroxides level in the elderly, which increased with age up to 70 years old. Elderly 70 years old and over had low plasma lipid peroxides. The level was not related to high plasma lipids. Higher level was found when more chronic degenerative diseases were found. (Med J Indones 2005; 14: 71-7Keywords: lipid peroxides, aging

  17. Assessment of storage lipid accumulation patterns in eucalanoid copepods from the eastern tropical Pacific Ocean

    Science.gov (United States)

    Cass, Christine J.; Daly, Kendra L.; Wakeham, Stuart G.

    2014-11-01

    Members of the copepod family Eucalanidae are widely distributed throughout the world's oceans and have been noted for their accumulation of storage lipids in high- and low-latitude environments. However, little is known about the lipid composition of eucalanoid copepods in low-latitude environments. The purpose of this study was to examine fatty acid and alcohol profiles in the storage lipids (wax esters and triacylglycerols) of Eucalanus inermis, Rhincalanus rostrifrons, R. nasutus, Pareucalanus attenuatus, and Subeucalanus subtenuis, collected primarily in the eastern tropical north Pacific near the Tehuantepec Bowl and Costa Rica Dome regions, noted for its oxygen minimum zone, during fall 2007 and winter 2008/2009. Adult copepods and particulate material were collected in the upper 50 m and from 200 to 300 m in the upper oxycline. Lipid profiles of particulate matter were generated to help ascertain information on ecological strategies of these species and on differential accumulation of dietary and modified fatty acids in the wax ester and triacylglycerol storage lipid components of these copepods in relation to their vertical distributions around the oxygen minimum zone. Additional data on phospholipid fatty acid and sterol/fatty alcohol fractions were also generated to obtain a comprehensive lipid data set for each sample. Rhincalanus spp. accumulated relatively large amounts of storage lipids (31-80% of dry mass (DM)), while E. inermis had moderate amounts (2-9% DM), and P. attenuatus and S. subtenuis had low quantities of storage lipid (0-1% DM). E. inermis and S. subtenuis primarily accumulated triacylglycerols (>90% of storage lipids), while P. attenuatus and Rhincalanus spp. primarily accumulated wax esters (>84% of storage lipids). Based on previously generated molecular phylogenies of the Eucalanidae family, these results appear to support genetic predisposition as a major factor explaining why a given species accumulates primarily triacylglycerols

  18. Cytotoxic Effect of a Novel Synthesized Carbazole Compound on A549 Lung Cancer Cell Line.

    Directory of Open Access Journals (Sweden)

    Refilwe P Molatlhegi

    Full Text Available Increased death rates due to lung cancer have necessitated the search for potential novel anticancer compounds such as carbazole derivatives. Carbazoles are aromatic heterocyclic compounds with anticancer, antibacterial and anti-inflammatory activity. The study investigated the ability of the novel carbazole compound (Z-4-[9-ethyl-9aH-carbazol-3-yl amino] pent-3-en-2-one (ECAP to induce cytotoxicity of lung cancer cells and its mechanism of action. ECAP was synthesized as a yellow powder with melting point of 240-247 °C. The 3-(4,5-dimethythiazol-2-yl-2,5-diphenyl tetrazolium bromide (MTT, lipid peroxidation and comet assays were used to assess the cytotoxic effect of the compound on A549 lung cancer cells. Protein expression was determined using western blots, apoptosis was measured by luminometry (caspase-3/7, -8 and -9 assay and flow cytometry was used to measure phosphatidylserine (PS externalisation. ECAP induced a p53 mediated apoptosis of lung cancer cells due to a significant reduction in the expression of antioxidant defence proteins (Nrf2 and SOD, Hsp70 (p < 0.02 and Bcl-2 (p < 0.0006, thereby up-regulating reactive oxygen species (ROS production. This resulted in DNA damage (p < 0.0001, up-regulation of Bax expression and caspase activity and induction of apoptosis in lung cancer cells. The results show the anticancer potential of ECAP on lung cancer.

  19. Effect of Polyethylene Glycol on the Formation of Magnetic Nanoparticles Synthesized by Magnetospirillum magnetotacticum MS-1.

    Directory of Open Access Journals (Sweden)

    Hirokazu Shimoshige

    Full Text Available Magnetotactic bacteria (MTB synthesize intracellular magnetic nanocrystals called magnetosomes, which are composed of either magnetite (Fe3O4 or greigite (Fe3S4 and covered with lipid membranes. The production of magnetosomes is achieved by the biomineralization process with strict control over the formation of magnetosome membrane vesicles, uptake and transport of iron ions, and synthesis of mature crystals. These magnetosomes have high potential for both biotechnological and nanotechnological applications, but it is still extremely difficult to grow MTB and produce a large amount of magnetosomes under the conventional cultural conditions. Here, we investigate as a first attempt the effect of polyethylene glycol (PEG added to the culture medium on the increase in the yield of magnetosomes formed in Magnetospirillum magnetotacticum MS-1. We find that the yield of the formation of magnetosomes can be increased up to approximately 130 % by adding PEG200 to the culture medium. We also measure the magnetization of the magnetosomes and find that the magnetosomes possess soft ferromagnetic characteristics and the saturation mass magnetization is increased by 7 %.

  20. Lipid peroxidation and water penetration in lipid bilayers

    DEFF Research Database (Denmark)

    Conte, Elena; Megli, Francesco Maria; Khandelia, Himanshu

    2012-01-01

    Lipid peroxidation plays a key role in the alteration of cell membrane's properties. Here we used as model systems multilamellar vesicles (MLVs) made of the first two products in the oxidative cascade of linoleoyl lecithin, namely 1-palmitoyl-2-(13-hydroperoxy-9,11-octadecanedienoyl)-lecithin (Hp......(zz) parameters revealed that OHPLPC, but mostly HpPLPC, induced a measurable increase in polarity and H-bonding propensity in the central region of the bilayer. Molecular dynamics simulation performed on 16-DSA in the PLPC-HpPLPC bilayer revealed that water molecules are statistically favored with respect...... to the hydroperoxide groups to interact with the nitroxide at the methyl-terminal, confirming that the H-bonds experimentally observed are due to increased water penetration in the bilayer. The EPR and MD data on model membranes demonstrate that cell membrane damage by oxidative stress cause alteration of water...

  1. Natural lipids in nanostructured lipid carriers and its cytotoxicity

    Science.gov (United States)

    Lima, Paula A.; Rampazo, Caroline A. D.; Costa, Amanda F.; Rodrigues, Tiago; Watashi, Carolina M.; Durán, Nelson

    2017-06-01

    Nanostructured lipid carriers (NLCs) are active carrier systems which modulate the sustained release of actives and protect unstable compounds against degradation. NLCs can also protect skin from sun light, due to its particulates nature, which gives them intrinsic scattering properties. In this work, we present the preparation of NLCs using natural lipids and its cytotoxicity profile. It was used a vegetal butter with melting point (m.p.) ~32-40°C, an animal wax (m.p. 35-40°C) and a vegetal oil (boiling point ~120-150°C). NLCs were prepared by hot high pressure homogenization method and particles were characterized by average size (Zave), polydispersity index (PDI) and zeta potential (PZ) (Fig.1). The thermal behavior of the NLCs was studied using Differential Scanning Calorimetry (DSC). All the formulations were followed up for 60 days in order to evaluate their stability. NLCs exhibited a Zave around 150-200 nm, PDI less than 0.2 and PZ varying from -25 to -40 mV. The m.p. for the lyophilized NLCs was about 40-56°C. Cytotoxicity of the formulations were evaluated for human keratinocytes (HaCaT) and melanocytes (Melan-A) in the exponential growth phase. Cell viability was used as indicator of cytotoxicity and determined after 4 days of culture by MTT assay. It was found that the NLC formulations were not toxic against HaCaT and Melan-A cells. Results showed that the NLCs produced are potential carriers for nanocosmetics and sunscreen products.

  2. Characterization of 3D Voronoi Tessellation Nearest Neighbor Lipid Shells Provides Atomistic Lipid Disruption Profile of Protein Containing Lipid Membranes

    Science.gov (United States)

    Cheng, Sara Y.; Duong, Hai V.; Compton, Campbell; Vaughn, Mark W.; Nguyen, Hoa; Cheng, Kwan H.

    2015-01-01

    Quantifying protein-induced lipid disruptions at the atomistic level is a challenging problem in membrane biophysics. Here we propose a novel 3D Voronoi tessellation nearest-atom-neighbor shell method to classify and characterize lipid domains into discrete concentric lipid shells surrounding membrane proteins in structurally heterogeneous lipid membranes. This method needs only the coordinates of the system and is independent of force fields and simulation conditions. As a proof-of-principle, we use this multiple lipid shell method to analyze the lipid disruption profiles of three simulated membrane systems: phosphatidylcholine, phosphatidylcholine/cholesterol, and beta-amyloid/phosphatidylcholine/cholesterol. We observed different atomic volume disruption mechanisms due to cholesterol and beta-amyloid Additionally, several lipid fractional groups and lipid-interfacial water did not converge to their control values with increasing distance or shell order from the protein. This volume divergent behavior was confirmed by bilayer thickness and chain orientational order calculations. Our method can also be used to analyze high-resolution structural experimental data. PMID:25637891

  3. A novel AMPK activator, WS070117, improves lipid metabolism discords in hamsters and HepG2 cells

    Directory of Open Access Journals (Sweden)

    Hao Linghua

    2011-04-01

    Full Text Available Abstract Background WS070117 is a novel small molecule compound that significantly improves lipid metabolism disorders in high-fat-diet (HFD induced hyperlipidemia in hamsters. Methods and Results We evaluated liver/body weight ratio, liver histology, serum and hepatic lipid content in HFD-fed hamsters treated with WS070117 for 8 weeks. Comparing with HFD fed hamsters, WS070117 (2 mg/kg per day and above reduced serum triglyceride (TAG, total cholesterol (TC, low density lipoprotein cholesterol (LDL-C and hepatic cholesterol and triglyceride contents. Oil Red O staining of liver tissue also showed that WS070117 improved lipid accumulation. We then carried out an experiment in the oleic acid (OLA-induced steatosis model in HepG2 cell to investigate the lipid-lowering effect of WS070117. Oleic acid (0.25 mM markedly induced lipid accumulation in HepG2 cells, but WS070117 (10 μM inhibited cellular lipid accumulation. In OLA-treated HepG2 cells, WS070117 (above 1 μM treatment reduced lipid contents which synthesized from [1-14C] labeled acetic acid. Because WS070117 is an analog of adenosine, we evaluated the effect of WS070117 on AMP-activated protein kinase (AMPK signaling. The results showed that the activation of AMPK in OLA-induced steatosis in HepG2 cells was up-regulated by treatment with 0.1, 1 and 10 μM WS070117. The hepatic cellular AMPK phosphorylation is also up regulated by WS070117 (6 and 18 mg/kg treatment in HFD fed hamsters. Conclusion These new findings identify WS070117 as a novel molecule that regulates lipid metabolism in the hyperlipidemia hamster model. In vitro and in vivo studies suggested that WS070117 may regulate lipid metabolism through stimulating the activation of AMPK and its downstream pathways.

  4. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice [Mus Musculus

    NARCIS (Netherlands)

    Schothorst, van E.M.; Keijer, J.; Bunschoten, J.E.; Hil, van den E.F.; Rietjens, I.M.C.M.; Hollman, P.C.H.

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on hepatic lipid metabolism and detailed serum lipid profiles, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w)

  5. Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency

    NARCIS (Netherlands)

    de Jesus, Marcelo B.; Radaic, Allan; Hinrichs, Wouter L J; Ferreira, Carmen V; de Paula, Eneida; Hoekstra, Dirk; Zuhorn, Inge S

    Solid lipid nanoparticles (SLNs) are a promising system for the delivery of lipophilic and hydrophilic drugs. They consist of a solid lipid core that is stabilized by a layer of surfactants. By the incorporation of cationic lipids in the formulation, positively charged SLNs can be generated, that

  6. Liquid immiscibility in model bilayer lipid membranes

    Science.gov (United States)

    Veatch, Sarah L.

    There is growing evidence that cell plasma membranes are laterally organized into "raft" regions in which particular lipids and proteins are concentrated. These domains have sub-micron dimensions and have been implicated in vital cell functions. Similar liquid domains are observed in model bilayer membrane mixtures that mimick cellular lipid compositions. In model membranes, domains can be large (microns) and can readily form in the absence of proteins. This thesis presents studies of liquid immiscibility in model membrane systems using two experimental methods. By fluorescence microscopy, this thesis documents that miscibility transitions occur in a wide variety of ternary lipid mixtures containing high melting temperature (saturated) lipids, low melting temperature (usually unsaturated) lipids, and cholesterol. I have constructed detailed miscibility phase diagrams for three separate ternary lipid mixtures (DOPC/DPPC/Chol, DOPC/PSM/Chol, and POPC/PSM/Chol). Phase separation is also observed in membranes of lipids extracted from human erythrocytes. NMR experiments probe lipid order and verify the coexistence of a saturated lipid and cholesterol rich liquid ordered (Lo) phase with a more disordered, unsaturated lipid rich liquid crystalline (Lalpha) phase at low temperatures. These experiments also find multiple thermodynamic transitions and lipid organization on different length-scales. This complexity is revealed because fluorescence microscopy and NMR probe lipid order at different length-scales (>1mum vs. ˜100nm). NMR detects small domains (˜80nm) at temperatures just below the miscibility transition, even though micron-scale domains are observed by fluorescent microscopy. NMR does detect large-scale ("100nm) demixing, but at a lower temperature. In addition, it has long been known that >10nm length-scale structure is present in many lipid mixtures containing cholesterol and at least one additional lipid species, though it is shown here that only a subset of

  7. Ultralight Weight Optical Systems Using Nano-Layered Synthesized Materials

    Science.gov (United States)

    Clark, Natalie; Breckinridge, James

    2014-01-01

    Optical imaging is important for many NASA science missions. Even though complex optical systems have advanced, the optics, based on conventional glass and mirrors, require components that are thick, heavy and expensive. As the need for higher performance expands, glass and mirrors are fast approaching the point where they will be too large, heavy and costly for spacecraft, especially small satellite systems. NASA Langley Research Center is developing a wide range of novel nano-layered synthesized materials that enable the development and fabrication of ultralight weight optical device systems that enable many NASA missions to collect science data imagery using small satellites. In addition to significantly reducing weight, the nano-layered synthesized materials offer advantages in performance, size, and cost.

  8. Enhanced Hydrogen Storage Capacity over Electro-synthesized HKUST-1

    Directory of Open Access Journals (Sweden)

    Witri Wahyu Lestari

    2017-12-01

    Full Text Available HKUST-1 [Cu3(1,3,5-BTC2] (BTC = benzene-tri-carboxylate was synthesized using an electrochemical method and tested for hydrogen storage. The obtained material showed a remarkably higher hydrogen uptake over reported HKUST-1 and reached until 4.75 wt% at room temperature and low pressure up to 1.2 bar. This yield was compared to HKUST-1 obtained from the solvothermal method, which showed a hydrogen uptake of only 1.19 wt%. Enhancement of hydrogen sorption of the electro-synthesized product was due to the more appropriate surface area and pore size, effected by the preferable physical interaction between the hydrogen gasses and the copper ions as unsaturated metal centers in the frameworks of HKUST-1.

  9. Is Synthesizing MRI Contrast Useful for Inter-modality Analysis?

    DEFF Research Database (Denmark)

    Iglesias, Juan Eugenio; Konukoglu, Ender; Zikic, Darko

    2013-01-01

    , to what extent they can substitute real acquisitions in the respective analyses is an open question. In this study, we used a synthesis method based on patch matching to test whether synthetic images can be useful in segmentation and inter-modality cross-subject registration of brain MRI. Thirty-nine T1......Availability of multi-modal magnetic resonance imaging (MRI) databases opens up the opportunity to synthesize different MRI contrasts without actually acquiring the images. In theory such synthetic images have the potential to reduce the amount of acquisitions to perform certain analyses. However...... scans with 36 manually labeled structures of interest were used in the registration and segmentation of eight proton density (PD) scans, for which ground truth T1 data were also available. The results show that synthesized T1 contrast can considerably enhance the quality of non-linear registration...

  10. Method of synthesizing silica nanofibers using sound waves

    Science.gov (United States)

    Sharma, Jaswinder K.; Datskos, Panos G.

    2015-09-15

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  11. Method of synthesizing silica nanofibers using sound waves

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Jaswinder K.; Datskos, Panos G.

    2017-08-08

    A method for synthesizing silica nanofibers using sound waves is provided. The method includes providing a solution of polyvinyl pyrrolidone, adding sodium citrate and ammonium hydroxide to form a first mixture, adding a silica-based compound to the solution to form a second mixture, and sonicating the second mixture to synthesize a plurality of silica nanofibers having an average cross-sectional diameter of less than 70 nm and having a length on the order of at least several hundred microns. The method can be performed without heating or electrospinning, and instead includes less energy intensive strategies that can be scaled up to an industrial scale. The resulting nanofibers can achieve a decreased mean diameter over conventional fibers. The decreased diameter generally increases the tensile strength of the silica nanofibers, as defects and contaminations decrease with the decreasing diameter.

  12. Studies on the Alkaloids of the Calycanthaceae and Their Syntheses

    Directory of Open Access Journals (Sweden)

    Jin-Biao Xu

    2015-04-01

    Full Text Available Plants of the Calycanthaceae family, which possesses four genera and about 15 species, are mainly distributed in China, North America and Australia. Chemical studies on the Calycanthaceae have led to the discovery of about 14 alkaloids of different skeletons, including dimeric piperidinoquinoline, dimeric pyrrolidinoindoline and/or trimeric pyrrolidinoindolines, which exhibit significant anti-convulsant, anti-fungal, anti-viral analgesic, anti-tumor, and anti-melanogenesis activities. As some of complex tryptamine-derived alkaloids exhibit promising biological activities, the syntheses of these alkaloids have also been a topic of interest in synthetic chemistry during the last decades. This review will focus on the structures and total syntheses of these alkaloids.

  13. Bactericidal effects of reactive thermal plasma synthesized titanium dioxide photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Vijay, M [Plasma Physics Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046 (India); Ananthapadmanabhan, P V; Sreekumar, K P [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai-400085 (India); Stengl, Vaclav [Institute of Inorganic Chemistry, AS CR, v.v.i., 250 68 Rez (Czech Republic); Bondioli, Federica [Dipartimento di Ingegneria dei Materiali e dell' Ambiente, Universita di Modena e Reggio Emilia, Via Vignolese 905 - 41100 Modena (Italy); Selvarajan, V, E-mail: vselvrjn47@rediffmail.co

    2010-02-01

    Nanocrystalline titanium oxide powder has been synthesized by reactive plasma processing. The precursor powder of TiH{sub 2} was oxidized 'in-flight' in a thermal plasma reactor to effect complete conversion of TiH{sub 2} to nano-sized TiO{sub 2} powder. Characterization of the powder by various analytical tools indicated that the powder consisted of nano-sized titanium dioxide particles consisting predominantly of the anatase phase. Bactericidal action of illuminated TiO{sub 2} on pure culture of Escherichia coli was studied. The plasma synthesized TiO{sub 2}nano powder catalyst was found to be highly effective for the killing of Escherichia coli. The efficiency of photocatalytic disinfection, used to inactivate Escherischia coli as function of time is discussed.

  14. Heart Rate Responses to Synthesized Affective Spoken Words

    Directory of Open Access Journals (Sweden)

    Mirja Ilves

    2012-01-01

    Full Text Available The present study investigated the effects of brief synthesized spoken words with emotional content on the ratings of emotions and heart rate responses. Twenty participants' heart rate functioning was measured while they listened to a set of emotionally negative, neutral, and positive words produced by speech synthesizers. At the end of the experiment, ratings of emotional experiences were also collected. The results showed that the ratings of the words were in accordance with their valence. Heart rate deceleration was significantly the strongest and most prolonged to the negative stimuli. The findings are the first suggesting that brief spoken emotionally toned words evoke a similar heart rate response pattern found earlier for more sustained emotional stimuli.

  15. Syntheses of Octasubstituted Metal Phthalocyanines for Nonlinear Optics

    Science.gov (United States)

    Guo, Huaisong; Townsend, Cheryl; Sanghadasa, Mohan; Amai, Robert L. S.; Clark, Ronald D.; Penn, Benjamin

    1998-01-01

    Many organic materials can be used as nonlinear optical media. Phthalocyanines are of special interest because they show an unusually large third order nonlinear response, they are thermally and photochemically stable and they can be formed into oriented thin films (Langmuir-Blodgett films). They also can be easily complexed by a large variety of metals, which place them at the interface between organics and organometallics, and allows for fine tuning of the macro cycle electronic properties by the coordinated metal and substituent groups. A series of 1,4,8,11,15,18,22,25-octaalkoxy metal-free and metal phthalocyanines and 2,3,9,10,16,17,23,24-octaalkoxy metal phthalocyanines has been synthesized. Their nonlinear optical properties have been measured. The physical properties of all the phthalocyanines synthesized in this work are subject to both acid and solvent effects.

  16. Is Ghrelin Synthesized in the Central Nervous System?

    Science.gov (United States)

    Cabral, Agustina; López Soto, Eduardo J; Epelbaum, Jacques; Perelló, Mario

    2017-03-15

    Ghrelin is an octanoylated peptide that acts via its specific receptor, the growth hormone secretagogue receptor type 1a (GHSR-1a), and regulates a vast variety of physiological functions. It is well established that ghrelin is predominantly synthesized by a distinct population of endocrine cells located within the gastric oxyntic mucosa. In addition, some studies have reported that ghrelin could also be synthesized in some brain regions, such as the hypothalamus. However, evidences of neuronal production of ghrelin have been inconsistent and, as a consequence, it is still as a matter of debate if ghrelin can be centrally produced. Here, we provide a comprehensive review and discussion of the data supporting, or not, the notion that the mammalian central nervous system can synthetize ghrelin. We conclude that no irrefutable and reproducible evidence exists supporting the notion that ghrelin is synthetized, at physiologically relevant levels, in the central nervous system of adult mammals.

  17. Quantitation of newly synthesized proteins by pulse labeling with azidohomoalanine.

    Science.gov (United States)

    Kramer, Gertjan; Kasper, Piotr T; de Jong, Luitzen; de Koster, Chris G

    2011-01-01

    Measuring protein synthesis and degradation rates on a proteomic scale is an important step toward modeling the kinetics in complicated cellular response networks. A gel-free method, able to quantify changes in the formation of new proteins on a 15 min timescale, compatible with mass spectrometry is described. The methionine analogue, azidohomoalanine (azhal), is used to label newly formed proteins during a short pulse-labeling period following an environmental switch in Escherichia coli. Following digestion a selective reaction against azhal-containing peptides is applied to enrich these peptides by diagonal chromatography. This technique enables quantitation of hundreds of newly synthesized proteins and provides insight into immediate changes in newly synthesized proteins on a proteomic scale after an environmental perturbation.

  18. Copper nanoparticles synthesized in polymers by ion implantation

    DEFF Research Database (Denmark)

    Popok, Vladimir; Nuzhdin, Vladimir; Valeev, Valerij

    2015-01-01

    as optical transmission spectroscopy. It is found that copper nanoparticles nucleation and growth are strongly fluence dependent as well as they are affected by the polymer properties, in particular, by radiation stability yielding different nanostructures for the implanted PI and PMMA. Shallow synthesized......Polymethylmethacrylate (PMMA) and polyimide (PI) samples are implanted by 40 keV Cu+ ions with high fluences in order to synthesize copper nanoparticles in shallow polymer layers. The produced metal/polymer nanocomposites are studied using atomic force and scanning electron microscopies as well...... nanoparticles are observed to partly tower above the sample surface due to a side effect of high-fluence irradiation leading to considerable sputtering of polymers. Implantation and particle formation significantly change optical properties of both polymers reducing transmittance in the UV-visible range due...

  19. Hydrothermally synthesized barium fluoride nanocubes for thermoluminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Bhadane, Mahesh S.; Dahiwale, S. S.; Bhoraskar, V. N.; Dhole, S. D., E-mail: sanjay@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune-411007 (India)

    2016-05-23

    In this work, we report a hydrothermally synthesized Dy doped BaF{sub 2} (BaF{sub 2}:Dy) nanocubes and its Thermoluminescence studies. The synthesized BaF{sub 2}:Dy samples was found to posses FCC structure and having average size ~ 60-70 nm, as revealed through X-Ray Diffraction. Cubical morphology having size ~90 nm was observed from TEM analysis. The {sup 60}Co γ- ray irradiated BaF{sub 2}:Dy TL dosimetric experiments shows a pre-dominant single glow peak at 153 °C, indicating a single level trap present as a metastable state. Furthermore, BaF{sub 2}:Dy nanophosphor shows a sharp linear response from 10 Gy to 3 kGy, thus it can be applicable as a gamma dosimeter.

  20. Drude conductivity exhibited by chemically synthesized reduced graphene oxide

    Science.gov (United States)

    Younas, Daniyal; Javed, Qurat-ul-Ain; Fatima, Sabeen; Kalsoom, Riffat; Abbas, Hussain; Khan, Yaqoob

    2017-09-01

    Electrical conductance in graphene layers having Drude like response due to massless Dirac fermions have been well explained theoretically as well as experimentally. In this paper Drude like electrical conductivity response of reduced graphene oxide synthesized by chemical route is presented. A method slightly different from conventional methods is used to synthesize graphene oxide which is then converted to reduced graphene oxide. Various analytic techniques were employed to verify the successful oxidation and reductions in the process and were also used to measure various parameters like thickness of layers and conductivity. Obtained reduced graphene oxide has very thin layers of thickness around 13 nm on average and reduced graphene oxide has average thickness below 20 nm. Conductivity of the reduced graphene was observed to have Drude like response which is explained on basis of Drude model for conductors.

  1. Alumina lightweight ceramics modified with plasma synthesized nanopowders

    Science.gov (United States)

    Zake, I.; Svinka, R.; Svinka, V.; Palcevskis, E.

    2011-12-01

    The aim of this study is to clarify possibilities of using plasma synthesized Al2O3 and SiC nanopowders as additives in alumina lightweight ceramics prepared by slip casting. Each plasma synthesized nanopowder (PSNP) was incorporated in the material by a different method, because of their diverse influence on the properties of slip. Al2O3 PSNP was introduced in the matrix in form of aqueous suspension. SiC nanopowder was added directly to raw materials. Bending strength, bulk density, apparent porosity and thermal shock resistance were determined to evaluate the influence of these additives. The effect of Al2O3 PSNP addition on the properties of material depends on the initial sintering temperature. SiC particles during sintering oxidize into SiO2 and then in the reaction with alumina form mullite. Addition of SiC considerably improves bending strength and thermal shock resistance.

  2. Bis(indolyl)methane alkaloids: Isolation, bioactivity, and syntheses

    Digital Repository Service at National Institute of Oceanography (India)

    Praveen, P.; Parameswaran, P.S.; Majik, M.S.

    from two molecules of indole and an aldehyde/ketone using acid or base catalyst. But for a large scale synthesis, the method should be environment - friendly and cost effective. Several syntheses of BIMs starting from harmful chemicals... summarises the novel catalysts employed,4 while a second review entitled “Synthetic approaches for BIMs” by Kaishap and Dohutia5 highlights the different synthetic approaches towards building the basic skeleton of bis(indolyl) methanes. Unfortunately...

  3. Synthesized Speech Quality Evaluation Using ITU-T P.563

    OpenAIRE

    Kraljevski, Ivan; Chungurski, Slavco; Stojanovic, Igor; Arsenovski, Sime

    2010-01-01

    In this paper a method for speech quality evaluation of TTS system is presented and its usability is assessed. The ITU-T P.563 is used as a reference-free objective measurement method for speech sequences synthesized by concatenative TTS system. The method was examined and the achieved results were compared to those measured by subjective auditory tests and their correlation values were observed. It was shown that this method is useful for automatic evaluation of synthetic speech quality afte...

  4. Biomimetic asymmetric total syntheses of spirooliganones A and B.

    Science.gov (United States)

    Song, Liyan; Yao, Hongliang; Tong, Rongbiao

    2014-07-18

    Biomimetic total syntheses of potent antiviral spirooliganones A and B were achieved with 3% and 2% yield, respectively, in 12 steps from commercially available materials. The synthetic strategy was inspired primarily by the biogenetic hypothesis and was enabled by two independent cascade events: (i) an unprecedented reaction involving aromatic Claisen rearrangement/o-quinone methide formation/hetero-Diels-Alder cycloaddition to construct the tetracyclic framework and (ii) phenol oxidative dearomatization/spirocyclization to build the spiro-fused cyclohexadienone/tetrahydrofuran moiety.

  5. Rapid hydrothermal route to synthesize cubic-phase gadolinium ...

    Indian Academy of Sciences (India)

    Administrator

    times, first with distilled water and then with ethanol, followed by oven-drying at 80 °C. Finally, the hydroxide powder was annealed at 600 °C, for 3 h so as to facilitate spontaneous decomposition of Gd(OH)3 and consequently, dehydration to yield Gd2O3 nanopowder. The flow chart of hydrothermally synthesized Gd2O3 ...

  6. Annual reports in inorganic and general syntheses 1973

    CERN Document Server

    Niedenzu, Kurt

    1974-01-01

    Annual Reports in Inorganic and General Syntheses-1973 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book covers the synthetic aspects and structural or mechanistic features of elements, including the main group hydrides, alkali and alkaline earth elements, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, and lead, nitrogen, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens and pseudohalogens, and noble gases. The text also discusses the synthetic aspects and structural or mechanistic features of

  7. Annual reports in inorganic and general syntheses 1974

    CERN Document Server

    Niedenzu, Kurt

    1975-01-01

    Annual Reports in Inorganic and General Syntheses-1974 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses the chemistry of simple and complex metal hydrides of main groups I, II, and III, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens, and pseudohalogens. The text also describes the chemistry of scandium, yttrium, lanthanides, actinides, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, ma

  8. Annual reports in inorganic and general syntheses 1972

    CERN Document Server

    Niedenzu, Kurt

    1973-01-01

    Annual Reports in Inorganic and General Syntheses-1972 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses alkali and alkaline earth elements, alloys, silver, gold, zinc, cadmium, mercury, boron, aluminum, gallium, indium, thallium, yttrium, scandium, lanthanides, actinides, titanium, zirconium, hafnium, Group V and VI transition elements, manganese, technetium, rhenium, iron, cobalt, nickel, ruthenium, osmium, rhodium, and iridium. The text also describes the chemistry of palladium, platinum, silicon, germanium, tin,

  9. Syntheses and pyrolytic studies of salicylate derivatives of ...

    African Journals Online (AJOL)

    New salicylate derivatives of heteronucleic-μ-oxoisopropoxide [SnO2AlB(OPri)4] have been synthesized by the thermal condensation of μ-oxoisopropoxide and methyl/ethyl/phenyl/phenyl ethyl salicylates in different molar ratios (1:1-1:2) yielding the compounds of the type [SnO2AlB(OPri)4-n(RSAL)n] (where n is 1-2 and ...

  10. Generation of Clutter within a Structured Target Synthesizer

    Science.gov (United States)

    2012-09-01

    Digital Image Synthesizer, DIS, Inverse Synthetic Aperture Radar, ISAR, synthetic Aperture Radar, SAR, Digital RF Memory, DRFM 15. NUMBER OF PAGES 83...1  A.  ISAR AND DRFM JAMMING ......................................................................1  1.  ISAR...27  A.  CONTINUITY OF THE FALSE TARGET IN THE ISAR IMAGE .......27  B.  PULSE DIVERSITY WITH A DRFM PENALIZING ALGORITHM ...29  C.  CROSS-TRACK

  11. Can microcarrier-expanded chondrocytes synthesize cartilaginous tissue in vitro?

    Science.gov (United States)

    Surrao, Denver C; Khan, Aasma A; McGregor, Aaron J; Amsden, Brian G; Waldman, Stephen D

    2011-08-01

    Tissue engineering is a promising approach for articular cartilage repair; however, it is challenging to produce adequate amounts of tissue in vitro from the limited number of cells that can be extracted from an individual. Relatively few cell expansion methods exist without the problems of de-differentiation and/or loss of potency. Recently, however, several studies have noted the benefits of three-dimensional (3D) over monolayer expansion, but the ability of 3D expanded chondrocytes to synthesize cartilaginous tissue constructs has not been demonstrated. Thus, the purpose of this study was to compare the properties of engineered cartilage constructs from expanded cells (monolayer and 3D microcarriers) to those developed from primary chondrocytes. Isolated bovine chondrocytes were grown for 3 weeks in either monolayer (T-Flasks) or 3D microcarrier (Cytodex 3) expansion culture. Expanded and isolated primary cells were then seeded in high density culture on Millicell™ filters for 4 weeks to evaluate the ability to synthesize cartilaginous tissue. While microcarrier expansion was twice as effective as monolayer expansion (microcarrier: 110-fold increase, monolayer: 52-fold increase), the expanded cells (monolayer and 3D microcarrier) were not effectively able to synthesize cartilaginous tissue in vitro. Tissues developed from primary cells were substantially thicker and accumulated significantly more extracellular matrix (proteoglycan content: 156%-292% increase; collagen content: 70%-191% increase). These results were attributed to phenotypic changes experienced during the expansion phase. Monolayer expanded chondrocytes lost their native morphology within 1 week, whereas microcarrier-expanded cells were spreading by 3 weeks of expansion. While the use of 3D microcarriers can lead to large cellular yields, preservation of chondrogenic phenotype during expansion is required in order to synthesize cartilaginous tissue.

  12. Synthesizing Sierpinski Antenna by Genetic Algorithm and Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Z. Raida

    2008-12-01

    Full Text Available The paper discusses the synthesis of the Sierpinski antenna operating at three prescribed frequencies: 0.9 GHz, 1.8 GHz (both GSM and 2.4 GHz (Bluetooth. In order to synthesize the antenna, a genetic algorithm and a particle swarm optimization were used. The numerical model of the antenna was developed in Zeland IE3D, optimization scripts were programmed in MATLAB. Results of both the optimization methods are compared and experimentally verified.

  13. Co-liposomes having anisamide tagged lipid and cholesteryl tryptophan trigger enhanced gene transfection in sigma receptor positive cells.

    Science.gov (United States)

    Misra, Santosh K; Moitra, Parikshit; Kondaiah, Paturu; Bhattacharya, Santanu

    2016-06-01

    Selective gene transfection could be strategy of interest for reducing off-target gene expression and toxicity. In this respect, sigma receptors are found to be over-expressed in many human tumors and liposomal formulations with ability to target these sigma receptors may improve the transfection efficiency to a significant level. To this direction, six novel lipids have been synthesized with different hydrophobic segments such as a long hydrophobic chain or a cholesteryl group and L-tryptophan as the head group. Three of them, Lipid 1, 3 and 5 possessed cationic Me3N(+) moiety at the distal end. In contrast each of the other three Lipid 2, 4 and 6 possessed sigma receptor targeting anisamide group with no cationic charge. Mixing of cationic and anisamide counterparts of the same lipid in a molar ratio of 1:1 produced co-liposomes L-M-1 (Lipid 1+2), L-M-2 (Lipid 3+4) and L-M-3 (Lipid 5+6). These co-liposomes, while keeping the sigma targeting anisamide tag intact, showed good DNA binding and release which were optimized from EB intercalation and gel electrophoresis assays. Inclusion of a zwitterionic, fusogenic natural lipid, DOPE, into the co-liposomes further improved the binding efficiencies of the lipid mixtures with DNA. These co-liposomes having cationic and anisamide lipids and DOPE were highly selective toward sigma positive HEK293 and HEK293T cells compared to the sigma negative HeLa cells. As evidenced from both FACS and luciferase assay, a lipid mixture comprising Lipid 3, 4 and DOPE in a molar ratio of 1:1:1 (L-M-2D1) was the best for transfection of reporter pEGFP-C3 and functional pCEP4-p53 gene plasmids. Anisamide mediated sigma receptor selectivity was further probed by pre-incubating the transfecting cells with lipids possessing anisamide and by quantification of the un-transfected plasmid DNA. Also each formulation was highly non-toxic in the cell lines examined. Copyright © 2016. Published by Elsevier B.V.

  14. Syntheses of Nanostructure Bundles Based on Semiconducting Metal Silicides

    Science.gov (United States)

    Li, Wen; Ishikawa, Daisuke; Tatsuoka, Hirokazu

    2013-08-01

    A variety of nanostructure bundles and arrays based on semiconducting metal silicides have been synthesized using abundant and non-toxic starting materials. Three types of fabrication techniques of the nanostructure bundles or arrays, including direct growth, template synthesis using natural nanostructured materials and template synthesis using artificially fabricated nanostructured materials are demonstrated. CrSi2 nanowire bundles were directly grown by the exposure of Si substrates to CrCl2 vapor at atmospheric pressure. A hexagonal MoSi2 nanosheet, Mg2Si/MgO composite nanowire and Mg2Si nanowire bundles and MnSi1.7 nanowire array were synthesized using a MoS2 layered material, a SiOx nanofiber bundle, a Si nanowire array, and a Si nanowire array as the templates, respectively. Additionally, the fabrication phenomenon and structural properties of the nanostructured semiconducting metal silicides were investigated. These reactions provided the low-cost and controllable synthetic techniques to synthesize large scale and one-dimensional semiconducting metal silicides for thermoelectric applications.

  15. Soft-Template-Synthesized Mesoporous Carbon for Oral Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Dipendu [ORNL; Warren, Kaitlyn E [ORNL; Naskar, Amit K [ORNL

    2014-01-01

    Template-synthesized mesoporous carbons were successfully used in in vitro investigations of controlled delivery of three model drugs, captopril, furosemide, and ranitidine hydrochloride. Captopril and furosemide exhibited desorption kinetics over 30 40 h, and ranitidine HCl had a complete release time of 5 10 h. As evident from the slow release kinetics, we contend that our mesoporous carbon is an improved drug-delivery medium compared to state-of-the-art porous silica-based substrates. The mesoporous carbons, synthesized from phloroglucinol and lignin, a synthetic and a sustainable precursor, respectively, exhibit BET surface area of 200 400 m2 g-1 and pore volume of 0.2 0.6 cm3 g-1. The phloroglucinol-based carbon has narrower pore widths and higher pore volume than the lignin-derived counterpart and maintains a longer release time. Numerical modeling of the release kinetics data reveals that the diffusivities of all the drugs from lignin-based carbon media are of equivalent magnitude (10-22 to 10-24 m2 s-1). However, a tailored reduction of pore width in the sorbent reduces the diffusivity of smaller drug molecules (captopril) by an order of magnitude. Thus, engineered pore morphology in our synthesized carbon sorbent, along with its potential to tailor the chemistry of its interaction with sorbet, can be exploited for optimal delivery system of a preferred drug within its therapeutic level and below the level of toxicity.

  16. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp.

    Science.gov (United States)

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T; Soniya, E V; Mathew, Jyothis; Radhakrishnan, E K

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm - 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus.

  17. Antibacterial properties of silver nanoparticles synthesized by marine Ochrobactrum sp

    Science.gov (United States)

    Thomas, Roshmi; Janardhanan, Anju; Varghese, Rintu T.; Soniya, E.V.; Mathew, Jyothis; Radhakrishnan, E.K.

    2014-01-01

    Metal nanoparticle synthesis is an interesting area in nanotechnology due to their remarkable optical, magnetic, electrical, catalytic and biomedical properties, but there needs to develop clean, non-toxic and environmental friendly methods for the synthesis and assembly of nanoparticles. Biological agents in the form of microbes have emerged up as efficient candidates for nanoparticle synthesis due to their extreme versatility to synthesize diverse nanoparticles with varying size and shape. In the present study, an eco favorable method for the biosynthesis of silver nanoparticles using marine bacterial isolate has been attempted. Very interestingly, molecular identification proved it as a strain of Ochrobactrum anhtropi. In addition, the isolate was found to have the potential to form silver nanoparticles intracellularly at room temperature within 24 h. The biosynthesized silver nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscope (TEM) and scanning electron microscope (SEM). The UV-visible spectrum of the aqueous medium containing silver nanoparticles showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. The SEM and TEM micrographs revealed that the synthesized silver nanoparticles were spherical in shape with a size range from 38 nm – 85 nm. The silver nanoparticles synthesized by the isolate were also used to explore its antibacterial potential against pathogens like Salmonella Typhi, Salmonella Paratyphi, Vibrio cholerae and Staphylococcus aureus. PMID:25763025

  18. A new approach to synthesize supported ruthenium phosphides for hydrodesulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Qingfang [Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, Tianjin 300387 (China); Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071 (China); Wang, Zhiqiang [Tianjin Key Laboratory of Water Environment and Resources, Tianjin Normal University, Tianjin 300387 (China); Yin, Xiaoqian; Zhou, Linxi [Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071 (China); Zhang, Minghui, E-mail: zhangmh@nankai.edu.cn [Key Laboratory of Advanced Energy Materials Chemistry (MOE), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071 (China); College of Chemistry and Environmental Science, Kashgar University, Kashgar 844006 (China)

    2016-02-15

    Highlights: • We bring out a new method to synthesize noble metal phosphides at low temperature. • Both RuP and Ru{sub 2}P were synthesized using triphenylphosphine as phosphorus sources. • Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. • RuP/SiO{sub 2} prepared by new method had better HDS activity to that by TPR method. - Abstract: Supported noble metal ruthenium phosphides were synthesized by one-step H{sub 2}-thermal treatment method using triphenylphosphine (TPP) as phosphorus sources at low temperatures. Two phosphides RuP and Ru{sub 2}P can be prepared by this method via varying the molar ratio of metal salt and TPP. The as-prepared phosphides were characterized by X-ray powder diffraction (XRD), low-temperature N{sub 2} adsorption, CO chemisorption and transmission electronic microscopy (TEM). The supported ruthenium phosphides prepared by new method and conventional method together with contradistinctive metallic ruthenium were evaluated in hydrodesulfurization (HDS) of dibenzothiophene (DBT). The catalytic results showed that metal-rich Ru{sub 2}P was the better active phase for HDS than RuP and metal Ru. Besides this, ruthenium phosphide catalyst prepared by new method exhibited superior HDS activity to that prepared by conventional method.

  19. Crystalline titania nanoparticles synthesized in nonpolar Lα lecithin liquid-crystalline media in one stage at ambient conditions.

    Science.gov (United States)

    Shchipunov, Yury; Krekoten, Anna

    2011-10-15

    High-temperature modification of titania in the form of nanoplatelets is synthesized fast in one step at ambient conditions without any additional treatment like aging or calcination. Lecithin, which is the main component of lipid matrix of biological membranes, is first used as a structure-driven template. It is demonstrated that this natural surfactant can self-organize into lamellar L(α) mesophase when small amounts of water are admixed in its solution in nonpolar solvent. The water locating mainly in lecithin polar region as hydration shell at this concentration triggers the hydrolysis-condensation reactions after the precursor addition that results in instantaneous titania formation in the form of crystalline nanoparticles. Planar lamellar sheets serve as the template specifying its crystallinity. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus

    Science.gov (United States)

    Daisy, P; Saipriya, K

    2012-01-01

    Cassia fistula stem bark was used for the preparation of aqueous extract and synthesis of gold nanoparticles to evaluate the hypoglycemic effects of the plant. The synthesized gold nanoparticles were characterized by ultraviolet-visible spectroscopy for their absorbance pattern, Fourier transform infrared spectroscopy to identify possible functional groups, and scanning electron microscopy to determine the size of the nanoparticles. The present investigation reports the efficacy of the gold nanoparticles as promising in the treatment of hyperglycemia. Body weight, serum glucose concentrations, liver function tests, kidney function tests, and lipid profile were analyzed. A significantly larger decrease in serum biochemistry parameters and an increase in body weight, total protein levels, and high-density lipoprotein were observed in rats with streptozotocin-induced diabetes treated with gold nanoparticles than in the ones treated with the aqueous extract. The results of this study confirm that C. fistula gold nanoparticles have promising antidiabetic properties. PMID:22419867

  1. Lipid extraction from isolated single nerve cells

    Science.gov (United States)

    Krasnov, I. V.

    1977-01-01

    A method of extracting lipids from single neurons isolated from lyophilized tissue is described. The method permits the simultaneous extraction of lipids from 30-40 nerve cells and for each cell provides equal conditions of solvent removal at the conclusion of extraction.

  2. Obstructive sleep apnea and lipid abnormalities

    Directory of Open Access Journals (Sweden)

    Dimitar Karkinski

    2017-01-01

    CONCLUSION:OSA and obesity are potent risk factors for dyslipidemias. OSA could play a significant role in worsening of lipid metabolism in non-obese patients. But in obese patients, the extra weight makes the metabolic changes of lipid metabolism, and the role of OSA is not that very important like in non-obese patients.

  3. A comprehensive classification system for lipids

    NARCIS (Netherlands)

    Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.; Seyama, Y.; Shaw, W.; Shimizu, T.; Spener, F.; van Meer, G.|info:eu-repo/dai/nl/068570368; VanNieuwenhze, M.S.; White, S.H.|info:eu-repo/dai/nl/304843539; Witztum, J.; Dennis, E.A.

    2005-01-01

    Lipids are produced, transported, and recognized by the concerted actions of numerous enzymes, binding proteins, and receptors. A comprehensive analysis of lipid molecules, “lipidomics,” in the context of genomics and proteomics is crucial to understanding cellular physiology and pathology;

  4. Improving lipid control following myocardial infarction.

    Science.gov (United States)

    Ankam, Jyoti; Feldman, David I; Blaha, Michael J; Martin, Seth S

    2014-09-01

    Following a myocardial infarction, lipid-lowering therapy is an established intervention to reduce the risk of recurrent cardiovascular events. Prior studies show a need to improve clinical practice in this area. Here, we review the latest research and perspectives on improving postmyocardial infarction lipid control. Dyslipidemia and myocardial infarction remain leading causes of global disability and premature mortality throughout the world. The processes of care in lipid control involve multiple patient-level, provider-level, and healthcare system-level factors. They can be challenging to coordinate. Recent studies show suboptimal use of early high-intensity statin therapy and overall lipid control following myocardial infarction. Encouragingly, lipid control has improved over the last decade. Implementation science has identified checklists as an effective tool. At the top of the checklist for reducing atherogenic lipids and recurrent event risk postmyocardial infarction is early high-intensity statin therapy. Smoking cessation and participation in cardiac rehabilitation are also priorities, as are lifestyle counseling, promotion of medication adherence, ongoing lipid surveillance, and medication management. Optimizing lipid control could further enhance clinical outcomes after myocardial infarction.

  5. Do lipids influence the allergic sensitization process?

    Science.gov (United States)

    Bublin, Merima; Eiwegger, Thomas; Breiteneder, Heimo

    2014-09-01

    Allergic sensitization is a multifactorial process that is not only influenced by the allergen and its biological function per se but also by other small molecular compounds, such as lipids, that are directly bound as ligands by the allergen or are present in the allergen source. Several members of major allergen families bind lipid ligands through hydrophobic cavities or electrostatic or hydrophobic interactions. These allergens include certain seed storage proteins, Bet v 1-like and nonspecific lipid transfer proteins from pollens and fruits, certain inhalant allergens from house dust mites and cockroaches, and lipocalins. Lipids from the pollen coat and furry animals and the so-called pollen-associated lipid mediators are codelivered with the allergens and can modulate the immune responses of predisposed subjects by interacting with the innate immune system and invariant natural killer T cells. In addition, lipids originating from bacterial members of the pollen microbiome contribute to the outcome of the sensitization process. Dietary lipids act as adjuvants and might skew the immune response toward a TH2-dominated phenotype. In addition, the association with lipids protects food allergens from gastrointestinal degradation and facilitates their uptake by intestinal cells. These findings will have a major influence on how allergic sensitization will be viewed and studied in the future. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Peroxisomes, lipid metabolism, and peroxisomal disorders

    NARCIS (Netherlands)

    Wanders, R. J. A.

    2004-01-01

    Peroxisomes catalyse a large variety of different cellular functions of which most have to do with lipid metabolism. This paper deals with the role of peroxisomes in three key pathways of lipid metabolism, including: (1) etherphospholipid biosynthesis, (2) fatty acid beta-oxidation, and (3) fatty

  7. Lipids in psychiatric disorders and preventive medicine.

    Science.gov (United States)

    Schneider, Miriam; Levant, Beth; Reichel, Martin; Gulbins, Erich; Kornhuber, Johannes; Müller, Christian P

    2017-05-01

    Psychiatric disorders like mood disorders, schizophrenia, or drug addiction affect a sizeable proportion of the human population and severely compromise quality of life. Therefore, measures to prevent the manifestation, and treatments to ameliorate the symptoms, of these disorders are in high demand. Brain lipids determine the localization and function of proteins in the cell membrane of neurons. Lipids may also act as neurotransmitters or other signalling molecules. The lipid composition of the brain can be influenced by nutrition, environmental factors, and by behavioural activity. Thus, lipids represent a target for preventive medicine of psychiatric disorders. Here we review how brain lipids contribute to normal behaviour and to major psychiatric disorders with the focus on phospholipids/fatty acids, sphingolipids, and endocannabinoids. Accumulating evidence suggests a crucial role for membrane forming and signalling lipids in the brain in the etiopathologies of depression, bipolar disorders, schizophrenia, and drug addiction. Lipids also represent potential preventive interventions for these psychiatric disorders by either targeted dietary supplementation or pharmacological manipulation of lipid regulating enzymes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Lipids in plant-microbe interactions.

    Science.gov (United States)

    Siebers, Meike; Brands, Mathias; Wewer, Vera; Duan, Yanjiao; Hölzl, Georg; Dörmann, Peter

    2016-09-01

    Bacteria and fungi can undergo symbiotic or pathogenic interactions with plants. Membrane lipids and lipid-derived molecules from the plant or the microbial organism play important roles during the infection process. For example, lipids (phospholipids, glycolipids, sphingolipids, sterol lipids) are involved in establishing the membrane interface between the two organisms. Furthermore, lipid-derived molecules are crucial for intracellular signaling in the plant cell, and lipids serve as signals during plant-microbial communication. These signal lipids include phosphatidic acid, diacylglycerol, lysophospholipids, and free fatty acids derived from phospholipase activity, apocarotenoids, and sphingolipid breakdown products such as ceramide, ceramide-phosphate, long chain base, and long chain base-phosphate. Fatty acids are the precursors for oxylipins, including jasmonic acid, and for azelaic acid, which together with glycerol-3-phosphate are crucial for the regulation of systemic acquired resistance. This article is part of a Special Issue titled "Plant Lipid Biology," guest editors Kent Chapman and Ivo Feussner. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Serum lipids and diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Shoja MR

    2007-05-01

    Full Text Available Background: Diabetes Mellitus is the most common endocrinologic disease in human and retinopathy is one of the most common complications. Etiology of this complication is yet unknown but one of the factors that can be effective on its production or progression is serum lipid. We aim to study the relationship between different degrees of diabetic retinopathy and serum lipids levels. Methods: An observational cross-sectional study designed to study over 37 patients with diabetes mellitus type one and 157 patients with diabetes mellitus type two. Former was selected as sensus and latter was selected randomly from diabetic patients attending the diabetes clinic in Yazd during 2002. Inclusion criteria was duration of diabetes at least seven years from diagnosis. Statistical analysis performed by SPSS package edition 11 and wit statistical tests as Chi square, Fisher Exact and ANOVA. Results: Among 194 cases, 74 cases were males and 120 females. 90 cases (46.4% have normal total serum cholesterol and 104 (53.6% hypercholestrolemia. In case of triglyceride 94 cases (48.4% have normal serum triglyceride and 100 (51.6% hypertriglyceridemia. Distribution of different degrees of diabetic retinopathy was statistically significant due to cholesterol and triglycerides (P-Value<0.05. In different groups of sex, diabetic retinopathy was more prevalent if there was hypertriglyceridemia or hypercholesterolemia. This was correct about different groups of age and type of diabetes. This means that in different groups of age and type of diabetes, diabetic retinopathy was more prevalent if there was hypertriglyceridemia or hypercholesterolemia. Conclusion: Prevalence of diabetic retinopathy is higher in cases with hypertriglyceridemia or hypercholesterolemia than cases with normal serum triglyceride or cholesterole.

  10. Functionality of lipids and lipid-protein interactions in cereal-derived food products

    Directory of Open Access Journals (Sweden)

    Marion Didier

    2003-01-01

    Full Text Available Lipids and especially cereal lipids play a significant role in the processing and quality of cereals and baked cereal foods (bread, biscuits and beverages (beer. Most of the physico-chemical mechanisms responsible for the lipid functionality has been investigated and recently the specific role of lipid-binding proteins, e.g. lipid transfer proteins and puroindolines, has been highlighted. The state of the researches performed in this field are briefly presented in this review and the data obtained until now show that new perspectives are opened in cereal breeding and processing for improving the quality of cereals and cereal products.

  11. Optimization of Seoul-Fluor-based lipid droplet bioprobes and their application in microalgae for bio-fuel study.

    Science.gov (United States)

    Lee, Youngjun; Na, Sangcheol; Lee, Sanghee; Jeon, Noo Li; Park, Seung Bum

    2013-05-01

    We synthesized a series of Seoul-Fluor-based lipid droplet bioprobes with a linear range of lipophilicity and identified SF44 and SF58 as SF-based LD bioprobes in microalgae for biofuel research as well as in mammalian cells. Unlike Nile Red, SF-based bioprobes can stain algal LDs with excellent efficiency under the non-invasive and non-cytotoxic conditions.

  12. Stress-induced lipids are unsuitable as a direct biodiesel feedstock: a case study with Chlorella pyrenoidosa.

    Science.gov (United States)

    Shekh, Ajam Yakub; Shrivastava, Preeti; Krishnamurthi, Kannan; Mudliar, Sandeep N; Devi, Sivanesan Saravana; Kanade, Gajanan S; Lokhande, Satish K; Chakrabarti, Tapan

    2013-06-01

    The effects of various stresses on the suitability of lipid synthesized by Chlorella pyrenoidosa for biodiesel production were investigated. Lipids were characterized for detailed fatty acid methyl ester profiling and biodiesel properties like cetane number (CN), iodine value, cold filter plugging point (CFPP). Maximum biomass productivity (106.63 mgL(-1)d(-1)) and lipid content (29.68%) were obtained at indoor cultivation (nitrate sufficient, pH 8-10, 24h illumination). However, compared to this condition, other nitrate sufficient cultures [pH 6-8 and 10-12 (24h illumination), and at ambient CO2 and 16:8h light:dark photoperiod (pH unadjusted)] showed ∼12-14% lower lipid productivity. Upon 50% nitrate depletion (at indoor and outdoor; pH unadjusted) lipid content has increased by 7.62% and 17%, respectively. Though stress conditions helped enhancing lipid accumulation, there was two-fold increase in PUFA content compared to that observed at pH 8-10. This resulted in fuel properties which did not comply with the biodiesel standards. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES.

    Science.gov (United States)

    Kawano, Shin; Tamura, Yasushi; Kojima, Rieko; Bala, Siqin; Asai, Eri; Michel, Agnès H; Kornmann, Benoît; Riezman, Isabelle; Riezman, Howard; Sakae, Yoshitake; Okamoto, Yuko; Endo, Toshiya

    2017-12-26

    The endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES) physically links the membranes of the ER and mitochondria in yeast. Although the ER and mitochondria cooperate to synthesize glycerophospholipids, whether ERMES directly facilitates the lipid exchange between the two organelles remains controversial. Here, we compared the x-ray structures of an ERMES subunit Mdm12 from Kluyveromyces lactis with that of Mdm12 from Saccharomyces cerevisiae and found that both Mdm12 proteins possess a hydrophobic pocket for phospholipid binding. However in vitro lipid transfer assays showed that Mdm12 alone or an Mmm1 (another ERMES subunit) fusion protein exhibited only a weak lipid transfer activity between liposomes. In contrast, Mdm12 in a complex with Mmm1 mediated efficient lipid transfer between liposomes. Mutations in Mmm1 or Mdm12 impaired the lipid transfer activities of the Mdm12-Mmm1 complex and furthermore caused defective phosphatidylserine transport from the ER to mitochondrial membranes via ERMES in vitro. Therefore, the Mmm1-Mdm12 complex functions as a minimal unit that mediates lipid transfer between membranes. © 2018 Kawano et al.

  14. Analytical data of synthesized deuterated isopropyl myristate and data about the influence of IPM/IPMdeut on the thermodynamics and morphology of 2D Stratum Corneum models

    Directory of Open Access Journals (Sweden)

    J.S.L. Oliveira

    2017-06-01

    Full Text Available The data in this article shows the effect of isopropyl myristate (IPM on a 2D Stratum Corneum lipid model. In the first part, the analytical characterization of the synthesized deuterated isopropyl myristate is given. Then a BAM image of the pure Stratum Corneum model used is shown and a dataset of surface-pressure – area isotherms considering various ratios of deuterated and non-deuterated IPM and the Stratum Corneum model mixture is provided. Assuming that after the plateau in the isotherm the area per molecule corresponds only to the Stratum Corneum model (squeezing out of IPM, the value of the area will correspond to the percentage of these lipids in the mixture when considering the pure SC model. The comparison of the real and the calculated areas per molecule is also done.

  15. Novel insights into lipid antigen presentation.

    Science.gov (United States)

    De Libero, Gennaro; Mori, Lucia

    2012-03-01

    T cells recognizing lipid antigens are present in large numbers in circulating blood. They exert multiple functions including immunoregulation, tumour surveillance and protection during infection. Here, we review the latest information on the mechanisms of lipid antigen presentation by CD1 molecules. Recent studies have provided insight into CD1 trafficking within the cell, lipid distribution and handling, CD1 maturation, lipid antigen processing and loading. The structural resolution of all human CD1 molecules has revealed unique features that correlate with function. Molecular mechanisms regulating CD1 expression and multiple evasion mechanisms evolved by viral and bacterial pathogens have been disclosed. With rapid progression, these studies have decoded lipid-specific immunity and have revealed the important immunological role of this type of antigen recognition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Model Answers to Lipid Membrane Questions

    DEFF Research Database (Denmark)

    Mouritsen, O. G.

    2011-01-01

    Ever since it was discovered that biological membranes have a core of a bimolecular sheet of lipid molecules, lipid bilayers have been a model laboratory for investigating physicochemical and functional properties of biological membranes. Experimental and theoretical models help the experimental ...... to pursue. Here we review some membrane models for lipid self-assembly, monolayers, bilayers, liposomes, and lipid-protein interactions and illustrate how such models can help answering questions in modern lipid cell biology....... scientist to plan experiments and interpret data. Theoretical models are the theoretical scientist's preferred toys to make contact between membrane theory and experiments. Most importantly, models serve to shape our intuition about which membrane questions are the more fundamental and relevant ones...

  17. Effect of tension and curvature on the chemical potential of lipids in lipid aggregates.

    Science.gov (United States)

    Grafmüller, Andrea; Lipowsky, Reinhard; Knecht, Volker

    2013-01-21

    Understanding the factors that influence the free energy of lipids in bilayer membranes is an essential step toward understanding exchange processes of lipids between membranes. In general, both lipid composition and membrane geometry can affect lipid exchange rates between bilayer membranes. Here, the free energy change ΔG(des) for the desorption of dipalmitoyl-phosphatidylcholine (DPPC) lipids from different lipid aggregates has been computed using molecular dynamics simulations and umbrella sampling. The value of ΔG(des) is found to depend strongly on the local properties of the aggregate, in that both tension and curvature lead to an increase in ΔG(des). A detailed analysis shows that the increased desorption free energy for tense bilayers arises from the increased conformational entropy of the lipid tails, which reduces the favorable component -TΔS(L) of the desorption free energy.

  18. Using fluorescent lipids in live zebrafish larvae: From imaging whole animal physiology to subcellular lipid trafficking.

    Science.gov (United States)

    Anderson, J L; Carten, J D; Farber, S A

    2016-01-01

    Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review commercially available fluorescent lipids that can be deployed in live zebrafish to better understand lipid signaling and metabolism. In this chapter, we present criteria one should consider when selecting specific fluorescent lipids for the study of digestive physiology or lipid metabolism in larval zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The impact of lipid composition on the stability of the tear fluid lipid layer

    DEFF Research Database (Denmark)

    Kulovesi, P.; Telenius, J.; Koivuniemi, A.

    2012-01-01

    selected a number of model systems comprised of phospholipids, cholesteryl oleates, triglycerides, and free fatty acids to study how the organization, stability, and dynamics of the lipid layer depend on its composition. In particular our aim is to unravel how excess neutral lipids affect the stability...... of the tear fluid and probably prevent evaporation. We have studied the impact of lipid composition on the structural and dynamical properties of the tear lipid film using Langmuir films, X-ray diffraction, and coarse-grained molecular dynamics simulations. Based on recently published lipidomic data, we have...... range of surface pressures. Decreasing the phospholipid-neutral lipid ratio, however, decreases the stability of the lipid film. This turns out to stem from the changed organization of the lipid film that varies from a layered structure to an oil droplet-like structure with decreasing phospholipid...

  20. Clostridium Perfringens Epsilon Toxin Binds to Membrane Lipids and Its Cytotoxic Action Depends on Sulfatide.

    Directory of Open Access Journals (Sweden)

    Carles Gil

    Full Text Available Epsilon toxin (Etx is one of the major lethal toxins produced by Clostridium perfringens types B and D, being the causal agent of fatal enterotoxemia in animals, mainly sheep and goats. Etx is synthesized as a non-active prototoxin form (proEtx that becomes active upon proteolytic activation. Etx exhibits a cytotoxic effect through the formation of a pore in the plasma membrane of selected cell targets where Etx specifically binds due to the presence of specific receptors. However, the identity and nature of host receptors of Etx remain a matter of controversy. In the present study, the interactions between Etx and membrane lipids from the synaptosome-enriched fraction from rat brain (P2 fraction and MDCK cell plasma membrane preparations were analyzed. Our findings show that both Etx and proEtx bind to lipids extracted from lipid rafts from the two different models as assessed by protein-lipid overlay assay. Lipid rafts are membrane microdomains enriched in cholesterol and sphingolipids. Binding of proEtx to sulfatide, phosphatidylserine, phosphatidylinositol (3-phosphate and phosphatidylinositol (5-phosphate was detected. Removal of the sulphate groups via sulfatase treatment led to a dramatic decrease in Etx-induced cytotoxicity, but not in proEtx-GFP binding to MDCK cells or a significant shift in oligomer formation, pointing to a role of sulfatide in pore formation in rafts but not in toxin binding to the target cell membrane. These results show for the first time the interaction between Etx and membrane lipids from host tissue and point to a major role for sulfatides in C. perfringens epsilon toxin pathophysiology.

  1. Fatty acids, lipid and protein oxidation, metmyoglobin reducing ...

    African Journals Online (AJOL)

    ... of chronic diseases in humans substantiates efforts to modify its lipid profile. ... the lipid profile of ruminant meat could affect its quality attributes and shelf life. ... colour, metmyoglobin reducing activity (MRA) and lipid and protein oxidation in ...

  2. Engineering of a high lipid producing Yarrowia lipolytica strain

    National Research Council Canada - National Science Library

    Friedlander, Jonathan; Tsakraklides, Vasiliki; Kamineni, Annapurna; Greenhagen, Emily H; Consiglio, Andrew L; MacEwen, Kyle; Crabtree, Donald V; Afshar, Jonathan; Nugent, Rebecca L; Hamilton, Maureen A; Joe Shaw, A; South, Colin R; Stephanopoulos, Gregory; Brevnova, Elena E

    2016-01-01

    Microbial lipids are produced by many oleaginous organisms including the well-characterized yeast Yarrowia lipolytica, which can be engineered for increased lipid yield by up-regulation of the lipid...

  3. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  4. Method of fabricating lipid bilayer membranes on solid supports

    Science.gov (United States)

    Cho, Nam-Joon (Inventor); Frank, Curtis W. (Inventor); Glenn, Jeffrey S. (Inventor); Cheong, Kwang Ho (Inventor)

    2012-01-01

    The present invention provides a method of producing a planar lipid bilayer on a solid support. With this method, a solution of lipid vesicles is first deposited on the solid support. Next, the lipid vesicles are destabilized by adding an amphipathic peptide solution to the lipid vesicle solution. This destabilization leads to production of a planar lipid bilayer on the solid support. The present invention also provides a supported planar lipid bilayer, where the planar lipid bilayer is made of naturally occurring lipids and the solid support is made of unmodified gold or titanium oxide. Preferably, the supported planar lipid bilayer is continuous. The planar lipid bilayer may be made of any naturally occurring lipid or mixture of lipids, including, but not limited to phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinsitol, cardiolipin, cholesterol, and sphingomyelin.

  5. Substitution of conventional high-temperature syntheses of inorganic compounds by near-room-temperature syntheses in ionic liquids

    KAUST Repository

    Groh, Matthias Friedrich

    2013-01-01

    The high-temperature syntheses of the low-valent halogenides P2I4, Te2Br, α-Te4I4, Te4(Al2Cl7)2, Te4(Bi6Cl20), Te8(Bi4Cl14),Bi8(AlCl4)2, Bi6Cl7,and Bi6Br7, as well as of WSCl4 andWOCl4 have been replaced by resource-efficient low-temperature syntheses in room temperature ionic liquids (RTILs). The simple one-pot syntheses generally do not require elaborate equipment such as twozone furnaces or evacuated silica ampoules. Compared to the published conventional approaches, reduction of reaction time (up to 80%) and temperature (up to 500 K) and, simultaneously, an increase in yield were achieved. In the majority of cases, the solid products were phase-pure. X-Ray diffraction on single crystals (redetermination of 11 crystal structures) has demonstrated that the quality of the crystals from RTILs is comparable to that of products obtained by chemical transport reactions. © 2013 Verlag der Zeitschrift für Naturforschung, Tübingen.

  6. Variation of genes encoding GGPLs syntheses among Mycoplasma fermentans strains.

    Science.gov (United States)

    Fujihara, Masatoshi; Ishida, Noriko; Asano, Kozo; Matsuda, Kazuhiro; Nomura, Nobuo; Nishida, Yoshihiro; Harasawa, Ryô

    2010-06-01

    The information of the biosynthesis pathways of Mycoplasma fermentans specific major lipid-antigen, named glycoglycerophospholipids (GGPLs), is expected to be some of help to understand the virulence of M. fermentans. We examined primary structure of cholinephosphotransferase (mf1) and glucosyltransferase (mf3) genes, which engage GGPL-I and GGPL-III synthesis, in 20 strains, and found four types of variations in the mf1 gene but the mf3 gene in two strains was not detected by PCR. These results may have important implications in virulence factor of M. fermentans.

  7. Age-dependent variation in membrane lipid synthesis in leaves of garden pea (Pisum sativum L.)

    DEFF Research Database (Denmark)

    Hellgren, Lars; Sandelius, A.S.

    2001-01-01

    leaf of older plants, acetate was predominantly allocated into phosphatidylglycerol (PG), which remained the major radiolabelled lipid during the 3 d studied. The proportion of radioactivity recovered in MGDG decreased with increasing plant age up to 20 d, suggesting that, in expanded leaves, MGDG...... is more stable and requires renewal to a lower extent than PG. When the second oldest leaf approached senescence, labelling of MGDG again increased, indicating an increased need for thylakoid repair. The proportion of acetate allocated into phosphatidylethanolamine and free sterols was largest in leaves...... of 18-26-d-old plants and in the youngest leaves, respectively. Thus, these results demonstrate that the distribution of newly synthesized fatty acids between acyl lipid synthesis in the chloroplast and extraplastidial membranes strongly varies with leaf age, as do the proportion utilized for sterol...

  8. Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats.

    Science.gov (United States)

    Hasek, Barbara E; Boudreau, Anik; Shin, Jeho; Feng, Daorong; Hulver, Matthew; Van, Nancy T; Laque, Amanda; Stewart, Laura K; Stone, Kirsten P; Wanders, Desiree; Ghosh, Sujoy; Pessin, Jeffrey E; Gettys, Thomas W

    2013-10-01

    Dietary methionine restriction (MR) produces an integrated series of biochemical and physiological responses that improve biomarkers of metabolic health, limit fat accretion, and enhance insulin sensitivity. Using transcriptional profiling to guide tissue-specific evaluations of molecular responses to MR, we report that liver and adipose tissue are the primary targets of a transcriptional program that remodeled lipid metabolism in each tissue. The MR diet produced a coordinated downregulation of lipogenic genes in the liver, resulting in a corresponding reduction in the capacity of the liver to synthesize and export lipid. In contrast, the transcriptional response in white adipose tissue (WAT) involved a depot-specific induction of lipogenic and oxidative genes and a commensurate increase in capacity to synthesize and oxidize fatty acids. These responses were accompanied by a significant change in adipocyte morphology, with the MR diet reducing cell size and increasing mitochondrial density across all depots. The coordinated transcriptional remodeling of lipid metabolism between liver and WAT by dietary MR produced an overall reduction in circulating and tissue lipids and provides a potential mechanism for the increase in metabolic flexibility and enhanced insulin sensitivity produced by the diet.

  9. Bioactive lipids in osteoarthritis: risk or benefit?

    Science.gov (United States)

    Ioan-Facsinay, Andreea; Kloppenburg, Margreet

    2018-01-01

    Lipids are bioactive molecules that can affect several biological functions. Technological developments allowing identification of novel lipid species and the study of their function have led to a significant advance in our understanding of lipid biology and their involvement in various diseases. This is particularly relevant for diseases associated with obesity in which lipid accumulation could be involved in pathogenesis. Here, we focus on osteoarthritis, a chronic joint disease aggravated by obesity, and will present the latest findings regarding the involvement of lipids in disease development and progression. Recent studies indicate a possible involvement of n-3 poly-unsaturated fatty acid and their anti-inflammatory and proresolving derivatives in osteoarthritis. These lipids were identified in the osteoarthritis joint, were found to have beneficial effects on cartilage in vitro and reduced pain in humans and animal models. Moreover, increased levels of cholesterol transport molecules, such as LDL particles, were recently associated with a higher risk of developing hand osteoarthritis in women and with more severe inflammation and osteophyte formation in osteoarthritis animal models. Together, these findings indicate that lipids are a promising target for future therapeutic intervention in osteoarthritis and open exciting possibilities for future research.

  10. Three novel oligosaccharides synthesized using Thermoanaerobacter brockii kojibiose phosphorylase

    Directory of Open Access Journals (Sweden)

    Nishimoto Tomoyuki

    2007-06-01

    Full Text Available Abstract Background Recently synthesized novel oligosaccharides have been produced primarily by hydrolases and glycosyltransferases, while phosphorylases have also been subject of few studies. Indeed, phosphorylases are expected to give good results via their reversible reaction. The purpose of this study was to synthesis other novel oligosaccharides using kojibiose phosphorylase. Results Three novel oligosaccharides were synthesized by glucosyltransfer from β-D-glucose 1-phosphate (β-D-G1P to xylosylfructoside [O-α-D-xylopyranosyl-(1→2-β-D-fructofuranoside] using Thermoanaerobacter brockii kojibiose phosphorylase. These oligosaccharides were isolated using carbon-Celite column chromatography and preparative high performance liquid chromatography. Gas liquid chromatography analysis of methyl derivatives, MALDI-TOF MS and NMR measurements were used for structural characterisation. The 1H and 13C NMR signals of each saccharide were assigned using 2D-NMR including COSY (correlated spectroscopy, HSQC (herteronuclear single quantum coherence, CH2-selected E-HSQC (CH2-selected Editing-HSQC, HSQC-TOCSY (HSQC-total correlation spectroscopy and HMBC (heteronuclear multiple bond correlation. Conclusion The structure of three synthesized saccharides were determined, and these oligosaccharides have been identified as O-α-D-glucopyranosyl-(1→2-O-α-D-xylopyranosyl-(1→2-β-D-fructofuranoside (saccharide 1, O-α-D-glucopyranosyl-(1→2-O-α-D-glucopyranosyl-(1→2-O-α-D-xylopyranosyl-(1→2-β-D-fructofuranoside (saccharide 2 and O-α-D-glucopyranosyl-(1→[2-O-α-D-glucopyranosyl-1]2→2-O-α-D-xylopyranosyl-(1→2-β-D-fructofuranoside (saccharide 3.

  11. Three novel oligosaccharides synthesized using Thermoanaerobacter brockii kojibiose phosphorylase.

    Science.gov (United States)

    Takahashi, Natsuko; Fukushi, Eri; Onodera, Shuichi; Benkeblia, Noureddine; Nishimoto, Tomoyuki; Kawabata, Jun; Shiomi, Norio

    2007-06-28

    Recently synthesized novel oligosaccharides have been produced primarily by hydrolases and glycosyltransferases, while phosphorylases have also been subject of few studies. Indeed, phosphorylases are expected to give good results via their reversible reaction. The purpose of this study was to synthesis other novel oligosaccharides using kojibiose phosphorylase. Three novel oligosaccharides were synthesized by glucosyltransfer from beta-D-glucose 1-phosphate (beta-D-G1P) to xylosylfructoside [O-alpha-D-xylopyranosyl-(1-->2)-beta-D-fructofuranoside] using Thermoanaerobacter brockii kojibiose phosphorylase. These oligosaccharides were isolated using carbon-Celite column chromatography and preparative high performance liquid chromatography. Gas liquid chromatography analysis of methyl derivatives, MALDI-TOF MS and NMR measurements were used for structural characterisation. The 1H and 13C NMR signals of each saccharide were assigned using 2D-NMR including COSY (correlated spectroscopy), HSQC (herteronuclear single quantum coherence), CH2-selected E-HSQC (CH2-selected Editing-HSQC), HSQC-TOCSY (HSQC-total correlation spectroscopy) and HMBC (heteronuclear multiple bond correlation). The structure of three synthesized saccharides were determined, and these oligosaccharides have been identified as O-alpha-D-glucopyranosyl-(1-->2)-O-alpha-D-xylopyranosyl-(1-->2)-beta-D-fructofuranoside (saccharide 1), O-alpha-D-glucopyranosyl-(1-->2)-O-alpha-D-glucopyranosyl-(1-->2)-O-alpha-D-xylopyranosyl-(1-->2)-beta-D-fructofuranoside (saccharide 2) and O-alpha-D-glucopyranosyl-(1-->[2-O-alpha-D-glucopyranosyl-1]2-->2)-O-alpha-D-xylopyranosyl-(1-->2)-beta-D-fructofuranoside (saccharide 3).

  12. Engineering an Escherichia coli platform to synthesize designer biodiesels.

    Science.gov (United States)

    Wierzbicki, Michael; Niraula, Narayan; Yarrabothula, Akshitha; Layton, Donovan S; Trinh, Cong T

    2016-04-20

    Biodiesels, fatty acid esters (FAEs), can be synthesized by condensation of fatty acid acyl CoAs and alcohols via a wax ester synthase in living cells. Biodiesels have advantageous characteristics over petrodiesels such as biodegradability, a higher flash point, and less emission. Controlling fatty acid and alcohol moieties are critical to produce designer biodiesels with desirable physiochemical properties (e.g., high cetane number, low kinematic viscosity, high oxidative stability, and low cloud point). Here, we developed a flexible framework to engineer Escherichia coli cell factories to synthesize designer biodiesels directly from fermentable sugars. In this framework, we designed each FAE pathway as a biodiesel exchangeable production module consisting of acyl CoA, alcohol, and wax ester synthase submodules. By inserting the FAE modules in an engineered E. coli modular chassis cell, we generated E. coli cell factories to produce targeted biodiesels (e.g., fatty acid ethyl (FAEE) and isobutyl (FAIbE) esters) with tunable and controllable short-chain alcohol moieties. The engineered E. coli chassis carrying the FAIbE production module produced 54mg/L FAIbEs with high specificity, accounting for>90% of the total synthesized FAEs and ∼4.7 fold increase in FAIbE production compared to the wildtype. Fed-batch cultures further improved FAIbE production up to 165mg/L. By mixing ethanol and isobutanol submodules, we demonstrated controllable production of mixed FAEEs and FAIbEs. We envision the developed framework offers a flexible, alternative route to engineer designer biodiesels with tunable and controllable properties using biomass-derived fermentable sugars. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. High-throughput fermentation screening for the yeast Yarrowia lipolytica with real-time monitoring of biomass and lipid production.

    Science.gov (United States)

    Back, Alexandre; Rossignol, Tristan; Krier, François; Nicaud, Jean-Marc; Dhulster, Pascal

    2016-08-23

    Because the model yeast Yarrowia lipolytica can synthesize and store lipids in quantities up to 20 % of its dry weight, it is a promising microorganism for oil production at an industrial scale. Typically, optimization of the lipid production process is performed in the laboratory and later scaled up for industrial production. However, the scale-up process can be complicated by genetic modifications that are optimized for one set of growing conditions can confer a less-than-optimal phenotype in a different environment. To address this issue, small cultivation systems have been developed that mimic the conditions in benchtop bioreactors. In this work, we used one such microbioreactor system, the BioLector, to develop high-throughput fermentation procedures that optimize growth and lipid accumulation in Y. lipolytica. Using this system, we were able to monitor lipid and biomass production in real time throughout the culture duration. The BioLector can monitor the growth of Y. lipolytica in real time by evaluating scattered light; this produced accurate measurements until cultures reached an equivalent of OD600nm = 115 and a cell dry weight of 100 g L(-1). In addition, a lipid-specific fluorescent probe was applied which reliably monitored lipid production up to a concentration of 12 g L(-1). Through screening various growing conditions, we determined that a carbon/nitrogen ratio of 35 was the most efficient for lipid production. Further screening showed that ammonium chloride and glycerol were the most valuable nitrogen and carbon sources, respectively, for growth and lipid production. Moreover, a carbon concentration above 1 M appeared to impair growth and lipid accumulation. Finally, we used these optimized conditions to screen engineered strains of Y. lipolytica with high lipid-accumulation capability. The growth and lipid content of the strains cultivated in the BioLector were compared to those grown in benchtop bioreactors. To our knowledge, this is the

  14. Rhodotorula glutinis-potential source of lipids, carotenoids, and enzymes for use in industries.

    Science.gov (United States)

    Kot, Anna M; Błażejak, Stanisław; Kurcz, Agnieszka; Gientka, Iwona; Kieliszek, Marek

    2016-07-01

    Rhodotorula glutinis is capable of synthesizing numerous valuable compounds with a wide industrial usage. Biomass of this yeast constitutes sources of microbiological oils, and the whole pool of fatty acids is dominated by oleic, linoleic, and palmitic acid. Due to its composition, the lipids may be useful as a source for the production of the so-called third-generation biodiesel. These yeasts are also capable of synthesizing carotenoids such as β-carotene, torulene, and torularhodin. Due to their health-promoting characteristics, carotenoids are commonly used in the cosmetic, pharmaceutical, and food industries. They are also used as additives in fodders for livestock, fish, and crustaceans. A significant characteristic of R. glutinis is its capability to produce numerous enzymes, in particular, phenylalanine ammonia lyase (PAL). This enzyme is used in the food industry in the production of L-phenylalanine that constitutes the substrate for the synthesis of aspartame-a sweetener commonly used in the food industry.

  15. About graphene ribbons development in laser synthesized nanocarbon

    Science.gov (United States)

    Gavrila Florescu, L.; Vasile, E.; Sandu, I.; Soare, I.; Fleaca, C.; Ianchis, R.; Luculescu, C.; Dutu, E.; Birjega, R.; Morjan, I.; Voicu, I.

    2011-04-01

    The work presents preliminary studies with the goal to extend the share of long graphene ribbons in laser-synthesized carbon black. Investigations revealed the existence, as a major constituent, of graphene ribbons composed of up to 10-15 graphene layers, spaced at ˜0.35-0.37 nm and of tens of nanometres in length. The samples used to study the development of this specific structure were obtained from sensitized acetylene-based mixtures and the experiments were performed following the variation of both the experimental parameters and gas composition.

  16. About graphene ribbons development in laser synthesized nanocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Gavrila Florescu, L. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Bucharest (Romania); Vasile, E. [METAV, 16-18 Zapada Mieilor St., 71529 Bucharest (Romania); Sandu, I.; Soare, I.; Fleaca, C. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Bucharest (Romania); Ianchis, R. [Institute of Chemical Research, 202 Splaiul Independentei, CP 15-159, 76250 Bucharest (Romania); Luculescu, C.; Dutu, E.; Birjega, R.; Morjan, I. [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Bucharest (Romania); Voicu, I., E-mail: ionvoicu2001@yahoo.com [National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-36, Bucharest (Romania)

    2011-04-01

    The work presents preliminary studies with the goal to extend the share of long graphene ribbons in laser-synthesized carbon black. Investigations revealed the existence, as a major constituent, of graphene ribbons composed of up to 10-15 graphene layers, spaced at {approx}0.35-0.37 nm and of tens of nanometres in length. The samples used to study the development of this specific structure were obtained from sensitized acetylene-based mixtures and the experiments were performed following the variation of both the experimental parameters and gas composition.

  17. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Jennifer N. [Univ. of California, San Diego, CA (United States); Wang, Joseph [Univ. of California, San Diego, CA (United States)

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds, (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be precisely

  18. Accurate simulation of Raman amplified lightwave synthesized frequency sweeper

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Olesen, Anders Sig; Rottwitt, Karsten

    2011-01-01

    with constant peak power and no significant growth of noise. The numerical simulation is based on careful measurements of the physical properties of the individual components and a well established Raman amplifier model. Very good agreement between the measured and the simulated data is found. (C) 2011 Optical......A lightwave synthesized frequency sweeper using a Raman amplifier for loss compensation is presented together with a numerical model capable of predicting the shape of individual pulses as well as the overall envelope of more than 100 pulses. The generated pulse envelope consists of 116 pulses...

  19. Proposal of an Algorithm to Synthesize Music Suitable for Dance

    Science.gov (United States)

    Morioka, Hirofumi; Nakatani, Mie; Nishida, Shogo

    This paper proposes an algorithm for synthesizing music suitable for emotions in moving pictures. Our goal is to support multi-media content creation; web page design, animation films and so on. Here we adopt a human dance as a moving picture to examine the availability of our method. Because we think the dance image has high affinity with music. This algorithm is composed of three modules. The first is the module for computing emotions from an input dance image, the second is for computing emotions from music in the database and the last is for selecting music suitable for input dance via an interface of emotion.

  20. Characterization of Precipitated CaCO3 Synthesized from Dolomite

    Science.gov (United States)

    Arifin, Zaenal; Fitria Apriliani, Nurul; Zainuri, Mochamad; Darminto, dan

    2017-05-01

    The precipitated CaCO3 has successfully been synthesized from dolomite. The influence of various temperature and carbonation rate on the morphology, crystal size, phase and structure of the carbonation products were studied. The particles resulted from this process have the crystal size 400-800 nm. The calcite phase wasformed inthe synthesis at 30°C with carbonation rate of 2 and 7 SCFH, and synthesis at 80 °C and 2 SCFH also produces calcite phase. Observations by SEM shows morphology of calcite as so-called schalenohedral.

  1. Annual reports in inorganic and general syntheses 1976

    CERN Document Server

    Zimmer, Hans

    2013-01-01

    Annual Reports in Inorganic and General Syntheses-1976 presents an annual review of synthetically useful information that would prove beneficial to nearly all organic chemists, both specialist and nonspecialist in synthesis. It should help relieve some of the information storage burden of the specialist and should aid the nonspecialist who is seeking help with a specific problem to become rapidly aware of recent synthetic advances.This is the fifth volume of ARIGS and is organized along the lines developed for the preceding volumes. The authors were encouraged to use synthetic aspects as their

  2. Lipid nanoscaffolds in carbon nanotube arrays

    Science.gov (United States)

    Paukner, Catharina; Koziol, Krzysztof K. K.; Kulkarni, Chandrashekhar V.

    2013-09-01

    We present the fabrication of lipid nanoscaffolds inside carbon nanotube arrays by employing the nanostructural self-assembly of lipid molecules. The nanoscaffolds are finely tunable into model biomembrane-like architectures (planar), soft nanochannels (cylindrical) or 3-dimensionally ordered continuous bilayer structures (cubic). Carbon nanotube arrays hosting the above nanoscaffolds are formed by packing of highly oriented multiwalled carbon nanotubes which facilitate the alignment of lipid nanostructures without requiring an external force. Furthermore, the lipid nanoscaffolds can be created under both dry and hydrated conditions. We show their direct application in reconstitution of egg proteins. Such nanoscaffolds find enormous potential in bio- and nano-technological fields.We present the fabrication of lipid nanoscaffolds inside carbon nanotube arrays by employing the nanostructural self-assembly of lipid molecules. The nanoscaffolds are finely tunable into model biomembrane-like architectures (planar), soft nanochannels (cylindrical) or 3-dimensionally ordered continuous bilayer structures (cubic). Carbon nanotube arrays hosting the above nanoscaffolds are formed by packing of highly oriented multiwalled carbon nanotubes which facilitate the alignment of lipid nanostructures without requiring an external force. Furthermore, the lipid nanoscaffolds can be created under both dry and hydrated conditions. We show their direct application in reconstitution of egg proteins. Such nanoscaffolds find enormous potential in bio- and nano-technological fields. Electronic supplementary information (ESI) available: Additional wide angle X-ray scattering (WAXS) data on the alignment of lipid nanostructures, control and time resolved 2-d images of egg ovalbumin encapsulation and a summary picture of the present work. See DOI: 10.1039/c3nr02068a

  3. A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Peng, Debby

    2013-01-01

    Biological membranes are complex, and the mechanisms underlying their homeostasis are incompletely understood. Here, we present a quantitative genetic interaction map (E-MAP) focused on various aspects of lipid biology, including lipid metabolism, sorting, and trafficking. This E-MAP contains ∼250......,000 negative and positive genetic interaction scores and identifies a molecular crosstalk of protein quality control pathways with lipid bilayer homeostasis. Ubx2p, a component of the endoplasmic-reticulum-associated degradation pathway, surfaces as a key upstream regulator of the essential fatty acid (FA......) desaturase Ole1p. Loss of Ubx2p affects the transcriptional control of OLE1, resulting in impaired FA desaturation and a severe shift toward more saturated membrane lipids. Both the induction of the unfolded protein response and aberrant nuclear membrane morphologies observed in cells lacking UBX2...

  4. Lipides et comportement alimentaire chez les enfants

    Directory of Open Access Journals (Sweden)

    Nicklaus Sophie

    2016-05-01

    Full Text Available Cet article analyse la place des lipides dans l’alimentation des jeunes enfants. Premièrement, il montre d’une part la contribution importante que devraient avoir les lipides aux apports énergétiques totaux des enfants de moins de deux ans, en raison de leur intérêt fonctionnel dans le développement neuronal et de leur effet potentiellement protecteur d’une obésité ultérieure; d’autre part, il souligne la faible contribution des lipides aux apports énergétiques totaux chez les enfants français, d’après les estimations disponibles, avec une minorité d’enfants pour lesquels les apports en lipides sont satisfaisants. Deuxièmement, il rapporte les connaissances disponibles concernant le contrôle « sensoriel » de la consommation de lipides. Chez les nouveau-nés et les nourrissons, quelques travaux portent sur les préférences pour les lipides, et indiquent l’absence d’une préférence pour les lipides. Chez les enfants, une teneur augmentée en lipides a parfois (mais pas toujours un effet positif sur l’appréciation d’un aliment, avec souvent une teneur optimale; mais elle n’est pas associée à une consommation plus élevée de l’aliment. Des teneurs élevées en lipides ont deux effets sur les apprentissages alimentaires. Chez des enfants de moins de 3 ans, un triplement de la densité énergétique par l’ajout de lipides est associé à la mise en place d’un rassasiement conditionné pour l’aliment concerné; chez des enfants plus âgés, un doublement de la densité énergétique par l’ajout de lipides, est associé à une augmentation de l’appréciation des flaveurs associées aux versions les plus riches en lipides. Des pistes d’études complémentaires sont discutées.

  5. [Characteristics of the lipid spectrum in miners].

    Science.gov (United States)

    Zhasminova, V G; Sokolova, M A; El'garov, A A

    1991-08-01

    Serum lipids were studied in workers of a mining enterprise situated in mid-altitude areas who were affected by some unfavourable occupational factors (noise, vibration, dustiness, psychological and physical stresses). They were compared with those in a number- and age-matched group of employees of an instrument-making plant who resided in the plain and were unexposed to the above adverse factors. The miners were found to have greater mean levels of triglycerides and potentially atherogenic lipoprotein cholesterol. The mean lipid levels were higher with the miners' age and length of occupation whereas the duration of residence in mid-altitude areas had no noticeable influence on lipid levels.

  6. DNA nanostructures interacting with lipid bilayer membranes.

    Science.gov (United States)

    Langecker, Martin; Arnaut, Vera; List, Jonathan; Simmel, Friedrich C

    2014-06-17

    CONSPECTUS: DNA has been previously shown to be useful as a material for the fabrication of static nanoscale objects, and also for the realization of dynamic molecular devices and machines. In many cases, nucleic acid assemblies directly mimic biological structures, for example, cytoskeletal filaments, enzyme scaffolds, or molecular motors, and many of the applications envisioned for such structures involve the study or imitation of biological processes, and even the interaction with living cells and organisms. An essential feature of biological systems is their elaborate structural organization and compartmentalization, and this most often involves membranous structures that are formed by dynamic assemblies of lipid molecules. Imitation of or interaction with biological systems using the tools of DNA nanotechnology thus ultimately and necessarily also involves interactions with lipid membrane structures, and thus the creation of DNA-lipid hybrid assemblies. Due to their differing chemical nature, however, highly charged nucleic acids and amphiphilic lipids do not seem the best match for the construction of such systems, and in fact they are rarely found in nature. In recent years, however, a large variety of lipid-interacting DNA conjugates were developed, which are now increasingly being applied also for the realization of DNA nanostructures interacting with lipid bilayer membranes. In this Account, we will present the current state of this emerging class of nanosystems. After a brief overview of the basic biophysical and biochemical properties of lipids and lipid bilayer membranes, we will discuss how DNA molecules can interact with lipid membranes through electrostatic interactions or via covalent modification with hydrophobic moieties. We will then show how such DNA-lipid interactions have been utilized for the realization of DNA nanostructures attached to or embedded within lipid bilayer membranes. Under certain conditions, DNA nanostructures remain mobile on

  7. Lipid protrusions membrane softness, and enzymatic activity

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Høyrup, P.; Callisen, T.H.

    2004-01-01

    The activity of phospholipase A(2) on lipid bilayers displays a characteristic lag burst behavior that has previously been shown to reflect the physical properties of the substrate. It has remained unclear which underlying molecular mechanism is responsible for this phenomenon. We propose here...... that protrusions of single lipid molecules out of the bilayer plane could provide such a mechanism. The proposal is supported by a combination of atomic-scale molecular dynamics simulations, theory, and experiments that have been performed in order to investigate the relationship between on the one side lipid...

  8. The cellular and biochemical rules of lipid antigen presentation.

    Science.gov (United States)

    De Libero, Gennaro; Collmann, Anthony; Mori, Lucia

    2009-10-01

    The recognition of both protein and lipid antigens follows similar strategies that rely on different molecular mechanisms. APC present lipid antigens exploiting the same mechanisms implicated in lipid translocation, lipoprotein assembly and lipid degradation. An important issue is how the lipid structure contributes to antigenicity. Lipid hydrophobicity influences the modes of internalization by APC, the trafficking through different membrane compartments, the binding to CD1 molecules and the stability of antigenic complexes. Some glycolipids with large hydrophilic parts require processing of the sugar moieties exerted by lysosomal hydrolases. Finally, extraction of lipids from membranes, their solubilization and loading on CD1 molecules are facilitated by the same lysosomal lipid-binding proteins that are also instrumental in lipid catabolism. More recent investigations reveal how lipid-specific immunity is regulated during infections. In this review we describe the main cellular and biochemical rules of lipid antigen presentation and discuss their implications in anti-microbial and autoimmune responses.

  9. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    DEFF Research Database (Denmark)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco

    2014-01-01

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary...... and explain how cells switch neutral lipid metabolism from storage to consumption.......Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary...... phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic...

  10. Photothermal stability of biologically and chemically synthesized gold nanoprisms

    Science.gov (United States)

    Klekotko, Magdalena; Olesiak-Banska, Joanna; Matczyszyn, Katarzyna

    2017-10-01

    We report here the influence of the irradiation with femtosecond laser pulses on the gold nanoprisms synthesized using biological and chemical methods. For the bio-mediated growth, we used plant extract as a source of reducing, structure-directing, and stabilizing agents, while for the chemical method, we applied three-step protocol, involving chemicals commonly used in the synthesis of nanostructures. Exposition of the nanostructures to the laser beam causes morphological changes, which affect their extinction spectra. These modifications were followed using absorption spectroscopy and transmission electron microscopy. The observed effects depend on the applied laser power and excitation wavelength. Under resonance conditions, rounding of the tips of triangular nanoparticles and transformation towards more stable, spherical form were noticed. These changes were faster under higher laser power. Such shape modifications were weaker under off-resonance conditions. Moreover, chemically synthesized gold nanoprisms were less susceptible to the morphological changes than those obtained using plant extract; however, their colloidal stability was disrupted by long-time irradiation. [Figure not available: see fulltext.

  11. Synthesizing Iron Oxide Nanostructures: The Polyethylenenemine (PEI) Role

    KAUST Repository

    Mozo, Sergio Lentijo

    2017-01-12

    Controlled synthesis of anisotropic iron oxide nanoparticles is a challenge in the field of nanomaterial research that requires an extreme attention to detail. In particular, following up a previous work showcasing the synthesis of magnetite nanorods (NRs) using a two-step approach that made use of polyethylenenemine (PEI) as a capping ligand to synthesize intermediate β-FeOOH NRs, we studied the effect and influence of the capping ligand on the formation of β-FeOOH NRs. By comparing the results reported in the literature with those we obtained from syntheses performed (1) in the absence of PEI or (2) by using PEIs with different molecular weight, we showed how the choice of different PEIs determines the aspect ratio and the structural stability of the β-FeOOH NRs and how this affects the final products. For this purpose, a combination of XRD, HRTEM, and direct current superconducting quantum interference device (DC SQUID) magnetometry was used to identify the phases formed in the final products and study their morphostructural features and related magnetic behavior.

  12. Synthesizing Iron Oxide Nanostructures: The Polyethylenenemine (PEI Role

    Directory of Open Access Journals (Sweden)

    Sergio Lentijo Mozo

    2017-01-01

    Full Text Available Controlled synthesis of anisotropic iron oxide nanoparticles is a challenge in the field of nanomaterial research that requires an extreme attention to detail. In particular, following up a previous work showcasing the synthesis of magnetite nanorods (NRs using a two-step approach that made use of polyethylenenemine (PEI as a capping ligand to synthesize intermediate β-FeOOH NRs, we studied the effect and influence of the capping ligand on the formation of β-FeOOH NRs. By comparing the results reported in the literature with those we obtained from syntheses performed (1 in the absence of PEI or (2 by using PEIs with different molecular weight, we showed how the choice of different PEIs determines the aspect ratio and the structural stability of the β-FeOOH NRs and how this affects the final products. For this purpose, a combination of XRD, HRTEM, and direct current superconducting quantum interference device (DC SQUID magnetometry was used to identify the phases formed in the final products and study their morphostructural features and related magnetic behavior.

  13. Dynamic balancing of mechanisms and synthesizing of parallel robots

    CERN Document Server

    Wei, Bin

    2016-01-01

    This book covers the state-of-the-art technologies in dynamic balancing of mechanisms with minimum increase of mass and inertia. The synthesis of parallel robots based on the Decomposition and Integration concept is also covered in detail. The latest advances are described, including different balancing principles, design of reactionless mechanisms with minimum increase of mass and inertia, and synthesizing parallel robots. This is an ideal book for mechanical engineering students and researchers who are interested in the dynamic balancing of mechanisms and synthesizing of parallel robots. This book also: ·       Broadens reader understanding of the synthesis of parallel robots based on the Decomposition and Integration concept ·       Reinforces basic principles with detailed coverage of different balancing principles, including input torque balancing mechanisms ·       Reviews exhaustively the key recent research into the design of reactionless mechanisms with minimum increase of mass a...

  14. Global Mental Health: sharing and synthesizing knowledge for sustainable development.

    Science.gov (United States)

    O'Donnell, K; O'Donnell, M Lewis

    2016-01-01

    Global mental health (GMH) is a growing domain with an increasing capacity to positively impact the world community's efforts for sustainable development and wellbeing. Sharing and synthesizing GMH and multi-sectoral knowledge, the focus of this paper, is an important way to support these global efforts. This paper consolidates some of the most recent and relevant 'context resources' [global multi-sector (GMS) materials, emphasizing world reports on major issues] and 'core resources' (GMH materials, including newsletters, texts, conferences, training, etc.). In addition to offering a guided index of materials, it presents an orientation framework (global integration) to help make important information as accessible and useful as possible. Mental health colleagues are encouraged to stay current in GMH and global issues, to engage in the emerging agendas for sustainable development and wellbeing, and to intentionally connect and contribute across sectors. Colleagues in all sectors are encouraged to do likewise, and to take advantage of the wealth of shared and synthesized knowledge in the GMH domain, such as the materials featured in this paper.

  15. Safety evaluation of an enzymatically-synthesized glycogen (ESG).

    Science.gov (United States)

    Tafazoli, Shahrzad; Wong, Andrea W; Kajiura, Hideki; Kakutani, Ryo; Furuyashiki, Takashi; Takata, Hiroki; Kuriki, Takashi

    2010-01-01

    An enzymatically-synthesized glycogen (ESG), intended for use as a food ingredient, was investigated for potential toxicity. ESG is synthesized in vitro from short-chain amylose by the co-operative action of branching enzyme and amylomaltase. In an acute toxicity study, oral administration of ESG to Sprague-Dawley rats at a dose of 2000 mg/kg body weight did not result in any signs of toxicity. ESG did not exhibit mutagenic activity in an in vitro bacterial reverse mutation assay. In a subchronic toxicity study, increased cecal weights noted in the mid- (10%) and high-dose (30%) animals are common findings in rodents fed excess amounts of carbohydrates that increase osmotic value of the cecal contents, and thus were considered a physiological rather than toxicological response. The hematological and histopathological effects observed in the high-dose groups were of no toxicological concern as they were secondary to the physiological responses resulting from the high carbohydrate levels in the test diets. The no-observed-adverse-effect level for ESG in rats was therefore established to be 30% in the diet (equivalent to approximately 18 and 21 g/kg body weight/day for male and female rats, respectively). These results support the safety of ESG as a food ingredient for human consumption. Copyright 2010 Elsevier Inc. All rights reserved.

  16. Method of synthesized phase objects for pattern recognition: matched filtering.

    Science.gov (United States)

    Yezhov, Pavel V; Kuzmenko, Alexander V; Kim, Jin-Tae; Smirnova, Tatiana N

    2012-12-31

    To solve the pattern recognition problem, a method of synthesized phase objects is suggested. The essence of the suggested method is that synthesized phase objects are used instead of real amplitude objects. The former is object-dependent phase distributions calculated using the iterative Fourier-transform (IFT) algorithm. The method is experimentally studied with a Vander Lugt optical-digital 4F-correlator. We present the comparative analysis of recognition results using conventional and proposed methods, estimate the sensitivity of the latter to distortions of the structure of objects, and determine the applicability limits. It is demonstrated that the proposed method allows one: (а) to simplify the procedure of choice of recognition signs (criteria); (b) to obtain one-type δ-like recognition signals irrespective of the type of objects; (с) to improve signal-to-noise ratio (SNR) for correlation signals by 20 - 30 dB on average. The spatial separation of the Fourier-spectra of objects and optical noises of the correlator by means of the superposition of the phase grating on recognition objects at the recording of holographic filters and at the matched filtering has additionally improved SNR (>10 dB) for correlation signals. To introduce recognition objects in the correlator, we use a SLM LC-R 2500 device. Matched filters are recorded on a self-developing photopolymer.

  17. Thermoresponsive and Reducible Hyperbranched Polymers Synthesized by RAFT Polymerisation

    Directory of Open Access Journals (Sweden)

    Anna Tochwin

    2017-09-01

    Full Text Available Here, we report the synthesis of new thermoresponsive hyperbranched polymers (HBPs via one-pot reversible addition-fragmentation chain transfer (RAFT copolymerisation of poly(ethylene glycolmethyl ether methacrylate (PEGMEMA, Mn = 475 g/mol, poly(propylene glycolmethacrylate (PPGMA, Mn = 375 g/mol, and disulfide diacrylate (DSDA using 2-cyanoprop-2-yl dithiobenzoate as a RAFT agent. DSDA was used as the branching agent and to afford the HBPs with reducible disulfide groups. The resulting HBPs were characterised by Nuclear Magnetic Resonance Spectroscopy (NMR and Gel Permeation Chromatography (GPC. Differential Scanning Calorimetry (DSC was used to determine lower critical solution temperatures (LCSTs of these copolymers, which are in the range of 17–57 °C. Moreover, the studies on the reducibility of HBPs and swelling behaviours of hydrogels synthesized from these HBPs were conducted. The results demonstrated that we have successfully synthesized hyperbranched polymers with desired dual responsive (thermal and reducible and crosslinkable (via thiol-ene click chemistry properties. In addition, these new HBPs carry the multiplicity of reactive functionalities, such as RAFT agent moieties and multivinyl functional groups, which can afford them with the capacity for further bioconjugation and structure modifications.

  18. Direct observation of lipid domains in free standing bilayers: from simple to complex lipid mixtures

    DEFF Research Database (Denmark)

    Bagatolli, Luis A

    2003-01-01

    reported from our laboratory, regarding the direct observation of lipid domain coexistence at the level of single vesicles in artificial and natural lipid mixtures. In addition, key points concerning our experimental approach will be discussed. The unique advantages of the fluorescent probe 6-dodecanoyl-2......The direct observation of temperature-dependent lipid phase equilibria, using two-photon excitation fluorescence microscopy on giant unilamellar vesicles (GUVs) composed of different lipid mixtures, provides novel information about the physical characteristics of lipid domain coexistence. Physical......-dimethylamino-naphthalene (LAURDAN) under the two-photon excitation fluorescence microscopy will be particularly addressed, especially, the possibility to obtain information about the phase-state of different lipid domains directly from the fluorescent images. Udgivelsesdato: 2003-Jan...

  19. Investigation of Lipid Oxidation in High- and Low-Lipid-Containing Topical Skin Formulations

    DEFF Research Database (Denmark)

    Raagaard Thomsen, Birgitte; Frisenfeldt Horn, Anna; Hyldig, G.

    2017-01-01

    were stored at various cosmetic industry-relevant conditions for 84 days. The skin care products were analysed for lipid hydroperoxides and secondary volatile oxidation products. A trained sensory panel performed an odour difference (triangle) test and odour-profiled the products to detect and describe......Abstract: Lipid oxidation can impact the odour of skin care products during storage. A study was conducted to identify and monitor representative markers for lipid oxidation in skin care products over time. Four lip care formulations and three skin care formulations with different lipid contents...... odour changes during storage. Several potential markers for lipid oxidation were identified. In skin care formulations, peroxide value (PV) analysis was a useful marker for lipid oxidation if the product was exposed to light during storage, but no clear changes were observed for PV in samples stored...

  20. Lipid partitioning in maize (Zea mays L.) endosperm highlights relationships among starch lipids, amylose, and vitreousness.

    Science.gov (United States)

    Gayral, Mathieu; Bakan, Bénédicte; Dalgalarrondo, Michele; Elmorjani, Khalil; Delluc, Caroline; Brunet, Sylvie; Linossier, Laurent; Morel, Marie-Hélène; Marion, Didier

    2015-04-08

    Content and composition of maize endosperm lipids and their partition in the floury and vitreous regions were determined for a set of inbred lines. Neutral lipids, i.e., triglycerides and free fatty acids, accounted for more than 80% of endosperm lipids and are almost 2 times higher in the floury than in the vitreous regions. The composition of endosperm lipids, including their fatty acid unsaturation levels, as well as their distribution may be related to metabolic specificities of the floury and vitreous regions in carbon and nitrogen storage and to the management of stress responses during endosperm cell development. Remarkably, the highest contents of starch lipids were observed systematically within the vitreous endosperm. These high amounts of starch lipids were mainly due to lysophosphatidylcholine and were tightly linked to the highest amylose content. Consequently, the formation of amylose-lysophosphatidylcholine complexes has to be considered as an outstanding mechanism affecting endosperm vitreousness.

  1. Homogenization of the lipid profile values.

    Science.gov (United States)

    Pedro-Botet, Juan; Rodríguez-Padial, Luis; Brotons, Carlos; Esteban-Salán, Margarita; García-Lerín, Aurora; Pintó, Xavier; Lekuona, Iñaki; Ordóñez-Llanos, Jordi

    2017-12-20

    Analytical reports from the clinical laboratory are essential to guide clinicians about what lipid profile values should be considered altered and, therefore, require intervention. Unfortunately, there is a great heterogeneity in the lipid values reported as "normal, desirable, recommended or referenced" by clinical laboratories. This can difficult clinical decisions and be a barrier to achieve the therapeutic goals for cardiovascular prevention. A recent international recommendation has added a new heterogeneity factor for the interpretation of lipid profile, such as the possibility of measuring it without previous fasting. All this justifies the need to develop a document that adapts the existing knowledge to the clinical practice of our health system. In this regard, professionals from different scientific societies involved in the measurement and use of lipid profile data have developed this document to establish recommendations that facilitate their homogenization. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  2. A STUDY OF LIPID PROFILE IN PREDIABETES

    Directory of Open Access Journals (Sweden)

    Manoj

    2016-06-01

    Full Text Available BACKGROUND Lipid abnormalities are common in diabetes mellitus and play an important role in acceleration of atherosclerosis leading to increased cardiovascular diseases. Due to increasing burden of diabetes, it is becoming important to identify dyslipidaemia in high-risk state for diabetes especially prediabetes so that early intervention can reduce cardiovascular risk. AIM To study lipid profile in prediabetes individuals. METHODS This study was a cross-sectional case control study which included 107 prediabetes and 101 healthy controls. Lipid profile of prediabetes and controls were measured and statistically analysed. RESULT Total cholesterol, LDL, triglycerides, VLDL, TG/HDL ratio, and LDL/HDL ratio were significantly high whereas HDL was significantly low in prediabetes subjects as compared to controls. CONCLUSION This study showed significant lipid abnormalities in prediabetes subjects. Because of these they are at high risk of developing atherosclerotic cardiovascular diseases. Therefore, proper screening and appropriate therapy of these conditions becomes important.

  3. Voltage-gated lipid ion channels

    DEFF Research Database (Denmark)

    Blicher, Andreas; Heimburg, Thomas Rainer

    2013-01-01

    probability as a function of voltage. The voltage-dependence of the lipid pores is found comparable to that of protein channels. Lifetime distributions of open and closed events indicate that the channel open distribution does not follow exponential statistics but rather power law behavior for long open times......Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current...... histograms in patch-experiments on lipid membranes. We derived a theoretical current-voltage relationship for pores in lipid membranes that describes the experimental data very well when assuming an asymmetric membrane. We determined the equilibrium constant between closed and open state and the open...

  4. Genetic architecture of circulating lipid levels

    DEFF Research Database (Denmark)

    Demirkan, Ayşe; Amin, Najaf; Isaacs, Aaron

    2011-01-01

    Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total cholesterol (TC) are important heritable risk factors for cardiovascular disease. Although genome-wide association studies (GWASs) of circulating lipid...... the ENGAGE Consortium GWAS on serum lipids, were applied to predict lipid levels in an independent population-based study, the Rotterdam Study-II (RS-II). We additionally tested for evidence of a shared genetic basis for different lipid phenotypes. Finally, the polygenic score approach was used to identify...... suggested a small overlap between the polygenic backgrounds involved in determining LDL-C, HDL-C and TG levels. Pathway analysis utilizing the best polygenic score for TC uncovered extra information compared with using only genome-wide significant loci. These results suggest that the genetic architecture...

  5. ER stress and hepatic lipid metabolism

    Directory of Open Access Journals (Sweden)

    Huiping eZhou

    2014-05-01

    Full Text Available The endoplasmic reticulum (ER is an important player in regulating protein synthesis and lipid metabolism. Perturbation of ER homeostasis, referred as ER stress, has been linked to numerous pathological conditions, such as inflammation, cardiovascular diseases and metabolic disorders. The liver plays a central role in regulating nutrient and lipid metabolism. Accumulating evidence implicates that ER stress disrupts lipid metabolism and induces hepatic lipotoxicity. Here, we review the major ER stress signaling pathways, how ER stress contributes to the dysregulation of hepatic lipid metabolism, and the potential causative mechanisms of ER stress in hepatic lipotoxicity. Understanding the role of ER stress in hepatic metabolism may lead to the identification of new therapeutic targets for metabolic diseases.

  6. Overview of Cholesterol and Lipid Disorders

    Science.gov (United States)

    ... Goldberg, MD, Professor of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University ... vitamin D and various hormones, such as estrogen , testosterone , and cortisol . The body can produce all the ...

  7. Lipid droplets and lipotoxicity during autophagy.

    Science.gov (United States)

    Nguyen, Truc B; Olzmann, James A

    2017-08-14

    Lipid droplets (LDs) are neutral lipid storage organelles that provide a rapidly accessible source of fatty acids (FAs) for energy during periods of nutrient deprivation. Surprisingly, lipids released by the macroautophagic/autophagic breakdown of membranous organelles are packaged and stored in new LDs during periods of prolonged starvation. Why cells would store FAs during an energy crisis was unknown. In our recent study, we demonstrated that FAs released during MTORC1-regulated autophagy are selectively channeled by DGAT1 (diacylglycerol O-acyltransferase 1) into triacylglycerol (TAG)-rich LDs. These DGAT1-dependent LDs sequester FAs and prevent the accumulation of acylcarnitines, which otherwise directly disrupt mitochondrial integrity. Our findings establish LD biogenesis as a general cellular response to periods of high autophagic flux that provide a lipid buffering system to mitigate lipotoxic cellular damage.

  8. Design of lipid matrix particles for fenofibrate

    DEFF Research Database (Denmark)

    Xia, Dengning; Cui, Fude; Gan, Yong

    2014-01-01

    The effect of polymorphism of glycerol monostearate (GMS) on drug incorporation and release from lipid matrix particles (LMPs) was investigated using fenofibrate as a model drug. X-ray powder diffraction and differential scanning calorimetry were used to study the polymorphism change of GMS...... and the drug incorporation in GMS matrix. When medium-chain triglycerides (MCT) was absent, melted GMS was frozen to α-form of GMS with drug molecularly dispersed, whereas β-form of GMS was formed with part of drug crystallized out when the ratio of GMS/MCT in the lipid matrix was 2:1 (w/w). For LMP composed......, the polymorphism of GMS is an important factor determining particle stability, drug incorporation, and the release of the drug from LMP. Critical attention should be paid on the investigation as well as control of the lipid polymorphism when formulating lipid-based matrix particles. © 2013 Wiley Periodicals, Inc...

  9. Supramolecular protein immobilization on lipid bilayers

    NARCIS (Netherlands)

    Bosmans, R.P.G.; Hendriksen, W.E.; Verheijden, Mark Lloyd; Eelkema, R.; Jonkheijm, Pascal; van Esch, J.H.; Brunsveld, Luc

    2015-01-01

    Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and

  10. Assessing the nature of lipid raft membranes

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Ollila, Samuli; Hyvönen, Marja T

    2007-01-01

    heterogeneity more difficult. The findings reveal aspects of the role of favored (specific) lipid-lipid interactions within rafts and clarify the prominent role of CHOL in altering the properties of the membrane locally in its neighborhood. Also, we show that the presence of PSM and CHOL in rafts leads...... of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL). These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins....... However, despite the proposed importance of these domains, their properties, and even the precise nature of the lipid phases, have remained open issues mainly because the associated short time and length scales have posed a major challenge to experiments. In this work, we employ extensive atom...

  11. Coalescence Kinetics of Lipid Based Bicelles

    Science.gov (United States)

    Hu, Andrew; Fan, Tai-Hsi; Katsaras, John; Xia, Yan; Li, Ming; Nieh, Mu-Ping

    2014-03-01

    Uniform nanodisc can be self-assembled from lipid mixtures of dimyristoyl phosphatidylcholine (DMPC), dimyristoyl phosphatidylglycerol (DMPG), and dihexanoyl phosphatidylcholine (DHPC). This study focuses on the theoretical and experimental growth kinetics of phospholipid based nanodiscs. Motivation for this project comes from the nanodisc's small size and their potential use as a carrier for drug delivery. It was observed that at high total lipid concentration the nanodiscs are stable at approximately 10 nm. However, growth of these nanodiscs is observed at relatively low total lipid concentrations. Dynamic light scattering (DLS) is used to monitor the size and growth rate of these nanodiscs at different solution conditions. The growth at low concentrations is caused by to the transfer of charged lipid (DMPG) from the discs to the solution, reducing the Columbic interaction. The growth of nanodisc as a function of size and surface potential is modeled using the Smoluchowski transport equation with transport-limited boundary conditions.

  12. Lipophagy: Connecting Autophagy and Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Rajat Singh

    2012-01-01

    Full Text Available Lipid droplets (LDs, initially considered “inert” lipid deposits, have gained during the last decade the classification of cytosolic organelles due to their defined composition and the multiplicity of specific cellular functions in which they are involved. The classification of LD as organelles brings along the need for their regulated turnover and recent findings support the direct contribution of autophagy to this turnover through a process now described as lipophagy. This paper focuses on the characteristics of this new type of selective autophagy and the cellular consequences of the mobilization of intracellular lipids through this process. Lipophagy impacts the cellular energetic balance directly, through lipid breakdown and, indirectly, by regulating food intake. Defective lipophagy has been already linked to important metabolic disorders such as fatty liver, obesity and atherosclerosis, and the age-dependent decrease in autophagy could underline the basis for the metabolic syndrome of aging.

  13. The cornea and disorders of lipid metabolism.

    Science.gov (United States)

    Barchiesi, B J; Eckel, R H; Ellis, P P

    1991-01-01

    Disorders of lipid metabolism, either hyperlipidemia or hypolipidemia, are associated with the formation of corneal opacities. Corneal arcus, the most commonly encountered peripheral corneal opacity, is frequently associated with abnormal serum lipid levels, but may occur without any predisposing factors. Reports also have linked corneal arcus with alcoholism, diabetes mellitus and atherosclerotic heart disease. Unilateral arcus is a rare entity that is associated with carotid artery disease or ocular hypotony. Diffuse corneal opacities associated with hypolipidemic disorders such as LCAT deficiency, fish eye disease and Tangier disease, may be the initial manifestation of these disorders and puts the ophthalmologist in a position to make an early diagnosis. Corneal arcus, along with a central corneal opacity, is seen in Schnyder's crystalline stromal distrophy. The association of the disorder with a dyslipidemia remains controversial. A review of lipid metabolism, corneal arcus and several disorders of lipid metabolism that affect the cornea are presented.

  14. Artificial Lipid Membranes: Past, Present, and Future.

    Science.gov (United States)

    Siontorou, Christina G; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Karapetis, Stefanos K

    2017-07-26

    The multifaceted role of biological membranes prompted early the development of artificial lipid-based models with a primary view of reconstituting the natural functions in vitro so as to study and exploit chemoreception for sensor engineering. Over the years, a fair amount of knowledge on the artificial lipid membranes, as both, suspended or supported lipid films and liposomes, has been disseminated and has helped to diversify and expand initial scopes. Artificial lipid membranes can be constructed by several methods, stabilized by various means, functionalized in a variety of ways, experimented upon intensively, and broadly utilized in sensor development, drug testing, drug discovery or as molecular tools and research probes for elucidating the mechanics and the mechanisms of biological membranes. This paper reviews the state-of-the-art, discusses the diversity of applications, and presents future perspectives. The newly-introduced field of artificial cells further broadens the applicability of artificial membranes in studying the evolution of life.

  15. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties.

    Directory of Open Access Journals (Sweden)

    Xabier Osteikoetxea

    Full Text Available In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations. Here we introduce a simple 96 well plate-based total lipid assay for determination of lipid content and protein to lipid ratios of extracellular vesicle preparations from various myeloid and lymphoid cell lines as well as blood plasma. These preparations included apoptotic bodies, microvesicles/microparticles, and exosomes isolated by size-based fractionation. We also investigated lipid bilayer order of extracellular vesicle subpopulations using Di-4-ANEPPDHQ lipid probe, and lipid composition using affinity reagents to clustered cholesterol (monoclonal anti-cholesterol antibody and ganglioside GM1 (cholera toxin subunit B. We have consistently found different protein to lipid ratios characteristic for the investigated extracellular vesicle subpopulations which were substantially altered in the case of vesicular damage or protein contamination. Spectral ratiometric imaging and flow cytometric analysis also revealed marked differences between the various vesicle populations in their lipid order and their clustered membrane cholesterol and GM1 content. Our study introduces for the first time a simple and readily available lipid assay to complement the widely used protein assays in order to better characterize extracellular vesicle preparations. Besides differentiating extracellular vesicle subpopulations, the novel parameters introduced in this work (protein to lipid ratio, lipid bilayer order, and lipid composition, may prove useful for quality control of extracellular vesicle related basic and clinical studies.

  16. Drug solubility in lipid nanocarriers: Influence of lipid matrix and available interfacial area.

    Science.gov (United States)

    Göke, Katrin; Bunjes, Heike

    2017-08-30

    Amongst other strategies for the formulation of poorly water-soluble drugs, solubilization of these drugs in lipid-based formulations is a promising option. Most screening methods for the identification of a suitable lipid-based formulation fail to elucidate the role interfacial effects play for drug solubility in disperse systems. In a novel screening approach called passive drug loading, different preformed lipid nanocarrier dispersions are incubated with drug powder. Afterwards, undissolved drug is filtered off and the amount of solubilized drug is determined. The aim of this study was to identify parameters for drug solubility in pure lipids as well as for drug loading to the lipid-water interface of lipid nanoparticles. Using passive loading, the solubility of eight poorly water-soluble drugs in seven lipid nanocarriers varying in particle size or lipid matrix was investigated. Drug solubility in the nanocarriers did not follow any apparent trend and different drugs dissolved best in different carriers. Drugs with a melting point below approximately 150°C displayed distinctly better solubility than higher melting drugs. Additionally, relating the specific lipid nanocarrier surface area to the drug solubility allowed drawing conclusions on the drug localization. Fenofibrate, dibucaine and, less distinctly also clotrimazole, which all melt below 150°C, were predominantly located in the lipid droplet core of the nanoparticles. In contrast, the five remaining drugs (betamethasone valerate, flufenamic acid, itraconazole, ketoconazole, mefenamic acid) were also located at the lipid-water interface to different, but substantial degrees. The ability to account for drug loading to the lipid-water interface is thus a major advantage of passive loading. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Lipid Microarray Biosensor for Biotoxin Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.; Edel, Joshua B.; Meyer, Grant D.; Craighead, Harold G.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates by TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4

  18. Lipid Bilayers: Clusters, Domains and Phases

    OpenAIRE

    Ackerman, David G.; Feigenson, Gerald W.

    2015-01-01

    In this chapter we discuss the complex mixing behavior of plasma membrane lipids. To do so, we first introduce the plasma membrane and membrane mixtures often used to model its complexity. We then discuss the nature of lipid phase behavior in bilayers and the distinction between these phases and other manifestations of nonrandom mixing found in one-phase mixtures, such as clusters, micelles, and microemulsions. Finally, we demonstrate the applicability of Gibbs phase diagrams to the study of ...

  19. Lipid Dependent Mechanisms of Protein Pump Activity

    Science.gov (United States)

    1993-04-29

    AD -A26 4 48~_ _ _ _ _ __ _ _ _ _ _ _ IDF C~ tl~,’ ApiZ’ C, tdfii 1111iII~iji .. rirTATION PAGE OWNo0MB ý8 2a SECURITY CLASSiFICAT ON. A 3 0SR37...between lipid composition and the spontaneous curva - ture of native membranes. The first two specific objectives were successfully met, while the...1992). Basically, the results show that the spontaneous curva - tures of lipids extracted from mycoplasma membranes cluster tightly, even under growth

  20. Lipid composition of lees from Sherry wine.

    Science.gov (United States)

    Gómez, Maria Ester; Igartuburu, José M; Pando, Enrique; Luis, Francisco Rodríguez; Mourente, Gabriel

    2004-07-28

    In this paper, we describe the study and characterization of the lipids from lees of Sherry wine, one of the main byproducts from the wine-making industry in the Jerez/Xeres/Sherry denomination of the origin zone in Jerez de la Frontera, Spain. The lipid content, extractability, classification, fatty acid composition, and its main chemical characteristics have been determined in order to evaluate their potential use as a food or food additive. Copyright 2004 American Chemical Society

  1. Bolaamphiphiles as carriers for siRNA delivery: From chemical syntheses to practical applications.

    Science.gov (United States)

    Gupta, Kshitij; Afonin, Kirill A; Viard, Mathias; Herrero, Virginia; Kasprzak, Wojciech; Kagiampakis, Ioannis; Kim, Taejin; Koyfman, Alexey Y; Puri, Anu; Stepler, Marissa; Sappe, Alison; KewalRamani, Vineet N; Grinberg, Sarina; Linder, Charles; Heldman, Eliahu; Blumenthal, Robert; Shapiro, Bruce A

    2015-09-10

    In this study we have investigated a new class of cationic lipids--"bolaamphiphiles" or "bolas"--for their ability to efficiently deliver small interfering RNAs (siRNAs) to cancer cells. The bolas of this study consist of a hydrophobic chain with one or more positively charged head groups at each end. Recently, we reported that micelles of the bolas GLH-19 and GLH-20 (derived from vernonia oil) efficiently deliver siRNAs, while having relatively low toxicities in vitro and in vivo. Our previous studies validated that; bolaamphiphiles can be designed to vary the magnitude of siRNA shielding, its delivery, and its subsequent release. To further understand the structural features of bolas critical for siRNAs delivery, new structurally related bolas (GLH-58 and GLH-60) were designed and synthesized from jojoba oil. Both bolas have similar hydrophobic domains and contain either one, in GLH-58, or two, in GLH-60 positively charged head groups at each end of the hydrophobic core. We have computationally predicted and experimentally validated that GLH-58 formed more stable nano sized micelles than GLH-60 and performed significantly better in comparison to GLH-60 for siRNA delivery. GLH-58/siRNA complexes demonstrated better efficiency in silencing the expression of the GFP gene in human breast cancer cells at concentrations of 5μg/mL, well below the toxic dose. Moreover, delivery of multiple different siRNAs targeting the HIV genome demonstrated further inhibition of virus production. Published by Elsevier B.V.

  2. Serum Lipid Profile In Xanthelasma

    Directory of Open Access Journals (Sweden)

    Gangopadadhya D N

    1998-01-01

    Full Text Available Forty Patients of Xanthelasma palpebrarum (XP and forty age & sex related controls were collected form the skin OPD of N R S Medical College Hospital and put to clinical and biochemical examinations. XP was found to be more prevalent among female (67.5% than in male (32.5%. Majority (55% of the patients belonged to 31-50 years age group in both the sexes. Family history of XP was found in significantly more number of patients (27.5% than in controls (0%. Family history of diabetes, ischemic heart disease, and hypertension was detected in 20%, 32.5% and 20% of patients respectively and no significant difference was seen from the control. Arcus senilis was detected in25% patients. Forty percent patients were hypercholesterolaemic among which 27.5%. Patients had cholesterol level> 240mg/df whereas 5% controls had the level between 200-240mg/df. Hypertiglyceridaemia was present in 22.5% patients and 5% controls. LDL cholesterol elevation was found in more than30% cases and only slightly elevated in 5% controls. HDL Cholesterol level was below normal in 15% patients and none among control. Overall, 52.5% patients had some form of abnormal lipid profile and only 10% control had the same problem. This difference was statistically highly significant (p<0.001. Electrocardiography was abnormal in 22.5% patients and 5% controls and the difference was significant (p<0.02. Blood sugar level was normal in both the study & the control groups.

  3. Cholecystokinin elevates mouse plasma lipids.

    Directory of Open Access Journals (Sweden)

    Lichun Zhou

    Full Text Available Cholecystokinin (CCK is a peptide hormone that induces bile release into the intestinal lumen which in turn aids in fat digestion and absorption in the intestine. While excretion of bile acids and cholesterol into the feces eliminates cholesterol from the body, this report examined the effect of CCK on increasing plasma cholesterol and triglycerides in mice. Our data demonstrated that intravenous injection of [Thr28, Nle31]-CCK at a dose of 50 ng/kg significantly increased plasma triglyceride and cholesterol levels by 22 and 31%, respectively, in fasting low-density lipoprotein receptor knockout (LDLR(-/- mice. The same dose of [Thr28, Nle31]-CCK induced 6 and 13% increases in plasma triglyceride and cholesterol, respectively, in wild-type mice. However, these particular before and after CCK treatment values did not achieve statistical significance. Oral feeding of olive oil further elevated plasma triglycerides, but did not alter plasma cholesterol levels in CCK-treated mice. The increased plasma cholesterol in CCK-treated mice was distributed in very-low, low and high density lipoproteins (VLDL, LDL and HDL with less of an increase in HDL. Correspondingly, the plasma apolipoprotein (apo B48, B100, apoE and apoAI levels were significantly higher in the CCK-treated mice than in untreated control mice. Ligation of the bile duct, blocking CCK receptors with proglumide or inhibition of Niemann-Pick C1 Like 1 transporter with ezetimibe reduced the hypercholesterolemic effect of [Thr28, Nle31]-CCK in LDLR(-/- mice. These findings suggest that CCK-increased plasma cholesterol and triglycerides as a result of the reabsorption of biliary lipids from the intestine.

  4. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth

    Science.gov (United States)

    Trentacoste, Emily M.; Shrestha, Roshan P.; Smith, Sarah R.; Glé, Corine; Hartmann, Aaron C.; Hildebrand, Mark; Gerwick, William H.

    2013-01-01

    Biologically derived fuels are viable alternatives to traditional fossil fuels, and microalgae are a particularly promising source, but improvements are required throughout the production process to increase productivity and reduce cost. Metabolic engineering to increase yields of biofuel-relevant lipids in these organisms without compromising growth is an important aspect of advancing economic feasibility. We report that the targeted knockdown of a multifunctional lipase/phospholipase/acyltransferase increased lipid yields without affecting growth in the diatom Thalassiosira pseudonana. Antisense-expressing knockdown strains 1A6 and 1B1 exhibited wild-type–like growth and increased lipid content under both continuous light and alternating light/dark conditions. Strains 1A6 and 1B1, respectively, contained 2.4- and 3.3-fold higher lipid content than wild-type during exponential growth, and 4.1- and 3.2-fold higher lipid content than wild-type after 40 h of silicon starvation. Analyses of fatty acids, lipid classes, and membrane stability in the transgenic strains suggest a role for this enzyme in membrane lipid turnover and lipid homeostasis. These results demonstrate that targeted metabolic manipulations can be used to increase lipid accumulation in eukaryotic microalgae without compromising growth. PMID:24248374

  5. Modulation of lipid peroxidation by dietary components.

    Science.gov (United States)

    Sujatha, R; Srinivas, L

    1995-06-01

    The aqueous extracts of commonly consumed Indian spices and vegetables were tested for their antioxidant properties in human erythrocyte membranes against lipid peroxidation induced by FeSO(4)-ascorbate (10:100 mumol/system). Aqueous extracts of curry leaves (Murraya koneigii) at 10 mug/ml and of asafoetida (Ferula spp), omam (Carum ajowan) and mustard (Brassica nigra) at 300 mug/ml inhibited lipid peroxidation by 90, 85, 75 and 70%, respectively. The aqueous extracts of cabbage (Brassica oleracea), ginger (Zinziber officinale) and onion (Allium cepa) inhibited lipid peroxidation by 65, 72 and 66%, respectively. The aqueous extracts of spices were also found to inhibit the formation of diene, triene and tetraene conjugates in human erythrocyte membrane. Addition of lipid peroxides extracted from peroxidized human erythrocyte membrane substantially increased erythrocyte lysis over that caused by exposure to 0.54% saline alone. Aqueous extracts of omam, coriander seeds (Coriandrum sativum) and curry leaves, at 300 mug/ml, inhibited peroxidized lipid-induced lysis by 67, 72 and 87%, respectively. Lipid peroxides induced considerable activation of polymorphonuclear leucocytes activation and this activation was inhibited by the aqueous extract of curry leaves.

  6. Lipid stability in meat and meat products.

    Science.gov (United States)

    Morrissey, P A; Sheehy, P J; Galvin, K; Kerry, J P; Buckley, D J

    1998-01-01

    Lipid oxidation is one of the main factors limiting the quality and acceptability of meats and meat products. Oxidative damage to lipids occurs in the living animal because of an imbalance between the production of reactive oxygen species and the animal's defence mechanisms. This may be brought about by a high intake of oxidized lipids or poly-unsaturated fatty acids, or a low intake of nutrients involved in the antioxidant defence system. Damage to lipids may be accentuated in the immediate post-slaughter period and, in particular, during handling, processing, storage and cooking. In recent years, pressure to reduce artificial additive use in foods has led to attempts to increase meat stability by dietary strategies. These include supplementation of animal diets with vitamin E, ascorbic acid, or carotenoids, or withdrawal of trace mineral supplements. Dietary vitamin E supplementation reduces lipid and myoglobin oxidation, and, in certain situations, drip losses in meats. However, vitamin C supplementation appears to have little, if any, beneficial effects on meat stability. The effect of feeding higher levels of carotenoids on meat stability requires further study. Some studies have demonstrated that reducing the iron and copper content of feeds improves meat stability. Post-slaughter carnosine addition may be an effective means of improving lipid stability in processed meats, perhaps in combination with dietary vitamin E supplementation.

  7. A green chemistry approach for synthesizing biocompatible gold nanoparticles.

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-01-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp. We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp. mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  8. A green chemistry approach for synthesizing biocompatible gold nanoparticles

    Science.gov (United States)

    Gurunathan, Sangiliyandi; Han, JaeWoong; Park, Jung Hyun; Kim, Jin-Hoi

    2014-05-01

    Gold nanoparticles (AuNPs) are a fascinating class of nanomaterial that can be used for a wide range of biomedical applications, including bio-imaging, lateral flow assays, environmental detection and purification, data storage, drug delivery, biomarkers, catalysis, chemical sensors, and DNA detection. Biological synthesis of nanoparticles appears to be simple, cost-effective, non-toxic, and easy to use for controlling size, shape, and stability, which is unlike the chemically synthesized nanoparticles. The aim of this study was to synthesize homogeneous AuNPs using pharmaceutically important Ganoderma spp . We developed a simple, non-toxic, and green method for water-soluble AuNP synthesis by treating gold (III) chloride trihydrate (HAuCl4) with a hot aqueous extract of the Ganoderma spp . mycelia. The formation of biologically synthesized AuNPs (bio-AuNPs) was characterized by ultraviolet (UV)-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), dynamic light scattering (DLS), and transmission electron microscopy (TEM). Furthermore, the biocompatibility of as-prepared AuNPs was evaluated using a series of assays, such as cell viability, lactate dehydrogenase leakage, and reactive oxygen species generation (ROS) in human breast cancer cells (MDA-MB-231). The color change of the solution from yellow to reddish pink and strong surface plasmon resonance were observed at 520 nm using UV-visible spectroscopy, and that indicated the formation of AuNPs. DLS analysis revealed the size distribution of AuNPs in liquid solution, and the average size of AuNPs was 20 nm. The size and morphology of AuNPs were investigated using TEM. The biocompatibility effect of as-prepared AuNPs was investigated in MDA-MB-231 breast cancer cells by using various concentrations of AuNPs (10 to 100 μM) for 24 h. Our findings suggest that AuNPs are non-cytotoxic and biocompatible. To the best of our knowledge

  9. Protein-lipid interactions: from membrane domains to cellular networks

    National Research Council Canada - National Science Library

    Tamm, Lukas K

    2005-01-01

    ... membranes is the lipid bilayer. Embedded in the fluid lipid bilayer are proteins of various shapes and traits. This volume illuminates from physical, chemical and biological angles the numerous - mostly quite weak - interactions between lipids, proteins, and proteins and lipids that define the delicate, highly dynamic and yet so stable fabri...

  10. Lipid profile pattern in thyroid disorders in northeastern Nigeria ...

    African Journals Online (AJOL)

    Background: thyroid hormones are involved in regulation of lipid and lipoprotein metabolism therefore, thyroid dysfunctions induce significant changes in lipid and lipoprotein metabolism. However, lipid disorders in thyroid dysfunctions exhibit great individual variability and the pattern of changes in lipid fractions in thyroid ...

  11. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W

    2011-01-01

    a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...... feature of vesicles carrying PM cargo and suggests a common lipid-based mechanism for their formation....

  12. pH and reduction dual-responsive dipeptide cationic lipids with α-tocopherol hydrophobic tail for efficient gene delivery.

    Science.gov (United States)

    Liu, Qiang; Su, Rong-Chuan; Yi, Wen-Jing; Zheng, Li-Ting; Lu, Shan-Shan; Zhao, Zhi-Gang

    2017-03-31

    A series of tocopherol-based cationic lipid 3a-3f bearing a pH-sensitive imidazole moiety in the dipeptide headgroup and a reduction-responsive disulfide linkage were designed and synthesized. Acid-base titration of these lipids showed good buffering capacities. The liposomes formed from 3 and co-lipid 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) could efficiently bind and condense DNA into nanoparticles. Gel binding and HPLC assays confirmed the encapsulated DNA could release from lipoplexes 3 upon addition of 10 mM glutathione (GSH). MTT assays in HEK 293 cells demonstrated that lipoplexes 3 had low cytotoxicity. The in vitro gene transfection studies showed cationic dipeptide headgroups clearly affected the transfection efficiency (TE), and arginine-histidine based dipeptide lipid 3f give the best TE, which was 30.4 times higher than Lipofectamine 3000 in the presence of 10% serum. Cell-uptake assays indicated that basic amino acid containing dipeptide cationic lipids exhibited more efficient cell uptake than serine and aromatic amino acids based dipeptide lipids. Confocal laser scanning microscopy (CLSM) studies corroborated that 3 could efficiently deliver and release DNA into the nuclei of HeLa cells. These results suggest that tocopherol-based dipeptide cationic lipids with pH and reduction dual-sensitive characteristics might be promising non-viral gene delivery vectors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  13. Syntheses of crosslinked latex nanoparticles using differential microemulsion polymerization

    Science.gov (United States)

    Hassmoro, N. F.; Rusop, M.; Abdullah, S.

    2013-06-01

    The differential microemulsion polymerization was used to synthesize latex nanoparticles. In this paper, 1, 3-butylene glycol dimethacrylate (1, 3-BGDMA) was used as a crosslinker respectively 1-5 weight% of monomer total. Butyl acrylate (BA), butyl methacrylate (BMA), and methacrylic acid (MAA) was used as the monomer. The thin film of latex nanoparticles were prepared by using spin coating method and have been dried at 100°C for 5 minutes. The amount of the crosslinker added in the polymerization was optimized and we found that the particle sizes fall in the range of 30-60 nm. The structural morphology of the uncrosslinked latex represented the most homogeneous image compared to the crosslinked latex. The effect of the amount of crosslinker on the particle sizes investigated by the Zeta-sizer Nano series while Atomic Force microscopy (AFM) was used to study the structural properties of latex nanoparticles.

  14. A Dependable Microelectronic Peptide Synthesizer Using Electrode Data

    Directory of Open Access Journals (Sweden)

    H. G. Kerkhoff

    2008-01-01

    Full Text Available The research in the area of microelectronic fluidic devices for biomedical applications is rapidly growing. As faults in these devices can have serious personal implications, a system is presented which includes fault tolerance with respect to the synthesized biomaterials (peptides. It can employ presence and purity detection of peptide droplets via current (charge tests of control electrodes or impedance (phase measurements using direct sensing electrodes near the peptide collector area. The commercial multielectrode array performs better in pure and impure detection of peptides in impedance and phase. Our two-electrode X-MEF case shows slightly poorer results. In both cases the phase is the best choice for contents detection. If there are presence or purity problems, the location is marked, and repeated peptide synthesis at another collector site is initiated.

  15. Shape dependent heat transport through green synthesized gold nanofluids

    Science.gov (United States)

    John, Jisha; Thomas, Lincy; Kumar, B. Rajesh; Kurian, Achamma; George, Sajan D.

    2015-08-01

    Nanofluids hold promise as a more efficient coolant for thermoelectric devices. Despite the capability of tailoring the thermo physical properties of nanofluids, by tuning the particle parameters such as shape, size and concentration, the toxicity of chemicals used for the preparation of nanoparticles is a serious concern. Green synthesis of nanoparticles is emerging as an alternative to the conventional chemical and physical methods for the preparation of nanoparticles. In this work, the results of the preparation of gold nanoparticles using plant extracts as reducing agents are presented. The green synthesis route employed for the present study provides particles of similar size, but the shape of the particles is found to vary depending upon the source of the natural reducing agents. The thermal diffusivity values of the gold nanofluid measured using laser based dual beam thermal lens technique elucidate the role of shape and concentration of the green synthesized nanoparticles on the effective thermal diffusivity values of the nanofluids.

  16. Rapid decolorization of textile wastewater by green synthesized iron nanoparticles.

    Science.gov (United States)

    Ozkan, Z Y; Cakirgoz, M; Kaymak, E S; Erdim, E

    2018-01-01

    The effectiveness of green tea (Camellia sinensis) and pomegranate (Punica granatum) extracts for the production of iron nanoparticles and their application for color removal from a textile industry wastewater was investigated. Polyphenols in extracts act as reducing agents for iron ions in aqueous solutions, forming iron nanoparticles. Pomegranate extract was found to have almost a 10-fold higher polyphenolic content than the same amount of green tea extract on a mass basis. However, the size of the synthesized nanoparticles did not show a correlation with the polyphenolic content. 100 ppm and 300 ppm of iron nanoparticles were evaluated in terms of color removal efficiency from a real textile wastewater sample. 300 ppm of pomegranate nanoscale zero-valent iron particles showed more than 95% color removal and almost 80% dissolved organic carbon removal. The degradation mechanisms are is considered to be adsorption and precipitation to a major extent, and mineralization to a minor extent.

  17. Magnesium hydroxide nanoparticles synthesized in water-in-oil microemulsions.

    Science.gov (United States)

    Wu, Jianming; Yan, Hong; Zhang, Xuehu; Wei, Liqiao; Liu, Xuguang; Xu, Bingshe

    2008-08-01

    Well-dispersed magnesium hydroxide nanoplatelets were synthesized by a simple water-in-oil (w/o) microemulsion process, blowing gaseous ammonia (NH(3)) into microemulsion zones solubilized by magnesium chloride solution (MgCl(2)). Typical quaternary microemulsions of Triton X-100/cyclohexane/n-hexanol/water were used as space-confining microreactors for the nucleation, growth, and crystallization of magnesium hydroxide nanoparticles. The obtained magnesium hydroxide was characterized by field-emission scanning electron microscopy (FESEM), high-resolution transmission election microscopy (HRTEM), X-ray powder diffraction (XRD), laser light scattering, Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis-differential scanning calorimetry (TGA-DSC). The mole ratio of water to surfactant (omega(0)) played an important role in the sizes of micelles and nanoparticles, increasing with the increase of omega(0). The compatibility and dispersibility of nanoparticles obtained from reverse micelles were improved in the organic phase.

  18. Piezoelectric Materials Synthesized by the Hydrothermal Method and Their Applications

    Directory of Open Access Journals (Sweden)

    Takeshi Morita

    2010-12-01

    Full Text Available Synthesis by the hydrothermal method has various advantages, including low reaction temperature, three-dimensional substrate availability, and automatic polarization alignment during the process. In this review, powder synthesis, the fabrication of piezoelectric thin films, and their applications are introduced. A polycrystalline lead zirconate titanate (PZT thin film was applied to a micro ultrasonic motor, and an epitaxial lead titanate (PbTiO3 thin film was estimated as a ferroelectric data storage medium. Ferroelectric and piezoelectric properties were successfully obtained for epitaxial PbTiO3 films. As lead-free piezoelectric powders, KNbO3 and NaNbO3 powders were synthesized by the hydrothermal method and sintered together to form (K,NaNbO3 ceramics, from which reasonable piezoelectric performance was achieved.

  19. Nanostructured superhydrophobic films synthesized by electrodeposition of fluorinated polyindoles

    Directory of Open Access Journals (Sweden)

    Gabriela Ramos Chagas

    2015-10-01

    Full Text Available Materials with bioinspired superhydrophobic properties are highly desirable for many potential applications. Here, nine novel monomers derived from indole are synthesized to obtain these properties by electropolymerization. These monomers differ by the length (C4F9, C6F13 and C8F17 and the position (4-, 5- and 6-position of indole of the perfluorinated substituent. Polymeric films were obtained with C4F9 and C6F13 chains and differences in the surface morphology depend especially on the substituent position. The polyindoles exhibited hydrophobic and superhydrophobic properties even with a very low roughness. The best results are obtained with PIndole-6-F6 for which superhydrophobic and highly oleophobic properties are obtained due to the presence of spherical nanoparticles and low surface energy compounds.

  20. Synthesizing Knowledge on Internet of Things (IoT)

    DEFF Research Database (Denmark)

    Liu, Fei; Tan, Chee-Wee; Lim, Eric T. K.

    2016-01-01

    Research on Internet of Things (IoT) has been booming for past couple of years due to technological advances and its potential for application. Nonetheless, the rapid growth of IoT articles as well as the heterogeneous nature of IoT pose challenges in synthesizing prior research on the phenomenon....... Based on quantitative citation analysis, this Research-in-Progress (RIP) study seeks to tackle the abovementioned challenges by reviewing 1,065 IoT articles retrieved from ISI Web of Science. Specifically, we employed HistCite to generate a historiography of IoT research. In turn, the historiography...... yields a citation network that not only aids us in identifying main paths of codification and diffusion, but also helps in exploring the existence of path-dependent transitions within extant literature. This study hence contributes to both IoT research and practice by tracing the accumulation...

  1. Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments.

    Science.gov (United States)

    Kennett, Douglas J; Kennett, James P; West, Allen; West, G James; Bunch, Ted E; Culleton, Brendan J; Erlandson, Jon M; Que Hee, Shane S; Johnson, John R; Mercer, Chris; Shen, Feng; Sellers, Marilee; Stafford, Thomas W; Stich, Adrienne; Weaver, James C; Wittke, James H; Wolbach, Wendy S

    2009-08-04

    The long-standing controversy regarding the late Pleistocene megafaunal extinctions in North America has been invigorated by a hypothesis implicating a cosmic impact at the Allerød-Younger Dryas boundary or YDB (approximately 12,900 +/- 100 cal BP or 10,900 +/- 100 (14)C years). Abrupt ecosystem disruption caused by this event may have triggered the megafaunal extinctions, along with reductions in other animal populations, including humans. The hypothesis remains controversial due to absence of shocked minerals, tektites, and impact craters. Here, we report the presence of shock-synthesized hexagonal nanodiamonds (lonsdaleite) in YDB sediments dating to approximately 12,950 +/- 50 cal BP at Arlington Canyon, Santa Rosa Island, California. Lonsdaleite is known on Earth only in meteorites and impact craters, and its presence strongly supports a cosmic impact event, further strengthened by its co-occurrence with other nanometer-sized diamond polymorphs (n-diamonds and cubics). These shock-synthesized diamonds are also associated with proxies indicating major biomass burning (charcoal, carbon spherules, and soot). This biomass burning at the Younger Dryas (YD) onset is regional in extent, based on evidence from adjacent Santa Barbara Basin and coeval with broader continent-wide biomass burning. Biomass burning also coincides with abrupt sediment mass wasting and ecological disruption and the last known occurrence of pygmy mammoths (Mammuthus exilis) on the Channel Islands, correlating with broader animal extinctions throughout North America. The only previously known co-occurrence of nanodiamonds, soot, and extinction is the Cretaceous-Tertiary (K/T) impact layer. These data are consistent with abrupt ecosystem change and megafaunal extinction possibly triggered by a cosmic impact over North America at approximately 12,900 +/- 100 cal BP.

  2. Synthesizing and Salvaging NAD+: Lessons Learned from Chlamydomonas reinhardtii

    Science.gov (United States)

    Lin, Huawen; Kwan, Alan L.; Dutcher, Susan K.

    2010-01-01

    The essential coenzyme nicotinamide adenine dinucleotide (NAD+) plays important roles in metabolic reactions and cell regulation in all organisms. Bacteria, fungi, plants, and animals use different pathways to synthesize NAD+. Our molecular and genetic data demonstrate that in the unicellular green alga Chlamydomonas NAD+ is synthesized from aspartate (de novo synthesis), as in plants, or nicotinamide, as in mammals (salvage synthesis). The de novo pathway requires five different enzymes: L-aspartate oxidase (ASO), quinolinate synthetase (QS), quinolate phosphoribosyltransferase (QPT), nicotinate/nicotinamide mononucleotide adenylyltransferase (NMNAT), and NAD+ synthetase (NS). Sequence similarity searches, gene isolation and sequencing of mutant loci indicate that mutations in each enzyme result in a nicotinamide-requiring mutant phenotype in the previously isolated nic mutants. We rescued the mutant phenotype by the introduction of BAC DNA (nic2-1 and nic13-1) or plasmids with cloned genes (nic1-1 and nic15-1) into the mutants. NMNAT, which is also in the de novo pathway, and nicotinamide phosphoribosyltransferase (NAMPT) constitute the nicotinamide-dependent salvage pathway. A mutation in NAMPT (npt1-1) has no obvious growth defect and is not nicotinamide-dependent. However, double mutant strains with the npt1-1 mutation and any of the nic mutations are inviable. When the de novo pathway is inactive, the salvage pathway is essential to Chlamydomonas for the synthesis of NAD+. A homolog of the human SIRT6-like gene, SRT2, is upregulated in the NS mutant, which shows a longer vegetative life span than wild-type cells. Our results suggest that Chlamydomonas is an excellent model system to study NAD+ metabolism and cell longevity. PMID:20838591

  3. Collagen synthesized in fluorocarbon polymer implant in the rabbit cornea.

    Science.gov (United States)

    Drubaix, I; Legeais, J M; Malek-Chehire, N; Savoldelli, M; Ménasche, M; Robert, L; Renard, G; Pouliquen, Y

    1996-04-01

    The integration of microporous polymer into tissues is of great interest for the production of keratoprosthetic devices. Our previous studies showed functional differentiated cells and collagen synthesis in the pore of an expanded polytetrafluoroethylene implant. This study identifies and quantifies collagen types synthesized in the implant. Expanded polytetrafluoroethylene polymers were implanted in the rabbit corneas. The collagen extracted from the polymer and implanted stroma after 1, 3 and 6 months was quantified by measuring hydroxyproline. The relative proportions of collagen types were determined by densitometric analysis after SDS-PAGE. The collagen-to-protein ratio in the polymer increased from 0.22 to 0.70 between the first and third month after implantation becoming similar to control cornea. So that of the protein and collagen densities in the polymer and implanted stroma were similar to the control from the third month. The collagen synthesized in the polymer was mainly type I (87%) plus a small amount of type III (8%) 1 month after implantation. The collagen distribution from the third month after implantation was similar to that of the controls and remained constant thereafter in the polymer implant and in the implanted stroma. Immunogold labelling techniques confirmed these results. Implantation of this PTFE disc induced no obvious modification of the corneal stroma, confirming that this polymer is a good interface that is compatible with the native corneal stroma. The keratocytes in this polymer rapidly adopted a corneal phenotype, distinct from the dermal or scaring phenotype as shown by the collagen types produced in the implant.

  4. Syntheses and neuraminidase inhibitory activity of multisubstituted cyclopentane amide derivatives.

    Science.gov (United States)

    Chand, Pooran; Babu, Y Sudhakar; Bantia, Shanta; Rowland, Scott; Dehghani, Ali; Kotian, Pravin L; Hutchison, Tracy L; Ali, Shoukath; Brouillette, Wayne; El-Kattan, Yahya; Lin, Tsu-Hsing

    2004-04-08

    In further studies aimed toward identifying effective and safe inhibitors of influenza neuraminidases, we synthesized a series of multisubstituted cyclopentane amide derivatives. Amides prepared were 14 examples of N-substituted alkyl or aralkyl types from primary amines, 13 examples of the N,N-disubstituted alkyl, aralkyl, or substituted-alkyl type from secondary amines, and 12 examples from cycloaliphatic or substituted cycloaliphatic secondary amines. These compounds bearing two chiral centers, at position-1 in the ring and position-1' in the side chain attached at position 3, were tested for their ability to inhibit A and B forms of influenza neuraminidase. The 1-ethylpropylamide, diethylamide, dipropylamide, and 4-morpholinylamide showed very good inhibitory activity (IC(50) = 0.015-0.080 microM) vs the neuraminidase A form, but modest activity (IC(50) = 3.0-9.2 microM) vs the neuraminidase B form. Since the parent amides bear two chiral centers (C-1 and C-1'), three of the better inhibitors were tested at higher levels of diastereomeric purity. The diastereomers corresponding to the active forms of the 1-(ethyl)propylamide, the diethylamide, and the dipropylamide (all of the same configuration at the C-1' chiral center), and the diastereomer of the diethylamide representing the active form at both C-1' and C-1 were isolated or synthesized from precursors that were isolated as diastereomers. These diastereomers showed some improvement in neuraminidase inhibition over the parent diastereomeric mixtures. 1-Carboxy-1-hydroxy derivatives of the best active compounds, the diethylamide and the dipropylamide, were also prepared. These compounds were not as active as the compounds without the 1-hydroxy group. In an in vivo study, the C-1' active isomer of the diethylamide from the 1-carboxy series was tested in influenza-infected mice by oral and intranasal administration and found to be very effective only intranasally in preventing weight loss at doses as low as 0

  5. Inhibition of SREBP transcriptional activity by a boron-containing compound improves lipid homeostasis in diet-induced obesity.

    Science.gov (United States)

    Zhao, Xiaoping; Xiaoli; Zong, Haihong; Abdulla, Arian; Yang, Ellen S T; Wang, Qun; Ji, Jun-Yuan; Pessin, Jeffrey E; Das, Bhaskar C; Yang, Fajun

    2014-07-01

    Dysregulation of lipid homeostasis is intimately associated with obesity, type 2 diabetes, and cardiovascular diseases. Sterol regulatory-element binding proteins (SREBPs) are the master regulators of lipid biosynthesis. Previous studies have shown that the conserved transcriptional cofactor Mediator complex is critically required for the SREBP transcriptional activity, and recruitment of the Mediator complex to the SREBP transactivation domains (TADs) is through the MED15-KIX domain. Recently, we have synthesized several boron-containing small molecules. Among these novel compounds, BF175 can specifically block the binding of MED15-KIX to SREBP1a-TAD in vitro, resulting in an inhibition of the SREBP transcriptional activity and a decrease of SREBP target gene expression in cultured hepatocytes. Furthermore, BF175 can improve lipid homeostasis in the mouse model of diet-induced obesity. Compared with the control, BF175 treatment decreased the expression of SREBP target genes in mouse livers and decreased hepatic and blood levels of lipids. These results suggest that blocking the interaction between SREBP-TADs and the Mediator complex by small molecules may represent a novel approach for treating diseases with aberrant lipid homeostasis. © 2014 by the American Diabetes Association.

  6. Testing Models of Fatty Acid Transfer and Lipid Synthesis in Spinach Leaf Using in Vivo Oxygen-18 Labeling1

    Science.gov (United States)

    Pollard, Mike; Ohlrogge, John

    1999-01-01

    Oxygen-18 labeling has been applied to the study of plant lipid biosynthesis for the first time. [13C218O2]Acetate was incubated with spinach (Spinacia oleracea) leaves and the 18O content in fatty acid methyl esters isolated from different lipid classes measured by gas chromatography-mass spectometry. Fatty acids isolated from lipids synthesized within the plastid, such as monogalactosyldiacylglycerol, show an 18O content consistent with the exogenous acetate undergoing a single activation step and with the direct utilization of acyl-acyl carrier protein by the acyl transferases of the chloroplast. In contrast, fatty acids isolated from lipids assembled in the cytosol, such as phosphatidylcholine, show a 50% reduction in the 18O content. This is indicative of export of the fatty acyl groups from the plastid via a free carboxylate anion, and is consistent with the acyl-acyl carrier protein thioesterase:acyl-coenzyme A (CoA) synthetase mediated export mechanism. If this were not the case and the acyl group was transferred directly from acyl-acyl carrier protein to an acyl acceptor on the cytosolic side, there would be either complete retention of 18O or, less likely, complete loss of 18O, but not a 50% loss of 18O. Thus, existing models for fatty acid transfer from the plastid and for spatially separate synthesis of “prokaryotic” and “eukaryotic” lipids have both been confirmed. PMID:10594108

  7. Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labeling

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, M.; Ohlrogge, J.

    1999-12-01

    Oxygen-18 labeling has been applied to the study of plant lipid biosynthesis for the first time. [{sup 13}C{sub 2}{sup 18}O{sub 2}]Acetate was incubated with spinach (Spinacia oleracea) leaves and the {sup 18}O content in fatty acid methyl esters isolated from different lipid classes measured by gas chromatography-mass spectrometry. Fatty acids isolated from lipids synthesized within the plastid, such as monogalactosyldiacylglycerol, show an {sup 18}O content consistent with the exogenous acetate undergoing a single activation step and with the direct utilization of acyl-acyl carrier protein by the acyl transferases of the chloroplast. In contrast, fatty acids isolated from lipids assembled in the cytosol, such as phosphatidylcholine, show a 50% reduction in the {sup 18}O content. This is indicative of export of the fatty acyl groups from the plastid via a free carboxylate anion, and is consistent with the acyl-acyl carrier protein thioesterase:acyl-coenzyme A (CoA) synthetase mediated export mechanism. If this were not the case and the acyl group was transferred directly from acyl-acyl carrier protein to an acyl acceptor on the cytosolic side, there would be either complete retention of {sup 18}O or, less likely, complete loss of {sup 18}O, but not a 50% loss of {sup 18}O. Thus, existing models for fatty acid transfer from the plastid and for spatially separate synthesis of prokaryotic and eukaryotic lipids have both been confirmed.

  8. Co-culturing Chlorella minutissima with Escherichia coli can increase neutral lipid production and improve biodiesel quality.

    Science.gov (United States)

    Higgins, Brendan T; Labavitch, John M; VanderGheynst, Jean S

    2015-09-01

    Lipid productivity and fatty acid composition are important metrics for the production of high quality biodiesel from algae. Our previous results showed that co-culturing the green alga Chlorella minutissima with Escherichia coli under high-substrate mixotrophic conditions enhanced both culture growth and crude lipid content. To investigate further, we analyzed neutral lipid content and fatty acid content and composition of axenic cultures and co-cultures produced under autotrophic and mixotrophic conditions. We found that co-culturing C. minutissima with E. coli under high substrate conditions (10 g/L) increased neutral lipid content 1.9- to 3.1-fold and fatty acid content 1.5- to 2.6-fold compared to equivalent axenic C. minutissima cultures. These same co-cultures also exhibited a significant fatty acid shift away from trienoic and toward monoenoic fatty acids thereby improving the quality of the synthesized fatty acids for biodiesel production. Further investigation suggested that E. coli facilitates substrate uptake by the algae and that the resulting growth enhancement induces a nitrogen-limited condition. Enhanced carbon uptake coupled with nitrogen limitation is the likely cause of the observed neutral lipid accumulation and fatty acid profile changes. © 2015 Wiley Periodicals, Inc.

  9. Lipid complex effect on fatty acid profile and chemical composition of cow milk and cheese.

    Science.gov (United States)

    Bodkowski, R; Czyż, K; Kupczyński, R; Patkowska-Sokoła, B; Nowakowski, P; Wiliczkiewicz, A

    2016-01-01

    The effect of administration of lipid complex (LC) on cow milk and cheese characteristics was studied. Lipid complex was elaborated based on grapeseed oil with synthesized conjugated linoleic acid (CLA) and Atlantic mackerel oil enriched in n-3 fatty acids. The 4-wk experiment was conducted on 30 Polish Holstein Friesian cows. The experimental group cow diet was supplemented with 400 g/d of LC (containing 38% CLA, and eicosapentaenoic acid + docosahexaenoic acid in a relative amount of 36.5%) on a humic-mineral carrier. The chemical composition and fatty acid profile of milk and rennet cheese from raw fresh milk were analyzed. Lipid complex supplementation of the total mixed ration had no effect on milk yield and milk composition, except fat content, which decreased from 4.6 to 4.1%, a 10.9% decrease. Milk from cows treated with LC had greater relative amounts of unsaturated fatty acids, particularly polyunsaturated fatty acids, and lesser relative amounts of saturated fatty acids. Lipid complex addition changed milk fat fatty acid profile: C18:2 cis-9,trans-11 and trans-10,cis-12 isomer (CLA) contents increased by 278 and 233%, respectively, as did eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6) contents. Milk fat fatty acid profile changes were correlated with the modifications in rennet cheese fatty acid profile. Lipid complex supplementation of dairy cows produced considerable changes in the biological value of milk and cheese fat. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Bilayer Deformation, Pores, and Micellation Induced by Oxidized Lipids.

    Science.gov (United States)

    Boonnoy, Phansiri; Jarerattanachat, Viwan; Karttunen, Mikko; Wong-Ekkabut, Jirasak

    2015-12-17

    The influence of different oxidized lipids on lipid bilayers was investigated with 16 individual 1 μs atomistic molecular dynamics (MD) simulations. Binary mixtures of lipid bilayers of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) and its peroxide and aldehyde products were performed at different concentrations. In addition, an asymmetrical short chain lipid, 1-palmitoyl-2-decanoyl-sn-glycero-3-phosphatidylcholine (PDPC), was used to compare the effects of polar/apolar groups in the lipid tail on lipid bilayer. Although water defects occurred with both aldehyde and peroxide lipids, full pore formation was observed only for aldehyde lipids. At medium concentrations the pores were stable. At higher concentrations, however, the pores became unstable and micellation occurred. Data analysis shows that aldehyde lipids' propensity for pore formation is due to their shorter and highly mobile tail. The highly polar peroxide lipids are stabilized by strong hydrogen bonds with interfacial water.

  11. Host lipid droplets: An important source of lipids salvaged by the intracellular parasite Toxoplasma gondii.

    Science.gov (United States)

    Nolan, Sabrina J; Romano, Julia D; Coppens, Isabelle

    2017-06-01

    Toxoplasma is an obligate intracellular parasite that replicates in mammalian cells within a parasitophorous vacuole (PV) that does not fuse with any host organelles. One mechanism developed by the parasite for nutrient acquisition is the attraction of host organelles to the PV. Here, we examined the exploitation of host lipid droplets (LD), ubiquitous fat storage organelles, by Toxoplasma. We show that Toxoplasma replication is reduced in host cells that are depleted of LD, or impaired in TAG lipolysis or fatty acid catabolism. In infected cells, the number of host LD and the expression of host LD-associated genes (ADRP, DGAT2), progressively increase until the onset of parasite replication. Throughout infection, the PV are surrounded by host LD. Toxoplasma is capable of accessing lipids stored in host LD and incorporates these lipids into its own membranes and LD. Exogenous addition of oleic acid stimulates LD biogenesis in the host cell and results in the overaccumulation of neutral lipids in very large LD inside the parasite. To access LD-derived lipids, Toxoplasma intercepts and internalizes within the PV host LD, some of which remaining associated with Rab7, which become wrapped by an intravacuolar network of membranes (IVN). Mutant parasites impaired in IVN formation display diminished capacity of lipid uptake from host LD. Moreover, parasites lacking an IVN-localized phospholipase A2 are less proficient in salvaging lipids from host LD in the PV, suggesting a major contribution of the IVN for host LD processing in the PV and, thus lipid content release. Interestingly, gavage of parasites with lipids unveils, for the first time, the presence in Toxoplasma of endocytic-like structures containing lipidic material originating from the PV lumen. This study highlights the reliance of Toxoplasma on host LD for its intracellular development and the parasite's capability in scavenging neutral lipids from host LD.

  12. Fatty acids from membrane lipids become incorporated into lipid bodies during Myxococcus xanthus differentiation.

    Directory of Open Access Journals (Sweden)

    Swapna Bhat

    Full Text Available Myxococcus xanthus responds to amino acid limitation by producing fruiting bodies containing dormant spores. During development, cells produce triacylglycerides in lipid bodies that become consumed during spore maturation. As the cells are starved to induce development, the production of triglycerides represents a counterintuitive metabolic switch. In this paper, lipid bodies were quantified in wild-type strain DK1622 and 33 developmental mutants at the cellular level by measuring the cross sectional area of the cell stained with the lipophilic dye Nile red. We provide five lines of evidence that triacylglycerides are derived from membrane phospholipids as cells shorten in length and then differentiate into myxospores. First, in wild type cells, lipid bodies appear early in development and their size increases concurrent with an 87% decline in membrane surface area. Second, developmental mutants blocked at different stages of shortening and differentiation accumulated lipid bodies proportionate with their cell length with a Pearson's correlation coefficient of 0.76. Third, peripheral rods, developing cells that do not produce lipid bodies, fail to shorten. Fourth, genes for fatty acid synthesis are down-regulated while genes for fatty acid degradation are up regulated. Finally, direct movement of fatty acids from membrane lipids in growing cells to lipid bodies in developing cells was observed by pulse labeling cells with palmitate. Recycling of lipids released by Programmed Cell Death appears not to be necessary for lipid body production as a fadL mutant was defective in fatty acid uptake but proficient in lipid body production. The lipid body regulon involves many developmental genes that are not specifically involved in fatty acid synthesis or degradation. MazF RNA interferase and its target, enhancer-binding protein Nla6, appear to negatively regulate cell shortening and TAG accumulation whereas most cell-cell signals activate these

  13. Small GTPase Rab40c associates with lipid droplets and modulates the biogenesis of lipid droplets.

    Directory of Open Access Journals (Sweden)

    Ran Tan

    Full Text Available The subcellular location and cell biological function of small GTPase Rab40c in mammalian cells have not been investigated in detail. In this study, we demonstrated that the exogenously expressed GFP-Rab40c associates with lipid droplets marked by neutral lipid specific dye Oil red or Nile red, but not with the Golgi or endosomal markers. Further examination demonstrated that Rab40c is also associated with ERGIC-53 containing structures, especially under the serum starvation condition. Rab40c is increasingly recruited to the surface of lipid droplets during lipid droplets formation and maturation in HepG2 cells. Rab40c knockdown moderately decreases the size of lipid droplets, suggesting that Rab40c is involved in the biogenesis of lipid droplets. Stimulation for adipocyte differentiation increases the expression of Rab40c in 3T3-L1 cells. Rab40c interacts with TIP47, and is appositionally associated with TIP47-labeled lipid droplets. In addition, over-expression of Rab40c causes the clustering of lipid droplets independent of its GTPase activity, but completely dependent of the intact SOCS box domain of Rab40c. In addition, Rab40c displayed self-interaction as well as interaction with TIP47 and the SOCS box is essential for its ability to induce clustering of lipid droplets. Our results suggest that Rab40c is a novel Rab protein associated with lipid droplets, and is likely involved in modulating the biogenesis of lipid droplets.

  14. [Lipid metabolism and lipogenesis: application of stable isotopes].

    Science.gov (United States)

    Martínez, J A; Martí, A

    1998-01-01

    Fat metabolism is regulated by several neuroendocrine and nutritional factors, which affect equilibrium between lipogenesis and lipolysis. Lipid utilization and fate in the organism can be assessed by in vivo and in vitro methods by measuring the rate of the different metabolic pathways (dynamic aspects), but also the net balance which may lead to fat accumulation or loss (static aspects). The quantitation of synthesis and breakdown reactions can be performed by using different tracers such as radioactive and stable isotopes. Fatty acid synthesis can be independently measured by the intravenous infusion of 13C acetate and application of the MIDA technique. In brief, this method uses probability analysis to measure the synthesis of biological polymers. It is based on the mathematical principle that the labeling pattern of a polymer synthesized from a stable-isotopically labeled precursor will conform to a predicted binomial or multinomial expansion. Thus, the isotopic enrichment of the precursor pool is calculated from measurements on the product alone. In the case of fatty acid synthesis, the proportions of excess (above natural background abundance) of single-labeled and double labeled (EM1 and EM2 species respectively) are a function of the probability (p) that the precursor subunits were isotopically labeled. Using this value of P for the isotopic enrichment of the acetylCoA pool, the theoretical 13C enrichment in the fatty acid if 100% were newly formed from this acetate pool is calculated. The actual isotopic enrichment is measured by gas chromatography-mass spectrometry (GCMS). This value divided by the theoretical maximum value equals the fraction of the fatty acid that is newly formed (f). The value for f represents dilution of de novo synthesized fatty acid by non-de novo sources. This method requires that newly synthesized (labeled) and preformed (unlabeled) mix in the liver and communicate with plasma VLDL over the period of the isotope infusion. It also

  15. Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes.

    Directory of Open Access Journals (Sweden)

    Himanshu Khandelia

    Full Text Available Triglycerides have a limited solubility, around 3%, in phosphatidylcholine lipid bilayers. Using millisecond-scale course grained molecular dynamics simulations, we show that the model lipid bilayer can accommodate a higher concentration of triolein (TO than earlier anticipated, by sequestering triolein molecules to the bilayer center in the form of a disordered, isotropic, mobile neutral lipid aggregate, at least 17 nm in diameter, which forms spontaneously, and remains stable on at least the microsecond time scale. The results give credence to the hotly debated existence of mobile neutral lipid aggregates of unknown function present in malignant cells, and to the early biogenesis of lipid droplets accommodated between the two leaflets of the endoplasmic reticulum membrane. The TO aggregates give the bilayer a blister-like appearance, and will hinder the formation of multi-lamellar phases in model, and possibly living membranes. The blisters will result in anomalous membrane probe partitioning, which should be accounted for in the interpretation of probe-related measurements.

  16. Lipid metabolism in experimental animals

    Directory of Open Access Journals (Sweden)

    Sánchez-Muñiz, Francisco J.

    1998-08-01

    Full Text Available Publications are scarce in the way in chich metabolic processes are affected by the ingestion of heated fats used to prepare food. Similarly studies measuring metabolic effects of the consumption on fried food are poorly known. The purpose of this presentation is to summarize information on frying fats and frying foods upon lipid metabolism in experimental animals. Food consumption is equivalent or even higher when oils or the fat content of frying foods are poorly alterated decreasing their acceptability when their alteration degree increase. After 4hr. experiment the digestibility and absorption coefficients of a single dosis of thermooxidized oils were significantly decreased in rats, however the digestive utilization of frying thermooxidized oils included in diets showed very little change in comparison with unused oils by feeding trials on rats. Feeding rats different frying fats induced a slight hypercholesterolemic effect being the magnitude of this effect related to the linoleic decrease in diet produced by frying. However HDL, the main rat-cholesterol carrier, also increased, thus the serum cholesterol/HDL-cholesterol ratio did not change. Results suggest that rats fed frying fats adapt their lipoprotein metabolism increasing the number of HDL particles. Deep fat frying deeply changed the fatty acid composition of foods, being possible to increase their n-9 or n-6 fatty acid and to decrease the saturated fatty acid contents by frying. When olive oil-and sunflower oil-fried sardines were used as the only protein and fat sources of rats-diets in order to prevent the dietary hypercholesterolemia it was provided that both fried-sardine diets showed a powerful check effect on the cholesterol raising effect induced by dietary cholesterol. The negative effect of feeding rats cholesterol plus bovine bile to induce hypercholesterolemia on some cell-damage markers such as lactate dehydrogenase, transaminases, alkaline phosphatase, was

  17. Elasticities and stabilities: lipid membranes vs cell membranes

    OpenAIRE

    Tu, Z. C.; An, R.; Ou-Yang, Z. C.

    2005-01-01

    A cell membrane can be simply regarded as composite material consisting of lipid bilayer, membrane cytoskeleton beneath lipid bilayer, and proteins embedded in lipid bilayer and linked with membrane cytoskeleton if one only concerns its mechanical properties. In this Chapter, above all, the authors give a brief introduction to some important work on mechanical properties of lipid bilayers following Helfrich's seminal work on spontaneous curvature energy of lipid bilayers. Next, the entropy of...

  18. Genetic architecture of circulating lipid levels.

    Science.gov (United States)

    Demirkan, Ayşe; Amin, Najaf; Isaacs, Aaron; Jarvelin, Marjo-Riitta; Whitfield, John B; Wichmann, Heinz-Erich; Kyvik, Kirsten O H M; Rudan, Igor; Gieger, Christian; Hicks, Andrew A; Johansson, Åsa; Hottenga, Jouke-Jan; Smith, Johannes J; Wild, Sarah H; Pedersen, Nancy L; Willemsen, Gonneke; Mangino, Massimo; Hayward, Caroline; Uitterlinden, André G; Hofman, Albert; Witteman, Jacqueline; Montgomery, Grant W; Pietiläinen, Kirsi H; Rantanen, Taina; Kaprio, Jaakko; Döring, Angela; Pramstaller, Peter P; Gyllensten, Ulf; de Geus, Eco J C; Penninx, Brenda W; Wilson, James F; Rivadeneria, Fernando; Magnusson, Patrik K E; Boomsma, Dorret I; Spector, Tim; Campbell, Harry; Hoehne, Birgit; Martin, Nicholas G; Oostra, Ben A; McCarthy, Mark; Peltonen-Palotie, Leena; Aulchenko, Yurii; Visscher, Peter M; Ripatti, Samuli; Janssens, A Cecile J W; van Duijn, Cornelia M

    2011-07-01

    Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total cholesterol (TC) are important heritable risk factors for cardiovascular disease. Although genome-wide association studies (GWASs) of circulating lipid levels have identified numerous loci, a substantial portion of the heritability of these traits remains unexplained. Evidence of unexplained genetic variance can be detected by combining multiple independent markers into additive genetic risk scores. Such polygenic scores, constructed using results from the ENGAGE Consortium GWAS on serum lipids, were applied to predict lipid levels in an independent population-based study, the Rotterdam Study-II (RS-II). We additionally tested for evidence of a shared genetic basis for different lipid phenotypes. Finally, the polygenic score approach was used to identify an alternative genome-wide significance threshold before pathway analysis and those results were compared with those based on the classical genome-wide significance threshold. Our study provides evidence suggesting that many loci influencing circulating lipid levels remain undiscovered. Cross-prediction models suggested a small overlap between the polygenic backgrounds involved in determining LDL-C, HDL-C and TG levels. Pathway analysis utilizing the best polygenic score for TC uncovered extra information compared with using only genome-wide significant loci. These results suggest that the genetic architecture of circulating lipids involves a number of undiscovered variants with very small effects, and that increasing GWAS sample sizes will enable the identification of novel variants that regulate lipid levels.

  19. Lipid labeling from acetate or glycerol in cultured embryos of Camelina sativa seeds: A tale of two substrates.

    Science.gov (United States)

    Pollard, Mike; Delamarter, Danielle; Martin, Tina M; Shachar-Hill, Yair

    2015-10-01

    Studies on the metabolism of lipids in seeds frequently use radiolabeled acetate and glycerol supplied to excised developing seeds to track the biosynthesis of acyl and lipid head groups, respectively. Such experiments are generally restricted to shorter time periods and the results may not quantitatively reflect in planta rates. These limitations can be removed by using cultured embryos, provided they mimic growth and lipid deposition observed for embryos in planta. Mid-maturation embryos from Camelina sativa were cultured in vitro to assess the use of sufficient acetate or glycerol concentrations and labeling periods for stable isotope labeling and mass spectrometric detection. Maximum incorporation of exogenous acetate into fatty acids occurred at 1mM and above. This provides about 5% of the total carbon flux entering fatty acids, enough for (13)C isotopomer analysis while maintaining normal biosynthetic rates for over 24h. Labeling analysis indicates that acetate reports lipid metabolism uniformly across the embryo. At higher acetate concentrations with longer incubations, the rate of fatty acid synthesis is reduced and the composition of newly synthesized fatty acids changes. While the mole fractions of oleate that undergo Δ12-desaturation or elongation are independent of biosynthetic flux, Δ15-desaturation shows a bimodal dependence. These observations are consistent with changes occurring in planta over seed development. Incorporation rates of the glyceryl moiety into lipids saturates at about 0.5mM exogenous glycerol. At saturation, the exogenous glycerol almost completely replaces the endogenous supply of glycerol-3-phosphate without affecting net lipid accumulation or fatty acid composition. It is concluded that acetate and glycerol labeling of cultured C. sativa embryos can provide an accurate representation of lipid metabolism in embryos in vivo, and that in Camelina embryos glycerol-3-phosphate levels do not co-limit triacylglycerol synthesis

  20. Identification and Characterization of Two Klebsiella pneumoniae lpxL Lipid A Late Acyltransferases and Their Role in Virulence.

    Science.gov (United States)

    Mills, Grant; Dumigan, Amy; Kidd, Timothy; Hobley, Laura; Bengoechea, José A

    2017-09-01

    Klebsiella pneumoniae causes a wide range of infections, from urinary tract infections to pneumonia. The lipopolysaccharide is a virulence factor of this pathogen, although there are gaps in our understanding of its biosynthesis. Here we report on the characterization of K. pneumoniaelpxL, which encodes one of the enzymes responsible for the late secondary acylation of immature lipid A molecules. Analysis of the available K. pneumoniae genomes revealed that this pathogen's genome encodes two orthologues of Escherichia coli LpxL. Using genetic methods and mass spectrometry, we demonstrate that LpxL1 catalyzes the addition of laureate and LpxL2 catalyzes the addition of myristate. Both enzymes acylated E. coli lipid A, whereas only LpxL2 mediated K. pneumoniae lipid A acylation. We show that LpxL1 is negatively regulated by the two-component system PhoPQ. The lipid A produced by the lpxL2 mutant lacked the 2-hydroxymyristate, palmitate, and 4-aminoarabinose decorations found in the lipid A synthesized by the wild type. The lack of 2-hydroxymyristate was expected since LpxO modifies the myristate transferred by LpxL2 to the lipid A. The absence of the other two decorations is most likely caused by the downregulation of phoPQ and pmrAB expression. LpxL2-dependent lipid A acylation protects Klebsiella from polymyxins, mediates resistance to phagocytosis, limits the activation of inflammatory responses by macrophages, and is required for pathogen survival in the wax moth (Galleria mellonella). Our findings indicate that the LpxL2 contribution to virulence is dependent on LpxO-mediated hydroxylation of the LpxL2-transferred myristate. Our studies suggest that LpxL2 might be a candidate target in the development of anti-K. pneumoniae drugs. Copyright © 2017 American Society for Microbiology.

  1. effect of dietary lipid sources on lipid oxidation of broiler meat

    African Journals Online (AJOL)

    Abstract. The objective of this study was to investigate the effects of different dietary lipid sources and inclusion levels on lipid oxidation of thigh and breast muscle of male broilers. Eight isoenergetic (15.12 MJ AME/kg. DM) and isonitrogenous (222.8 CP/kg DM) diets were formulated, using sunflower oil (SO), high oleic.

  2. Quercetin induces hepatic lipid omega-oxidation and lowers serum lipid levels in mice.

    NARCIS (Netherlands)

    n den Hil, E.F. Hoek-va; Keijer, J.; Bunschoten, A.; Vervoort, J.J.; Stankova, B.; Bekkenkamp, M.; Herreman, L.; Venema, D.; Hollman, P.C.H.; Tvrzicka, E.; Rietjens, I.M.C.M.; Schothorst, E.M. van

    2013-01-01

    Elevated circulating lipid levels are known risk factors for cardiovascular diseases (CVD). In order to examine the effects of quercetin on lipid metabolism, mice received a mild-high-fat diet without (control) or with supplementation of 0.33% (w/w) quercetin for 12 weeks. Gas chromatography and

  3. Interdigitation between Triglycerides and Lipids Modulates Surface Properties of Lipid Droplets.

    Science.gov (United States)

    Bacle, Amélie; Gautier, Romain; Jackson, Catherine L; Fuchs, Patrick F J; Vanni, Stefano

    2017-04-11

    Intracellular lipid droplets (LDs) are the main cellular site of metabolic energy storage. Their structure is unique inside the cell, with a core of esterified fatty acids and sterols, mainly triglycerides and sterol esters, surrounded by a single monolayer of phospholipids. Numerous peripheral proteins, including several that were previously associated with intracellular compartments surrounded by a lipid bilayer, have been recently shown to target the surface of LDs, but how they are able to selectively target this organelle remains largely unknown. Here, we use atomistic and coarse-grained molecular dynamics simulations to investigate the molecular properties of the LD surface and to characterize how it differs from that of a lipid bilayer. Our data suggest that although several surface properties are remarkably similar between the two structures, key differences originate from the interdigitation between surface phospholipids and core neutral lipids that occurs in LDs. This property is extremely sensitive to membrane undulations, unlike in lipid bilayers, and it strongly affects both lipid-packing defects and the lateral pressure profile. We observed a marked change in overall surface properties for surface tensions >10 mN/m, indicative of a bimodal behavior. Our simulations provide a comprehensive molecular characterization of the unique surface properties of LDs and suggest how the molecular properties of the surface lipid monolayer can be modulated by the underlying neutral lipids. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. The influence of lipid composition on the barrier properties of band 3-containing lipid vesicles

    NARCIS (Netherlands)

    Hoogevest, P. van; Maine, A.P.M. du; Kruijff, B. de; Gier, J. de

    1984-01-01

    Band 3 protein has been incorporated into lipid vesicles consisting of 94:6 (molar ratio) egg phosphatidylcholine-bovine heart phosphatidylserine or total erythrocyte lipids by means of a Triton X-100 Bio-Beads method, with an additional sonication step prior to the removal of the detergent. This

  5. Effect of soy protein on serum lipid profile and some lipid ...

    African Journals Online (AJOL)

    The effect of soy protein on serum lipid profile and some lipid metabolizing enzymes in rats fed with cholesterol diets was examined in this study. Rats were subjected to feeding trial over a period of six weeks on formulated diets containing: 20% soy protein with 0% cholesterol (group A), 20% soy protein with 5% cholesterol ...

  6. Serum lipid profile and lipid pro-atherogenic indices of a cohort of ...

    African Journals Online (AJOL)

    Dyslipidemia is common in patients with Type 2 diabetes and those with hypertension. The lipid profile and ... blood glucose level. Management of diabetes and hypertension (especially in this environment) should apart from targeting lipid abnormalities, emphasize therapeutic lifestyle changes that encourage weight loss.

  7. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application

    Science.gov (United States)

    Naseri, Neda; Valizadeh, Hadi; Zakeri-Milani, Parvin

    2015-01-01

    Lipid nanoparticles (LNPs) have attracted special interest during last few decades. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are two major types of Lipid-based nanoparticles. SLNs were developed to overcome the limitations of other colloidal carriers, such as emulsions, liposomes and polymeric nanoparticles because they have advantages like good release profile and targeted drug delivery with excellent physical stability. In the next generation of the lipid nanoparticle, NLCs are modified SLNs which improve the stability and capacity loading. Three structural models of NLCs have been proposed. These LNPs have potential applications in drug delivery field, research, cosmetics, clinical medicine, etc. This article focuses on features, structure and innovation of LNPs and presents a wide discussion about preparation methods, advantages, disadvantages and applications of LNPs by focusing on SLNs and NLCs. PMID:26504751

  8. Nanostructured aqueous dispersions of citrem interacting with lipids and PEGylated lipids

    DEFF Research Database (Denmark)

    Hedegaard, S.F.; Nilsson, Christa; Laurinmäki, P.

    2013-01-01

    -PEGylated dispersions of citrem. Citrem can be easily dispersed in water in the absence of other surfactant-like lipids without applying high-energy input. However, to investigate the stability and to characterize the internal structure of dispersions with a narrow size distribution, ultrasonication was applied...... for the emulsification of citrem or its binary mixture with PEGylated lipids of poly (ethylene glycol) monooleate with M ∼ 460 (MO-PEG) or M ∼ 860 (MO-PEG) and non-PEGylated lipids (monoolein (MO) or phytantriol (PHYT)). We obtained stable dispersions (>4 months) consisting of particles with highly negative zeta...... X-ray scattering (SAXS), where the effect of partial replacement of citrem by two PEGylated lipids or other well-known lipids (MO and PHYT) was investigated. In addition, cryogenic transmission electron microscopy (cryo-TEM) was applied to characterize the morphology and the internal structure...

  9. Single-component solid lipid nanocarriers prepared with ultra-long chain amphiphilic lipids

    DEFF Research Database (Denmark)

    Wei, Wei; Lu, Xiaonan; Wang, Zegao

    2017-01-01

    HYPOTHESIS: Synthetic sugar alcohol mono-behenates with high melting points, surface activity and resistance to enzymatic lipolysis, are expected to form stable single-component solid lipid nanocarriers (SC-SLNs). The preparation methods and the polar head group of the molecules should affect...... the smallest mean size (∼100nm with PdI of 0.26). In addition, they displayed high entrapment efficiency of fenofibrate (95%) and long term drug release. Nanocarriers prepared by emulsification-diffusion method entrapped fenofibrate into lipid bilayers. In contrast, Nanocarriers prepared by melting......-probe sonication method had a micelle structure with fenofibrate incorporated into a lipid monolayer. This study provides an insight into the systematic development of novel amphiphilic lipids for solid lipid-based drug delivery system....

  10. Comparison of pinniped and cetacean prey tissue lipids with lipids of their elasmobranch predator.

    Science.gov (United States)

    Davidson, Bruce; Cliff, Geremy

    2014-01-01

    The great white shark is known to include pinnipeds and cetaceans in its diet. Both groups of marine mammals deposit thick blubber layers around their bodies. Elasmobranchs do not produce adipose tissue, but rather store lipid in their livers, thus a great white predating on a marine mammal will deposit the lipids in its liver until required. Samples from great white liver and muscle, Cape fur seal, Indian Ocean bottlenose dolphin and common dolphin liver, muscle and blubber were analyzed for their lipid and fatty acid profiles. The great white liver and marine mammal blubber samples showed a considerable degree of homogeneity, but there were significant differences when comparing between the muscle samples. Blubber from all three marine mammal species was calculated to provide greater than 95% of lipid intake for the great white shark from the tissues analyzed. Sampling of prey blubber may give a good indication of the lipids provided to the shark predator.

  11. Role of Neutral Lipids in Tear Fluid Lipid Layer: Coarse-Grained Simulation Study

    DEFF Research Database (Denmark)

    Telenius, J.; Koivuniemi, A.; Kulovesi, P.

    2012-01-01

    Tear fluid lipid layer (TFLL) residing at the air-water interface of tears has been recognized to play an important role in the development of dry eye syndrome. Yet, the composition, structure, and mechanical properties of TFLL are only partly known. Here, we report results of coarse...... system, we found drastic differences in both structural and dynamical properties that explain the prominent role of neutral lipids as stabilizers of the TFLL. Based on our results, we suggest that neutral lipids are able to increase the stability of the TFLL by modulating its dynamical and structural......-grained simulations of a lipid layer comprising phospholipids, free fatty acids, cholesteryl esters, and triglycerides at the air-water interface to shed light on the properties of TFLL. We consider structural as well as dynamical properties of the lipid layer as a function of surface pressure. Simulations revealed...

  12. Interaction of antimicrobial peptides with lipid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hanulova, Maria

    2008-12-15

    This study aims to investigate the difference in the interaction of antimicrobial peptides with two classes of zwitterionic peptides, phosphatidylethanolamines (PE) and phosphatidylcholines (PC). Further experiments were performed on model membranes prepared from specific bacterial lipids, lipopolysaccharides (LPS) isolated from Salmonella minnesota. The structure of the lipid-peptide aqueous dispersions was studied by small-and wide-angle X-ray diffraction during heating and cooling from 5 to 85 C. The lipids and peptides were mixed at lipid-to-peptide ratios 10-10000 (POPE and POPC) or 2-50 (LPS). All experiments were performed at synchrotron soft condensed matter beamline A2 in Hasylab at Desy in Hamburg, Germany. The phases were identified and the lattice parameters were calculated. Alamethicin and melittin interact in similar ways with the lipids. Pure POPC forms only lamellar phases. POPE forms lamellar phases at low temperatures that upon heating transform into a highly curved inverse hexagonal phase. Insertion of the peptide induced inverse bicontinuous cubic phases which are an ideal compromise between the curvature stress and the packing frustration. Melittin usually induced a mixture of two cubic phases, Im3m and Pn3m, with a ratio of lattice parameters close to 1.279, related to the underlying minimal surfaces. They formed during the lamellar to hexagonal phase transition and persisted during cooling till the onset of the gel phase. The phases formed at different lipid-to-peptide ratios had very similar lattice parameters. Epitaxial relationships existed between coexisting cubic phases and hexagonal or lamellar phases due to confinement of all phases to an onion vesicle, a vesicle with several layers consisting of different lipid phases. Alamethicin induced the same cubic phases, although their formation and lattice parameters were dependent on the peptide concentration. The cubic phases formed during heating from the lamellar phase and their onset

  13. Data of added-value lipid production, Arachidonic acid, among other lipids by Mortierella elongata, using low cost simulated wastewater

    Directory of Open Access Journals (Sweden)

    Bruna Soares Fernandes

    2017-10-01

    Full Text Available This article presented an innovative data of feasibility to produce Arachidonic acid (ARA, as added-value Polyunsaturated Fatty Acids (PUFA, among other lipids from Mortierella elongata, using simulated low cost sugarcane wastewater, vinasse, as a carbon source. Data from lipids quantification by total lipids extraction and by lipid classes was presented. M. elongata was able to produce 156.45mg of ARA per g of total lipids.

  14. Dry cured ham quality as related to lipid quality of raw material and lipid changes during processing: a review.

    OpenAIRE

    Gilles, Gandemer

    2009-01-01

    Lipids play a key role in sensory traits of dry cured hams. Both the quantity and the composition of lipids in raw material affect dry-cured hams quality. The lipid characteristics strongly depend on rearing systems developed in different area in Europe. During processing, lipids undergo lipolysis and oxidation. Phospholipids are the main substrates of both lipolysis and oxidation. Lipolysis forms free fatty acids rich in polyunsaturated fatty acids all along the process. Lipids are also subj...

  15. Nanosecond Lipid Dynamics in Membranes Containing Cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Clare L [McMaster University; Haeussler, Wolfgang [FRM-II, Technische Universitaet Munchen; Seydel, Tilo [Institut Laue-Langevin (ILL); Katsaras, John [ORNL; Rheinstadter, Maikel C [McMaster University

    2014-01-01

    Lipid dynamics in the cholesterol-rich (40 mol%) liquid-ordered (lo) phase of dimyristoylphosphatidylcholine membranes were studied using neutron spin-echo and neutron backscattering. Recent theoretical and experimental evidence supports the notion of the liquid-ordered phase in phospholipid membranes as a locally structured liquid, with small ordered domains of a highly dynamic nature in equilibrium with a disordered matrix [S. Meinhardt, R. L. C. Vink and F. Schmid, Proc. Natl. Acad. Sci. U. S. A., 2013, 110(12), 4476 4481, C. L. Armstrong et al., PLoS One, 2013, 8(6), e66162]. This local structure was found to have a pronounced impact on the membranes' dynamical properties. We found that the long-wavelength dynamics in the liquid-ordered phase, associated with the elastic properties of the membranes, were faster by two orders of magnitude as compared to the liquid disordered phase. At the same time, collective nanoscale diffusion was significantly slower. The presence of a soft-mode (a slowing down) in the longwavelength dispersion relationship suggests an upper size limit for the ordered lipid domain of ~220 A. Moreover, from the relaxation rate of the collective lipid diffusion of lipid lipid distances, the lifetime of these domains was estimated to be about 100 nanoseconds.

  16. Interaction of triclosan with eukaryotic membrane lipids.

    Science.gov (United States)

    Lygre, Henning; Moe, Grete; Skålevik, Rita; Holmsen, Holm

    2003-06-01

    The possibility that triclosan and PVM/MA (polyvinylmethyl ether/maleic acid) copolymer, additives to dentrifrices, could interact with eukaryotic membrane lipids was studied by two methods: first, by determining the pressure/molecular area isotherms at 37 degrees C of glycerophospholipid monolayers, using the Langmuir technique; and second, by phase-transition parameters in liposomes of the same lipids, using differential scanning calorimetry (DSC). Triclosan interacted, in a concentration-independent manner, with monolayers of saturated phosphatidylcholines (PC; i.e. markers of the outer membrane leaflet of eukaryotic cells). Triclosan and PVM/MA copolymer mixtures were shown to clearly interact in a concentration-dependent manner with PC. Triclosan was found to interact with liposomes of saturated and unsaturated phosphatidylcholines and phosphatidylserines (PS; i.e. markers of the inner membrane leaflet of eukaryotic cells), and saturated ethanolamines (PE; i.e. markers of the inner membrane leaflet of eukaryotic cells), resulting in a decrease of the lipid melting temperature (Tm). PVM/MA copolymer changed the Tm of PS, PC, and PE in different manners. By adding PVM/MA or triclosan-PVM/MA copolymer mixtures to 1-stearoyl-2-oleoyl-sn-glycero-3-phosphoserine (SOPS) no lipid transitions were detected. A biphasic change of the PC transition temperature resulted when triclosan or triclosan PVM/MA copolymer mixtures were added, indicating domain formation and change of the lipid polymorphism.

  17. Intravenous Lipids for Preterm Infants: A Review

    Directory of Open Access Journals (Sweden)

    Ghassan S. A. Salama

    2015-01-01

    Full Text Available Extremely low birth weight infants (ELBW are born at a time when the fetus is undergoing rapid intrauterine brain and body growth. Continuation of this growth in the first several weeks postnatally during the time these infants are on ventilator support and receiving critical care is often a challenge. These infants are usually highly stressed and at risk for catabolism. Parenteral nutrition is needed in these infants because most cannot meet the majority of their nutritional needs using the enteral route. Despite adoption of a more aggressive approach with amino acid infusions, there still appears to be a reluctance to use early intravenous lipids. This is based on several dogmas that suggest that lipid infusions may be associated with the development or exacerbation of lung disease, displace bilirubin from albumin, exacerbate sepsis, and cause CNS injury and thrombocytopena. Several recent reviews have focused on intravenous nutrition for premature neonate, but very little exists that provides a comprehensive review of intravenous lipid for very low birth and other critically ill neonates. Here, we would like to provide a brief basic overview, of lipid biochemistry and metabolism of lipids, especially as they pertain to the preterm infant, discuss the origin of some of the current clinical practices, and provide a review of the literature, that can be used as a basis for revising clinical care, and provide some clarity in this controversial area, where clinical care is often based more on tradition and dogma than science.

  18. Lipid Binding Proteins from Parasitic Platyhelmithes

    Directory of Open Access Journals (Sweden)

    Gabriela eAlvite

    2012-09-01

    Full Text Available Two main families of lipid binding proteins have been identified in parasitic Platyhelminthes: hydrophobic ligand binding proteins (HLBPs and fatty acid binding proteins (FABPs. Members of the former family of proteins are specific to the Cestoda class, while FABPs are conserved across a wide range of animal species. Because Platyhelminthes are unable to synthesise their own lipids, these lipid-binding proteins are important molecules in these organisms.HLBPs are a high molecular mass complex of proteins and lipids. They are composed of subunits of low molecular mass proteins and a wide array of lipid molecules ranging from CoA esters to cholesterol. These proteins are excretory-secretory molecules and are key serological tools for diagnosis of diseases caused by cestodes. FABPs are mainly intracellular proteins of low molecular weight. They are also vaccine candidates.Despite that the knowledge of their function is scarce, the differences in their molecular organisation, ligand preferences, intra/extracellular localisation, evolution, and phylogenetic distribution, suggest that platyhelminths HLBPs and FABPs should play different functions. FABPs might be involved in the removal of fatty acids from the inner surface of the cell membrane and in their subsequent targeting to specific cellular destinations. In contrast, HLBPs might be involved in fatty acid uptake from the host environment.

  19. Syntheses of Resveratrol Analogues and Evaluation of Their Antioxidant Activity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Jeong; Jung, Se Hoon; Moon, Insu; Jun Jonggab; Lee, Jeong Tae [Hallym Univ., Chuncheon (Korea, Republic of)

    2014-05-15

    Free radicals such as superoxide anion radicals (O{sub 2}·{sup -}), hydroxyl radicals (·OH) and non-free radical species such as hydrogen peroxide (H{sub 2}O{sub 2}) and singlet oxygen ({sup 1}O{sub 2}) are considered as ROS. These ROS not only oxidize membrane lipids but damage nucleic acids, proteins and carbohydrates leading to mutations. If ROS are not scavenged by antioxidants, they could be involved in ageing and various diseases related to oxidative stress. Resveratrol is a natural phytoalexin found in the skin of grapes, red wines, and peanuts. It has three hydroxyl groups at the trans-stilbene structure, in which resorcinol and phenol are bridged by a trans double bond. The recent extensive studies on the resveratrol and its derivatives revealed that they have antioxidant, antimutagenic, antiinflammatory, antidiabetic, cardiovascular protective, and anticancer properties. It has been believed that the majority of the biological functions of resveratrol has been attributed to its antioxidant activity.

  20. Individual Lipids and Lipid Ratios in Type-2 Diabetic Patients: Association with Glycemic Control Status

    Directory of Open Access Journals (Sweden)

    Ni Putu Tesi Maratni

    2017-06-01

    Full Text Available The amount of glycosylated hemoglobin (HbA1c reflects the long-term glycemic control of patients with diabetes. HbA1c also predicts the risk for the development of diabetic complications such as cardiovascular disease (CVD. Patients with type-2 diabetes and the characteristic of dyslipidemia are frequently found. Also, dyslipidemia plays as an independent risk factor for CVD. This study was aimed to evaluate the relationship between glycemic control status with serum individual lipid profiles and lipid ratios in patients with type-2 diabetes. This cross-sectional study consisted of 80 patients. Depending on the HbA1c level, the patients were divided into two groups, good glycemic control group (HbA1c < 7.0%, n = 15 and poor glycemic control group (HbA1c ≥ 7.0%, n = 65. The association of HbA1c with individual lipids (TC, TG, HDL-C, LDL-C, Non-HDL-C and lipid ratios (TC/HDL-C, TG/HDL-C, LDL-C/HDL-C, monocyte/HDL-C were analyzed. The value of individual lipids and lipid ratios did not correlate with HbA1c level (p-value ≥ 0.05. Parameters of individual lipids and lipid ratios were not independently associated with poor glycemic control, which was analyzed by logistic regression. ROC analysis found both LDL-C and LDL-C/HDL-C were not accurate to be used as a prognostic indicator of poor glycemic control in patients with type-2 diabetes (p = 0.155, p = 0.297, respectively. The present study found that there was no association between individual lipids and lipid ratios with glycemic control status.